This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Period Sheaves via derived de Rham cohomology

Haoyang Guo Department of Mathematics,University of Michigan, 530 Church Street, Ann Arbor, MI 48109 hyguo@umich.edu  and  Shizhang Li Department of Mathematics,University of Michigan, 530 Church Street, Ann Arbor, MI 48109 shizhang@umich.edu
Abstract.

In this article we give an interpretation, in terms of derived de Rham complexes, of Scholze’s de Rham period sheaf and Tan–Tong’s crystalline period sheaf.

1. Introduction

Fontaine’s mysterious period rings are essential in formulating various pp-adic comparison statements in pp-adic Hodge theory. In the past decades there has been an effort to understand these period rings via other constructions related to differentials.

For instance Colmez realized that one can put a topology on p¯\overline{\mathbb{Q}_{p}}, related to Kähler differentials of p¯/p\overline{\mathbb{Z}_{p}}/\mathbb{Z}_{p}, with respect to which the completion becomes the de Rham period ring BdR+B_{{\mathrm{dR}}}^{+}, see [Fon94, Appendix] (which is polished and published in [Col12]).

Later on Beilinson [Bei12, Section 1] gives another construction of BdR+B_{{\mathrm{dR}}}^{+} in terms of the derived de Rham cohomology (introduced by Illusie in [Ill72, Chapter VIII]) of p¯/p\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p}. In terms of our notation, he shows that there is a filtered isomorphism

BdR+dR^p¯/pan;B_{{\mathrm{dR}}}^{+}\cong\widehat{\mathrm{dR}}^{\mathrm{an}}_{\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p}};

see 4.3 for the meaning of the right hand side and Example 4.6.111 For the relation between these two constructions, see [Bei12, Proposition 1.6]. In a similar vein, Bhatt [Bha12b, Proposition 9.9] exhibits a filtered isomorphism, realizing the crystalline period ring via derived de Rham cohomology of p¯/p\overline{\mathbb{Z}_{p}}/\mathbb{Z}_{p}:

AcrysdRp¯/pan;A_{{\mathrm{crys}}}\cong{\mathrm{dR}}^{\mathrm{an}}_{\overline{\mathbb{Z}_{p}}/\mathbb{Z}_{p}};

see 3.1 and Example 3.5.

Fontaine’s period rings admit various generalizations in geometric situations, for instance see [Fal89], [Bri08, Sections 5-6], [AI13, Section 2], [Sch13, Section 6] and [TT19, Section 2]. From now on let us focus on the ones introduced by Scholze: recall in his proof of pp-adic de Rham comparison for smooth proper rigid spaces over pp-adic fields [Sch13], Scholze introduces period sheaves 𝔹dR+\mathbb{B}_{{\mathrm{dR}}}^{+} and 𝒪𝔹dR+\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+} (see [Sch13, Definition 6.1 and 6.8] and [Sch16]) on the pro-étale site of a smooth rigid space. However the construction of 𝒪𝔹dR+\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+} is somewhat complicated, and it takes one a fair amount of effort to understand 𝒪𝔹dR+\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}. From this understanding Scholze deduces a long exact sequence [Sch13, Corollary 6.13]:

0𝔹dR+𝒪𝔹dR+𝒪𝔹dR+𝒪XΩXan𝒪𝔹dR+𝒪XΩXdimX,an0,0\rightarrow\mathbb{B}_{{\mathrm{dR}}}^{+}\rightarrow\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}\xrightarrow{\nabla}\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}\otimes_{\mathcal{O}_{X}}\Omega^{\mathrm{an}}_{X}\xrightarrow{\nabla}\ldots\xrightarrow{\nabla}\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}\otimes_{\mathcal{O}_{X}}\Omega^{\dim_{X},{\mathrm{an}}}_{X}\to 0,

known as the pp-adic analogue of the Poincaré sequence. Here \nabla is a connection which behaves like classical Gauss–Manin connection (satisfying certain Griffiths transversality and so on).

Following the theme, in this article we explain how to understand Scholze’s de Rham period sheaf 𝒪𝔹dR+\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+} in terms of suitable (analytic) derived de Rham sheaves.

Let kk be a pp-adic field. In this paper, we introduce the (Hodge-completed) analytic derived de Rham sheaf dR^Xproe´t/Xan\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{{\mathrm{pro\acute{e}t}}}/X} for the pro-étale site Xproe´tX_{{\mathrm{pro\acute{e}t}}} relative to the analytic site XX. Similarly there is also a construction dR^Xproe´t/kan\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{{\mathrm{pro\acute{e}t}}}/k} for Xproe´tX_{{\mathrm{pro\acute{e}t}}} relative to kk. Our main result is the following:

Theorem 1.1 (see Proposition 4.18 and Theorem 4.21 for the precise statement).

Let XX be a smooth rigid space over kk, we have natural filtered isomorphisms:

𝔹dR+dR^Xproe´t/kan and 𝒪𝔹dR+dR^Xproe´t/Xan.\mathbb{B}_{{\mathrm{dR}}}^{+}\cong\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{{\mathrm{pro\acute{e}t}}}/k}\text{ and }\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}\cong\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{{\mathrm{pro\acute{e}t}}}/X}.

Moreover in this viewpoint, one naturally gets the pp-adic Poincaré sequence mentioned above. Indeed, in classical algebraic geometry, suppose X𝑓Y𝑔ZX\xrightarrow{f}Y\xrightarrow{g}Z is a triangle of smooth morphisms, then one always has a sequence (see [KO68]):

0ΩX/ZΩX/YΩX/Yf1𝒪YΩY/Z1ΩX/Yf1𝒪YΩY/ZdimY/Z0,0\to\Omega^{*}_{X/Z}\to\Omega^{*}_{X/Y}\xrightarrow{\nabla}\Omega^{*}_{X/Y}\otimes_{f^{-1}\mathcal{O}_{Y}}\Omega^{1}_{Y/Z}\xrightarrow{\nabla}\ldots\xrightarrow{\nabla}\Omega^{*}_{X/Y}\otimes_{f^{-1}\mathcal{O}_{Y}}\Omega^{\dim_{Y/Z}}_{Y/Z}\to 0,

whose totalization222This is only heuristic, as totalizations cannot be made sense at the level of derived category. See Section 2.2 and Section 3.2., as well as the totalizations of the Hodge-graded pieces (where ΩY/Zi\Omega^{i}_{Y/Z} is given degree ii), are all quasi-isomorphic to 0. In the framework of derived de Rham complexes, one has an intuitive base change formula for a triple of rings ABCA\to B\to C:

dRC/AdRB/ABdRC/B,{\mathrm{dR}}_{C/A}\otimes_{{\mathrm{dR}}_{B/A}}B\cong{\mathrm{dR}}_{C/B},

which leads to a generalization of the above sequence (see Section 3.2). When one applies this to the triangle Xproe´tXkX_{{\mathrm{pro\acute{e}t}}}\to X\to k, we get the following re-interpretation of the pp-adic Poincaré sequence mentioned above.

Theorem 1.2 (see Theorem 4.20 for the precise statement).

Denote ν:Xproe´tX\nu\colon X_{{\mathrm{pro\acute{e}t}}}\to X the natural projection from pro-étale site of XX to the analytic site of XX. The following sequence in DF^(dR^Xproe´t/kan)\widehat{\mathrm{DF}}(\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{{\mathrm{pro\acute{e}t}}}/k}):

0dR^Xproe´t/kandR^Xproe´t/XandR^Xproe´t/Xanν1𝒪Xν1ΩXandR^Xproe´t/Xanν1𝒪Xν1ΩXdimX,an00\rightarrow\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{{\mathrm{pro\acute{e}t}}}/k}\rightarrow\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{{\mathrm{pro\acute{e}t}}}/X}\xrightarrow{\nabla}\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{{\mathrm{pro\acute{e}t}}}/X}\otimes_{\nu^{-1}\mathcal{O}_{X}}\nu^{-1}\Omega^{\mathrm{an}}_{X}\xrightarrow{\nabla}\ldots\xrightarrow{\nabla}\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{{\mathrm{pro\acute{e}t}}}/X}\otimes_{\nu^{-1}\mathcal{O}_{X}}\nu^{-1}\Omega^{\dim_{X},{\mathrm{an}}}_{X}\rightarrow 0

is strict exact, where we give ν1ΩXi,an\nu^{-1}\Omega^{i,{\mathrm{an}}}_{X} degree ii.

Hence in this point of view, the connection \nabla defined by Scholze is indeed an incarnation of the Gauss–Manin connection.

The advantage of our perspective is that one can naturally generalize the above discussion to singular rigid spaces. Due to some technical issue, so far we have only worked out the case where the rigid space XX is a local complete intersection over kk (see the Appendix 5 for a brief discussion of the notion “l.c.i.” in rigid geometry). In this singular case, one no longer gets an ordinary sheaf but rather a sheaf in a derived \infty-category satisfying hyperdescent. In the local complete intersection case, the hypersheaf dR^Xproe´t/Xan\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{{\mathrm{pro\acute{e}t}}}/X} is cohomologically bounded below by (embedded codimension of X)-(\text{embedded codimension of }X). However, contemplating with the 0-dimensional situation in Section 4.5, we find that actually this hypersheaf always lives in cohomological degree 0 in that situation regardless of the input Artinian kk-algebra. This leads to an interesting question that needs further explorations:

Question 1.3 (same as 4.25, c.f. [Bha12a]).

In what generality shall we expect dR^Xproe´t/Xan\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{\mathrm{pro\acute{e}t}}/X} to live in cohomological degree 0? And when that happens, can we re-interpret the underlying algebra via some construction similar to Scholze’s 𝒪𝔹dR+\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+} as in [Sch13] and [Sch16]?

Finally, we remark that we also have worked out a parallel story related to Tan–Tong’s crystalline period sheaves [TT19, Section 2]. We summarize the result in this direction as follows.

Theorem 1.4 (see Theorem 3.21 and Corollary 3.19 for the precise statements).

Let kk be an absolutely unramified pp-adic field, with ring of integers 𝒪k\mathcal{O}_{k}, and let 𝒳\mathscr{X} be a smooth formal scheme over 𝒪k\mathcal{O}_{k}. Denote by w:Xproe´t𝒳w\colon X_{\mathrm{pro\acute{e}t}}\to\mathscr{X} the natural projection from the pro-étale site of the rigid generic fiber XX of 𝒳\mathscr{X} to the Zariski site of 𝒳\mathscr{X}. Then we have natural filtered isomorphisms:

𝔸crysdR𝒪^X+/𝒪kan and 𝒪𝔸crysdR𝒪^X+/𝒪𝒳an.\mathbb{A}_{\mathrm{crys}}\cong{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{k}}^{\mathrm{an}}\text{ and }\mathcal{O}\mathbb{A}_{\mathrm{crys}}\cong{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{\mathscr{X}}}^{\mathrm{an}}.

Moreover the following sequence in DF^(dR𝒪^X+/𝒪kan)\widehat{\mathrm{DF}}({\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{k}}^{\mathrm{an}}):

0dR𝒪^X+/𝒪kandR𝒪^X+/𝒪𝒳andR𝒪^X+/𝒪𝒳anw1𝒪𝒳w1Ω𝒳1,andR𝒪^X+/𝒪𝒳anw1𝒪𝒳w1Ω𝒳d,an00\rightarrow{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{k}}^{\mathrm{an}}\to{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{\mathscr{X}}}^{\mathrm{an}}\xrightarrow{\nabla}{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{\mathscr{X}}}^{\mathrm{an}}\otimes_{w^{-1}\mathcal{O}_{\mathscr{X}}}w^{-1}\Omega^{1,{\mathrm{an}}}_{\mathscr{X}}\xrightarrow{\nabla}\ldots\xrightarrow{\nabla}{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{\mathscr{X}}}^{\mathrm{an}}\otimes_{w^{-1}\mathcal{O}_{\mathscr{X}}}w^{-1}\Omega^{d,{\mathrm{an}}}_{\mathscr{X}}\rightarrow 0

is strict exact, where dd is the relative dimension of 𝒳/𝒪k\mathscr{X}/\mathcal{O}_{k} and w1Ω𝒳i,anw^{-1}\Omega^{i,{\mathrm{an}}}_{\mathscr{X}} is given degree ii.

We want to mention that in our situation, we mostly care about the analytic derived de Rham complex for a map of adic spaces XYX\rightarrow Y, where XX is a perfectoid space and YY is a rigid space (or their integral analogues). The analytic derived de Rham complex for a map of rigid spaces have been studied independently in [Ant20] and a forthcoming article [Guo] by the first named author.

Let us give a brief summary of the content of the following sections. In Section 2 we explain notation and conventions used in this paper, and we give a brief discussion of relevant facts about filtered derived \infty-categories and sheaves in them. In Section 3 and Section 4 we work out, in a parallel way, the realizations of Scholze’s and Tan–Tong’s period sheaves. In both sections, we first introduce the relevant algebraic construction, then discuss the Poincaré sequence, and finally globalize (or sheafify) these constructions and show that they are (essentially) the same as aforementioned period sheaves. In Appendix 5 we make a primitive discussion of local complete intersections in rigid geometry.

Acknowledgement

We are grateful to Bhargav Bhatt for suggesting this project to us as well as many discussions related to it. We thank David Hansen heartily for listening to our project, drawing our attention to Tan–Tong’s period sheaves, and sharing excitement with the second named author. The second named author would also like to thank Johan de Jong for discussions surrounding the notion of local complete intersections in rigid geometry and suggesting the proof of a Lemma. The first named author is partially funded by Department of Mathematics, University of Michigan, and by NSF grant DMS 1801689 through Bhargav Bhatt.

2. Notation and Conventions

2.1. Notation

We fix kk to be a complete discretely valued pp-adic field with a perfect residue field, and let 𝒪k\mathcal{O}_{k} be its ring of integers. Denote by Spa(k)\operatorname{Spa}(k) to be the adic spectrum Spa(k,𝒪k)\operatorname{Spa}(k,\mathcal{O}_{k}).

Anything with the superscript decoration ()an(-)^{\mathrm{an}} will mean a suitably pp-completed version of the classical object ()(-). The sense in which we are taking pp-completion of these objects shall be clear from the context.

The tensor products \otimes appear in this article, if not otherwise specified, always denote derived tensor products. Similarly, the completed tensor products appear always indicate derived completion of the derived tensor product (with respect to suitable filtrations to be specified in each case).

2.2. Filtrations

Many objects we are dealing with in this article are viewed as objects either in the filtered derived \infty-category DF(R)Fun(op,𝒟(R)){\mathrm{DF}}(R)\coloneqq{\mathrm{Fun}}(\mathbb{N}^{\mathrm{op}},\mathscr{D}(R)) or in the full derived \infty-subcategory DF^(R)DF(R)\widehat{\mathrm{DF}}(R)\subset{\mathrm{DF}}(R) consisting of objects that are derived complete with respect to the filtration, for some ring RR which should be clear from the context. For a brief introduction of these, we refer readers to [BMS19, Subsection 5.1].

We need a notion of step sequence functor, which is perhaps a non-standard terminology. Given an integer ii\in\mathbb{N}, we have a functor Gri:DF(R)𝒟(R)\operatorname{Gr}^{i}\colon{\mathrm{DF}}(R)\rightarrow\mathscr{D}(R) sending a filtered object to its ii-th graded piece. This functor has a right adjoint which we call the ii-th step sequence functor and denote it by sti:𝒟(R)DF(R){\mathrm{st}}_{i}\colon\mathscr{D}(R)\rightarrow{\mathrm{DF}}(R). Concretely, the value of sti(C){\mathrm{st}}_{i}(C) on jj is given by

Cj={C;0ji;0;else..C_{j}=\begin{cases}C;~{}0\leq j\leq i;\\ 0;~{}else.\end{cases}.

Let 𝒞\mathcal{C} be a stable \infty-category, for example 𝒞\mathcal{C} could be 𝒟(R)\mathscr{D}(R), DF(R){\mathrm{DF}}(R) or DF^(R)\widehat{\mathrm{DF}}(R) for a discrete ring RR. Consider a sequence of objects in 𝒞\mathcal{C}

A0d0A1d1A2d2A_{0}\xrightarrow{d_{0}}A_{1}\xrightarrow{d_{1}}A_{2}\xrightarrow{d_{2}}\ldots

such that di+1di=0d_{i+1}\circ d_{i}=0. If there exists an object LL in the filtered \infty-category Fun(op,𝒞){\mathrm{Fun}}(\mathbb{N}^{\mathrm{op}},\mathcal{C}), satisfying the following conditions

  • L(0)=A0L(0)=A_{0};

  • L(i)/L(i+1)Ai+1[i]L(i)/L(i+1)\cong A_{i+1}[-i];

  • the natural map L(0)L(0)/L(1)L(0)\to L(0)/L(1) is identified with d0d_{0};

  • the natural connecting map of graded pieces L(i)/L(i+1)L(i+1)/L(i+2)[1]L(i)/L(i+1)\rightarrow L(i+1)/L(i+2)[1] is isomorphic to di+1[i]d_{i+1}[-i],

then we say the sequence is witnessed by the filtration LL on A0A_{0}. The notion is an \infty-analogue of a complex in the chain complex category.

When 𝒞=DF(R)\mathcal{C}={\mathrm{DF}}(R), then LL can be regarded as an object G(,)Fun((×)op,𝒟(R))G(\bullet,\bullet)\in{\mathrm{Fun}}((\mathbb{N}\times\mathbb{N})^{\mathrm{op}},\mathscr{D}(R)), where we use the convention that we denote the first coordinate by ii, the second coordinate by jj, and L(i)=G(i,0)L(i)=G(i,0). In this setting, we say the filtration L()L(\bullet) on A0A_{0} is strict exact if for any jj\in\mathbb{N}, the object G(0,j)G(0,j) is complete with respect to the filtration G(i,j)G(i,j). Assume all of the Ai=G(i1,0)/G(i,0)[i1]A_{i}=G(i-1,0)/G(i,0)[i-1] are cohomologically supported in degree 0 with filtrations (coming from the second coordinate) given by actual RR-submodules. Then the sequence of AiA_{i}’s above can be thought of as a sequence of ordinary filtered RR-modules, and our notion of strict exactness defined here agrees with the classical notion of strict exactness of a sequence of filtered RR-modules.

2.3. Sheaves and hypersheaves

Here we give a quick review about sheaves in \infty-category.

Let XX be a site, and let 𝒞\mathscr{C} be a presentable \infty-category. The \infty-category of presheaves in 𝒞\mathscr{C}, denoted as PSh(X,𝒞)\mathrm{PSh}(X,\mathscr{C}), is defined to be the \infty-category Fun(Xop,𝒞){\mathrm{Fun}}(X^{\mathrm{op}},\mathscr{C}) of contravariant functors from XX to 𝒞\mathscr{C}. The \infty-category PSh(X,𝒞)\mathrm{PSh}(X,\mathscr{C}) admits a full sub \infty-category Sh(X,𝒞){\mathrm{Sh}}(X,\mathscr{C}) of (infinity) sheaves in 𝒞\mathscr{C}, consisting of functors :Xop𝒞\mathcal{F}:X^{\mathrm{op}}\rightarrow\mathscr{C} that send (finite) coproducts to products and satisfy the descent along Čech nerves: for any covering UUU^{\prime}\rightarrow U in XX, the natural morphism to the limit below is required to be a weak equivalence

(U)lim[n]Δop(Un),\mathcal{F}(U)\longrightarrow\lim_{[n]\in\Delta^{\mathrm{op}}}\mathcal{F}(U^{\prime}_{n}),

where UUU^{\prime}_{\bullet}\rightarrow U is the Čech nerve associated with the covering UUU^{\prime}\rightarrow U. Here we note that this is the \infty-categorical analogue of the classical sheaf condition in ordinary categories.

There is a stronger descent condition which requires ()(\ast) above to hold with respect to all hypercovers UUU^{\prime}_{\bullet}\rightarrow U in the site XX. Sheaves satisfying such stronger condition are called hypersheaves. For example, given any bounded below complex CC of ordinary sheaves on a site XX, the assignment URΓ(U,C)U\mapsto\mathrm{R}\Gamma(U,C) gives rise to a hypersheaf. The collection of hypersheaves in 𝒞\mathscr{C} forms a full sub-\infty-category Shhyp(X,𝒞){\mathrm{Sh}}^{{\mathrm{hyp}}}(X,\mathscr{C}) inside Sh(X,𝒞){\mathrm{Sh}}(X,\mathscr{C}).

Remark 2.1.

Let 𝒞=𝒟(R)\mathscr{C}=\mathscr{D}(R) be the derived \infty-category of RR-modules. Then the \infty-category Shhyp(X,𝒞){\mathrm{Sh}}^{\mathrm{hyp}}(X,\mathscr{C}) of hypersheaves over XX is in fact equivalent to the derived \infty-category 𝒟(X,R)\mathscr{D}(X,R) of classical sheaves of RR-modules over XX, by [Lur18, Corollary 2.1.2.3]. Here the functor 𝒟(X,R)Shhyp(X,𝒞)\mathscr{D}(X,R)\rightarrow{\mathrm{Sh}}^{\mathrm{hyp}}(X,\mathscr{C}) associates a complex of ordinary sheaves CC with the functor

URΓ(U,C),UX.U\mapsto R\Gamma(U,C),~{}\forall~{}U\in X.

As an upshot, the underlying homotopy category of Shhyp(X,𝒞){\mathrm{Sh}}^{\mathrm{hyp}}(X,\mathscr{C}) is the classical derived category of sheaves of RR-modules over XX. In particular, given a hypersheaf \mathcal{F} of RR-modules over XX, we can always represent it by an actual complex of sheaves of RR-modules.

2.4. Unfold a hypersheaf

There is a way to define a hypersheaf on a site XX via unfolding from a basis, c.f. [BMS19, Proposition 4.31] and the discussion after it.

Let XX be a site and let \mathcal{B} be a basis of XX, namely \mathcal{B} is a subcategory of XX such that for each object UU in XX, there exists an object UU^{\prime} in \mathcal{B} covering UU. So any hypercover of an object in XX can be refined to a hypercover with each term in \mathcal{B}. Let 𝒞\mathscr{C} be a presentable \infty-category.

Let Shhyp(,𝒞)\mathcal{F}\in{\mathrm{Sh}}^{\mathrm{hyp}}(\mathcal{B},\mathscr{C}) be a hypersheaf on \mathcal{B}. We can then unfold the sheaf \mathcal{F} to a hypersheaf \mathcal{F}^{\prime} on XX, such that its evaluation at any VXV\in X is given by

(V)=colimUVlim[n]Δop(Un),\mathcal{F}^{\prime}(V)=\underset{U^{\prime}_{\bullet}\rightarrow V}{{\mathrm{colim}}}\varprojlim_{[n]\in\Delta^{\mathrm{op}}}\mathcal{F}(U^{\prime}_{n}),

where the colimit is indexed over all hypercovers UVU^{\prime}_{\bullet}\rightarrow V with UnU^{\prime}_{n}\in\mathcal{B} for all nn. It can be shown that one hypercover suffices to compute the value of (V)\mathcal{F}^{\prime}(V) in the above formula: actually for a hypercover UVU^{\prime}_{\bullet}\rightarrow V with each UnU^{\prime}_{n} in the basis \mathcal{B}, we have a natural weak-equivalence

lim[n]Δop(Un)(V).\lim_{[n]\in\Delta^{\mathrm{op}}}\mathcal{F}(U^{\prime}_{n})\longrightarrow\mathcal{F}^{\prime}(V).

In particular for any UU\in\mathcal{B}, the natural map (U)(U)\mathcal{F}(U)\longrightarrow\mathcal{F}^{\prime}(U) is a weak-equivalence.

The above construction is functorial with respect to Shhyp(,𝒞)\mathcal{F}\in{\mathrm{Sh}}^{\mathrm{hyp}}(\mathcal{B},\mathscr{C}), and we get a natural unfolding functor

Shhyp(,𝒞)Shhyp(X,𝒞),{\mathrm{Sh}}^{\mathrm{hyp}}(\mathcal{B},\mathscr{C})\longrightarrow{\mathrm{Sh}}^{\mathrm{hyp}}(X,\mathscr{C}),

which is in fact an equivalence, with the inverse given by the restriction functor Shhyp(X,𝒞)Shhyp(,𝒞){\mathrm{Sh}}^{\mathrm{hyp}}(X,\mathscr{C})\rightarrow{\mathrm{Sh}}^{\mathrm{hyp}}(\mathcal{B},\mathscr{C}).

3. Integral theory

3.1. Affine construction

In this subsection we define analytic cotangent complex and analytic derived de Rham complex for a morphism of pp-adic algebras. We refer readers to [Bha12b, Sections 2 and 3] for general background of the derived de Rham complex in a pp-adic situation.

Construction 3.1 (Integral constructions).

Let A0B0A_{0}\rightarrow B_{0} be a map of pp-adically complete algebras over 𝒪k\mathcal{O}_{k}, and PP be the standard polynomial resolution of B0B_{0} over A0A_{0}.

We define the analytic cotangent complex of A0B0A_{0}\rightarrow B_{0}, denoted as 𝕃B0/A0an\mathbb{L}_{B_{0}/A_{0}}^{\mathrm{an}}, to be the derived pp-completion of the complex ΩP/A01PB0\Omega_{P/A_{0}}^{1}\otimes_{P}B_{0} of B0B_{0}-modules.

Next we denote (|ΩP/A0|,Fil)(|\Omega_{P/A_{0}}^{*}|,\operatorname{Fil}^{*}) the direct sum totalization of the simplicial complex ΩP/A0\Omega_{P/A_{0}}^{*} together with its Hodge filtration, as an object in Fun(op,Ch(A0)){\mathrm{Fun}}(\mathbb{N}^{\mathrm{op}},{\mathrm{Ch}}(A_{0})). As the de Rham complex of a simplicial ring admits a commutative differential graded algebra structure, we may regard |ΩP/A0||\Omega_{P/A_{0}}^{*}| with its Hodge filtration as an object in CAlg(Fun(op,Ch(A0))){\mathrm{CAlg}}({\mathrm{Fun}}(\mathbb{N}^{\mathrm{op}},{\mathrm{Ch}}(A_{0}))). Then the analytic derived de Rham complex of B0/A0B_{0}/A_{0}, denoted as dRB0/A0an{\mathrm{dR}}_{B_{0}/A_{0}}^{\mathrm{an}} in the CAlg(DF(A0)){\mathrm{CAlg}}({\mathrm{DF}}(A_{0})), is defined as the derived pp-completion of the filtered cdga (|ΩP/A0|,Fil)(|\Omega_{P/A_{0}}^{*}|,\operatorname{Fil}^{*}).

Remark 3.2.

By construction, the graded pieces of the derived Hodge filtrations of dRB0/A0an{\mathrm{dR}}_{B_{0}/A_{0}}^{\mathrm{an}} are given by

Gri(dRB/Aan)(Li𝕃B/A)an[i],\operatorname{Gr}^{i}({\mathrm{dR}}_{B/A}^{\mathrm{an}})\cong(\mathrm{L}\wedge^{i}\mathbb{L}_{B/A})^{\mathrm{an}}[-i],

where Li\mathrm{L}\wedge^{i} denotes the ii-th left derived wedge product, c.f. [Bha12a, Construction 4.1].

Let us establish some properties of this construction before discussing any example.

Lemma 3.3.

Let ABCA\to B\to C be a triple of rings, then we have a commutative diagram of filtered EE_{\infty} algebras:

dRB/A\textstyle{{\mathrm{dR}}_{B/A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dRC/A\textstyle{{\mathrm{dR}}_{C/A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dRC/B,\textstyle{{\mathrm{dR}}_{C/B},}

where the left arrow is the projection to 0-th graded piece of the derived Hodge filtration, and the other three arrows come from functoriality of the construction of derived de Rham complex.

Proof.

This follows from left Kan extension of the case when BB is a polynomial AA-algebra and CC is a polynomial BB-algebra. ∎

The following is the key ingredient in understanding the analytic derived de Rham complex in situations that are interesting to us.

Theorem 3.4.

Let ABCA\to B\to C be ring homomorphisms of pp-completely flat p\mathbb{Z}_{p}-algebras, such that A/pB/pA/p\to B/p is relatively perfect (see [Bha12b, Definition 3.6]). Then we have

  1. (1)

    𝕃B/Aan=0\mathbb{L}_{B/A}^{\mathrm{an}}=0, and dRB/Aan=B{\mathrm{dR}}_{B/A}^{\mathrm{an}}=B;

  2. (2)

    The natural map dRC/AandRC/Ban{\mathrm{dR}}_{C/A}^{\mathrm{an}}\to{\mathrm{dR}}_{C/B}^{\mathrm{an}} is an isomorphism;

  3. (3)

    We have a commutative diagram:

    dRB/Aan\textstyle{{\mathrm{dR}}_{B/A}^{\mathrm{an}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}dRC/Aan\textstyle{{\mathrm{dR}}_{C/A}^{\mathrm{an}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dRC/Ban.\textstyle{{\mathrm{dR}}_{C/B}^{\mathrm{an}}.}
  4. (4)

    Assume furthermore that BCB\to C is surjective with kernel II and B/pC/pB/p\to C/p is a local complete intersection, then the natural map BdRC/BanB\to{\mathrm{dR}}_{C/B}^{\mathrm{an}} exhibits the latter as DB(I)anD_{B}(I)^{\mathrm{an}}, the pp-adic completion of the PD envelope of BB along II. Moreover the pp-adic completion of the PD filtrations Filr=I[r],an\operatorname{Fil}^{r}=I^{[r],{\mathrm{an}}} are identified with the rr-th Hodge filtration.

Note that by [Bha12b, Lemma 3.38] DB(I)anD_{B}(I)^{\mathrm{an}} is a pp-complete flat p\mathbb{Z}_{p}-algebra. Hence I[r],anI^{[r],{\mathrm{an}}}, being submodules of a flat p\mathbb{Z}_{p}-module, are also pp-torsionfree for all rr.

Proof.

(1) and (2) follow from the proof of [Bha12b, Corollary 3.8]: one immediately reduces modulo pp and appeals to the conjugate filtration. (3) follows from Lemma 3.3 by taking the derived pp-completion.

As for (4), we first apply [Bha12b, Proposition 3.25] and [Ber74, Théorème V.2.3.2] to see that there is a natural filtered map 𝒞ompC/B:dRC/BanDB(I)an\mathscr{C}omp_{C/B}\colon{\mathrm{dR}}_{C/B}^{\mathrm{an}}\to D_{B}(I)^{\mathrm{an}} such that precomposing with BdRC/BanB\to{\mathrm{dR}}_{C/B}^{\mathrm{an}} gives the natural map B=BanDB(I)anB=B^{\mathrm{an}}\to D_{B}(I)^{\mathrm{an}}. By [Bha12b, Theorem 3.27] we see that 𝒞ompC/B\mathscr{C}omp_{C/B} is an isomorphism for the underlying algebra. To show the same holds for filtrations, it suffices to show that the induced map on graded pieces are isomorphisms as the map is compatible with filtrations. To that end, by a standard spread out technique, we may reduce to the case where BB is the pp-adic completion of a finite type p\mathbb{Z}_{p} algebra, in particular it is Noetherian, in which case the identification of graded pieces via this natural map follows from a result of Illusie [Ill72, Corollaire VIII.2.2.8]. ∎

Now we are ready to do some examples. An inspiring arithmetic example is worked out by Bhatt.

Example 3.5 ([Bha12b, Proposition 9.9]).

There is a filtered isomorphism:

AcrysdRp¯/pan.A_{\mathrm{crys}}\cong{\mathrm{dR}}^{\mathrm{an}}_{\overline{\mathbb{Z}_{p}}/\mathbb{Z}_{p}}.

Let us work out a geometric example below.

Example 3.6.

Let nn be a positive integer. Let R=pT1±1,,Tn±1R=\mathbb{Z}_{p}\langle T_{1}^{\pm 1},\ldots,T_{n}^{\pm 1}\rangle, and R=pT1±1/p,,Tn±1/p=RS11/p,,Sn1/p/(TiSi;1in)R_{\infty}=\mathbb{Z}_{p}\langle T_{1}^{\pm 1/p^{\infty}},\ldots,T_{n}^{\pm 1/p^{\infty}}\rangle=R\langle S_{1}^{1/p^{\infty}},\ldots,S_{n}^{1/p^{\infty}}\rangle/(T_{i}-S_{i};1\leq i\leq n).

Applying (derived pp-completion of) the fundamental triangle of cotangent complexes to

pRR,\mathbb{Z}_{p}\to R\to R_{\infty},

one yields that 𝕃R/Ran=R{dT1,,dTn}[1]\mathbb{L}_{R_{\infty}/R}^{{\mathrm{an}}}=R_{\infty}\cdot\{dT_{1},\ldots,dT_{n}\}[1].

On the other hand, the fundamental triangle associated with

RRS11/p,,Sn1/pRR\to R\langle S_{1}^{1/p^{\infty}},\ldots,S_{n}^{1/p^{\infty}}\rangle\to R_{\infty}

gives us 𝕃R/Ran=R{TiSi;1in}[1]\mathbb{L}_{R_{\infty}/R}^{{\mathrm{an}}}=R_{\infty}\cdot\{T_{i}-S_{i};1\leq i\leq n\}[1].

The relation between these two presentations of 𝕃R/Ran\mathbb{L}_{R_{\infty}/R}^{{\mathrm{an}}} is that

TiSi=dTiT_{i}-S_{i}=dT_{i}

in H1(𝕃R/Ran)\mathrm{H}_{1}(\mathbb{L}_{R_{\infty}/R}^{{\mathrm{an}}}), as Ti(TiSi)=1\frac{\partial}{\partial T_{i}}(T_{i}-S_{i})=1.333 Here we follow the sign conventions in the Stacks Project, see [Sta20, Tag 07MC footnote 1]

Following the above notation, we describe dRR/Ran{\mathrm{dR}}^{\mathrm{an}}_{R_{\infty}/R}.

Example 3.7.

Applying Theorem 3.4 to A=R,B=RS11/p,,Sn1/pA=R,B=R\langle S_{1}^{1/p^{\infty}},\ldots,S_{n}^{1/p^{\infty}}\rangle and I=(T1S1,,TnSn)I=(T_{1}-S_{1},\ldots,T_{n}-S_{n}), we see that dRR/Ran=(DpT1±1,,Tn±1,S11/p,,Sn1/p(I))an{\mathrm{dR}}^{\mathrm{an}}_{R_{\infty}/R}=\left(\mathrm{D}_{\mathbb{Z}_{p}\langle T_{1}^{\pm 1},\ldots,T_{n}^{\pm 1},S_{1}^{1/p^{\infty}},\ldots,S_{n}^{1/p^{\infty}}\rangle}(I)\right)^{{\mathrm{an}}} is the pp-adic completion of the PD envelope of RS11/p,,Sn1/pR\langle S_{1}^{1/p^{\infty}},\ldots,S_{n}^{1/p^{\infty}}\rangle along II (notice that the PD envelope is pp-torsion free, hence derived completion agrees with classical completion), and the Hodge filtrations are (pp-adically) generated by divided powers of {TiSi}\{T_{i}-S_{i}\}. Example 3.6 shows that the image of (TiSi)(T_{i}-S_{i}) in Gr1=𝕃R/Ran[1]=RRΩR/p1,an\operatorname{Gr}^{1}=\mathbb{L}_{R_{\infty}/R}^{{\mathrm{an}}}[-1]=R_{\infty}\otimes_{R}\Omega^{1,{\mathrm{an}}}_{R/\mathbb{Z}_{p}} is identified with 1dTi1\otimes dT_{i}. This precise identification will be used later (see Example 4.7 and the proof of Theorem 4.21) when we compare certain rational version of the analytic derived de Rham complex with Scholze’s period sheaf 𝒪𝔹dR+\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}.

3.2. derived de Rham complex for a triple

Given a pair of smooth morphisms ABCA\to B\to C, there is a natural Gauss–Manin connection dRC/BdRC/BBΩB/A1{\mathrm{dR}}_{C/B}\xrightarrow{\nabla}{\mathrm{dR}}_{C/B}\otimes_{B}\Omega^{1}_{B/A}, such that dRC/A{\mathrm{dR}}_{C/A} is naturally identified with the “totalization” of the following sequence:

dRC/BdRC/BBΩB/A1dRC/BBΩB/AdimB/A.{\mathrm{dR}}_{C/B}\xrightarrow{\nabla}{\mathrm{dR}}_{C/B}\otimes_{B}\Omega^{1}_{B/A}\xrightarrow{\nabla}\cdots\xrightarrow{\nabla}{\mathrm{dR}}_{C/B}\otimes_{B}\Omega^{\dim_{B/A}}_{B/A}.

Katz and Oda [KO68] observed that this can be explained by a filtration on dRC/A{\mathrm{dR}}_{C/A}. In this subsection we shall show how to generalize this to the context of derived de Rham complex for a pair of arbitrary morphisms ABCA\to B\to C.

We first need to introduce a way to attach filtration on a tensor product of filtered modules over a filtered EE_{\infty}-algebra. The following fact about Bar resolution is well-known, and we thank Bhargav Bhatt for teaching us in this generality.

Lemma 3.8.

Let AA be an ordinary ring, let RR be an EE_{\infty}-algebra over AA, and let MM and NN be two objects in 𝒟(R)\mathscr{D}(R). Then the following augmented simplicial object in 𝒟(A)\mathscr{D}(A)

(MARARANMARANMAN)MRN\left(\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.75pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\crcr}}}\ignorespaces{\hbox{\kern-6.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 5.16663pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-5.16663pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{M\otimes_{A}R\otimes_{A}R\otimes_{A}N\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 138.60681pt\raise 3.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 138.60681pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 138.60681pt\raise-3.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 138.60681pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{M\otimes_{A}R\otimes_{A}N\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 224.5935pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 224.5935pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 224.5935pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{M\otimes_{A}N}$}}}}}}}\ignorespaces}}}}\ignorespaces\right)\longrightarrow M\otimes_{R}N

displays MRNM\otimes_{R}N as the colimit of the simplicial objects in 𝒟(A)\mathscr{D}(A). Here the arrows are given by “multiplying two factors together”.

Proof.

Since the \infty-category 𝒟(R)\mathscr{D}(R) is generated by shifts of RR [Lur17, 7.1.2.1], commuting tensor with colimit, we may assume that both of MM and NN are just RR. In this case, the statement holds for merely E1E_{1}-algebras, as we have a null homotopy RAnRA(n+1)R^{\otimes_{A}n}\to R^{\otimes_{A}(n+1)} given by tensoring RAnR^{\otimes_{A}n} with the natural map ARA\to R. ∎

Construction 3.9.

Let AA be an ordinary ring, let RR be a filtered EE_{\infty} algebra over AA, and let MM and NN be two filtered RR-modules with filtrations compatible with that on RR. Then we regard MRNM\otimes_{R}N as an object in DF(A){\mathrm{DF}}(A) via the Bar resolution in Lemma 3.8, with

Fili(MRN)colimΔop(Fili(MARARAN)Fili(MARAN)Fili(MAN)),\operatorname{Fil}^{i}(M\otimes_{R}N)\coloneqq{\mathrm{colim}}_{\Delta^{{\mathrm{op}}}}\left(\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.75pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\crcr}}}\ignorespaces{\hbox{\kern-6.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 5.16663pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-5.16663pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Fil}^{i}(M\otimes_{A}R\otimes_{A}R\otimes_{A}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 160.39728pt\raise 3.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 160.39728pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 160.39728pt\raise-3.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 160.39728pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Fil}^{i}(M\otimes_{A}R\otimes_{A}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 268.17444pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 268.17444pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 268.17444pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Fil}^{i}(M\otimes_{A}N)}$}}}}}}}\ignorespaces}}}}\ignorespaces\right),

where the filtrations on MARAARANM\otimes_{A}R\otimes_{A}\cdots\otimes_{A}R\otimes_{A}N are given by the usual Day involution.

Lemma 3.10.

Let A,R,M,NA,R,M,N be as in 3.9. Then we have

Gr(MRN)Gr(M)Gr(R)Gr(N).\operatorname{Gr}^{*}(M\otimes_{R}N)\cong\operatorname{Gr}^{*}(M)\otimes_{\operatorname{Gr}^{*}(R)}\operatorname{Gr}^{*}(N).
Proof.

We have

Gr(MRN)colimΔop(Gr(MARARAN)Gr(MARAN)Gr(MAN))\operatorname{Gr}^{*}(M\otimes_{R}N)\cong{\mathrm{colim}}_{\Delta^{{\mathrm{op}}}}\left(\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.75pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\crcr}}}\ignorespaces{\hbox{\kern-6.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 5.16663pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-5.16663pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Gr}^{*}(M\otimes_{A}R\otimes_{A}R\otimes_{A}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 160.94852pt\raise 3.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 160.94852pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 160.94852pt\raise-3.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 160.94852pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Gr}^{*}(M\otimes_{A}R\otimes_{A}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 269.27692pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 269.27692pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 269.27692pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Gr}^{*}(M\otimes_{A}N)}$}}}}}}}\ignorespaces}}}}\ignorespaces\right)
colimΔop(Gr(M)AGr(R)AGr(N)Gr(M)AGr(N))Gr(M)Gr(R)Gr(N).\cong{\mathrm{colim}}_{\Delta^{{\mathrm{op}}}}\left(\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.75pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-6.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 3.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 30.75pt\raise-3.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.75pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Gr}^{*}(M)\otimes_{A}\operatorname{Gr}^{*}(R)\otimes_{A}\operatorname{Gr}^{*}(N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 183.76181pt\raise 1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 183.76181pt\raise-1.72218pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 183.76181pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\operatorname{Gr}^{*}(M)\otimes_{A}\operatorname{Gr}^{*}(N)}$}}}}}}}\ignorespaces}}}}\ignorespaces\right)\cong\operatorname{Gr}^{*}(M)\otimes_{\operatorname{Gr}^{*}(R)}\operatorname{Gr}^{*}(N).

Proposition 3.11.

Let ABCA\to B\to C be a triple of rings, then the diagram of filtered EE_{\infty}-algebras in Lemma 3.3 induces a filtered isomorphism of filtered EE_{\infty}-algebras over BB:

dRC/AdRB/ABdRC/B.{\mathrm{dR}}_{C/A}\otimes_{{\mathrm{dR}}_{B/A}}B\cong{\mathrm{dR}}_{C/B}.

Here the left hand side is equipped with the filtration in 3.9 with the Hodge filtrations on dRC/A{\mathrm{dR}}_{C/A} and dRB/A{\mathrm{dR}}_{B/A}, and Fili(B)=0\operatorname{Fil}^{i}(B)=0 for i1i\geq 1. The right hand side is equipped with the Hodge filtration. Denote ΩB/Aisti(Li𝕃B/A)[i]\Omega^{*}_{B/A}\coloneqq\oplus_{i}{\mathrm{st}}_{i}(\mathrm{L}\wedge^{i}\mathbb{L}_{B/A})[-i] the graded algebra associated with the Hodge filtration.

Proof.

After cofibrant replacing BB by a simplicial polynomial AA-algebra and CC by a simplicial polynomial BB-algebra, we reduce the statement to the case where BB is a polynomial AA-algebra and CC is a polynomial BB-algebra. One verifies directly that in this case we have

dRC/AdRB/ABdRC/B and ΩC/AΩB/ABΩC/B.{\mathrm{dR}}_{C/A}\otimes_{{\mathrm{dR}}_{B/A}}B\cong{\mathrm{dR}}_{C/B}\text{ and }\Omega^{*}_{C/A}\otimes_{\Omega^{*}_{B/A}}B\cong\Omega^{*}_{C/B}.

Now we finish proof by recalling that a filtered morphism with isomorphic underlying object is a filtered isomorphism if and only if the induced morphisms of graded pieces are isomorphisms. ∎

Construction 3.12.

Let ABCA\to B\to C be a triple of rings, then we put a filtration on dRC/A{\mathrm{dR}}_{C/A} by the following: L(i)=dRC/AdRB/AFilHi(dRB/A)L(i)={\mathrm{dR}}_{C/A}\otimes_{{\mathrm{dR}}_{B/A}}\operatorname{Fil}^{i}_{\mathrm{H}}({\mathrm{dR}}_{B/A}), viewed as a commutative algebra object in Fun(op,DF(A))=Fun((×)op,𝒟(A)){\mathrm{Fun}}(\mathbb{N}^{\mathrm{op}},{\mathrm{DF}}(A))={\mathrm{Fun}}((\mathbb{N}\times\mathbb{N})^{\mathrm{op}},\mathscr{D}(A)), where the filtration on L(i)L(i) is as in 3.9 with each factor being equipped with its own Hodge filtrations. We have L(0)dRC/AL(0)\cong{\mathrm{dR}}_{C/A}, and we call L(i)L(i) the ii-th Katz–Oda filtration on dRC/A{\mathrm{dR}}_{C/A}, and we shall denote it by FilKOi(dRC/A)\operatorname{Fil}^{i}_{\mathrm{KO}}({\mathrm{dR}}_{C/A}).

We caution readers that each FilKOi(dRC/A)\operatorname{Fil}^{i}_{\mathrm{KO}}({\mathrm{dR}}_{C/A}) is equipped with yet another filtration, we shall still call it the Hodge filtration, the index is often denoted by jj. The graded pieces of the Katz–Oda filtration when both arrows in ABCA\to B\to C are smooth were studied by Katz–Oda [KO68], although in a different language, hence the name.

Lemma 3.13.

Let ABCA\to B\to C be a triple of rings, then

  1. (1)

    We have a filtered isomorphism

    GrKOi(dRC/A)dRC/BBsti((Li𝕃B/A)[i]).\operatorname{Gr}^{i}_{\mathrm{KO}}({\mathrm{dR}}_{C/A})\cong{\mathrm{dR}}_{C/B}\otimes_{B}{\mathrm{st}}_{i}((\mathrm{L}\wedge^{i}\mathbb{L}_{B/A})[-i]).
  2. (2)

    Under the above filtered isomorphism, the Katz–Oda filtration on dRC/A{\mathrm{dR}}_{C/A} witnesses the following sequence:

    dRC/AdRC/BdRC/BBst1(𝕃B/A){\mathrm{dR}}_{C/A}\to{\mathrm{dR}}_{C/B}\xrightarrow{\nabla}{\mathrm{dR}}_{C/B}\otimes_{B}{\mathrm{st}}_{1}(\mathbb{L}_{B/A})\xrightarrow{\nabla}\cdots

    Here \nabla denotes connecting homomorphisms, which is dRC/A{\mathrm{dR}}_{C/A}-linear and satisfies Newton–Leibniz rule.

  3. (3)

    The induced Katz–Oda filtration on GrHj(dRC/A)\operatorname{Gr}^{j}_{\mathrm{H}}({\mathrm{dR}}_{C/A}) is complete. In fact FilKOiGrHj(dRC/A)=0\operatorname{Fil}^{i}_{\mathrm{KO}}\operatorname{Gr}^{j}_{\mathrm{H}}({\mathrm{dR}}_{C/A})=0 whenever i>ji>j.

  4. (4)

    If ABA\to B is smooth of equidimension dd, then FilKOiFilHj(dRC/A)0\operatorname{Fil}^{i}_{\mathrm{KO}}\operatorname{Fil}^{j}_{\mathrm{H}}({\mathrm{dR}}_{C/A})\cong 0 for any i>di>d. In particular, combining with the previous point, we get that in this situation the Katz–Oda filtration is strict exact in the sense of Section 2.2.

Proof.

For (1): we have

GrKOi(dRC/A)dRC/AdRB/Asti(Li𝕃B/A)[i](dRC/AdRB/AB)Bsti(Li𝕃B/A)[i],\operatorname{Gr}^{i}_{\mathrm{KO}}({\mathrm{dR}}_{C/A})\cong{\mathrm{dR}}_{C/A}\otimes_{{\mathrm{dR}}_{B/A}}{\mathrm{st}}_{i}(\mathrm{L}\wedge^{i}\mathbb{L}_{B/A})[-i]\cong({\mathrm{dR}}_{C/A}\otimes_{{\mathrm{dR}}_{B/A}}B)\otimes_{B}{\mathrm{st}}_{i}(\mathrm{L}\wedge^{i}\mathbb{L}_{B/A})[-i],

and by Proposition 3.11 the right hand side can be identified with dRC/BBsti(Li𝕃B/A)[i]{\mathrm{dR}}_{C/B}\otimes_{B}{\mathrm{st}}_{i}(\mathrm{L}\wedge^{i}\mathbb{L}_{B/A})[-i].

For (2): we just need to show the properties of these \nabla’s. With any multiplicative filtration on an EE_{\infty}-algebra RR, we get a natural filtered map FiliRFiljFili+j(R)\operatorname{Fil}^{i}\otimes_{R}\operatorname{Fil}^{j}\to\operatorname{Fil}^{i+j}(R) where the left hand side is equipped with the Day convolution filtration (over the underlying algebra RR). Now we look at the following commutative diagram:

(GriRGrj+1)(Gri+1RGrj)\textstyle{(\operatorname{Gr}^{i}\otimes_{R}\operatorname{Gr}^{j+1})\oplus(\operatorname{Gr}^{i+1}\otimes_{R}\operatorname{Gr}^{j})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Fili+j/Fili+j+2(FiliRFilj)\textstyle{\operatorname{Fil}^{i+j}/\operatorname{Fil}^{i+j+2}(\operatorname{Fil}^{i}\otimes_{R}\operatorname{Fil}^{j})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}GriRGrj+1\textstyle{\operatorname{Gr}^{i}\otimes_{R}\operatorname{Gr}^{j}\xrightarrow{+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gri+j+1\textstyle{\operatorname{Gr}^{i+j+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Fili+j/Fili+j+2(R)\textstyle{\operatorname{Fil}^{i+j}/\operatorname{Fil}^{i+j+2}(R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gri+j+1\textstyle{\operatorname{Gr}^{i+j}\xrightarrow{+1}}

to conclude that the connecting morphisms are RR-linear and satisfy Newton–Leibniz rule. Since FilKOi\operatorname{Fil}^{i}_{\mathrm{KO}} is a multiplicative filtration on dRC/A{\mathrm{dR}}_{C/A}, we get the desired properties of \nabla.

(3) follows from the distinguished triangle of cotangent complexes and their exterior powers.

(4) follows from the definition of the Katz–Oda filtration in 3.12 and the fact that FilHi(dRB/A)=0\operatorname{Fil}^{i}_{\mathrm{H}}({\mathrm{dR}}_{B/A})=0 whenever i>di>d. ∎

We do not need the following construction in this paper, but mention it for the sake of completeness of our discussion.

Construction 3.14.

We denote the graded algebra associated with the Hodge filtration on derived de Rham complex by LΩ/\mathrm{L}\Omega^{*}_{-/-}.444We warn readers that this is not a standard notation, in other literature the symbol LΩ\mathrm{L}\Omega is often used to denote the derived de Rham complex. Let ABCA\to B\to C be a triple of rings. Note that LΩC/ALC(st1(𝕃C/A))[]\mathrm{L}\Omega^{*}_{C/A}\cong\mathrm{L}\wedge^{*}_{C}({\mathrm{st}}_{1}(\mathbb{L}_{C/A}))[-*], and we have a functorial filtration 𝕃B/ABC𝕃C/A\mathbb{L}_{B/A}\otimes_{B}C\to\mathbb{L}_{C/A} with quotient being 𝕃C/B\mathbb{L}_{C/B}. Hence there is a functorial multiplicative exhaustive increasing filtration on LΩC/A\mathrm{L}\Omega^{*}_{C/A}, called the vertical filtration and denoted by Filiv\operatorname{Fil}^{v}_{i}, consisting of graded-LΩB/A\mathrm{L}\Omega^{*}_{B/A}-submodules with graded pieces given by Griv=LΩB/ABsti(Li𝕃C/B)[i]\operatorname{Gr}^{v}_{i}=\mathrm{L}\Omega^{*}_{B/A}\otimes_{B}{\mathrm{st}}_{i}(\mathrm{L}\wedge^{i}\mathbb{L}_{C/B})[-i].

Let us summarize the picture of (the graded pieces of) these filtrations in the following diagram:

\textstyle{\vdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}C\textstyle{C}st1(𝕃C/B)[1]\textstyle{{\mathrm{st}}_{1}(\mathbb{L}_{C/B})[-1]}st2(C2𝕃C/B)[2]\textstyle{{\mathrm{st}}_{2}(\wedge^{2}_{C}\mathbb{L}_{C/B})[-2]}\textstyle{\cdots}\textstyle{\vdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B}\textstyle{\vdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M0BN0\textstyle{M_{0}\otimes_{B}N_{0}}M0BN1\textstyle{M_{0}\otimes_{B}N_{1}}M0BN2\textstyle{M_{0}\otimes_{B}N_{2}}\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\cdots}\textstyle{\vdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}st1(𝕃B/A)[1]\textstyle{{\mathrm{st}}_{1}(\mathbb{L}_{B/A})[-1]}\textstyle{\vdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M1BN0\textstyle{M_{1}\otimes_{B}N_{0}}M1BN1\textstyle{M_{1}\otimes_{B}N_{1}}M1BN2\textstyle{M_{1}\otimes_{B}N_{2}}\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\cdots}\textstyle{\vdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}st2(B2𝕃B/A)[2]\textstyle{{\mathrm{st}}_{2}(\wedge^{2}_{B}\mathbb{L}_{B/A})[-2]}\textstyle{\vdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M2BN0\textstyle{M_{2}\otimes_{B}N_{0}}M2BN1\textstyle{M_{2}\otimes_{B}N_{1}}M2BN2\textstyle{M_{2}\otimes_{B}N_{2}}\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\cdots}\textstyle{\vdots}\textstyle{\vdots}\textstyle{\vdots}\textstyle{\vdots}

In the diagram above, Mi=sti(Bi𝕃B/A)[i]M_{i}={\mathrm{st}}_{i}(\wedge^{i}_{B}\mathbb{L}_{B/A})[-i], and Nj=stj(Cj𝕃C/B)[j]N_{j}={\mathrm{st}}_{j}(\wedge^{j}_{C}\mathbb{L}_{C/B})[-j], for i,ji,j\in\mathbb{N}. Let us explain this diagram: it is describing graded pieces of filtrations on dRC/A{\mathrm{dR}}_{C/A}. Here the rows are representing graded pieces of the Katz–Oda filtration, and the dotted lines are indicating the Hodge filtration (given by things below the dotted line). Once we take graded pieces with respect to the Hodge filtration, then the vertical filtration is literally induced by vertical columns, starting from left to right, hence the name.

Specializing to the pp-adic setting, we get the following.

Lemma 3.15.

Let ABCA\to B\to C be a triangle of pp-complete flat p\mathbb{Z}_{p}-algebras. Suppose B/pB/p is smooth over A/pA/p of relative equidimension nn. Then we have a pp-adic Katz–Oda filtration on dRC/A{\mathrm{dR}}_{C/A} which is strict exact and witnesses the following sequence:

0dRC/AandRC/BandRC/BanBst1(ΩB/A1,an)dRC/BanBstn(ΩB/An,an)0.0\to{\mathrm{dR}}_{C/A}^{\mathrm{an}}\to{\mathrm{dR}}_{C/B}^{\mathrm{an}}\xrightarrow{\nabla}{\mathrm{dR}}_{C/B}^{\mathrm{an}}\otimes_{B}{\mathrm{st}}_{1}(\Omega^{1,{\mathrm{an}}}_{B/A})\xrightarrow{\nabla}\cdots\xrightarrow{\nabla}{\mathrm{dR}}_{C/B}^{\mathrm{an}}\otimes_{B}{\mathrm{st}}_{n}(\Omega^{n,{\mathrm{an}}}_{B/A})\to 0.

Recall that the superscript ()an(-)^{\mathrm{an}} denotes the derived pp-completion of the corresponding objects. Note that since ΩB/Ai,an\Omega^{i,{\mathrm{an}}}_{B/A} are all finite flat BB-modules by assumption and dRC/Ban{\mathrm{dR}}_{C/B}^{\mathrm{an}} is pp-complete, the tensor products showing above are already pp-complete.

Proof.

Take the derived pp-completion of the Katz–Oda filtration on dRC/A{\mathrm{dR}}_{C/A}, we get such a strict exact filtration by Lemma 3.13. ∎

3.3. Integral de Rham sheaves

For the rest of this section, we focus on the situation spelled out by the following:

Notation

Let κ\kappa be a perfect field in characteristic p>0p>0, and let k=W(κ)[1p]k=W(\kappa)[\frac{1}{p}] be the absolutely unramified discretely valued pp-adic field with the ring of integers 𝒪k=W(κ)\mathcal{O}_{k}=W(\kappa). Fix a separated formally smooth pp-adic formal schemes 𝒳\mathscr{X} over 𝒪k\mathcal{O}_{k}. Denote by XX its generic fiber, viewed as an adic space over the Huber pair (k,𝒪k)(k,\mathcal{O}_{k}).

In this situation, there is a natural map of ringed sites

w:(Xproe´t,𝒪^X+)(𝒳,𝒪𝒳)w\colon(X_{\mathrm{pro\acute{e}t}},\widehat{\mathcal{O}}_{X}^{+})\longrightarrow(\mathscr{X},\mathcal{O}_{\mathscr{X}})

which sends an open subset 𝒰𝒳\mathscr{U}\subset\mathscr{X} to the open subset UXproe´tU\in X_{\mathrm{pro\acute{e}t}}, where UU is the generic fiber of 𝒰\mathscr{U}. This allows us to define inverse image w1𝒪𝒳w^{-1}\mathcal{O}_{\mathscr{X}} of the integral structure sheaf 𝒪𝒳\mathcal{O}_{\mathscr{X}}, as a sheaf on the pro-étale site Xproe´tX_{\mathrm{pro\acute{e}t}}.

On the pro-étale site of XX, we have a morphism of sheaves of pp-complete 𝒪k\mathcal{O}_{k}-algebras:

𝒪kw1𝒪𝒳𝒪^X+.\mathcal{O}_{k}\longrightarrow w^{-1}\mathcal{O}_{\mathscr{X}}\longrightarrow\widehat{\mathcal{O}}_{X}^{+}.

We refer readers to [Sch13, Sections 3 and 4] for a detailed discussion surrounding the pro-étale site of a rigid space and structure sheaves on it. There is a subcategory Xproe´t/𝒳ωXproe´tX_{{\mathrm{pro\acute{e}t}}/\mathscr{X}}^{\omega}\subset X_{\mathrm{pro\acute{e}t}} consisting of affinoid perfectoid objects U=Spa(B,B+)Xproe´tU=\operatorname{Spa}(B,B^{+})\in X_{\mathrm{pro\acute{e}t}} whose image in XX is contained in w1(Spf(A0))w^{-1}(\operatorname{Spf}(A_{0})), the generic fiber of an affine open Spf(A0)𝒳\operatorname{Spf}(A_{0})\subset\mathscr{X}. The class of such objects form a basis for the pro-étale topology by (the proof of) [Sch13, Proposition 4.8]. We first study the behavior of derived de Rham complex for the triangle Section 3.3 on Xproe´t/𝒳ωX_{{\mathrm{pro\acute{e}t}}/\mathscr{X}}^{\omega}.

Proposition 3.16.

Let U=Spa(B,B+)Xproe´tU=\operatorname{Spa}(B,B^{+})\in X_{\mathrm{pro\acute{e}t}} be an object in Xproe´t/𝒳ωX_{{\mathrm{pro\acute{e}t}}/\mathscr{X}}^{\omega}, choose Spf(A0)𝒳\operatorname{Spf}(A_{0})\subset\mathscr{X} such that the image of UU in XX is contained in w1(Spf(A0))w^{-1}(\operatorname{Spf}(A_{0})). Then

  1. (1)

    the natural surjection θ:Ainf(B+)B+\theta\colon A_{inf}(B^{+})\twoheadrightarrow B^{+} exhibits dRB+/𝒪kan=Acrys(B+){\mathrm{dR}}_{B^{+}/\mathcal{O}_{k}}^{\mathrm{an}}=A_{{\mathrm{crys}}}(B^{+}), the pp-completion of the divided envelope of Ainf(B+)A_{inf}(B^{+}) along ker(θ)\ker(\theta);

  2. (2)

    the natural surjection wθ:A0^𝒪kAinf(B+)B+w^{\sharp}\otimes\theta\colon A_{0}\hat{\otimes}_{\mathcal{O}_{k}}A_{inf}(B^{+})\twoheadrightarrow B^{+} exhibits dRB+/A0an{\mathrm{dR}}_{B^{+}/A_{0}}^{\mathrm{an}} as the pp-completion of the divided envelope of A0^𝒪kAinf(B+)A_{0}\hat{\otimes}_{\mathcal{O}_{k}}A_{inf}(B^{+}) along ker(wθ)\ker(w^{\sharp}\otimes\theta);

  3. (3)

    in both cases, the Hodge filtrations are identified as the pp-completion of PD filtrations;

  4. (4)

    the filtered algebra dRB+/A0an{\mathrm{dR}}_{B^{+}/A_{0}}^{\mathrm{an}} is independent of the choice of A0A_{0}. We denote it as dRB+/𝒳an{\mathrm{dR}}_{B^{+}/\mathscr{X}}^{\mathrm{an}}.

Remark 3.17.

In particular, (1) and (2) tells us that these derived de Rham complexes are actually quasi-isomorphic to an honest algebra viewed as a complex supported on cohomological degree 0; (4) tells us that sending U=Spa(B,B+)Xproe´t/𝒳ωU=\operatorname{Spa}(B,B^{+})\in X_{{\mathrm{pro\acute{e}t}}/\mathscr{X}}^{\omega} to dRB+/𝒳an{\mathrm{dR}}_{B^{+}/\mathscr{X}}^{\mathrm{an}} gives a well-defined presheaf on Xproe´t/𝒳ωX_{{\mathrm{pro\acute{e}t}}/\mathscr{X}}^{\omega}.

Proof of Proposition 3.16.

Applying Theorem 3.4.(4) to the triangles

𝒪kAinf(B+)B+ and A0A0^𝒪kAinf(B+)B+\mathcal{O}_{k}\to A_{inf}(B^{+})\to B^{+}\text{ and }A_{0}\to A_{0}\hat{\otimes}_{\mathcal{O}_{k}}A_{inf}(B^{+})\to B^{+}

proves (1) and (2) respectively and (3)555Here we use the unramifiedness of 𝒪k\mathcal{O}_{k} to verify the relatively perfectness assumption in Theorem 3.4.. As for (4), using separatedness of 𝒳\mathscr{X}, we reduce to the situation where image of UU in XX is in a smaller open w1(Spf(A1))w1(Spf(A0))w^{-1}(\operatorname{Spf}(A_{1}))\subset w^{-1}(\operatorname{Spf}(A_{0})). It suffices to show the natural map dRB+/A0andRB+/A1an{\mathrm{dR}}_{B^{+}/A_{0}}^{\mathrm{an}}\to{\mathrm{dR}}_{B^{+}/A_{1}}^{\mathrm{an}} is a filtered isomorphism, which follows from Lemma 3.15 as A0/pA1/pA_{0}/p\to A_{1}/p is étale. ∎

Recall that the subcategory Xproe´t/𝒳ωXproe´tX_{{\mathrm{pro\acute{e}t}}/\mathscr{X}}^{\omega}\subset X_{\mathrm{pro\acute{e}t}} gives a basis for the topology on Xproe´tX_{\mathrm{pro\acute{e}t}}. Hence any presheaf on Xproe´t/𝒳ωX_{{\mathrm{pro\acute{e}t}}/\mathscr{X}}^{\omega} can be sheafified to a sheaf on Xproe´tX_{\mathrm{pro\acute{e}t}}.

We define the analytic de Rham sheaf for 𝒪^X+\widehat{\mathcal{O}}_{X}^{+} over 𝒪k\mathcal{O}_{k} and w1𝒪𝒳w^{-1}\mathcal{O}_{\mathscr{X}} as follows:

Construction 3.18 (dR𝒪^X+/𝒪kan{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{k}}^{\mathrm{an}} and dR𝒪^X+/𝒪𝒳an{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{\mathscr{X}}}^{\mathrm{an}}).

The analytic de Rham sheaf of 𝒪^X+/𝒪k\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{k}, denoted as dR𝒪^X+/𝒪kan{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{k}}^{\mathrm{an}}, is the pp-adic completion of the unfolding of the presheaf on Xproe´t/𝒳ωX_{{\mathrm{pro\acute{e}t}}/\mathscr{X}}^{\omega} which assigns each U=Spa(B,B+)U=\operatorname{Spa}(B,B^{+}) the algebra dRB+/𝒪kan{\mathrm{dR}}_{B^{+}/\mathcal{O}_{k}}^{\mathrm{an}}. We equip it with the decreasing Hodge filtration FilHrFil^{r}_{\mathrm{H}} given by the image of pp-completion of the unfolding of the presheaf assigning each U=Spa(B,B+)U=\operatorname{Spa}(B,B^{+}) the rr-th Hodge filtration in dRB+/𝒪kan{\mathrm{dR}}_{B^{+}/\mathcal{O}_{k}}^{\mathrm{an}}.

The analytic de Rham sheaf of 𝒪^X+/𝒪𝒳\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{\mathscr{X}}, denoted as dR𝒪^X+/𝒪𝒳an{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{\mathscr{X}}}^{\mathrm{an}}, is the pp-adic completion of the unfolding of the presheaf on Xproe´t/𝒳ωX_{{\mathrm{pro\acute{e}t}}/\mathscr{X}}^{\omega} which assigns each U=Spa(B,B+)U=\operatorname{Spa}(B,B^{+}) the filtered algebra dRB+/𝒳an{\mathrm{dR}}_{B^{+}/\mathscr{X}}^{\mathrm{an}}. Similarly we equip it with the decreasing Hodge filtration FilHrFil^{r}_{H} given by the image of pp-completion of the unfolding of the presheaf whose value on each U=Spa(B,B+)U=\operatorname{Spa}(B,B^{+}) is the rr-th Hodge filtration in dRB+/𝒳an{\mathrm{dR}}_{B^{+}/\mathscr{X}}^{\mathrm{an}}.

The fact that these definitions/constructions make sense follows from Proposition 3.16 and Remark 3.17.

One may also define the corresponding mod pnp^{n} version of these sheaves. Since sheafifying commutes with arbitrary colimit, the pp-adic completion of the sheafification of a presheaf FF is the same as the inverse limit over nn of the sheafification of presheaves F/pnF/p^{n}. Therefore we have dR𝒪^X+/𝒪k/pn{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{k}}/p^{n} is the same as the sheafification of the presheaf dRB+/𝒪k/pn{\mathrm{dR}}_{B^{+}/\mathcal{O}_{k}}/p^{n}. Its rr-th Hodge filtration agrees with the sheafification of the presheaf FilHr(dRB+/𝒪k/pn)Fil^{r}_{H}({\mathrm{dR}}_{B^{+}/\mathcal{O}_{k}}/p^{n}), as sheafifying is an exact functor. Similar statements can be made for the mod pnp^{n} version of dR𝒪^X+/𝒪𝒳an{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{\mathscr{X}}}^{\mathrm{an}} and its Hodge filtrations.

Now the strict exact Katz–Oda filtration obtained in the Lemma 3.15 gives us the following:

Corollary 3.19 (Crystalline Poincaré lemma).

There is a functorial dR𝒪^X+/𝒪kan{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{k}}^{\mathrm{an}}-linear strict exact sequence of filtered sheaves on Xproe´tX_{\mathrm{pro\acute{e}t}}:

0dR𝒪^X+/𝒪kandR𝒪^X+/𝒪𝒳andR𝒪^X+/𝒪𝒳anw1𝒪𝒳st1(w1Ω𝒳1,an)0\to{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{k}}^{\mathrm{an}}\to{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{\mathscr{X}}}^{\mathrm{an}}\xrightarrow{\nabla}{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{\mathscr{X}}}^{\mathrm{an}}\otimes_{w^{-1}\mathcal{O}_{\mathscr{X}}}{\mathrm{st}}_{1}(w^{-1}\Omega^{1,{\mathrm{an}}}_{\mathscr{X}})\xrightarrow{\nabla}\cdots
dR𝒪^X+/𝒪𝒳anw1𝒪𝒳std(w1Ω𝒳d,an)0,\cdots\xrightarrow{\nabla}{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{\mathscr{X}}}^{\mathrm{an}}\otimes_{w^{-1}\mathcal{O}_{\mathscr{X}}}{\mathrm{st}}_{d}(w^{-1}\Omega^{d,{\mathrm{an}}}_{\mathscr{X}})\to 0,

where dd is the relative dimension of 𝒳/𝒪k\mathscr{X}/\mathcal{O}_{k}.

Proof.

Using the discussion before this Corollary, we reduce to checking this at the level of presheaves on Xproe´t/𝒳ωX_{{\mathrm{pro\acute{e}t}}/\mathscr{X}}^{\omega}. Since now everything in sight are supported cohomologically in degree 0 with filtrations given by submodules because of Proposition 3.16, the strict exact Katz–Oda filtration in Lemma 3.15 implies what we want. ∎

Remark 3.20.

We can drop the separatedness assumption on 𝒳\mathscr{X} as follows. Since any formal scheme is covered by affine ones, and affine formal schemes are automatically separated, we may define all these de Rham sheaves on each slice subcategory of the pro-étale site of the rigid generic fiber of affine opens of 𝒳\mathscr{X}. Similar to the proof of Proposition 3.16.(4), we can show these de Rham sheaves satisfy the base change formula with respect to maps of affine opens of 𝒳\mathscr{X} (by appealing to Lemma 3.15 again), hence these sheaves on the slice subcategories glue to a global one. The Crystalline Poincaré lemma obtained above holds verbatim as exactness of a sequence of sheaves may be checked locally.

3.4. Comparing with Tan–Tong’s crystalline period sheaves

Lastly we shall identify the two de Rham sheaves defined above with two period sheaves that show up in the work of Tan–Tong [TT19]. We refer readers to Definitions 2.1. and 2.9. of loc. cit. for the meaning of period sheaves 𝔸crys\mathbb{A}_{{\mathrm{crys}}} and 𝒪𝔸crys\mathcal{O}\mathbb{A}_{{\mathrm{crys}}} and their PD filtrations.

We look at the triangle of sheaves of rings:

𝒪kw1(𝒪𝒳)^𝒪k𝔸infw^θ𝒪^X+.\mathcal{O}_{k}\to w^{-1}(\mathcal{O}_{\mathscr{X}})\hat{\otimes}_{\mathcal{O}_{k}}\mathbb{A}_{inf}\xrightarrow{w^{\sharp}\hat{\otimes}\theta}\widehat{\mathcal{O}}_{X}^{+}.
Theorem 3.21.

The triangle above induces a filtered isomorphism of sheaves: dR𝒪^X+/𝒪k𝔸crys{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{k}}\cong\mathbb{A}_{{\mathrm{crys}}} and dR𝒪^X+/𝒪𝒳𝒪𝔸crys{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{\mathscr{X}}}\cong\mathcal{O}\mathbb{A}_{{\mathrm{crys}}}.

Moreover, under this identification, the Crystalline Poincaré sequence in Corollary 3.19 agrees with the one obtained in [TT19, Corollary 2.17].

Proof.

We check these isomorphisms modulo pnp^{n} for any nn. For both cases, the de Rham sheaf and the crystalline period sheaf are both unfoldings of the same PD envelope presheaf (with its PD filtrations) on Xproe´t/𝒳ωX_{{\mathrm{pro\acute{e}t}}/\mathscr{X}}^{\omega}: for the de Rham sheaves this statement follows from Proposition 3.16 and base change formula of PD envelope (note that taking PD envelope is a left adjoint functor, hence commutes with colimit, in particular, it commutes with modulo pnp^{n} for any nn), for the crystalline period sheaf this follows from the definition (note that although the 𝒪𝔸inf\mathcal{O}\mathbb{A}_{inf} defined in Tan–Tong’s work uses uncompleted tensor of w1(𝒪𝒳)w^{-1}(\mathcal{O}_{\mathscr{X}}) and 𝔸inf\mathbb{A}_{inf} instead of the completed tensors we are using here, the difference goes away when we modulo any power of pp and restricts to the basis of affinoid perfectoid objects).

Therefore for both cases, we have natural isomorphisms modulo pnp^{n} for any nn, taking inverse limit gives the result we want as all sheaves are pp-adic completion of their modulo pnp^{n} versions.

The claim about matching Poincaré sequences follows by unwinding definitions. Indeed we need to check that \nabla defined in these two sequences agree, but since \nabla is linear over dR𝒪^X+/𝒪k𝔸crys{\mathrm{dR}}_{\widehat{\mathcal{O}}_{X}^{+}/\mathcal{O}_{k}}\cong\mathbb{A}_{{\mathrm{crys}}}, it suffices to check that \nabla agrees on uiu_{i} which is the image of TiSiT_{i}-S_{i} (notation from loc. cot. and Example 3.7 respectively) by functoriality of the Poincaré sequence. One checks that in both cases their image under \nabla is 1dTi1\otimes dT_{i}. ∎

4. Rational Theory

For the rest of this article, we shall study a rational version of the previous derived de Rham complex. Let us spell out the setup by recalling the following notation: kk is a pp-adic field with ring of integers denoted by 𝒪k\mathcal{O}_{k} and XX is a separated666Just like Remark 3.20 suggests, we can remove the separatedness assumption in the end. rigid space over kk which we view as an adic space over Spa(k,𝒪k)\operatorname{Spa}(k,\mathcal{O}_{k}).

4.1. Affinoid construction

In this subsection, we recall the construction of the analytic cotangent complex and give the construction of the analytic derived de Rham complex, for a map of Huber rings over a kk. For a detailed discussion of the analytic cotangent complex (for topological finite type algebras), we refer readers to [GR03, Section 7.1-7.3].

Let f:(A,A+)(B,B+)f\colon(A,A^{+})\rightarrow(B,B^{+}) be a map of complete Huber rings over kk. Denote by 𝒞B/A\mathcal{C}_{B/A} the filtered category of pairs (A0,B0)(A_{0},B_{0}), where A0A_{0} and B0B_{0} are rings of definition of (A,A+)(A,A^{+}) and (B,B+)(B,B^{+}) separately, such that f(A0)B0f(A_{0})\subset B_{0}.

Construction 4.1 (Analytic cotangent complex, affinoid).

For each (A0,B0)𝒞B/A(A_{0},B_{0})\in\mathcal{C}_{B/A}, denote by 𝕃B0/A0an\mathbb{L}_{B_{0}/A_{0}}^{\mathrm{an}} the integral analytic cotangent complex of A0B0A_{0}\rightarrow B_{0} as in the 3.1. The analytic cotangent complex of f:(A,A+)(B,B+)f\colon(A,A^{+})\rightarrow(B,B^{+}), denoted by 𝕃B/Aan\mathbb{L}_{B/A}^{\mathrm{an}}, is defined as the filtered colimit

𝕃B/Aancolim(A0,B0)𝒞B/A𝕃B0/A0an[1p].\mathbb{L}_{B/A}^{\mathrm{an}}\coloneqq\underset{(A_{0},B_{0})\in\mathcal{C}_{B/A}}{{\mathrm{colim}}}\mathbb{L}_{B_{0}/A_{0}}^{\mathrm{an}}[\frac{1}{p}].

For the convenience of readers, let us list a few properties of analytic cotangent complex for a morphism of rigid affinoid algebras obtained by Gabber–Romero.

Theorem 4.2.

Let ABA\to B be a morphism of kk-affinoid algebras, then we have:

  1. (1)

    [GR03, Theorem 7.1.33.(i)] 𝕃B/Aan\mathbb{L}_{B/A}^{\mathrm{an}} is in 𝒟0(B)\mathscr{D}^{\leq 0}(B) and is pseudo-coherent over BB;

  2. (2)

    [GR03, Lemma 7.1.27.(iii) and Equation 7.2.36] the 0-th cohomology of the analytic cotangent complex is given by the analytic relative differential: H0(𝕃B/Aan)ΩB/Aan\mathrm{H}_{0}(\mathbb{L}_{B/A}^{\mathrm{an}})\simeq\Omega^{\mathrm{an}}_{B/A};

  3. (3)

    [GR03, Theorem 7.2.42.(ii)] if ABA\to B is smooth, then 𝕃B/AanΩB/Aan[0]\mathbb{L}^{\mathrm{an}}_{B/A}\simeq\Omega^{\mathrm{an}}_{B/A}[0];

  4. (4)

    [GR03, Lemma 7.2.46.(ii)] if ABA\to B is surjective, then the analytic cotangent complex agrees with the classical cotangent complex: 𝕃B/A𝕃B/Aan\mathbb{L}_{B/A}\simeq\mathbb{L}^{\mathrm{an}}_{B/A}.

Construction 4.3 (Analytic derived de Rham complex, affinoid).

Let f:(A,A+)(B,B+)f\colon(A,A^{+})\rightarrow(B,B+) be a map of complete Huber rings over kk. For each (A0,B0)𝒞B/A(A_{0},B_{0})\in\mathcal{C}_{B/A}, by the 3.1 we could define the integral analytic derived de Rham complex dRB0/A0an{\mathrm{dR}}_{B_{0}/A_{0}}^{\mathrm{an}}, as an object in CAlg(DF(A0)){\mathrm{CAlg}}({\mathrm{DF}}(A_{0})). Then the analytic derived de Rham complex dRB/Aan{\mathrm{dR}}_{B/A}^{\mathrm{an}} of (B,B+)(B,B^{+}) over (A,A+)(A,A^{+}), as an object in CAlg(DF(A)){\mathrm{CAlg}}({\mathrm{DF}}(A)), is defined to be the filtered colimit

dRB/Aancolim(A0,B0)𝒞B/AdRB0/A0an[1p].{\mathrm{dR}}_{B/A}^{\mathrm{an}}\coloneqq\underset{(A_{0},B_{0})\in\mathcal{C}_{B/A}}{{\mathrm{colim}}}{\mathrm{dR}}_{B_{0}/A_{0}}^{\mathrm{an}}[\frac{1}{p}].

Moreover, the (Hodge) completed analytic derived de Rham complex dR^B/Aan\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}} of (B,B+)(B,B^{+}) over (A,A+)(A,A^{+}), as an object in CAlg(DF^(A)){\mathrm{CAlg}}(\widehat{\mathrm{DF}}(A)), is defined as the derived filtered completion of dRB/Aan{\mathrm{dR}}_{B/A}^{\mathrm{an}}.

By the construction, the graded pieces of the filtered complete AA-complex dR^B/Aan\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}} is given by

(\epsdice2) Gri(dR^B/Aan)\displaystyle\operatorname{Gr}^{i}(\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}}) colim(A0,B0)𝒞B/AGri(G(A0,B0))\displaystyle\cong\underset{(A_{0},B_{0})\in\mathcal{C}_{B/A}}{{\mathrm{colim}}}\operatorname{Gr}^{i}(G(A_{0},B_{0}))
colim(A0,B0)𝒞B/A(Li𝕃B0/A0an[1p])[i]\displaystyle\cong\underset{(A_{0},B_{0})\in\mathcal{C}_{B/A}}{{\mathrm{colim}}}(\mathrm{L}\wedge^{i}\mathbb{L}_{B_{0}/A_{0}}^{\mathrm{an}}[\frac{1}{p}])[-i]
(Li𝕃B/Aan)[i],\displaystyle\cong(\mathrm{L}\wedge^{i}\mathbb{L}_{B/A}^{\mathrm{an}})[-i],

due to the fact that the functor Gri\operatorname{Gr}^{i} preserves filtered colimits.

Remark 4.4 (Complexity of the construction).

The two rational constructions above involve colimits among all rings of definitions and seem to be very complicated. A naive attempt would be taking the usual cotangent/derived de Rham complex of A+B+A^{+}\rightarrow B^{+}, apply the derived pp-adic completion and invert pp (and do the filtered completion, for the derived de Rham complex case) directly. This would not give us the expected answer in general, which is essentially due to the possible existence of nilpotent elements in (A,A+)(A,A^{+}) and (B,B+)(B,B^{+}).

Take the map (k,𝒪k)(B,B+)(k,\mathcal{O}_{k})\rightarrow(B,B^{+}) for B=kϵ/(ϵ2)B=k\langle\epsilon\rangle/(\epsilon^{2}) as an example. Then a ring of definition B0B_{0} of BB could be 𝒪kϵ/(ϵ2)\mathcal{O}_{k}\langle\epsilon\rangle/(\epsilon^{2}), while there is only one open integral subring of BB that contains 𝒪k\mathcal{O}_{k}, namely 𝒪kkϵ\mathcal{O}_{k}\oplus k\cdot\epsilon. In this case, it is easy to see that the derived pp-completion of cotangent complexes 𝕃B+/𝒪k\mathbb{L}_{B^{+}/\mathcal{O}_{k}} and 𝕃B0/𝒪k\mathbb{L}_{B_{0}/\mathcal{O}_{k}} are different, and remain so after inverting pp.

Remark 4.5 (Simplified construction for uniform Huber pairs).

Assume both of the Huber pairs (A,A+)(B,B+)(A,A^{+})\rightarrow(B,B^{+}) are uniform; namely the subrings of power bounded elements AA^{\circ} and BB^{\circ} are bounded in AA and BB separately. Then both A+A^{+} and B+B^{+} are rings of definition of AA and BB separately. In particular, the 4.1 and the 4.3 can be simplified as follows:

𝕃B/Aan\displaystyle\mathbb{L}_{B/A}^{\mathrm{an}} =𝕃B+/A+an[1p],\displaystyle=\mathbb{L}_{B^{+}/A^{+}}^{\mathrm{an}}[\frac{1}{p}],
dR^B/Aan\displaystyle\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}} =filteredcompletionof((derivedpcompletionofdRB+/A+)[1p]),\displaystyle=filtered~{}completion~{}of~{}((derived~{}p-completion~{}of~{}{\mathrm{dR}}_{B^{+}/A^{+}})[\frac{1}{p}]),

where we recall that 𝕃B+/A+an\mathbb{L}_{B^{+}/A^{+}}^{\mathrm{an}} is the derived pp-completion of the classical cotangent complex 𝕃B+/A+\mathbb{L}_{B^{+}/A^{+}}, and dRB+/A+{\mathrm{dR}}_{B^{+}/A^{+}} is the classical derived de Rham complex of B+/A+B^{+}/A^{+}, as in [BMS19, Examples 5.11-5.12].

Examples of uniform Huber pairs include reduced affinoid algebras over discretely valued or algebraically closed non-Archimedean fields [FvdP04, Theorem 3.5.6], and perfectoid affinoid algebras [Sch12, Theorem 6.3].

An arithmetic example of the Hodge-completed analytic derived de Rham complex has been worked out by Beilinson.

Example 4.6 ([Bei12, Proposition 1.5]).

We have a filtered isomorphism:

BdR+dR^p¯/pan.B_{{\mathrm{dR}}}^{+}\cong\widehat{\mathrm{dR}}^{\mathrm{an}}_{\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p}}.

Next we work out a geometric example. Let us compute the Hodge-completed analytic derived de Rham complex of a perfectoid torus over a rigid analytic torus. Following the notation in Example 3.6, let R=pT1±1,,Tn±1R=\mathbb{Z}_{p}\langle T_{1}^{\pm 1},\ldots,T_{n}^{\pm 1}\rangle, and R=pT1±1/p,,Tn±1/p=RS11/p,,Sn1/p/(TiSi;1in)R_{\infty}=\mathbb{Z}_{p}\langle T_{1}^{\pm 1/p^{\infty}},\ldots,T_{n}^{\pm 1/p^{\infty}}\rangle=R\langle S_{1}^{1/p^{\infty}},\ldots,S_{n}^{1/p^{\infty}}\rangle/(T_{i}-S_{i};1\leq i\leq n).

Example 4.7.

Continue with Example 3.7. After inverting pp and completing along Hodge filtrations, we see that dR^R[1/p]/R[1/p]an\widehat{\mathrm{dR}}^{\mathrm{an}}_{R_{\infty}[1/p]/R[1/p]} is given by the completion of pTi±1,Si1/p\mathbb{Q}_{p}\langle T_{i}^{\pm 1},S_{i}^{1/p^{\infty}}\rangle along {TiSi;1in}\{T_{i}-S_{i};1\leq i\leq n\}. Here we use Remark 4.5 to relate dR^R/Ran\widehat{\mathrm{dR}}^{\mathrm{an}}_{R_{\infty}/R} and dR^R[1/p]/R[1/p]an\widehat{\mathrm{dR}}^{\mathrm{an}}_{R_{\infty}[1/p]/R[1/p]}. A more explicit presentation is

dR^R[1/p]/R[1/p]an=pS1±1/p,,Sn±1/p[[X1,,Xn]]\widehat{\mathrm{dR}}^{\mathrm{an}}_{R_{\infty}[1/p]/R[1/p]}=\mathbb{Q}_{p}\langle S_{1}^{\pm 1/p^{\infty}},\ldots,S_{n}^{\pm 1/p^{\infty}}\rangle[\![X_{1},\ldots,X_{n}]\!]

via change of variable Ti=Xi+SiT_{i}=X_{i}+S_{i} (hence Ti1=Si1(1+Si1Xi)1T_{i}^{-1}=S_{i}^{-1}\cdot(1+S_{i}^{-1}X_{i})^{-1}), c.f. the notation before [Sch13, Proposition 6.10].

We need to understand the output of these constructions for general perfectoid affinoid algebras relative to affinoid algebras. The following tells us that in this situation, the Hodge completed analytic derived de Rham complex can be computed with any ring of definition inside the affinoid algebra.

Lemma 4.8.

Let (A,A+)(A,A^{+}) be a topologically finite type complete Tate ring over (k,𝒪k)(k,\mathcal{O}_{k}), with A0A+A_{0}\subset A^{+} being a ring of definition. Let (B,B+)(B,B^{+}) be a perfectoid algebra over (A,A+)(A,A^{+}). Then we have:

  1. (1)

    The analytic cotangent complex 𝕃B/Aan𝕃B+/A0an[1/p]\mathbb{L}_{B/A}^{\mathrm{an}}\cong\mathbb{L}_{B^{+}/A_{0}}^{\mathrm{an}}[1/p].

  2. (2)

    The Hodge completed analytic derived de Rham complex dR^B/AandRB+/A0an[1/p]^\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}}\cong\widehat{{\mathrm{dR}}_{B^{+}/A_{0}}^{\mathrm{an}}[1/p]}, where the latter is the Hodge completion of dRB+/A0an[1/p]{\mathrm{dR}}_{B^{+}/A_{0}}^{\mathrm{an}}[1/p].

In the proof below we will show a stronger statement: the transition morphisms of the colimit process computing left hand side in 4.1 and 4.3 are all isomorphisms.

Proof.

Let A0A+A_{0}^{\prime}\subset A^{+} be another ring of definition containing A0A_{0}. It suffices to show that 𝕃B+/A0an[1/p]𝕃B+/A0an[1/p]\mathbb{L}_{B^{+}/A_{0}}^{\mathrm{an}}[1/p]\cong\mathbb{L}_{B^{+}/A_{0}^{\prime}}^{\mathrm{an}}[1/p] and similarly for their Hodge completed analytic derived de Rham complexes. Since Hodge completed analytic derived de Rham complex of both sides are derived complete with respect to the Hodge filtration, whose graded pieces, by Equation \epsdice2, are derived wedge product of relevant analytic cotangent complexes, we see that the statement about Hodge completed analytic derived de Rham complex follows from the statement about analytic cotangent complex.

To show 𝕃B+/A0an[1/p]𝕃B+/A0an[1/p]\mathbb{L}_{B^{+}/A_{0}}^{\mathrm{an}}[1/p]\cong\mathbb{L}_{B^{+}/A_{0}^{\prime}}^{\mathrm{an}}[1/p], we appeal to the fundamental triangle of (analytic) cotangent complexes:

𝕃A0/A0anA0B+𝕃B+/A0an𝕃B+/A0an.\mathbb{L}_{A_{0}^{\prime}/A_{0}}^{\mathrm{an}}{\otimes_{A_{0}^{\prime}}}B^{+}\longrightarrow\mathbb{L}_{B^{+}/A_{0}}^{\mathrm{an}}\longrightarrow\mathbb{L}_{B^{+}/A_{0}^{\prime}}^{\mathrm{an}}.

Here the tensor product does not need an extra pp-completion as 𝕃A0/A0\mathbb{L}_{A_{0}^{\prime}/A_{0}} is pseudo-coherent, see [GR03, Theorem 7.1.33]. By [GR03, Theorem 7.2.42], the pp-complete cotangent complex 𝕃A0/A0an\mathbb{L}_{A_{0}^{\prime}/A_{0}}^{\mathrm{an}} satisfies

𝕃A0/A0an[1p]=ΩA0[1p]/A0[1p]1,an,\mathbb{L}_{A_{0}^{\prime}/A_{0}}^{\mathrm{an}}[\frac{1}{p}]=\Omega_{A_{0}^{\prime}[\frac{1}{p}]/A_{0}[\frac{1}{p}]}^{1,{\mathrm{an}}},

which vanishes as A0[1p]A_{0}^{\prime}[\frac{1}{p}] and A0[1p]A_{0}[\frac{1}{p}] are both equal to AA. Therefore the natural map

𝕃B+/A0an[1p]𝕃B+/A0an[1p]\mathbb{L}_{B^{+}/A_{0}}^{\mathrm{an}}[\frac{1}{p}]\longrightarrow\mathbb{L}_{B^{+}/A_{0}^{\prime}}^{\mathrm{an}}[\frac{1}{p}]

induced by A0A0A_{0}\rightarrow A_{0}^{\prime} is a quasi-isomorphism. ∎

We can understand the associated graded algebra of analytic de Rham complex of perfectoid affinoid algebras over affinoid algebras via the following Theorem 4.9. Let KK be a perfectoid field extension of kk that contains pnp^{n}-roots of unity for all nn\in\mathbb{N}.

Theorem 4.9.

Let (A,A+)(A,A^{+}) be a topologically finite type complete Tate ring over (k,𝒪k)(k,\mathcal{O}_{k}). Assume (B,B+)(B,B^{+}) is a perfectoid algebra containing both (K,𝒪K)(K,\mathcal{O}_{K}) and (A,A+)(A,A^{+}). Then the graded algebra Gr(dR^B/Aan)\operatorname{Gr}^{\ast}(\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}}) admits a natural graded quasi-isomorphism to the derived divided power algebra LΓB(Gr1(dR^B/Aan))\mathrm{L}\Gamma_{B}^{\ast}(\operatorname{Gr}^{1}(\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}})), where the first graded piece fits into a distinguished triangle:

B(1)Gr1(dR^B/Aan)𝕃B/Aan[1]BA𝕃A/kan,B(1)\longrightarrow\operatorname{Gr}^{1}(\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}})\cong\mathbb{L}_{B/A}^{\mathrm{an}}[-1]\longrightarrow B\otimes_{A}\mathbb{L}_{A/k}^{\mathrm{an}},

which is functorial in (B,B+)/(A,A+)(B,B^{+})/(A,A^{+}). In particular, the graded pieces are BB-pseudo-coherent.

Here B(1)B(1) denote ker(θ)/ker(θ)2\ker(\theta)/\ker(\theta)^{2} where θ:Ainf(B+)[1/p]B\theta\colon A_{inf}(B^{+})[1/p]\twoheadrightarrow B is Fontaine’s θ\theta map. Our assumption of (B,B+)(B,B^{+}) containing (K,𝒪K)(K,\mathcal{O}_{K}) ensures that this is (non-canonically) isomorphic to BB itself, see [Sch13, Lemma 6.3]. After sheafifying everything, it corresponds to a suitable Tate twist of BB.

Proof.

The identification Gr1(dR^B/Aan)𝕃B/Aan[1]\operatorname{Gr}^{1}(\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}})\cong\mathbb{L}_{B/A}^{\mathrm{an}}[-1] is already spelled out by Equation \epsdice2.

Let us fix a single choice of pair of rings of definition (A0,B+)(A_{0},B^{+}) in 𝒞B/A\mathcal{C}_{B/A}. Here A0A_{0} is topologically finitely presented over 𝒪k\mathcal{O}_{k}, and B+B^{+} contains 𝒪K\mathcal{O}_{K} for KK a perfectoid field containing all pnp^{n}-th roots of unity.

Consider the following triple: 𝒪kA0B+,\mathcal{O}_{k}\longrightarrow A_{0}\longrightarrow B^{+}, it induces the following triangle

𝕃A0/𝒪kanA0B+𝕃B+/𝒪kan𝕃B+/A0an.\mathbb{L}_{A_{0}/\mathcal{O}_{k}}^{\mathrm{an}}\otimes_{A_{0}}B^{+}\longrightarrow\mathbb{L}_{B^{+}/\mathcal{O}_{k}}^{\mathrm{an}}\longrightarrow\mathbb{L}_{B^{+}/A_{0}}^{\mathrm{an}}.

Here we again have used the pseudo-coherence [GR03, Theorem 7.1.33] of 𝕃A0/𝒪kan\mathbb{L}_{A_{0}/\mathcal{O}_{k}}^{\mathrm{an}}. We need to show 𝕃B+/𝒪kan[1/p]B(1)[1]\mathbb{L}_{B^{+}/\mathcal{O}_{k}}^{\mathrm{an}}[1/p]\cong B(1)[1]. To that end, let WW be the Witt ring of the residue field of 𝒪k\mathcal{O}_{k}. By looking at the triple W𝒪kB+W\to\mathcal{O}_{k}\to B^{+}, we get another sequence

𝕃B+/WanB+(1)[1]𝕃B+/𝒪kan𝕃𝒪k/Wan𝒪kB+[1],\mathbb{L}_{B^{+}/W}^{\mathrm{an}}\cong B^{+}(1)[1]\longrightarrow\mathbb{L}_{B^{+}/\mathcal{O}_{k}}^{\mathrm{an}}\longrightarrow\mathbb{L}_{\mathcal{O}_{k}/W}^{\mathrm{an}}\otimes_{\mathcal{O}_{k}}B^{+}[1],

where the first identification follows from Proposition 3.16, and the tensor product does not an extra completion again by coherence of 𝕃𝒪k/Wan\mathbb{L}_{\mathcal{O}_{k}/W}^{\mathrm{an}}. Since k/W[1/p]k/W[1/p] is finite étale, we conclude that 𝕃𝒪k/Wan[1/p]=0\mathbb{L}_{\mathcal{O}_{k}/W}^{\mathrm{an}}[1/p]=0 by [GR03, Theorem 7.2.42]. This ends the proof of the structure of 𝕃B/Aan\mathbb{L}_{B/A}^{\mathrm{an}}.

Now we turn to the higher graded piece. The ii-th graded pieces Gri(dR^B/Aan)\operatorname{Gr}^{i}(\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}}) is quasi-isomorphic to (Li𝕃B/Aan)[i](\mathrm{L}\wedge^{i}\mathbb{L}_{B/A}^{\mathrm{an}})[-i], which by rewriting in terms of the first graded piece is

(Li(Gr1(dR^B/Aan)[1]))[i].(\mathrm{L}\wedge^{i}(\operatorname{Gr}^{1}(\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}})[1]))[-i].

So by the relation between the derived wedge product and the derived divided power funcotr (with bounded above input, see [Ill71, V.4.3.5]), we get

Gri(dR^B/Aan)LΓBi(Gr1(dR^B/A)),\operatorname{Gr}^{i}(\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}})\cong\mathrm{L}\Gamma_{B}^{i}(\operatorname{Gr}^{1}(\widehat{\mathrm{dR}}_{B/A})),

and we get the divided power algebra structure of the graded algebra Gr(dR^B/Aan)\operatorname{Gr}^{\ast}(\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}}). ∎

Consequently we get cohomological bounds for perfectoid affinoid algebras over various types of affinoid algebras. The notion of local complete intersection and embedded codimension (in the situation that we are working with) is discussed in the Appendix.

Corollary 4.10.

Let (B,B+)/(A,A+)(B,B^{+})/(A,A^{+}) be as in the statement of Theorem 4.9. Then we have

  1. (1)

    dR^B/Aan𝒟0(A)\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}}\in\mathscr{D}^{\leq 0}(A);

  2. (2)

    if A/kA/k is smooth, then dR^B/Aan𝒟[0,0](A)\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}}\in\mathscr{D}^{[0,0]}(A);

  3. (3)

    if A/kA/k is local complete intersection with embedded codimension cc, then dR^B/Aan𝒟[c,0](A)\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}}\in\mathscr{D}^{[-c,0]}(A).

Proof.

Since the out put of dR^an\widehat{\mathrm{dR}}^{\mathrm{an}} is always derived complete with respect to its Hodge filtration, it suffices to show these statements for the graded pieces of Hodge filtration.

For (1), this follows from the fact that 𝕃B/Aan𝒟0(B)\mathbb{L}_{B/A}^{\mathrm{an}}\in\mathscr{D}^{\leq 0}(B). (2) follows from (3) as smooth affinoid algebra has embedded codimension 0.

As for (3), we check the graded pieces of Hodge filtration in this case is in 𝒟[c,0]\mathscr{D}^{[-c,0]}. In fact, we shall show that the graded pieces, as objects in 𝒟(B)\mathscr{D}(B), have Tor amplitude [c,0][-c,0]. First since BB contains \mathbb{Q}, we have

Gri(dR^B/Aan)LΓBi(Gr1(dR^B/Aan))LSymBi(Gr1(dR^B/Aan)).\operatorname{Gr}^{i}(\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}})\cong\mathrm{L}\Gamma_{B}^{i}(\operatorname{Gr}^{1}(\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}}))\cong\mathrm{L}{\mathrm{Sym}}_{B}^{i}(\operatorname{Gr}^{1}(\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}})).

Using the triangle in Theorem 4.9, it suffices to show LSymBj(BA𝕃A/kan)\mathrm{L}{\mathrm{Sym}}_{B}^{j}(B\otimes_{A}\mathbb{L}_{A/k}^{\mathrm{an}}) have Tor amplitude [c,0][-c,0] for all jj. Since LSymBj(BA𝕃A/kan)BALSymAj(𝕃A/kan)\mathrm{L}{\mathrm{Sym}}_{B}^{j}(B\otimes_{A}\mathbb{L}_{A/k}^{\mathrm{an}})\cong B\otimes_{A}\mathrm{L}{\mathrm{Sym}}_{A}^{j}(\mathbb{L}_{A/k}^{\mathrm{an}}), we are done by Proposition 5.7. ∎

4.2. Poincaré sequence

In this subsection we explain the Poincaré sequence for Hodge completed de Rham complexes.

Lemma 4.11.

Let BCB\to C be an AA-algebra morphism. Then for every jj\in\mathbb{N}, the Katz–Oda filtration on dRC/A{\mathrm{dR}}_{C/A} induces a functorial strict exact filtration on dRC/A/FilHj{\mathrm{dR}}_{C/A}/\operatorname{Fil}^{j}_{\mathrm{H}}, witnessing the following sequence:

dRC/A/FiljdRC/B/FiljdRC/B/Filj1Bst1(𝕃B/A)dRC/B/Fil1Bstj1(Lj1𝕃B/A).{\mathrm{dR}}_{C/A}/\operatorname{Fil}^{j}\to{\mathrm{dR}}_{C/B}/\operatorname{Fil}^{j}\xrightarrow{\nabla}{\mathrm{dR}}_{C/B}/\operatorname{Fil}^{j-1}\otimes_{B}{\mathrm{st}}_{1}(\mathbb{L}_{B/A})\xrightarrow{\nabla}\cdots\xrightarrow{\nabla}{\mathrm{dR}}_{C/B}/\operatorname{Fil}^{1}\otimes_{B}{\mathrm{st}}_{j-1}(\mathrm{L}\wedge^{j-1}\mathbb{L}_{B/A}).

Here dRC/A{\mathrm{dR}}_{C/A} and dRC/B{\mathrm{dR}}_{C/B} are equipped with Hodge filtrations.

Moreover FilKOi(dRC/A/FilHj)=0\operatorname{Fil}^{i}_{\mathrm{KO}}({\mathrm{dR}}_{C/A}/\operatorname{Fil}^{j}_{\mathrm{H}})=0 whenever i>ji>j.

Proof.

We consider the induced Katz–Oda filtration on dRC/A/FilHi{\mathrm{dR}}_{C/A}/\operatorname{Fil}^{i}_{\mathrm{H}}. Since we have mod out Hodge filtration, the Lemma 3.13 (3) implies the desired vanishing of the FilKOi\operatorname{Fil}^{i}_{\mathrm{KO}} when i>ji>j, and this in turn implies the strict exactness of these filtrations. ∎

Specializing to the pp-adic situation, we get the following:

Lemma 4.12.

Let (A,A+)(B,B+)(C,C+)(A,A^{+})\to(B,B^{+})\to(C,C^{+}) be a triangle of complete Huber rings over kk. Then for each jj\in\mathbb{N}, we have a functorial strict exact filtration on dRC/Aan/Filj{\mathrm{dR}}_{C/A}^{\mathrm{an}}/\operatorname{Fil}^{j}, still denoted by FilKOi\operatorname{Fil}^{i}_{\mathrm{KO}}, witnessing the following sequence:

dRC/Aan/FiljdRC/Ban/FiljdRC/Ban/Filj1^Bst1(𝕃B/Aan)dRC/Ban/Fil1^Bstj1(Lj1𝕃B/Aan).{\mathrm{dR}}_{C/A}^{\mathrm{an}}/\operatorname{Fil}^{j}\to{\mathrm{dR}}_{C/B}^{\mathrm{an}}/\operatorname{Fil}^{j}\xrightarrow{\nabla}{\mathrm{dR}}_{C/B}^{\mathrm{an}}/\operatorname{Fil}^{j-1}\widehat{\otimes}_{B}{\mathrm{st}}_{1}(\mathbb{L}_{B/A}^{\mathrm{an}})\xrightarrow{\nabla}\cdots\xrightarrow{\nabla}{\mathrm{dR}}_{C/B}^{\mathrm{an}}/\operatorname{Fil}^{1}\widehat{\otimes}_{B}{\mathrm{st}}_{j-1}(\mathrm{L}\wedge^{j-1}\mathbb{L}_{B/A}^{\mathrm{an}}).

Here dRC/Aan/Filj{\mathrm{dR}}_{C/A}^{\mathrm{an}}/\operatorname{Fil}^{j} and dRC/Ban/Filj{\mathrm{dR}}_{C/B}^{\mathrm{an}}/\operatorname{Fil}^{j} are equipped with Hodge filtrations.

Moreover FilKOi(dRC/Aan/Filj)=0\operatorname{Fil}^{i}_{\mathrm{KO}}({\mathrm{dR}}_{C/A}^{\mathrm{an}}/\operatorname{Fil}^{j})=0 whenever i>ji>j.

Proof.

For any triangle of rings of definition A0B0C0A_{0}\to B_{0}\to C_{0}, we pp-complete the filtration from Lemma 4.11 and invert pp, then we take the colimit over all triangles of such triples of rings of definition to get the filtration sought after. Since all the operations involved are (derived-)exact, the resulting filtration still has vanishing: FilKOi=0\operatorname{Fil}^{i}_{\mathrm{KO}}=0 whenever i>ji>j, and this again implies the strict exactness. ∎

In the setting of the above Lemma, after taking limit with jj going to \infty, we get the following:

Corollary 4.13 (Poincare Lemma).

Let (A,A+)(B,B+)(C,C+)(A,A^{+})\to(B,B^{+})\to(C,C^{+}) be a triangle of complete Huber rings over kk. Then there is a functorial strict exact filtration on dR^C/Aan\widehat{\mathrm{dR}}_{C/A}^{\mathrm{an}} witnessing the following sequence

dR^C/AandR^C/BandR^C/Ban^Bst1(𝕃B/Aan).\widehat{\mathrm{dR}}_{C/A}^{\mathrm{an}}\longrightarrow\widehat{\mathrm{dR}}_{C/B}^{\mathrm{an}}\xrightarrow{\nabla}\widehat{\mathrm{dR}}_{C/B}^{\mathrm{an}}\hat{\otimes}_{B}{\mathrm{st}}_{1}(\mathbb{L}_{B/A}^{\mathrm{an}})\to\cdots.

The \nabla’s are dR^C/Aan\widehat{\mathrm{dR}}_{C/A}^{\mathrm{an}}-linear and satisfy Newton–Leibniz rule.

Proof.

Take limit in jj of the Katz–Oda filtrations on dRC/Aan/Filj{\mathrm{dR}}_{C/A}^{\mathrm{an}}/\operatorname{Fil}^{j} in Lemma 4.12 gives the desired filtration. Indeed, inverse limit of complete filtrations is again complete. Moreover we have

GrKOi(dR^C/Aan)limjGrKOi(dRC/Aan/Filj)limj(dRC/Ban/Filji^Bsti(Li𝕃B/Aan)[i])dR^C/Ban^Bsti(Li𝕃B/Aan)[i],\operatorname{Gr}^{i}_{\mathrm{KO}}(\widehat{\mathrm{dR}}_{C/A}^{\mathrm{an}})\cong\lim_{j}\operatorname{Gr}^{i}_{\mathrm{KO}}({\mathrm{dR}}_{C/A}^{\mathrm{an}}/\operatorname{Fil}^{j})\cong\lim_{j}\left({\mathrm{dR}}_{C/B}^{\mathrm{an}}/\operatorname{Fil}^{j-i}\widehat{\otimes}_{B}{\mathrm{st}}_{i}(\mathrm{L}\wedge^{i}\mathbb{L}_{B/A}^{\mathrm{an}})[-i]\right)\cong\widehat{\mathrm{dR}}_{C/B}^{\mathrm{an}}\widehat{\otimes}_{B}{\mathrm{st}}_{i}(\mathrm{L}\wedge^{i}\mathbb{L}_{B/A}^{\mathrm{an}})[-i],

so we get the statement about the sequence that this filtration is witnessing.

Lastly the statement about \nabla is the consequence of a general statement about multiplicative filtrations on EE_{\infty}-algebras, see the proof of Lemma 3.13 (2). ∎

Remark 4.14.

In fact, the discussion of the Poincar’e sequence above could be obtained via a product formula

dR^C/A^dR^B/ABdR^C/B,\widehat{\mathrm{dR}}_{C/A}\widehat{\otimes}_{\widehat{\mathrm{dR}}_{B/A}}B\cong\widehat{\mathrm{dR}}_{C/B},

similar to the discussion in subsection Section 3.2. Here the formula can be obtained via a filtered completion, by pp-completing the formula in Proposition 3.11 and inverting pp.

We mention that this formula could also be proved by applying the symmetric monoidal functor Gr\operatorname{Gr}^{*} and checking the graded pieces, where the claim is reduced to the distinguished triangle of analytic cotangent complexes for a triple of Huber pairs.

4.3. Rational de Rham sheaves

In this subsection, we shall apply the construction of the (Hodge completed) analytic derived de Rham complexes to the triangle of sheaves of Huber rings (k,𝒪k)(ν1𝒪X,ν1𝒪X+)(𝒪^X,𝒪^X+)(k,\mathcal{O}_{k})\rightarrow(\nu^{-1}\mathcal{O}_{X},\nu^{-1}\mathcal{O}_{X}^{+})\rightarrow(\widehat{\mathcal{O}}_{X},\widehat{\mathcal{O}}_{X}^{+}) on the pro-étale site, where ν:Xproe´tX\nu\colon X_{{\mathrm{pro\acute{e}t}}}\to X is the standard map of sites. The procedure is similar to what we did in Section 3.3, except now we allow XX to be locally complete intersection 777See Appendix for the notion of local complete intersection that we are using here. over kk, and we shall use the unfolding as discussed in Section 2.4.

Let KK be a perfectoid field extension of kk that contains pnp^{n}-roots of unity for all nn\in\mathbb{N}. There is a subcategory Xproe´tωXproe´tX_{{\mathrm{pro\acute{e}t}}}^{\omega}\subset X_{\mathrm{pro\acute{e}t}} consisting of affinoid perfectoid objects U=Spa(B,B+)XK,proe´tU=\operatorname{Spa}(B,B^{+})\in X_{K,{\mathrm{pro\acute{e}t}}} whose image in XX is contained in an affinoid open Spa(A,A+)X\operatorname{Spa}(A,A^{+})\subset X. The class of such objects form a basis for the pro-étale topology by (the proof of) [Sch13, Proposition 4.8].

Proposition 4.15.

Let U=Spa(B,B+)Xproe´tωU=\operatorname{Spa}(B,B^{+})\in X_{{\mathrm{pro\acute{e}t}}}^{\omega}, choose Spa(A,A+)X\operatorname{Spa}(A,A^{+})\subset X such that the image of UU in XX is contained in Spa(A,A+)\operatorname{Spa}(A,A^{+}). Then

  1. (1)

    the natural surjection θ:Ainf(B+)[1/p]B\theta\colon A_{inf}(B^{+})[1/p]\twoheadrightarrow B exhibits dR^B/kan=BdR+(B)\widehat{\mathrm{dR}}_{B/k}^{\mathrm{an}}=B_{{\mathrm{dR}}}^{+}(B), and the Hodge filtrations are identified with the ker(θ)\ker(\theta)-adic filtrations;

  2. (2)

    the presheaf defined by sending UU to Gri(dR^B/kan)\operatorname{Gr}^{i}(\widehat{\mathrm{dR}}_{B/k}^{\mathrm{an}}) is a hypersheaf;

  3. (3)

    the assignment sending UU to dRB/Aan/Filn{\mathrm{dR}}_{B/A}^{\mathrm{an}}/\operatorname{Fil}^{n} is independent of the choice of Spa(A,A+)\operatorname{Spa}(A,A^{+}), hence so is the assignment sending UU to dR^B/Aan\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}}, we denote it as dR^B/Xan\widehat{\mathrm{dR}}_{B/X}^{\mathrm{an}};

  4. (4)

    assuming X/kX/k is a local complete intersection, then the presheaf assigning UU to Gri(dR^B/Xan)\operatorname{Gr}^{i}(\widehat{\mathrm{dR}}_{B/X}^{\mathrm{an}}) is a hypersheaf.

Proof.

(1) and (3) follows from the same proof of Proposition 3.16 (1) and (4) respectively.

Now we prove (2). The ii-th graded piece of dR^B/kan\widehat{\mathrm{dR}}_{B/k}^{\mathrm{an}} is isomorphic to B(i)B(i) by Theorem 4.9 (with (A,A+)(A,A^{+}) there being (k,𝒪k)(k,\mathcal{O}_{k})). These are hypersheaves as they are supported in cohomological degree 0 and satisfy higher acyclicity by [Sch13, Lemma 4.10].

Lastly we we turn to (4). The graded pieces of dR^B/Xan\widehat{\mathrm{dR}}_{B/X}^{\mathrm{an}}, by (2), is the same as dR^B/Aan\widehat{\mathrm{dR}}_{B/A}^{\mathrm{an}} for any choice of AA. Notice that, by Theorem 4.9, the Gri(dRB/Aan)\operatorname{Gr}^{i}({\mathrm{dR}}_{B/A}^{\mathrm{an}}) has a finite step filtration with graded pieces given by (Lj𝕃A/kan)AB(ij)(\mathrm{L}\wedge^{j}\mathbb{L}_{A/k}^{\mathrm{an}})\otimes_{A}B(i-j). Since hypersheaf property satisfies two-out-of-three principle in a triangle, it suffices to show that the assignment sending

Spa(B,B+)=U(Lj𝕃A/kan)AB(ij)\operatorname{Spa}(B,B^{+})=U\mapsto\left(\mathrm{L}\wedge^{j}\mathbb{L}_{A/k}^{\mathrm{an}}\right)\otimes_{A}B(i-j)

is a hypersheaf. This follows from the fact that 𝕃A/kan\mathbb{L}_{A/k}^{\mathrm{an}} is a perfect complex (as XX is assumed to be a local complete intersection over kk) and, again, that sending UU to B(m)B(m) is a hypersheaf for any mm\in\mathbb{Z}. ∎

In particular, Proposition 4.15 tells us that the presheaves given by

Spa(B,B+)=UXproe´tω{dR^B/kan/Filn or dR^B/kan or dR^B/Xan/Filn or dR^B/Xan,\operatorname{Spa}(B,B^{+})=U\in X_{{\mathrm{pro\acute{e}t}}}^{\omega}\mapsto\begin{cases}\widehat{\mathrm{dR}}_{B/k}^{\mathrm{an}}/\operatorname{Fil}^{n}\text{ or }\\ \widehat{\mathrm{dR}}_{B/k}^{\mathrm{an}}\text{ or }\\ \widehat{\mathrm{dR}}_{B/X}^{\mathrm{an}}/\operatorname{Fil}^{n}\text{ or }\\ \widehat{\mathrm{dR}}_{B/X}^{\mathrm{an}}\end{cases},

are all hypersheaves on Xproe´tωX_{{\mathrm{pro\acute{e}t}}}^{\omega} (assuming X/kX/k is a local complete intersection for the latter two), using the fact that the hypersheaf property is preserved under taking limit, so we may unfold them to get a hypersheaf on Xproe´tX_{\mathrm{pro\acute{e}t}}.

The authors believe that the conclusion of Proposition 4.15 (4) (or a variant) should still hold for general rigid spaces instead of only the local complete intersection ones. Hence we ask the following:

Question 4.16.

Given any rigid space X/kX/k, is it true that the presheaf assigning UU to Gri(dR^B/Xan)\operatorname{Gr}^{i}(\widehat{\mathrm{dR}}_{B/X}^{\mathrm{an}}) is always a hypersheaf?

The subtlety is that a pro-étale map of affinoid perfectoid algebras need not be flat.

Now we are ready to define the hypersheaf version of the relative de Rham cohomology.

Definition 4.17.

The Hodge-completed analytic derived de Rham complex of Xproe´tX_{{\mathrm{pro\acute{e}t}}} over kk, denoted by dR^Xproe´t/kan\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/k}^{\mathrm{an}}, is defined to be the unfolding of the hypersheaf on Xproe´tωX_{{\mathrm{pro\acute{e}t}}}^{\omega} whose value at U=Spa(B,B+)Xproe´tωU=\operatorname{Spa}(B,B^{+})\in X_{{\mathrm{pro\acute{e}t}}}^{\omega} is dR^B/kan\widehat{\mathrm{dR}}_{B/k}^{\mathrm{an}}.

Similarly we define a filtration on dR^Xproe´t/kan\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/k}^{\mathrm{an}} by unfolding the Hodge filtration on dR^B/kan\widehat{\mathrm{dR}}_{B/k}^{\mathrm{an}}. Since values of unfolding are computed by derived limits, we see immediately that dR^Xproe´t/kan\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/k}^{\mathrm{an}} is derived complete with respect to the filtration.

This construction is related to Scholze’s period sheaf 𝔹dR+\mathbb{B}_{{\mathrm{dR}}}^{+} (see [Sch13, Definition 6.1.(ii)]) by the following:

Proposition 4.18.

On Xproe´tωX_{{\mathrm{pro\acute{e}t}}}^{\omega} we have a filtered isomorphism dR^Xproe´t/kan𝔹dR+\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/k}^{\mathrm{an}}\simeq\mathbb{B}_{{\mathrm{dR}}}^{+} of hypersheaves. Consequently, the 0-th cohomology sheaf of dR^Xproe´t/kan\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/k}^{\mathrm{an}} is identified with the sheaf 𝔹dR+\mathbb{B}_{{\mathrm{dR}}}^{+} as filtered sheaves on Xproe´tX_{\mathrm{pro\acute{e}t}}.

Before the proof, we want to mention that under the equivalence 𝒟(X,k)Shhyp(X,k)\mathscr{D}(X,k)\cong{\mathrm{Sh}}^{\mathrm{hyp}}(X,k) and its filtered version (c.f. Remark 2.1), this Proposition implies that the derived de Rham complex dR^Xproe´t/kan\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/k}^{\mathrm{an}} is represented by the ordinary sheaf 𝔹dR+\mathbb{B}_{{\mathrm{dR}}}^{+}. Here the induced filtration on 0(dR^Xproe´t/kan)\mathscr{H}^{0}(\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/k}^{\mathrm{an}}) is given by 0(FildR^Xproe´t/kan)\mathscr{H}^{0}(\operatorname{Fil}^{*}\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/k}^{\mathrm{an}}).

Proof.

The first sentence follows from Proposition 4.15 (1).

Given a hypersheaf FF supported in cohomological degree 0 on a basis of a site SS, it also defines an ordinary sheaf on SS (by taking the 0-th cohomology). The unfolding of FF is a hypersheaf in 𝒟0\mathscr{D}^{\geq 0}, and its 0-th cohomological sheaf is the ordinary sheaf one obtains.

In our situation, we have the basis Xproe´tωX_{{\mathrm{pro\acute{e}t}}}^{\omega} of the site Xproe´tX_{{\mathrm{pro\acute{e}t}}}, and Scholze’s 𝔹dR+\mathbb{B}_{{\mathrm{dR}}}^{+} (and its filtrations) are defined as the ordinary sheaf obtained from 𝔹dR+(𝒪^X+)\mathbb{B}_{{\mathrm{dR}}}^{+}(\hat{\mathcal{O}}^{+}_{X}) (and its ker(θ)\ker(\theta)-adic filtrations). Now previous paragraph and the first statement give us the second statement. ∎

Definition 4.19.

Let XX be a local complete intersection rigid space over kk. Then the Hodge-completed analytic derived de Rham complex of Xproe´tX_{{\mathrm{pro\acute{e}t}}} over XX, denoted by dR^Xproe´t/Xan\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/X}^{\mathrm{an}}, is defined to be the unfolding of the hypersheaf on Xproe´tωX_{{\mathrm{pro\acute{e}t}}}^{\omega} whose value at U=Spa(B,B+)Xproe´tωU=\operatorname{Spa}(B,B^{+})\in X_{{\mathrm{pro\acute{e}t}}}^{\omega} is dR^B/Xan\widehat{\mathrm{dR}}_{B/X}^{\mathrm{an}}.

Similarly we define a filtration on dR^Xproe´t/Xan\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/X}^{\mathrm{an}} by unfolding the Hodge filtration on dR^B/Xan\widehat{\mathrm{dR}}_{B/X}^{\mathrm{an}}. So dR^Xproe´t/Xan\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/X}^{\mathrm{an}} is also derived complete with respect to the filtration.

If XX is a local complete intersection rigid space over kk with embedded codimension cc. Then by Corollary 4.10 (3), we see that dR^Xproe´t/Xan\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/X}^{\mathrm{an}} lives in Shhyp(Xproe´t,𝒟c(k)){\mathrm{Sh}}^{{\mathrm{hyp}}}(X_{{\mathrm{pro\acute{e}t}}},\mathscr{D}^{\geq-c}(k)).

The Poincaré Lemma obtained in the previous subsection now immediately yields the following:

Theorem 4.20.

Let XX be a local complete intersection rigid space over kk. Then there is a functorial strict exact filtration on dR^Xproe´t/kan\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/k}^{\mathrm{an}} witnessing the following:

dR^Xproe´t/kandR^Xproe´t/XandRXproe´t/Xanν1𝒪Xst1(ν1(𝕃X/kan))\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/k}^{\mathrm{an}}\longrightarrow\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}}\xrightarrow{\nabla}{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}}\otimes_{\nu^{-1}\mathcal{O}_{X}}{\mathrm{st}}_{1}(\nu^{-1}(\mathbb{L}_{X/k}^{\mathrm{an}}))\xrightarrow{\nabla}\cdots

If XX is further assumed to be smooth over kk of equidimension dd, then the following dR^Xproe´t/kan\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/k}^{\mathrm{an}}-linear sequence

0dR^Xproe´t/kandR^Xproe´t/XandRXproe´t/Xanν1𝒪Xst1(ν1(𝕃X/kan))\displaystyle 0\to\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/k}^{\mathrm{an}}\longrightarrow\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}}\xrightarrow{\nabla}{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}}\otimes_{\nu^{-1}\mathcal{O}_{X}}{\mathrm{st}}_{1}(\nu^{-1}(\mathbb{L}_{X/k}^{\mathrm{an}}))\xrightarrow{\nabla}\cdots
dR^Xproe´t/Xanν1𝒪Xstd(ν1(Ld𝕃X/kan))0\displaystyle\cdots\xrightarrow{\nabla}\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}}\otimes_{\nu^{-1}\mathcal{O}_{X}}{\mathrm{st}}_{d}(\nu^{-1}(\mathrm{L}\wedge^{d}\mathbb{L}_{X/k}^{\mathrm{an}}))\to 0

is strict exact.

Note that as X/kX/k is assumed to be local complete intersection, these wedge powers of the analytic cotangent complex are (locally) perfect complexes, hence the completed tensor is the same as just tensor.

Proof.

Since both of unfolding and taking Gri\operatorname{Gr}^{i} commute with taking limit, the above follows from unfolding Corollary 4.13, and the fact that the completed tensor in Corollary 4.13 is the same as tensor for local complete intersections X/kX/k.

When XX is smooth over kk, everything in sight (on the basis of affinoid perfectoids in Xproe´tωX_{{\mathrm{pro\acute{e}t}}}^{\omega}) are supported cohomologically in degree 0 with filtrations given by submodules because of Theorem 4.9Corollary 4.10, and Proposition 4.15, the strict exact Katz–Oda filtration gives what we want. ∎

4.4. Comparing with Scholze’s de Rham period sheaf

In this subsection we show that when XX is smooth, the de Rham sheaf dR^Xproe´t/Xan\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}} defined above is related to Scholze’s de Rham period sheaf 𝒪𝔹dR+\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}. We refer readers to [Sch16, part (3)] for the its definition. Following notation of loc. cit., let Spa(Ri,Ri+)\operatorname{Spa}(R_{i},R_{i}^{+}) be an affinoid perfectoid in Xproe´tX_{{\mathrm{pro\acute{e}t}}} with Spa(R0,R)+)\operatorname{Spa}(R_{0},R_{)}^{+}) an affinoid open in XX. Then for any ii, we have maps

Ri+dRR+/Ri+an and 𝔸inf(R+)=dRR+/W(κ)andRR+/Ri+an,R_{i}^{+}\rightarrow{\mathrm{dR}}_{R^{+}/R_{i}^{+}}^{\mathrm{an}}\text{ and }\mathbb{A}_{inf}(R^{+})={\mathrm{dR}}_{R^{+}/W(\kappa)}^{\mathrm{an}}\rightarrow{\mathrm{dR}}_{R^{+}/R_{i}^{+}}^{\mathrm{an}},

which is compatible with maps to R+R^{+}, here κ\kappa denotes the residue field of kk. The equality above is deduced from Theorem 3.4 (1). Therefore we get an induced map

Ri+^W(κ)𝔸inf(R+)dRR+/Ri+andR^R/Rian.R_{i}^{+}\hat{\otimes}_{W(\kappa)}\mathbb{A}_{inf}(R^{+})\rightarrow{\mathrm{dR}}_{R^{+}/R_{i}^{+}}^{\mathrm{an}}\rightarrow\widehat{\mathrm{dR}}_{R/R_{i}}^{\mathrm{an}}.

Taking the composition map above, inverting pp and completing along the kernel of the surjection onto RR (note that dR^R/Rian\widehat{\mathrm{dR}}_{R/R_{i}}^{\mathrm{an}} lives in cohomological degree 0 by Corollary 4.10 (2) and is already complete with respect to this filtration), we get a natural arrow:

((Ri+^W(κ)𝔸inf(R+))[1/p])dR^R/RiandR^R/R0an,\left((R_{i}^{+}\hat{\otimes}_{W(\kappa)}\mathbb{A}_{inf}(R^{+}))[1/p]\right)^{\wedge}\longrightarrow\widehat{\mathrm{dR}}_{R/R_{i}}^{\mathrm{an}}\cong\widehat{\mathrm{dR}}_{R/R_{0}}^{\mathrm{an}},

here we apply Corollary 4.13 to (R0,R0+)(Ri,Ri+)(R,R+)(R_{0},R_{0}^{+})\to(R_{i},R_{i}^{+})\to(R,R^{+}) to see the filtered isomorphism above. This arrow is compatible with index ii, hence after taking colimit, we get the following map of sheaves on Xproe´tωX_{{\mathrm{pro\acute{e}t}}}^{\omega} (see the discussion before Proposition 4.15 for the meaning of Xproe´tωX_{{\mathrm{pro\acute{e}t}}}^{\omega}):

f:𝒪𝔹dR+Xproe´tωdR^Xproe´t/Xan,f\colon\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}\mid_{X_{{\mathrm{pro\acute{e}t}}}^{\omega}}\longrightarrow\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}},

which is compatible with maps to 𝒪^Xproe´t\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}} and maps from dR^Xproe´t/kan𝔹dR+\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/k}^{\mathrm{an}}\simeq\mathbb{B}_{{\mathrm{dR}}}^{+}.

Theorem 4.21.

The map ff above induces a filtered isomorphism of sheaves on Xproe´tωX_{{\mathrm{pro\acute{e}t}}}^{\omega}. Hence we get that 𝒪𝔹dR+\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+} is the 0-th cohomology sheaf of the hypersheaf dR^Xproe´t/Xan\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}} on Xproe´tX_{{\mathrm{pro\acute{e}t}}}.

Similar to Proposition 4.18, under the equivalence 𝒟(X,k)Shhyp(X,k)\mathscr{D}(X,k)\cong{\mathrm{Sh}}^{\mathrm{hyp}}(X,k) and its filtered version (c.f. Remark 2.1), this Theorem implies that the derived de Rham complex dR^Xproe´t/Xan\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}} is represented by the ordinary sheaf 𝒪𝔹dR+\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}.

Proof.

The second sentence follows from the first sentence, due to the same argument in the proof of the second statement of Proposition 4.18. So it suffices to show the first statement.

On both sheaves, there are natural filtrations: on 𝒪𝔹dR+\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+} we have the ker(θ)\ker(\theta)-adic filtration where θ:𝒪𝔹dR+𝒪^Xproe´t\theta\colon\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}\to\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}} and on dR^Xproe´t/Xan\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}} we have the Hodge filtration with the first Hodge filtration being kernel of dR^Xproe´t/Xan𝒪^Xproe´t\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}}\twoheadrightarrow\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}}. Since ff is compatible with maps to 𝒪^Xproe´t\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}} and the Hodge filtration is multiplicative, it suffices to show that ff induces an isomorphism on their graded pieces. Now locally on Xproe´tωX_{{\mathrm{pro\acute{e}t}}}^{\omega}, we have that Gr(𝒪𝔹dR+)Sym𝒪^Xproe´t(Gr1𝒪𝔹dR+)\operatorname{Gr}^{*}(\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+})\cong{\mathrm{Sym}}^{*}_{\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}}}(\operatorname{Gr}^{1}\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}) by [Sch13, Proposition 6.10] and similarly Gr(dR^Xproe´t/Xan)Sym𝒪^Xproe´t(Gr1dR^Xproe´t/Xan)\operatorname{Gr}^{*}(\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}})\cong{\mathrm{Sym}}^{*}_{\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}}}(\operatorname{Gr}^{1}\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}}) by Theorem 4.9 (note that in characteristic 0 divided powers are the same as symmetric powers). Therefore we have reduced ourselves to showing that ff induces an isomorphism on the first graded pieces. Their first graded pieces admits a common submodule given by the first graded pieces of dR^Xproe´t/kan𝔹dR+\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/k}^{\mathrm{an}}\simeq\mathbb{B}_{{\mathrm{dR}}}^{+} which is 𝒪^Xproe´t(1)\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}}(1).

Now we get the following diagram:

𝒪^Xproe´t(1)\textstyle{\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}}(1)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}Gr1𝒪𝔹dR+\textstyle{\operatorname{Gr}^{1}\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gr1f\scriptstyle{\operatorname{Gr}^{1}f}𝒪^Xproe´t𝒪XΩXan\textstyle{\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}}\otimes_{\mathcal{O}_{X}}\Omega^{\mathrm{an}}_{X}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}𝒪^Xproe´t(1)\textstyle{\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}}(1)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gr1dR^Xproe´t/Xan\textstyle{\operatorname{Gr}^{1}\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪^Xproe´t𝒪XΩXan\textstyle{\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}}\otimes_{\mathcal{O}_{X}}\Omega^{\mathrm{an}}_{X}}

with both rows being short exact (by [Sch13, Corollary 6.14] and Theorem 4.9 respectively) and the left vertical arrow being an isomorphism as ff is compatible with the maps from dR^Xproe´t/kan𝔹dR+\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/k}^{\mathrm{an}}\simeq\mathbb{B}_{{\mathrm{dR}}}^{+}, which is why we get the induced arrow gg. Moreover ff is linear over dR^Xproe´t/kan𝔹dR+\widehat{\mathrm{dR}}_{X_{\mathrm{pro\acute{e}t}}/k}^{\mathrm{an}}\simeq\mathbb{B}_{{\mathrm{dR}}}^{+}, which implies that gg is linear over 𝒪^Xproe´t\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}}. Therefore it suffices to show that gg induces an isomorphism.

As the statement is étale local, we may assume that X=𝕋n=Spa(kT1±1,,Tn±1,𝒪kT1±1,,Tn±1)X=\mathbb{T}^{n}=\operatorname{Spa}(k\langle T_{1}^{\pm 1},\ldots,T_{n}^{\pm 1}\rangle,\mathcal{O}_{k}\langle T_{1}^{\pm 1},\ldots,T_{n}^{\pm 1}\rangle). Denote 𝕋n\mathbb{T}^{n}_{\infty} the pro-finite-étale tower above 𝕋n\mathbb{T}^{n} given by adjoining pp-power roots of the coordinates TiT_{i}. We have the following diagram

pTi±1,Si1/p=pTi±1^ppSi1/p\textstyle{\mathbb{Z}_{p}\langle T_{i}^{\pm 1},S_{i}^{1/p^{\infty}}\rangle=\mathbb{Z}_{p}\langle T_{i}^{\pm 1}\rangle\hat{\otimes}_{\mathbb{Z}_{p}}\mathbb{Z}_{p}\langle S_{i}^{1/p^{\infty}}\rangle\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}β\scriptstyle{\beta}𝒪𝔹dR+𝕋n\textstyle{\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}\mid_{\mathbb{T}^{n}_{\infty}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}pSi±1/p[[Xi]]\textstyle{\mathbb{Q}_{p}\langle S_{i}^{\pm 1/p^{\infty}}\rangle[\![X_{i}]\!]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γ\scriptstyle{\gamma}dR^Xproe´t/Xan𝕋n.\textstyle{\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{\mathrm{pro\acute{e}t}}/X}\mid_{\mathbb{T}^{n}_{\infty}}.}

Here the arrow β\beta is given by sending TiT_{i} to Xi+SiX_{i}+S_{i}, and SiS_{i} is sent to 1[Ti]1\otimes[T_{i}^{\flat}] under α\alpha. The element α(TiSi)\alpha(T_{i}-S_{i}) is uiFil1𝒪𝔹dR+u_{i}\in\operatorname{Fil}^{1}\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+} whose image in 𝒪^Xproe´t𝒪XΩXan\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}}\otimes_{\mathcal{O}_{X}}\Omega^{\mathrm{an}}_{X} is 1dTi1\otimes dT_{i}, see the discussion before [Sch13, Proposition 6.10]. On the other hand, the element β(TiSi)\beta(T_{i}-S_{i}) is XiX_{i}, and the image of γ(Xi)\gamma(X_{i}) in 𝒪^Xproe´t𝒪XΩXan\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}}\otimes_{\mathcal{O}_{X}}\Omega^{\mathrm{an}}_{X} is also 1dTi1\otimes dT_{i} by Example 4.7Example 3.6 and Example 3.7. Therefore we get that g(1dTi)=1dTig(1\otimes dT_{i})=1\otimes dT_{i}, since gg is linear over 𝒪^Xproe´t\hat{\mathcal{O}}_{X_{\mathrm{pro\acute{e}t}}} and ΩXan\Omega^{\mathrm{an}}_{X} is generated by dTidT_{i}’s, we see that gg is an isomorphism, hence finishes the proof. ∎

Remark 4.22.

In the process of the proof above, we also see that under the identification in Proposition 4.18 and Theorem 4.21, the Poincaré sequence obtained in Theorem 4.20 and the one in Scholze’s paper [Sch13, Corollary 6.13] matches, c.f. proof of the second statement of Theorem 3.21.

Also the Faltings’ extension (see [Sch13, Corollary 6.14] and Theorem 4.9), being the first graded pieces of 𝒪𝔹dR+0(dR^Xproe´t/Xan)\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+}\cong\mathscr{H}^{0}(\widehat{\mathrm{dR}}_{X_{{\mathrm{pro\acute{e}t}}}/X}^{\mathrm{an}}), is matched up. In some sense, our proof above reduces to identifying the Faltings’ extension, and this is a well-known fact to experts. In fact, this project was initiated after Bhargav Bhatt explained to us how to get Faltings’ extension from the analytic cotangent complex 𝕃Xproe´t/Xan\mathbb{L}^{\mathrm{an}}_{X_{\mathrm{pro\acute{e}t}}/X}.

4.5. An example

In this complementary subsection, we would like to compute the Hodge-completed analytic derived de Rham complex of a perfectoid algebra over a 0-dimensional kk-affinoid algebra. Surprisingly, the underlying algebra (forgetting its filtration) one get always lives in cohomological degree 0, which leads us to the 4.25.

Without loss of generality, let (K,K+)(K,K^{+}) be a perfectoid field over kk, containing all pp-power roots of unity, and let AA be an Artinian local finite kk-algebra with residue field being kk as well. Let (B,B+)(B,B^{+}) be a perfectoid affinoid algebra containing (K,K+)(K,K^{+}) and let ABA\to B be a morphism of kk-algebras. Since perfectoid affinoid algebras are reduced, we get a sequence of maps kAkBk\to A\to k\to B.

By the above sequence, we get natural filtered kk-linear maps:

dR^B/kandR^B/AandR^B/kan and dR^k/AandR^B/Aan.\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/k}\longrightarrow\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/A}\longrightarrow\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/k}\text{ and }\widehat{\mathrm{dR}}^{\mathrm{an}}_{k/A}\longrightarrow\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/A}.

This induces a filtered map:

dR^B/kankdR^k/AandR^B/Aan\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/k}\otimes_{k}\widehat{\mathrm{dR}}^{\mathrm{an}}_{k/A}\longrightarrow\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/A}

where the filtration on the source comes from the symmetric monoidal structure on DF(k){\mathrm{DF}}(k). Since this map is compatible with the filtration and the target is complete with respect to its filtration, we get an induced map:

dR^B/kan^kdR^k/AandR^B/Aan.\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/k}\hat{\otimes}_{k}\widehat{\mathrm{dR}}^{\mathrm{an}}_{k/A}\longrightarrow\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/A}.
Proposition 4.23.

The map dR^B/kan^kdR^k/AandR^B/Aan\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/k}\hat{\otimes}_{k}\widehat{\mathrm{dR}}^{\mathrm{an}}_{k/A}\longrightarrow\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/A} above is a filtered isomorphism.

Proof.

Since both are complete with respect to their filtrations, it suffices to show the map induces an isomorphism on the graded pieces. The graded algebra of both sides are the symmetric algebra (over BB) on their first graded pieces, hence it suffices to check Gr1(dR^B/kan^kdR^k/Aan)Gr1(dR^B/Aan)\operatorname{Gr}^{1}(\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/k}\hat{\otimes}_{k}\widehat{\mathrm{dR}}^{\mathrm{an}}_{k/A})\longrightarrow\operatorname{Gr}^{1}(\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/A}) being an isomorphism. This follows from the decomposition of analytic cotangent complexes

𝕃B/Aan𝕃B/kan(𝕃A/kanAB)\mathbb{L}_{B/A}^{\mathrm{an}}\cong\mathbb{L}_{B/k}^{\mathrm{an}}\oplus(\mathbb{L}_{A/k}^{\mathrm{an}}\otimes_{A}B)

which is deduced from contemplating the sequence kAkBk\to A\to k\to B. ∎

We know that dR^B/kan𝔹dR+(B)\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/k}\cong\mathbb{B}_{{\mathrm{dR}}}^{+}(B), a result of Bhatt tells us the underlying algebra of dR^k/AanA\widehat{\mathrm{dR}}^{\mathrm{an}}_{k/A}\cong A, explained in below. Since AkA\to k is a surjection, the analytic cotangent complex agrees with the classical cotangent complex, hence we have a filtered isomorphism

dR^k/AandR^k/A.\widehat{\mathrm{dR}}^{\mathrm{an}}_{k/A}\longrightarrow\widehat{\mathrm{dR}}_{k/A}.

Now [Bha12a, Theorem 4.10] implies the underlying algebra dR^k/A\widehat{\mathrm{dR}}_{k/A} is isomorphic to the completion of AA along the surjection AkA\to k. Since AA is an Artinian local ring, this completion is simply AA itself. Therefore we get a map of the underlying algebras:

𝔹dR+(B)kAdR^B/kan^kdR^k/Aan\mathbb{B}_{{\mathrm{dR}}}^{+}(B)\otimes_{k}A\longrightarrow\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/k}\hat{\otimes}_{k}\widehat{\mathrm{dR}}^{\mathrm{an}}_{k/A}
Proposition 4.24.

The map 𝔹dR+(B)kAdR^B/kan^kdR^k/Aan\mathbb{B}_{{\mathrm{dR}}}^{+}(B)\otimes_{k}A\longrightarrow\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/k}\hat{\otimes}_{k}\widehat{\mathrm{dR}}^{\mathrm{an}}_{k/A} above is an isomorphism. Consequently we have an isomorphism

𝔹dR+(B)kAdR^B/Aan.\mathbb{B}_{{\mathrm{dR}}}^{+}(B)\otimes_{k}A\cong\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/A}.
Proof.

By definition, we have

dR^B/kan^kdR^k/Aanlimnlimm𝔹dR+(B)/(ξ)nkdRk/A/Film,\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/k}\hat{\otimes}_{k}\widehat{\mathrm{dR}}^{\mathrm{an}}_{k/A}\cong\lim_{n}\lim_{m}\mathbb{B}_{{\mathrm{dR}}}^{+}(B)/(\xi)^{n}\otimes_{k}{\mathrm{dR}}_{k/A}/\operatorname{Fil}^{m},

here we have used the (filtered) identification dR^k/AandR^k/A\widehat{\mathrm{dR}}^{\mathrm{an}}_{k/A}\cong\widehat{\mathrm{dR}}_{k/A} spelled out before this Proposition.

We claim that for any given nn, we have an isomorphism

𝔹dR+(B)/(ξ)nkAlimm𝔹dR+(B)/(ξ)nkdRk/A/Film.\mathbb{B}_{{\mathrm{dR}}}^{+}(B)/(\xi)^{n}\otimes_{k}A\cong\lim_{m}\mathbb{B}_{{\mathrm{dR}}}^{+}(B)/(\xi)^{n}\otimes_{k}{\mathrm{dR}}_{k/A}/\operatorname{Fil}^{m}.

Indeed for each ii\in\mathbb{Z}, we have the following short exact sequence:

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}R1limm(𝔹dR+(B)/(ξ)nkHi1(dRk/A/Film))\textstyle{\mathrm{R}^{1}\lim_{m}\left(\mathbb{B}_{{\mathrm{dR}}}^{+}(B)/(\xi)^{n}\otimes_{k}\mathrm{H}^{i-1}({\mathrm{dR}}_{k/A}/\operatorname{Fil}^{m})\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hi(limm(𝔹dR+(B)/(ξ)nkdRk/A/Film))\textstyle{\mathrm{H}^{i}(\lim_{m}\left(\mathbb{B}_{{\mathrm{dR}}}^{+}(B)/(\xi)^{n}\otimes_{k}{\mathrm{dR}}_{k/A}/\operatorname{Fil}^{m}\right))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}limm(𝔹dR+(B)/(ξ)nkHi(dRk/A/Film))\textstyle{\lim_{m}\left(\mathbb{B}_{{\mathrm{dR}}}^{+}(B)/(\xi)^{n}\otimes_{k}\mathrm{H}^{i}({\mathrm{dR}}_{k/A}/\operatorname{Fil}^{m})\right)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

Since for each mm and ii, the vector space Hi1(dRk/A/Film)\mathrm{H}^{i-1}({\mathrm{dR}}_{k/A}/\operatorname{Fil}^{m}) is finite dimensional over kk, we see that the inverse system 𝔹dR+(B)/(ξ)nkHi1(dRk/A/Film)\mathbb{B}_{{\mathrm{dR}}}^{+}(B)/(\xi)^{n}\otimes_{k}\mathrm{H}^{i-1}({\mathrm{dR}}_{k/A}/\operatorname{Fil}^{m}) satisfies Mittag-Leffler condition, hence the R1lim\mathrm{R}^{1}\lim term vanishes. By [Bha12a, Theorem 4.10], we have that the inverse system {Hi(dRk/A/Film)}m\{\mathrm{H}^{i}({\mathrm{dR}}_{k/A}/\operatorname{Fil}^{m})\}_{m} is pro-isomorphic to 0 if i0i\not=0 and is pro-isomorphic to AA (since AA is finite dimensional over kk) if i=0i=0, therefore the above short exact sequence becomes

Hi(limm(𝔹dR+(B)/(ξ)nkdRk/A/Film)){0;i0𝔹dR+(B)/(ξ)nkA;i=0.\mathrm{H}^{i}(\lim_{m}\left(\mathbb{B}_{{\mathrm{dR}}}^{+}(B)/(\xi)^{n}\otimes_{k}{\mathrm{dR}}_{k/A}/\operatorname{Fil}^{m}\right))\cong\begin{cases}0;~{}i\not=0\\ \mathbb{B}_{{\mathrm{dR}}}^{+}(B)/(\xi)^{n}\otimes_{k}A;~{}i=0.\end{cases}

This gives us the claim above.

Now we have

dR^B/kan^kdR^k/Aanlimn(limm𝔹dR+(B)/(ξ)nkdRk/A/Film)limn(𝔹dR+(B)/(ξ)nkA)𝔹dR+(B)kA\widehat{\mathrm{dR}}^{\mathrm{an}}_{B/k}\hat{\otimes}_{k}\widehat{\mathrm{dR}}^{\mathrm{an}}_{k/A}\cong\lim_{n}(\lim_{m}\mathbb{B}_{{\mathrm{dR}}}^{+}(B)/(\xi)^{n}\otimes_{k}{\mathrm{dR}}_{k/A}/\operatorname{Fil}^{m})\cong\lim_{n}(\mathbb{B}_{{\mathrm{dR}}}^{+}(B)/(\xi)^{n}\otimes_{k}A)\cong\mathbb{B}_{{\mathrm{dR}}}^{+}(B)\otimes_{k}A

as desired, where the last identification follows from the fact that AA is finite over kk. ∎

If one contemplates the example A=k[ϵ]/(ϵ2)A=k[\epsilon]/(\epsilon^{2}), one sees that dRB/Aan/Fili{\mathrm{dR}}^{\mathrm{an}}_{B/A}/\operatorname{Fil}^{i} does not live in cohomological degree 0 alone for any i2i\geq 2.

As a consequence of the above Proposition, for the X=Spa(A)X=\mathrm{Spa}(A) we have an equality of presheaves on Xproe´tωX_{{\mathrm{pro\acute{e}t}}}^{\omega}:

dR^Xproe´t/Xan𝔹dR+kν1𝒪X,\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{\mathrm{pro\acute{e}t}}/X}\cong\mathbb{B}_{{\mathrm{dR}}}^{+}\otimes_{k}\nu^{-1}\mathcal{O}_{X},

in particular the underlying algebra of dR^Xproe´t/Xan\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{\mathrm{pro\acute{e}t}}/X} pro-étale locally lives in cohomological degree 0. Motivated by this computation and results in [Bha12a], we end this article by asking the following:

Question 4.25.

In what generality shall we expect dR^Xproe´t/XanXproe´tω\widehat{\mathrm{dR}}^{\mathrm{an}}_{X_{\mathrm{pro\acute{e}t}}/X}\mid_{X_{{\mathrm{pro\acute{e}t}}}^{\omega}} to live in cohomological degree 0? And when that happens, can we re-interpret the underlying algebra via some construction similar to Scholze’s 𝒪𝔹dR+\mathcal{O}\mathbb{B}_{{\mathrm{dR}}}^{+} as in [Sch13] and [Sch16]?

5. Appendix: local complete intersections in rigid geometry

In this appendix we make a primitive discussion of local complete intersection morphisms in rigid geometry. We remark that the results recorded here hold verbatim with kk being a general complete non-Archimedean field.

In order to talk about local complete intersections, we need to understand how being of finite Tor dimension888In classical literature such as [Avr99] this corresponds to the notion of having finite flat dimension. behaves under base change in rigid geometry.

Lemma 5.1.

Let AA and BB be two affinoid kk-algebras, and ABA\rightarrow B a morphism of Tor dimension mm. Let PAT1,,TnBP\coloneqq A\langle T_{1},\ldots,T_{n}\rangle\twoheadrightarrow B be a surjection, then we have

TordimP(B)m+n.\mathrm{Tor}\dim_{P}(B)\leq m+n.

The following proof is suggested to us by Johan de Jong.

Proof.

Choose a resolution of BB by finite free PP-modules

diMidi1Mi1d0M0B.\ldots\xrightarrow{d_{i}}M_{i}\xrightarrow{d_{i-1}}M_{i-1}\ldots\xrightarrow{d_{0}}M_{0}\twoheadrightarrow B.

Since PP is flat over AA, we see that MCoker(dm)M\coloneqq\mathrm{Coker}(d_{m}) is flat over AA as ABA\to B is assumed to be of Tor dimension mm [Sta20, Tag 0653]. Moreover MM is finitely generated over PP since PP is Noetherian. Now we use [Li19, Lemma 6.3] to see that MM admits a projective resolution over PP of length nn. Therefore we get that BB has a projective resolution over PP of length m+nm+n. ∎

Lemma 5.2.

Let AA and BB be two affinoid kk-algebras, and ABA\rightarrow B a morphism of finite Tor dimension. Let CC be any affinoid AA-algebra, then the base change (in the realm of rigid geometry) CB^ACC\to B\hat{\otimes}_{A}C is also of finite Tor dimension.

Proof.

Choose a surjection AT1,,TnBA\langle T_{1},\ldots,T_{n}\rangle\twoheadrightarrow B, which again is of finite Tor dimension by Lemma 5.1. Then we have a factorization:

CCT1,,TnBAT1,,TnCT1,,TnB^AC.C\to C\langle T_{1},\ldots,T_{n}\rangle\to B\otimes_{A\langle T_{1},\ldots,T_{n}\rangle}C\langle T_{1},\ldots,T_{n}\rangle\cong B\hat{\otimes}_{A}C.

Since the first arrow is flat and the second arrow, being base change of an arrow of finite Tor dimension, is of finite Tor dimension, we conclude that the composition is of finite Tor dimension [Sta20, Tag 066J]. ∎

Proposition 5.3.

Let ABA\to B a morphism of kk-affinoid algebras. Then the following are equivalent:

  1. (1)

    any surjection AT1,,TnBA\langle T_{1},\ldots,T_{n}\rangle\twoheadrightarrow B is a local complete intersection;

  2. (2)

    there exists a surjection AT1,,TnBA\langle T_{1},\ldots,T_{n}\rangle\twoheadrightarrow B which is a local complete intersection;

  3. (3)

    ABA\to B is of finite Tor dimension and the analytic cotangent complex 𝕃B/Aan\mathbb{L}_{B/A}^{\mathrm{an}} is a perfect BB-complex.

Moreover, any of these three equivalent conditions implies that 𝕃B/Aan\mathbb{L}_{B/A}^{\mathrm{an}} is a perfect complex with Tor amplitude in [1,0][-1,0].

Proof.

It is easy to see that (1) implies (2).

To see (2) implies (3), first of all AT1,,TnBA\langle T_{1},\ldots,T_{n}\rangle\twoheadrightarrow B is a local complete intersection implies that it is of finite Tor dimension. Since AAT1,,TnA\to A\langle T_{1},\ldots,T_{n}\rangle is flat, we see that ABA\to B is also finite Tor dimension by [Sta20, Tag 0653]. Next we look at the triangle AAT1,,TnBA\to A\langle T_{1},\ldots,T_{n}\rangle\to B, which gives rise to a triangle of analytic cotangent complexes:

𝕃AT1,,Tn/AanAB𝕃B/Aan𝕃B/AT1,,Tnan.\mathbb{L}^{\mathrm{an}}_{A\langle T_{1},\ldots,T_{n}\rangle/A}\otimes_{A}B\to\mathbb{L}^{\mathrm{an}}_{B/A}\to\mathbb{L}^{\mathrm{an}}_{B/A\langle T_{1},\ldots,T_{n}\rangle}.

Now Theorem 4.2 (3) gives that the first term is a perfect complex with Tor amplitude in [0,0][0,0], while condition (2) and Theorem 4.2.(4) implies that the third term is a perfect complex with Tor amplitude in [1,1][-1,-1], hence we see that (2) implies (3) and gives the last sentence as well.

Lastly we need to show that (3) implies (1). To that end we apply Avramov’s solution of Quillen’s conjecture [Avr99]. As ABA\to B is of finite Tor dimension, we see that any surjection AT1,,TnBA\langle T_{1},\ldots,T_{n}\rangle\twoheadrightarrow B has finite Tor dimension by Lemma 5.1. The previous paragraph shows that 𝕃B/Aan\mathbb{L}_{B/A}^{\mathrm{an}} being a perfect complex is equivalent to the classical cotangent complex 𝕃B/AT1,,Tn\mathbb{L}_{B/A\langle T_{1},\ldots,T_{n}\rangle} being a perfect complex. Now we use Avramov’s result [Avr99, Theorem 1.4] to conclude that AT1,,TnBA\langle T_{1},\ldots,T_{n}\rangle\twoheadrightarrow B is a local complete intersection. ∎

Definition 5.4.

Let ABA\to B be a morphism of kk-affinoid algebras. The morphism ABA\to B of kk-affinoid algebras is called a local complete intersection if one of the three equivalent conditions in Proposition 5.3 is satisfied.

Let YXY\to X be a morphism of rigid spaces over kk. Then this morphism is called a local complete intersection if for any pair of affinoid domains UU and VV in XX and YY, such that the image of VV is contained in UU, the induced map of kk-affinoid algebras is a local complete intersection.

We leave it as an exercise (using Theorem 4.2) that a morphism being a local complete intersection may be checked locally on the source and target. We caution readers that there is a notion of local complete intersection morphism between Noetherian rings, while the notion we define here should (clearly) only be considered in the situation of rigid geometry. These two notions agree when the morphism considered is a surjection. We hope this slight abuse of notion will not cause any confusion. But as a sanity check, let us show here that this notion matches the corresponding notion in classical algebraic geometry under rigid-analytification. The following is suggested to us by David Hansen.

Proposition 5.5.

Let f:XYf\colon X\to Y be a morphism of schemes locally of finite type over a kk-affinoid algebra AA with rigid-analytification fan:XanYanf^{\mathrm{an}}\colon X^{\mathrm{an}}\to Y^{\mathrm{an}}. Then ff is a local complete intersection (in the classical sense) if and only if fanf^{\mathrm{an}} is a local complete intersection (in the sense of Definition 5.4).

Proof.

We first reduce to the case where both of XX and YY are affine. Then we may check this after fiber product YY with an affine space so that ff is a closed embedding. In this situation, we have identification of ringed sites XanX×YYanX^{\mathrm{an}}\cong X\times_{Y}Y^{\mathrm{an}} and an identification of cotangent complexes:

ι𝕃X/Y𝕃Xan/Yanan,\iota^{*}\mathbb{L}_{X/Y}\simeq\mathbb{L}^{\mathrm{an}}_{X^{\mathrm{an}}/Y^{\mathrm{an}}},

where ι:XanX\iota\colon X^{\mathrm{an}}\to X is the natural map of ringed sites.

Now we use the fact that classical Tate points on XanX^{\mathrm{an}} is in bijection with closed points on XX, and for any such point xx, the map ι:𝒪X,x𝒪Xan,x\iota^{\sharp}\colon\mathcal{O}_{X,x}\to\mathcal{O}_{X^{\mathrm{an}},x} of local rings is faithfully flat. Therefore we can check 𝕃X/Y\mathbb{L}_{X/Y} being perfect by pulling back along ι\iota, hence 𝕃X/Y\mathbb{L}_{X/Y} is perfect if and only if 𝕃Xan/Yanan\mathbb{L}^{\mathrm{an}}_{X^{\mathrm{an}}/Y^{\mathrm{an}}} is perfect, and this finishes the proof. ∎

Next we turn to understand the localization of analytic cotangent complexes for a local complete intersection morphism.

Let us introduce some notions:

Definition 5.6.

Let ABA\to B be a morphism of kk-affinoid algebras. Let 𝔪B\mathfrak{m}\subset B be a maximal ideal, the embedded dimension of B/AB/A at 𝔪\mathfrak{m} is defined to be the following

dimB/A,𝔪dimκ(𝔪)(ΩB/AanBB/𝔪).\dim_{B/A,\mathfrak{m}}\coloneqq\dim_{\kappa(\mathfrak{m})}(\Omega^{\mathrm{an}}_{B/A}\otimes_{B}B/\mathfrak{m}).

Let 𝔫\mathfrak{n} be the preimage of 𝔪\mathfrak{m} in AA (which is also a maximal ideal), we define the embedded codimension of B/AB/A at 𝔪\mathfrak{m} to be

dimB/A,𝔪+dim(A𝔫)dim(B𝔪).\dim_{B/A,\mathfrak{m}}+\dim(A_{\mathfrak{n}})-\dim(B_{\mathfrak{m}}).

The embedded codimension of B/AB/A is the supremum of that at all maximal ideals 𝔪B\mathfrak{m}\subset B.

Proposition 5.7.

Let ABA\to B be a local complete intersection morphism of kk-affinoid algebras. Then at any maximal ideal 𝔪B\mathfrak{m}\subset B, there is a presentation of the analytic cotangent complex

𝕃B/AanBB𝔪[B𝔪c(𝔪)B𝔪d(𝔪)]\mathbb{L}^{\mathrm{an}}_{B/A}\otimes_{B}B_{\mathfrak{m}}\simeq\left[B_{\mathfrak{m}}^{\oplus c(\mathfrak{m})}\to B_{\mathfrak{m}}^{\oplus d(\mathfrak{m})}\right]

where c(𝔪)c(\mathfrak{m}) is the embedded codimension of B/AB/A at 𝔪\mathfrak{m} and d(𝔪)d(\mathfrak{m}) is the embedded dimension of B/AB/A at 𝔪\mathfrak{m}. Here B𝔪d(𝔪)B_{\mathfrak{m}}^{\oplus d(\mathfrak{m})} is put in degree 0.

In particular the Tor amplitude of LSymi𝕃B/Aan\mathrm{L}{\mathrm{Sym}}^{i}\mathbb{L}^{\mathrm{an}}_{B/A} is always in [min{c,i},0][-\min\{c,i\},0] where cc is the embedded codimension of B/AB/A.

Proof.

We may always replace BB by a rational domain containing the point 𝔪\mathfrak{m} (viewed as a classical Tate point on the associated adic space), so we can assume there are power bounded elements f1,,fd(𝔪)f_{1},\ldots,f_{d(\mathfrak{m})} whose differentials generate the stalk of ΩB/Aan\Omega^{\mathrm{an}}_{B/A} at 𝔪\mathfrak{m}. Thus we have a map AAT1,,Td(𝔪)BA^{\prime}\coloneqq A\langle T_{1},\ldots,T_{d(\mathfrak{m})}\rangle\to B which is unramified at 𝔪\mathfrak{m}, see [Hub96, Section 1.6]. By Proposition 1.6.8 of loc. cit. we can factortize the map ABA^{\prime}\to B as AC𝑔BA^{\prime}\xrightarrow{h}C\xrightarrow{g}B where hh is étale and gg is surjective.

One checks that the étaleness of hh guarantees that the surjection C𝑔BC\xrightarrow{g}B has finite Tor dimension. Moreover Theorem 4.2 implies that 𝕃B/C\mathbb{L}_{B/C} is a perfect complex because of the triangle

𝕃C/AanCB𝕃B/Aan𝕃B/C.\mathbb{L}^{\mathrm{an}}_{C/A}\otimes_{C}B\rightarrow\mathbb{L}^{\mathrm{an}}_{B/A}\rightarrow\mathbb{L}_{B/C}.

Hence CBC\to B is a surjective local complete intersection. Hence the kernel of CBC\to B around 𝔪\mathfrak{m} is generated by a length c(𝔪)c(\mathfrak{m}) regular sequence. This in turn implies that 𝕃B/CBB𝔪B𝔪c(𝔪)[1]\mathbb{L}_{B/C}\otimes_{B}B_{\mathfrak{m}}\simeq B_{\mathfrak{m}}^{\oplus c(\mathfrak{m})}[1], which together with the triangle above gives the local presentation we want in the statement.

The statement concerning Tor amplitude can be checked at every maximal ideal which, by our presentation, follows from the formula LSymi(C[1])Li(C)[i]\mathrm{L}{\mathrm{Sym}}^{i}(C[1])\simeq\mathrm{L}\wedge^{i}(C)[i], see [Ill71, V.4.3.4]. ∎

References

  • [AI13] Fabrizio Andreatta and Adrian Iovita, Comparison isomorphisms for smooth formal schemes, J. Inst. Math. Jussieu 12 (2013), no. 1, 77–151. MR 3001736
  • [Ant20] Jorge António, Spreading out the Hodge filtration in the non-archimedean geometry, 2020, arXiv:2005.00774, available at https://arxiv.org/abs/2005.00774.
  • [Avr99] Luchezar L. Avramov, Locally complete intersection homomorphisms and a conjecture of Quillen on the vanishing of cotangent homology, Ann. of Math. (2) 150 (1999), no. 2, 455–487. MR 1726700
  • [Bei12] A. Beilinson, pp-adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 25 (2012), no. 3, 715–738. MR 2904571
  • [Ber74] Pierre Berthelot, Cohomologie cristalline des schémas de caractéristique p>0p>0, Lecture Notes in Mathematics, Vol. 407, Springer-Verlag, Berlin-New York, 1974. MR 0384804
  • [Bha12a] Bhargav Bhatt, Completions and derived de rham cohomology, 2012, arXiv:1207.6193, available at https://arxiv.org/abs/1207.6193.
  • [Bha12b] by same author, p-adic derived de rham cohomology, 2012, arXiv:1204.6560, available at https://arxiv.org/abs/1204.6560.
  • [BMS19] Bhargav Bhatt, Matthew Morrow, and Peter Scholze, Topological Hochschild homology and integral pp-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199–310. MR 3949030
  • [Bri08] Olivier Brinon, Représentations pp-adiques cristallines et de de Rham dans le cas relatif, Mém. Soc. Math. Fr. (N.S.) (2008), no. 112, vi+159. MR 2484979
  • [Col12] Pierre Colmez, Une construction de 𝔹dR+\mathbb{B}_{\rm dR}^{+}, Rend. Semin. Mat. Univ. Padova 128 (2012), 109–130 (2013). MR 3076833
  • [Fal89] Gerd Faltings, Crystalline cohomology and pp-adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 25–80. MR 1463696
  • [Fon94] Jean-Marc Fontaine, Le corps des périodes pp-adiques, no. 223, 1994, With an appendix by Pierre Colmez, Périodes pp-adiques (Bures-sur-Yvette, 1988), pp. 59–111. MR 1293971
  • [FvdP04] Jean Fresnel and Marius van der Put, Rigid analytic geometry and its applications, Progress in Mathematics, vol. 218, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2014891
  • [GR03] Ofer Gabber and Lorenzo Ramero, Almost ring theory, Lecture Notes in Mathematics, vol. 1800, Springer-Verlag, Berlin, 2003. MR 2004652
  • [Guo] Haoyang Guo, Crystalline cohomology of rigid analytic spaces, in preparation.
  • [Hub96] Roland Huber, Étale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30, Friedr. Vieweg & Sohn, Braunschweig, 1996. MR 1734903
  • [Ill71] Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971. MR 0491680
  • [Ill72] by same author, Complexe cotangent et déformations. II, Lecture Notes in Mathematics, Vol. 283, Springer-Verlag, Berlin-New York, 1972. MR 0491681
  • [KO68] Nicholas M. Katz and Tadao Oda, On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ. 8 (1968), 199–213. MR 237510
  • [Li19] Shizhang Li, On rigid varieties with projective reduction, J. Algebraic Geom. (2019), published electronically at https://doi.org/10.1090/jag/740.
  • [Lur17] Jacob Lurie, Higher algebra.
  • [Lur18] by same author, Spectral algebraic geometry.
  • [Sch12] Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313. MR 3090258
  • [Sch13] by same author, pp-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi 1 (2013), e1, 77. MR 3090230
  • [Sch16] by same author, pp-adic Hodge theory for rigid-analytic varieties—corrigendum [MR3090230], Forum Math. Pi 4 (2016), e6, 4. MR 3535697
  • [Sta20] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu, 2020.
  • [TT19] Fucheng Tan and Jilong Tong, Crystalline comparison isomorphisms in pp-adic Hodge theory: the absolutely unramified case, Algebra Number Theory 13 (2019), no. 7, 1509–1581. MR 4009670