This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

Performance Bounds for Near-Field Localization with Widely-Spaced Multi-Subarray
mmWave/THz MIMO

Songjie Yang, Xinyi Chen, Yue Xiu, Wanting Lyu,
Zhongpei Zhang, and Chau Yuen
Songjie Yang, Xinyi Chen, Yue Xiu, Wanting Lyu, and Zhongpei Zhang are with the National Key Laboratory of Wireless Communications, University of Electronic Science and Technology of China, Chengdu 611731, China. (e-mail: [email protected];[email protected]; [email protected]; [email protected]; [email protected]). Chau Yuen is with the School of Electrical and Electronics Engineering, Nanyang Technological University (e-mail: [email protected]).
Abstract

This paper investigates the potential of near-field localization using widely-spaced multi-subarrays (WSMSs) and analyzing the corresponding angle and range Cramér-Rao bounds (CRBs). By employing the Riemann sum, closed-form CRB expressions are derived for the spherical wavefront-based WSMS (SW-WSMS). We find that the CRBs can be characterized by the angular span formed by the line connecting the array’s two ends to the target, and the different WSMSs with same angular spans but different number of subarrays have identical normalized CRBs. We provide a theoretical proof that, in certain scenarios, the CRB of WSMSs is smaller than that of uniform arrays. We further yield the closed-form CRBs for the hybrid spherical and planar wavefront-based WSMS (HSPW-WSMS), and its components can be seen as decompositions of the parameters from the CRBs for the SW-WSMS. Simulations are conducted to validate the accuracy of the derived closed-form CRBs and provide further insights into various system characteristics. Basically, this paper underscores the high resolution of utilizing WSMS for localization, reinforces the validity of adopting the HSPW assumption, and, considering its applications in communications, indicates a promising outlook for integrated sensing and communications based on HSPW-WSMSs.

Index Terms:
Widely-spaced multi-subarrays, closed-form Cramér-Rao bounds, spherical wavefront, hybrid spherical and planar wavefront.

I Introduction

The sixth generation (6G) will seamlessly integrate sensing and communication into a unified system, harnessing radio waves to perceive the physical world and create digital twins in the cyber realm. Networked sensing introduces a new realm of possibilities beyond mere communication, encompassing various applications such as device-based or device-free localization, imaging, environmental reconstruction and monitoring, as well as gesture and activity recognition. This expanded sensing capability brings forth additional performance dimensions to the International Mobile Telecommunications (IMT), including detection probability, sensing resolution, and accuracy in terms of range, velocity, and angles. The specific requirements of these dimensions may vary depending on application to application. For future localization and reconstruction applications, high sensing accuracy and resolution will be indispensable, while imaging applications will demand ultra-high resolution as the primary factor. In the context of gesture and activity recognition, the utmost priority lies in achieving optimal detection probability.

Wireless localization, the process of determining the geographical position of a mobile target or user in wireless networks, plays a vital role in numerous applications ranging from emergency services and asset tracking to location-based services. In recent years, the emergence of massive multiple input multiple output (MIMO) technology has introduced new opportunities and challenges in the field of wireless localization. The ability of massive MIMO to employ an excessive number of antennas at the base station offers the potential for significant improvements in localization accuracy, coverage, and capacity [1].

As the array aperture futher increases to overcome the high attenuation of mmWave/THz propagation, the near-field effect, which breaks the planar wavefront assumption, should be taken seriously. This makes more challenging for near-field signal processing in extremely large (XL)-arrays. However, challenges often come with opportunities; XL-arrays bring new potentials for near-field localization that is capable of sensing the range without multi-frequency pilots. In [2, 3, 4, 5], near-field localization has been investigated with different methods, showing the potential of range estimation. Although these methods are not discussing near-field localization in the context of XL-arrays, they can be applied for XL-array localization. With the XL-array depolyment, the authors in [6, 7, 8, 9, 10] have investigated how to estimate the angle and range for channel estimation. In addition, the Cramér-Rao bound (CRB) provides a lower bound on the covariance matrix of any unbiased estimator of an unknown parameter, which is useful for understanding the fundamental limits of estimation accuracy and for evaluating the performance of different estimation algorithms. In [11], the CRB was analyzed for three-dimensional near-field localization. Reference [12] explored the theoretical bounds on the accuracy of near-field localization in bi-static MIMO radar systems under the deterministic and stochastic models. Particularly, the authors in [13] comprehensively discussed the CRB for mono-/bi-static localization with phased/MIMO array in the near-field region.

On the other hand, the widely-spaced multi-subarray (WSMS) layout becomes promising for mmWave/THz array antennas [14, 15, 16, 17, 18, 19], due to 1) array scalability and flexity, 2) manufacturing feasiblity, 3) simplified circuitry and signal processing, and 4) size and weight considerations.

By exploiting the spatial structure of WSMSs, the hybrid spherical and planar wavefront (HSPW) assumption was adopted [15, 19], where the planar wavefront (PW) and the spherical wavefront (SW) holds for the intra-subarray and the inter-subarray, respectively, for simplicity of singal processing. In this context, multi-subarray beamforming and capacity analysis have been investigated. Particularly, with the same number of antennas, [19] proved that WSMSs could provid stronger multiplexing cabilities than the uniform XL-arrays by increasing the inter-subarray spacing to enlarge the near-field effect.

Essentially, the near-field effect not only benefits communications but also sensing, specifically enabling narrowband range estimation. To enhance range estimation, it is necessary to increase the array aperture to accommodate large Rayleigh distances. However, this entails a significant number of antennas for uniform arrays (UAs). Addressing this concern, the WSMS presents itself as a potential solution. Consequently, the following questions arise: 1) How does near-field localization performance change when employing the WSMS with varied inter-subarray spacing? Additionally, 2) under what circumstances is it relatively appropriate to utilize the HSPW assumption for near-field localization, as mentioned earlier in our statement regarding the SW model?

Last but not least, integrated sensing and communication (ISAC), promising for 6G wireless networks, revolutionizes connectivity by seamlessly combining sensing capabilities with advanced communication technologies, enabling devices to communicate, perceive, and interpret their surroundings in a highly intelligent and context-aware network. As previously mentioned, both communication and sensing applications share the need to enhance the near-field effect. Hence, studying near-field ISAC holds significant value.

Motivated by the above, we aim to investigate the potential of near-field localization with WSMSs by analyzing its angle/range CRB, and hope to build a bridge for near-field communication and sensing with the promising array layout WSMS. The main contributions are as follows:111The source code of this paper is open in https://github.com/YyangSJ/Near-field-CRB for readers studying.

  • We employ a bi-static MIMO sensing system, where the hybrid beamforming architecture with a large number of antennas for the transmitter (TX), and the fully-digital beamforming architecture with a small number of antennas for the RX. In this sense, using the sine rule, the receiver (RX) parameters (angle-of-arrival and range) can be expressed by the TX parameters. In this case, we can know how the distance between the TX and the RX impacts the CRB performance. Then, we give the general CRB expressions, with respect to (w.r.t.) the angle-of-departure (AoD) and the range of TX-target, which depend on the received signal-to-noise ratio (SNR) and the array manifold functions (AMFs).

  • Under the general CRB expression, we first discuss the SW-based WSMS (SW-WSMS), corresponding to a complicated array manifold. To yield more insights, the closed-form CRBs are derived by calculating the manifold functions and the sum formulas with the Riemann sum. We find that a psysical index, the angular span, can be used to characterize the CRB. Based on this finding, the CRBs of two WSMSs, with the same angular spans but different number of subarrays and different inter-subarray spacing, are discussed, for finding that they have the same normalized Fisher matrix or normalized CRB as the WSMS. In fact, this is a unique conclusion existing with near-field effects. Moreover, we compare the CRBs of WSMS with the UA under the same array aperture and number of antennas.

  • We derive the closed-form CRBs of HSPW-based WSMS (HSPW-WSMS), corresponding to a relative simple array manifold. Based on this, we compare the CRBs of the SW-WSMS and HSPW-WSMS. Besides, some corollaries regarding the SW-WSMS are also derived with HSPW-WSMS. Particularly, the asymptotic CRB for the HSPW-WSMS is analyzed.

The rest of this paper is organized as follows: Section II discusses the bi-static MIMO sensing system with hybrid beamforming architectures and provides general CRB expressions. Sections III and IV derive the closed-form CRBs for WSMSs based on the SW and the HSPW, respectively. In section V, several simulations are carried out to demonstrate our derivations and offer insights into various system characteristics. Finally, the summary and outlook are presented in Section VI.

Notations: (){\left(\cdot\right)}^{*}, ()T{\left(\cdot\right)}^{T} and ()H{\left(\cdot\right)}^{H} denote conjugate, transpose, conjugate transpose, respectively. {}\Re\{\cdot\} is the real part sysmbol. \otimes denotes the Kronecker product. 2\|\cdot\|_{2} and |||\cdot| represent the ł2\l_{2} norm and modulus, respectively. Finally, 𝒞𝒩(𝐚,𝐀)\mathcal{CN}(\mathbf{a},\mathbf{A}) is the complex Gaussian distribution with mean 𝐚\mathbf{a} and covariance matrix 𝐀\mathbf{A}.

II System Model and CRB

II-A Signal Model

This paper considers a bi-static MIMO sensing system, where the TX is equipped with NtN_{t} antennas and NRFN_{\rm RF} RF chains using the hybrid beamforming architecture, while the RX is equipped with NrN_{r} antennas using the fully-digital beamforming architecture. The received training signals in an arbitrary frame have a form of222Here, only the line-of-sight path is considered for sensing.

𝐲=αNrNt𝐠r𝐠tH𝐅𝐬+𝐧,\mathbf{y}=\alpha\sqrt{N_{r}N_{t}}\mathbf{g}_{r}\mathbf{g}_{t}^{H}\mathbf{F}\mathbf{s}+\mathbf{n}, (1)

where α\alpha denotes the complex reflection coefficient or the path gain, 𝐠rNr×1\mathbf{g}_{r}\in\mathbb{C}^{N_{r}\times 1} and 𝐠tNt×1\mathbf{g}_{t}\in\mathbb{C}^{N_{t}\times 1} are the array manifolds of the RX and the TX, respectively, which depend on the specific array layout. 𝐅𝐅RF𝐅BBNt×NRF\mathbf{F}\triangleq\mathbf{F}_{\rm RF}\mathbf{F}_{\rm BB}\in\mathbb{C}^{N_{t}\times N_{RF}} is the hybrid precoder with the analog precoder 𝐅RF\mathbf{F}_{\rm RF} and the baseband precoder 𝐅BB\mathbf{F}_{\rm BB}, and 𝐬NRF×1\mathbf{s}\in\mathbb{C}^{N_{RF}\times 1} is the transmitted symbol. In this paper, we assume identical pilot symbols such that 𝐒σp𝐈NRF\mathbf{S}\triangleq\sigma_{p}\mathbf{I}_{N_{RF}}, where σp\sigma_{p} is the transmit power which is set to 11 in this study. Moreover, 𝐧Nr×1\mathbf{n}\in\mathbb{C}^{N_{r}\times 1} is the noise matrix with each element following 𝒞𝒩(0,σn2)\mathcal{CN}(0,\sigma_{n}^{2}).

According to Eqn. (1), we define the received training signal matrix in the tt-th frame (t=1,,Tt=1,\cdots,T) by 𝐘tαNrNt𝐠r𝐠tH𝐟t+𝐍t\mathbf{Y}_{t}\triangleq\alpha\sqrt{N_{r}N_{t}}\mathbf{g}_{r}\mathbf{g}_{t}^{H}\mathbf{f}_{t}+\mathbf{N}_{t}, where 𝐟t𝐅t𝐬t\mathbf{f}_{t}\triangleq\mathbf{F}_{t}\mathbf{s}_{t}. By collecting the TT training signals with 𝐘~=[𝐲1,,𝐲T]Nt×T\widetilde{\mathbf{Y}}=[\mathbf{y}_{1},\cdots,\mathbf{y}_{T}]\in\mathbb{C}^{N_{t}\times T}, we have

𝐘~=αNrNt𝐠r𝐠tH𝐅~+𝐍~,\widetilde{\mathbf{Y}}=\alpha\sqrt{N_{r}N_{t}}\mathbf{g}_{r}\mathbf{g}_{t}^{H}\widetilde{\mathbf{F}}+\widetilde{\mathbf{N}}, (2)

where 𝐅~[𝐟1,,𝐟T]Nt×T\widetilde{\mathbf{F}}\triangleq\left[\mathbf{f}_{1},\cdots,\mathbf{f}_{T}\right]\in\mathbb{C}^{N_{t}\times T} and 𝐍[𝐧1,,𝐧T]Nr×T{\mathbf{N}}\triangleq\left[\mathbf{n}_{1},\cdots,\mathbf{n}_{T}\right]\in\mathbb{C}^{N_{r}\times T}.

Vectorizing 𝐘~\widetilde{\mathbf{Y}} yields

𝐲~vec(𝐘~)=αNrNt(𝐅~T𝐠t)𝐠r+𝐧~,\widetilde{\mathbf{y}}\triangleq{\rm vec}\left(\widetilde{\mathbf{Y}}\right)=\alpha\sqrt{N_{r}N_{t}}\left(\widetilde{\mathbf{F}}^{T}\mathbf{g}^{*}_{t}\right)\otimes\mathbf{g}_{r}+\widetilde{\mathbf{n}}, (3)

where 𝐧~vec(𝐍~)\widetilde{\mathbf{n}}\triangleq{\rm vec}\left(\widetilde{\mathbf{N}}\right).

II-B General CRB Expressions

Consider 𝐡αNrNt(𝐅~T𝐠t)𝐠r\mathbf{h}\triangleq\alpha\sqrt{N_{r}N_{t}}\left(\widetilde{\mathbf{F}}^{T}\mathbf{g}^{*}_{t}\right)\otimes\mathbf{g}_{r}, the Fisher matrix w.r.t. 𝝃L×1\bm{\xi}\in\mathbb{C}^{L\times 1}, with LL being the number of parameters, is given by [20]

𝓕=2σn2{(𝐡𝝃)(𝐡𝝃)H}.\bm{\mathcal{F}}=\frac{2}{\sigma_{n}^{2}}\Re\left\{\left(\frac{\partial\mathbf{h}}{\partial\bm{\xi}}\right)\left(\frac{\partial\mathbf{h}}{\partial\bm{\xi}}\right)^{H}\right\}. (4)

Then, the CRB of the ll-th parameter in 𝝃\bm{\xi} is

CRBl=[𝓕1]l,l.\textbf{CRB}_{l}=\left[\bm{\mathcal{F}}^{-1}\right]_{l,l}. (5)
Refer to caption
Figure 1: The bi-static sensing system.

As shown in Fig. 1, we denote the AoD, the AoA, the relative angle, the distance between the TX and the target, and the distance between the TX and the RX by θ\theta, ϕ\phi, ϑ\vartheta, rr, and RR, respectively. The distance between the target and the RX can be calculated by r¯=R2+r22Rrcos(θ+ϑ)\overline{r}=\sqrt{R^{2}+r^{2}-2Rr\cos(\theta+\vartheta)}. According to the sine rule such that sin(ϕϑ)r=sin(θ+ϑ)r¯\frac{\sin(\phi-\vartheta)}{r}=\frac{\sin(\theta+\vartheta)}{\overline{r}}, ϕ\phi is expressed by

ϕ(r,θ)=arcsin{rsin(θ+ϑ)R2+r22Rrcos(θ+ϑ)}+ϑ.\phi(r,\theta)=\arcsin\left\{\frac{r\sin(\theta+\vartheta)}{\sqrt{R^{2}+r^{2}-2Rr\cos(\theta+\vartheta)}}\right\}+\vartheta. (6)

Since we just consider the AoD θ\theta, the distance rr, and the path gain α\alpha, we set ϑ=0\vartheta=0 for clarity through this paper. Therefore, 𝝃\bm{\xi} can be defined by 𝝃[θ,r,αR,αI]T\bm{\xi}\triangleq[\theta,r,\alpha_{R},\alpha_{I}]^{T}, where αR\alpha_{R} and αI\alpha_{I} are the real and imaginary parts of α\alpha, respectively. Denoted by βαNrNt\beta\triangleq\alpha\sqrt{N_{r}N_{t}} and

𝐡~(𝐅~T𝐠t(r,θ))𝐠r(r,θ),\widetilde{\mathbf{h}}\triangleq\left(\widetilde{\mathbf{F}}^{T}\mathbf{g}^{*}_{t}(r,\theta)\right)\otimes\mathbf{g}_{r}(r,\theta), (7)

we futher express 𝓕\bm{\mathcal{F}} as

𝓕=2σn2[𝚷1,1𝚷1,2𝚷1,2T𝚷2,2],\bm{\mathcal{F}}=\frac{2}{\sigma_{n}^{2}}\begin{bmatrix}\bm{\Pi}_{1,1}&\bm{\Pi}_{1,2}\\ \bm{\Pi}_{1,2}^{T}&\bm{\Pi}_{2,2}\end{bmatrix}, (8)

where 𝚷1,1[hθθhθrhθrhrr]\bm{\Pi}_{1,1}\triangleq\begin{bmatrix}h_{\theta\theta}&h_{\theta r}\\ h_{\theta r}&h_{rr}\end{bmatrix},𝚷1,2[hθαRhθαIhrαRhrαI]\bm{\Pi}_{1,2}\triangleq\begin{bmatrix}h_{\theta\alpha_{R}}&h_{\theta\alpha_{I}}\\ h_{r\alpha_{R}}&h_{r\alpha_{I}}\end{bmatrix}, 𝚷2,2[hαRαRhαRαIhαRαIhαIαI]\bm{\Pi}_{2,2}\triangleq\begin{bmatrix}h_{\alpha_{R}\alpha_{R}}&h_{\alpha_{R}\alpha_{I}}\\ h_{\alpha_{R}\alpha_{I}}&h_{\alpha_{I}\alpha_{I}}\end{bmatrix}, and hl1l2{(𝐡𝝃l1)H𝐡𝝃l2}h_{l_{1}l_{2}}\triangleq\Re\left\{\left(\frac{\partial\mathbf{h}}{\partial\bm{\xi}_{l_{1}}}\right)^{H}\frac{\partial\mathbf{h}}{\partial\bm{\xi}_{l_{2}}}\right\}, l1,l2{1,,L}l_{1},l_{2}\in\{1,\cdots,L\}. Specifically, hθθ{(𝐡θ)H𝐡θ}=|β|2𝐡~θ22h_{\theta\theta}\triangleq\Re\left\{\left(\frac{\partial\mathbf{h}}{\partial\theta}\right)^{H}\frac{\partial\mathbf{h}}{\partial\theta}\right\}=|\beta|^{2}\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right\|_{2}^{2}, hθr=|β|2{(𝐡~θ)H𝐡~r}h_{\theta r}=|\beta|^{2}\Re\left\{\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right\}, hrr=|β|2𝐡~r22h_{rr}=|\beta|^{2}\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right\|_{2}^{2}, hθαR={β(𝐡~θ)H𝐡~}h_{\theta\alpha_{R}}=\Re\left\{\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\widetilde{\mathbf{h}}\right\}, hθαI={jβ(𝐡~θ)H𝐡~}={β(𝐡~θ)H𝐡~}h_{\theta\alpha_{I}}=\Re\left\{j\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\widetilde{\mathbf{h}}\right\}=-\Im\left\{\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\widetilde{\mathbf{h}}\right\}, hrαR={β(𝐡~r)H𝐡~}h_{r\alpha_{R}}=\Re\left\{\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}}\right\}, hrαI={jβ(𝐡~r)H𝐡~}={β(𝐡~r)H𝐡~}h_{r\alpha_{I}}=\Re\left\{j\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}}\right\}=-\Im\left\{\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}}\right\}, hαRαR=hαIαI=𝐡~22h_{\alpha_{R}\alpha_{R}}=h_{\alpha_{I}\alpha_{I}}=\left\|\widetilde{\mathbf{h}}\right\|_{2}^{2}, and hαRαI={j𝐡~22}=0h_{\alpha_{R}\alpha_{I}}=\Re\left\{j\left\|\widetilde{\mathbf{h}}\right\|_{2}^{2}\right\}=0. For clarity, 𝐡~θ𝐡~θ\widetilde{\mathbf{h}}_{\theta}\triangleq\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta} and 𝐡~r𝐡~r\widetilde{\mathbf{h}}_{r}\triangleq\frac{\partial\widetilde{\mathbf{h}}}{\partial r} are defined through this paper.

We just focus on the CRB of θ\theta and rr, thus

𝓕1σn22[𝐐1×××],\bm{\mathcal{F}}^{-1}\triangleq\frac{\sigma_{n}^{2}}{2}\begin{bmatrix}\mathbf{Q}^{-1}&\bm{\times}\\ \bm{\times}&\bm{\times}\end{bmatrix}, (9)

where 𝐐𝚷1,1𝚷1,2𝚷2,21𝚷1,2T\mathbf{Q}\triangleq\bm{\Pi}_{1,1}-\bm{\Pi}_{1,2}\bm{\Pi}_{2,2}^{-1}\bm{\Pi}_{1,2}^{T} is the 2×22\times 2 Schur complement, and ×\bm{\times} denotes the element that we do not care.

Noticing that 𝚷2,2\bm{\Pi}_{2,2} is a diagonal matrix due to hαRαI{(𝐡αR)H𝐡αI}0h_{\alpha_{R}\alpha_{I}}\triangleq\Re\left\{\left(\frac{\partial\mathbf{h}}{\partial\alpha_{R}}\right)^{H}\frac{\partial\mathbf{h}}{\partial\alpha_{I}}\right\}\equiv 0. Hence, 𝐐\mathbf{Q} is simplified as Eqn. (10).

𝐐=\displaystyle\mathbf{Q}= [|β|2𝐡~θ22|β|2{(𝐡~θ)H𝐡~r}|β|2{(𝐡~θ)H𝐡~r}|β|2𝐡~r22][{β(𝐡~θ)H𝐡~}{β(𝐡~θ)H𝐡~}{β(𝐡~r)H𝐡~}{β(𝐡~r)H𝐡~}]\displaystyle\begin{bmatrix}|\beta|^{2}\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right\|_{2}^{2}&|\beta|^{2}\Re\left\{\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right\}\\ |\beta|^{2}\Re\left\{\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right\}&|\beta|^{2}\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right\|_{2}^{2}\end{bmatrix}-\begin{bmatrix}\Re\left\{\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\widetilde{\mathbf{h}}\right\}&-\Im\left\{\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\widetilde{\mathbf{h}}\right\}\\ \Re\left\{\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}}\right\}&-\Im\left\{\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}}\right\}\end{bmatrix} (10)
×[1𝐡~22001𝐡~22][{β(𝐡~θ)H𝐡~}{β(𝐡~r)H𝐡~}{β(𝐡~θ)H𝐡~}{β(𝐡~r)H𝐡~}]\displaystyle\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \times\begin{bmatrix}\frac{1}{\left\|\widetilde{\mathbf{h}}\right\|_{2}^{2}}&0\\ 0&\frac{1}{\left\|\widetilde{\mathbf{h}}\right\|_{2}^{2}}\end{bmatrix}\begin{bmatrix}\Re\left\{\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\widetilde{\mathbf{h}}\right\}&\Re\left\{\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}}\right\}\\ -\Im\left\{\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\widetilde{\mathbf{h}}\right\}&-\Im\left\{\beta^{*}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}}\right\}\end{bmatrix}
=|β|2[𝐡~θ22|(𝐡~θ)H𝐡~|2𝐡~22{(𝐡~θ)H𝐡~r}{𝐡~H(𝐡~θ)(𝐡~r)H𝐡~}𝐡~22{(𝐡~θ)H𝐡~r}{𝐡~H(𝐡~θ)(𝐡~r)H𝐡~}𝐡~22𝐡~r22|(𝐡~r)H𝐡~|2𝐡~22]\displaystyle=|\beta|^{2}\begin{bmatrix}\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right\|_{2}^{2}-\frac{\left|\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\widetilde{\mathbf{h}}\right|^{2}}{\left\|\widetilde{\mathbf{h}}\right\|^{2}_{2}}&\Re\left\{\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right\}-\frac{\Re\left\{\widetilde{\mathbf{h}}^{H}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}}\right\}}{\left\|\widetilde{\mathbf{h}}\right\|^{2}_{2}}\\ \Re\left\{\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right\}-\frac{\Re\left\{\widetilde{\mathbf{h}}^{H}\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}}\right\}}{\left\|\widetilde{\mathbf{h}}\right\|^{2}_{2}}&\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right\|_{2}^{2}-\frac{\left|\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}}\right|^{2}}{\left\|\widetilde{\mathbf{h}}\right\|^{2}_{2}}\end{bmatrix}
|β|2𝐐¯,\displaystyle\triangleq|\beta|^{2}\overline{\mathbf{Q}},

where 𝐐¯\overline{\mathbf{Q}} is defined as the normalized Fisher matrix which is irrelated to the signal strength but the array manifold.

Then, the CRBs w.r.t. θ\theta and rr are given by

CRBθ=\displaystyle\textbf{CRB}_{\theta}= σn22|β|2𝐡~22𝐡~r22|(𝐡~r)H𝐡~|2𝐡~22det(𝐐¯),\displaystyle\frac{\sigma_{n}^{2}}{2|\beta|^{2}}\frac{\left\|\widetilde{\mathbf{h}}\right\|^{2}_{2}\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right\|_{2}^{2}-{\left|\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}}\right|^{2}}}{\left\|\widetilde{\mathbf{h}}\right\|^{2}_{2}{\rm det}({\overline{\mathbf{Q}}})}, (11)
CRBr=\displaystyle\textbf{CRB}_{r}= σn22|β|2𝐡~22𝐡~θ22|(𝐡~θ)H𝐡~|2𝐡~22det(𝐐¯).\displaystyle\frac{\sigma_{n}^{2}}{2|\beta|^{2}}\frac{\left\|\widetilde{\mathbf{h}}\right\|^{2}_{2}\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right\|_{2}^{2}-{\left|\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\widetilde{\mathbf{h}}\right|^{2}}}{\left\|\widetilde{\mathbf{h}}\right\|^{2}_{2}{\rm det}({\overline{\mathbf{Q}}})}. (12)

In the later sections, the closed-form CRB will be derived by considering two scenarios for 𝐡~\widetilde{\mathbf{h}}: 1) WSMS with the SW, and 2) WSMS with the HSPW assumption.

III CRBs for SW-WSMS

III-A Array Layout and Manifolds

Contiuning from Section II-A, the specific array configuration with the SW-WSMS is described. KK subarrays, with each connected MM antennas, are deployed at the TX. The total number of antennas at the TX, denoted as NtN_{t} and defined below Eqn. (1), equals KMKM. The intra-subarray spacing and inter-subarray spacing are represented as dd and D(M1)d+D0D\triangleq(M-1)d+D_{0}, respectively. Furthermore, we can see that the mm-th element of the kk-th subarray is located on (0,0,(m1)d+(k1)D)(0,0,(m-1)d+(k-1)D), where m{1,,M}m\in\{1,\cdots,M\}, and k{1,,K}k\in\{1,\cdots,K\}. Denoted by 𝐠t𝐛t(r,θ)\mathbf{g}_{t}\triangleq\mathbf{b}_{t}(r,\theta), the (k(M1)+m)(k(M-1)+m)-th element of which follows

[𝐛t(r,θ)]k(M1)+m=1Ntej2πλr22ntrsinθ+nt2,[\mathbf{b}_{t}(r,\theta)]_{k(M-1)+m}=\sqrt{\frac{1}{N_{t}}}e^{-j\frac{2\pi}{\lambda}\sqrt{r^{2}-2n_{t}r\sin\theta+n_{t}^{2}}}, (13)

where λ\lambda is the antenna wavelength, nt2kK+12D+2mM+12dn_{t}\triangleq\frac{2k-K+1}{2}D+\frac{2m-M+1}{2}d, m{0,,M1}m\in\{0,\cdots,M-1\}, and k{0,,K1}k\in\{0,\cdots,K-1\}.

The RX adopts a UA with an inter-element spacing of dd to align with the fully-digital beamforming architecture. The RX array manifold can be mathematically expressed as:

𝐠r𝐚r(ϕ)=1Nr[ejπλ(Nr+1)dsinϕ,,ejπλ(Nr1)dsinϕ]T.\mathbf{g}_{r}\triangleq\mathbf{a}_{r}(\phi)=\sqrt{\frac{1}{N_{r}}}\left[e^{j\frac{\pi}{\lambda}(-N_{r}+1)d\sin\phi},\cdots,e^{j\frac{\pi}{\lambda}(N_{r}-1)d\sin\phi}\right]^{T}. (14)

Recall Eqn. (6), [𝐚r(ϕ)]nr[\mathbf{a}_{r}(\phi)]_{n_{r}} is further re-defined w.r.t. {θ,r}\{\theta,r\}:

[𝐚r(r,θ)]nr1Nrejπλ((2nrNr+1)drsinθR2+r22Rrcosθ).[\mathbf{a}_{r}(r,\theta)]_{n_{r}}\triangleq\sqrt{\frac{1}{N_{r}}}e^{j\frac{\pi}{\lambda}\left(\frac{(2n_{r}-N_{r}+1)dr\sin\theta}{\sqrt{R^{2}+r^{2}-2Rr\cos\theta}}\right)}. (15)

III-B CRB Derivation

The array manifolds in 𝐡~\widetilde{\mathbf{h}} have been defined, and they can be substituted into Eqs. (11) and (12) to further derive the CRB solution. It is important to note that the derivation of the CRB involves performing calculations for the AMFs, specifically regarding the derivative of 𝐡~\widetilde{\mathbf{h}}.

III-B1 Array Manifold Functions

Through this paper, we adopt the orthogonal training matrix such that333In practical systems, TNtT\leq N_{t} or sparse arrays can be considered to reduce the training time. 𝐅~𝐅~T=𝐈Nt\widetilde{\mathbf{F}}^{*}\widetilde{\mathbf{F}}^{T}=\mathbf{I}_{N_{t}}. Besides, it is easy to know the 2-norm of the array manifold equals to 11, i.e., 𝐚r(r,θ)22=𝐛t(r,θ)22=1\left\|\mathbf{a}_{r}(r,\theta)\right\|^{2}_{2}=\left\|\mathbf{b}_{t}(r,\theta)\right\|^{2}_{2}=1. As a result, the calculations regarding the derivative of 𝐡~\widetilde{\mathbf{h}} are described as Eqs. (16)-(20).

𝐡~θ22=𝐛t(r,θ)θ22𝐚r(r,θ)22+𝐚r(r,θ)θ22𝐛t(r,θ)22\displaystyle\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right\|^{2}_{2}=\left\|\frac{\mathbf{b}_{t}^{*}(r,\theta)}{\partial\theta}\right\|^{2}_{2}\left\|\mathbf{a}_{r}(r,\theta)\right\|^{2}_{2}+\left\|\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial\theta}\right\|^{2}_{2}\left\|\mathbf{b}_{t}^{*}(r,\theta)\right\|^{2}_{2} (16)
+2{𝐛tT(r,θ)θ𝐛t(r,θ)𝐚rH(r,θ)𝐚r(r,θ)θ}\displaystyle\ \ \ \ \ +2\Re\left\{\frac{\partial\mathbf{b}_{t}^{T}(r,\theta)}{\partial\theta}\mathbf{b}_{t}^{*}(r,\theta)\mathbf{a}^{H}_{r}(r,\theta)\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial\theta}\right\}
=𝐛t(r,θ)θ22+𝐚r(r,θ)θ22\displaystyle=\left\|\frac{\mathbf{b}_{t}^{*}(r,\theta)}{\partial\theta}\right\|^{2}_{2}+\left\|\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial\theta}\right\|^{2}_{2}
+2{𝐛tT(r,θ)θ𝐛t(r,θ)𝐚rH(r,θ)𝐚r(r,θ)θ}.\displaystyle\ \ \ \ \ +2\Re\left\{\frac{\partial\mathbf{b}_{t}^{T}(r,\theta)}{\partial\theta}\mathbf{b}_{t}^{*}(r,\theta)\mathbf{a}^{H}_{r}(r,\theta)\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial\theta}\right\}.

Similarly, other AMFs are calculated as follows.

𝐡~r22=𝐛t(r,θ)r22+𝐚r(r,θ)r22\displaystyle\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right\|^{2}_{2}=\left\|\frac{\mathbf{b}_{t}^{*}(r,\theta)}{\partial r}\right\|^{2}_{2}+\left\|\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial r}\right\|^{2}_{2} (17)
+2{𝐛tT(r,θ)r𝐛t(r,θ)𝐚rH(r,θ)𝐚r(r,θ)r},\displaystyle\ \ \ \ \ +2\Re\left\{\frac{\partial\mathbf{b}_{t}^{T}(r,\theta)}{\partial r}\mathbf{b}_{t}^{*}(r,\theta)\mathbf{a}^{H}_{r}(r,\theta)\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial r}\right\},
(𝐡~θ)H𝐡~\displaystyle\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\widetilde{\mathbf{h}} =𝐛tT(r,θ)θ𝐛t(r,θ)+𝐚rH(r,θ)θ𝐚r(r,θ),\displaystyle=\frac{\partial\mathbf{b}_{t}^{T}(r,\theta)}{\partial\theta}\mathbf{b}_{t}^{*}(r,\theta)+\frac{\partial\mathbf{a}^{H}_{r}(r,\theta)}{\partial\theta}\mathbf{a}_{r}(r,\theta), (18)
(𝐡~r)H𝐡~=𝐛tT(r,θ)r𝐛t(r,θ)+𝐚rH(r,θ)r𝐚r(r,θ),\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}}=\frac{\partial\mathbf{b}_{t}^{T}(r,\theta)}{\partial r}\mathbf{b}_{t}^{*}(r,\theta)+\frac{\partial\mathbf{a}^{H}_{r}(r,\theta)}{\partial r}\mathbf{a}_{r}(r,\theta), (19)
(𝐡~θ)H𝐡~r=\displaystyle\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\frac{\partial\widetilde{\mathbf{h}}}{\partial r}= 𝐛tT(r,θ)θ𝐛t(r,θ)r+𝐚rH(r,θ)θ𝐚r(r,θ)r\displaystyle\frac{\partial\mathbf{b}_{t}^{T}(r,\theta)}{\partial\theta}\frac{\partial\mathbf{b}_{t}^{*}(r,\theta)}{\partial r}+\frac{\partial\mathbf{a}^{H}_{r}(r,\theta)}{\partial\theta}\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial r} (20)
+𝐛tT(r,θ)θ𝐛t(r,θ)𝐚rH(r,θ)𝐚r(r,θ)r\displaystyle+\frac{\partial\mathbf{b}_{t}^{T}(r,\theta)}{\partial\theta}\mathbf{b}_{t}^{*}(r,\theta)\mathbf{a}^{H}_{r}(r,\theta)\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial r}
+𝐛tT(r,θ)𝐛t(r,θ)θ𝐚rH(r,θ)r𝐚r(r,θ).\displaystyle+\mathbf{b}_{t}^{T}(r,\theta)\frac{\partial\mathbf{b}_{t}^{*}(r,\theta)}{\partial\theta}\frac{\partial\mathbf{a}_{r}^{H}(r,\theta)}{\partial r}\mathbf{a}_{r}(r,\theta).

III-B2 Calculation of sum formulas

To further simplify Eqs. (16)-(20), we first give the derivative expression of 𝐛t(r,θ)\mathbf{b}_{t}(r,\theta) w.r.t. θ\theta and rr as

[𝐛t(r,θ)θ]k(M1)+m=j2πλ1Ntej2πλrntntrcosθrnt,\left[\frac{\partial\mathbf{b}_{t}(r,\theta)}{\partial\theta}\right]_{k(M-1)+m}=j\frac{2\pi}{\lambda}\sqrt{\frac{1}{N_{t}}}e^{-j\frac{2\pi}{\lambda}\sqrt{r_{n_{t}}}}\frac{n_{t}r\cos\theta}{\sqrt{r_{n_{t}}}}, (21)
[𝐛t(r,θ)r]k(M1)+m=j2πλ1Ntej2πλrntntsinθrrnt,\left[\frac{\partial\mathbf{b}_{t}(r,\theta)}{\partial r}\right]_{k(M-1)+m}=j\frac{2\pi}{\lambda}\sqrt{\frac{1}{N_{t}}}e^{-j\frac{2\pi}{\lambda}\sqrt{r_{n_{t}}}}\frac{n_{t}\sin\theta-r}{\sqrt{r_{n_{t}}}}, (22)

where rntr22ntrsinθ+nt2r_{n_{t}}\triangleq{r^{2}-2n_{t}r\sin\theta+n_{t}^{2}}, and ntn_{t} is defined below Eqn. (13).

For the RX array manifold, we have

[𝐚r(r,θ)θ]nr=jπ(2nrNr+1)dλNrejπλ(2nrNr+1)dsinϕsinϕθ.\left[\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial\theta}\right]_{n_{r}}=j\frac{\pi(2n_{r}-N_{r}+1)d}{\lambda\sqrt{N_{r}}}e^{j\frac{\pi}{\lambda}(2n_{r}-N_{r}+1)d\sin\phi}\frac{\partial\sin\phi}{\partial\theta}. (23)

Particularly, Eqn. (6) provides the derivative of sinϕ\sin\phi w.r.t. θ\theta and rr as follows.

sinϕ(r,θ)θ=rcosθ(R2+r22Rrcosθ)Rr2sin2θ(R2+r22Rrcosθ)3/2,\frac{\partial\sin\phi(r,\theta)}{\partial\theta}=\frac{r\cos\theta\left(R^{2}+r^{2}-2Rr\cos\theta\right)-Rr^{2}\sin^{2}\theta}{\left(R^{2}+r^{2}-2Rr\cos\theta\right)^{3/2}}, (24)
sinϕ(r,θ)r=Rsinθ(Rrcosθ)(R2+r22Rrcosθ)3/2.\frac{\partial\sin\phi(r,\theta)}{\partial r}=\frac{R\sin\theta(R-r\cos\theta)}{\left(R^{2}+r^{2}-2Rr\cos\theta\right)^{3/2}}. (25)

Based on the above, the sum formulas that help derive AMFs are derived as follows

𝐛t(r,θ)θ22=4π2r2cos2θNtλ2k=0K1m=0M1nt2r22ntrsinθ+nt2\displaystyle\left\|\frac{\partial\mathbf{b}_{t}^{*}(r,\theta)}{\partial\theta}\right\|^{2}_{2}=\frac{4\pi^{2}r^{2}\cos^{2}\theta}{N_{t}\lambda^{2}}\sum_{k=0}^{K-1}\sum_{m=0}^{M-1}\frac{n_{t}^{2}}{{r^{2}-2n_{t}r\sin\theta+n_{t}^{2}}} (26)
=4π2r2cos2θNtλ2\displaystyle=\frac{4\pi^{2}r^{2}\cos^{2}\theta}{N_{t}\lambda^{2}}
×k=K12K12m=M12M12(kD+md)2r22(kD+md)rsinθ+(kD+md)2\displaystyle\times\sum_{k=-\frac{K-1}{2}}^{\frac{K-1}{2}}\sum_{m=\frac{M-1}{2}}^{\frac{M-1}{2}}\frac{(kD+md)^{2}}{{r^{2}-2(kD+md)r\sin\theta+(kD+md)^{2}}}
=4π2r2cos2θNtλ2𝒮θ2.\displaystyle=\frac{4\pi^{2}r^{2}\cos^{2}\theta}{N_{t}\lambda^{2}}\mathcal{S}_{\theta^{2}}.

Similarly, other sum formulas are given by 𝐛tT(r,θ)θ𝐛t(r,θ)=j2πrcosθλNt𝒮θ\frac{\partial\mathbf{b}_{t}^{T}(r,\theta)}{\partial\theta}\mathbf{b}_{t}^{*}(r,\theta)=j\frac{2\pi r\cos\theta}{\lambda N_{t}}\mathcal{S}_{\theta}, 𝐛tT(r,θ)r𝐛t(r,θ)=j2πλNt𝒮r\frac{\partial\mathbf{b}_{t}^{T}(r,\theta)}{\partial r}\mathbf{b}_{t}^{*}(r,\theta)=j\frac{2\pi}{\lambda N_{t}}\mathcal{S}_{r}, 𝐛t(r,θ)r22=4π2Ntλ2𝒮r2\left\|\frac{\partial\mathbf{b}_{t}^{*}(r,\theta)}{\partial r}\right\|^{2}_{2}=\frac{4\pi^{2}}{N_{t}\lambda^{2}}\mathcal{S}_{r^{2}}, and 𝐛tT(r,θ)θ𝐛t(r,θ)r=4π2rcosθλ2Nt𝒮θr\frac{\partial\mathbf{b}_{t}^{T}(r,\theta)}{\partial\theta}\frac{\partial\mathbf{b}_{t}^{*}(r,\theta)}{\partial r}=\frac{4\pi^{2}r\cos\theta}{\lambda^{2}N_{t}}\mathcal{S}_{\theta r}.

To derive the closed-form solutions for sum formulas {𝒮θ2,𝒮θ,𝒮r2,𝒮r,𝒮θr}\left\{{\mathcal{S}}_{\theta^{2}},{\mathcal{S}}_{\theta},{\mathcal{S}}_{r^{2}},{\mathcal{S}}_{r},{\mathcal{S}}_{\theta r}\right\}, the Riemann sum is adopted for accurate approximation, which is described in the following proposition.

Proposition III.1

By applying the midpoint Riemann sum, the analytical solutions for {𝒮θ2,𝒮θ,𝒮r2,𝒮r,𝒮θr}\left\{{\mathcal{S}}_{\theta^{2}},{\mathcal{S}}_{\theta},{\mathcal{S}}_{r^{2}},{\mathcal{S}}_{r},{\mathcal{S}}_{\theta r}\right\} can be expressed in terms of the functions {Gθ2(x),Gθ(x),Gr(x),Gθr(x)}\left\{G_{\theta^{2}}(x),G_{\theta}(x),G_{r}(x),G_{\theta r}(x)\right\} and the bounds {x1,x2,x3,x4}\{x_{1},x_{2},x_{3},x_{4}\} for the integral transformed through the midpoint Riemann sum. The specific expressions for the functions {Gθ2(x),Gθ(x),Gr(x),Gθr(x)}\left\{G_{\theta^{2}}(x),G_{\theta}(x),G_{r}(x),G_{\theta r}(x)\right\} can be found in Appendix A. Here, the bounds are defined as follows: x1K2ΔDM2Δdx_{1}\triangleq-\frac{K}{2}\Delta_{D}-\frac{M}{2}\Delta_{d}, x2K2ΔD+M2Δdx_{2}\triangleq-\frac{K}{2}\Delta_{D}+\frac{M}{2}\Delta_{d}, x3K2ΔDM2Δdx_{3}\triangleq\frac{K}{2}\Delta_{D}-\frac{M}{2}\Delta_{d}, and x4K2ΔD+M2Δdx_{4}\triangleq\frac{K}{2}\Delta_{D}+\frac{M}{2}\Delta_{d}. In addition, the variables Δddr\Delta_{d}\triangleq\frac{d}{r} and ΔDDr\Delta_{D}\triangleq\frac{D}{r} are defined to simplify the expressions.

Proof: Please see Appendix A. \blacksquare

Refer to caption
Figure 2: The three different array layouts

The derivation of the closed-form solution holds significant importance in seeking the physical meaning behind the results. Consequently, the following proposition provides additional insights into the obtained solutions.

Proposition III.2

Let ψ0\psi_{0} and Δψ\Delta_{\psi} represent the angular spans of the WSMS, as shown in Fig. 2(a). With this notation, the sum formulas {𝒮θ2,𝒮θ,𝒮r2,𝒮r,𝒮θr}\left\{{\mathcal{S}}_{\theta^{2}},{\mathcal{S}}_{\theta},{\mathcal{S}}_{r^{2}},{\mathcal{S}}_{r},{\mathcal{S}}_{\theta r}\right\} can be re-written as functions of {ψ0,Δψ}\{\psi_{0},\Delta_{\psi}\}.

Proof: It has been known that the functions {Gθ2(x),Gθ(x),Gr(x),Gθr(x)}\left\{G_{\theta^{2}}(x),G_{\theta}(x),G_{r}(x),G_{\theta r}(x)\right\} in Proposition III.1 correspond to {𝒮θ2,𝒮θ,𝒮r2,𝒮r,𝒮θr}\left\{{\mathcal{S}}_{\theta^{2}},{\mathcal{S}}_{\theta},{\mathcal{S}}_{r^{2}},{\mathcal{S}}_{r},{\mathcal{S}}_{\theta r}\right\}, where x{x1,x2,x3,x4}x\in\{x_{1},x_{2},x_{3},x_{4}\}. Note also that these solution functions share certain common terms, such as 12xsinθ+x2{1-2x\sin\theta+x^{2}} and xx. As shown in Fig. 1, the cosine rule, given by 2xr2cos(π/2θ)=r2+x2(r)22xr^{2}\cos(\pi/2-\theta)=r^{2}+x^{2}-(r^{\prime})^{2}, and the sine rule, expressed as rr=sin(π/2θ)sin(π(π/2θ)ψ)=cosθcos(θψ)\frac{{r}^{\prime}}{r}=\frac{\sin(\pi/2-\theta)}{\sin(\pi-(\pi/2-\theta)-\psi)}=\frac{\cos\theta}{\cos(\theta-\psi)}, are applied. Hence

12xsinθ+x2=cos2θcos2(θψ),1-2x\sin\theta+x^{2}=\frac{\cos^{2}\theta}{\cos^{2}(\theta-\psi)}, (27)

where xx can actually be written as

x=sinψcos(θψ).x=\frac{\sin\psi}{\cos(\theta-\psi)}. (28)

Noting that ψ{ψ0+Δψ2,ψ0Δψ2,ψ0Δψ2,ψ0+Δψ2}\psi\in\{-\frac{\psi_{0}+\Delta_{\psi}}{2},-\frac{\psi_{0}-\Delta_{\psi}}{2},\frac{\psi_{0}-\Delta_{\psi}}{2},\frac{\psi_{0}+\Delta_{\psi}}{2}\} when x{x1,x2,x3,x4}x\in\{x_{1},x_{2},x_{3},x_{4}\}. \blacksquare

Remark III.3

Proposition III.2 highlights the significance of the physical angle, specifically the angular span, in determining the values of the AMFs as well as the CRB. This understanding allows us to investigate the AMF/CRB for array layouts with similar characteristics, from the perspective of the physical angle. Examples of such exploration include Corollary III.5 and Proposition III.10.

Based on the finding in Proposition III.2, two useful corollaries are developed as follows.

Corollary III.4

When θ=0\theta=0, two important conclusions can be drawn: 1) Gθ(ψ,θ=0)G_{\theta}(\psi,\theta=0) and Gθr(ψ,θ=0)G_{\theta r}(\psi,\theta=0) are odd functions of ψ\psi, hence it can be inferred that 𝒮θ=0\mathcal{S}_{\theta}=0 and 𝒮θr=0\mathcal{S}_{\theta r}=0 at θ=0\theta=0, and 2) Gθ2(ψ,θ=0)G_{\theta^{2}}(\psi,\theta=0) and Gr(ψ,θ=0)G_{r}(\psi,\theta=0) are even functions of ψ\psi, hence the expressions for 𝒮θ2\mathcal{S}_{\theta^{2}} and 𝒮r\mathcal{S}_{r} can be simplified as follows: 𝒮θ2=2ΔDΔd(Gθ2(ψ0+Δψ2)Gθ2(ψ0Δψ2))\mathcal{S}_{\theta^{2}}=\frac{2}{\Delta_{D}\Delta_{d}}\left(G_{\theta^{2}}(\frac{\psi_{0}+\Delta_{\psi}}{2})-G_{\theta^{2}}(\frac{\psi_{0}-\Delta_{\psi}}{2})\right) and 𝒮r=2ΔDΔd(Gr(ψ0+Δψ2)Gr(ψ0Δψ2))\mathcal{S}_{r}=\frac{2}{\Delta_{D}\Delta_{d}}\left(G_{r}(\frac{\psi_{0}+\Delta_{\psi}}{2})-G_{r}(\frac{\psi_{0}-\Delta_{\psi}}{2})\right).

Corollary III.5

Consider two WSMSs with the same angular span ψ0\psi_{0} but different inter-subarray spacing and number of subarrays. Let us assume that the first WSMS has KK subarrays with an inter-subarray spacing of DD, and the second WSMS has KK^{\prime} subarrays with an inter-subarray spacing of DD^{\prime}. Importantly, the condition KD=KDKD=K^{\prime}D^{\prime} holds. In this scenario, an interesting observation can be made: the ratio of their sum formulas is equal to the ratio of the number of subarrays, i.e., 𝒮𝒮=KK\frac{\mathcal{S}}{\mathcal{S}^{\prime}}=\frac{K}{K^{\prime}}, where 𝒮{𝒮θ2,𝒮θ,𝒮r2,𝒮r,𝒮θr}\mathcal{S}\in\left\{{\mathcal{S}}_{\theta^{2}},{\mathcal{S}}_{\theta},{\mathcal{S}}_{r^{2}},{\mathcal{S}}_{r},{\mathcal{S}}_{\theta r}\right\} and 𝒮{𝒮θ2,𝒮θ,𝒮r2,𝒮r,𝒮θr}\mathcal{S}^{\prime}\in\left\{{\mathcal{S}}_{\theta^{2}}^{\prime},{\mathcal{S}}_{\theta}^{\prime},{\mathcal{S}}_{r^{2}}^{\prime},{\mathcal{S}}_{r}^{\prime},{\mathcal{S}}_{\theta r}^{\prime}\right\} are the AMFs of the two WSMSs, respectively.

Proof: Let 𝐛t(r,θ)\mathbf{b}^{\prime}_{t}(r,\theta) be the array manifold of the array, where the (k(M1)+m)(k(M-1)+m)-th element of 𝐛t(r,θ)\mathbf{b}^{\prime}_{t}(r,\theta) can be expressed by

[𝐛t(r,θ)]k(M1)+m=1KMej2πλr22ntrsinθ+(nt)2,[\mathbf{b}^{\prime}_{t}(r,\theta)]_{k^{\prime}(M-1)+m}=\sqrt{\frac{1}{K^{\prime}M}}e^{-j\frac{2\pi}{\lambda}\sqrt{r^{2}-2n^{\prime}_{t}r\sin\theta+(n^{\prime}_{t})^{2}}}, (29)

where nt2kK+12D+2mM+12dn_{t}^{\prime}\triangleq\frac{2k^{\prime}-K^{\prime}+1}{2}D+\frac{2m-M+1}{2}d and m{0,,M1}m\in\{0,\cdots,M-1\}, k{0,,K1}k^{\prime}\in\{0,\cdots,K^{\prime}-1\}, K=2K^{\prime}=2. Recalling Eqn. (26) and replacing 𝐛t(r,θ)\mathbf{b}_{t}(r,\theta) with 𝐛t(r,θ)\mathbf{b}^{\prime}_{t}(r,\theta), we can obtain

𝒮θ2\displaystyle\mathcal{S}^{\prime}_{\theta^{2}} =1ΔdΔDk=K12K12(Fθ2(kΔD+M2Δd)\displaystyle=\frac{1}{\Delta_{d}\Delta_{D^{\prime}}}\sum_{k=-\frac{K^{\prime}-1}{2}}^{\frac{K^{\prime}-1}{2}}\left(F_{\theta^{2}}\left(k\Delta_{D^{\prime}}+\frac{M}{2}\Delta_{d}\right)\right. (30)
Fθ2(kΔDM2Δd))ΔD\displaystyle\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left.-F_{\theta^{2}}\left(k\Delta_{D^{\prime}}-\frac{M}{2}\Delta_{d}\right)\right)\Delta_{D^{\prime}}
1ΔdΔDK2ΔDM2ΔdK2ΔD+M2ΔdFθ2(x)dx\displaystyle\approx\frac{1}{\Delta_{d}\Delta_{D^{\prime}}}\int_{\frac{K^{\prime}}{2}\Delta_{D^{\prime}}-\frac{M}{2}\Delta_{d}}^{\frac{K^{\prime}}{2}\Delta_{D^{\prime}}+\frac{M}{2}\Delta_{d}}F_{\theta^{2}}(x){\rm d}x
1ΔdΔDK2ΔDM2ΔdK2ΔD+M2ΔdFθ2(x)dx\displaystyle\ \ \ \ \ \ -\frac{1}{\Delta_{d}\Delta_{D^{\prime}}}\int_{-\frac{K^{\prime}}{2}\Delta_{D^{\prime}}-\frac{M}{2}\Delta_{d}}^{-\frac{K^{\prime}}{2}\Delta_{D^{\prime}}+\frac{M}{2}\Delta_{d}}F_{\theta^{2}}(x){\rm d}x
=1ΔdΔDK2ΔDM2ΔdK2ΔD+M2ΔdFθ2(x)dx\displaystyle=\frac{1}{\Delta_{d}\Delta_{D^{\prime}}}\int_{\frac{K}{2}\Delta_{D}-\frac{M}{2}\Delta_{d}}^{\frac{K}{2}\Delta_{D}+\frac{M}{2}\Delta_{d}}F_{\theta^{2}}(x){\rm d}x
1ΔdΔDK2ΔDM2ΔdK2ΔD+M2ΔdFθ2(x)dx\displaystyle\ \ \ \ \ \ \ \ -\frac{1}{\Delta_{d}\Delta_{D}}\int_{-\frac{K}{2}\Delta_{D}-\frac{M}{2}\Delta_{d}}^{-\frac{K}{2}\Delta_{D}+\frac{M}{2}\Delta_{d}}F_{\theta^{2}}(x){\rm d}x
=ΔDΔD𝒮θ2,\displaystyle=\frac{\Delta_{D}}{\Delta_{D^{\prime}}}\mathcal{S}_{\theta^{2}},

where ΔDDr\Delta_{D^{\prime}}\triangleq\frac{D^{\prime}}{r}. With D=KDKD^{\prime}=\frac{KD}{K^{\prime}} substituted, yielding 𝒮θ2𝒮θ2=KK\frac{\mathcal{S}_{\theta^{2}}}{\mathcal{S}^{\prime}_{\theta^{2}}}=\frac{K}{K^{\prime}}. This ratio can also be proved for other sum formulas. \blacksquare

Based on Eqs. (23)-(25), the AMFs of the RX are provided as 𝐚r(r,θ)θ22=(sinϕθ)2π2d2(Nr21)3λ2\left\|\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial\theta}\right\|^{2}_{2}=\left(\frac{\partial\sin\phi}{\partial\theta}\right)^{2}\frac{\pi^{2}d^{2}(N_{r}^{2}-1)}{3\lambda^{2}}, 𝐚rH(r,θ)𝐚r(r,θ)θ=0\mathbf{a}^{H}_{r}(r,\theta)\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial\theta}=0, 𝐚rH(r,θ)θ𝐚r(r,θ)r=π2d2(Nr21)3λ2sinϕθsinϕr\frac{\partial\mathbf{a}^{H}_{r}(r,\theta)}{\partial\theta}\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial r}=\frac{\pi^{2}d^{2}(N_{r}^{2}-1)}{3\lambda^{2}}\frac{\partial\sin\phi}{\partial\theta}\frac{\partial\sin\phi}{\partial r}.

III-B3 Closed-Form CRB

Based on the derived AMFs, the entries of 𝐐¯\overline{\mathbf{Q}} can be calculated:

𝐡~θ22|(𝐡~θ)H𝐡~|2𝐡~22=𝐛t(r,θ)θ22+𝐚r(r,θ)θ22\displaystyle\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right\|_{2}^{2}-\frac{\left|\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\widetilde{\mathbf{h}}\right|^{2}}{\left\|\widetilde{\mathbf{h}}\right\|^{2}_{2}}=\left\|\frac{\mathbf{b}_{t}^{*}(r,\theta)}{\partial\theta}\right\|^{2}_{2}+\left\|\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial\theta}\right\|^{2}_{2} (31)
+2{𝐛tT(r,θ)θ𝐛t(r,θ)𝐚rH(r,θ)𝐚r(r,θ)θ}\displaystyle+2\Re\left\{\frac{\partial\mathbf{b}_{t}^{T}(r,\theta)}{\partial\theta}\mathbf{b}_{t}^{*}(r,\theta)\mathbf{a}^{H}_{r}(r,\theta)\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial\theta}\right\}
|𝐛tT(r,θ)θ𝐛t(r,θ)+𝐚rH(r,θ)θ𝐚r(r,θ)|2\displaystyle-\left|\frac{\partial\mathbf{b}_{t}^{T}(r,\theta)}{\partial\theta}\mathbf{b}_{t}^{*}(r,\theta)+\frac{\partial\mathbf{a}^{H}_{r}(r,\theta)}{\partial\theta}\mathbf{a}_{r}(r,\theta)\right|^{2}
=\displaystyle= 4π2r2cos2θNtλ2(𝒮θ2𝒮θ2)+(sinϕθ)2π2d2(Nr21)3λ2.\displaystyle\frac{4\pi^{2}r^{2}\cos^{2}\theta}{N_{t}\lambda^{2}}\left(\mathcal{S}_{\theta^{2}}-\mathcal{S}^{2}_{\theta}\right)+\left(\frac{\partial\sin\phi}{\partial\theta}\right)^{2}\frac{\pi^{2}d^{2}(N_{r}^{2}-1)}{3\lambda^{2}}.

Similar this derivation, other entries can be given by [𝐐¯]2,2=4π2Ntλ2(𝒮r2𝒮r2Nt)+(sinϕr)2π2d2(Nr21)3λ2[\overline{\mathbf{Q}}]_{2,2}=\frac{4\pi^{2}}{N_{t}\lambda^{2}}\left({\mathcal{S}_{r^{2}}}-\frac{\mathcal{S}_{r}^{2}}{N_{t}}\right)+\left(\frac{\partial\sin\phi}{\partial r}\right)^{2}\frac{\pi^{2}d^{2}(N_{r}^{2}-1)}{3\lambda^{2}}, and [𝐐¯]1,2=4π2rcosθNtλ2(𝒮θr𝒮θ𝒮rNt)+(sinϕθ)(sinϕr)π2d2(Nr21)3λ2[\overline{\mathbf{Q}}]_{1,2}=\frac{4\pi^{2}r\cos\theta}{N_{t}\lambda^{2}}\left(\mathcal{S}_{\theta r}-\frac{\mathcal{S}_{\theta}\mathcal{S}_{r}}{N_{t}}\right)+\left(\frac{\partial\sin\phi}{\partial\theta}\right)\left(\frac{\partial\sin\phi}{\partial r}\right)\frac{\pi^{2}d^{2}(N_{r}^{2}-1)}{3\lambda^{2}}.

Consider the above, the following proposition gives the closed-form CRBs w.r.t. {θ,r}\{\theta,r\}.

Proposition III.6

Denoted by χNrπ2d2(Nr21)3λ2\chi_{N_{r}}\triangleq\frac{\pi^{2}d^{2}(N_{r}^{2}-1)}{3\lambda^{2}}, χNt4π2r2cos2θλ2\chi_{N_{t}}\triangleq\frac{4\pi^{2}r^{2}\cos^{2}\theta}{\lambda^{2}}, ϕθsinϕθ\phi_{\theta}\triangleq\frac{\partial\sin\phi}{\partial\theta}, and ϕrsinϕr\phi_{r}\triangleq\frac{\partial\sin\phi}{\partial r}, the closed-form CRBs are given by

CRBθ=\displaystyle\textbf{CRB}_{\theta}= σn22|β|2χNtr2cos2θ(𝒮r2Nt𝒮r2Nt2)+χNrϕr2det(𝐐¯),\displaystyle\frac{\sigma_{n}^{2}}{2|\beta|^{2}}\frac{\frac{\chi_{N_{t}}}{r^{2}\cos^{2}\theta}\left(\frac{\mathcal{S}_{r^{2}}}{N_{t}}-\frac{\mathcal{S}_{r}^{2}}{N_{t}^{2}}\right)+\chi_{N_{r}}\phi_{r}^{2}}{{\rm det}({\overline{\mathbf{Q}}})}, (32)
CRBr=\displaystyle\textbf{CRB}_{r}= σn22|β|2χNt(𝒮θ2Nt𝒮θ2Nt2)+χNrϕθ2det(𝐐¯),\displaystyle\frac{\sigma_{n}^{2}}{2|\beta|^{2}}\frac{\chi_{N_{t}}\left(\frac{\mathcal{S}_{\theta^{2}}}{N_{t}}-\frac{\mathcal{S}_{\theta}^{2}}{N_{t}^{2}}\right)+\chi_{N_{r}}\phi_{\theta}^{2}}{{\rm det}({\overline{\mathbf{Q}}})}, (33)

where the normalized Fisher matrix 𝐐¯\overline{\mathbf{Q}} follows [𝐐¯]1,1=χNt(𝒮θ2Nt𝒮θ2Nt2)+χNrϕθ2[\overline{\mathbf{Q}}]_{1,1}=\chi_{N_{t}}\left(\frac{\mathcal{S}_{\theta^{2}}}{N_{t}}-\frac{\mathcal{S}_{\theta}^{2}}{N_{t}^{2}}\right)+\chi_{N_{r}}\phi_{\theta}^{2}, [𝐐¯]1,2=[𝐐¯]2,1=χNtrcosθ(𝒮θrNt𝒮θ𝒮rNt2)+χNrϕθϕr[\overline{\mathbf{Q}}]_{1,2}=[\overline{\mathbf{Q}}]_{2,1}=\frac{\chi_{N_{t}}}{r\cos\theta}\left(\frac{\mathcal{S}_{\theta r}}{N_{t}}-\frac{\mathcal{S}_{\theta}\mathcal{S}_{r}}{N_{t}^{2}}\right)+\chi_{N_{r}}\phi_{\theta}\phi_{r}, [𝐐¯]2,2=χNtr2cos2θ(𝒮r2Nt𝒮r2Nt2)+χNrϕr2[\overline{\mathbf{Q}}]_{2,2}=\frac{\chi_{N_{t}}}{r^{2}\cos^{2}\theta}\left(\frac{\mathcal{S}_{r^{2}}}{N_{t}}-\frac{\mathcal{S}_{r}^{2}}{N_{t}^{2}}\right)+\chi_{N_{r}}\phi_{r}^{2}, and {𝒮θ2,𝒮θ,𝒮r2,𝒮r,𝒮θr}\left\{{\mathcal{S}}_{\theta^{2}},{\mathcal{S}}_{\theta},{\mathcal{S}}_{r^{2}},{\mathcal{S}}_{r},{\mathcal{S}}_{\theta r}\right\} can be found in Proposition III.1.

Corollary III.7

Recalling Corollary III.5, which establishes a linear ratio between the sum formulas of the two array layouts depicted in Fig. 2(a) and (b), we observe that they have the same normalized Fisher matrix. This implies that the difference in their CRBs is solely reflected in the received SNR. Consequently, the ratio KK\frac{K}{K^{\prime}} mentioned in Corollary III.5 also applies to the CRBs of the two array layouts. In other words, we have CRBθ/rCRBθ/r=KK\frac{\textbf{CRB}^{\prime}_{\theta/r}}{\textbf{CRB}_{\theta/r}}=\frac{K}{K^{\prime}}, where CRBθ/r\textbf{CRB}^{\prime}_{\theta/r} represents the angle/range CRB of layout 2.

Proof: Denoted by 𝐐¯\overline{\mathbf{Q}}^{\prime} the CRB matrix of layout 2 in Fig. 2(b), similar to the derivation of 𝐐¯\overline{\mathbf{Q}}, we have [𝐐¯]1,1=χNt(𝒮θ2Nt(𝒮θ)2(Nt)2)+χNrϕθ2[\overline{\mathbf{Q}}^{\prime}]_{1,1}=\chi_{N_{t}}\left(\frac{\mathcal{S}^{\prime}_{\theta^{2}}}{N_{t}^{\prime}}-\frac{(\mathcal{S}_{\theta}^{\prime})^{2}}{(N_{t}^{\prime})^{2}}\right)+\chi_{N_{r}}\phi_{\theta}^{2}, [𝐐¯]1,2=[𝐐¯]2,1=χNtrcosθ(𝒮θrNt𝒮θ𝒮r(Nt)2)+χNrϕθϕr[\overline{\mathbf{Q}}^{\prime}]_{1,2}=[\overline{\mathbf{Q}}^{\prime}]_{2,1}=\frac{\chi_{N_{t}}}{r\cos\theta}\left(\frac{\mathcal{S}^{\prime}_{\theta r}}{N_{t}^{\prime}}-\frac{\mathcal{S}^{\prime}_{\theta}\mathcal{S}^{\prime}_{r}}{(N_{t}^{\prime})^{2}}\right)+\chi_{N_{r}}\phi_{\theta}\phi_{r}, and [𝐐¯]2,2=χNtr2cos2θ(𝒮r2Nt(𝒮r)2(Nt)2)+χNrϕr2[\overline{\mathbf{Q}}^{\prime}]_{2,2}=\frac{\chi_{N^{\prime}_{t}}}{r^{2}\cos^{2}\theta}\left(\frac{\mathcal{S}^{\prime}_{r^{2}}}{N^{\prime}_{t}}-\frac{(\mathcal{S}_{r}^{\prime})^{2}}{(N_{t}^{\prime})^{2}}\right)+\chi_{N_{r}}\phi_{r}^{2}, where NtKMN_{t}^{\prime}\triangleq K^{\prime}M. Then, according to the linear ratio in Corollary III.5, the equation holds as

𝒮θ2Nt=KK𝒮θ2KM=𝒮θ2Nt.\frac{\mathcal{S}^{\prime}_{\theta^{2}}}{N_{t}^{\prime}}=\frac{\frac{K^{\prime}}{K}\mathcal{S}_{\theta^{2}}}{K^{\prime}M}=\frac{\mathcal{S}_{\theta^{2}}}{N_{t}}. (34)

Similarly, {𝒮θNt,𝒮rNt,𝒮θrNt,𝒮r2Nt}\left\{\frac{\mathcal{S}^{\prime}_{\theta}}{N_{t}^{\prime}},\frac{\mathcal{S}^{\prime}_{r}}{N_{t}^{\prime}},\frac{\mathcal{S}^{\prime}_{\theta r}}{N_{t}^{\prime}},\frac{\mathcal{S}^{\prime}_{r^{2}}}{N_{t}^{\prime}}\right\} are equal to {𝒮θNt,𝒮rNt,𝒮θrNt,𝒮r2Nt}\left\{\frac{\mathcal{S}_{\theta}}{N_{t}},\frac{\mathcal{S}_{r}}{N_{t}},\frac{\mathcal{S}_{\theta r}}{N_{t}},\frac{\mathcal{S}_{r^{2}}}{N_{t}}\right\}, respectively. Moreover, noting that β\beta is different for the two array layouts, where β=αNrNt\beta=\alpha\sqrt{N_{r}N_{t}} for layout 1 and β=αNrNt\beta^{\prime}=\alpha\sqrt{N_{r}N_{t}^{\prime}} for layout 2. Hence

CRBθCRBθ=CRBrCRBr=|β|2|β|2=KK.\frac{\textbf{CRB}_{\theta}^{\prime}}{\textbf{CRB}_{\theta}}=\frac{\textbf{CRB}_{r}^{\prime}}{\textbf{CRB}_{r}}=\frac{|\beta|^{2}}{|\beta^{\prime}|^{2}}=\frac{K}{K^{\prime}}. (35)

It can be observed that increasing the number of subarrays in layout 2 leads to a linear improvement in CRB performance. Additionally, we can deduce that when D<KDKD^{\prime}<\frac{KD}{K^{\prime}}, the ratio CRBθ/rCRBθ/r>KK\frac{\textbf{CRB}_{\theta/r}^{\prime}}{\textbf{CRB}_{\theta/r}}>\frac{K}{K^{\prime}}. This implies that increasing the inter-subarray spacing can decrease the CRB, resulting in improved performance. \blacksquare

Corollary III.8

When θ=0\theta=0, according to Proposition III.2 and Corollary III.4, the closed-form CRBs can be represented by ψ0\psi_{0} and Δψ\Delta_{\psi}:

CRBθ(ψ0,Δψ,θ=0)=\displaystyle\textbf{CRB}_{\theta}(\psi_{0},\Delta_{\psi},\theta=0)= (36)
σn22|β|214π2r2λ2𝒮θ2(ψ0,Δψ,θ=0)Nt+π2d2(Nr21)3λ2r2(Rr)2,\displaystyle\ \ \ \ \ \ \frac{\sigma_{n}^{2}}{2|\beta|^{2}}\frac{1}{\frac{4\pi^{2}r^{2}}{\lambda^{2}}\frac{\mathcal{S}_{\theta^{2}}(\psi_{0},\Delta_{\psi},\theta=0)}{N_{t}}+\frac{\pi^{2}d^{2}(N_{r}^{2}-1)}{3\lambda^{2}}\frac{r^{2}}{(R-r)^{2}}},
CRBr(ψ0,Δψ,θ=0)=\displaystyle\textbf{CRB}_{r}(\psi_{0},\Delta_{\psi},\theta=0)= (37)
σn22|β|214π2λ2(𝒮r2(ψ0,Δψ,θ=0)Nt(𝒮r(ψ0,Δψ,θ=0))2Nt2),\displaystyle\ \ \ \ \ \ \frac{\sigma_{n}^{2}}{2|\beta|^{2}}\frac{1}{\frac{4\pi^{2}}{\lambda^{2}}\left(\frac{\mathcal{S}_{r^{2}}(\psi_{0},\Delta_{\psi},\theta=0)}{N_{t}}-\frac{(\mathcal{S}_{r}(\psi_{0},\Delta_{\psi},\theta=0))^{2}}{N_{t}^{2}}\right)},

where 𝒮θ2(ψ0,Δψ,θ=0)\mathcal{S}_{\theta^{2}}(\psi_{0},\Delta_{\psi},\theta=0), 𝒮r2(ψ0,Δψ,θ=0)\mathcal{S}_{r^{2}}(\psi_{0},\Delta_{\psi},\theta=0), and 𝒮r(ψ0,Δψ,θ=0)\mathcal{S}_{r}(\psi_{0},\Delta_{\psi},\theta=0) can be obtained by Corollary III.4.

Proof: Recalling Corollary III.4, we have discussed the case of θ=0\theta=0 for calculating {𝒮θ2,𝒮θ,𝒮r2,𝒮r,𝒮θr}\left\{{\mathcal{S}}_{\theta^{2}},{\mathcal{S}}_{\theta},{\mathcal{S}}_{r^{2}},{\mathcal{S}}_{r},{\mathcal{S}}_{\theta r}\right\}. From this analysis, important results are obtained: 𝒮θ=𝒮θr=0\mathcal{S}_{\theta}=\mathcal{S}_{\theta r}=0, 𝒮θ2=2ΔDΔd(Gθ2(ψ0+Δψ2)Gθ2(ψ0Δψ2))\mathcal{S}_{\theta^{2}}=\frac{2}{\Delta_{D}\Delta_{d}}\left(G_{\theta^{2}}(\frac{\psi_{0}+\Delta_{\psi}}{2})-G_{\theta^{2}}(\frac{\psi_{0}-\Delta_{\psi}}{2})\right), and 𝒮r=2ΔDΔd(Gr(ψ0+Δψ2)Gr(ψ0Δψ2))\mathcal{S}_{r}=\frac{2}{\Delta_{D}\Delta_{d}}\left(G_{r}(\frac{\psi_{0}+\Delta_{\psi}}{2})-G_{r}(\frac{\psi_{0}-\Delta_{\psi}}{2})\right). Additionally, according to Eqn. (25), ϕr=0\phi_{r}=0 at θ=0\theta=0. Thus, considering 𝐐¯\overline{\mathbf{Q}} at θ=0\theta=0 can derive Eqs. (36) and (37). \blacksquare

Remark III.9

According to Corollary III.8, some obvious conclusions regarding the RX parameter can be observed. It is worth noting that in Eqn. (36), as rr approaches RR, the CRBθ\textbf{CRB}_{\theta} tends to 0. Moreover, when θ=0\theta=0, it follows that ϕr=0\phi_{r}=0, resulting in the normalized range CRB being independent of the RX parameter.

We are also interested in comparing the WSMS with the UA layout, which has the same aperture and number of antennas. Directly analyzing the difference in CRBs between these two array layouts is challenging. Therefore, we leverage the subarray structure to compare the CRBs of WSMSs and UAs. First, it is important to note that when the inter-subarray spacing D0D_{0} is equal to the intra-subarray spacing dd, the WSMS degenerates into a UA.

Proposition III.10

We consider the WSMS and UA layouts with the same array aperture and antenna number. For the UA, the inter-element spacing is set to d=D(K1)+d(M1)KM1d^{\prime}=\frac{D(K-1)+d(M-1)}{KM-1}, as shown in Fig. 2(c). We find that when θ=0\theta=0, the CRBs of the two layouts satisfy CRBθWSMS<CRBθUA\textbf{CRB}^{\rm WSMS}_{\theta}<\textbf{CRB}^{\rm UA}_{\theta}444Here, we focus on the special case of θ=0\theta=0 for the angle CRB, and the theoretical analysis for general cases of angle/range CRB remains open for future exploration..

Proof: Despite the uniform distribution of antenna elements in UAs, we consider the KK subarray structure with MM elements in each subarray and the inter-subarray spacing MdMd^{\prime}, where dD(K1)+d(M1)KM1d^{\prime}\triangleq\frac{D(K-1)+d(M-1)}{KM-1}. According to Proposition III.2 and Corollary III.4, we can use the angular spans ψ0\psi_{0}^{\prime} and Δψ\Delta_{\psi}^{\prime} to characterize the CRB. As shown in Fig. 2, it can be observed that ψ0+Δψ=ψ0+Δψ\psi_{0}^{\prime}+\Delta_{\psi}^{\prime}=\psi_{0}+\Delta_{\psi} and ψ0Δψ<ψ0Δψ\psi_{0}^{\prime}-\Delta_{\psi}^{\prime}<\psi_{0}-\Delta_{\psi}. Recalling Eqn. (36), our aim is to prove 𝒮θ2(ψ0,Δψ,θ=0)>𝒮θ2(ψ0,Δψ,θ=0)\mathcal{S}_{\theta^{2}}(\psi_{0},\Delta_{\psi},\theta=0)>\mathcal{S}_{\theta^{2}}(\psi_{0}^{\prime},\Delta_{\psi}^{\prime},\theta=0), which is equivalent to proving

Gθ2(ψ0+Δψ2)Gθ2(ψ0Δψ2)\displaystyle G_{\theta^{2}}\left(\frac{\psi_{0}+\Delta_{\psi}}{2}\right)-G_{\theta^{2}}\left(\frac{\psi_{0}-\Delta_{\psi}}{2}\right) (38)
Gθ2(ψ0+Δψ2)+Gθ2(ψ0Δψ2)>0.\displaystyle\ \ \ -G_{\theta^{2}}\left(\frac{\psi_{0}^{\prime}+\Delta_{\psi}^{\prime}}{2}\right)+G_{\theta^{2}}\left(\frac{\psi_{0}^{\prime}-\Delta_{\psi}^{\prime}}{2}\right)>0.

Since when θ=0\theta=0, dGθ2(ψ)dψ=2ψ12tanψψsec2ψ<0\frac{{\rm d}G_{\theta^{2}}(\psi)}{{\rm d}\psi}=2\psi-\frac{1}{2}\tan\psi-\psi\sec^{2}\psi<0 at ψ(0,π2]\psi\in(0,\frac{\pi}{2}], Gθ2(ψ)G_{\theta^{2}}(\psi) is a monotonically decreasing function on this interval. Considering ψ0+Δψ=ψ0+Δψ\psi_{0}^{\prime}+\Delta_{\psi}^{\prime}=\psi_{0}+\Delta_{\psi} and ψ0Δψ<ψ0Δψ\psi_{0}^{\prime}-\Delta_{\psi}^{\prime}<\psi_{0}-\Delta_{\psi}, we conclude that Eqn. (38) holds true. \blacksquare

IV CRBs for HSPW-WSMS

Although the array manifold 𝐛t(r,θ)\mathbf{b}_{t}(r,\theta) provides an accurate characterization of the near-field parameters, its complex expression renders it impractical for real-world systems. In this regard, the HSPW assumption is favored. Hence, the objective of this section is to derive closed-form expressions for the CRB under the HSPW assumption and compare them with the CRBs derived in the previous section.

IV-A Array Manifolds

Under the HSPW assumption, the intra-subarray and inter-subarray manifolds exhibit spherical and planar wavefronts, respectively. Thus, the TX array manifold 𝐠t\mathbf{g}_{t} can be constructed by 𝐠t𝐰(r,θ)𝐚t(θ)\mathbf{g}_{t}\triangleq\mathbf{w}(r,\theta)\otimes\mathbf{a}_{t}(\theta), with 𝐚t(θ)M×1\mathbf{a}_{t}(\theta)\in\mathbb{C}^{M\times 1} and 𝐰t(θ,r)K×1\mathbf{w}_{t}(\theta,r)\in\mathbb{C}^{K\times 1} denoting the far-field and near-field array responses, respectively. The expression for 𝐚t(θ)\mathbf{a}_{t}(\theta) is given by

𝐚t(θ)\displaystyle\mathbf{a}_{t}(\theta)\triangleq 1M[ejπλ(M1)dsinθ,,ejπλ(2mM+1)dsinθ,\displaystyle\sqrt{\frac{1}{M}}[e^{-j\frac{\pi}{\lambda}(M-1)d\sin\theta},\cdots,e^{j\frac{\pi}{\lambda}(2m-M+1)d\sin\theta}, (39)
,ejπλ(M1)dsinθ]T.\displaystyle\ \ \ \ \ \ \ \ \ \ \ \cdots,e^{j\frac{\pi}{\lambda}(M-1)d\sin\theta}]^{T}.

In addition, the kk-th element of 𝐰(r,θ)\mathbf{w}(r,\theta) is expressed by

[𝐰(r,θ)]k=1Kej2πλr22nkrsinθ+nk2,[\mathbf{w}(r,\theta)]_{k}=\sqrt{\frac{1}{K}}e^{-j\frac{2\pi}{\lambda}\sqrt{r^{2}-2n_{k}r\sin\theta+n_{k}^{2}}}, (40)

where nk2kK+12Dn_{k}\triangleq\frac{2k-K+1}{2}D, k{0,,K1}k\in\{0,\cdots,K-1\}.

IV-B CRB Derivation

IV-B1 Array Manifold Functions

Substituting the array manifold into Eqn. (7), we obtain the expression for 𝐡~\widetilde{\mathbf{h}} in the case of HSPW-based WSMS as follows:

𝐡~(𝐅~T(𝐰(r,θ)𝐚t(θ)))𝐚r(r,θ).\widetilde{\mathbf{h}}\triangleq\left(\widetilde{\mathbf{F}}^{T}\left(\mathbf{w}^{*}(r,\theta)\otimes\mathbf{a}^{*}_{t}(\theta)\right)\right)\otimes\mathbf{a}_{r}(r,\theta). (41)

As Section III-B1, the orthogonal training matrix meets 𝐅~𝐅~T=𝐈Nt\widetilde{\mathbf{F}}^{*}\widetilde{\mathbf{F}}^{T}=\mathbf{I}_{N_{t}}. Besides, we can know that the 2-norm of the array manifold equals to 11, i.e., 𝐚r(r,θ)22=𝐚t(θ)22=𝐰(r,θ)22=1\left\|\mathbf{a}_{r}(r,\theta)\right\|^{2}_{2}=\left\|\mathbf{a}_{t}(\theta)\right\|^{2}_{2}=\left\|\mathbf{w}(r,\theta)\right\|^{2}_{2}=1. Therefore, the calculations regarding the derivative of 𝐡~\widetilde{\mathbf{h}} are described as Eqs. (42)-(46):

𝐡~θ22\displaystyle\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right\|^{2}_{2} =𝐰(r,θ)θ22+𝐚t(θ)θ22+𝐚r(r,θ)θ22\displaystyle=\left\|\frac{\mathbf{w}^{*}(r,\theta)}{\partial\theta}\right\|^{2}_{2}+\left\|\frac{\mathbf{a}_{t}^{*}(\theta)}{\partial\theta}\right\|^{2}_{2}+\left\|\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial\theta}\right\|^{2}_{2} (42)
+2{𝐰T(r,θ)θ𝐰(r,θ)𝐚rH(r,θ)𝐚r(r,θ)θ}\displaystyle+2\Re\left\{\frac{\partial\mathbf{w}^{T}(r,\theta)}{\partial\theta}\mathbf{w}^{*}(r,\theta)\mathbf{a}^{H}_{r}(r,\theta)\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial\theta}\right\}
+2{𝐰T(r,θ)θ𝐰(r,θ)𝐚tT(θ)𝐚t(θ)θ}\displaystyle+2\Re\left\{\frac{\partial\mathbf{w}^{T}(r,\theta)}{\partial\theta}\mathbf{w}^{*}(r,\theta)\mathbf{a}^{T}_{t}(\theta)\frac{\partial\mathbf{a}^{*}_{t}(\theta)}{\partial\theta}\right\}
+2{𝐚tT(θ)θ𝐚t(θ)𝐚rH(r,θ)𝐚r(r,θ)θ},\displaystyle+2\Re\left\{\frac{\partial\mathbf{a}^{T}_{t}(\theta)}{\partial\theta}\mathbf{a}^{*}_{t}(\theta)\mathbf{a}^{H}_{r}(r,\theta)\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial\theta}\right\},
𝐡~r22\displaystyle\left\|\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right\|^{2}_{2} =2{𝐰T(r,θ)r𝐰(r,θ)𝐚rH(r,θ)𝐚r(r,θ)r}\displaystyle=2\Re\left\{\frac{\partial\mathbf{w}^{T}(r,\theta)}{\partial r}\mathbf{w}^{*}(r,\theta)\mathbf{a}^{H}_{r}(r,\theta)\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial r}\right\} (43)
+𝐰(r,θ)r22+𝐚r(r,θ)r22,\displaystyle\ \ \ +\left\|\frac{\mathbf{w}^{*}(r,\theta)}{\partial r}\right\|^{2}_{2}+\left\|\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial r}\right\|^{2}_{2},
(𝐡~θ)H𝐡~\displaystyle\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\widetilde{\mathbf{h}} =𝐰T(r,θ)θ𝐰(r,θ)+𝐚tT(θ)θ𝐚t(θ)\displaystyle=\frac{\partial\mathbf{w}^{T}(r,\theta)}{\partial\theta}\mathbf{w}^{*}(r,\theta)+\frac{\partial\mathbf{a}_{t}^{T}(\theta)}{\partial\theta}\mathbf{a}_{t}^{*}(\theta) (44)
+𝐚rH(r,θ)θ𝐚r(r,θ),\displaystyle\ \ \ +\frac{\partial\mathbf{a}^{H}_{r}(r,\theta)}{\partial\theta}\mathbf{a}_{r}(r,\theta),
(𝐡~r)H𝐡~\displaystyle\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial r}\right)^{H}\widetilde{\mathbf{h}} =𝐰T(r,θ)r𝐰(r,θ)+𝐚rH(r,θ)r𝐚r(r,θ),\displaystyle=\frac{\partial\mathbf{w}^{T}(r,\theta)}{\partial r}\mathbf{w}^{*}(r,\theta)+\frac{\partial\mathbf{a}^{H}_{r}(r,\theta)}{\partial r}\mathbf{a}_{r}(r,\theta), (45)
(𝐡~θ)H𝐡~r=𝐰T(r,θ)θ𝐰(r,θ)r+𝐰T(r,θ)θ𝐰(r,θ)\displaystyle\left(\frac{\partial\widetilde{\mathbf{h}}}{\partial\theta}\right)^{H}\frac{\partial\widetilde{\mathbf{h}}}{\partial r}=\frac{\partial\mathbf{w}^{T}(r,\theta)}{\partial\theta}\frac{\partial\mathbf{w}^{*}(r,\theta)}{\partial r}+\frac{\partial\mathbf{w}^{T}(r,\theta)}{\partial\theta}\mathbf{w}^{*}(r,\theta) (46)
×𝐚rH(r,θ)𝐚r(r,θ)r+𝐰T(r,θ)𝐰(r,θ)r𝐚tT(θ)θ𝐚t(θ)\displaystyle\ \ \ \times\mathbf{a}^{H}_{r}(r,\theta)\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial r}+\mathbf{w}^{T}(r,\theta)\frac{\partial\mathbf{w}^{*}(r,\theta)}{\partial r}\frac{\partial\mathbf{a}_{t}^{T}(\theta)}{\partial\theta}\mathbf{a}_{t}^{*}(\theta)
+𝐚tT(θ)θ𝐚t(θ)𝐚rH(r,θ)𝐚r(r,θ)r+𝐰T(r,θ)𝐰(r,θ)r\displaystyle\ \ \ +\frac{\partial\mathbf{a}_{t}^{T}(\theta)}{\partial\theta}\mathbf{a}_{t}^{*}(\theta)\mathbf{a}^{H}_{r}(r,\theta)\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial r}+\mathbf{w}^{T}(r,\theta)\frac{\partial\mathbf{w}^{*}(r,\theta)}{\partial r}
×𝐚rH(r,θ)θ𝐚r(r,θ)+𝐚rH(r,θ)θ𝐚r(r,θ)r.\displaystyle\ \ \ \times\frac{\partial\mathbf{a}^{H}_{r}(r,\theta)}{\partial\theta}\mathbf{a}_{r}(r,\theta)+\frac{\partial\mathbf{a}^{H}_{r}(r,\theta)}{\partial\theta}\frac{\partial\mathbf{a}_{r}(r,\theta)}{\partial r}.

IV-C Calculation of sum formulas

To further derive Eqs. (42)-(46), we first give the derivative expression of 𝐚t(θ)\mathbf{a}_{t}(\theta) and 𝐰(r,θ)\mathbf{w}(r,\theta) w.r.t. θ\theta and rr as

[𝐚t(θ)θ]m=jπ(2mM+1)dcosθλ[𝐚t(θ)]m,\left[\frac{\partial\mathbf{a}_{t}(\theta)}{\partial\theta}\right]_{m}=j\frac{\pi(2m-M+1)d\cos\theta}{\lambda}\left[\mathbf{a}_{t}(\theta)\right]_{m}, (47)
[𝐰(r,θ)θ]k=j2πλnkrcosθrk[𝐰(r,θ)]k,\left[\frac{\partial\mathbf{w}(r,\theta)}{\partial\theta}\right]_{k}=j\frac{2\pi}{\lambda}\frac{n_{k}r\cos\theta}{\sqrt{r_{k}}}\left[\mathbf{w}(r,\theta)\right]_{k}, (48)
[𝐰(r,θ)r]k=j2πλnksinθrrk[𝐰(r,θ)]k,\left[\frac{\partial\mathbf{w}(r,\theta)}{\partial r}\right]_{k}=j\frac{2\pi}{\lambda}\frac{n_{k}\sin\theta-r}{\sqrt{r_{k}}}\left[\mathbf{w}(r,\theta)\right]_{k}, (49)

where m{1,,M}m\in\{1,\cdots,M\}, k{1,,K}k\in\{1,\cdots,K\}, and rkr22nkrsinθ+nk2r_{k}\triangleq r^{2}-2n_{k}r\sin\theta+n_{k}^{2}.

Since the TX array manifold 𝐠t\mathbf{g}_{t} is the Kronecker product of 𝐰(r,θ)\mathbf{w}(r,\theta) and at(θ)a_{t}(\theta), its deriatives can be expressed by

𝐠tθ=𝐰(r,θ)𝐚t(θ)θ+𝐰(r,θ)θ𝐚t(θ),\frac{\partial\mathbf{g}_{t}}{\partial\theta}=\mathbf{w}(r,\theta)\otimes\frac{\partial\mathbf{a}_{t}(\theta)}{\partial\theta}+\frac{\partial\mathbf{w}(r,\theta)}{\partial\theta}\otimes\mathbf{a}_{t}(\theta), (50)
𝐠tr=𝐰(r,θ)r𝐚t(θ).\frac{\partial\mathbf{g}_{t}}{\partial r}=\frac{\partial\mathbf{w}(r,\theta)}{\partial r}\otimes\mathbf{a}_{t}(\theta). (51)

According to this, the TX AMFs w.r.t. 𝐠tθ\frac{\partial\mathbf{g}_{t}}{\partial\theta} and 𝐠tr\frac{\partial\mathbf{g}_{t}}{\partial r} can be expressed by 𝐰(r,θ)r\frac{\partial\mathbf{w}(r,\theta)}{\partial r}, 𝐰(r,θ)θ\frac{\partial\mathbf{w}(r,\theta)}{\partial\theta}, and 𝐚t(θ)θ\frac{\partial\mathbf{a}_{t}(\theta)}{\partial\theta}. In this case, the TX sum formulas can be obtained following the similar derivation of Eqn. (26): 𝐰(r,θ)θ22=4π2r2cos2θλ2K𝒮~θ2\left\|\frac{\mathbf{w}^{*}(r,\theta)}{\partial\theta}\right\|^{2}_{2}=\frac{4\pi^{2}r^{2}\cos^{2}\theta}{\lambda^{2}K}\widetilde{\mathcal{S}}_{\theta^{2}}, 𝐰(r,θ)r22=4π2Kλ2𝒮~r2\left\|\frac{\partial\mathbf{w}^{*}(r,\theta)}{\partial r}\right\|^{2}_{2}=\frac{4\pi^{2}}{K\lambda^{2}}\widetilde{\mathcal{S}}_{r^{2}}, 𝐰T(r,θ)θ𝐰(r,θ)=j2πrcosθλK𝒮~θ\frac{\partial\mathbf{w}^{T}(r,\theta)}{\partial\theta}\mathbf{w}^{*}(r,\theta)=j\frac{2\pi r\cos\theta}{\lambda K}\widetilde{\mathcal{S}}_{\theta}, 𝐰T(r,θ)r𝐰(r,θ)=j2πλK𝒮~r\frac{\partial\mathbf{w}^{T}(r,\theta)}{\partial r}\mathbf{w}^{*}(r,\theta)=j\frac{2\pi}{\lambda K}\widetilde{\mathcal{S}}_{r}, and 𝐰T(r,θ)θ𝐰(r,θ)r=4π2rcosθλ2K𝒮~θr\frac{\partial\mathbf{w}^{T}(r,\theta)}{\partial\theta}\frac{\partial\mathbf{w}^{*}(r,\theta)}{\partial r}=\frac{4\pi^{2}r\cos\theta}{\lambda^{2}K}\widetilde{\mathcal{S}}_{\theta r}. Furthermore, 𝐚t(θ)θ22=π2d2cos2θ(M21)3λ2\left\|\frac{\partial\mathbf{a}_{t}(\theta)}{\partial\theta}\right\|^{2}_{2}=\frac{\pi^{2}d^{2}\cos^{2}\theta(M^{2}-1)}{3\lambda^{2}} and 𝐚tH(r,θ)𝐚t(r,θ)θ=0\mathbf{a}^{H}_{t}(r,\theta)\frac{\partial\mathbf{a}_{t}(r,\theta)}{\partial\theta}=0 can be easily obtained.

Similar to Proposition III.1, {𝒮~θ2,𝒮~θ,𝒮~r2,𝒮~r,𝒮~θr}\left\{\widetilde{\mathcal{S}}_{\theta^{2}},\widetilde{\mathcal{S}}_{\theta},\widetilde{\mathcal{S}}_{r^{2}},\widetilde{\mathcal{S}}_{r},\widetilde{\mathcal{S}}_{\theta r}\right\} can be accurately solved by the midpoint Riemann sum, as explained in Appendix B. However, the results in Appendix B has a limit insight for the CRB parameters. However, the insights provided by the results in Appendix B are limited in terms of the CRB parameters. In fact, these parameters can be better understood and represented by the angular span ψ0\psi_{0}, as described in the following proposition.

Proposition IV.1

Based on Proposition III.2 and Corollary III.4, {𝒮~θ2,𝒮~θ,𝒮~r2,𝒮~r,𝒮~θr}\left\{\widetilde{\mathcal{S}}_{\theta^{2}},\widetilde{\mathcal{S}}_{\theta},\widetilde{\mathcal{S}}_{r^{2}},\widetilde{\mathcal{S}}_{r},\widetilde{\mathcal{S}}_{\theta r}\right\} can be represented by the span angular ψ0\psi_{0}. In particular, when θ=0\theta=0, the simplified expressions w.r.t. ψ0\psi_{0} are given by

𝒮~θ2(ψ0,θ=0)=KKψ02tanψ02,\displaystyle\widetilde{\mathcal{S}}_{\theta^{2}}(\psi_{0},\theta=0)=K-\frac{K\psi_{0}}{2\tan\frac{\psi_{0}}{2}}, (52)
𝒮~r2(ψ0,θ=0)=Kψ02tanψ02,\displaystyle\widetilde{\mathcal{S}}_{r^{2}}(\psi_{0},\theta=0)=\frac{K\psi_{0}}{2\tan\frac{\psi_{0}}{2}}, (53)
𝒮~r(ψ0,θ=0)=K2tanψ02ln1+sinψ021sinψ02,\displaystyle\widetilde{\mathcal{S}}_{r}(\psi_{0},\theta=0)=-\frac{K}{2\tan\frac{\psi_{0}}{2}}\ln\frac{1+\sin\frac{\psi_{0}}{2}}{1-\sin\frac{\psi_{0}}{2}}, (54)
𝒮~θr(ψ0,θ=0)=𝒮~θ(ψ0,θ=0)=0.\displaystyle\widetilde{\mathcal{S}}_{\theta r}(\psi_{0},\theta=0)=\widetilde{\mathcal{S}}_{\theta}(\psi_{0},\theta=0)=0. (55)

Proof: By invoking Eqn. (72) for example, we can examine the case of θ=0\theta=0, resulting in the expression: 𝒮~θ2(θ=0)=K1ΔDtan1(KΔD2)+1ΔDtan1(KΔD2).\widetilde{\mathcal{S}}_{\theta^{2}}(\theta=0)=K-\frac{1}{\Delta_{D}}\tan^{-1}\left(\frac{K\Delta_{D}}{2}\right)+\frac{1}{\Delta_{D}}\tan^{-1}\left(-\frac{K\Delta_{D}}{2}\right). Then, substituting KΔD2=ψ0\frac{K\Delta_{D}}{2}=\psi_{0} to obtain Eqn. (52). Similarly, Eqs. (53)-(54) can be derived. \blacksquare

Corollary IV.2

When ψ0π\psi_{0}\rightarrow\pi, indicating that KDr\frac{KD}{r}\rightarrow\infty, the asymptotic AMFs are given by: 𝒮~θ2(ψ0π,θ=0)=K\widetilde{\mathcal{S}}_{\theta^{2}}(\psi_{0}\rightarrow\pi,\theta=0)=K, 𝒮~r2(ψ0π,θ=0)=0\widetilde{\mathcal{S}}_{r^{2}}(\psi_{0}\rightarrow\pi,\theta=0)=0, and 𝒮~r(ψ0π,θ=0)=0\widetilde{\mathcal{S}}_{r}(\psi_{0}\rightarrow\pi,\theta=0)=0.

Corollary IV.3

When ψ00\psi_{0}\rightarrow 0, indicating that KDr0\frac{KD}{r}\rightarrow 0, the asymptotic AMFs are given by: 𝒮~θ2(ψ00,θ=0)=0\widetilde{\mathcal{S}}_{\theta^{2}}(\psi_{0}\rightarrow 0,\theta=0)=0, 𝒮~r2(ψ00,θ=0)=K\widetilde{\mathcal{S}}_{r^{2}}(\psi_{0}\rightarrow 0,\theta=0)=K, and 𝒮~r(ψ00,θ=0)=K\widetilde{\mathcal{S}}_{r}(\psi_{0}\rightarrow 0,\theta=0)=-K.

IV-D Closed-Form CRBs

Utilizing the previously derived AMFs and sum formulas, we can derive the expressions for each entry of the Fisher matrix 𝐐¯~\widetilde{\overline{\mathbf{Q}}}^{\prime}, yielding [𝐐¯~]1,1=4π2r2cos2θλ2K(𝒮~θ2𝒮~θ2K)+π2d2(M21)3λ2cos2θ+π2d2(Nr21)3λ2ϕθ2\left[\widetilde{\overline{\mathbf{Q}}}^{\prime}\right]_{1,1}=\frac{4\pi^{2}r^{2}\cos^{2}\theta}{\lambda^{2}K}\left(\widetilde{\mathcal{S}}_{\theta^{2}}-\frac{\widetilde{\mathcal{S}}^{2}_{\theta}}{K}\right)+\frac{\pi^{2}d^{2}(M^{2}-1)}{3\lambda^{2}}\cos^{2}\theta+\frac{\pi^{2}d^{2}(N_{r}^{2}-1)}{3\lambda^{2}}\phi_{\theta}^{2}, [𝐐¯~]2,2=4π2λ2K(𝒮~r2𝒮~r2K)+π2d2(Nr21)3λ2ϕr2\left[\widetilde{\overline{\mathbf{Q}}}^{\prime}\right]_{2,2}=\frac{4\pi^{2}}{\lambda^{2}K}\left(\widetilde{\mathcal{S}}_{r^{2}}-\frac{\widetilde{\mathcal{S}}^{2}_{r}}{K}\right)+\frac{\pi^{2}d^{2}(N_{r}^{2}-1)}{3\lambda^{2}}\phi_{r}^{2}, and [𝐐¯~]1,2=4π2rcosθλ2K(𝒮~θr𝒮~θ𝒮~rK)+π2d2(Nr21)3λ2ϕθϕr\left[\widetilde{\overline{\mathbf{Q}}}^{\prime}\right]_{1,2}=\frac{4\pi^{2}r\cos\theta}{\lambda^{2}K}\left(\widetilde{\mathcal{S}}_{\theta r}-\frac{\widetilde{\mathcal{S}}_{\theta}\widetilde{\mathcal{S}}_{r}}{K}\right)+\frac{\pi^{2}d^{2}(N_{r}^{2}-1)}{3\lambda^{2}}\phi_{\theta}\phi_{r}. Then, the closed-form CRBs w.r.t. θ\theta and rr, with the HPSW-based WSMS, are concluded.

Proposition IV.4

Denoted by χK4π2r2cos2θλ2{\chi}_{K}\triangleq\frac{4\pi^{2}r^{2}\cos^{2}\theta}{\lambda^{2}} and χMπ2d2(M21)3λ2{\chi}_{M}\triangleq\frac{\pi^{2}d^{2}(M^{2}-1)}{3\lambda^{2}}, the closed-form CRBs are given by

CRB~θ=\displaystyle\widetilde{\textbf{CRB}}_{\theta}= σn22|β|2χKr2cos2θ(𝒮~r2K𝒮~r2K2)+χNrϕr2det(𝐐¯~),\displaystyle\frac{\sigma_{n}^{2}}{2|\beta|^{2}}\frac{\frac{\chi_{K}}{r^{2}\cos^{2}\theta}\left(\frac{{\widetilde{\mathcal{S}}_{r^{2}}}}{K}-\frac{\widetilde{\mathcal{S}}_{r}^{2}}{K^{2}}\right)+\chi_{N_{r}}\phi_{r}^{2}}{{\rm det}({\widetilde{\overline{\mathbf{Q}}}^{\prime}})}, (56)
CRB~r=\displaystyle\widetilde{\textbf{CRB}}_{r}= σn22|β|2χK(𝒮~θ2K𝒮~θ2K2)+χMcos2θ+χNrϕθ2det(𝐐¯~),\displaystyle\frac{\sigma_{n}^{2}}{2|\beta|^{2}}\frac{\chi_{K}\left(\frac{\widetilde{\mathcal{S}}_{\theta^{2}}}{K}-\frac{\widetilde{\mathcal{S}}_{\theta}^{2}}{K^{2}}\right)+\chi_{M}\cos^{2}\theta+\chi_{N_{r}}\phi_{\theta}^{2}}{{\rm det}({\widetilde{\overline{\mathbf{Q}}}^{\prime}})}, (57)

where χNr\chi_{N_{r}}, ϕθ\phi_{\theta}, and ϕr\phi_{r} are defined in Proposition III.6, and [𝐐¯~]1,1=χK(𝒮~θ2K𝒮~θ2K2)+χMcos2θ+χNrϕθ2[\widetilde{\overline{\mathbf{Q}}}^{\prime}]_{1,1}=\chi_{K}\left(\frac{\widetilde{\mathcal{S}}_{\theta^{2}}}{K}-\frac{\widetilde{\mathcal{S}}_{\theta}^{2}}{K^{2}}\right)+\chi_{M}\cos^{2}\theta+\chi_{N_{r}}\phi_{\theta}^{2}, [𝐐¯~]1,2=[𝐐¯~]2,1=χKrcosθ(𝒮~θrK𝒮~θ𝒮~rK2)+χNrϕθϕr[\widetilde{\overline{\mathbf{Q}}}^{\prime}]_{1,2}=[\widetilde{\overline{\mathbf{Q}}}^{\prime}]_{2,1}=\frac{\chi_{K}}{r\cos\theta}\left(\frac{\widetilde{\mathcal{S}}_{\theta r}}{K}-\frac{\widetilde{\mathcal{S}}_{\theta}\widetilde{\mathcal{S}}_{r}}{K^{2}}\right)+\chi_{N_{r}}\phi_{\theta}\phi_{r}, and [𝐐¯~]2,2=χKr2cos2θ(𝒮~r2K𝒮~r2K2)+χNrϕr2[\widetilde{\overline{\mathbf{Q}}}^{\prime}]_{2,2}=\frac{\chi_{K}}{r^{2}\cos^{2}\theta}\left(\frac{{\widetilde{\mathcal{S}}_{r^{2}}}}{K}-\frac{\widetilde{\mathcal{S}}_{r}^{2}}{K^{2}}\right)+\chi_{N_{r}}\phi_{r}^{2}.

Remark IV.5

In comparison to the SW-based CRBs presented in Proposition III.6, the HSPW-based CRBs can be decomposed into the SW and PW components. χNt\chi_{N_{t}} is transformed into {χK,χM}\{\chi_{K},\chi_{M}\}, and 𝒮θ2Nt𝒮θ2Nt2\frac{\mathcal{S}_{\theta^{2}}}{N_{t}}-\frac{\mathcal{S}_{\theta}^{2}}{N_{t}^{2}} is transformed into {𝒮~θ2K𝒮~θ2K2,cos2θ}\left\{\frac{\widetilde{\mathcal{S}}{\theta^{2}}}{K}-\frac{\widetilde{\mathcal{S}}{\theta}^{2}}{K^{2}},\cos^{2}\theta\right\}. It is important to note that the PW component exists only in [𝐐¯~]1,1\left[\widetilde{\overline{\mathbf{Q}}}^{\prime}\right]_{1,1}, and it significantly affects the angle CRB. This is because the PW array manifold factor does not depend on the range and therefore has a limited contribution to range sensing.

Corollary IV.6

Similar to Corollary III.7, the CRBs of the two layouts with HSPW also satisfy the linear ratio:

CRB~θCRB~θ=CRB~rCRB~r=KK.\frac{\widetilde{\textbf{CRB}}_{\theta}^{\prime}}{\widetilde{\textbf{CRB}}_{\theta}}=\frac{\widetilde{\textbf{CRB}}_{r}^{\prime}}{\widetilde{\textbf{CRB}}_{r}}=\frac{K}{K^{\prime}}. (58)
Corollary IV.7

According to Proposition III.2 and Corollary III.4, the closed-form CRB can be represented by ψ0\psi_{0} at θ=0\theta=0.

CRB~θ(ψ0,θ=0)=\displaystyle\widetilde{\textbf{CRB}}_{\theta}(\psi_{0},\theta=0)= (59)
σn2λ28|β|2π21r2r2ψ02tanψ02+d2(M21)12+d2(Nr21)12r2(Rr)2,\displaystyle\frac{\sigma_{n}^{2}\lambda^{2}}{8|\beta|^{2}\pi^{2}}\frac{1}{r^{2}-\frac{r^{2}\psi_{0}}{2\tan\frac{\psi_{0}}{2}}+\frac{d^{2}(M^{2}-1)}{12}+\frac{d^{2}(N_{r}^{2}-1)}{12}\frac{r^{2}}{(R-r)^{2}}},
CRBr(ψ0,θ=0)=\displaystyle\textbf{CRB}_{r}(\psi_{0},\theta=0)= (60)
σn2λ28|β|2π21(ψ02tanψ0212tan2ψ02(ln1+sinψ021sinψ02)2),\displaystyle\ \ \ \ \ \frac{\sigma_{n}^{2}\lambda^{2}}{8|\beta|^{2}\pi^{2}}\frac{1}{\left(\frac{\psi_{0}}{2\tan\frac{\psi_{0}}{2}}-\frac{1}{2\tan^{2}\frac{\psi_{0}}{2}}\left(\ln\frac{1+\sin\frac{\psi_{0}}{2}}{1-\sin\frac{\psi_{0}}{2}}\right)^{2}\right)},

where 𝒮θ2(ψ0,θ=0)\mathcal{S}_{\theta^{2}}(\psi_{0},\theta=0), 𝒮r2(ψ0,θ=0)\mathcal{S}_{r^{2}}(\psi_{0},\theta=0), and 𝒮r(ψ0,θ=0)\mathcal{S}_{r}(\psi_{0},\theta=0) can be found in Eqs. (52)-(54).

Proof: Based on Proposition IV.1, and ϕr=0\phi_{r}=0 at θ=0\theta=0, we can derive 𝐐¯~\widetilde{\overline{\mathbf{Q}}} at θ=0\theta=0 to obtain Eqs. (59) and (60). \blacksquare

In light of Corollary IV.2, IV.3, and IV.7, the asymptotic CRBs at θ=0\theta=0 are derived as follows.

Corollary IV.8

When ψ0π\psi_{0}\rightarrow\pi, the asymptotic CRBs are given by

CRB~θ(ψ0π,θ=0)=\displaystyle\widetilde{\textbf{CRB}}_{\theta}(\psi_{0}\rightarrow\pi,\theta=0)= (61)
σn2λ28|β|2π21r2+d2(M21)12+d2(Nr21)12r2(Rr)2,\displaystyle\ \ \ \ \ \frac{\sigma_{n}^{2}\lambda^{2}}{8|\beta|^{2}\pi^{2}}\frac{1}{r^{2}+\frac{d^{2}(M^{2}-1)}{12}+\frac{d^{2}(N_{r}^{2}-1)}{12}\frac{r^{2}}{(R-r)^{2}}},
CRB~r(ψ0π,θ=0).\widetilde{\textbf{CRB}}_{r}(\psi_{0}\rightarrow\pi,\theta=0)\rightarrow\infty. (62)
Corollary IV.9

When ψ00\psi_{0}\rightarrow 0, the asymptotic CRBs are given by

CRB~θ(ψ00,θ=0)=σn2λ28|β|2π21d2(M21)12+d2(Nr21)12r2(Rr)2,\widetilde{\textbf{CRB}}_{\theta}(\psi_{0}\rightarrow 0,\theta=0)=\frac{\sigma_{n}^{2}\lambda^{2}}{8|\beta|^{2}\pi^{2}}\frac{1}{\frac{d^{2}(M^{2}-1)}{12}+\frac{d^{2}(N_{r}^{2}-1)}{12}\frac{r^{2}}{(R-r)^{2}}}, (63)
CRB~r(ψ00,θ=0).\widetilde{\textbf{CRB}}_{r}(\psi_{0}\rightarrow 0,\theta=0)\rightarrow\infty. (64)

V Simulation Results

In this section, we present the results of our simulations aimed at investigating the impact of various factors on angle/range CRB performance for WSMSs. The general parameter setting is described as follows: the system frequency is 100100 GHz, the transmit SNR 1σn2\frac{1}{\sigma^{2}_{n}} is set to 0 dB, M=128M=128, and D02Iλ2D_{0}\triangleq 2^{I}\cdot\frac{\lambda}{2} with II controlling the inter-subarray spacing. Particularly, when I=0I=0, the WSMS degenerates to the DUA.

  • SW-WSMS: Directly calculating the sum formulas for the SW-WSMS.

  • SW-WSMS Approx.: Approximating the sum formulas using the midpoint Riemann sum for the SW-WSMS (closed-form Eqns. (32) and (33)).

  • HSPW-WSMS: Directly calculating the sum formulas for the HSPW-WSMS.

  • HSPW-WSMS Approx.: Approximating the sum formulas using the midpoint Riemann sum for the HSPW-WSMS (closed-form Eqns. (56) and (57)).

  • PW-WSMS: Directly calculating the sum formulas for the PW-WSMS.

  • SW-UA: Directly calculating the sum formulas for the SW-UA.

  • SW-DUA: Directly calculating the sum formulas for the SW-DUA.

Refer to caption
(a) Root CRBθ\textbf{CRB}_{\theta}
Refer to caption
(b) Root CRBr\textbf{CRB}_{r}
Figure 3: The root CRBs of SW-WSMS and SW-WSMS Approx. with different KK and rr.

Given that the closed-form CRBs have some degree of approximation due to the approximate integral transformed by the Riemann sum, we initially focus on evaluating the approximation error. For this purpose, we set Nr=1N_{r}=1 and θ=π/4\theta=\pi/4, with K{3,6,9,12}K\in\{3,6,9,12\}, where NrN_{r} is set to 11 to disregard the influence of RX on CRB. In Fig. 3 (a) and (b), presented results depict the examination of the range r[2,50]r\in[2,50]. It is observed that as rr increases, the range CRB also increases, while the angle CRB displays the opposite behavior by decreasing as rr increases. This disparity is attributed to the opposing impact of the near-field effect on angle and range estimation. As rr grows larger, the SW faces challenges in accurately sensing the range, resulting in an increase in the range CRB. Notably, the angle and range CRBs of SW-HSPW and SW-HSPW Approx. converge as KK increases. When KK is small, there exists a marginal error between the CRBs of these two schemes, which can be neglected. Overall, SW-HSPW Approx. proves to be sufficiently accurate in approximating SW-HSPW, especially when KK is not small. This also applies for HSPW-HSPW Approx. and HSPW-HSPW.

Refer to caption
(a) Root CRBθ\textbf{CRB}_{\theta}, θ=π/4\theta=\pi/4
Refer to caption
(b) Root CRBr\textbf{CRB}_{r}, θ=π/4\theta=\pi/4
Figure 4: The root CRBs of SW-/HSPW-/PW-WSMW with different {K,I,r}\{K,I,r\}.

Due to the inevitable error caused by the model assumption, specifically PW-WSMS and HSPW-WSMS, it is essential to evaluate the magnitude of this error by comparing their CRBs with the CRB of the SW-WSMS. In this scenario, the parameters are set as Nr=1N_{r}=1, θ[1.5,1.5]\theta\in[-1.5,1.5], and r[2,50]r\in[2,50]. Additionally, four cases are considered regarding the parameters I,K{I,K}: 1) I=3I=3 and K=3K=3, 2) I=12I=12 and K=3K=3, 3) I=3I=3 and K=12K=12, and 4) I=12I=12 and K=12K=12. In Fig. 4 (a), the root CRBθ\text{CRB}_{\theta} is evaluated with different parameters. When {K,I}\{K,I\} are small, such as the blue curves, the CRBθ\textbf{CRB}_{\theta} exhibits an unclear change with respect to the range rr. Consequently, the three schemes, SW-WSMS, HSPW-WSMS, and PW-WSMS, yield consistent results in terms of CRBθ\textbf{CRB}_{\theta}. However, as {K,I}\{K,I\} increase, a noticeable error arises between HSPW-/SW-WSMS and PW-WSMS. This error diminishes as the range rr increases, indicating that the PW-WSMS model exhibits significant error in the near-field region when the array aperture is large. Furthermore, it can be observed that the angle CRBs of the SW-WSMS and HSPW-WSMS maintain a consistent trend regardless of changes in the array aperture. A slightly different observation arises for CRBr\textbf{CRB}_{r}. In Fig. 4 (b), when {K,I}\{K,I\} are small (the blue curve), a slight error can be observed between the SW-WSMS and HSPW-WSMS, which decreases as the array aperture increases. Conversely, the CRBs vary with θ\theta in Fig. 5 (a) and (b) yield similar conclusions. As depicted in Fig. 5, a significant error is evident between the SW-/HSPW-WSMS and PW-WSMS when I,K{I,K} are large. Additionally, for small I,K{I,K}, a slight error is present between the SW-WSMS and HSPW-WSMS in terms of root CRBr\textbf{CRB}_{r}, as shown in Fig. 5 (b). Notably, when large I,K{I,K} are utilized (the red curve), an opposite trend is observed compared to the other curves. This phenomenon suggests that when the array aperture is sufficiently large, the range CRB exhibits a decreasing trend with respect to |θ||\theta|.

Refer to caption
(a) Root CRBθ\textbf{CRB}_{\theta}, r=10r=10
Refer to caption
(b) Root CRBr\textbf{CRB}_{r}, r=10r=10
Figure 5: The root CRBs of SW-/HSPW-/PW-WSMS with different {K,I,θ}\{K,I,\theta\}.

All the simulations mentioned above assume Nr=1N_{r}=1 to neglect the impact of the RX end. However, we have observed that the RX parameters have a significant effect on the angle CRB. Therefore, here we aim to explore the influence of the RX parameter using the parameter set {Nr{1,18,35},θ=0,r[1,30],R=31,K=12,I=10}\{N_{r}\in\{1,18,35\},\theta=0,r\in[1,30],R=31,K=12,I=10\}, as depicted in Fig. 6. In particular, we note a distinct difference between the cases of Nr=1N_{r}=1 and Nr>1N_{r}>1 in terms of CRBθ\textbf{CRB}_{\theta} as rr approaches RR. This disparity arises because when Nr>1N_{r}>1 and rr approaches RR, the RX parameter in Eqn. (36) becomes π2d2(Nr21)3λ2r2(Rr)2\frac{\pi^{2}d^{2}(N_{r}^{2}-1)}{3\lambda^{2}}\frac{r^{2}}{(R-r)^{2}}, which tends to infinity.

Refer to caption
Figure 6: The angle CRB versus the range rr.
Refer to caption
Figure 7: The angle CRB versus II.

The asymptotic case for HSPW-WSMS is evaluated in Fig. 7, where the upper and lower bounds are calculated using Eqs. 63 and (61), respectively. The parameter set considered is {Nr=12,θ=0,r=10,R=50,K=2,I[0,20]}\{N_{r}=12,\theta=0,r=10,R=50,K=2,I\in[0,20]\}. As the value of II increases, the angular span ψ0\psi_{0} approaches π\pi, and the CRB tends to converge to the lower bound. It should be noted that the CRB does not reach the upper bound due to the presence of a subarray size that results in ψ0>0\psi_{0}>0.

Lastly, we compare the CRBs for three different array layouts: WSMS, UA, and DUA. The key similarity among them is that they all have the same number of antennas. The parameter set considered is {Nr=1,θ=0,r=10,K=3,I[1,13]}\{N_{r}=1,\theta=0,r=10,K=3,I\in[1,13]\}, where I=0I=0 is set for the SW-DUA. As depicted in Fig. 8 (a) and (b), an increase in the parameter II leads to a corresponding decrease in the CRBs of SW-WSMS and SW-UA. Furthermore, it is observed that SW-WSMS achieves a lower CRB compared to SW-UA, despite having the same array aperture and number of antennas. Particularly, the results depicted in Fig. 8 (a) are consistent with Proposition III.10.

Refer to caption
(a) Root CRBθ\textbf{CRB}_{\theta}
Refer to caption
(b) Root CRBr\textbf{CRB}_{r}
Figure 8: The root CRBs of SW-WSMS, SW-UA, and SW-DUA with the same number of antennas.

VI Conclusions

Overall, this paper presents the derivation of closed-form angle and range CRBs for the SW-WSMS and HSPW-WSMS in bi-static systems. By analyzing the closed-form CRBs for the SW-WSMS, it is observed that the CRBs can be characterized by the angular spans {ψ0,Δψ}\{\psi_{0},\Delta_{\psi}\}. Furthermore, a comparison is made with two WSMS layouts that share the same angular spans but differ in the number of subarrays. It is concluded that they have the same normalized CRBs, and the difference in their CRBs depends on the received signal-to-noise ratio, which is linear with the number of subarrays. The paper also explores the CRBs of the UA by leveraging the subarray structure. It is theoretically demonstrated that the UA’s CRBs are larger than the WSMS’s when θ=0\theta=0. We also derive the closed-form CRBs for HSPW-WSMS, and its components can be considered as decomposed from the parameters of the CRBs for SW-WSMS. Additionally, asymptotic bounds are derived for the cases where ψ0\psi_{0} tends to 0 and ψ0\psi_{0} tends to π\pi when θ=0\theta=0. Finally, several simulations are conducted, yielding important results, including 1) the CRBs for WS-WSMS and HSPW-WSMS decrease as both the inter-subarray spacing and the number of subarrays increase, 2) the angle and range CRBs exhibit opposite trends with respect to changes in rr, 3) the PW-WSMS model shows a significant error when approximating the SW-WSMS, particularly for large array apertures, 4) a model error exists between HSPW-WSMS and SW-WSMS when the array aperture is small, but this error becomes negligible as the array aperture increases, 5) the distance between the TX and the RX significantly influences the estimation of the angle. As rr approaches RR, the angle CRB experiences a sharp decrease, and 6), the SW-WSMS demonstrates a slightly lower CRB than the SW-UA when considering the same number of antennas and array aperture.

For future research, the utilization of HSPW-WSMS in mmWave/THz ISAC holds great promise due to its robust sensing capabilities. Several studies on wireless communications with HSPW-WSMS have already been conducted, further supporting its potential in practical applications. The CRB serves as an index of sensing performance in the ISAC system, and therefore, optimization of the precoder/combiner involved in the CRB expression is meaningful by considering both the CRB performance and communication performance. This motivates the design of the number of subarrays and inter-subarray spacing for joint optimization of communication and sensing performances.

Appendix A Derivation of {𝒮θ2,𝒮θ,𝒮r2,𝒮r,𝒮θr}\left\{{\mathcal{S}}_{\theta^{2}},{\mathcal{S}}_{\theta},{\mathcal{S}}_{r^{2}},{\mathcal{S}}_{r},{\mathcal{S}}_{\theta r}\right\}

Here, we will derive 𝒮θ2\mathcal{S}_{\theta^{2}} in detail. The derivation of other functions can be done in a similar manner. First, we have

𝒮θ2=\displaystyle\mathcal{S}_{\theta^{2}}= k=K12K12m=M12M12(kD+md)2r22(kD+md)rsinθ+(kD+md)2\displaystyle\sum_{k=-\frac{K-1}{2}}^{\frac{K-1}{2}}\sum_{m=-\frac{M-1}{2}}^{\frac{M-1}{2}}\frac{(kD+md)^{2}}{{r^{2}-2(kD+md)r\sin\theta+(kD+md)^{2}}} (65)
=\displaystyle= k=K12K12m=kDdM12m=kDd+M12(mΔd)212mΔdsinθ+(mΔd)2\displaystyle\sum_{k=-\frac{K-1}{2}}^{\frac{K-1}{2}}\sum_{m^{\prime}=\frac{kD}{d}-\frac{M-1}{2}}^{m^{\prime}=\frac{kD}{d}+\frac{M-1}{2}}\frac{\left(m^{\prime}\Delta_{d}\right)^{2}}{{1-2m^{\prime}\Delta_{d}\sin\theta+\left(m^{\prime}\Delta_{d}\right)^{2}}}
(a)\displaystyle\overset{(a)}{\approx} k=K12K121Δd(kDdM2)Δd(kDd+M2)Δdx212xsinθ+x2dx,\displaystyle\sum_{k=-\frac{K-1}{2}}^{\frac{K-1}{2}}\frac{1}{\Delta_{d}}\int_{\left(\frac{kD}{d}-\frac{M}{2}\right)\Delta_{d}}^{\left(\frac{kD}{d}+\frac{M}{2}\right)\Delta_{d}}\frac{x^{2}}{1-2x\sin\theta+x^{2}}{\rm d}x,

where (a)(a) holds for the midpoint Riemann sum rule. Denoted by Fθ2(x)x212xsinθ+x2dxF_{\theta^{2}}(x)\triangleq\int\frac{x^{2}}{1-2x\sin\theta+x^{2}}{\rm d}x such that Fθ2(kΔD+M2Δd)Fθ2(kΔDM2Δd)=kΔDM2ΔdkΔD+M2Δdx212xsinθ+x2dxF_{\theta^{2}}(k\Delta_{D}+\frac{M}{2}\Delta_{d})-F_{\theta^{2}}(k\Delta_{D}-\frac{M}{2}\Delta_{d})=\int_{k\Delta_{D}-\frac{M}{2}\Delta_{d}}^{k\Delta_{D}+\frac{M}{2}\Delta_{d}}\frac{x^{2}}{1-2x\sin\theta+x^{2}}{\rm d}x. Then, we can obtain

𝒮θ2\displaystyle\mathcal{S}_{\theta^{2}} =1ΔdΔDk=K12K12(Fθ2(kΔD+M2Δd)\displaystyle=\frac{1}{\Delta_{d}\Delta_{D}}\sum_{k=-\frac{K-1}{2}}^{\frac{K-1}{2}}\left(F_{\theta^{2}}\left(k\Delta_{D}+\frac{M}{2}\Delta_{d}\right)\right. (66)
Fθ2(kΔDM2Δd))ΔD\displaystyle\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left.-F_{\theta^{2}}\left(k\Delta_{D}-\frac{M}{2}\Delta_{d}\right)\right)\Delta_{D}
1ΔdΔDK2ΔD+M2ΔdK2ΔD+M2ΔdFθ2(x)dx\displaystyle{\approx}\frac{1}{\Delta_{d}\Delta_{D}}\int_{-\frac{K}{2}\Delta_{D}+\frac{M}{2}\Delta_{d}}^{\frac{K}{2}\Delta_{D}+\frac{M}{2}\Delta_{d}}F_{\theta^{2}}(x){\rm d}x
1ΔdΔDK2ΔDM2ΔdK2ΔDM2ΔdFθ2(x)dx\displaystyle\ \ \ \ \ \ \ \ \ -\frac{1}{\Delta_{d}\Delta_{D}}\int_{-\frac{K}{2}\Delta_{D}-\frac{M}{2}\Delta_{d}}^{\frac{K}{2}\Delta_{D}-\frac{M}{2}\Delta_{d}}F_{\theta^{2}}(x){\rm d}x
=1ΔdΔDK2ΔDM2ΔdK2ΔD+M2ΔdFθ2(x)dx\displaystyle=\frac{1}{\Delta_{d}\Delta_{D}}\int_{\frac{K}{2}\Delta_{D}-\frac{M}{2}\Delta_{d}}^{\frac{K}{2}\Delta_{D}+\frac{M}{2}\Delta_{d}}F_{\theta^{2}}(x){\rm d}x
1ΔdΔDK2ΔDM2ΔdK2ΔD+M2ΔdFθ2(x)dx\displaystyle\ \ \ \ \ \ \ \ \ -\frac{1}{\Delta_{d}\Delta_{D}}\int_{-\frac{K}{2}\Delta_{D}-\frac{M}{2}\Delta_{d}}^{-\frac{K}{2}\Delta_{D}+\frac{M}{2}\Delta_{d}}F_{\theta^{2}}(x){\rm d}x
1ΔdΔD(Gθ2(x4)Gθ2(x3)Gθ2(x2)+Gθ2(x1)),\displaystyle\triangleq\frac{1}{\Delta_{d}\Delta_{D}}\left(G_{\theta^{2}}(x_{4})-G_{\theta^{2}}(x_{3})-G_{\theta^{2}}(x_{2})+G_{\theta^{2}}(x_{1})\right),

where Gθ2(x)G_{\theta^{2}}(x) is the indefinite integral of Fθ2(x)F_{\theta^{2}}(x), x1K2ΔDM2Δdx_{1}\triangleq-\frac{K}{2}\Delta_{D}-\frac{M}{2}\Delta_{d}, x2K2ΔD+M2Δdx_{2}\triangleq-\frac{K}{2}\Delta_{D}+\frac{M}{2}\Delta_{d}, x3K2ΔDM2Δdx_{3}\triangleq\frac{K}{2}\Delta_{D}-\frac{M}{2}\Delta_{d}, and x4K2ΔD+M2Δdx_{4}\triangleq\frac{K}{2}\Delta_{D}+\frac{M}{2}\Delta_{d}. Furthermore, Fθ2F_{\theta^{2}} and Gθ2G_{\theta^{2}} can be derived according to Eqs. (77)-(79) in Appendix C. Particularly, Gθ2(x)ΔDΔd\frac{G_{\theta^{2}}(x)}{\Delta_{D}\Delta_{d}} is given by

Gθ2(x)ΔDΔd=\displaystyle\frac{G_{\theta^{2}}(x)}{\Delta_{D}\Delta_{d}}= x22ΔDΔd+xsinθΔDΔdln|ν1|2xsinθΔDΔd\displaystyle\frac{x^{2}}{2\Delta_{D}\Delta_{d}}+\frac{x\sin\theta}{\Delta_{D}\Delta_{d}}\ln\left|\nu_{1}\right|-\frac{2x\sin\theta}{\Delta_{D}\Delta_{d}} (67)
sin2θΔDΔdln|ν1|+2cosθsinθΔDΔdtan1(ν2)\displaystyle-\frac{\sin^{2}\theta}{\Delta_{D}\Delta_{d}}\ln\left|\nu_{1}\right|+\frac{2\cos\theta\sin\theta}{\Delta_{D}\Delta_{d}}\tan^{-1}\left(\nu_{2}\right)
cos(2θ)ΔDΔdν2tan1(ν2)+cos(2θ)2ΔDΔdln|ν22+1|,\displaystyle-\frac{\cos(2\theta)}{\Delta_{D}\Delta_{d}}\nu_{2}\tan^{-1}\left(\nu_{2}\right)+\frac{\cos(2\theta)}{2\Delta_{D}\Delta_{d}}\ln\left|\nu_{2}^{2}+1\right|,

where ν112xsinθ+x2\nu_{1}\triangleq 1-2x\sin\theta+x^{2} and ν2xcosθtanθ\nu_{2}\triangleq\frac{x}{\cos\theta}-\tan\theta are defined for clarity.

Similar to the derivation of 𝒮θ2\mathcal{S}_{\theta^{2}}, {𝒮θ,𝒮r2,𝒮r,𝒮θr}\left\{{\mathcal{S}}_{\theta},{\mathcal{S}}_{r^{2}},{\mathcal{S}}_{r},{\mathcal{S}}_{\theta r}\right\} are derived as follows.

𝒮θ\displaystyle\mathcal{S}_{\theta} k=K12K121Δd(kDdM2)Δd(kDd+M2)Δdx22xsinθ+1dx\displaystyle{\approx}\sum_{k=-\frac{K-1}{2}}^{\frac{K-1}{2}}\frac{1}{\Delta_{d}}\int_{\left(\frac{kD}{d}-\frac{M}{2}\right)\Delta_{d}}^{\left(\frac{kD}{d}+\frac{M}{2}\right)\Delta_{d}}{\sqrt{x^{2}-2x\sin\theta+1}}{\rm d}x (68)
=1ΔDΔdx3x4(ν1+sinθtanh1(xsinθν1))dx\displaystyle=\frac{1}{\Delta_{D}\Delta_{d}}\int_{x_{3}}^{x_{4}}\left(\sqrt{\nu_{1}}+\sin\theta\tanh^{-1}\left(\frac{x-\sin\theta}{\sqrt{\nu_{1}}}\right)\right){\rm d}x
1ΔDΔdx1x2(ν1+sinθtanh1(xsinθν1))dx\displaystyle\ \ -\frac{1}{\Delta_{D}\Delta_{d}}\int_{x_{1}}^{x_{2}}\left(\sqrt{\nu_{1}}+\sin\theta\tanh^{-1}\left(\frac{x-\sin\theta}{\sqrt{\nu_{1}}}\right)\right){\rm d}x
=1ΔdΔD(Gθ(x4)Gθ(x3)Gθ(x2)+Gθ(x1)),\displaystyle=\frac{1}{\Delta_{d}\Delta_{D}}\left(G_{\theta}(x_{4})-G_{\theta}(x_{3})-G_{\theta}(x_{2})+G_{\theta}(x_{1})\right),

where Gθ(x)G_{\theta}(x) can be derived by Eqs. (81) and (82) as Gθ(x)ΔDΔd=xsinθ2ΔDΔdν1+cos2θ2ΔDΔdln(ν1sinθ+x)+sinθ(xsinθ)ΔDΔdtanh1(xsinθν1)sinθΔDΔdν1.\frac{G_{\theta}(x)}{\Delta_{D}\Delta_{d}}=\frac{x-\sin\theta}{2\Delta_{D}\Delta_{d}}\sqrt{\nu_{1}}+\frac{\cos^{2}\theta}{2\Delta_{D}\Delta_{d}}\ln\left(\sqrt{\nu_{1}}-\sin\theta+x\right)+\frac{\sin\theta(x-\sin\theta)}{\Delta_{D}\Delta_{d}}\tanh^{-1}\left(\frac{x-\sin\theta}{\sqrt{\nu_{1}}}\right)-\frac{\sin\theta}{\Delta_{D}\Delta_{d}}\sqrt{\nu_{1}}..

𝒮r\displaystyle\mathcal{S}_{r}{\approx} sinθ𝒮θk=K12K121Δd(kDdM2)Δd(kDd+M2)Δd112xsinθ+x2dx\displaystyle\sin\theta\mathcal{S}_{\theta}-\sum_{k=-\frac{K-1}{2}}^{\frac{K-1}{2}}\frac{1}{\Delta_{d}}\int_{\left(\frac{kD}{d}-\frac{M}{2}\right)\Delta_{d}}^{\left(\frac{kD}{d}+\frac{M}{2}\right)\Delta_{d}}\frac{1}{\sqrt{1-2x\sin\theta+x^{2}}}{\rm d}x (69)
=\displaystyle= sinθ𝒮θ1ΔdΔDx3x4ln|ν1+xsinθ|dx\displaystyle\sin\theta\mathcal{S}_{\theta}-\frac{1}{\Delta_{d}\Delta_{D}}\int_{x_{3}}^{x_{4}}\ln\left|\sqrt{\nu_{1}}+x-\sin\theta\right|{\rm d}x
+1ΔdΔDx1x2ln|ν1+xsinθ|dx\displaystyle+\frac{1}{\Delta_{d}\Delta_{D}}\int_{x_{1}}^{x_{2}}\ln\left|\sqrt{\nu_{1}}+x-\sin\theta\right|{\rm d}x
=\displaystyle= sinθ𝒮θ1ΔdΔD(Gr(x4)Gr(x3)Gr(x2)+Gr(x1)),\displaystyle\sin\theta\mathcal{S}_{\theta}-\frac{1}{\Delta_{d}\Delta_{D}}\left(G_{r}(x_{4})-G_{r}(x_{3})-G_{r}(x_{2})+G_{r}(x_{1})\right),

where Gr(x)ΔDΔd=1ΔdΔD(xsinθ)ln|ν1+xsinθ|1ΔdΔDν1\frac{G_{r}(x)}{\Delta_{D}\Delta_{d}}=\frac{1}{\Delta_{d}\Delta_{D}}(x-\sin\theta)\ln\left|\sqrt{\nu_{1}}+x-\sin\theta\right|-\frac{1}{\Delta_{d}\Delta_{D}}\sqrt{\nu_{1}}, which can be derived by Eqn. (83).

𝒮r2=KMcos2θ𝒮θ2.\displaystyle\mathcal{S}_{r^{2}}=KM-\cos^{2}\theta\mathcal{S}_{\theta^{2}}. (70)
𝒮θrsinθ𝒮θ2k=K12K121Δd(kDdM2)Δd(kDd+M2)Δdx12xsinθ+x2dx\displaystyle\mathcal{S}_{\theta r}{\approx}\sin\theta\mathcal{S}_{\theta^{2}}-\sum_{k=-\frac{K-1}{2}}^{\frac{K-1}{2}}\frac{1}{\Delta_{d}}\int_{\left(\frac{kD}{d}-\frac{M}{2}\right)\Delta_{d}}^{\left(\frac{kD}{d}+\frac{M}{2}\right)\Delta_{d}}\frac{x}{{1-2x\sin\theta+x^{2}}}{\rm d}x (71)
=sinθ𝒮θ21ΔDΔdx3x4tanθtan1(ν2)+12ln|ν1|dx\displaystyle=\sin\theta\mathcal{S}_{\theta^{2}}-\frac{1}{\Delta_{D}\Delta_{d}}\int_{x_{3}}^{x_{4}}\tan\theta\tan^{-1}\left(\nu_{2}\right)+\frac{1}{2}\ln\left|\nu_{1}\right|{\rm d}x
+1ΔDΔdx1x2tanθtan1(ν2)+12ln|ν1|dx\displaystyle\ \ \ \ +\frac{1}{\Delta_{D}\Delta_{d}}\int_{x_{1}}^{x_{2}}\tan\theta\tan^{-1}\left(\nu_{2}\right)+\frac{1}{2}\ln\left|\nu_{1}\right|{\rm d}x
=sinθ𝒮θ21ΔdΔD(Gθr(x4)Gθr(x3)Gθr(x2)+Gθr(x1)),\displaystyle=\sin\theta\mathcal{S}_{\theta^{2}}-\frac{1}{\Delta_{d}\Delta_{D}}\left(G_{\theta r}(x_{4})-G_{\theta r}(x_{3})-G_{\theta r}(x_{2})+G_{\theta r}(x_{1})\right),

where Gθr(x)ΔDΔd=sinθΔDΔd(ν2tan1(ν2)12ln|ν22+1|)+x2ΔDΔdln|ν1|xΔDΔdsinθ2ΔDΔdln|ν1|+cosθΔDΔdtan1(ν2)\frac{G_{\theta r}(x)}{\Delta_{D}\Delta_{d}}=\frac{\sin\theta}{\Delta_{D}\Delta_{d}}\left(\nu_{2}\tan^{-1}\left(\nu_{2}\right)-\frac{1}{2}\ln\left|\nu_{2}^{2}+1\right|\right)+\frac{x}{2\Delta_{D}\Delta_{d}}\ln\left|\nu_{1}\right|-\frac{x}{\Delta_{D}\Delta_{d}}-\frac{\sin\theta}{2\Delta_{D}\Delta_{d}}\ln\left|\nu_{1}\right|+\frac{\cos\theta}{\Delta_{D}\Delta_{d}}\tan^{-1}\left(\nu_{2}\right).

Appendix B Derivation of {𝒮~θ2,𝒮~θ,𝒮~r2,𝒮~r,𝒮~θr}\left\{\widetilde{\mathcal{S}}_{\theta^{2}},\widetilde{\mathcal{S}}_{\theta},\widetilde{\mathcal{S}}_{r^{2}},\widetilde{\mathcal{S}}_{r},\widetilde{\mathcal{S}}_{\theta r}\right\}

Here, we give the closed-form expressions of {𝒮~θ2,𝒮~θ,𝒮~r2,𝒮~r,𝒮~θr}\left\{\widetilde{\mathcal{S}}_{\theta^{2}},\widetilde{\mathcal{S}}_{\theta},\widetilde{\mathcal{S}}_{r^{2}},\widetilde{\mathcal{S}}_{r},\widetilde{\mathcal{S}}_{\theta r}\right\} as follows. For clarity, we define κ11KΔDsinθ+K2ΔD2/4\kappa_{1}\triangleq 1-K\Delta_{D}\sin\theta+K^{2}\Delta_{D}^{2}/4 and κ21+KΔDsinθ+K2ΔD2/4\kappa_{2}\triangleq 1+K\Delta_{D}\sin\theta+K^{2}\Delta_{D}^{2}/4.

𝒮~θ2=\displaystyle\widetilde{\mathcal{S}}_{\theta^{2}}= 1ΔDKΔD2KΔD2x212xsinθ+x2dx\displaystyle\frac{1}{\Delta_{D}}\int_{-\frac{K\Delta_{D}}{2}}^{\frac{K\Delta_{D}}{2}}\frac{x^{2}}{1-2x\sin\theta+x^{2}}{\rm d}x (72)
=\displaystyle= K+sinθΔDln|κ1κ2|cos(2θ)ΔDcos(θ)tan1(KΔD2cosθtanθ)\displaystyle K+\frac{\sin\theta}{\Delta_{D}}\ln\left|\frac{\kappa_{1}}{\kappa_{2}}\right|-\frac{\cos(2\theta)}{\Delta_{D}\cos(\theta)}\tan^{-1}\left(\frac{K\Delta_{D}}{2\cos\theta}-\tan\theta\right)
+cos(2θ)ΔDcos(θ)tan1(KΔD2cosθtanθ).\displaystyle+\frac{\cos(2\theta)}{\Delta_{D}\cos(\theta)}\tan^{-1}\left(\frac{-K\Delta_{D}}{2\cos\theta}-\tan\theta\right).
𝒮~θ=\displaystyle\widetilde{\mathcal{S}}_{\theta}= 1ΔDKΔD2KΔD2x12xsinθ+x2dx\displaystyle\frac{1}{\Delta_{D}}\int_{-\frac{K\Delta_{D}}{2}}^{\frac{K\Delta_{D}}{2}}\frac{x}{\sqrt{1-2x\sin\theta+x^{2}}}{\rm d}x (73)
=\displaystyle= sinθΔDtanh1(KΔD/2sinθκ1)κ2ΔD+κ1ΔD\displaystyle\frac{\sin\theta}{\Delta_{D}}\tanh^{-1}\left(\frac{K\Delta_{D}/2-\sin\theta}{\sqrt{\kappa_{1}}}\right)-\frac{\sqrt{\kappa_{2}}}{\Delta_{D}}+\frac{\sqrt{\kappa_{1}}}{\Delta_{D}}
sinθΔDtanh1(KΔD/2sinθκ2).\displaystyle-\frac{\sin\theta}{\Delta_{D}}\tanh^{-1}\left(\frac{-K\Delta_{D}/2-\sin\theta}{\sqrt{\kappa_{2}}}\right).
𝒮~r2=\displaystyle\widetilde{\mathcal{S}}_{r^{2}}= Kk=1Knk2cos2θr22nkrsinθ+nk2\displaystyle K-\sum_{k=1}^{K}\frac{n_{k}^{2}\cos^{2}\theta}{{r^{2}-2n_{k}r\sin\theta+n_{k}^{2}}} (74)
=\displaystyle= Kcos2θ𝒮~θ2.\displaystyle K-{\cos^{2}\theta}\widetilde{\mathcal{S}}_{\theta^{2}}.
𝒮~r=\displaystyle\widetilde{\mathcal{S}}_{r}= sinθ𝒮~θk=1Krr22nkrsinθ+nk2\displaystyle\sin\theta\widetilde{\mathcal{S}}_{\theta}-\sum_{k=1}^{K}\frac{r}{\sqrt{r^{2}-2n_{k}r\sin\theta+n_{k}^{2}}} (75)
=\displaystyle= sinθ𝒮~θ1ΔDln|κ1+KΔD/2sinθκ2KΔD/2sinθ|.\displaystyle\sin\theta\widetilde{\mathcal{S}}_{\theta}-\frac{1}{\Delta_{D}}\ln\left|\frac{\sqrt{\kappa_{1}}+K\Delta_{D}/2-\sin\theta}{\sqrt{\kappa_{2}}-K\Delta_{D}/2-\sin\theta}\right|.
𝒮~θr=\displaystyle\widetilde{\mathcal{S}}_{\theta r}= sinθ𝒮~θ2k=1Krnkr22nkrsinθ+nk2\displaystyle\sin\theta\widetilde{\mathcal{S}}_{\theta^{2}}-\sum_{k=1}^{K}\frac{rn_{k}}{{r^{2}-2n_{k}r\sin\theta+n_{k}^{2}}} (76)
=\displaystyle= sinθ𝒮~θ2tanθΔDtan1(KΔD2cosθtanθ)\displaystyle\sin\theta\widetilde{\mathcal{S}}_{\theta^{2}}-\frac{\tan\theta}{\Delta_{D}}\tan^{-1}\left(\frac{K\Delta_{D}}{2\cos\theta}-\tan\theta\right)
+tanθΔDtan1(KΔD2cosθtanθ)12ΔDln|κ1κ2|.\displaystyle+\frac{\tan\theta}{\Delta_{D}}\tan^{-1}\left(-\frac{K\Delta_{D}}{2\cos\theta}-\tan\theta\right)-\frac{1}{2\Delta_{D}}\ln\left|\frac{\kappa_{1}}{\kappa_{2}}\right|.

Appendix C Derivation of Some integrals used in this paper

Here, some useful intergrals are derived to support Appendix. A and B. ν112xsinθ+x2\nu_{1}\triangleq 1-2x\sin\theta+x^{2} and ν2xcosθtanθ\nu_{2}\triangleq\frac{x}{\cos\theta}-\tan\theta are defined in derivation results for clarity.

x2ν1dx\displaystyle\int\frac{x^{2}}{\nu_{1}}{\rm d}x =ν1ν1dx+2xsinθ1ν1dx\displaystyle=\int\frac{\nu_{1}}{\nu_{1}}{\rm d}x+\int\frac{2x\sin\theta-1}{\nu_{1}}{\rm d}x (77)
=(b)x+sinθln|ν1|cos(2θ)cos(θ)tan1(ν2)+Const,\displaystyle\overset{(b)}{=}x+\sin\theta\ln\left|\nu_{1}\right|-\frac{\cos(2\theta)}{\cos(\theta)}\tan^{-1}\left(\nu_{2}\right)+Const,

where (b)(b) holds due to mx+nax2+bx+c𝑑x=m2aln|ax2+bx+c|+2anbma4acb2tan12ax+b4acb2\int\frac{mx+n}{ax^{2}+bx+c}dx=\frac{m}{2a}\ln\left|ax^{2}+bx+c\right|+\frac{2an-bm}{a\sqrt{4ac-b^{2}}}\tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^{2}}} for 4acb204ac-b^{2}\geq 0.

ln|ν1|dx=xln|ν1|2x22sinθxν1dx\displaystyle\int\ln\left|\nu_{1}\right|{\rm d}x=x\ln\left|\nu_{1}\right|-\int\frac{2x^{2}-2\sin\theta x}{\nu_{1}}{\rm d}x (78)
=xln|ν1|2x24sinθx+2+2sinθx2ν1dx\displaystyle=x\ln\left|\nu_{1}\right|-\int\frac{2x^{2}-4\sin\theta x+2+2\sin\theta x-2}{\nu_{1}}{\rm d}x
=xln|ν1|2xsinθln|ν1|+2cosθtan1(ν2)+Const.\displaystyle{=}x\ln\left|\nu_{1}\right|-2x-\sin\theta\ln\left|\nu_{1}\right|+2\cos\theta\tan^{-1}\left(\nu_{2}\right)+Const.
tan1(ν2)dx=cosθ(ν2tan1(ν2)12ln|ν22+1|)\int\tan^{-1}\left(\nu_{2}\right){\rm d}x=\cos\theta\left(\nu_{2}\tan^{-1}\left(\nu_{2}\right)-\frac{1}{2}\ln\left|\nu_{2}^{2}+1\right|\right) (79)
xν1dx=ν1+sinθtanh1(xsinθν1)+Const.\displaystyle\int\frac{x}{\sqrt{\nu_{1}}}{\rm d}x=\sqrt{\nu_{1}}+\sin\theta\tanh^{-1}\left(\frac{x-\sin\theta}{\sqrt{\nu_{1}}}\right)+Const. (80)
ν1𝑑x=xsinθ2ν1+cos2θ2ln(ν1sinθ+x)\displaystyle\int\sqrt{\nu_{1}}dx=\frac{x-\sin\theta}{2}\sqrt{\nu_{1}}+\frac{\cos^{2}\theta}{2}\ln\left(\sqrt{\nu_{1}}-\sin\theta+x\right) (81)
tanh1(xsinθν1)dx=\displaystyle\int\tanh^{-1}\left(\frac{x-\sin\theta}{\sqrt{\nu_{1}}}\right){\rm d}x= (82)
(xsinθ)tanh1(xsinθν1)ν1+Const,\displaystyle\ \ \ (x-\sin\theta)\tanh^{-1}\left(\frac{x-\sin\theta}{\sqrt{\nu_{1}}}\right)-\sqrt{\nu_{1}}+Const,
ln|ν1+xsinθ|dx=\displaystyle\int\ln\left|\sqrt{\nu_{1}}+x-\sin\theta\right|{\rm d}x= (83)
(xsinθ)ln|ν1+xsinθ|ν1+Const.\displaystyle\ \ \ \ \ \ (x-\sin\theta)\ln\left|\sqrt{\nu_{1}}+x-\sin\theta\right|-\sqrt{\nu_{1}}+Const.

References

  • [1] O. Alamu, B. Iyaomolere, and A. Abdulrahman, “An overview of massive MIMO localization techniques in wireless cellular networks: Recent advances and outlook,” Ad Hoc Networks, vol. 111, p. 102353, 2021.
  • [2] C. Guanghui, Z. Xiaoping, J. Shuang, Y. Anning, and L. Qi, “High accuracy near-field localization algorithm at low SNR using fourth-order cumulant,” IEEE Commun. Lett., vol. 24, no. 3, pp. 553–557, 2020.
  • [3] B. Friedlander, “Localization of signals in the near-field of an antenna array,” IEEE Trans. Signal Process., vol. 67, no. 15, pp. 3885–3893, 2019.
  • [4] X. Zhang, W. Chen, W. Zheng, Z. Xia, and Y. Wang, “Localization of near-field sources: A reduced-dimension MUSIC algorithm,” IEEE Commun. Lett., vol. 22, no. 7, pp. 1422–1425, 2018.
  • [5] I. Podkurkov, G. Seidl, L. Khamidullina, A. Nadeev, and M. Haardt, “Tensor-based near-field localization using massive antenna arrays,” IEEE Trans. Signal Process., vol. 69, pp. 5830–5845, 2021.
  • [6] M. Cui and L. Dai, “Channel estimation for extremely large-scale MIMO: Far-field or near-field?” IEEE Trans. Commun., vol. 70, no. 4, pp. 2663–2677, 2022.
  • [7] Y. Han, S. Jin, C.-K. Wen, and X. Ma, “Channel estimation for extremely large-scale massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 633–637, 2020.
  • [8] S. Yang, W. Lyu, Z. Hu, Z. Zhang, and C. Yuen, “Channel estimation for near-field XL-RIS-aided mmwave hybrid beamforming architectures,” IEEE Trans. Veh. Technol., pp. 1–6, 2023.
  • [9] J. Wu, S. Kim, and B. Shim, “Near-field channel estimation for ris-assisted wideband terahertz systems,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022, pp. 3893–3898.
  • [10] S. Yang, C. Xie, W. Lyu, B. Ning, Z. Zhang, and C. Yuen, “Near-field channel estimation for extremely large-scale reconfigurable intelligent surface (XL-RIS)-aided wideband mmwave systems,” 2023.
  • [11] A. de Jesus Torres, A. A. D’Amico, L. Sanguinetti, and M. Z. Win, “Cramér-rao bounds for near-field localization,” in 2021 55th Asilomar Conference on Signals, Systems, and Computers, 2021, pp. 1250–1254.
  • [12] L. Khamidullina, I. Podkurkov, and M. Haardt, “Conditional and unconditional cramér-rao bounds for near-field localization in bistatic MIMO radar systems,” IEEE Trans. Signal Process., vol. 69, pp. 3220–3234, 2021.
  • [13] H. Wang, Z. Xiao, and Y. Zeng, “Cramér-rao bounds for near-field sensing with extremely large-scale MIMO,” 2023.
  • [14] C. Lin and G. Y. L. Li, “Terahertz communications: An array-of-subarrays solution,” IEEE Commun. Mag., vol. 54, no. 12, pp. 124–131, 2016.
  • [15] X. Song, W. Rave, N. Babu, S. Majhi, and G. Fettweis, “Two-level spatial multiplexing using hybrid beamforming for millimeter-wave backhaul,” IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4830–4844, 2018.
  • [16] Y. Huang, Y. Li, H. Ren, J. Lu, and W. Zhang, “Multi-panel MIMO in 5G,” IEEE Commun. Mag., vol. 56, no. 3, pp. 56–61, 2018.
  • [17] Z. Jiang, P. Chen, F. Yang, and Q. Bi, “Experimental evaluation of a novel antenna structure:multi-panel massive MIMO,” in 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), 2018, pp. 1–5.
  • [18] Z. Fu, S. Hwang, J. Moon, H. Ren, and I. Lee, “A codebook design for FD-MIMO systems with multi-panel array,” IEEE Trans. Veh. Technol., vol. 71, no. 12, pp. 13 366–13 371, 2022.
  • [19] L. Yan, Y. Chen, C. Han, and J. Yuan, “Joint inter-path and intra-path multiplexing for terahertz widely-spaced multi-subarray hybrid beamforming systems,” IEEE Trans. Commun., vol. 70, no. 2, pp. 1391–1406, Feb. 2022.
  • [20] R. Boyer, “Performance bounds and angular resolution limit for the moving colocated MIMO radar,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1539–1552, 2011.