This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Permutation-Invariant Quantum Codes for Deletion Errors

Taro Shibayama Department of Mathematics and Informatics, Graduate School of Science, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba City, Chiba Pref., JAPAN, 263-0022    Manabu Hagiwara 11footnotemark: 1
Abstract

This paper presents conditions for constructing permutation-invariant quantum codes for deletion errors and provides a method for constructing them. Our codes give the first example of quantum codes that can correct two or more deletion errors. Also, our codes give the first example of quantum codes that can correct both multiple-qubit errors and multiple-deletion errors. We also discuss a generalization of the construction of our codes at the end.

1 Introduction

Quantum error-correcting codes are one of the essential factors for the development of quantum computers, which were first introduced by Shor in 1995 [22]. Since then, many codes have been constructed, e.g., CSS codes[2], stabilizer codes[4], surface codes[3], etc.

Recently, in 2019, Leahy et al. provided a way to turn quantum insertion-deletion errors into errors that can be handled by conventional methods under the specific assumption [10]. Since then, quantum deletion error-correction have attracted a lot of attention from researchers. In quantum information theory, quantum deletion error-correction is a problem of determining the quantum state in the entire quantum system from a quantum state in a partial system. Therefore it is related to various topics, e.g., quantum erasure error-correcting codes [5], quantum secret sharing [7], purification of quantum state [8], quantum cloud computing [1], etc.

The first quantum deletion codes under the general scenario was constructed in 2020 [11]. Since then, several quantum deletion codes have been constructed so far [6, 12, 21]. However, research on quantum deletion codes is not yet sufficiently advanced. All the quantum deletion codes that have already been found can correct only single-deletion errors. In other words, quantum error-correcting codes that can correct two or more deletion errors have not been found to date. Furthermore, in classical coding theory, the construction of codes that can correct both substitution and deletion errors has attracted much attention [23, 24]; however, no such codes have yet been found in quantum coding theory.

In this paper, we consider permutation-invariant quantum codes, which are invariant under any permutation of the underlying particles. Permutation-invariant quantum codes have been constructed using a variety of techniques[20, 19, 14, 17, 15, 13]. Recently, permutation-invariant quantum codes have been explored for applications such as for quantum storage[16] and robust quantum metrology[18]. These are expected to be applied to physically realistic scenarios[25].

This paper is organized as follows. In Section 2, some notations and definitions are introduced. In Section 3, the deletion error-correcting codes as quantum codes are defined and the main theorem is stated, and in Section 4, we give the proof of the main theorem. In Section 5, we present two families of our codes. The first gives quantum codes that can correct any number of deletion errors, and the code can also correct multiple qubit errors. The second gives quantum codes that can correct single-deletion errors that have been found so far; these are also included in our codes. In Section 6, we consider a generalization of our codes. Finally, this paper is summarized in Section 7.

2 Preliminaries

Throughout this paper, we fix the following notation. Let N2N\geq 2 be an integer and [N]{1,2,,N}[N]\coloneqq\{1,2,\dots,N\}. For a square matrix MM over the complex field \mathbb{C}, we denote by Tr(M){\rm Tr}(M) the sum of the diagonal elements of MM. Set |0,|12|0\rangle,|1\rangle\in\mathbb{C}^{2} as |0(1,0)|0\rangle\coloneqq(1,0)^{\top}, |1(0,1)|1\rangle\coloneqq(0,1)^{\top}, and |𝒙|x1|x2|xN2N|\bm{x}\rangle\coloneqq|x_{1}\rangle\otimes|x_{2}\rangle\otimes\dots\otimes|x_{N}\rangle\in\mathbb{C}^{2\otimes N} for a bit sequence 𝒙=x1x2xN{0,1}N\bm{x}=x_{1}x_{2}\cdots x_{N}\in\{0,1\}^{N}. Here \otimes is the tensor product operation and \top is the transpose operation. Let 𝒙||𝒙\langle\bm{x}|\coloneqq|\bm{x}\rangle^{\dagger} denote the conjugate transpose of |𝒙|\bm{x}\rangle. We define the Hamming weight wt(𝒙){\rm wt}(\bm{x}) of 𝒙\bm{x} by wt(𝒙)#{p[N]xp0}{\rm wt}(\bm{x})\coloneqq\#\{p\in[N]\mid x_{p}\neq 0\}.

A positive semi-definite Hermitian matrix of trace 11 is called a density matrix. We denote by S(2N)S(\mathbb{C}^{2\otimes N}) the set of all density matrices of order 2N2^{N}. An element of S(2N)S(\mathbb{C}^{2\otimes N}) is called a quantum state. We also use a complex vector |ψ2N|\psi\rangle\in\mathbb{C}^{2\otimes N} for representing a pure quantum state |ψψ|S(2N)|\psi\rangle\langle\psi|\in S(\mathbb{C}^{2\otimes N}).

Let M=𝒙,𝒚{0,1}Nm𝒙,𝒚|x1y1||xNyN|M=\sum_{\bm{x},\bm{y}\in\{0,1\}^{N}}m_{\bm{x},\bm{y}}|x_{1}\rangle\langle y_{1}|\otimes\cdots\otimes|x_{N}\rangle\langle y_{N}| be a square matrix with m𝒙,𝒚m_{\bm{x},\bm{y}}\in\mathbb{C}. For an integer p[N]p\in[N], define a map Trp:S(2N)S(2(N1)){\rm Tr}_{p}:S(\mathbb{C}^{2\otimes N})\rightarrow S(\mathbb{C}^{2\otimes(N-1)}) as

Trp(M)\displaystyle{\rm Tr}_{p}(M)\coloneqq 𝒙,𝒚{0,1}Nm𝒙,𝒚Tr(|xpyp|)|x1y1|\displaystyle\sum_{\bm{x},\bm{y}\in\{0,1\}^{N}}m_{\bm{x},\bm{y}}\cdot{\rm Tr}(|x_{p}\rangle\langle y_{p}|)|x_{1}\rangle\langle y_{1}|\otimes
|xp1yp1||xp+1yp+1|\displaystyle\cdots\otimes|x_{p-1}\rangle\langle y_{p-1}|\otimes|x_{p+1}\rangle\langle y_{p+1}|\otimes
|xNyN|.\displaystyle\cdots\otimes|x_{N}\rangle\langle y_{N}|.

The map Trp{\rm Tr}_{p} is called a partial trace.

3 Deletion Error-Correcting Codes
and Main Contribution

Recall that in classical coding theory, for an integer 1t<N1\leq t<N, a tt-deletion error is defined as a map from a bit sequence of length NN to its subsequence of length NtN-t. We define a tt-deletion error in the terms of quantum coding theory.

Definition 3.1 (Deletion Error DPD_{P}).

Let 1t<N1\leq t<N be an integer. For a set P={p1,,pt}[N]P=\{p_{1},\dots,p_{t}\}\subset[N] with p1<<ptp_{1}<\dots<p_{t}, define a map DP:S(2N)S(2(Nt))D_{P}:S(\mathbb{C}^{2\otimes N})\rightarrow S(\mathbb{C}^{2\otimes(N-t)}) as

DP(ρ)Trp1Trpt(ρ),\displaystyle D_{P}(\rho)\coloneqq{\rm Tr}_{p_{1}}\circ\dots\circ{\rm Tr}_{p_{t}}(\rho),

where ρS(2N)\rho\in S(\mathbb{C}^{2\otimes N}) is a quantum state. Here the symbol \circ indicates the composition of maps. We call the map DPD_{P} a tt-deletion error with the deletion position PP. The cardinality |P||P| is called the number of deletions for DPD_{P}.

In this paper, an integer 1t<N1\leq t<N is fixed and denotes a number of deletions, and a set P[N]P\subset[N] denotes the deletion position satisfying |P|=t|P|=t.

Definition 3.2 (Deletion Error-Correcting Code).

We call an image of Enc{\rm Enc} an [N,K][N,K] tt-deletion error-correcting code if the following conditions hold.

  • There exists a map Enc:2K2N{\rm Enc}:\mathbb{C}^{2\otimes K}\rightarrow\mathbb{C}^{2\otimes N} defined as the composition of two maps encpadN,K{\rm enc}\circ{\rm pad}^{N,K}, where the map padN,K:2K2N{\rm pad}^{N,K}:\mathbb{C}^{2\otimes K}\rightarrow\mathbb{C}^{2\otimes N} is defined by padN,K(|ψ)|ψ|0|0{\rm pad}^{N,K}(|\psi\rangle)\coloneqq|\psi\rangle\otimes|0\rangle\otimes\dots\otimes|0\rangle, and the map enc:2N2N{\rm enc}:\mathbb{C}^{2\otimes N}\rightarrow\mathbb{C}^{2\otimes N} is a unitary transformation acting on 2N\mathbb{C}^{2\otimes N}.

  • There exists a map Dec:S(2(Nt))2K{\rm Dec}:S(\mathbb{C}^{2\otimes(N-t)})\rightarrow\mathbb{C}^{2\otimes K} defined by the operations allowed by quantum mechanics, and

    DecDPEnc(|ψ)=|ψ\displaystyle{\rm Dec}\circ D_{P}\circ{\rm Enc}(|\psi\rangle)=|\psi\rangle

    holds for any quantum state |ψ2K|\psi\rangle\in\mathbb{C}^{2\otimes K} and any deletion position P[N]P\subset[N] satisfying |P|=t|P|=t.

In other words, there exist an encoder Enc{\rm Enc} and a decoder Dec{\rm Dec} that correct any tt-deletion errors.

Note that a tt-deletion error-correcting code is an ss-deletion error-correcting code for any positive integer sts\leq t.

The following Definition 3.3 is the conditions for constructing our codes. Note that for binomial coefficients, if w<0w<0 or N<wN<w, we define (Nw)0\binom{N}{w}\coloneqq 0.

Definition 3.3 (Conditions (D1), (D2), and (D3)).

For two non-empty sets A,B{0,1,,N}A,B\subset\{0,1,\dots,N\} and a map f:ABf:A\cup B\rightarrow\mathbb{C}, define three conditions (D1), (D2), and (D3) as follows:

  • (D1)

    wA|f(w)|2(Nw)=wB|f(w)|2(Nw)=1\displaystyle\sum_{w\in A}|f(w)|^{2}{\binom{N}{w}}=\sum_{w\in B}|f(w)|^{2}{\binom{N}{w}}=1.

  • (D2)

    For any integer 0kt0\leq k\leq t,

    wA|f(w)|2(Ntwk)=wB|f(w)|2(Ntwk)0.\displaystyle\sum_{w\in A}|f(w)|^{2}{\binom{N-t}{w-k}}=\sum_{w\in B}|f(w)|^{2}{\binom{N-t}{w-k}}\neq 0.
  • (D3)

    For any integers w1,w2ABw_{1},w_{2}\in A\cup B,

    w1w2|w1w2|>t.\displaystyle w_{1}\neq w_{2}~{}\Longrightarrow~{}|w_{1}-w_{2}|>t.

The following Theorem 3.4 is the main theorem of this paper and describes a new construction method for quantum deletion error-correcting codes.

Theorem 3.4.

Let A,B{0,1}NA,B\subset\{0,1\}^{N} be non-empty sets with AB=A\cap B=\varnothing and f:ABf:A\cup B\rightarrow\mathbb{C} be a map satisfying the conditions (D1), (D2), and (D3). Then the code QA,BfQ_{A,B}^{f} is an [N,1][N,1] tt-deletion error-correcting code with the encoder EncA,Bf{\rm Enc}_{A,B}^{f} and the decoder DecA,Bf{\rm Dec}_{A,B}^{f}.

Here, the notations QA,BfQ_{A,B}^{f}, EncA,Bf{\rm Enc}_{A,B}^{f}, and DecA,Bf{\rm Dec}_{A,B}^{f} above are defined in the next section.

4 Proof of The Main Theorem

In this section, we shall give the proof of Theorem 3.4. The proofs of Lemmas in this section are given in later appendices.

Definition 4.1 (Encoder EncA,Bf{\rm Enc}_{A,B}^{f} and Code QA,BfQ_{A,B}^{f}).

Let A,B{0,1,,N}A,B\subset\{0,1,\dots,N\} be non-empty sets with AB=A\cap B=\varnothing and f:ABf:A\cup B\rightarrow\mathbb{C} be a map satisfying the conditions (D1), (D2), and (D3). Let us define an encoder as a linear map EncA,Bf:22N{\rm Enc}_{A,B}^{f}:\mathbb{C}^{2}\rightarrow\mathbb{C}^{2\otimes N}. For a quantum state |ψ=α|0+β|12|\psi\rangle=\alpha|0\rangle+\beta|1\rangle\in\mathbb{C}^{2}, EncA,Bf{\rm Enc}_{A,B}^{f} maps the state |ψ|\psi\rangle to the following state |Ψ|\Psi\rangle,

|Ψ𝒙{0,1}Nwt(𝒙)Aαf(wt(𝒙))|𝒙+𝒚{0,1}Nwt(𝒚)Bβf(wt(𝒚))|𝒚.\displaystyle|\Psi\rangle\coloneqq\!\sum_{\begin{subarray}{c}\bm{x}\in\{0,1\}^{N}\\ {\rm wt}(\bm{x})\in A\end{subarray}}\!\!\alpha f({\rm wt}(\bm{x}))|\bm{x}\rangle+\!\sum_{\begin{subarray}{c}\bm{y}\in\{0,1\}^{N}\\ {\rm wt}(\bm{y})\in B\end{subarray}}\!\!\beta f({\rm wt}(\bm{y}))|\bm{y}\rangle. (1)

Set QA,BfQ_{A,B}^{f} as the image of EncA,Bf{\rm Enc}_{A,B}^{f}, i.e.,

QA,Bf{EncA,Bf(|ψ)|ψ2,|ψψ|S(2)}.\displaystyle Q_{A,B}^{f}\coloneqq\{{\rm Enc}_{A,B}^{f}(|\psi\rangle)\mid|\psi\rangle\in\mathbb{C}^{2},|\psi\rangle\langle\psi|\in S(\mathbb{C}^{2})\}.

The map EncA,Bf{\rm Enc}_{A,B}^{f} can be written as a form encpadN,K{\rm enc}\circ{\rm pad}^{N,K} with some unitary transformation enc{\rm enc}, thus it satisfies the condition of Definition 3.2. Note that for the vector |Ψ|\Psi\rangle defined by Equation (1),

Ψ|Ψ\displaystyle\langle\Psi|\Psi\rangle =𝒙{0,1}Nwt(𝒙)A|αf(wt(𝒙))|2+𝒚{0,1}Nwt(𝒚)B|βf(wt(𝒚))|2\displaystyle=\sum_{\begin{subarray}{c}\bm{x}\in\{0,1\}^{N}\\ {\rm wt}(\bm{x})\in A\end{subarray}}|\alpha f({\rm wt}(\bm{x}))|^{2}+\sum_{\begin{subarray}{c}\bm{y}\in\{0,1\}^{N}\\ {\rm wt}(\bm{y})\in B\end{subarray}}|\beta f({\rm wt}(\bm{y}))|^{2}
=wA|αf(w)|2(Nw)+wB|βf(w)|2(Nw)\displaystyle=\sum_{w\in A}|\alpha f(w)|^{2}{\binom{N}{w}}+\sum_{w\in B}|\beta f(w)|^{2}{\binom{N}{w}}
=|α|2+|β|2\displaystyle=|\alpha|^{2}+|\beta|^{2}
=1\displaystyle=1

holds by the condition (D1). Therefore, |Ψ|\Psi\rangle is a quantum state.

A quantum state is permutation-invariant if the state is invariant under position permutations. A quantum code is permutation-invariant if any state of the code is permutation-invariant. The term permutation-invariant is also called as PI. The code QA,BfQ_{A,B}^{f} is a PI code. The following Lemma 4.2 describes the state after a deletion error for a PI state.

Lemma 4.2.

Let |Ψ|\Psi\rangle be a pure PI state with

|Ψ\displaystyle|\Psi\rangle 𝒙{0,1}Nc(wt(𝒙))|𝒙,\displaystyle\coloneqq\sum_{\bm{x}\in\{0,1\}^{N}}c({\rm wt}(\bm{x}))|\bm{x}\rangle, (2)

for a map c:{0,1,,N}c:\{0,1,\dots,N\}\rightarrow\mathbb{C}. For an integer 0kt0\leq k\leq t,

|Ψk\displaystyle|\Psi_{k}\rangle 𝒙{0,1}Ntc(wt(𝒙)+k)|𝒙.\displaystyle\coloneqq\sum_{\bm{x}\in\{0,1\}^{N-t}}c({{\rm wt}(\bm{x})+k})|\bm{x}\rangle. (3)

Then, for any deletion position P[N]P\subset[N] satisfying |P|=t|P|=t,

DP(|ΨΨ|)=k=0t(tk)|ΨkΨk|.\displaystyle D_{P}(|\Psi\rangle\langle\Psi|)=\sum_{k=0}^{t}{\binom{\,t\,}{k}}|\Psi_{k}\rangle\langle\Psi_{k}|.

Note that Equation (1) is obtained in Equation (2) by setting

c(w)={αf(w)wA,βf(w)wB,0otherwise.\displaystyle c(w)=\begin{cases}\alpha f(w)&w\in A,\\ \beta f(w)&w\in B,\\ 0&{\rm otherwise}.\end{cases} (4)

Equation (3) in our codes can be expressed in good form by the following Lemma 4.3. The conditions (D2) and (D3) can be considered as an adaptation of the Knill and Laflamme conditions[9] to PI codes for deletion errors.

Lemma 4.3.

Let A,B{0,1}NA,B\subset\{0,1\}^{N} be non-empty sets with AB=A\cap B=\varnothing and f:ABf:A\cup B\rightarrow\mathbb{C} be a map satisfying the conditions (D2) and (D3). Then for any integer 0kt0\leq k\leq t, there exist a real number lk0l_{k}\neq 0 and vectors |u1k,|u2k2(Nt)|u_{1}^{k}\rangle,|u_{2}^{k}\rangle\in\mathbb{C}^{2\otimes(N-t)} that satisfy the followings:

  • For a vector |Ψk|\Psi_{k}\rangle defined by Equations (3) and (4),

    |Ψk=lk(α|u1k+β|u2k).\displaystyle|\Psi_{k}\rangle=l_{k}(\alpha|u_{1}^{k}\rangle+\beta|u_{2}^{k}\rangle).
  • For integers k1,k2{0,1,,t}k_{1},k_{2}\in\{0,1,\dots,t\} and b1,b2{1,2}b_{1},b_{2}\in\{1,2\},

    ub1k1|ub2k2={1(k1,b1)=(k2,b2),0(k1,b1)(k2,b2).\displaystyle\langle u_{b_{1}}^{k_{1}}|u_{b_{2}}^{k_{2}}\rangle=\begin{cases}1&(k_{1},b_{1})=(k_{2},b_{2}),\\ 0&(k_{1},b_{1})\neq(k_{2},b_{2}).\end{cases}

A set {Pk}\mathbb{P}\coloneqq\{P_{k}\} of projection matrices of order 2N2^{N} is called a projective measurement if and only if kPk=𝕀\sum_{k}P_{k}=\mathbb{I}, where kk is an index and 𝕀\mathbb{I} is the identity matrix of order 2N2^{N}. If the quantum state immediately before the measurement is ρS(2N)\rho\in S(\mathbb{C}^{2\otimes N}) then the probability that outcome kk occurs is given by Tr(Pkρ){\rm Tr}(P_{k}\rho), and the quantum state ρ\rho^{\prime} after the measurement is ρPkρPkTr(Pkρ)\rho^{\prime}\coloneqq\frac{P_{k}\rho P_{k}}{{\rm Tr}(P_{k}\rho)}.

Definition 4.4 (Set A,B\mathbb{P}_{A,B}).

Let A,B{0,1}NA,B\subset\{0,1\}^{N} be sets. For an integer 0kt0\leq k\leq t, suppose that

Wk{𝒙{0,1}Ntwt(𝒙)+kAB}.\displaystyle\displaystyle W_{k}\coloneqq\{\bm{x}\in\{0,1\}^{N-t}\mid{\rm wt}({\bm{x}})+k\in A\cup B\}.

Then we define a set A,B{P0,P1,,Pt,P}\mathbb{P}_{A,B}\coloneqq\{P_{0},P_{1},\dots,P_{t},P_{\varnothing}\} of projection matrices, where

Pk{𝒙Wk|𝒙𝒙|k{0,1,,t},𝕀k=0tPkk=.\displaystyle P_{k}\coloneqq\begin{cases}\sum_{\bm{x}\in W_{k}}|\bm{x}\rangle\langle\bm{x}|&k\in\{0,1,\dots,t\},\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \mathbb{I}-\sum_{k=0}^{t}P_{k}&k=\varnothing.\end{cases}

If non-empty sets A,B{0,1}NA,B\subset\{0,1\}^{N} satisfy the condition (D3), the set A,B\mathbb{P}_{A,B} is clearly a projective measurement. The following Lemma 4.5 shows the results of the projective measurement A,B\mathbb{P}_{A,B} under the state after a deletion error in our code QA,BfQ_{A,B}^{f}.

Lemma 4.5.

Let A,B{0,1}NA,B\subset\{0,1\}^{N} be non-empty sets with AB=A\cap B=\varnothing and f:ABf:A\cup B\rightarrow\mathbb{C} be a map satisfying the conditions (D1), (D2), and (D3). Let |Ψ|\Psi\rangle and |Ψk|\Psi_{k}\rangle for an integer 0kt0\leq k\leq t be defined by Equations (2), (3) and (4). If we perform the projective measurement A,B\mathbb{P}_{A,B} under the quantum state DP(|ΨΨ|)S(2(Nt))D_{P}(|\Psi\rangle\langle\Psi|)\in S(\mathbb{C}^{2\otimes(N-t)}) for any deletion position P[N]P\subset[N], the probability p(k)p(k) of getting outcome k{0,1,,t,}k\in\{0,1,\dots,t,\varnothing\} is

p(k)={(tk)lk2k{0,1,,t},0k=.\displaystyle p(k)=\begin{cases}\binom{\,t\,}{k}{l_{k}}^{2}&k\in\{0,1,\dots,t\},\vskip 3.0pt plus 1.0pt minus 1.0pt\\ 0&k=\varnothing.\end{cases}

When the outcome k{0,1,,t}k\in\{0,1,\dots,t\} is obtained, the quantum state ρ(k)S(2(Nt))\rho(k)\in S(\mathbb{C}^{2\otimes(N-t)}) after the measurement is

ρ(k)=1lk2|ΨkΨk|.\displaystyle\rho(k)=\frac{1}{{l_{k}}^{2}}|\Psi_{k}\rangle\langle\Psi_{k}|.
Definition 4.6 (Error-Correcting Operator UkU_{k}).

Suppose the assumptions of Lemma 4.3 are satisfied. Then, for integers k{0,1,,t}k\in\{0,1,\dots,t\} and m{1,2}m\in\{1,2\}, we can choose a unitary matrix UkU_{k} whose mmth row is umk|\langle u_{m}^{k}|. We call the matrix UkU_{k} an error-correcting operator. The mmth row of UkU_{k} for 3m2Nt3\leq m\leq 2^{N-t} is also denoted as umk|\langle u_{m}^{k}|.

Definition 4.7 (Decoding Algorithm DecA,Bf{\rm Dec}_{A,B}^{f}).

Let A,B{0,1}NA,B\subset\{0,1\}^{N} be non-empty sets with AB=A\cap B=\varnothing and f:ABf:A\cup B\rightarrow\mathbb{C} be a map satisfying the conditions (D1), (D2), and (D3). Define a decoder DecA,Bf{\rm Dec}_{A,B}^{f} as a map from ρS(2(Nt))\rho\in S(\mathbb{C}^{2\otimes(N-t)}) to σ2\sigma\in\mathbb{C}^{2} constructed by the following steps:

  • (Step 1)

    Perform the projective measurement A,B\mathbb{P}_{A,B} under the quantum state ρ\rho. Assume that the outcome is kk and that the state after the measurement is ρ(k)\rho(k).

  • (Step 2)

    Let ρ~Ukρ(k)Uk\tilde{\rho}\coloneqq U_{k}\rho(k)U_{k}^{\dagger}. Here UkU_{k} is the error-correcting operator.

  • (Step 3)

    At last, return σTr1Tr1(Nt1) times(ρ~)\sigma\coloneqq\underbrace{{\rm Tr}_{1}\circ\dots\circ{\rm Tr}_{1}}_{(N-t-1)\textit{ times}}(\tilde{\rho}).

We now describe the proof of the main theorem.

Proof of Theorem 3.4.

Set |Ψ:=EncA,Bf(|ψ)|\Psi\rangle:={\rm Enc}_{A,B}^{f}(|\psi\rangle) for a pure quantum state |ψ2|\psi\rangle\in\mathbb{C}^{2}. For an integer k{0,1,,t}k\in\{0,1,\dots,t\} and integers i,j[2Nt]i,j\in[2^{N-t}], we denote the (i,j)(i,j) element of the matrix Uk(1lk2|ΨkΨk|)UkU_{k}\left(\frac{1}{{l_{k}}^{2}}|\Psi_{k}\rangle\langle\Psi_{k}|\right)U_{k}^{\dagger} by uk(i,j)u_{k}(i,j). By Lemma 4.3, we have

uk(i,j)\displaystyle u_{k}(i,j) =uik|(1lk2|ΨkΨk|)|ujk\displaystyle=\langle u_{i}^{k}|\left(\frac{1}{{l_{k}}^{2}}|\Psi_{k}\rangle\langle\Psi_{k}|\right)|u_{j}^{k}\rangle
=uik|(α|u1k+β|u2k)(α¯u1k|+β¯u2k|)|ujk\displaystyle=\langle u_{i}^{k}|(\alpha|u_{1}^{k}\rangle+\beta|u_{2}^{k}\rangle)(\overline{\alpha}\langle u_{1}^{k}|+\overline{\beta}\langle u_{2}^{k}|)|u_{j}^{k}\rangle
=(αuik|u1k+βuik|u2k)(α¯u1k|ujk+β¯u2k|ujk)\displaystyle=(\alpha\langle u_{i}^{k}|u_{1}^{k}\rangle+\beta\langle u_{i}^{k}|u_{2}^{k}\rangle)(\overline{\alpha}\langle u_{1}^{k}|u_{j}^{k}\rangle+\overline{\beta}\langle u_{2}^{k}|u_{j}^{k}\rangle)
={|α|2(i,j)=(1,1),αβ¯(i,j)=(1,2),α¯β(i,j)=(2,1),|β|2(i,j)=(2,2),0otherwise.\displaystyle=\begin{cases}|\alpha|^{2}&(i,j)=(1,1),\\ \alpha\overline{\beta}&(i,j)=(1,2),\\ \overline{\alpha}\beta&(i,j)=(2,1),\\ |\beta|^{2}&(i,j)=(2,2),\\ 0&{\rm otherwise}.\end{cases} (5)

By Lemmas 4.2, 4.5, Definition 4.7, and Equation (5),

DecA,BfDPEncA,Bf(|ψψ|)\displaystyle{\rm Dec}_{A,B}^{f}\circ D_{P}\circ{\rm Enc}_{A,B}^{f}(|\psi\rangle\langle\psi|)
=DecA,BfDP(|ΨΨ|)\displaystyle~{}~{}~{}~{}={\rm Dec}_{A,B}^{f}\circ D_{P}(|\Psi\rangle\langle\Psi|)
=DecA,Bf(k=0t(tk)|ΨkΨk|)\displaystyle~{}~{}~{}~{}={\rm Dec}_{A,B}^{f}\left(\sum_{k=0}^{t}{\binom{\,t\,}{k}}|\Psi_{k}\rangle\langle\Psi_{k}|\right)
=Tr1Tr1(Uk(1lk2|ΨkΨk|)Uk)\displaystyle~{}~{}~{}~{}={\rm Tr}_{1}\circ\dots\circ{\rm Tr}_{1}\left(U_{k}\left(\frac{1}{{l_{k}}^{2}}|\Psi_{k}\rangle\langle\Psi_{k}|\right)U_{k}^{\dagger}\right)
=Tr1Tr1(|00||00||ψψ|)\displaystyle~{}~{}~{}~{}={\rm Tr}_{1}\circ\dots\circ{\rm Tr}_{1}(|0\rangle\langle 0|\otimes\dots\otimes|0\rangle\langle 0|\otimes|\psi\rangle\langle\psi|)
=|ψψ|\displaystyle~{}~{}~{}~{}=|\psi\rangle\langle\psi|

holds for any pure quantum state |ψ2|\psi\rangle\in\mathbb{C}^{2} and any deletion position P[N]P\in[N]. This is exactly the original quantum state. ∎

5 Examples

By Theorem 3.4, we can construct a permutation-invariant quantum code for deletion errors from finding two non-empty sets A,B{0,1,,N}A,B\subset\{0,1,\dots,N\} with AB=A\cap B=\varnothing and a map f:ABf:A\cup B\rightarrow\mathbb{C} that satisfy the three conditions (D1), (D2), and (D3). we give two families of our codes in this section.

5.1 Example 1 (Multiple-deletion error-correcting codes)

First, we introduce a key combinatorial equation in giving the first example.

Lemma 5.1.

Let nn be a positive integer. Then for all integers 0tn10\leq t\leq n-1,

l=0n(nl)lt(1)l=0.\displaystyle\sum_{l=0}^{n}{\binom{n}{l}}l^{t}(-1)^{l}=0.

Lemma 5.1 can be easily shown by induction using the binomial identity l=0n(nl)(lt)(1)l=0\sum_{l=0}^{n}\binom{n}{l}\binom{l}{t}(-1)^{l}=0, which holds for any integer 0t<n0\leq t<n.

The following Theorem 5.2 gives quantum codes for deletion errors that have never been known before. This is an interesting example that can be proved by good use of the combinatorial equation above. Here, we fix an integer 1t<N1\leq t<N.

Theorem 5.2.

Let g,ng,n be integers and uu be a rational number with gt+1g\geq t+1, nt+1n\geq t+1, uNgn1u\coloneqq\frac{N}{gn}\geq 1. Suppose that sets A,B{0,1,,N}A,B\subset\{0,1,\dots,N\} and a map f:ABf:A\cup B\rightarrow\mathbb{C} are set as

A\displaystyle A {gl0ln,l:even},\displaystyle\coloneqq\{gl\mid 0\leq l\leq n,l:{\rm even}\},
B\displaystyle B {gl0ln,l:odd},\displaystyle\coloneqq\{gl\mid 0\leq l\leq n,l:{\rm odd}\},
f(gl)\displaystyle f(gl) (nl)2n1(gnugl).\displaystyle\coloneqq\sqrt{\frac{\binom{n}{l}}{2^{n-1}\binom{gnu}{gl}}}.

Then, the code QA,BfQ_{A,B}^{f} is an [N,1][N,1] tt-deletion error-correcting code.

Proof.

It is clear that AA\neq\varnothing, BB\neq\varnothing, AB=A\cap B=\varnothing. Hence, it is enough to prove the three conditions (D1), (D2), and (D3) hold by Theorem 3.4.

A simple calculation shows that

wA|f(w)|2(Nw)=12n10lnleven(nl)=1.\displaystyle\sum_{w\in A}|f(w)|^{2}{\binom{N}{w}}=\frac{1}{2^{n-1}}\sum_{\begin{subarray}{c}0\leq l\leq n\\ l{\rm~{}even}\end{subarray}}{\binom{n}{l}}=1.

Similarly, wB|f(w)|2(Nw)=1\sum_{w\in B}|f(w)|^{2}\binom{N}{w}=1. Therefore (D1) holds.

For an integer 0kt0\leq k\leq t, we obtain

wA|f(w)|2(Ntwk)wB|f(w)|2(Ntwk)\displaystyle\sum_{w\in A}|f(w)|^{2}{\binom{N-t}{w-k}}-\sum_{w\in B}|f(w)|^{2}{\binom{N-t}{w-k}}
=l=0n(nl)2n1(gnugl)(gnutglk)(1)l\displaystyle~{}~{}~{}~{}=\sum_{l=0}^{n}\frac{\binom{n}{l}}{2^{n-1}\binom{gnu}{gl}}{\binom{gnu-t}{gl-k}}(-1)^{l}
=0\displaystyle~{}~{}~{}~{}=0

by the assumption nt+1n\geq t+1 and Lemma 5.1. Note that the ratio of binomial coefficients (gnutglk)/(gnugl)\binom{gnu-t}{gl-k}/\binom{gnu}{gl} is a polynomial in ll of order tt. On the other hand, it is obvious that wA|f(w)|2(Ntwk)0\sum_{w\in A}|f(w)|^{2}\binom{N-t}{w-k}\neq 0. Therefore, (D2) holds.

It is clear that (D3) holds by the assumption gt+1g\geq t+1. ∎

The quantum code constructed by Theorem 5.2 include some that are already known, but its tolerance to deletion errors was mentioned here for the first time. This code is called a (g,n,u)(g,n,u)-PI code in the terms of Ouyang[14]. Theorem 5.2 claims that a (g,n,u)(g,n,u)-PI code is a tt-deletion error-correcting code if gt+1g\geq t+1, nt+1n\geq t+1, and u1u\geq 1. The smallest example is precisely Hagiwara’s 4-qubit code that is a (2,2,1)(2,2,1)-PI code[6]. The following Fact 5.3 is a remarkable result about PI codes by Ouyang [14].

Fact 5.3.

For an integer t1t\geq 1, (g,n,u)(g,n,u)-PI codes correct arbitrary tt-qubit errors if g=n=2t+1g=n=2t+1 and u1u\geq 1.

Fact 5.3 and Theorem 5.2 show that a (2t+1,2t+1,u)(2t+1,2t+1,u)-PI code with an integer t1t\geq 1 is tt-qubit and 2t2t-deletion error-correcting code. This is the first example of codes that can correct both deletion errors and another type of errors. The smallest example is precisely Ruskai’s 9-qubit code that is a (3,3,1)(3,3,1)-PI code[20]. It was already known that this code can correct 11-qubit errors, but it was shown here for the first time that it can also correct 22-deletion errors.

5.2 Example 2 (Single-deletion error-correcting codes[21])

Here, we fix t:=1t:=1 and introduce 11-deletion error-correcting codes. The codes constructed by following Theorem 5.4 are already known as examples[21] of the code construction given by Nakayama and Hagiwara[12], but it is also one family of our codes.

Theorem 5.4.

Suppose that two non-empty sets A,B{0,1,,N}A,B\subset\{0,1,\dots,N\} with AB=A\cap B=\varnothing satisfy followings:

  • wANwAw\in A\Rightarrow N-w\in A,

  • wBNwBw\in B\Rightarrow N-w\in B,

  • For any integers w1,w2ABw_{1},w_{2}\in A\cup B,

    w1w2|w1w2|>1.\displaystyle w_{1}\neq w_{2}~{}\Longrightarrow~{}|w_{1}-w_{2}|>1.

and a map f:ABf:A\cup B\rightarrow\mathbb{C} are set as

f(w):={1wA(Nw)wA,1wB(Nw)wB.\displaystyle f(w):=\begin{cases}\sqrt{\frac{1}{\sum_{w^{\prime}\in A}\binom{N}{w^{\prime}}}}&w\in A,\vskip 6.0pt plus 2.0pt minus 2.0pt\\ \sqrt{\frac{1}{\sum_{w^{\prime}\in B}\binom{N}{w^{\prime}}}}&w\in B.\end{cases}

Then, the code QA,BfQ_{A,B}^{f} is an [N,1][N,1] 11-deletion error-correcting code.

Proof.

It is clear that (D1) and (D3) hold by the assumptions. Hence we show that (D2) holds. By the assumption, we have

wA(N1w0)=wA(N1w1),\displaystyle\sum_{w\in A}{\binom{N-1}{w-0}}=\sum_{w\in A}{\binom{N-1}{w-1}},
wA(N1w0)+wA(N1w1)=wA(Nw).\displaystyle\sum_{w\in A}{\binom{N-1}{w-0}}+\sum_{w\in A}{\binom{N-1}{w-1}}=\sum_{w\in A}{\binom{N}{w}}.

Similarly, the same equations for BB are obtained. Hence,

wA|f(w)|2(Ntwk)wB|f(w)|2(Ntwk)\displaystyle\sum_{w\in A}|f(w)|^{2}{\binom{N-t}{w-k}}-\sum_{w\in B}|f(w)|^{2}{\binom{N-t}{w-k}}
=wA(N1wk)wA(Nw)wB(N1wk)wB(Nw)\displaystyle~{}~{}~{}~{}~{}~{}=\frac{\sum_{w\in A}\binom{N-1}{w-k}}{\sum_{w^{\prime}\in A}\binom{N}{w^{\prime}}}-\frac{\sum_{w\in B}\binom{N-1}{w-k}}{\sum_{w^{\prime}\in B}\binom{N}{w^{\prime}}}
=1 21 2\displaystyle~{}~{}~{}~{}~{}~{}=\frac{1}{\,2\,}-\frac{1}{\,2\,}
=0\displaystyle~{}~{}~{}~{}~{}~{}=0

holds for any integer 0k10\leq k\leq 1. Therefore, (D2) holds. ∎

6 Generalization

In this section, we discuss constructions of [N,K][N,K] tt-deletion error-correcting codes for any positive integer KK. Let LL be a positive integer and A0,A1,,A_{0},A_{1},\dots, AL1{0,1,,N}A_{L-1}\subset\{0,1,\dots,N\} be mutually disjoint non-empty sets and f:i=0L1Aif:\bigcup_{i=0}^{L-1}A_{i}\rightarrow\mathbb{C} be a map which satisfy the following three conditions:

  • (D1)*

    For any integer i{0,1,,L1}i\in\{0,1,\dots,L-1\},

    wAi|f(w)|2(Nw)=1.\displaystyle\sum_{w\in A_{i}}|f(w)|^{2}{\binom{N}{w}}=1.
  • (D2)*

    For any integers 0kt0\leq k\leq t and i,j{0,1,,L1}i,j\in\{0,1,\dots,L-1\},

    wAi|f(w)|2(Ntwk)=wAj|f(w)|2(Ntwk)0.\displaystyle\sum_{w\in A_{i}}|f(w)|^{2}{\binom{N-t}{w-k}}=\sum_{w\in A_{j}}|f(w)|^{2}{\binom{N-t}{w-k}}\neq 0.
  • (D3)*

    For any integers w1,w2i=0L1Aiw_{1},w_{2}\in\bigcup_{i=0}^{L-1}A_{i},

    w1w2|w1w2|>t.\displaystyle w_{1}\neq w_{2}~{}\Longrightarrow~{}|w_{1}-w_{2}|>t.

Let us define an encoder as a linear map Enc{Ai}f:L2N{\rm Enc}_{\{A_{i}\}}^{f}:\mathbb{C}^{L}\rightarrow\mathbb{C}^{2\otimes N}. For a quantum state |ψ=i=0L1αi|iL|\psi\rangle=\sum_{i=0}^{L-1}\textstyle\alpha_{i}|i\rangle\in\mathbb{C}^{L}, where |0,|1,,|L1|0\rangle,|1\rangle,\dots,|L-1\rangle is the standard orthogonal basis of L\mathbb{C}^{L}, Enc{Ai}f{\rm Enc}_{\{A_{i}\}}^{f} maps the state |ψ|\psi\rangle to the following state |Ψ|\Psi\rangle,

|Ψ\displaystyle|\Psi\rangle i=0L1(𝒙{0,1}Nwt(𝒙)Aiαif(wt(𝒙))|𝒙).\displaystyle\coloneqq\sum_{i=0}^{L-1}\textstyle\left(\sum_{\begin{subarray}{c}\bm{x}\in\{0,1\}^{N}\\ {\rm wt}(\bm{x})\in A_{i}\end{subarray}}\alpha_{i}f({\rm wt}(\bm{x}))|\bm{x}\rangle\right).

Note that this encoder is an extension of Definition 4.1. We claim that the image of Enc{Ai}f{\rm Enc}_{\{A_{i}\}}^{f} is a tt-deletion error-correcting code for an integer 1t<N1\leq t<N. We can use the same method as in Section 4 for the proof. For the case L=2KL=2^{K}, we obtain a [N,K][N,K] tt-deletion error-correcting code.

Although we do not discuss it in detail here, we can construct [N,K][N,K] single-deletion error-correcting codes with any integer K1K\geq 1 by extending Theorem 5.4. But no example of [N,K][N,K] tt-deletion error-correcting codes with K2K\geq 2 and t2t\geq 2 has been found to date.

7 Conclusion

This paper gave a construction of permutation-invariant quantum codes for deletion errors. In particular, the codes given in Theorem 5.2 contain the first example of quantum codes that can correct two or more deletion errors and the first example of codes that can correct both multiple-qubit errors and multiple-deletion errors.

Acknowledgment

The research has been partly executed in response to support by KAKENHI 18H01435.

Appendix Appendix A Proof of Lemma 4.2

Proof.

By Equations (2) and (3), it is clear that

|Ψ=𝒚{0,1}t(|𝒚|Ψwt(𝒚))\displaystyle|\Psi\rangle=\sum_{\bm{y}\in\{0,1\}^{t}}\left(|\bm{y}\rangle\otimes|\Psi_{{\rm wt}(\bm{y})}\rangle\right)

for any integer 1t<N1\leq t<N. By the permutation-invariance of |Ψ|\Psi\rangle and the definition of the partial trace,

DP(|ΨΨ|)\displaystyle D_{P}(|\Psi\rangle\langle\Psi|) =Tr1Tr1t times(|ΨΨ|)\displaystyle=\underbrace{{\rm Tr}_{1}\circ\dots\circ{\rm Tr}_{1}}_{t\textrm{ times}}(|\Psi\rangle\langle\Psi|)
=𝒚{0,1}t|Ψwt(𝒚)Ψwt(𝒚)|\displaystyle=\sum_{\bm{y}\in\{0,1\}^{t}}|\Psi_{{\rm wt}(\bm{y})}\rangle\langle\Psi_{{\rm wt}(\bm{y})}|
=k=0t(tk)|ΨkΨk|\displaystyle=\sum_{k=0}^{t}{\binom{\,t\,}{k}}|\Psi_{k}\rangle\langle\Psi_{k}|

holds for any deletion position P[N]P\subset[N]. ∎

Appendix Appendix B Proof of Lemma 4.3

Proof.

For an integer 0kt0\leq k\leq t, suppose that

|U1k\displaystyle|U_{1}^{k}\rangle wA(𝒙{0,1}Ntwt(𝒙)=wkf(w)|𝒙),\displaystyle\coloneqq\sum_{w\in A}\left(\textstyle\sum_{\begin{subarray}{c}\bm{x}\in\{0,1\}^{N-t}\\ {\rm wt}(\bm{x})=w-k\end{subarray}}f(w)|\bm{x}\rangle\right),
|U2k\displaystyle|U_{2}^{k}\rangle wB(𝒚{0,1}Ntwt(𝒚)=wkf(w)|𝒚).\displaystyle\coloneqq\sum_{w\in B}\left(\textstyle\sum_{\begin{subarray}{c}\bm{y}\in\{0,1\}^{N-t}\\ {\rm wt}(\bm{y})=w-k\end{subarray}}f(w)|\bm{y}\rangle\right).

By the condition (D2), U1k|U1k=U2k|U2k0\langle U_{1}^{k}|U_{1}^{k}\rangle=\langle U_{2}^{k}|U_{2}^{k}\rangle\neq 0. Set lkl_{k}\in\mathbb{R} and |u1k,|u2k2(Nt)|u_{1}^{k}\rangle,|u_{2}^{k}\rangle\in\mathbb{C}^{2\otimes(N-t)} as

lkU1k|U1k,|u1k|U1klk,|u2k|U2klk.\displaystyle l_{k}\coloneqq\sqrt{\langle U_{1}^{k}|U_{1}^{k}\rangle},~{}~{}|u_{1}^{k}\rangle\coloneqq\frac{|U_{1}^{k}\rangle}{l_{k}},~{}~{}|u_{2}^{k}\rangle\coloneqq\frac{|U_{2}^{k}\rangle}{l_{k}}.

Then, u1k|u1k=u2k|u2k=1\langle u_{1}^{k}|u_{1}^{k}\rangle=\langle u_{2}^{k}|u_{2}^{k}\rangle=1 holds. Hence, we have

|Ψk\displaystyle|\Psi_{k}\rangle =α|U1k+β|U2k=lk(α|u1k+β|u2k)\displaystyle=\alpha|U_{1}^{k}\rangle+\beta|U_{2}^{k}\rangle=l_{k}(\alpha|u_{1}^{k}\rangle+\beta|u_{2}^{k}\rangle)

by Equations (3) and (4), In the case (k1,b1)(k2,b2)(k_{1},b_{1})\neq(k_{2},b_{2}), we obtain ub1k1|ub2k2=0\langle u_{b_{1}}^{k_{1}}|u_{b_{2}}^{k_{2}}\rangle=0 by the condition (D3). ∎

Appendix Appendix C Proof of Lemma 4.5

Proof.

In the case k{0,1,,t}k\in\{0,1,\dots,t\}, we have

p(k)\displaystyle p(k) =Tr(PkDP(|ΨΨ|))\displaystyle={\rm Tr}(P_{k}D_{P}(|\Psi\rangle\langle\Psi|))
=Tr(𝒙Wk|𝒙𝒙|k=0t(tk)|ΨkΨk|)\displaystyle={\rm Tr}\left(\sum_{\bm{x}\in W_{k}}|\bm{x}\rangle\langle\bm{x}|\sum_{k^{\prime}=0}^{t}{\binom{\,t\,}{k^{\prime}}}|\Psi_{k^{\prime}}\rangle\langle\Psi_{k^{\prime}}|\right)
=Tr((tk)|ΨkΨk|)\displaystyle={\rm Tr}\left(\binom{\,t\,}{k}|\Psi_{k}\rangle\langle\Psi_{k}|\right)
=Tr((tk)lk2(α|u1k+β|u2k)(α¯u1k|+β¯u2k|))\displaystyle={\rm Tr}\left(\binom{\,t\,}{k}{l_{k}}^{2}(\alpha|u_{1}^{k}\rangle+\beta|u_{2}^{k}\rangle)(\overline{\alpha}\langle u_{1}^{k}|+\overline{\beta}\langle u_{2}^{k}|)\right)
=(tk)lk2(|α|2u1k|u1k+|β|2u2k|u2k)\displaystyle=\binom{\,t\,}{k}{l_{k}}^{2}\left(|\alpha|^{2}\langle u_{1}^{k}|u_{1}^{k}\rangle+|\beta|^{2}\langle u_{2}^{k}|u_{2}^{k}\rangle\right)
=(tk)lk2\displaystyle=\binom{\,t\,}{k}{l_{k}}^{2}

by Lemmas 4.2 and 4.3. In the case k=k=\varnothing, it is clear that p()=Tr(PDP(|ΨΨ|))=0p(\varnothing)={\rm Tr}(P_{\varnothing}D_{P}(|\Psi\rangle\langle\Psi|))=0.

Given that outcome k{0,1,,t}k\in\{0,1,\dots,t\} occurred, by Lemma 4.2, the quantum state immediately after the measurement is

PkDP(|ΨΨ|)PkTr(PkDP(|ΨΨ|))\displaystyle\frac{P_{k}D_{P}(|\Psi\rangle\langle\Psi|)P_{k}}{{\rm Tr}(P_{k}D_{P}(|\Psi\rangle\langle\Psi|))} =Pk(k=0t(tk)|ΨkΨk|)Pk(tk)lk2\displaystyle=\frac{P_{k}\left(\sum_{k^{\prime}=0}^{t}\binom{t}{k^{\prime}}|\Psi_{k^{\prime}}\rangle\langle\Psi_{k^{\prime}}|\right)P_{k}}{\binom{t}{k}{l_{k}}^{2}}
=(tk)|ΨkΨk|(tk)lk2\displaystyle=\frac{\binom{t}{k}|\Psi_{k}\rangle\langle\Psi_{k}|}{\binom{t}{k}{l_{k}}^{2}}
=1lk2|ΨkΨk|.\displaystyle=\frac{1}{{l_{k}}^{2}}|\Psi_{k}\rangle\langle\Psi_{k}|.

References

  • [1] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549:195–202, 2017.
  • [2] A Robert Calderbank and Peter W Shor. Good quantum error-correcting codes exist. Physical Review A, 54(2):1098–1105, Aug 1996.
  • [3] Austin G Flowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86(3):032324, Sep 2012.
  • [4] Daniel Gottesman. Stabilizer codes and quantum error correction. arXiv preprint arXiv:9705052, 1997.
  • [5] Markus Grassl, Th Beth, and Thomas Pellizzari. Codes for the quantum erasure channel. Physical Review A, 56(1):33–38, Jul 1997.
  • [6] Manabu Hagiwara and Ayumu Nakayama. A four-qubits code that is a quantum deletion error-correcting code with the optimal length. 2020 IEEE International Symposium on Information Theory (ISIT), pages 1870–1874, 2020.
  • [7] Mark Hillery, Vladimír Bužek, and André Berthiaume. Quantum secret sharing. Physical Review A, 59(3):1829–1834, Mar 1999.
  • [8] Lane P. Hughston, Richard Jozsa, and William K. Wootters. A complete classification of quantum ensembles having a given density matrix. Physics Letters A, 183(1):14 – 18, 1993.
  • [9] Emanuel Knill and Raymond Laflamme. Theory of quantum error-correcting codes. Physical Review A, 55(2):900–911, Feb 1997.
  • [10] Janet Leahy, Dave Touchette, and Penghui Yao. Quantum insertion-deletion channels. arXiv preprint arXiv:1901.00984, 2019.
  • [11] Ayumu Nakayama and Manabu Hagiwara. The first quantum error-correcting code for single deletion errors. IEICE Communications Express, 9(4):100–104, 2020.
  • [12] Ayumu Nakayama and Manabu Hagiwara. Single quantum deletion error-correcting codes. 2020 International Symposium on Information Theory and Its Applications (ISITA), pages 329–333, 2020.
  • [13] Y. Ouyang and R. Chao. Permutation-invariant constant-excitation quantum codes for amplitude damping. IEEE Transactions on Information Theory, 66(5):2921–2933, 2020.
  • [14] Yingkai Ouyang. Permutation-invariant quantum codes. Physical Review A, 90(6):062317, Dec 2014.
  • [15] Yingkai Ouyang. Permutation-invariant qudit codes from polynomials. Linear Algebra and its Applications, 532:43 – 59, 2017.
  • [16] Yingkai Ouyang. Quantum storage in quantum ferromagnets. arXiv preprint arXiv:1904.01458, 2020.
  • [17] Yingkai Ouyang and Joseph Fitzsimons. Permutation-invariant codes encoding more than one qubit. Physical Review A, 93(4):042340, Apr 2016.
  • [18] Yingkai Ouyang, Nathan Shettell, and Damian Markham. Robust quantum metrology with explicit symmetric states. arXiv preprint arXiv:1908.02378, 2019.
  • [19] Harriet Pollatsek and Mary Beth Ruskai. Permutationally invariant codes for quantum error correction. Linear Algebra and its Applications, 392:255 – 288, 2004.
  • [20] Mary Beth Ruskai. Pauli exchange errors in quantum computation. Physical Review A, 85(1):194–197, Jul 2000.
  • [21] Taro Shibayama. New instances of quantum error-correcting codes for single deletion errors. 2020 International Symposium on Information Theory and Its Applications (ISITA), pages 334–338, 2020.
  • [22] Peter W Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52:R2493–R2496, Oct 1995.
  • [23] Ilia Smagloy, Lorenz Welter, Antonia Wachter-Zeh, and Eitan Yaakobi. Single-deletion single-substitution correcting codes. arXiv preprint arXiv:2005.09352, 2020.
  • [24] Wentu Song, Nikita Polyanskii, Kui Cai, and Xuan He. Systematic single-deletion multiple-substitution correcting codes. arXiv preprint arXiv:2006.11516, 2020.
  • [25] Chunfeng Wu, Yimin Wang, Chu Guo, Yingkai Ouyang, Gangcheng Wang, and Xun-Li Feng. Initializing a permutation-invariant quantum error-correction code. Physical Review A, 99(1):012335, Jan 2019.