This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Performance Analysis and Optimization of Reconfigurable Multi-Functional Surface Assisted Wireless Communications

Wen Wang, Wanli Ni,  Hui Tian,  and Naofal Al-Dhahir The work of Hui Tian was supported by the National Key R&D Program of China under Grant No. 2020YFB1807801. The work of Wen Wang was supported by the Beijing University of Posts and Telecommunications (BUPT) Excellent Ph.D. Students Foundation under Grant CX2022103, and the China Scholarship Council. The work of Naofal Al-Dhahir was supported by Erik Jonsson distinguished professorship at UT-Dallas. This work was presented in part at the IEEE Global Communications Conference (GLOBECOM), Rio de Janeiro, Brazil, Dec. 2022, pp. 1-6, doi: 10.1109/GLOBECOM48099.2022.10000917. (Corresponding author: Hui Tian.)W. Wang, W. Ni, and H. Tian are with the State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China (e-mail: {wen.wang, charleswall, tianhui}@bupt.edu.cn).N. Al-Dhahir is with the Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA (e-mail: [email protected]).
Abstract

Although reconfigurable intelligent surfaces (RISs) can improve the performance of wireless networks by smartly reconfiguring the radio environment, existing passive RISs face two key challenges, i.e., double-fading attenuation and dependence on grid/battery. To address these challenges, this paper proposes a new RIS architecture, called multi-functional RIS (MF-RIS). Different from conventional reflecting-only RIS, the proposed MF-RIS is capable of supporting multiple functions with one surface, including signal reflection, amplification, and energy harvesting. As such, our MF-RIS is able to overcome the double-fading attenuation by harvesting energy from incident signals. Through theoretical analysis, we derive the achievable capacity of an MF-RIS-aided communication network. Compared to the capacity achieved by the existing self-sustainable RIS, we derive the number of reflective elements required for MF-RIS to outperform self-sustainable RIS. To realize a self-sustainable communication system, we investigate the use of MF-RIS in improving the sum-rate of multi-user wireless networks. Specifically, we solve a non-convex optimization problem by jointly designing the transmit beamforming and MF-RIS coefficients. As an extension, we investigate a resource allocation problem in a practical scenario with imperfect channel state information. By approximating the semi-infinite constraints with the 𝒮\mathcal{S}-procedure and the general sign-definiteness, we propose a robust beamforming scheme to combat the inevitable channel estimation errors. Finally, numerical results show that: 1) compared to the self-sustainable RIS, MF-RIS can strike a better balance between energy self-sustainability and throughput improvement; and 2) unlike reflecting-only RIS which can be deployed near the transmitter or receiver, MF-RIS should be deployed closer to the transmitter for higher spectrum efficiency.

Index Terms:
Multi-functional RIS, performance optimization, capacity analysis, energy harvesting, robust beamforming.

I Introduction

Owing to the recent breakthroughs of metasurfaces, reconfigurable intelligent surfaces (RISs) are a promising paradigm to shape a smart radio environment for various emerging applications, such as intelligent factory and mobile holography[1]. Generally, RIS is a planar surface composed of a large number of energy-efficient and cost-effective passive elements, each of which induces an independent phase change to incident signals via an embedded micro-controller chip. Through judiciously tuning the phases of incident signals, the reradiated signals from different links are added constructively to enhance the desired reception at intended users[2], or combined destructively to alleviate information leakage at malicious eavesdroppers[3]. Such programmable characteristics position RISs as a key enabler for throughput improvement[5, 4], energy reduction[7, 6, 8], and security enhancement[9, 10].

Despite the attractive channel-modification capabilities of existing RISs, they also face significant challenges when deployed into practical systems. One example is the double-fading attenuation introduced by the cascaded channel, i.e., the signals relayed by the RIS experience large-scale fading twice: from the transmitter to the RIS, and from the RIS to the receiver[11, 12]. This effect leads to considerable power loss when the direct link is blocked, which limits the achievable performance of RISs significantly[13]. Although increasing the RIS size alleviates this issue, the performance gain gradually saturates when the number of passive elements exceeds a certain value[14]. In addition, the large-size RIS usually increases production costs and deployment difficulties. Consequently, it is necessary to design a cost-efficient and easy-to-deploy RIS architecture to overcome the double-fading dilemma faced by existing RIS types.

Furthermore, most of the existing literature assumes that RIS is an ideal passive surface with negligible energy consumption[5, 4]. However, the operation of RIS requires advanced signal processing, intelligent computation, and active electronic components, such as positive-intrinsic-negative (PIN) diodes, radio frequency (RF) switches, and phase shifters[1, 2]. These components consume a lot of energy, especially for large-size RISs with high resolution. For example, the operational power of RIS with 55-bit phase shifters and 200200 elements is up to 1.21.2 W, which is comparable to its energy supply and cannot be ignored[7, 6, 8]. Considering the non-negligible power consumption of RIS elements, it is important to develop an efficient power supply strategy to support their long-term operation. However, existing RISs are typically non-rechargeable, making it difficult for them to achieve self-sustainability by getting rid of the dependence on battery or grid[3]. To this end, empowering RIS with energy harvesting capabilities is a promising candidate to prolong the lifetime of reflectors. This also enhances the flexibility when selecting the deployment location of RISs as no dedicated power cables are required. Given the ever-growing service requirements in wireless networks and the limitations of existing RISs, it is imperative to develop a new RIS architecture that is capable of mitigating the double-fading effect and achieving self-sustainability simultaneously.

Refer to caption
Figure 1: Comparison of the proposed MF-RIS with existing RIS architectures.

I-A Related Works

In the following, we review the state-of-the-art works from two perspectives: RISs for double-fading attenuation mitigation and energy self-sustainability.

I-A1 RISs for double-fading attenuation mitigation

Considering that the conventional passive RIS suffers from the double-fading attenuation, a new RIS architecture called active RIS was proposed in [12, 11, 14, 13] to overcome this issue. In contrast to the passive RIS in Fig. 1(a), the active RIS in Fig. 1(b) activates its elements by connecting them with power amplifiers. As such, these elements become full-duplex active reflecting elements, allowing active RIS to amplify the power of the incident signal while modifying the phase shift. The authors of [11] and [12] developed a theoretical framework to compare the achievable capacity of passive and active RIS-assisted systems, and proved that active RIS can transform the multiplicative path loss into additive form. Motivated by this, the works [13] and[14] investigated the key benefits of active RIS-assisted networks in terms of secrecy improvement and throughput maximization. In addition, the authors of [15] proposed another RIS architecture enabling simultaneous signal reflection and amplification, termed hybrid relay-RIS (HR-RIS). Different from the active RIS that enables signal amplification by embedding negative resistance components into each element, HR-RIS requires expensive and power-hungry RF chains to amplify signals. This requirement leaves the practical implementation of such hybrid RIS architecture as an open problem. Furthermore, whether passive RISs, active RISs, or HR-RISs, they all need to be connected with a stable power supply to maintain their reflection and/or amplification circuits. This means that the implementation of these RISs relies on external grid or internal battery, which makes it difficult to provide flexible and uninterrupted communication services at a low cost.

I-A2 RISs for energy self-sustainability

To eliminate the dependence on grid/battery for these conventional RISs, recent advances in RF-based energy harvesting have spawned several self-sustainable RIS architectures [17, 18, 16]. Specifically, a self-sustainable RIS enabled by wireless power transfer was proposed in [16]. As depicted in Fig .1(c), this self-sustainable RIS allows a portion of the elements to operate in signal reflection mode (R mode) to tune the wireless channels, while the remaining elements work in energy harvesting mode (H mode) to support its own operation. In particular, for the H mode, the incident RF signal is converted to direct current (DC) power by the energy harvesting circuit shown in Fig .1(c). By exploiting the large number of RIS elements, such RIS simultaneously realizes self-sustainability and capacity growth. The authors of [17] and [18] proposed another type of self-sustainable RIS, i.e., a two-phase self-sustainable RIS. The controller of this self-sustainable RIS can schedule its elements to working in one mode during a time slot. However, the ideal linear energy harvesting model adopted in [17] and [18] cannot capture the non-linear features of practical energy harvesting circuits.

In Table I, we compare our work with these representative works [7, 4, 5, 6, 8, 9, 10, 12, 11, 14, 13, 17, 16, 18] in terms of key features, design objectives, and channel state information (CSI) setups. It is observed that although some recent efforts have been devoted to proposing new RIS types, there is no general RIS architecture that can simultaneously address the double-fading attenuation and the grid/battery dependence issues faced by conventional RISs. There are also few works to evaluate the achievable performance of RIS architectures from both optimization and analysis perspectives. Moreover, a robust beamforming design under imperfect CSI is still missing. This motivates us to propose a new RIS architecture and explore its application in practical networks.

TABLE I: Comparison of this work with other representative works
Properties References [7, 4, 5, 6, 8] [9] [10] [11] [13] [14, 12] [16] [17, 18] This work
Double-fading mitigation \surd \surd \surd \boldsymbol{\surd}
Energy self-sustainability \surd \surd \boldsymbol{\surd}
Capacity analysis \surd \surd \surd \boldsymbol{\surd}
Performance optimization \surd \surd \surd \surd \surd \surd \boldsymbol{\surd}
Perfect CSI \surd \surd \surd \surd \surd \surd \boldsymbol{\surd}
Imperfect CSI \surd \surd \boldsymbol{\surd}
RIS architecture Passive RIS Active RIS Self-sustainable RIS MF-RIS

I-B Motivations and Contributions

In this paper, we propose the multi-functional RIS (MF-RIS) as a novel RIS architecture to overcome the double attenuation and self-sustainability issues of existing RISs. As shown in Fig. 1(d), each MF-RIS element can switch between the H mode and signal amplification mode (A mode)111Existing theoretical research and prototype design of passive RISs [1, 2, 3, 19], active RISs [14, 12, 13, 11], and self-sustainable RISs[17, 18, 16] provide a solid foundation for the implementation of the proposed MF-RIS.. Specifically, the elements operating in H mode collect the RF energy from incident signals via embedded energy harvesting modules222Recent advances in multi-level converters, thin-film capacitors, and integrated power managements have greatly reduced the implementation costs of energy harvesting circuits and improved the harvesting efficiency[20, 21, 22].. Meanwhile, with the help of power amplifiers and phase shift circuits, the elements in A mode reflect the incident signals with power amplification333Tunnel diode-based amplifiers enable the MF-RIS to realize signal amplification in a lightweight manner without the presence of the power-hungry RF chain components[23].. Equipped with the capability of joint signal reflection, amplification, and energy harvesting, the proposed MF-RIS facilitates self-sustainability while maintaining performance advantages. Our main contributions are summarized as follows:

  • We propose a new MF-RIS architecture enabling simultaneous signal reflection, amplification, and energy harvesting. Specifically, we provide the physical implementation and operating protocol of MF-RIS from the wireless communications perspective. Then, we analyze the achievable capacity performance of MF-RIS and compare it with self-sustainable RIS. Our theoretical results reveal that the proposed MF-RIS outperforms the self-sustainable RIS in terms of achievable signal-to-noise ratio (SNR).

  • We formulate a sum-rate (SR) maximization problem for an MF-RIS-aided multi-user system, and solve the resulting mixed-integer non-linear programming (MINLP) problem by optimizing the transmit beamforming and MF-RIS coefficients iteratively. Considering the inevitable CSI estimation error, we propose a robust beamforming scheme to maximize the SR of all users. Specifically, to handle the infinite possibilities introduced by CSI uncertainties, we adopt the 𝒮\mathcal{S}-procedure and the general sign-definiteness to approximate semi-infinite constraints and convert them into finite ones.

  • Simulation results are provided to verify the effectiveness and robustness of the proposed algorithms. In particular, the following observations are made from extensive numerical results: 1) compared to the self-sustainable RIS, the MF-RIS can attain 114% higher SR gain, by integrating multiple functions on one surface; and 2) increasing the number of elements is beneficial for an improved self-sustainability and throughput, but this also amplifies the performance loss caused by imperfect CSI, especially when the channel uncertainty is high.

The rest of this paper is organized as follows. In Section II, we provide the system model of an MF-RIS-aided communication network. In Section III, we analyze the achievable capacity of the proposed MF-RIS. In Section IV, we formulate a SR maximization problem, which is solved by an iterative algorithm. In Section V, we extend the problem and algorithm to the imperfect CSI case. Numerical results are presented in Section VI, followed by conclusions in Section VII.

Notations: N\mathbb{H}^{N} denotes the complex Hermitian matrix with N×NN\times N dimensions. 𝐗\mathbf{X}^{\ast}, 𝐗T\mathbf{X}^{\rm T}, 𝐗H\mathbf{X}^{\rm H}, 𝐗F\lVert\mathbf{X}\lVert_{F}, and vec(𝐗){\rm vec}(\mathbf{X}) denote the conjugate, transpose, Hermitian, Frobenius norm, and vectorization of matrix 𝐗\mathbf{X}, respectively. 𝐱\lVert\mathbf{x}\lVert denotes the Euclidean norm of vector 𝐱\mathbf{x}. Re{}{\rm Re}\{\cdot\} denotes the real part of a complex number. diag(){\rm diag}(\cdot), mod\operatorname{mod}, \lceil\cdot\rceil, and \lfloor\cdot\rfloor denote the diagonal operation, the modulus operation, the rounding up and rounding down operations, respectively. [𝐗]m,m[\mathbf{X}]_{m,m} and [𝐱]m[\mathbf{x}]_{m} denote the mm-th diagonal element and the mm-th element of matrix 𝐗\mathbf{X} and vector 𝐱\mathbf{x}, respectively. \otimes and \odot denote the Kronecker product and the Hadamard product, respectively. 𝟏M\mathbf{1}_{M} is an M×1M\times 1 all-ones vector. 𝐗𝟎\mathbf{X}\succeq\mathbf{0} indicates that matrix 𝐗\mathbf{X} is positive semi-definite.

Refer to caption
Figure 2: An MF-RIS-aided downlink multi-user communication system.

II System Model

As shown in Fig. 2, we consider an MF-RIS-assisted multi-user downlink communication network, where an MF-RIS is deployed to assist wireless communications from an NN-antenna base station (BS) to KK single-antenna users. The set of users is denoted by 𝒦={1,2,,K}\mathcal{K}=\{1,2,\cdots,K\}. We assume that the MF-RIS is equipped with MM elements, denoted by ={1,2,,M}\mathcal{M}=\{1,2,\cdots,M\}. These MM elements are divided into two groups, with one operating in H mode and the other in A mode. Specifically, the group of elements in H mode harvests the RF energy from received signals to support MF-RIS operation. Meanwhile, the remaining elements in A mode reflect and amplify the incident signals. The MF-RIS coefficient matrix is denoted by 𝚯=diag(α1β1ejθ1,α2β2ejθ2,,αMβMejθM)\boldsymbol{\Theta}={\rm{diag}}(\alpha_{1}\sqrt{\beta_{1}}e^{j\theta_{1}},\alpha_{2}\sqrt{\beta_{2}}e^{j\theta_{2}},\cdots,\alpha_{M}\sqrt{\beta_{M}}e^{j\theta_{M}}), where αm{0,1}\alpha_{m}\in\{0,1\}, βm[0,βmax]\beta_{m}\in[0,\beta_{\rm max}], and θm[0,2π)\theta_{m}\in[0,2\pi) denote the mode indicator, amplitude, and phase shift of the mm-th element, respectively. Here, αm=1\alpha_{m}=1 implies that the mm-th element operates in A mode, while αm=0\alpha_{m}=0 implies that it works in H mode, and βmax1\beta_{\rm max}\geq 1 represents the amplification factor. Therefore, by optimizing the mode indicator αm\alpha_{m}, the MM elements are flexibly assigned to work in A or H mode.

Denote 𝐰=k=1K𝐟ksk\mathbf{w}=\sum_{k=1}^{K}\mathbf{f}_{k}s_{k} as the superposition signal transmitted by the BS, where 𝐟k\mathbf{f}_{k} is the transmit beamforming vector of user kk, and sk𝒞𝒩(0,1)s_{k}\sim\mathcal{CN}(0,1) denotes the modulated data symbol, which is independent over kk. The signal received at user kk is then given by

yk=(𝐡kH+𝐠kH𝚯𝐇)𝐰+𝐠kH𝚯𝐧s+nk,\displaystyle y_{k}=\left(\mathbf{h}_{k}^{\rm H}+\mathbf{g}_{k}^{\rm H}\boldsymbol{\Theta}\mathbf{H}\right)\mathbf{w}+\mathbf{g}_{k}^{\rm H}\boldsymbol{\Theta}\mathbf{n}_{s}+n_{k}, (1)

where 𝐧s𝒞𝒩(𝟎,σ12𝐈M)\mathbf{n}_{s}\sim\mathcal{C}\mathcal{N}(\mathbf{0},\sigma_{1}^{2}\mathbf{I}_{M}) denotes the thermal noise generated at the MF-RIS with per-element noise power σ12\sigma_{1}^{2}, and nk𝒞𝒩(0,σ02)n_{k}\sim\mathcal{C}\mathcal{N}(0,\sigma_{0}^{2}) denotes the additive white Gaussian noise (AWGN) at user kk with noise power σ02\sigma_{0}^{2}. In addition, 𝐡kH1×N\mathbf{h}_{k}^{\rm H}\in\mathbb{C}^{1\times N}, 𝐇M×N\mathbf{H}\in\mathbb{C}^{M\times N}, and 𝐠kH1×M\mathbf{g}_{k}^{\rm H}\in\mathbb{C}^{1\times M} represent the channels from the BS to user kk, from the BS to the MF-RIS, and from the MF-RIS to user kk, respectively. Accordingly, by defining 𝐡¯k=𝐡kH+𝐠kH𝚯𝐇\bar{\mathbf{h}}_{k}=\mathbf{h}_{k}^{\rm H}+\mathbf{g}_{k}^{\rm H}\boldsymbol{\Theta}\mathbf{H} as the combined channel from the BS to user kk, the achievable rate of user kk is given by

Rk=log2(1+|𝐡¯k𝐟k|2i=1,ikK|𝐡¯k𝐟i|2+σ12𝐠kH𝚯2+σ02).\displaystyle R_{k}=\log_{2}\left(1+\frac{|\bar{\mathbf{h}}_{k}\mathbf{f}_{k}|^{2}}{\sum\nolimits_{i=1,i\neq k}^{K}|\bar{\mathbf{h}}_{k}\mathbf{f}_{i}|^{2}+\sigma_{1}^{2}\lVert\mathbf{g}_{k}^{\rm H}\boldsymbol{\Theta}\lVert^{2}+\sigma_{0}^{2}}\right). (2)

We define 𝐓m=diag([0,,1tom11αm,,0m+1toM])\mathbf{T}_{m}={\rm diag}([\underbrace{0,\cdots,}_{1\ \text{to}\ m-1}1-\alpha_{m}\underbrace{,\cdots,0}_{m+1\ \text{to}\ M}]) as the mode indicator matrix of the mm-th element. The RF power received at the mm-th element is then expressed as

PmRF=𝔼(𝐓m(𝐇𝐰+𝐧s)2),\displaystyle P_{m}^{\rm{RF}}=\mathbb{E}\left(\left\|\mathbf{T}_{m}\left(\mathbf{H}\mathbf{w}+\mathbf{n}_{s}\right)\right\|^{2}\right), (3)

where the expectation operator 𝔼()\mathbb{E}(\cdot) is taken over 𝐰\mathbf{w} and 𝐧s\mathbf{n}_{s}. Based on the logistic function[24], we adopt a non-linear energy harvesting model for the MF-RIS. Specifically, the total power harvested at the mm-th element is modeled as

PmA=ΥmZΩ1Ω,Υm=Z1+ea(PmRFq),\displaystyle P_{m}^{\mathrm{A}}=\frac{\Upsilon_{m}-Z\Omega}{1-\Omega},~{}~{}\Upsilon_{m}=\frac{Z}{1+e^{-a(P_{m}^{\rm RF}-q)}}, (4)

where Υm\Upsilon_{m} is a logistic function with respect to the received RF power PmRFP_{m}^{\rm RF}, and ZZ is a constant determining the maximum harvested power. Here, constant Ω\Omega is given by Ω=11+eaq\Omega=\frac{1}{1+e^{aq}}, a>0a>0 and q>0q>0 are related to circuit properties such as the capacitance and diode turn-on voltage[25].

To achieve the self-sustainability of MF-RIS, the total power consumed at the MF-RIS should not exceed its harvested power, given by[16]

m=1Mαm(Pb+PDC)+(Mm=1Mαm)PC\displaystyle\sum\nolimits_{m=1}^{M}\alpha_{m}(P_{b}+P_{\rm DC})+(M-\sum\nolimits_{m=1}^{M}\alpha_{m})P_{\rm C}
+ξPOm=1MPmA,\displaystyle+\xi P_{\rm O}\leq\sum\nolimits_{m=1}^{M}P_{m}^{\rm A}, (5)

where PbP_{b}, PDCP_{\rm DC}, and PCP_{\rm C} denote the amount of power consumed by each phase shifter, the DC biasing power consumption of the amplifier circuit, and the power consumption of the RF-to-DC power conversion circuit, respectively[14]. Here, ξ\xi is the inverse of the amplifier efficiency, and PO=k=1K𝚯𝐇𝐟k2+σ12𝚯F2P_{\rm O}=\sum\nolimits_{k=1}^{K}\lVert\boldsymbol{\Theta}\mathbf{H}\mathbf{f}_{k}\lVert^{2}+\sigma_{1}^{2}\lVert\boldsymbol{\Theta}\lVert_{F}^{2} is the output power of MF-RIS.

In this paper, we focus on the throughput analysis and optimization of the considered MF-RIS-aided communication network. To illustrate the superiority of the proposed MF-RIS architecture, we first analyze the achievable capacity in Section III. Then, we maximize the achievable SR under perfect and imperfect CSI cases in Sections IV and V, respectively.

III Capacity Comparison between MF-RIS and Self-sustainable RIS

To gain more insights, we analyze the performance gain achieved by the MF-RIS in a simplified single-input single-output (SISO) system with one user. Focusing on the capacity of MF-RIS-aided channels, the direct link is assumed to be blocked, and the reflection link is line-of-sight (LoS)444 To better understand the characteristics of the proposed MF-RIS, we consider the tractable case of the SISO system and the LoS channel, similar to [14, 27, 26, 28]. The numerical results in Section VI verify that the LoS case characterizes a performance upper bound for the MF-RIS-aided system, and the corresponding insights can be used to guide the more general cases. . Given the mode indicator matrix 𝜶=diag(α1,α2,,αM)\boldsymbol{\alpha}={\rm{diag}}(\alpha_{1},\alpha_{2},\cdots,\alpha_{M}), the signal received at the user is given by

y=𝐠H𝜶𝚵𝐡p+𝐠H𝜶𝚵𝐧s+n,\displaystyle y=\mathbf{g}^{\rm H}\boldsymbol{\alpha}\boldsymbol{\Xi}\mathbf{h}\sqrt{p}+\mathbf{g}^{\rm H}\boldsymbol{\alpha}\boldsymbol{\Xi}\mathbf{n}_{s}+n, (6)

where pp denotes the transmit power at the BS, 𝚵=diag(β1ejθ1,β2ejθ2,,βMejθM)\boldsymbol{\Xi}\!=\!\operatorname{diag}(\sqrt{\beta_{1}}e^{j\theta_{1}},\sqrt{\beta_{2}}e^{j\theta_{2}},\cdots,\sqrt{\beta_{M}}e^{j\theta_{M}}), and n𝒞𝒩(0,σ02)n\!\sim\!\mathcal{CN}(0,\sigma_{0}^{2}) denotes the AWGN noise at the user. Moreover, 𝐠=g𝐚(φa,φe)\mathbf{g}=g\mathbf{a}(\varphi_{a},\varphi_{e}) and 𝐡=h𝐚(ψa,ψe)\mathbf{h}\!=\!h\mathbf{a}(\psi_{a},\psi_{e}) represent the channel vectors from the MF-RIS to the user and from the BS to the MF-RIS, respectively, where gg and hh denote the distance-dependent path-loss factors, φa\varphi_{a}, φe\varphi_{e}, ψa\psi_{a}, and ψa\psi_{a} denote the azimuth and elevation angles of arrival and departure, respectively. Here, 𝐚(ψa,ψe)\mathbf{a}(\psi_{a},\psi_{e}) and 𝐚(φa,φe)\mathbf{a}(\varphi_{a},\varphi_{e}) denote steering vector functions with respect to these angles[26]. Then, the SNR maximization problem is formulated as

maxp,𝚵\displaystyle\underset{p,\boldsymbol{\Xi}}{\max} p|𝐠H𝜶𝚵𝐡|2σ12𝐠H𝜶𝚵2+σ02\displaystyle\frac{p|\mathbf{g}^{\rm H}\boldsymbol{\alpha}\boldsymbol{\Xi}\mathbf{h}|^{2}}{\sigma_{1}^{2}\left\|\mathbf{g}^{\rm H}\boldsymbol{\alpha}\boldsymbol{\Xi}\right\|^{2}+\sigma_{0}^{2}} (7a)
s.t.\displaystyle\operatorname{s.t.} p[0,PBSmax],\displaystyle p\in[0,P_{\rm BS}^{\rm max}], (7d)
βm[0,βmax],θm[0,2π),m,\displaystyle\beta_{m}\in[0,\beta_{\max}],~{}\theta_{m}\in[0,2\pi),~{}\forall m,
p𝜶𝚵𝐡2+σ12𝜶𝚵F2POMF(𝜶),\displaystyle p\lVert\boldsymbol{\alpha}\boldsymbol{\Xi}\mathbf{h}\lVert^{2}+\sigma_{1}^{2}\lVert\boldsymbol{\alpha}\boldsymbol{\Xi}\lVert_{F}^{2}\leq P_{\rm O}^{\rm MF}(\boldsymbol{\alpha}),

where POMF(𝜶)=1ξ(m=1MPmAm=1Mαm(Pb+PDC)(Mm=1Mαm)PC)P_{\rm O}^{\rm MF}(\boldsymbol{\alpha})=\frac{1}{\xi}(\sum\nolimits_{m=1}^{M}P_{m}^{\rm A}-\sum\nolimits_{m=1}^{M}\alpha_{m}(P_{b}+P_{\rm DC})-(M-\sum\nolimits_{m=1}^{M}\alpha_{m})P_{\rm C}) denotes the maximum output power of the MF-RIS. By exploiting the Lagrangian duality, the optimal transmit power and phase shift for problem (7) are, respectively, obtained as[27]

p=PBSmax,θm=(arg{[𝐠]m}arg{[𝐡]m})mod2π,m.\displaystyle p^{\star}\!=\!P_{\rm BS}^{\rm max},~{}\theta_{m}^{\star}\!=\!(\operatorname{arg}\{[\mathbf{g}]_{m}\}\!-\!\operatorname{arg}\{[\mathbf{h}]_{m}\})\bmod 2\pi,\forall m.\!\!\! (8)
Proposition 1

Assume that the numbers of MF-RIS elements operating in A mode and H mode are MA=m=1MαmM_{\rm A}=\sum_{m=1}^{M}\alpha_{m} and MH=Mm=1MαmM_{\rm H}=M-\sum_{m=1}^{M}\alpha_{m}, respectively. Then, the optimal magnitude coefficient for problem (7) is given by

βm={βmax,MAMA,1,POMF(𝜶)MA(PBSmaxh2+σ12),MA>MA,1,\displaystyle\beta^{\star}_{m}=\begin{cases}\beta_{\rm max},&M_{\rm A}\leq M_{\rm A,1},\\ \frac{P_{\rm O}^{\rm MF}(\boldsymbol{\alpha})}{M_{\rm A}(P_{\rm BS}^{\max}h^{2}+\sigma_{1}^{2})},&M_{\rm A}>M_{\rm A,1},\end{cases} (9)

where

MA,1=m=1MPmAMHPCξβmax(PBSmaxh2+σ12)+Pb+PDC.\displaystyle M_{\rm A,1}=\frac{\sum\nolimits_{m=1}^{M}P_{m}^{\rm A}-M_{\rm H}P_{\rm C}}{\xi\beta_{\rm max}(P_{\rm BS}^{\max}h^{2}+\sigma_{1}^{2})+P_{b}+P_{\rm DC}}. (10)
Proof:

Please refer to Appendix A. \Box

Proposition 2

Based on the optimal solutions in (8) and (9), the achievable SNR achieved by the MF-RIS is given by

γMF\displaystyle\gamma_{{\rm MF}}\!\!\!\!\!\!\! ={PBSmaxβmaxh2g2MA2βmaxσ12g2MA+σ02,MAMA,1,PBSmaxh2g2POMF(𝜶)MAσ12g2POMF(𝜶)+σ02(PBSmaxh2+σ12),MA>MA,1.\displaystyle=\left\{\begin{aligned} &\frac{P_{\rm BS}^{\rm max}\beta_{\max}h^{2}g^{2}M_{\rm A}^{2}}{\beta_{\max}\sigma_{1}^{2}g^{2}M_{\rm A}+\sigma_{0}^{2}},&&M_{\rm A}\leq M_{\rm A,1},\\ &\frac{P_{\rm BS}^{\rm max}h^{2}g^{2}P_{\rm O}^{\rm MF}(\boldsymbol{\alpha})M_{\rm A}}{\sigma_{1}^{2}g^{2}P_{\rm O}^{\rm MF}(\boldsymbol{\alpha})+\sigma_{0}^{2}(P_{\rm BS}^{\max}h^{2}+\sigma_{1}^{2})},&&M_{\rm A}>M_{\rm A,1}.\\ \end{aligned}\right. (11)
Proof:

Please refer to Appendix B. \Box

Proposition 3

For the considered MF-RIS-assisted system, the optimal number of reflection elements is given by

MA={M¯A,γMF(M¯A)γMF(M¯A),M¯A,γMF(M¯A)>γMF(M¯A),\displaystyle M_{\rm A}^{\star}=\begin{cases}\lfloor\bar{M}_{\rm A}\rfloor,&\gamma_{{\rm MF}}(\lceil\bar{M}_{\rm A}\rceil)\leq\gamma_{{\rm MF}}(\lfloor\bar{M}_{\rm A}\rfloor),\\ \lceil\bar{M}_{\rm A}\rceil,&\gamma_{{\rm MF}}(\lceil\bar{M}_{\rm A}\rceil)>\gamma_{{\rm MF}}(\lfloor\bar{M}_{\rm A}\rfloor),\end{cases} (12)

where M¯A=max{MA,1,MA,2}\bar{M}_{\rm A}=\max\{M_{\rm A,1},M_{\rm A,2}\}. Denote 𝒲1=m=1MPmAMHPC\mathcal{W}_{1}=\sum_{m=1}^{M}P_{m}^{\rm A}-M_{\rm H}P_{\rm C}, 𝒲2=Pb+PDC\mathcal{W}_{2}=P_{b}+P_{\rm DC}, 𝒲3=σ12g2\mathcal{W}_{3}=\sigma_{1}^{2}g^{2}, and 𝒲4=ξσ02(PBSmaxh2+σ12)\mathcal{W}_{4}=\xi\sigma_{0}^{2}(P_{\rm BS}^{\max}h^{2}+\sigma_{1}^{2}). Then, the value of MA,2M_{\rm A,2} is given by

MA,2=𝒲1𝒲3+𝒲4𝒲1𝒲3𝒲4+𝒲42𝒲2𝒲3.\displaystyle M_{\rm A,2}=\frac{\mathcal{W}_{1}\mathcal{W}_{3}+\mathcal{W}_{4}-\sqrt{\mathcal{W}_{1}\mathcal{W}_{3}\mathcal{W}_{4}+\mathcal{W}_{4}^{2}}}{\mathcal{W}_{2}\mathcal{W}_{3}}. (13)
Proof:

Please refer to Appendix C. \Box

Next, we analyze the achievable capacity of the self-sustainable RIS proposed in[16]. Assume that the numbers of elements operating in H mode and R mode are MHM_{\rm H} and MAM_{\rm A}, respectively. Given the mode indicator matrix 𝜶\boldsymbol{\alpha}, the SNR maximization problem is formulated as

maxp,𝚵\displaystyle\underset{p,\boldsymbol{\Xi}}{\max} p|𝐠H𝜶𝚵𝐡|2σ02\displaystyle\frac{p|\mathbf{g}^{\rm H}\boldsymbol{\alpha}\boldsymbol{\Xi}\mathbf{h}|^{2}}{\sigma_{0}^{2}} (14a)
s.t.\displaystyle\operatorname{s.t.} p[0,PBSmax],\displaystyle p\in[0,P_{\rm BS}^{\rm max}], (14d)
βm[0,1],θm[0,2π),m,\displaystyle\beta_{m}\in[0,1],~{}\theta_{m}\in[0,2\pi),~{}\forall m,
MAPb+MHPCm=1MPmA.\displaystyle M_{\rm A}P_{b}+M_{\rm H}P_{\rm C}\leq\sum\nolimits_{m=1}^{M}P_{m}^{\rm A}.

Again, using the Lagrangian duality, the optimal solution for problem (14) is obtained as [27]

p=PBSmax,βm=1,\displaystyle p^{\star}=P_{\rm BS}^{\max},~{}\beta^{\star}_{m}=1, (15a)
θm=(arg{[𝐠]m}arg{[𝐡]m})mod2π,m.\displaystyle\theta_{m}^{\star}=(\operatorname{arg}\{[\mathbf{g}]_{m}\}-\operatorname{arg}\{[\mathbf{h}]_{m}\})\bmod 2\pi,~{}\forall m. (15b)
Proposition 4

The achievable SNR of the considered self-sustainable RIS-aided system is

γSE=PBSmaxh2g2MA2σ02.\displaystyle\gamma_{{\rm SE}}=\frac{P_{\rm BS}^{\rm max}h^{2}g^{2}M_{\rm A}^{2}}{\sigma_{0}^{2}}. (16)

Moreover, the optimal number of elements operating in R mode is MA=m=1MPmAMHPCPbM_{\rm A}^{\star}=\lfloor\frac{\sum_{m=1}^{M}P_{m}^{\rm A}-M_{\rm H}P_{\rm C}}{P_{b}}\rfloor.

Proof:

Please refer to Appendix D. \Box

According to (11) and (16), by solving γMFγSE\gamma_{{\rm MF}}\geq\gamma_{\rm SE}, we obtain the number of reflection elements required for MF-RIS to outperform self-sustainable RIS, which is given by

MAMAth\displaystyle M_{\rm A}\leq M_{\rm A}^{\rm th}
=min{(βmax1)σ02βmax𝒲3,𝒲5𝒲524𝒲1𝒲2𝒲3σ022𝒲2𝒲3},\displaystyle=\min\Bigg{\{}\frac{(\beta_{\rm max}\!-\!1)\sigma_{0}^{2}}{\beta_{\rm max}\mathcal{W}_{3}},\frac{\mathcal{W}_{5}\!-\!\sqrt{\mathcal{W}_{5}^{2}\!-\!4\mathcal{W}_{1}\mathcal{W}_{2}\mathcal{W}_{3}\sigma_{0}^{2}}}{2\mathcal{W}_{2}\mathcal{W}_{3}}\Bigg{\}},\!\!\! (17)

where 𝒲5=𝒲2σ02+𝒲1𝒲3+𝒲4\mathcal{W}_{5}=\mathcal{W}_{2}\sigma_{0}^{2}+\mathcal{W}_{1}\mathcal{W}_{3}+\mathcal{W}_{4}. For a more intuitive comparison, we set PBSmax=5P_{\rm BS}^{\rm max}=5 W, M=300M=300, σ02=σ12=70\sigma_{0}^{2}=\sigma_{1}^{2}=-70 dBm, h2=45h^{2}=-45 dB, g2=60g^{2}=-60 dB, Pb=1.5P_{b}=1.5 mW, PC=2.1μP_{\rm C}=2.1\ \muW, PDC=0.3P_{\rm DC}=0.3 mW, βmax=13\beta_{\max}=13 dB, and ξ=1.1\xi=1.1[16]. Then, when MA21M_{\rm A}\leq 21, the achievable SNR performance of the MF-RIS is better than the self-sustainable RIS counterpart, i.e., the inequality (17) holds. In particular, for a practical RIS size, e.g., MA=10M_{\rm A}=10, we obtain γMF33.2\gamma_{{\rm MF}}\!\approx\!33.2 dB and γSE22\gamma_{{\rm SE}}\!\approx\!22 dB, where the former is about 13.213.2 times larger than the latter.

IV Throughput Maximization Under Perfect CSI

In this section, we maximize the throughput in a multiple-input single-output (MISO) system where multiple users are assisted by an MF-RIS, as shown in Fig. 2. Specifically, considering the power budget and energy causality in the perfect CSI case, we propose an iterative algorithm to solve the resulting MINLP problem efficiently.

IV-A Problem Formulation Under Perfect CSI

Our objective is to maximize the achievable SR of all users by jointly optimizing the transmit beamforming at the BS and the MF-RIS coefficients, while maintaining the self-sustainability of MF-RIS. In this section, to characterize the performance upper bound achieved by the MF-RIS, we assume that the perfect CSI of all channels is available at the BS by applying existing channel estimation methods[29]. Mathematically, the optimization problem is formulated as

max𝐟k,𝚯\displaystyle\underset{\mathbf{f}_{k},\boldsymbol{\Theta}}{\max} k=1KRk\displaystyle\sum\nolimits_{k=1}^{K}R_{k} (18a)
s.t.\displaystyle\operatorname{s.t.} k=1K𝐟k2PBSmax,\displaystyle\sum\nolimits_{k=1}^{K}\lVert\mathbf{f}_{k}\lVert^{2}\leq P_{\rm BS}^{\max}, (18d)
𝚯MF,\displaystyle\boldsymbol{\Theta}\in\mathcal{R}_{\rm MF},
(5).\displaystyle{\rm(\ref{C_energy})}.

where PBSmaxP_{\rm BS}^{\max} is the power budget at the BS and MF={αm,βm,θm|αm{0,1},βm[0,βmax],\mathcal{R}_{\rm MF}\!=\!\{\alpha_{m},\beta_{m},\theta_{m}|\alpha_{m}\!\in\!\{0,1\},\beta_{m}\in[0,\beta_{\max}], θm[0,2π),m}\theta_{m}\in[0,2\pi),\forall m\} is the feasible set of MF-RIS coefficients.

Unlike conventional RIS-related works that only focus on the optimization of reflective phase shifts[4, 5], in this paper, we consider the joint design of mode indicator, amplitude, and phase shift coefficients of the MF-RIS. This results in a more challenging optimization problem, where the newly introduced signal amplification and energy harvesting functions bring more highly-coupled non-convex constraints. Specifically, the signal amplification introduces additional RIS noise in the objective function (18a) and constraint (5), which complicates the resource allocation problem. Since the adopted non-linear energy harvesting model involves complex logistic functions, constraint (5) is more difficult to deal with than the linear energy constraint in [17] and [18]. Furthermore, the proposed MF-RIS requires the joint optimization of binary mode indicators and continuous amplitude and phase shift coefficients, which introduces a mixed-integer constraint in (5). As a result, problem (18) is an MINLP problem, which is more general than the optimization problems considered in [4] and [5]. However, it cannot be solved directly due to the non-convex and non-linear features. In the following, we develop an alternating optimization (AO) algorithm to find a high-performance solution with low complexity.

IV-B Problem Transformation Under Perfect CSI

Before solving problem (18), we first transform it into a more tractable form. To tackle the non-concave objective function (18a), we introduce auxiliary variables QkQ_{k}, 𝒜k\mathcal{A}_{k}, and k\mathcal{B}_{k}, satisfying Qk=log2(1+𝒜k1k1)Q_{k}=\log_{2}\left(1+{\mathcal{A}_{k}^{-1}\mathcal{B}_{k}^{-1}}\right), 𝒜k1=|𝐡¯k𝐟k|2\mathcal{A}_{k}^{-1}=|\bar{\mathbf{h}}_{k}\mathbf{f}_{k}|^{2}, and k=i=1,ikK|𝐡¯k𝐟i|2+σ12𝐠kH𝚯2+σ02\mathcal{B}_{k}=\sum\nolimits_{i=1,i\neq k}^{K}|\bar{\mathbf{h}}_{k}\mathbf{f}_{i}|^{2}+\sigma_{1}^{2}\lVert\mathbf{g}_{k}^{\mathrm{H}}\boldsymbol{\Theta}\lVert^{2}+\sigma_{0}^{2}. With these variable definitions, we obtain the following new constraints:

Qklog2(1+𝒜k1k1),k,\displaystyle Q_{k}\leq\log_{2}\left(1+{\mathcal{A}_{k}^{-1}\mathcal{B}_{k}^{-1}}\right),~{}\forall k, (19a)
𝒜k1|𝐡¯k𝐟k|2,k,\displaystyle{\mathcal{A}_{k}^{-1}}\leq|\bar{\mathbf{h}}_{k}\mathbf{f}_{k}|^{2},~{}\forall k, (19b)
ki=1,ikK|𝐡¯k𝐟i|2+σ12𝐠kH𝚯2+σ02,k.\displaystyle\mathcal{B}_{k}\geq\sum\nolimits_{i=1,i\neq k}^{K}|\bar{\mathbf{h}}_{k}\mathbf{f}_{i}|^{2}+\sigma_{1}^{2}\lVert\mathbf{g}_{k}^{\mathrm{H}}\boldsymbol{\Theta}\lVert^{2}+\sigma_{0}^{2},~{}\forall k. (19c)

To handle the non-convexity of constraint (19a), we here exploit the successive convex approximation (SCA) technique. Using the fact that the first-order Taylor expansion (FTS) of a convex function is a global under-estimator, a lower bound on its right-hand-side (RHS) at the feasible point {𝒜k(),k()}\{\mathcal{A}_{k}^{(\ell)},\mathcal{B}_{k}^{(\ell)}\} in the \ell-th iteration is given by

Rklb=\displaystyle R_{k}^{\rm lb}= log2(1+1𝒜k()k())\displaystyle\log_{2}\Big{(}1+\frac{1}{\mathcal{A}_{k}^{(\ell)}\mathcal{B}_{k}^{(\ell)}}\Big{)}
(log2e)(𝒜k𝒜k())𝒜k()+(𝒜k())2k()(log2e)(kk())k()+(k())2𝒜k().\displaystyle-\frac{(\log_{2}e)(\mathcal{A}_{k}-\mathcal{A}_{k}^{(\ell)})}{\mathcal{A}_{k}^{(\ell)}+(\mathcal{A}_{k}^{(\ell)})^{2}\mathcal{B}_{k}^{(\ell)}}-\frac{(\log_{2}e)(\mathcal{B}_{k}-\mathcal{B}_{k}^{(\ell)})}{\mathcal{B}_{k}^{(\ell)}+(\mathcal{B}_{k}^{(\ell)})^{2}\mathcal{A}_{k}^{(\ell)}}. (20)

To facilitate the derivation of constraint (5), we first rewrite the received RF power and the output power as follows

PmRF=Tr(𝐓m𝐇(k=1K𝐟k𝐟kH)𝐇H𝐓mH)+(1αm)σ12,\displaystyle\!\!\!\!\!\!P_{m}^{\rm{RF}}\!\!=\!{\rm Tr}\Big{(}\mathbf{T}_{m}\mathbf{H}\big{(}\sum\nolimits_{k=1}^{K}\mathbf{f}_{k}\mathbf{f}_{k}^{\rm H}\big{)}\mathbf{H}^{\rm H}\mathbf{T}_{m}^{\rm H}\Big{)}\!+\!(1\!-\!\alpha_{m})\sigma_{1}^{2},\!\!\!\!\!\!\!\! (21a)
PO=Tr(𝚯(𝐇(k=1K𝐟k𝐟kH)𝐇H+σ12𝐈M)𝚯H).\displaystyle\!\!\!\!\!\!P_{\rm O}\!=\!{\rm Tr}\Big{(}\mathbf{\Theta}\big{(}\mathbf{H}(\sum\nolimits_{k=1}^{K}\mathbf{f}_{k}\mathbf{f}_{k}^{\rm H})\mathbf{H}^{\rm H}+\sigma_{1}^{2}\mathbf{I}_{M}\big{)}\mathbf{\Theta}^{\rm H}\Big{)}. (21b)

Then, by introducing auxiliary variables 𝒞m\mathcal{C}_{m} and ζm\zeta_{m}, constraint (5) is equivalently recast as

(𝒲c+ξTr(𝚯(𝐇(k=1K𝐟k𝐟kH)𝐇H+σ12𝐈M)𝚯H))\displaystyle\!\!\!\!\!\!\Big{(}\mathcal{W}_{c}+\xi{\rm Tr}\big{(}\mathbf{\Theta}\big{(}\mathbf{H}(\sum\nolimits_{k=1}^{K}\mathbf{f}_{k}\mathbf{f}_{k}^{\rm H})\mathbf{H}^{\rm H}+\sigma_{1}^{2}\mathbf{I}_{M}\big{)}\mathbf{\Theta}^{\rm H}\big{)}\Big{)}
×(1Ω)Z1+MΩm=1M𝒞m1,\displaystyle\!\!\!\!\!\!\times(1-\Omega)Z^{-1}+M\Omega\leq\sum\nolimits_{m=1}^{M}\mathcal{C}_{m}^{-1}, (22a)
ζmTr(𝐓m𝐇(k=1K𝐟k𝐟kH)𝐇H𝐓mH)+(1αm)σ12,m,\displaystyle\!\!\!\!\!\!\zeta_{m}\!\leq\!{\rm Tr}\Big{(}\!\mathbf{T}_{m}\mathbf{H}\big{(}\sum\nolimits_{k=1}^{K}\!\!\!\mathbf{f}_{k}\mathbf{f}_{k}^{\rm H}\big{)}\mathbf{H}^{\rm H}\mathbf{T}_{m}^{\rm H}\Big{)}\!\!+\!\!(1\!-\!\alpha_{m})\sigma_{1}^{2},~{}\forall m,\!\!\!\!\! (22b)
𝒞mexp(a(ζmq))+1,m,\displaystyle\!\!\!\!\!\!\mathcal{C}_{m}\geq\exp\big{(}-a(\zeta_{m}-q)\big{)}+1,~{}\forall m, (22c)

where 𝒲c=m=1Mαm(Pb+PDC)+(Mm=1Mαm)PC\mathcal{W}_{c}=\sum\nolimits_{m=1}^{M}\alpha_{m}(P_{b}+P_{\rm DC})+(M-\sum\nolimits_{m=1}^{M}\alpha_{m})P_{\rm C}. Since constraint (22a) remains non-convex, we approximate it using the FTS. For the feasible point {𝒞m}\{\mathcal{C}_{m}\} in the \ell-th iteration, a lower bound on m=1M𝒞m1\sum\nolimits_{m=1}^{M}\mathcal{C}_{m}^{-1} is given by 𝒞lb=m=1M(2(𝒞m())1𝒞m(𝒞m())2)\mathcal{C}_{\rm lb}=\sum\nolimits_{m=1}^{M}\big{(}2(\mathcal{C}_{m}^{(\ell)})^{-1}-\mathcal{C}_{m}(\mathcal{C}_{m}^{(\ell)})^{-2}\big{)}. Now, defining Δ={Qk,𝒜k,k,𝒞m,ζm|k,m}\Delta=\{Q_{k},\mathcal{A}_{k},\mathcal{B}_{k},\mathcal{C}_{m},\zeta_{m}|\forall k,\forall m\} as an auxiliary variable set and denoting 𝒲¯c=(𝒞lbMΩ)Z(1Ω)ξ𝒲cξ\bar{\mathcal{W}}_{c}=\frac{(\mathcal{C}_{\rm lb}-M\Omega)Z}{(1-\Omega)\xi}-\frac{\mathcal{W}_{c}}{\xi}, problem (18) is recast as

max𝐟k,𝚯,Δ\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\underset{\mathbf{f}_{k},\boldsymbol{\Theta},\Delta}{\max} k=1KQk\displaystyle\!\!\!\!\sum\nolimits_{k=1}^{K}Q_{k} (23a)
s.t.\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\operatorname{s.t.} QkRklb,k,\displaystyle\!\!\!\!Q_{k}\leq R_{k}^{\rm lb},~{}\forall k, (23b)
𝒲¯cTr(𝚯(𝐇(k=1K𝐟k𝐟kH)𝐇H+σ12𝐈M)𝚯H),\displaystyle\!\!\!\!\bar{\mathcal{W}}_{c}\geq{\rm Tr}\big{(}\mathbf{\Theta}\big{(}\mathbf{H}(\sum\nolimits_{k=1}^{K}\mathbf{f}_{k}\mathbf{f}_{k}^{\rm H})\mathbf{H}^{\rm H}\!+\!\sigma_{1}^{2}\mathbf{I}_{M}\big{)}\mathbf{\Theta}^{\rm H}\big{)}, (23d)
(18d),(18d),(19b),(19c),(22b),(22c).\displaystyle\!\!\!\!{\rm(\ref{C_transmit beamforming}),(\ref{C-MF-RIS}),(\ref{C_AB_1}),(\ref{C_AB_2}),(\ref{C_energy-2}),(\ref{C_energy-3}).}
Algorithm 1 The SROCR-Based Algorithm for Solving (25)
1:  Initialization: set 1=0\ell_{1}=0, initialize the feasible point {𝐅k(1),wk(1)}\{\mathbf{F}_{k}^{(\ell_{1})},w_{k}^{(\ell_{1})}\} and the step size δ1(1)\delta_{1}^{(\ell_{1})}.
2:  repeat
3:     Solve the convex problem (27) to obtain 𝐅k\mathbf{F}_{k};
4:     if problem (27) is solvable then
5:        Update 𝐅k(+1)=𝐅k\mathbf{F}_{k}^{(\ell+1)}=\mathbf{F}_{k} and δ1(1+1)=δ1(0)\delta_{1}^{(\ell_{1}+1)}=\delta_{1}^{(0)};
6:     else
7:        Update 𝐅k(+1)=𝐅k()\mathbf{F}_{k}^{(\ell+1)}=\mathbf{F}_{k}^{(\ell)} and δ1(1+1)=δ1(1)/2\delta_{1}^{(\ell_{1}+1)}={\delta_{1}^{(\ell_{1})}}/{2};
8:     end if
9:     Update 1=1+1\ell_{1}=\ell_{1}+1 and
10:     Update wk(1)=min(1,λmax(𝐅k(1))Tr(𝐅k(1))+δ1(1))w_{k}^{(\ell_{1})}=\min\Big{(}1,\frac{\lambda_{\rm max}(\mathbf{F}_{k}^{(\ell_{1})})}{{\rm{Tr}}(\mathbf{F}_{k}^{(\ell_{1})})}+\delta_{1}^{(\ell_{1})}\Big{)};
11:  until the stopping criterion is met.

IV-C Transmit Beamforming Under Perfect CSI

To solve problem (23), we define 𝐇¯k=𝐡¯kH𝐡¯k\bar{\mathbf{H}}_{k}=\bar{\mathbf{h}}_{k}^{\rm H}\bar{\mathbf{h}}_{k} and 𝐅k=𝐟k𝐟kH\mathbf{F}_{k}=\mathbf{f}_{k}\mathbf{f}_{k}^{\rm H}, satisfying 𝐅k𝟎\mathbf{F}_{k}\succeq\mathbf{0} and rank(𝐅k)=1{\rm rank}(\mathbf{F}_{k})=1. Then, constraints in (19b), (19c), (22b), and (23d) are, respectively, rewritten as

𝒜k1Tr(𝐇¯k𝐅k),k,\displaystyle\!\!\!{\mathcal{A}_{k}^{-1}}\leq{\rm Tr}\big{(}\bar{\mathbf{H}}_{k}\mathbf{F}_{k}\big{)},~{}\forall k, (24a)
ki=1,ikKTr(𝐇¯k𝐅i)+σ12𝐠kH𝚯2+σ02,k,\displaystyle\!\!\!\mathcal{B}_{k}\geq\sum\nolimits_{i=1,i\neq k}^{K}{\rm Tr}\big{(}\bar{\mathbf{H}}_{k}\mathbf{F}_{i}\big{)}+\sigma_{1}^{2}\lVert\mathbf{g}_{k}^{\mathrm{H}}\boldsymbol{\Theta}\lVert^{2}+\sigma_{0}^{2},~{}\forall k, (24b)
ζmTr(𝐓m𝐇(k=1K𝐅k)𝐇H𝐓mH)+(1αm)σ12,m,\displaystyle\!\!\!\zeta_{m}\!\leq\!{\rm Tr}\big{(}\mathbf{T}_{m}\mathbf{H}(\sum\nolimits_{k=1}^{K}\!\!\mathbf{F}_{k})\mathbf{H}^{\rm H}\mathbf{T}_{m}^{\rm H}\big{)}\!+\!(1\!-\!\alpha_{m})\sigma_{1}^{2},~{}\forall m,\!\!\! (24c)
𝒲¯cTr(𝚯(𝐇(k=1K𝐅k)𝐇H+σ12𝐈M)𝚯H).\displaystyle\!\!\!\bar{\mathcal{W}}_{c}\geq{\rm Tr}\big{(}\mathbf{\Theta}\big{(}\mathbf{H}(\sum\nolimits_{k=1}^{K}\mathbf{F}_{k})\mathbf{H}^{\rm H}+\sigma_{1}^{2}\mathbf{I}_{M}\big{)}\mathbf{\Theta}^{\rm H}\big{)}. (24d)

Accordingly, with fixed 𝚯\boldsymbol{\Theta}, the transmit beamforming subproblem is given by

max𝐅k,Δ\displaystyle\underset{\mathbf{F}_{k},\Delta}{\max} k=1KQk\displaystyle\sum\nolimits_{k=1}^{K}Q_{k} (25a)
s.t.\displaystyle\operatorname{s.t.} k=1KTr(𝐅k)PBSmax,\displaystyle\sum\nolimits_{k=1}^{K}{\rm Tr}\big{(}\mathbf{F}_{k}\big{)}\leq P_{\rm BS}^{\max}, (25d)
rank(𝐅k)=1,k,\displaystyle{\rm rank}(\mathbf{F}_{k})=1,~{}\forall k,
𝐅k𝟎,k,(22c),(23b),(24a)-(24d).\displaystyle\mathbf{F}_{k}\succeq\mathbf{0},~{}\forall k,~{}{\rm(\ref{C_energy-3}),(\ref{C_Q_lb}),(\ref{C_AB_f_1}){\text{-}}(\ref{C_f-energy-2})}.

To handle the rank-one constraint (25d), we adopt the sequential rank-one constraint relaxation (SROCR) method[30]. Specifically, by denoting wk(1)[0,1]w_{k}^{(\ell-1)}\in[0,1] as the trace ratio parameter in the (1)(\ell-1)-th iteration, constraint (25d) is replaced by the following linear constraint:

(𝐟keig,(1))H𝐅k()𝐟keig,(1)wk(1)Tr(𝐅k()),k,\displaystyle\big{(}\mathbf{f}_{k}^{{\rm eig},(\ell-1)}\big{)}^{\rm H}\mathbf{F}_{k}^{(\ell)}\mathbf{f}_{k}^{{\rm eig},(\ell-1)}\geq w_{k}^{(\ell-1)}{\rm Tr}\big{(}\mathbf{F}_{k}^{(\ell)}\big{)},~{}\forall k, (26)

where 𝐟keig,(1)\mathbf{f}_{k}^{{\rm eig},(\ell-1)} is the eigenvector corresponding to the largest eigenvalue of 𝐅k(1)\mathbf{F}_{k}^{(\ell-1)}, and 𝐅k(1)\mathbf{F}_{k}^{(\ell-1)} is the obtained solution in the (1)(\ell\!-\!1)-th iteration. Thus, problem (25) is rewritten as

max𝐅k,Δ\displaystyle\underset{\mathbf{F}_{k},\Delta}{\max} k=1KQk\displaystyle\sum\nolimits_{k=1}^{K}Q_{k} (27a)
s.t.\displaystyle\operatorname{s.t.} (25d),(25d),(26).\displaystyle{\rm(\ref{C_f_Tr_0}),(\ref{C_f_rank_0}),(\ref{SROCR-linear-f}).} (27b)

Since problem (27) is a standard semi-definite programming (SDP) problem, it can be solved efficiently via standard convex solver software, such as CVX[31]. The details of solving (25) are given in Algorithm 1. Specifically, wk(1)=0w_{k}^{(\ell-1)}=0 indicates that the rank-one constraint is dropped, while wk(1)=1w_{k}^{(\ell-1)}=1 is equivalent to the rank-one constraint. Therefore, by increasing wk(1)w_{k}^{(\ell-1)} from 0 to 11 after each iteration, we can gradually approach a rank-one solution[30]. After solving (25), the solution of 𝐟k\mathbf{f}_{k} can be obtained by using the Cholesky decomposition, i.e., 𝐅k=𝐟k𝐟kH\mathbf{F}_{k}=\mathbf{f}_{k}\mathbf{f}_{k}^{\rm H}.

IV-D MF-RIS Coefficient Deign Under Perfect CSI

Next, we focus on the design of MF-RIS coefficients with given 𝐟k\mathbf{f}_{k}. First, we denote 𝐇~k=[diag(𝐠kH)𝐇;𝐡kH]\widetilde{\mathbf{H}}_{k}=\big{[}{\rm diag}(\mathbf{g}_{k}^{\rm H})\mathbf{H};\mathbf{h}_{k}^{\rm H}\big{]} and 𝐮=[[α1β1ejθ1,α2β2ejθ2,,αMβMejθM]H;1]\mathbf{u}=\Big{[}\big{[}\alpha_{1}\sqrt{\beta_{1}}e^{j\theta_{1}},\alpha_{2}\sqrt{\beta_{2}}e^{j\theta_{2}},\cdots,\alpha_{M}\sqrt{\beta_{M}}e^{j\theta_{M}}\big{]}^{\rm H};1\Big{]}. We further define 𝐔=𝐮𝐮H\mathbf{U}\!=\!\mathbf{u}\mathbf{u}^{\rm H}, satisfying 𝐔𝟎\mathbf{U}\succeq\mathbf{0}, rank(𝐔)=1{\rm rank}(\mathbf{U})\!=\!1, [𝐔]m,m=αm2βm\left[\mathbf{U}\right]_{m,m}\!=\!\alpha_{m}^{2}\beta_{m}, and [𝐔]M+1,M+1=1\left[\mathbf{U}\right]_{M+1,M+1}\!=\!1. Then, we have

|𝐡¯k𝐟k|2=|(𝐡kH+𝐠kH𝚯𝐇)𝐟k|2=Tr(𝐇~k𝐅k𝐇~kH𝐔).\displaystyle|\bar{\mathbf{h}}_{k}\mathbf{f}_{k}|^{2}=|(\mathbf{h}_{k}^{\rm H}+\mathbf{g}_{k}^{\rm H}\boldsymbol{\Theta}\mathbf{H})\mathbf{f}_{k}|^{2}=\operatorname{Tr}(\widetilde{\mathbf{H}}_{k}\mathbf{F}_{k}\widetilde{\mathbf{H}}_{k}^{\rm H}\mathbf{U}). (28)

Similarly, by defining 𝐆¯k=𝐠¯k𝐠¯kH\bar{\mathbf{G}}_{k}=\bar{\mathbf{g}}_{k}\bar{\mathbf{g}}_{k}^{\rm H} and 𝐇¯=𝐡¯𝐡¯H+σ12𝐈¯M𝐈¯MH\bar{\mathbf{H}}=\bar{\mathbf{h}}\bar{\mathbf{h}}^{\rm H}+\sigma_{1}^{2}\bar{\mathbf{I}}_{M}\bar{\mathbf{I}}_{M}^{\rm H}, with 𝐠¯k=[σ1diag(𝐠kH);𝟎1×M]\bar{\mathbf{g}}_{k}=[\sigma_{1}{\rm diag}(\mathbf{g}_{k}^{\rm H});\mathbf{0}_{1\times M}], 𝐡¯=[𝐇𝐰;0]\bar{\mathbf{h}}=[\mathbf{H}\mathbf{w};0], and 𝐈¯M=[𝐈M;𝟎1×M]\bar{\mathbf{I}}_{M}=[\mathbf{I}_{M};\mathbf{0}_{1\times M}], the term σ12𝐠kH𝚯2\sigma_{1}^{2}\lVert\mathbf{g}_{k}^{\mathrm{H}}\boldsymbol{\Theta}\lVert^{2} and the output power of MF-RIS are rewritten as σ12𝐠kH𝚯2=Tr(𝐆¯k𝐔)\sigma_{1}^{2}\lVert\mathbf{g}_{k}^{\mathrm{H}}\boldsymbol{\Theta}\lVert^{2}=\operatorname{Tr}(\bar{\mathbf{G}}_{k}\mathbf{U}) and PO=Tr(𝐇¯𝐔)P_{\rm O}=\operatorname{Tr}(\bar{\mathbf{H}}\mathbf{U}), respectively. Constraints (19b), (19c), and (23d) are then, respectively, transformed into

𝒜k1Tr(𝐇~k𝐅k𝐇~kH𝐔),\displaystyle\mathcal{A}_{k}^{-1}\geq\operatorname{Tr}(\widetilde{\mathbf{H}}_{k}\mathbf{F}_{k}\widetilde{\mathbf{H}}_{k}^{\rm H}\mathbf{U}), (29a)
ki=1,ikKTr(𝐇~k𝐅i𝐇~kH𝐔)+Tr(𝐆¯k𝐔)+σ02,\displaystyle\mathcal{B}_{k}\geq\sum\nolimits_{i=1,i\neq k}^{K}\operatorname{Tr}(\widetilde{\mathbf{H}}_{k}\mathbf{F}_{i}\widetilde{\mathbf{H}}_{k}^{\rm H}\mathbf{U})+\operatorname{Tr}(\bar{\mathbf{G}}_{k}\mathbf{U})+\sigma_{0}^{2}, (29b)
𝒲¯cTr(𝐇¯𝐔).\displaystyle\bar{\mathcal{W}}_{c}\geq\operatorname{Tr}(\bar{\mathbf{H}}\mathbf{U}). (29c)

Consequently, the MF-RIS coefficient design problem is reformulated as

max𝐔,Δ\displaystyle\underset{\mathbf{U},\Delta}{\max} kQk\displaystyle\sum\nolimits_{k}Q_{k} (30a)
s.t.\displaystyle\operatorname{s.t.} [𝐔]m,m=αm2βm,m,\displaystyle\left[\mathbf{U}\right]_{m,m}=\alpha_{m}^{2}\beta_{m},~{}\forall m, (30g)
𝐔𝟎,[𝐔]M+1,M+1=1,\displaystyle\mathbf{U}\succeq\mathbf{0},~{}\left[\mathbf{U}\right]_{M+1,M+1}=1,
rank(𝐔)=1,\displaystyle{\rm rank}(\mathbf{U})=1,
αm{0,1},m,\displaystyle\alpha_{m}\in\{0,1\},~{}\forall m,
βm[0,βmax],m,\displaystyle\beta_{m}\in\left[0,\beta_{\max}\right],~{}\forall m,
(22b),(22c),(23b),(29a)-(29c).\displaystyle{\rm(\ref{C_energy-2}),(\ref{C_energy-3}),(\ref{C_Q_lb}),(\ref{C_AB_passive_1}){\text{-}}(\ref{C_AB_passive_3})}.

Problem (30) is intractable due to the highly-coupled constraint (30g), the rank-one constraint (30g), and the binary constraint (30g). Similar to the transformation of the rank-one constraint (25d), we adopt the SROCR method to tackle (30g). Specifically, we denote v(1)[0,1]v^{(\ell-1)}\in[0,1] as the trace ratio parameter of 𝐔\mathbf{U} in the (1)(\ell-1)-th iteration, 𝐮eig,(1)\mathbf{u}^{{\rm eig},(\ell-1)} as the eigenvector corresponding to the largest eigenvalue of 𝐔(1)\mathbf{U}^{(\ell-1)}, and 𝐔(1)\mathbf{U}^{(\ell-1)} as the obtained solution in the (1)(\ell-1)-th iteration with v(1)v^{(\ell-1)}. Constraint (30g) in the \ell-th iteration then becomes the following linear one:

(𝐮eig,(1))H𝐔()𝐮eig,(1)v(1)Tr(𝐔()).\displaystyle\big{(}\mathbf{u}^{{\rm eig},(\ell-1)}\big{)}^{\rm H}\mathbf{U}^{(\ell)}\mathbf{u}^{{\rm eig},(\ell-1)}\geq v^{(\ell-1)}{\rm Tr}(\mathbf{U}^{(\ell)}). (31)

As for the binary constraint (30g), we equivalently recast it into two continuous ones: αmαm20\alpha_{m}-\alpha_{m}^{2}\leq 0 and 0αm10\leq\alpha_{m}\leq 1. The SCA technique is employed to address the non-convex constraint αmαm20\alpha_{m}-\alpha_{m}^{2}\leq 0. For the feasible point {αm()}\{\alpha_{m}^{(\ell)}\} in the \ell-th iteration, using the FTS, a convex upper bound on αm2-\alpha_{m}^{2} is obtained as (αm2)ub=2αm()αm+(αm())2\left(-\alpha_{m}^{2}\right)^{\rm ub}=-2\alpha_{m}^{(\ell)}\alpha_{m}+(\alpha_{m}^{(\ell)})^{2}.

Algorithm 2 The Penalty Function-Based Algorithm for Solving Problem (30)
1:  Initialization: set the initial iteration index 2=0\ell_{2}=0, initialize the feasible point {𝐔(2),vk(2)}\{\mathbf{U}^{(\ell_{2})},v_{k}^{(\ell_{2})}\}, ε>1\varepsilon>1, and the step size δ2(2)\delta_{2}^{(\ell_{2})}.
2:  repeat
3:     if 2Tmax\ell_{2}\leq T_{\max} then
4:        Solve the convex problem (33) to obtain 𝐔\mathbf{U};
5:        if problem (33) is solvable then
6:           Update 𝐔(+1)=𝐔\mathbf{U}^{(\ell+1)}=\mathbf{U} and δ2(2+1)=δ2(0)\delta_{2}^{(\ell_{2}+1)}=\delta_{2}^{(0)};
7:        else
8:           Update 𝐔(+1)=𝐔()\mathbf{U}^{(\ell+1)}=\mathbf{U}^{(\ell)} and δ2(2+1)=δ2(2)/2\delta_{2}^{(\ell_{2}+1)}={\delta_{2}^{(\ell_{2})}}/{2}.
9:        end if
10:        Update 2=2+1\ell_{2}=\ell_{2}+1;
11:        Update vk(2)=min(1,λmax(𝐔(2))Tr(𝐔(2))+δ2(2))v_{k}^{(\ell_{2})}=\min\Big{(}1,\frac{\lambda_{\rm max}(\mathbf{U}^{(\ell_{2})})}{{\rm{Tr}}(\mathbf{U}^{(\ell_{2})})}+\delta_{2}^{(\ell_{2})}\Big{)};
12:        Update ρ(2)=min{ερ(21),ρmax}\rho^{(\ell_{2})}={\min}\{\varepsilon\rho^{(\ell_{2}-1)},\rho_{\rm max}\};
13:     else
14:        Reinitialize with a new feasible point {𝐔(0),vk(0)}\{\mathbf{U}^{(0)},v_{k}^{(0)}\}, set ε>1\varepsilon>1 and 2=0\ell_{2}=0.
15:     end if
16:  until the stopping criterion is met.

By introducing the auxiliary variable, ηm=αm2βm\eta_{m}=\alpha_{m}^{2}\beta_{m}, the highly-coupled non-convex constraint (30g) is recast as

[𝐔]m,m=ηm,ηmαm2βm,αm2βmηm,m.\displaystyle\left[\mathbf{U}\right]_{m,m}=\eta_{m},~{}~{}\eta_{m}\leq\alpha_{m}^{2}\beta_{m},~{}~{}\alpha_{m}^{2}\beta_{m}\leq\eta_{m},~{}\forall m. (32)

Next, we apply the penalty function-based method to deal with the non-convex constraints ηmαm2βm\eta_{m}\leq\alpha_{m}^{2}\beta_{m} and αm2βmηm\alpha_{m}^{2}\beta_{m}\leq\eta_{m}. The former is approximated by ηm2(αmαm())αm()βm()+(αm())2βm\eta_{m}\leq 2(\alpha_{m}-\alpha_{m}^{(\ell)})\alpha_{m}^{(\ell)}\beta_{m}^{(\ell)}+(\alpha_{m}^{(\ell)})^{2}\beta_{m}, where the RHS is the FTS of αm2βm\alpha_{m}^{2}\beta_{m} at the feasible point {αm(),βm()}\{\alpha_{m}^{(\ell)},\beta_{m}^{(\ell)}\} obtained in the \ell-th iteration. As for the latter, we replace the term αm2βm\alpha_{m}^{2}\beta_{m} with its convex upper bound. Specifically, defining the functions g(αm,βm)=αm2βmg(\alpha_{m},\beta_{m})=\alpha_{m}^{2}\beta_{m} and G(αm,βm)=cm2αm4+βm22cmG(\alpha_{m},\beta_{m})=\frac{c_{m}}{2}\alpha_{m}^{4}+\frac{\beta_{m}^{2}}{2c_{m}}, G(αm,βm)g(αm,βm)G(\alpha_{m},\beta_{m})\geq g(\alpha_{m},\beta_{m}) is then satisfied for αm,βm,cm>0\alpha_{m},\beta_{m},c_{m}>0. When cm=βmαm2c_{m}=\frac{\beta_{m}}{\alpha_{m}^{2}}, the equations g(αm,βm)=G(αm,βm)g(\alpha_{m},\beta_{m})=G(\alpha_{m},\beta_{m}) and g(αm,βm)=G(αm,βm)\nabla g(\alpha_{m},\beta_{m})=\nabla G(\alpha_{m},\beta_{m}) hold[5]. Eventually, problem (30) is reformulated as

max𝐔,Δ,𝜼,𝐝\displaystyle\underset{\mathbf{U},\Delta,\boldsymbol{\eta},\mathbf{d}}{\max}~{} k=1KQkρm=1M(dm+d¯m)\displaystyle\sum\nolimits_{k=1}^{K}Q_{k}-\rho\sum\nolimits_{m=1}^{M}(d_{m}+\bar{d}_{m}) (33a)
s.t.\displaystyle\operatorname{s.t.}~{} [𝐔]m,m=ηm,m,\displaystyle\left[\mathbf{U}\right]_{m,m}=\eta_{m},~{}\forall m, (33b)
0αm1,αm+(αm2)ub0,m,\displaystyle 0\leq\alpha_{m}\leq 1,~{}\alpha_{m}+\left(-\alpha_{m}^{2}\right)^{\rm ub}\leq 0,~{}\forall m, (33c)
ηm2(αmαm())αm()βm()\displaystyle\eta_{m}\leq 2(\alpha_{m}-\alpha_{m}^{(\ell)})\alpha_{m}^{(\ell)}\beta_{m}^{(\ell)}
+(αm())2βm+dm,m,\displaystyle~{}~{}~{}~{}~{}~{}~{}+(\alpha_{m}^{(\ell)})^{2}\beta_{m}+d_{m},~{}\forall m, (33d)
cm2αm4+βm22cmηm+d¯m,m,\displaystyle\frac{c_{m}}{2}\alpha_{m}^{4}+\frac{\beta_{m}^{2}}{2c_{m}}\leq\eta_{m}+\bar{d}_{m},~{}\forall m, (33e)
(30g),(30g),(30g),(31),\displaystyle{\rm(\ref{C_passive_rank_3}),(\ref{C-passive-beta-C-1}),(\ref{C-passive-beta-C-2}),(\ref{SROCR-linear-theta})}, (33f)

where 𝜼={ηm|m}\boldsymbol{\eta}=\{\eta_{m}|\forall m\}. The set 𝐝={dm,d¯m|m}\mathbf{d}=\{d_{m},\bar{d}_{m}|\forall m\} is a slack variable set imposed over the non-convex constraints ηmαm2βm\eta_{m}\leq\alpha_{m}^{2}\beta_{m} and αm2βmηm\alpha_{m}^{2}\beta_{m}\leq\eta_{m}, and ρ\rho is a penalty factor used to penalize the violation of these constraints. Problem (33) is a convex SDP, and thus can be solved efficiently via CVX[31]. The fixed point cmc_{m} in the \ell-th iteration is updated by cm()=βm(1)(αm(1))2c_{m}^{(\ell)}=\frac{\beta_{m}^{(\ell-1)}}{(\alpha_{m}^{(\ell-1)})^{2}}. The details of the proposed penalty function-based algorithm are given in Algorithm 2.

IV-E Complexity and Convergence Analysis

Based on the AO framework, the solution of problem (18) can be obtained by solving problem (25) and problem (30) alternately. The complexity for solving problem (25) and problem (30) with the interior-point method is given by 𝒪𝐟=𝒪(Iite𝐟max(KN,2K+M)4KN)\mathcal{O}_{\mathbf{f}}=\mathcal{O}\big{(}I_{\rm ite}^{\mathbf{f}}\max(KN,2K+M)^{4}\sqrt{KN}\big{)} and 𝒪𝚯=𝒪(Iite𝚯\mathcal{O}_{\boldsymbol{\Theta}}=\mathcal{O}\big{(}I_{\rm ite}^{\boldsymbol{\Theta}} max(M+1,2K+M)4M+1)\max(M+1,2K+M)^{4}\sqrt{M+1}\big{)}, respectively, where Iite𝐟I_{\rm ite}^{\mathbf{f}} and Iite𝚯I_{\rm ite}^{\boldsymbol{\Theta}} denote the corresponding numbers of iterations[4]. The convergence of the overall algorithm is analyzed as follows.

Define U(𝐟k(),𝚯())U\big{(}\mathbf{f}_{k}^{(\ell)},\boldsymbol{\Theta}^{(\ell)}\big{)} as the objective function value of problem (18) in the \ell-th iteration. Then, for the transmit beamforming optimization problem (27) with a given 𝚯()\boldsymbol{\Theta}^{(\ell)}, we have the following inequalities

U(𝐟k(),𝚯())\displaystyle U\big{(}\mathbf{f}_{k}^{(\ell)},\boldsymbol{\Theta}^{(\ell)}\big{)} =(a)U𝐟k()lb(𝐟k(),𝚯())(b)U𝐟k()lb(𝐟k(+1),𝚯())\displaystyle\overset{(a)}{=}U^{\rm lb}_{\mathbf{f}_{k}^{(\ell)}}\big{(}\mathbf{f}_{k}^{(\ell)},\boldsymbol{\Theta}^{(\ell)}\big{)}\overset{(b)}{\leq}U^{\rm lb}_{\mathbf{f}_{k}^{(\ell)}}\big{(}\mathbf{f}_{k}^{(\ell+1)},\boldsymbol{\Theta}^{(\ell)}\big{)}
(c)U(𝐟k(+1),𝚯()),\displaystyle\overset{(c)}{\leq}U\big{(}\mathbf{f}_{k}^{(\ell+1)},\boldsymbol{\Theta}^{(\ell)}\big{)}, (34)

where U𝐟k()lbU_{\mathbf{f}_{k}^{(\ell)}}^{\rm lb} denotes the objective function value of problem (27) for the local point {𝐟k()}\{\mathbf{f}_{k}^{(\ell)}\}. Here, (a)(a) holds because the FTS is tight at the given local point[4], (b)(b) follows from the fact that the solution of {𝐟k(+1)}\{\mathbf{f}_{k}^{(\ell+1)}\} is obtained via Algorithm 1 with a given 𝚯()\boldsymbol{\Theta}^{(\ell)}, and (c)(c) is because problem (27) always provides a lower-bound solution for the original problem (18). Therefore, for fixed 𝚯()\boldsymbol{\Theta}^{(\ell)}, the objective function value of problem (18) is non-decreasing after solving problem (27). Similarly, for the MF-RIS coefficient design problem (33), we have

U(𝐟k(+1),𝚯())\displaystyle U\big{(}\mathbf{f}_{k}^{(\ell+1)},\boldsymbol{\Theta}^{(\ell)}\big{)} =U𝚯()lb(𝐟k(+1),𝚯())U𝚯()lb(𝐟k(+1),𝚯(+1))\displaystyle\!\!=\!U^{\rm lb}_{\boldsymbol{\Theta}^{(\ell)}}\big{(}\mathbf{f}_{k}^{(\ell+1)},\boldsymbol{\Theta}^{(\ell)}\big{)}\!\!\leq\!U^{\rm lb}_{\boldsymbol{\Theta}^{(\ell)}}\big{(}\mathbf{f}_{k}^{(\ell+1)},\boldsymbol{\Theta}^{(\ell+1)}\big{)}
U(𝐟k(+1),𝚯(+1)),\displaystyle\!\leq\!U\big{(}\mathbf{f}_{k}^{(\ell+1)},\boldsymbol{\Theta}^{(\ell+1)}\big{)}, (35)

where U𝚯()lbU^{\rm lb}_{\boldsymbol{\Theta}^{(\ell)}} is the objective function value of problem (33) at a local point {𝚯()}\{\boldsymbol{\Theta}^{(\ell)}\}. Based on (34) and (35), it holds that

U(𝐟k(),𝚯())U(𝐟k(+1),𝚯(+1)).\displaystyle U\big{(}\mathbf{f}_{k}^{(\ell)},\boldsymbol{\Theta}^{(\ell)}\big{)}\leq U\big{(}\mathbf{f}_{k}^{(\ell+1)},\boldsymbol{\Theta}^{(\ell+1)}\big{)}. (36)

Inequality (36) indicates that the objective function value of problem (18) is monotonically non-decreasing after each iteration. Besides, constraints (18d) and (18d) limit the maximum transmit power at the BS and the maximum amplification factor at the MF-RIS, respectively. The limited number of RIS elements and the logistic function-based energy harvesting model (4) restrict the maximum available power at the MF-RIS, thus ensuring the boundness of the objective function. Hence, the AO algorithm is guaranteed to converge.

V Throughput Maximization Under Imperfect CSI

The acquisition of perfect CSI is challenging due to inevitable channel estimation and quantization errors. Therefore, in this section, we propose a robust beamforming scheme by taking into account the imperfect CSI.

V-A Problem Formulation Under Imperfect CSI

Considering that the acquired CSI is coarse and outdated, we adopt the bounded CSI model to characterize the uncertainties of CSI, given by[32]

𝐡k=𝐡~k+𝐡k,𝐠k=𝐠~k+𝐠k,k,\displaystyle\mathbf{h}_{k}=\widetilde{\mathbf{h}}_{k}+\triangle\mathbf{h}_{k},~{}~{}\mathbf{g}_{k}=\widetilde{\mathbf{g}}_{k}+\triangle\mathbf{g}_{k},~{}\forall k, (37a)
𝐇=𝐇~+𝐇,𝐆k=𝐆~k+𝐆k,k,\displaystyle\mathbf{H}=\widetilde{\mathbf{H}}+\triangle\mathbf{H},~{}~{}\mathbf{G}_{k}=\widetilde{\mathbf{G}}_{k}+\triangle\mathbf{G}_{k},~{}\forall k, (37b)
Λh,k={𝐡kN×1:𝐡kξh,k},k,\displaystyle\Lambda_{h,k}=\{\triangle\mathbf{h}_{k}\in\mathbb{C}^{N\times 1}:\lVert\triangle\mathbf{h}_{k}\lVert\leq\xi_{h,k}\},~{}\forall k, (37c)
Λg,k={𝐠kM×1:𝐠kξg,k},k,\displaystyle\Lambda_{g,k}=\{\triangle\mathbf{g}_{k}\in\mathbb{C}^{M\times 1}:\lVert\triangle\mathbf{g}_{k}\lVert\leq\xi_{g,k}\},~{}\forall k, (37d)
ΛH={𝐇M×N:𝐇FξH},k,\displaystyle\Lambda_{H}=\{\triangle\mathbf{H}\in\mathbb{C}^{M\times N}:~{}\lVert\triangle\mathbf{H}\lVert_{F}\leq\xi_{H}\},~{}\forall k, (37e)
ΛG,k={𝐆kM×N:𝐆kFξG,k},k,\displaystyle\Lambda_{G,k}=\{\triangle\mathbf{G}_{k}\in\mathbb{C}^{M\times N}:\lVert\triangle\mathbf{G}_{k}\lVert_{F}\leq\xi_{G,k}\},~{}\forall k, (37f)

where 𝐆k=diag(𝐠kH)𝐇\mathbf{G}_{k}={\rm diag}(\mathbf{g}_{k}^{\rm H})\mathbf{H} is the cascaded channel from the BS to user kk. Here, 𝐡~k\widetilde{\mathbf{h}}_{k} and 𝐡k\triangle\mathbf{h}_{k} are the estimate of channel 𝐡k\mathbf{h}_{k} and the corresponding estimation error, respectively. The continuous set Λh,k\Lambda_{h,k} collects all possible estimation errors, with ξh,k>0\xi_{h,k}>0 denoting the radii of the uncertainty regions. Other parameters, 𝐠~k\widetilde{\mathbf{g}}_{k}, 𝐇~\widetilde{\mathbf{H}}, 𝐆~k\widetilde{\mathbf{G}}_{k}, 𝐠k\triangle\mathbf{g}_{k}, 𝐇\triangle\mathbf{H}, and 𝐆k\triangle\mathbf{G}_{k}, are defined similarly. Similar to problem (23), the SR maximization problem in the imperfect CSI case is formulated as

max𝐟k,𝚯,Δ\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\underset{\mathbf{f}_{k},\boldsymbol{\Theta},\Delta}{\max} k=1KQk\displaystyle\!\!\!\!\!\!\sum\nolimits_{k=1}^{K}Q_{k} (38a)
s.t.\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\operatorname{s.t.} 𝒜k1|𝐡¯k𝐟k|2,Λh,k,ΛG,k,k,\displaystyle\!\!\!\!\!\!\!{\mathcal{A}_{k}^{-1}}\leq|\bar{\mathbf{h}}_{k}\mathbf{f}_{k}|^{2},~{}\Lambda_{h,k},\Lambda_{G,k},\forall k, (38f)
ki=1,ikK|𝐡¯k𝐟i|2+σ12𝐠kH𝚯2+σ02,\displaystyle\!\!\!\!\!\!\!\mathcal{B}_{k}\geq\sum\nolimits_{i=1,i\neq k}^{K}|\bar{\mathbf{h}}_{k}\mathbf{f}_{i}|^{2}+\sigma_{1}^{2}\lVert\mathbf{g}_{k}^{\mathrm{H}}\boldsymbol{\Theta}\lVert^{2}+\sigma_{0}^{2},
Λh,k,Λg,k,ΛG,k,k,\displaystyle\!\!\!\!\!\!\!\Lambda_{h,k},\Lambda_{g,k},\Lambda_{G,k},\forall k,
ζmTr(𝐓m𝐇(k=1K𝐟k𝐟kH)𝐇H𝐓mH)\displaystyle\!\!\!\!\!\!\!\zeta_{m}\leq{\rm Tr}\Big{(}\mathbf{T}_{m}\mathbf{H}\big{(}\sum\nolimits_{k=1}^{K}\mathbf{f}_{k}\mathbf{f}_{k}^{\rm H}\big{)}\mathbf{H}^{\rm H}\mathbf{T}_{m}^{\rm H}\Big{)}
+(1αm)σ12,ΛH,m,\displaystyle\!\!\!\!\!\!\!~{}~{}~{}~{}~{}~{}~{}+(1-\alpha_{m})\sigma_{1}^{2},~{}\Lambda_{H},\forall m,
𝒲¯cTr(𝚯(𝐇(k=1K𝐟k𝐟kH)𝐇H+σ12𝐈M)𝚯H),ΛH,\displaystyle\!\!\!\!\!\!\!\bar{\mathcal{W}}_{c}\!\geq\!{\rm Tr}\Big{(}\!\mathbf{\Theta}\big{(}\mathbf{H}(\sum\nolimits_{k=1}^{K}\!\!\mathbf{f}_{k}\mathbf{f}_{k}^{\rm H})\mathbf{H}^{\rm H}\!\!\!+\!\!\sigma_{1}^{2}\mathbf{I}_{M}\big{)}\mathbf{\Theta}^{\rm H}\!\Big{)},\!\Lambda_{H},
(18d),(18d),(22c),(23b).\displaystyle\!\!\!\!\!\!\!{\rm(\ref{C_transmit beamforming}),(\ref{C-MF-RIS}),(\ref{C_energy-3}),(\ref{C_Q_lb})}.

Compared to problem (23), the difficulty of solving problem (38) lies in the infinitely many non-convex constraints (38f)-(38f) caused by the CSI imperfectness. To this end, we use the 𝒮\mathcal{S}-procedure and the general sign-definiteness to transform (38f)-(38f) into tractable forms. The AO framework is then utilized to decompose the reformulated problem into two subproblems, and we further optimize the transmit beamforming and MF-RIS coefficients alternately.

V-B Problem Transformation Under Imperfect CSI

To deal with constraint (38f), we first derive its linear approximation in the following lemma.

Lemma 1

By denoting (𝐟k(),𝐯())(\mathbf{f}_{k}^{(\ell)},\mathbf{v}^{(\ell)}) as the solution obtained in the \ell-th iteration and defining 𝐯=\mathbf{v}= [α1β1ejθ1,α2β2ejθ2,,αMβMejθM]T\big{[}\alpha_{1}\sqrt{\beta_{1}}e^{j\theta_{1}},\alpha_{2}\sqrt{\beta_{2}}e^{j\theta_{2}},\cdots,\alpha_{M}\sqrt{\beta_{M}}e^{j\theta_{M}}\big{]}^{\rm T}, constraint (38f) is equivalently linearized by

𝐱kH𝐀k𝐱k+2Re{𝐚kH𝐱k}+ak𝒜k1,Λh,k,ΛG,k,k,\displaystyle\mathbf{x}_{k}^{\mathrm{H}}\mathbf{A}_{k}\mathbf{x}_{k}+2{\rm Re}\{\mathbf{a}_{k}^{\mathrm{H}}\mathbf{x}_{k}\}+a_{k}\geq{\mathcal{A}_{k}^{-1}},~{}\Lambda_{h,k},\Lambda_{G,k},~{}\forall k, (39)

where the vector 𝐱k\mathbf{x}_{k} and the introduced coefficients 𝐀k\mathbf{A}_{k}, 𝐚k\mathbf{a}_{k}, and aka_{k} are given by (40) at the top of the next page.

Proof:

Please refer to Appendix E. \Box

𝐱k\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\mathbf{x}_{k}\!\!\!\!\!\!\!\!\!\! =[𝐡kHvecH(𝐆k)]H,𝐀k=𝐀~k+𝐀~kH𝐀^k,𝐚k=𝐚~k+𝐚^k𝐚¯k,ak=2Re{a~k}a^k,\displaystyle=\Big{[}\triangle\mathbf{h}_{k}^{\mathrm{H}}\ {\rm vec}^{\mathrm{H}}(\triangle\mathbf{G}_{k}^{\ast})\Big{]}^{\mathrm{H}},~{}~{}\mathbf{A}_{k}=\mathbf{\widetilde{A}}_{k}+\mathbf{\widetilde{A}}_{k}^{\mathrm{H}}-\mathbf{\widehat{A}}_{k},~{}~{}\mathbf{a}_{k}=\mathbf{\widetilde{a}}_{k}+\mathbf{\widehat{a}}_{k}-\mathbf{\bar{a}}_{k},~{}~{}a_{k}=2{\rm Re}\{\widetilde{a}_{k}\}-\widehat{a}_{k}, (40a)
𝐀~k\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\mathbf{\widetilde{A}}_{k}\!\!\!\!\!\!\!\!\!\! =[𝐟k()𝐟k()(𝐯())][𝐟kH𝐟kH𝐯T],𝐀^k=[𝐟k()𝐟k()(𝐯())][(𝐟k())H(𝐟k())H(𝐯())T],\displaystyle=\left[\begin{array}[]{c}\mathbf{f}_{k}^{(\ell)}\\ \mathbf{f}_{k}^{(\ell)}\otimes(\mathbf{v}^{(\ell)})^{\ast}\end{array}\right]\Big{[}\mathbf{f}_{k}^{\mathrm{H}}\ \mathbf{f}_{k}^{\mathrm{H}}\otimes\mathbf{v}^{\mathrm{T}}\Big{]},~{}~{}\mathbf{\widehat{A}}_{k}=\left[\begin{array}[]{c}\mathbf{f}_{k}^{(\ell)}\\ \mathbf{f}_{k}^{(\ell)}\otimes(\mathbf{v}^{(\ell)})^{\ast}\end{array}\right]\Big{[}(\mathbf{f}_{k}^{(\ell)})^{\mathrm{H}}\ (\mathbf{f}_{k}^{(\ell)})^{\mathrm{H}}\otimes(\mathbf{v}^{(\ell)})^{\mathrm{T}}\Big{]}, (40f)
𝐚~k\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\mathbf{\widetilde{a}}_{k}\!\!\!\!\!\!\!\!\!\! =[𝐟k(𝐟k())H(𝐡~k+𝐆~kH𝐯());vec(𝐯(𝐡~kH+(𝐯())H𝐆~k)𝐟k()𝐟kH)],\displaystyle=\left[\begin{array}[]{c}\mathbf{f}_{k}(\mathbf{f}_{k}^{(\ell)})^{\mathrm{H}}(\widetilde{\mathbf{h}}_{k}+\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}\mathbf{v}^{(\ell)});{\rm vec}^{\ast}(\mathbf{v}(\widetilde{\mathbf{h}}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}})\end{array}\right], (40h)
𝐚^k\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\mathbf{\widehat{a}}_{k}\!\!\!\!\!\!\!\!\!\! =[𝐟k()𝐟kH(𝐡~k+𝐆~kH𝐯);vec(𝐯()(𝐡~kH+𝐯H𝐆~k)𝐟k(𝐟k())H)],\displaystyle=\left[\begin{array}[]{c}\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}}(\widetilde{\mathbf{h}}_{k}+\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}\mathbf{v});{\rm vec}^{\ast}(\mathbf{v}^{(\ell)}(\widetilde{\mathbf{h}}_{k}^{\mathrm{H}}+\mathbf{v}^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{f}_{k}(\mathbf{f}_{k}^{(\ell)})^{\mathrm{H}})\\ \end{array}\right], (40j)
𝐚¯k\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\mathbf{\bar{a}}_{k}\!\!\!\!\!\!\!\!\!\! =[𝐟k()(𝐟k())H(𝐡~k+𝐆~kH𝐯());vec(𝐯()(𝐡~kH+(𝐯())H𝐆~k)𝐟k()(𝐟k())H)],\displaystyle=\left[\begin{array}[]{c}\mathbf{f}_{k}^{(\ell)}(\mathbf{f}_{k}^{(\ell)})^{\mathrm{H}}(\widetilde{\mathbf{h}}_{k}+\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}\mathbf{v}^{(\ell)});{\rm vec}^{\ast}(\mathbf{v}^{(\ell)}(\widetilde{\mathbf{h}}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{f}_{k}^{(\ell)}(\mathbf{f}_{k}^{(\ell)})^{\mathrm{H}})\\ \end{array}\right], (40l)
a~k\displaystyle\!\!\!\!\!\!\!\!\!\widetilde{a}_{k}\!\!\!\!\!\!\!\!\!\! =(𝐡~kH+(𝐯())H𝐆~k)𝐟k()𝐟kH(𝐡~k+𝐆~kH𝐯),a^k=(𝐡~kH+(𝐯())H𝐆~k)𝐟k()(𝐟k())H(𝐡~k+𝐆~kH𝐯()).\displaystyle=(\widetilde{\mathbf{h}}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}}(\widetilde{\mathbf{h}}_{k}+\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}\mathbf{v}),~{}~{}\widehat{a}_{k}=(\widetilde{\mathbf{h}}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{f}_{k}^{(\ell)}(\mathbf{f}_{k}^{(\ell)})^{\mathrm{H}}(\widetilde{\mathbf{h}}_{k}+\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}\mathbf{v}^{(\ell)}). (40m)

The linear constraint (39) still has infinite possibilities. To facilitate the derivation, we resort to the 𝒮\mathcal{S}-procedure to further convert it into a manageable form.

Lemma 2 (𝒮\boldsymbol{\mathcal{S}}-procedure[33])

Let a quadratic function fj(𝐱)f_{j}(\mathbf{x}), 𝐱N×1\mathbf{x}\in\mathbb{C}^{N\times 1}, j𝒥={0,1,,J}\forall j\in\mathcal{J}=\{0,1,\cdots,J\}, be defined as

fj(𝐱)=𝐱H𝐀j𝐱+2Re{𝐚jH𝐱}+aj,\displaystyle f_{j}(\mathbf{x})=\mathbf{x}^{\mathrm{H}}\mathbf{A}_{j}\mathbf{x}+2{\rm Re}\{\mathbf{a}_{j}^{\mathrm{H}}\mathbf{x}\}+a_{j}, (41)

where 𝐀jN\mathbf{A}_{j}\in\mathbb{H}^{N} and 𝐚jN×1\mathbf{a}_{j}\in\mathbb{C}^{N\times 1}. Then, the condition {fj(𝐱)0}j=1Jf0(𝐱)0\{f_{j}(\mathbf{x})\geq 0\}_{j=1}^{J}\Rightarrow f_{0}(\mathbf{x})\geq 0 holds if and only if there exist υj0\upsilon_{j}\geq 0, j\forall j, such that

[𝐀0𝐚0𝐚0Ha0]j=1Jυj[𝐀j𝐚j𝐚jHaj]𝟎.\displaystyle\Bigg{[}\begin{array}[]{cc}\mathbf{A}_{0}&\mathbf{a}_{0}\\ \mathbf{a}_{0}^{\mathrm{H}}&a_{0}\end{array}\Bigg{]}-\sum\nolimits_{j=1}^{J}\upsilon_{j}\Bigg{[}\begin{array}[]{cc}\mathbf{A}_{j}&\mathbf{a}_{j}\\ \mathbf{a}_{j}^{\mathrm{H}}&a_{j}\end{array}\Bigg{]}\succeq\mathbf{0}. (46)

In order to apply Lemma 2 to constraint (39), we rewrite the channel uncertainties Λh,k\Lambda_{h,k} and ΛG,k\Lambda_{G,k} as the following quadratic expressions:

𝐱kH𝐂1𝐱kξh,k20,𝐱kH𝐂2𝐱kξG,k20,k,\displaystyle\mathbf{x}_{k}^{\rm H}\mathbf{C}_{1}\mathbf{x}_{k}-\xi_{h,k}^{2}\leq 0,~{}~{}\mathbf{x}_{k}^{\rm H}\mathbf{C}_{2}\mathbf{x}_{k}-\xi_{G,k}^{2}\leq 0,~{}\forall k, (47)

where

𝐂1=[𝐈N𝟎𝟎𝟎],𝐂2=[𝟎𝟎𝟎𝐈MN].\displaystyle\mathbf{C}_{1}=\Bigg{[}\begin{array}[]{cc}\mathbf{I}_{N}&\mathbf{0}\\ \mathbf{0}&\mathbf{0}\end{array}\Bigg{]},~{}\mathbf{C}_{2}=\Bigg{[}\begin{array}[]{cc}\mathbf{0}&\mathbf{0}\\ \mathbf{0}&\mathbf{I}_{MN}\end{array}\Bigg{]}. (52)

Then, based on Lemma 2, constraint (39) holds if and only if there exist υh,k,υG,k0\upsilon_{h,k},\upsilon_{G,k}\geq 0, such that

[𝐀k+υh,k𝐂1+υG,k𝐂2𝐚k𝐚kHak𝒜k1υh,kξh,k2υG,kξG,k2]\displaystyle\left[\begin{array}[]{cc}\mathbf{A}_{k}\!+\!\upsilon_{h,k}\mathbf{C}_{1}\!+\!\upsilon_{G,k}\mathbf{C}_{2}&\mathbf{a}_{k}\\ \mathbf{a}_{k}^{\mathrm{H}}&a_{k}\!-\!\mathcal{A}_{k}^{-1}\!-\!\upsilon_{h,k}\xi_{h,k}^{2}\!-\!\upsilon_{G,k}\xi_{G,k}^{2}\end{array}\right] (55)
𝟎,k.\displaystyle\succeq\mathbf{0},~{}\forall k. (56)

Similarly, using 𝐇=𝐇~+𝐇\mathbf{H}\!=\!\widetilde{\mathbf{H}}\!+\!\triangle\mathbf{H}, constraints (38f) and (38f) are, respectively, recast as

𝐲mH𝐁𝐲m+2Re{𝐲~mH𝐁𝐲m}+𝐲~mH𝐁𝐲~m+bm0,ΛH,m,\displaystyle\!\!\!\!\!\!\!\!\mathbf{y}_{m}^{\rm H}\mathbf{B}\mathbf{y}_{m}\!+\!2{\rm Re}\{\widetilde{\mathbf{y}}_{m}^{\rm H}\mathbf{B}\mathbf{y}_{m}\}\!+\!\widetilde{\mathbf{y}}_{m}^{\rm H}\mathbf{B}\widetilde{\mathbf{y}}_{m}\!+\!b_{m}\!\geq\!0,~{}\Lambda_{H},\forall m,\!\!\!\!\!\!\!\! (57a)
𝐲H𝐁𝐲+2Re{𝐲~H𝐁𝐲}+𝐲~H𝐁𝐲~+b0,ΛH,\displaystyle\!\!\!\!\!\!\!\!\mathbf{y}^{\rm H}\mathbf{B}\mathbf{y}+2{\rm Re}\{\widetilde{\mathbf{y}}^{\rm H}\mathbf{B}\mathbf{y}\}+\widetilde{\mathbf{y}}^{\rm H}\mathbf{B}\widetilde{\mathbf{y}}+b\leq 0,~{}\Lambda_{H}, (57b)

where

𝐲m=vec(𝐓m𝐇),𝐲~m=vec(𝐓m𝐇~),\displaystyle\mathbf{y}_{m}={\rm vec}(\mathbf{T}_{m}\triangle\mathbf{H}),~{}\widetilde{\mathbf{y}}_{m}={\rm vec}(\mathbf{T}_{m}\widetilde{\mathbf{H}}),
𝐁=𝐈M(k=1K𝐟k𝐟kH),bm=(1αm)σ12ζm,\displaystyle\mathbf{B}=\mathbf{I}_{M}\otimes\big{(}\sum\nolimits_{k=1}^{K}\!\mathbf{f}_{k}\mathbf{f}_{k}^{\rm H}\big{)},~{}b_{m}=(1-\alpha_{m})\sigma_{1}^{2}-\zeta_{m},
𝐲=vec(𝚯𝐇),𝐲~=vec(𝚯𝐇~),b=σ12Tr(𝚯𝚯H)𝒲¯c.\displaystyle\mathbf{y}={\rm vec}(\boldsymbol{\Theta}\triangle\mathbf{H}),~{}\widetilde{\mathbf{y}}={\rm vec}(\boldsymbol{\Theta}\widetilde{\mathbf{H}}),~{}b=\sigma_{1}^{2}{\rm Tr}\big{(}\mathbf{\Theta}\mathbf{\Theta}^{\rm H}\big{)}-\bar{\mathcal{W}}_{c}.

Based on 𝐇FξH\lVert\triangle\mathbf{H}\lVert_{F}\leq\!\xi_{H}, we obtain vec(𝐓m𝐇)(1αm)ξHM\lVert{\rm vec}(\mathbf{T}_{m}\triangle\mathbf{H})\lVert\leq\!\frac{(1-\alpha_{m})\xi_{H}}{\sqrt{M}} and vec(𝚯𝐇)ξH𝚯FM\lVert{\rm vec}(\boldsymbol{\Theta}\triangle\mathbf{H})\lVert\leq\frac{\xi_{H}\|\boldsymbol{\Theta}\lVert_{F}}{\sqrt{M}}. Therefore, we have

𝐲mH𝐲m(1αm)2ξH2M0,𝐲H𝐲ξH2𝚯F2M0.\displaystyle\mathbf{y}_{m}^{\rm H}\mathbf{y}_{m}-\frac{(1-\alpha_{m})^{2}\xi_{H}^{2}}{M}\leq 0,~{}~{}~{}\mathbf{y}^{\rm H}\mathbf{y}-\frac{\xi_{H}^{2}\lVert\boldsymbol{\Theta}\lVert_{F}^{2}}{M}\leq 0. (58)

According to (58) and Lemma 2, with slack variables υH,m0\upsilon_{H,m}\geq 0 and υH0\upsilon_{H}\geq 0, constraints (57a) and (57b) are transformed into the following linear matrix inequality (LMI) constraints:

[υH,m𝐈MN𝟎0bmυH,m(1αm)2ξH2M]\displaystyle\left[\begin{array}[]{cc}\upsilon_{H,m}\mathbf{I}_{MN}&\mathbf{0}\\ 0&b_{m}-\upsilon_{H,m}\frac{(1-\alpha_{m})^{2}\xi_{H}^{2}}{M}\end{array}\right] (59c)
+[𝐈MN𝐲~mH]𝐁[𝐈MN𝐲~m]𝟎,m,\displaystyle+\left[\begin{array}[]{c}\mathbf{I}_{MN}\\ \widetilde{\mathbf{y}}_{m}^{\rm H}\end{array}\right]\mathbf{B}\left[\begin{array}[]{cc}\mathbf{I}_{MN}\ \ \widetilde{\mathbf{y}}_{m}\end{array}\right]\succeq\mathbf{0},~{}\forall m, (59g)
[υH𝐈MN𝟎0bυHξH2𝚯F2M]\displaystyle\left[\begin{array}[]{cc}\upsilon_{H}\mathbf{I}_{MN}&\mathbf{0}\\ 0&-b-\upsilon_{H}\frac{\xi_{H}^{2}\lVert\boldsymbol{\Theta}\lVert_{F}^{2}}{M}\end{array}\right] (59j)
[𝐈MN𝐲~H]𝐁[𝐈MN𝐲~]𝟎.\displaystyle-\left[\begin{array}[]{c}\mathbf{I}_{MN}\\ \widetilde{\mathbf{y}}^{\rm H}\end{array}\right]\mathbf{B}\left[\begin{array}[]{cc}\mathbf{I}_{MN}\ \ \widetilde{\mathbf{y}}\end{array}\right]\succeq\mathbf{0}. (59n)

Next, we consider the CSI uncertainties in Λh,k\Lambda_{h,k} and Λg,k\Lambda_{g,k} of constraint (38f). By defining the matrix 𝐅k=[𝐟1,,𝐟k1,𝐟k+1,,𝐟K]N×(K1)\mathbf{F}_{-k}=\big{[}\mathbf{f}_{1},\cdots,\mathbf{f}_{k-1},\mathbf{f}_{k+1},\cdots,\mathbf{f}_{K}\big{]}\in\mathbb{C}^{N\times(K-1)} and introducing a slack variable 𝒟k\mathcal{D}_{k}, constraint (38f) is rewritten as

k(𝐡kH+𝐯H𝐆k)𝐅k2+𝒟k+σ02,Λh,k,ΛG,k,\displaystyle\!\!\!\mathcal{B}_{k}\geq\lVert(\mathbf{h}_{k}^{\rm H}+\mathbf{v}^{\rm H}\mathbf{G}_{k})\mathbf{F}_{-k}\lVert^{2}+\mathcal{D}_{k}+\sigma_{0}^{2},~{}\Lambda_{h,k},\Lambda_{G},\forall k,\!\!\! (60a)
𝒟kσ12𝐠kH𝚯2,Λg,k,k.\displaystyle\!\!\!\mathcal{D}_{k}\geq\sigma_{1}^{2}\lVert\mathbf{g}_{k}^{\mathrm{H}}\boldsymbol{\Theta}\lVert^{2},~{}\Lambda_{g,k},\forall k.\!\!\! (60b)

Then, we adopt Schur’s complement Lemma to equivalently recast constraints (60a) and (60b) as[34]

[k𝒟kσ02(𝐡kH+𝐯H𝐆k)𝐅k𝐅kH(𝐡k+𝐆kH𝐯)𝐈K1]𝟎,\displaystyle\left[\begin{array}[]{cc}\mathcal{B}_{k}-\mathcal{D}_{k}-\sigma_{0}^{2}&(\mathbf{h}_{k}^{\rm H}+\mathbf{v}^{\mathrm{H}}\mathbf{G}_{k})\mathbf{F}_{-k}\\ \mathbf{F}_{-k}^{\mathrm{H}}(\mathbf{h}_{k}+\mathbf{G}_{k}^{\mathrm{H}}\mathbf{v})&\mathbf{I}_{K-1}\end{array}\right]\succeq\mathbf{0}, (61c)
Λh,k,ΛG,k,\displaystyle~{}\Lambda_{h,k},\Lambda_{G},\forall k, (61d)
[𝒟kσ1𝐠kH𝚯σ1(𝐠kH𝚯)H𝐈M]𝟎,Λg,k,k.\displaystyle\left[\begin{array}[]{cc}\mathcal{D}_{k}&\sigma_{1}\mathbf{g}_{k}^{\mathrm{H}}\boldsymbol{\Theta}\\ \sigma_{1}(\mathbf{g}_{k}^{\mathrm{H}}\boldsymbol{\Theta})^{\rm H}&\mathbf{I}_{M}\end{array}\right]\succeq\mathbf{0},~{}\Lambda_{g,k},\forall k. (61g)

We further insert 𝐡k=𝐡~k+𝐡k\mathbf{h}_{k}=\widetilde{\mathbf{h}}_{k}+\triangle\mathbf{h}_{k}, 𝐆k=𝐆~k+𝐆k\mathbf{G}_{k}=\widetilde{\mathbf{G}}_{k}+\triangle\mathbf{G}_{k}, and 𝐠k=𝐠~k+𝐠k\mathbf{g}_{k}=\widetilde{\mathbf{g}}_{k}+\triangle\mathbf{g}_{k} into (61d) and (61g). Then, constraints (61d) and (61g) are, respectively, reformulated as

[k𝒟kσ02(𝐡~kH+𝐯H𝐆~k)𝐅k𝐅kH(𝐡~k+𝐆~kH𝐯)𝐈K1]+[𝟎𝐅kH][𝐡k𝟎]\displaystyle\left[\!\!\!\begin{array}[]{cc}\mathcal{B}_{k}\!-\!\mathcal{D}_{k}\!-\!\sigma_{0}^{2}&(\widetilde{\mathbf{h}}_{k}^{\rm H}\!+\!\mathbf{v}^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{F}_{-k}\\ \mathbf{F}_{-k}^{\mathrm{H}}(\widetilde{\mathbf{h}}_{k}\!+\!\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}\mathbf{v})&\mathbf{I}_{K-1}\end{array}\!\!\!\right]\!+\!\left[\!\!\!\begin{array}[]{c}\mathbf{0}\\ \mathbf{F}_{-k}^{\mathrm{H}}\end{array}\!\!\!\right]\left[\!\!\begin{array}[]{ll}\triangle\mathbf{h}_{k}&\mathbf{0}\end{array}\!\!\right] (62f)
+[𝐡kH𝟎][𝟎𝐅k]+[𝟎𝐅kH]𝐆kH[𝐯𝟎]\displaystyle+\left[\begin{array}[]{c}\triangle\mathbf{h}_{k}^{\mathrm{H}}\\ \mathbf{0}\end{array}\right]\left[\begin{array}[]{ll}\mathbf{0}&\mathbf{F}_{-k}\end{array}\right]+\left[\begin{array}[]{c}\mathbf{0}\\ \mathbf{F}_{-k}^{\mathrm{H}}\end{array}\right]\triangle\mathbf{G}_{k}^{\mathrm{H}}\left[\begin{array}[]{cc}\mathbf{v}&\mathbf{0}\end{array}\right] (62m)
+[𝐯H𝟎]𝐆k[𝟎𝐅k]𝟎,Λh,k,ΛG,k,\displaystyle+\left[\begin{array}[]{c}\mathbf{v}^{\mathrm{H}}\\ \mathbf{0}\end{array}\right]\triangle\mathbf{G}_{k}\left[\begin{array}[]{cc}\mathbf{0}&\mathbf{F}_{-k}\end{array}\right]\succeq\mathbf{0},~{}\Lambda_{h,k},\Lambda_{G},\forall k, (62q)
[𝒟kσ1𝐠~kH𝚯σ1(𝐠~kH𝚯)H𝐈M]+[𝟎σ1𝚯H][𝐠k𝟎]\displaystyle\left[\!\!\begin{array}[]{cc}\mathcal{D}_{k}&\!\!\sigma_{1}\widetilde{\mathbf{g}}_{k}^{\mathrm{H}}\boldsymbol{\Theta}\\ \sigma_{1}(\widetilde{\mathbf{g}}_{k}^{\mathrm{H}}\boldsymbol{\Theta})^{\rm H}&\mathbf{I}_{M}\end{array}\!\!\right]+\left[\!\!\begin{array}[]{c}\mathbf{0}\\ \sigma_{1}\boldsymbol{\Theta}^{\rm H}\end{array}\!\!\right]\left[\!\!\begin{array}[]{ll}\triangle\mathbf{g}_{k}&\mathbf{0}\end{array}\!\!\right] (62w)
+[𝟎𝐠kH][𝟎𝚯σ1]𝟎,Λg,k,k.\displaystyle+\left[\!\!\begin{array}[]{c}\mathbf{0}\\ \triangle\mathbf{g}_{k}^{\mathrm{H}}\end{array}\!\!\right]\left[\!\!\begin{array}[]{ll}\mathbf{0}&\!\boldsymbol{\Theta}\sigma_{1}\end{array}\!\!\right]\succeq\mathbf{0},~{}\Lambda_{g,k},\forall k. (62aa)

We observe that constraints (62f) and (62aa) are still intractable due to the multiple complex valued uncertainties. Here, we transform them into a finite number of constraints by applying the following lemma.

Lemma 3 (General sign-definiteness[35])

Given matrices 𝐃\mathbf{D} and {𝐄j,𝐅j}j=1J\{\mathbf{E}_{j},\mathbf{F}_{j}\}_{j=1}^{J} with 𝐃=𝐃H\mathbf{D}=\mathbf{D}^{\rm H}, the following semi-infinite LMI

𝐃j=1J(𝐄jH𝐆j𝐅j+𝐅jH𝐆jH𝐄j),𝐆jFξj,j,\displaystyle\mathbf{D}\succeq\sum\nolimits_{j=1}^{J}\left(\mathbf{E}_{j}^{\mathrm{H}}\mathbf{G}_{j}\mathbf{F}_{j}+\mathbf{F}_{j}^{\mathrm{H}}\mathbf{G}_{j}^{\mathrm{H}}\mathbf{E}_{j}\right),~{}\left\|\mathbf{G}_{j}\right\|_{F}\leq\xi_{j},~{}~{}\forall j, (63)

holds if and only if there exist ϖj0\varpi_{j}\geq 0, j\forall j, such that

[𝐃j=1Jϖj𝐅jH𝐅jξ1𝐄1HξJ𝐄JHξ1𝐄1ϖ1𝐈𝟎ξJ𝐄J𝟎ϖJ𝐈]𝟎.\displaystyle\left[\begin{array}[]{cccc}\mathbf{D}-\sum_{j=1}^{J}\varpi_{j}\mathbf{F}_{j}^{\mathrm{H}}\mathbf{F}_{j}&-\xi_{1}\mathbf{E}_{1}^{\mathrm{H}}&\cdots&-\xi_{J}\mathbf{E}_{J}^{\mathrm{H}}\\ -\xi_{1}\mathbf{E}_{1}&\varpi_{1}\mathbf{I}&\cdots&\mathbf{0}\\ \vdots&\vdots&\ddots&\vdots\\ -\xi_{J}\mathbf{E}_{J}&\mathbf{0}&\cdots&\varpi_{J}\mathbf{I}\end{array}\right]\succeq\mathbf{0}. (68)

Let us take constraint (62f) as an example. It is observed that constraint (62f) can be recast by setting the parameters in Lemma 3 as follows:

J=2,𝐃=[k𝒟kσ02(𝐡~kH+𝐯H𝐆~k)𝐅k𝐅kH(𝐡~k+𝐆~kH𝐯)𝐈K1],\displaystyle J\!=\!2,~{}\mathbf{D}\!=\!\left[\!\!\begin{array}[]{cc}\mathcal{B}_{k}\!-\!\mathcal{D}_{k}\!-\!\sigma_{0}^{2}\!\!\!\!&(\widetilde{\mathbf{h}}_{k}^{\rm H}\!+\!\mathbf{v}^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{F}_{-k}\\ \mathbf{F}_{-k}^{\mathrm{H}}(\widetilde{\mathbf{h}}_{k}\!+\!\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}\mathbf{v})\!\!\!\!&\mathbf{I}_{K-1}\end{array}\!\!\right], (69c)
𝐆1=[𝐡k𝟎],𝐄1=[𝟎𝐅k],𝐅1=𝐈K,\displaystyle\mathbf{G}_{1}\!=\!\left[\begin{array}[]{ll}\triangle\mathbf{h}_{k}&\mathbf{0}\end{array}\right],\mathbf{E}_{1}\!=\!-\left[\begin{array}[]{ll}\mathbf{0}&\mathbf{F}_{-k}\end{array}\right],~{}\mathbf{F}_{1}\!=\!\mathbf{I}_{K}, (69f)
𝐆2=𝐆kH,𝐄2=[𝟎𝐅k],𝐅2=[𝐯𝟎].\displaystyle\mathbf{G}_{2}\!=\!\triangle\mathbf{G}_{k}^{\mathrm{H}},~{}\mathbf{E}_{2}\!=\!-\left[\begin{array}[]{cc}\mathbf{0}&\mathbf{F}_{-k}\end{array}\right],~{}\mathbf{F}_{2}\!=\!\left[\begin{array}[]{cc}\mathbf{v}&\mathbf{0}\end{array}\right]. (69i)

Constraint (62f) is then equivalently transformed into LMIs (74) at the top of this page, where ϖh,k0\varpi_{h,k}\geq 0 and ϖG,k0\varpi_{G,k}\geq 0 are introduced slack variables.

[k𝒟kσ02ϖh,kϖG,km=1Mαm2βm(𝐡~kH+𝐯H𝐆~k)𝐅k𝟎𝟎𝐅kH(𝐡~k+𝐆~kH𝐯)(1ϖh,k)𝐈K1ξh,k𝐅kHξG,k𝐅kH𝟎ξh,k𝐅kϖh,k𝐈N𝟎𝟎ξG,k𝐅k𝟎ϖG,k𝐈N]𝟎,k.\displaystyle\left[\begin{array}[]{cccc}\mathcal{B}_{k}-\mathcal{D}_{k}-\sigma_{0}^{2}-\varpi_{h,k}-\varpi_{G,k}\sum_{m=1}^{M}{\alpha_{m}^{2}\beta_{m}}&(\widetilde{\mathbf{h}}_{k}^{\rm H}+\mathbf{v}^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{F}_{-k}&\mathbf{0}&\mathbf{0}\\ \mathbf{F}_{-k}^{\mathrm{H}}(\widetilde{\mathbf{h}}_{k}+\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}\mathbf{v})&(1-\varpi_{h,k})\mathbf{I}_{K-1}&\xi_{h,k}\mathbf{F}_{-k}^{\mathrm{H}}&\xi_{G,k}\mathbf{F}_{-k}^{\mathrm{H}}\\ \mathbf{0}&\xi_{h,k}\mathbf{F}_{-k}&\varpi_{h,k}\mathbf{I}_{N}&\mathbf{0}\\ \mathbf{0}&\xi_{G,k}\mathbf{F}_{-k}&\mathbf{0}&\varpi_{G,k}\mathbf{I}_{N}\end{array}\right]\succeq\mathbf{0},~{}\forall k. (74)

Similarly, given the introduced slack variable ϖg,k0\varpi_{g,k}\geq 0, the equivalent LMIs of constraint (62aa) are obtained as

[𝒟kϖg,kσ1𝐠~kH𝚯𝟎σ1(𝐠~kH𝚯)H(1ϖg,k)𝐈Mξg,kσ1𝚯H𝟎ξg,kσ1𝚯ϖg,k𝐈M]𝟎,k.\displaystyle\left[\begin{array}[]{ccc}\mathcal{D}_{k}-\varpi_{g,k}&\sigma_{1}\widetilde{\mathbf{g}}_{k}^{\mathrm{H}}\boldsymbol{\Theta}&\mathbf{0}\\ \sigma_{1}(\widetilde{\mathbf{g}}_{k}^{\mathrm{H}}\boldsymbol{\Theta})^{\rm H}&(1-\varpi_{g,k})\mathbf{I}_{M}&\xi_{g,k}\sigma_{1}\boldsymbol{\Theta}^{\rm H}\\ \mathbf{0}&\xi_{g,k}\sigma_{1}\boldsymbol{\Theta}&\varpi_{g,k}\mathbf{I}_{M}\end{array}\right]\succeq\mathbf{0},~{}\forall k. (78)

As a result, by replacing the original constraints (38f)-(38f) with the LMI constraints (56), (74), (78), (59g), and (59n), respectively, problem (38) is reformulated as

max𝐟k,𝚯,Δ,Δ0\displaystyle\underset{\mathbf{f}_{k},\boldsymbol{\Theta},\Delta,\Delta_{0}}{\max} k=1KQk\displaystyle\sum\nolimits_{k=1}^{K}Q_{k} (79a)
s.t.\displaystyle\operatorname{s.t.} υh,k,υG,k,υH,m,υH,0,k,m,\displaystyle\upsilon_{h,k},\upsilon_{G,k},\upsilon_{H,m},\upsilon_{H},\geq 0,~{}\forall k,\forall m, (79e)
ϖh,k,ϖG,k,ϖg,k0,k,\displaystyle\varpi_{h,k},\varpi_{G,k},\varpi_{g,k}\geq 0,~{}\forall k,
(18d),(18d),(22c),(23b),(56),\displaystyle{\rm(\ref{C_transmit beamforming}),(\ref{C-MF-RIS}),(\ref{C_energy-3}),(\ref{C_Q_lb}),(\ref{robust_A_SCA_LMIs})},
(59g),(59n),(74),(78),\displaystyle{\rm(\ref{C_P_O_robust_LMIs}),(\ref{C_P_RF_robust_LMIs}),(\ref{C_B_robust_matrix-1_LMIs}),(\ref{C_B_robust_matrix-2_LMIs})},

where Δ0={υh,k,υG,k,υH,m,υH,ϖh,k,ϖG,k,ϖg,k,𝒟k|k,\Delta_{0}=\{\upsilon_{h,k},\upsilon_{G,k},\upsilon_{H,m},\upsilon_{H},\varpi_{h,k},\varpi_{G,k},\varpi_{g,k},\mathcal{D}_{k}|\forall k, m}\forall m\} represents the slack variable set. The resulting multi-variate optimization problem (79) can be solved using the typical AO method. The details for updating each variable are given in the next subsection.

V-C Joint Design of Transmit Beamforming and MF-RIS Coefficients

V-C1 Optimizing 𝐟k\mathbf{f}_{k} with given 𝚯\boldsymbol{\Theta}

With fixed MF-RIS coefficient 𝚯\boldsymbol{\Theta}, the transmit beamforming optimization problem under imperfect CSI is written as

max𝐟k,Δ,Δ0\displaystyle\underset{\mathbf{f}_{k},\Delta,\Delta_{0}}{\max} k=1KQk\displaystyle\sum\nolimits_{k=1}^{K}Q_{k} (80a)
s.t.\displaystyle\operatorname{s.t.} (18d),(22c),(23b),(56),(59g),\displaystyle{\rm(\ref{C_transmit beamforming}),(\ref{C_energy-3}),(\ref{C_Q_lb}),(\ref{robust_A_SCA_LMIs}),(\ref{C_P_O_robust_LMIs})}, (80c)
(59n),(74),(78),(79e),(79e).\displaystyle{\rm(\ref{C_P_RF_robust_LMIs}),(\ref{C_B_robust_matrix-1_LMIs}),(\ref{C_B_robust_matrix-2_LMIs}),(\ref{C-LMI-coefficients-1}),(\ref{C-LMI-coefficients-2})}.

Problem (80) is a convex SDP, and thus can be solved efficiently via CVX[31].

V-C2 Optimizing 𝚯\boldsymbol{\Theta} with given 𝐟k\mathbf{f}_{k}

Given the transmit beamforming vector 𝐟k\mathbf{f}_{k}, the MF-RIS coefficient optimization problem is formulated as

max𝐯,Δ,Δ0\displaystyle\!\!\!\!\!\!\underset{\mathbf{v},\Delta,\Delta_{0}}{\max} k=1KQk\displaystyle\sum\nolimits_{k=1}^{K}Q_{k} (81a)
s.t.\displaystyle\!\!\!\!\!\!\operatorname{s.t.} [𝐯]m=αmβmejθm,θm[0,2π),m,\displaystyle\left[\mathbf{v}\right]_{m}=\alpha_{m}\sqrt{\beta_{m}}e^{j\theta_{m}},~{}\theta_{m}\in[0,2\pi),~{}\forall m, (81e)
αm{0,1},βm[0,βmax],m,\displaystyle\alpha_{m}\in\{0,1\},~{}\beta_{m}\in[0,\beta_{\rm max}],~{}\forall m,
(22c),(23b),(56),(59g),(59n),\displaystyle{\rm(\ref{C_energy-3}),(\ref{C_Q_lb}),(\ref{robust_A_SCA_LMIs}),(\ref{C_P_O_robust_LMIs}),(\ref{C_P_RF_robust_LMIs}),}
(74),(78),(79e),(79e).\displaystyle{\rm(\ref{C_B_robust_matrix-1_LMIs}),(\ref{C_B_robust_matrix-2_LMIs}),(\ref{C-LMI-coefficients-1}),(\ref{C-LMI-coefficients-2}).}

The difficulties of solving (81) lie in the non-convex LMIs (59g) and (74), the highly-coupled unit-modulus constraint (81e), and the binary constraint in (81e). By replacing the non-convex terms υH,m(1αm)2\upsilon_{H,m}(1-\alpha_{m})^{2} in (59g) and αm2βm{\alpha_{m}^{2}\beta_{m}} in (74) with their FTSs (1αm())(υH,mυH,mαm()2υH,m()αm+2υH,m()αm())(1\!-\!\alpha_{m}^{(\ell)})(\upsilon_{H,m}\!-\!\upsilon_{H,m}\alpha_{m}^{(\ell)}\!-\!2\upsilon_{H,m}^{(\ell)}\alpha_{m}\!+\!2\upsilon_{H,m}^{(\ell)}\alpha_{m}^{(\ell)}) and 2(αmαm())αm()βm()+(αm())2βm2(\alpha_{m}\!-\!\alpha_{m}^{(\ell)})\alpha_{m}^{(\ell)}\beta_{m}^{(\ell)}+(\alpha_{m}^{(\ell)})^{2}\beta_{m}, respectively, LMIs (59g) and (74) are recast as their convex approximations (59g) and (74), where {υH,m(),αm(),βm()}\{\upsilon_{H,m}^{(\ell)},\alpha_{m}^{(\ell)},\beta_{m}^{(\ell)}\} is the feasible point in the \ell-th iteration. The expressions for (59g) and (74) are omitted here for brevity.

Similar to the transformation of constraint (32), we here adopt the penalty function-based method to address constraint (81e). By introducing an auxiliary variable ηm=αm2βm\eta_{m}=\alpha_{m}^{2}\beta_{m}, we obtain the equivalent form of (81e) as

[𝐯]m=ηmejθm,ηmαm2βm,αm2βmηm,m.\displaystyle\left[\mathbf{v}\right]_{m}=\sqrt{\eta_{m}}e^{j\theta_{m}},~{}\eta_{m}\leq\alpha_{m}^{2}\beta_{m},~{}\alpha_{m}^{2}\beta_{m}\leq\eta_{m},~{}\forall m. (82)

With the aid of an auxiliary variable set 𝐞={em|m}\mathbf{e}=\{e_{m}|\forall m\}, satisfying em=[𝐯]m[𝐯]me_{m}=\left[\mathbf{v}\right]_{m}^{\ast}\left[\mathbf{v}\right]_{m}, the unit-modulus constraint [𝐯]m=ηmejθm\left[\mathbf{v}\right]_{m}=\sqrt{\eta_{m}}e^{j\theta_{m}} is linearized as em[𝐯]m[𝐯]meme_{m}\leq\left[\mathbf{v}\right]_{m}^{\ast}\left[\mathbf{v}\right]_{m}\leq e_{m}. Following the FTS, we further approximate the non-convex part em[𝐯]m[𝐯]me_{m}\leq\left[\mathbf{v}\right]_{m}^{\ast}\left[\mathbf{v}\right]_{m} by em2Re{[𝐯]m[𝐯()]m}[𝐯()]m[𝐯()]me_{m}\leq 2{\rm Re}\left\{\left[\mathbf{v}\right]_{m}^{\ast}\left[\mathbf{v}^{(\ell)}\right]_{m}\right\}-\left[\mathbf{v}^{(\ell)}\right]_{m}^{\ast}\left[\mathbf{v}^{(\ell)}\right]_{m}. In Section IV-D, we showed how to deal with the non-convex constraints ηmαm2βm\eta_{m}\leq\alpha_{m}^{2}\beta_{m} and αm2βmηm\alpha_{m}^{2}\beta_{m}\leq\eta_{m}, and the binary constraint in (81e). Therefore, by introducing a slack variable set 𝐪={qm,q¯m|m}\mathbf{q}=\{q_{m},\bar{q}_{m}|\forall m\}, problem (81) is transformed into

max𝐯,Δ,Δ0,𝜼,𝐝,𝐞,𝐪\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\underset{\mathbf{v},\Delta,\Delta_{0},\boldsymbol{\eta},\mathbf{d},\mathbf{e},\mathbf{q}}{\max} k=1KQkρm=1M(dm+d¯m+qm+q¯m)\displaystyle\!\!\!\!\!\sum\nolimits_{k=1}^{K}\!Q_{k}\!\!-\!\!\rho\sum\nolimits_{m=1}^{M}(d_{m}\!+\!\bar{d}_{m}\!+\!q_{m}\!+\!\bar{q}_{m}) (83a)
s.t.\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\operatorname{s.t.} [𝐯]m[𝐯]mem+qm,m,\displaystyle\!\!\!\left[\mathbf{v}\right]_{m}^{\ast}\left[\mathbf{v}\right]_{m}\leq e_{m}+q_{m},~{}\forall m, (83f)
2Re{[𝐯]m[𝐯()]m}[𝐯()]m[𝐯()]m\displaystyle\!\!\!2{\rm Re}\left\{\left[\mathbf{v}\right]_{m}^{\ast}\left[\mathbf{v}^{(\ell)}\right]_{m}\right\}-\left[\mathbf{v}^{(\ell)}\right]_{m}^{\ast}\left[\mathbf{v}^{(\ell)}\right]_{m}
emq¯m,m,\displaystyle\!\!\!\geq e_{m}-\bar{q}_{m},~{}\forall m,
em,βm[0,βmax],m,\displaystyle\!\!\!e_{m},\beta_{m}\in[0,\beta_{\max}],~{}\forall m,
(22c),(23b),(33c)-(33e),(56),\displaystyle\!\!\!{\rm(\ref{C_energy-3}),(\ref{C_Q_lb}),(\ref{C-passive-alpha}){\text{-}}(\ref{C-passive-alpha-beta}),(\ref{robust_A_SCA_LMIs})},
(59n),(78),(79e),(79e),(59g),(74).\displaystyle\!\!\!{\rm(\ref{C_P_RF_robust_LMIs}),(\ref{C_B_robust_matrix-2_LMIs}),(\ref{C-LMI-coefficients-1}),(\ref{C-LMI-coefficients-2}),(\ref{C_P_O_robust_LMIs})^{{}^{\prime}},(\ref{C_B_robust_matrix-1_LMIs})^{{}^{\prime}}.}

Problem (83) is a convex SDP, which can be solved efficiently via CVX[31]. The algorithm for solving problem (81) is similar to Algorithm 2, and thus is omitted for simplicity.

Next, we analyze the computational complexity of our robust scheme. It is observed that both resulting problems (80) and (81) involve LMI, second-order cone, and linear constraints, and thus can be solved efficiently via the interior point method[34]. According to the general complexity expression given in [36], the complexity of solving problem (80) and problem (81) is given by 𝒪𝐟=𝒪((K(s1+s2+s3)+(M+1)s4)n1(n12+n1(K(s12+s22+s32)+(M+1)s42)+K(s13+s23+s33)+(M+1)s43))\mathcal{O}_{\mathbf{f}}=\mathcal{O}\Big{(}\sqrt{(K(s_{1}+s_{2}+s_{3})+(M+1)s_{4})}n_{1}\big{(}n_{1}^{2}+n_{1}(K(s_{1}^{2}+s_{2}^{2}+s_{3}^{2})+(M+1)s_{4}^{2})+K(s_{1}^{3}+s_{2}^{3}+s_{3}^{3})+(M+1)s_{4}^{3}\big{)}\Big{)} and 𝒪𝚯=𝒪((K(s1+s2+s3)+(M+1)s4+4M)\mathcal{O}_{\boldsymbol{\Theta}}=\mathcal{O}\Big{(}\sqrt{(K(s_{1}+s_{2}+s_{3})+(M+1)s_{4}+4M)} n2(n22+n2(K(s12+s22+s32)+(M+1)s42)+K(s13+s23+s33)+(M+1)s43+2n2M))n_{2}\big{(}n_{2}^{2}+n_{2}(K(s_{1}^{2}+s_{2}^{2}+s_{3}^{2})+(M+1)s_{4}^{2})+K(s_{1}^{3}+s_{2}^{3}+s_{3}^{3})+(M+1)s_{4}^{3}+2n_{2}M\big{)}\Big{)}, respectively, where n1=NKn_{1}=NK, n2=2Mn_{2}=2M, s1=N(M+1)+1s_{1}=N(M+1)+1, s2=2N+Ks_{2}=2N+K, s3=M+2s_{3}=M+2, and s4=MN+1s_{4}=MN+1. Similar to the perfect CSI case in Section IV, the convergence of the robust beamforming scheme can be proved and thus is omitted here for simplicity.

VI Numerical Results

In this section, numerical results are provided to evaluate the performance of the considered MF-RIS-aided wireless network. As shown in Fig. 3, the BS and the MF-RIS are located at (5,0,5)(5,0,5) and (0,5,10)(0,5,10) m, respectively. We assume that K=3K=3 users are randomly distributed in a circle centered at (5,40,0)(5,40,0) m with the radius of 44 m. All channels are modeled by Rician fading. We define the maximum normalized estimation error as κh,k=ξh,k𝐡~k\kappa_{h,k}=\frac{\xi_{h,k}}{\lVert\widetilde{\mathbf{h}}_{k}\lVert}, κg,k=ξg,k𝐠~k\kappa_{g,k}=\frac{\xi_{g,k}}{\lVert\widetilde{\mathbf{g}}_{k}\lVert}, and κH=ξH𝐇~F\kappa_{H}=\frac{\xi_{H}}{\lVert\widetilde{\mathbf{H}}\lVert_{F}}[32]. Then, following the Cauchy-Schwarz inequality and 𝐆k=diag(𝐠kH)𝐇\mathbf{G}_{k}={\rm diag}(\mathbf{g}_{k}^{\rm H})\mathbf{H}, we obtain ξG,k=ξHdiag(𝐠~kH)F+ξg,k𝐇~F+ξg,kξH=(ξg,kξH)(κH+κg,k+κHκg,k)κHκg,k\xi_{G,k}=\xi_{H}\lVert{\rm diag}(\widetilde{\mathbf{g}}_{k}^{\rm H})\lVert_{F}+\xi_{g,k}\lVert\widetilde{\mathbf{H}}\lVert_{F}+\xi_{g,k}\xi_{H}=\frac{(\xi_{g,k}\xi_{H})(\kappa_{H}+\kappa_{g,k}+\kappa_{H}\kappa_{g,k})}{\kappa_{H}\kappa_{g,k}}. Unless otherwise specified, we set κh,k2=κg,k2=κH2=0.1\kappa_{h,k}^{2}\!=\!\kappa_{g,k}^{2}\!=\!\kappa_{H}^{2}\!=\!0.1. More simulation settings are listed in Table II. For comparison, we consider the self-sustainable RIS[16] and reflecting-only RIS[5] as benchmarks.

TABLE II: Simulation parameters
Parameter Value
Path loss at the reference distance of 11 m 20-20 dB[17]
Path loss exponents of BS-RIS, BS-user, and RIS-user links 2.22.2, 2.82.8, 2.62.6
Rician factors of BS-RIS, BS-user, and RIS-user links 33 dB
Noise power at users and the RIS σ02=σ12=70\sigma_{0}^{2}=\sigma_{1}^{2}=-70 dBm
Energy harvesting and power consumption parameters
ξ=1.1\xi=1.1, Pb=1.5P_{b}=1.5 mW, PDC=0.3P_{\rm DC}=0.3 mW, PC=2.1P_{\rm C}=2.1 μ\muW[16],
Z=24Z=24 mW, a=150a=150, q=0.014q=0.014[24]
Other parameters N=4N=4, ρ(0)=103\rho^{(0)}=10^{-3}, ε=10\varepsilon=10[32]
Refer to caption
Figure 3: Simulation setup of the MF-RIS-aided communication network.
Refer to caption
Figure 4: Convergence behavior of the proposed algorithm under different numbers of elements and different CSI setups, where PBSmax=36P_{\rm BS}^{\max}=36 dBm and βmax=16\beta_{\max}=16 dB.

Fig. 4 illustrates the convergence behavior of the proposed algorithm with different CSI setups and different numbers of RIS elements. It is observed that the proposed algorithm converges rapidly, e.g., 1818 iterations are sufficient for it to converge. We notice that the convergence speed of the proposed algorithm with more elements is slightly slower than that with fewer elements. This is because both the dimension of the solution space and the number of constraints increase with MM, and thus increase the complexity of solving problems (18) and (38). Meanwhile, Fig. 4 shows that the robust algorithm under full CSI uncertainty requires more iterations than that under partial CSI uncertainty, while the algorithm under perfect CSI converges fastest. The reason is that the CSI uncertainty error increases the dimension of LMIs, which in turn increases the computational complexity of the proposed algorithm.

Refer to caption
Figure 5: SNR versus MAM_{\rm A} under different schemes and different channels, where the system model and parameter settings are the same as Section III, and the Rician factor is 33 dB.
Refer to caption
Figure 6: SR versus MAM_{\rm A} under different schemes and different CSI setups, where PBSmax=40P_{\rm BS}^{\max}=40 dBm and M=130M=130.

To verify the theoretical results in Section III, we depict the achievable SNR and the achievable SR versus MAM_{\rm A} in Figs. 5 and 6, respectively. Specifically, Fig. 5 is based on the single-user SISO system considered in Section III, where the SNR values of the MF-RIS and self-sustainable RIS schemes under LoS channels are calculated using (11) and (16), respectively, while the numerical results of Rician and Rayleigh channels are obtained by averaging over 20002000 channel realizations. In contrast, Fig. 6 is based on the simulation settings in Fig. 3 and Table II, where RIS-aided multi-user MISO systems with Rician channels are considered. It is observed that the curves under different channels (i.e., LoS, Rician, and Rayleigh channels), different CSI setups (i.e., perfect and imperfect CSI), and different numbers of transmit antennas and users (i.e., single-user SISO and multi-user MISO systems) exhibit similar trends, validating that our theoretical results can be used to guide the system design for the more general cases. With the increase of MAM_{\rm A}, the SNR and the SR for the MF-RIS first increase and then decrease after reaching MAM_{\rm A}^{\star}, which agrees well with our analysis in Section III. This result characterizes the trade-off between MAM_{\rm A} and MHM_{\rm H} due to the fixed MM, and the trade-off between MAM_{\rm A} and the amplification power due to the limited available power at the MF-RIS. Specifically, when MAMAM_{\rm A}\leq M_{\rm A}^{\star}, the available power at the MF-RIS with a large MHM_{\rm H} is adequate, and thus the MF-RIS can benefit more from the increasing amplification gain brought by increasing MAM_{\rm A}. However, when MAMAM_{\rm A}\geq M_{\rm A}^{\star}, the available power at the MF-RIS is limited by the reduced MHM_{\rm H}. Meanwhile, a larger MAM_{\rm A} introduces greater amplifier, phase shifter, and thermal noise power consumption, reducing the available amplification power, which makes the MF-RIS suffer more from the increased MAM_{\rm A}.

Figs. 5 and 6 show that the achievable SNR and the achievable SR of the self-sustainable RIS increase with increasing MAM_{\rm A}. This is because when increasing MAM_{\rm A}, unlike the MF-RIS power constraint (7d) which reduces the available amplification power, the self-sustainable RIS power constraint (14d) only limits its maximum supportable MAM_{\rm A}. Besides, as revealed in our theoretical results, the MF-RIS performs better than the self-sustainable RIS when MAMAthM_{\rm A}\leq M_{\rm A}^{\rm th}, but worse when MA>MAthM_{\rm A}>M_{\rm A}^{\rm th}. This is because in this power limited case, the small amplification gain provided by the MF-RIS is outweighed by the adverse effect of its amplifier and thermal-noise power consumption on overall SNR performance. In addition, we notice that when MAM_{\rm A} exceeds the maximum supportable value, the MF-RIS and the self-sustainable RIS may even fail to sustain themselves due to insufficient harvested energy. These results indicate that element allocation is crucial to improve the achievable performance of the proposed MF-RIS. Therefore, in Sections IV and V, a flexible element allocation model (by optimizing the mode indicator αm\alpha_{m}) is adopted to provide additional degrees of freedom for throughput improvement.

Refer to caption
Figure 7: SR versus PBSmaxP_{\rm BS}^{\rm max} under different schemes and different CSI setups, where M=120M=120 and βmax=16\beta_{\max}=16 dB.

Fig. 7 shows the achievable SR versus PBSmaxP_{\rm BS}^{\max} under different schemes and various CSI setups. We observe that when PBSmaxP_{\rm BS}^{\max} is small, the battery- or grid-powered reflecting-only RIS can achieve satisfactory SR gain compared to the without RIS scheme, while the SR gains achieved by self-sustainable schemes are almost negligible. This is because at low power, only very limited power can be harvested by self-sustainable RIS schemes, which cannot even support their normal operation. However, the achievable SR values of the proposed MF-RIS scheme greatly exceed those of self-sustainable RIS and without RIS when PBSmaxP_{\rm BS}^{\max} is moderate. Specifically, for the perfect CSI case with PBSmax=35P_{\rm BS}^{\max}=35 dBm, the MF-RIS scheme is able to provide up to 114% and 237% higher SR than the self-sustainable RIS and without RIS counterparts, respectively. This reveals that the introduction of signal amplification can effectively alleviate the double-fading effect, thereby significantly improving the SR of all users. Additionally, we observe that the achievable SR of MF-RIS and self-sustainable RIS is inferior to that of reflecting-only RIS. This is because both the MF-RIS and self-sustainable RIS need to sacrifice part of their elements for energy harvesting to maintain self-sustainability. In contrast, the reflecting-only RIS allows all elements to reflect the incident signal and enhance the desired reception. However, the self-sustainability cost of the self-sustainable RIS and MF-RIS decreases significantly with an increased PBSmaxP_{\rm BS}^{\max}, due to the fact that the elements operating in H mode can harvest more energy when the RF power is high. Especially for the MF-RIS, the performance gap between it and the reflecting-only RIS is negligible, which confirms the effectiveness of the proposed MF-RIS architecture.

Considering that the power consumption of the reflecting-only RIS is ignored in Fig. 7, for fair comparison, we characterize the achievable SR versus the total power consumption PtotalmaxP_{\rm total}^{\max} under different schemes in Fig. 8. Specifically, Ptotalmax=PBSmaxP_{\rm total}^{\max}=P_{\rm BS}^{\max} holds for MF-RIS, self-sustainable RIS, and without RIS schemes, while Ptotalmax=PBSmax+MPbP_{\rm total}^{\max}=P_{\rm BS}^{\max}+MP_{b} holds for the reflecting-only RIS scheme. Since its own power consumption is taken into account, the utility of the reflecting-only RIS at low power is as limited as that of self-sustainable schemes. Nevertheless, when further increasing PtotalmaxP_{\rm total}^{\max}, both the MF-RIS and reflecting-only RIS can provide considerable signal enhancement. It is seen that the proposed MF-RIS achieves slightly lower SR than the reflecting-only RIS at high PtotalmaxP_{\rm total}^{\max}. This is because the inevitable power loss during energy harvesting and signal amplification is taken into account by the MF-RIS, while the reflecting-only RIS assumes an ideal lossless signal reflection and power supply process. However, the acceptable performance gap between the two shows that the proposed MF-RIS is a promising self-sustainable RIS architecture, especially for remote areas where it is difficult to lay power grids and manually replace batteries.

Refer to caption
Figure 8: SR versus PtotalmaxP_{\rm total}^{\rm max} under different schemes and different CSI setups, where M=120M=120 and βmax=16\beta_{\max}=16 dB.
Refer to caption
Figure 9: SR versus MM under different schemes and different CSI setups, where PBSmax=36P_{\rm BS}^{\max}=36 dBm and βmax=16\beta_{\max}=16 dB.
Refer to caption
Figure 10: SR versus YY under different schemes and different CSI setups, where PBSmax=40P_{\rm BS}^{\max}=40 dBm, M=120M=120, and βmax=16\beta_{\max}=16 dB.

Fig. 9 plots the achievable SR versus the number of RIS elements under different schemes and various CSI setups. “Non-robust scheme” is the same as the proposed scheme except that it treats the estimated CSI (i.e., 𝐡~k\widetilde{\mathbf{h}}_{k}, 𝐠~k\widetilde{\mathbf{g}}_{k}, and 𝐇~\widetilde{\mathbf{H}}) as perfect CSI. First, the MF-RIS scheme shows impressive SR performance for different CSI uncertainties. In particular, when M=200M=200, the MF-RIS schemes under perfect CSI, imperfect CSI, and non-robust cases attain 280%, 256%, and 238% higher SR than the counterparts without RIS. Second, compared to the passive RIS, the performance loss of MF-RIS is negligible, especially for large-size surfaces. This behavior can be explained as follows: 1) a larger-size MF-RIS can allocate more elements to operate in H mode, so that more energy can be collected to power the signal reflection and amplification circuits; and 2) a larger MM offers a higher beamforming flexibility, and thus effectively enhances the information transmission from the BS to all users. Third, it is observed from Fig. 9 that the performance loss caused by the CSI uncertainty increases with MM. This is because increasing MM results in a higher channel estimation error, which reduces the SR improvement. As such, we conjecture that within a reasonable region of CSI uncertainty, the benefits brought by the growth of MM can outweigh its drawbacks. However, if the CSI uncertainty exceeds the acceptable range, the SR gain would suffer a significant loss.

Fig. 10 illustrates the impact of the distance between the BS and RIS on the SR performance by varying the YY-coordinate of RIS. We observe that in both imperfect and perfect CSI cases, when the reflecting-only RIS moves from the BS to users, the achievable SR first decreases and then increases. This is because the path loss is a decreasing function of distance. Reducing the distance between the BS and the RIS as well as the distance between the RIS and users increases the channel gains of RIS-aided cascaded links. Thus, the reflecting-only RIS should be deployed near the BS or users, as it can create signal hot spots for them. By contrast, the performance gains of the self-sustainable RIS and MF-RIS-aided schemes decrease as the RIS moves away from the BS, and the optimal value is obtained when the RIS is in close proximity to the BS. This can be explained as follows. As the distances of the BS-self-sustainable RIS and BS-MF-RIS links increase, the energy harvested by the RIS elements decreases. It can be observed from constraint (5) that in order to maintain energy self-sustainability, the self-sustainable RIS and MF-RIS have to allocate more elements for energy harvesting. This results in fewer elements for signal reflection and amplification, which in turn affects the desired signal reception.

VII Conclusions

This paper proposed a new MF-RIS architecture to address the double-fading attenuation and the grid/battery dependence issues faced by conventional passive RISs. By integrating signal reflection, amplification, and energy harvesting on one surface, the proposed MF-RIS is expected to achieve self-sustainability and an improved throughput. Based on the operating protocol of the proposed MF-RIS, we derived the achievable SNR for MF-RIS and self-sustainable RIS-aided systems to quantify the performance gain achieved by the MF-RIS. Next, we formulated SR maximization problems and provided efficient solutions for both perfect and imperfect CSI cases. Simulation results validated the effectiveness of the proposed MF-RIS to improve throughout performance in a self-sustainable manner. Experimental results also revealed the strong robustness of the proposed algorithm in terms of CSI imperfectness as well as the great ability to exploit large-size RISs. Furthermore, practical design guidelines for MF-RIS-assisted multi-user systems were provided. In particular, deploying MF-RIS close to the transmitter is favorable for harvesting more energy and reaping the throughput benefits offered by the MF-RIS.

Appendix A Proof of Proposition 1

We first consider the case where constraint (7d) is active. According to the inequality βmaxPOMF(𝜶)MA(PBSmaxh2+σ12)\beta_{\max}\leq\frac{P_{\rm O}^{\rm MF}(\boldsymbol{\alpha})}{M_{\rm A}(P_{\rm BS}^{\max}h^{2}+\sigma_{1}^{2})} and the definition POMF(𝜶)=1ξ(m=1MPmAMA(Pb+PDC)MHPC)P_{\rm O}^{\rm MF}(\boldsymbol{\alpha})=\frac{1}{\xi}(\sum\nolimits_{m=1}^{M}P_{m}^{\rm A}-M_{\rm A}(P_{b}+P_{\rm DC})-M_{\rm H}P_{\rm C}), we derive MAm=1MPmAMHPCξβmax(PBSmaxh2+σ12)+Pb+PDCM_{\rm A}\leq\frac{\sum\nolimits_{m=1}^{M}P_{m}^{\rm A}-M_{\rm H}P_{\rm C}}{\xi\beta_{\rm max}(P_{\rm BS}^{\max}h^{2}+\sigma_{1}^{2})+P_{b}+P_{\rm DC}} and βm=βmax\beta^{\star}_{m}=\beta_{\rm max}. Then, for the case where constraint (7d) is active, it is easy to obtain MA>m=1MPmAMHPCξβmax(PBSmaxh2+σ12)+Pb+PDCM_{\rm A}>\frac{\sum\nolimits_{m=1}^{M}P_{m}^{\rm A}-M_{\rm H}P_{\rm C}}{\xi\beta_{\rm max}(P_{\rm BS}^{\max}h^{2}+\sigma_{1}^{2})+P_{b}+P_{\rm DC}} and βm=POMF(𝜶)MA(PBSmaxh2+σ12)\beta^{\star}_{m}=\frac{P_{\rm O}^{\rm MF}(\boldsymbol{\alpha})}{M_{\rm A}(P_{\rm BS}^{\max}h^{2}+\sigma_{1}^{2})}.

Appendix B Proof of Proposition 2

By substituting the optimal solutions (8) and (9) into the objective function (7a), the maximum SNR in the MF-RIS-aided system is given by (84) at the bottom of this page.

γMF\displaystyle\gamma_{{\rm MF}}\!\!\!\!\!\!\! ={PBSmaxβmax|m=1Mαmhg|2σ12βmaxm=1Mαm2g2+σ02,MAMA,1,PBSmaxPOMF(𝜶)|m=1Mαmhg|2POMF(𝜶)σ12m=1Mαm2g2+σ02m=1Mαm2(PBSmaxh2+σ12),MA>MA,1.\displaystyle\!\!\!\!\!=\left\{\begin{aligned} &\frac{P_{\rm BS}^{\rm max}\beta_{\max}\big{|}\sum_{m=1}^{M}\alpha_{m}hg\big{|}^{2}}{\sigma_{1}^{2}\beta_{\max}\sum_{m=1}^{M}\alpha_{m}^{2}g^{2}+\sigma_{0}^{2}},&&M_{\rm A}\leq M_{\rm A,1},\\ &\frac{P_{\rm BS}^{\rm max}P_{\rm O}^{\rm MF}(\boldsymbol{\alpha})\big{|}\sum_{m=1}^{M}\alpha_{m}hg\big{|}^{2}}{P_{\rm O}^{\rm MF}(\boldsymbol{\alpha})\sigma_{1}^{2}\sum_{m=1}^{M}\alpha_{m}^{2}g^{2}+\sigma_{0}^{2}\sum_{m=1}^{M}\alpha_{m}^{2}(P_{\rm BS}^{\rm max}h^{2}+\sigma_{1}^{2})},&&M_{\rm A}>M_{\rm A,1}.\\ \end{aligned}\right. (84)

Based on the definitions MA=m=1MαmM_{\rm A}=\sum_{m=1}^{M}\alpha_{m} and MH=Mm=1MαmM_{\rm H}=M-\sum_{m=1}^{M}\alpha_{m}, and the mode indicator constraint αm{0,1}\alpha_{m}\in\{0,1\}, the achievable SNR of the MF-RIS is further derived as (11).

Appendix C Proof of Proposition 3

Denote γMF(MA)\gamma_{{\rm MF}}^{{}^{\prime}}(M_{\rm A}) as the first derivative of (11) with respect to MAM_{\rm A}, then it can be verified that for MAMA,1M_{\rm A}\leq M_{\rm A,1}, γMF(MA)0\gamma_{{\rm MF}}^{{}^{\prime}}(M_{\rm A})\geq 0 always holds. While for the case of MA>MA,1M_{\rm A}>M_{\rm A,1}, we deduce that when MAMA,2M_{\rm A}\leq M_{\rm A,2}, γMF(MA)0\gamma_{{\rm MF}}^{{}^{\prime}}(M_{\rm A})\geq 0, and when MA>MA,2M_{\rm A}>M_{\rm A,2}, γMF(MA)<0\gamma_{{\rm MF}}^{{}^{\prime}}(M_{\rm A})<0. Accordingly, for MA,2MA,1M_{\rm A,2}\leq M_{\rm A,1}, we have the following properties: 1) when MAMA,1M_{\rm A}\leq M_{\rm A,1}, γMF(MA)0\gamma_{{\rm MF}}^{{}^{\prime}}(M_{\rm A})\geq 0 holds, and thus γMF(MA)\gamma_{{\rm MF}}(M_{\rm A}) increases as MAM_{\rm A} increases; and 2) when MA>MA,1M_{\rm A}>M_{\rm A,1}, γMF(MA)<0\gamma_{{\rm MF}}^{{}^{\prime}}(M_{\rm A})<0 holds, and thus γMF(MA)\gamma_{{\rm MF}}(M_{\rm A}) decreases as MAM_{\rm A} increases. Armed with 1) and 2), the optimal number of reflection elements is given by MA=MA,1M_{\rm A}^{\star}=M_{\rm A,1}. Similarly, for MA,2>MA,1M_{\rm A,2}>M_{\rm A,1}, we obtain that: 1) when MAMA,2M_{\rm A}\leq M_{\rm A,2}, γMF(MA)0\gamma_{{\rm MF}}^{{}^{\prime}}(M_{\rm A})\geq 0 holds, and thus γMF(MA)\gamma_{{\rm MF}}(M_{\rm A}) increases as MAM_{\rm A} increases; and 2) when MA<MA,2M_{\rm A}<M_{\rm A,2}, γMF(MA)<0\gamma_{{\rm MF}}^{{}^{\prime}}(M_{\rm A})<0 holds, and thus γMF(MA)\gamma_{{\rm MF}}(M_{\rm A}) decreases as MAM_{\rm A} increases. Therefore, the optimal number of reflection elements is MA=MA,2M_{\rm A}^{\star}=M_{\rm A,2}. Finally, the optimal number of reflection elements is obtained as (12).

Appendix D Proof of Proposition 4

Similar to the proof of Proposition 2, by substituting the optimal solutions (15a) and (15b) into (14a), the achievable SNR of the self-sustainable RIS-aided system can be derived as (16). It can be observed that γSE(MA)\gamma_{\rm SE}(M_{\rm A}) is an increasing function of MAM_{\rm A}. In addition, we can deduce from the energy constraint (14d) that constraint MAm=1MPmAMHPCPbM_{\rm A}\leq\frac{\sum\nolimits_{m=1}^{M}P_{m}^{\rm A}-M_{\rm H}P_{\rm C}}{P_{b}} should be satisfied. Thus, for this case, the optimal number of reflection elements is MA=m=1MPmAMHPCPbM_{\rm A}^{\star}=\lfloor\frac{\sum\nolimits_{m=1}^{M}P_{m}^{\rm A}-M_{\rm H}P_{\rm C}}{P_{b}}\rfloor.

Appendix E Proof of Lemma 1

Defining xx as a complex scalar variable and {x()}\{x^{(\ell)}\} as a feasible point in the \ell-th iteration, then according to the FTS, we have the following inequality:

|x|22Re{(x())x}(x())x().\displaystyle\left|x\right|^{2}\geq 2{\rm Re}\{(x^{(\ell)})^{\ast}x\}-(x^{(\ell)})^{\ast}x^{(\ell)}. (85)

Next, by replacing xx and x()x^{(\ell)} in (85) with (𝐡kH+𝐯H𝐆k)𝐟k(\mathbf{h}_{k}^{\mathrm{H}}+\mathbf{v}^{\mathrm{H}}\mathbf{G}_{k})\mathbf{f}_{k} and (𝐡kH+(𝐯())H𝐆k)𝐟k()(\mathbf{h}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\mathbf{G}_{k})\mathbf{f}_{k}^{(\ell)}, respectively, a lower bound on the convex term |𝐡¯k𝐟k|2|\bar{\mathbf{h}}_{k}\mathbf{f}_{k}|^{2} is obtained as

2Re{(𝐡kH+(𝐯())H𝐆k)𝐟k()𝐟kH(𝐡k+𝐆kH𝐯)g1,k}\displaystyle 2{\rm Re}\big{\{}\underbrace{(\mathbf{h}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\mathbf{G}_{k})\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}}(\mathbf{h}_{k}+\mathbf{G}_{k}^{\mathrm{H}}\mathbf{v})}_{g_{1,k}}\big{\}}
(𝐡kH+(𝐯())H𝐆k)𝐟k()(𝐟k())H(𝐡k+𝐆kH𝐯())g2,k.\displaystyle~{}-\underbrace{(\mathbf{h}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\mathbf{G}_{k})\mathbf{f}_{k}^{(\ell)}(\mathbf{f}_{k}^{(\ell)})^{\mathrm{H}}(\mathbf{h}_{k}+\mathbf{G}_{k}^{\mathrm{H}}\mathbf{v}^{(\ell)})}_{g_{2,k}}. (86)

Furthermore, by inserting 𝐡k=𝐡~k+𝐡k\mathbf{h}_{k}\!=\!\widetilde{\mathbf{h}}_{k}\!+\!\triangle\mathbf{h}_{k} and 𝐆k=𝐆~k+𝐆k\mathbf{G}_{k}\!=\!\widetilde{\mathbf{G}}_{k}\!+\!\triangle\mathbf{G}_{k} into (86) and performing mathematical transformations, we recast the first term in (86), g1,kg_{1,k}, as (87) at the top of the next page.

g1,k\displaystyle g_{1,k}~{}~{}\!\!\!\!\!\!\!\!\!\!\!\!\!\! =[(𝐡~kH+𝐡kH)+(𝐯())H(𝐆~k+𝐆k)]𝐟k()𝐟kH[(𝐡~k+𝐡k)+(𝐆~kH+𝐆kH)𝐯]\displaystyle=\big{[}(\widetilde{\mathbf{h}}_{k}^{\mathrm{H}}+\triangle\mathbf{h}_{k}^{\mathrm{H}})+(\mathbf{v}^{(\ell)})^{\mathrm{H}}(\widetilde{\mathbf{G}}_{k}+\triangle\mathbf{G}_{k})\big{]}\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}}\big{[}(\widetilde{\mathbf{h}}_{k}+\triangle\mathbf{h}_{k})+(\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}+\triangle\mathbf{G}_{k}^{\mathrm{H}})\mathbf{v}\big{]} (87)
=(𝐡~kH+(𝐯())H𝐆~k)𝐟k()𝐟kH(𝐡~k+𝐆~kH𝐯)+(𝐡~kH+(𝐯())H𝐆~k)𝐟k()𝐟kH(𝐡k+𝐆kH𝐯)\displaystyle=(\widetilde{\mathbf{h}}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}}(\widetilde{\mathbf{h}}_{k}+\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}\mathbf{v})+(\widetilde{\mathbf{h}}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}}(\triangle\mathbf{h}_{k}+\triangle\mathbf{G}_{k}^{\mathrm{H}}\mathbf{v})
+(𝐡kH+(𝐯())H𝐆k)𝐟k()𝐟kH(𝐡~k+𝐆~kH𝐯)+(𝐡kH+(𝐯())H𝐆k)𝐟k()𝐟kH(𝐡k+𝐆kH𝐯)\displaystyle~{}~{}+(\triangle\mathbf{h}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\triangle\mathbf{G}_{k})\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}}(\widetilde{\mathbf{h}}_{k}+\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}\mathbf{v})+(\triangle\mathbf{h}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\triangle\mathbf{G}_{k})\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}}(\triangle\mathbf{h}_{k}+\triangle\mathbf{G}_{k}^{\mathrm{H}}\mathbf{v})
=(𝐡~kH+(𝐯())H𝐆~k)𝐟k()𝐟kH(𝐡~k+𝐆~kH𝐯)+(𝐡~kH+(𝐯())H𝐆~k)𝐟k()𝐟kH𝐡k\displaystyle=(\widetilde{\mathbf{h}}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}}(\widetilde{\mathbf{h}}_{k}+\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}\mathbf{v})+(\widetilde{\mathbf{h}}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}}\triangle\mathbf{h}_{k}
+vecH(𝐆k)vec(𝐯(𝐡~kH+(𝐯())H𝐆~k)𝐟k()𝐟kH)+𝐡kH𝐟k()𝐟kH(𝐡~k+𝐆~kH𝐯)+𝐡kH𝐟k()𝐟kH𝐡k\displaystyle~{}~{}+{\rm vec}^{\mathrm{H}}{(\triangle\mathbf{G}_{k})}{\rm vec}(\mathbf{v}(\widetilde{\mathbf{h}}_{k}^{\mathrm{H}}+(\mathbf{v}^{(\ell)})^{\mathrm{H}}\widetilde{\mathbf{G}}_{k})\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}})+\triangle\mathbf{h}_{k}^{\mathrm{H}}\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}}(\widetilde{\mathbf{h}}_{k}+\widetilde{\mathbf{G}}_{k}^{\mathrm{H}}\mathbf{v})+\triangle\mathbf{h}_{k}^{\mathrm{H}}\mathbf{f}_{k}^{(\ell)}\mathbf{f}_{k}^{\mathrm{H}}\triangle\mathbf{h}_{k}
+vecH(𝐯()(𝐡~k+𝐯H𝐆~kH)𝐟k(𝐟k())H)vec(𝐆k)+vecH(𝐆k)(𝐟k(𝐟k())T𝐯)𝐡k\displaystyle~{}~{}+{\rm vec}^{\mathrm{H}}(\mathbf{v}^{(\ell)}(\widetilde{\mathbf{h}}_{k}+\mathbf{v}^{\mathrm{H}}\widetilde{\mathbf{G}}_{k}^{\mathrm{H}})\mathbf{f}_{k}(\mathbf{f}_{k}^{(\ell)})^{\mathrm{H}}){\rm vec}(\triangle\mathbf{G}_{k})+{\rm vec}^{\mathrm{H}}(\triangle\mathbf{G}_{k})(\mathbf{f}_{k}^{\ast}(\mathbf{f}_{k}^{(\ell)})^{\mathrm{T}}\otimes\mathbf{v})\triangle\mathbf{h}_{k}^{\ast}
+𝐡kT(𝐟k(𝐟k())T(𝐯())Hvec(𝐆k)+vecH(𝐆k)(𝐟k(𝐟k())T𝐯(𝐯())H)vec(𝐆k)\displaystyle~{}~{}+\triangle\mathbf{h}_{k}^{\mathrm{T}}(\mathbf{f}_{k}^{\ast}(\mathbf{f}_{k}^{(\ell)})^{\mathrm{T}}\otimes(\mathbf{v}^{(\ell)})^{\mathrm{H}}{\rm vec}(\triangle\mathbf{G}_{k})+{\rm vec}^{\mathrm{H}}(\triangle\mathbf{G}_{k})(\mathbf{f}_{k}^{\ast}(\mathbf{f}_{k}^{(\ell)})^{\mathrm{T}}\otimes\mathbf{v}(\mathbf{v}^{(\ell)})^{\mathrm{H}}){\rm vec}(\triangle\mathbf{G}_{k})
=𝐱kH𝐀~k𝐱k+𝐚~kH𝐱k+𝐱kH𝐚^k+a~k,k.\displaystyle=\mathbf{x}_{k}^{\mathrm{H}}\mathbf{\widetilde{A}}_{k}{\mathbf{x}_{k}}+\mathbf{\widetilde{a}}_{k}^{\mathrm{H}}{\mathbf{x}_{k}}+\mathbf{x}_{k}^{\mathrm{H}}\mathbf{\widehat{a}}_{k}+\widetilde{a}_{k},~{}\forall k.

Similarly, the second term in (86), g2,kg_{2,k}, is rewritten as

g2,k=𝐱kH𝐀^k𝐱k+𝐚¯kH𝐱k+𝐱kH𝐚¯k+a^k,k,\displaystyle g_{2,k}=\mathbf{x}_{k}^{\mathrm{H}}\mathbf{\widehat{A}}_{k}\mathbf{x}_{k}+\mathbf{\bar{a}}_{k}^{\mathrm{H}}\mathbf{x}_{k}+\mathbf{x}_{k}^{\mathrm{H}}\mathbf{\bar{a}}_{k}+\widehat{a}_{k},~{}\forall k, (88)

where the introduced coefficients 𝐀~k\mathbf{\widetilde{A}}_{k}, 𝐀^k\mathbf{\widehat{A}}_{k}, 𝐚~k\mathbf{\widetilde{a}}_{k}, 𝐚^k\mathbf{\widehat{a}}_{k}, 𝐚¯k\mathbf{\bar{a}}_{k}, a~k\widetilde{a}_{k}, and a^k\widehat{a}_{k} in (87) and (88) are given by (40). According to (86)-(88), we finally obtain (39).

References

  • [1] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface-aided wireless communications: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313-3351, May 2021.
  • [2] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106-112, Jan. 2020.
  • [3] Y. Liu et al., “Reconfigurable intelligent surfaces: Principles and opportunities,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1546-1577, 3rd Quart., 2021.
  • [4] X. Mu, Y. Liu, L. Guo, J. Lin, and N. Al-Dhahir, “Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6884-6898, Oct. 2020.
  • [5] W. Ni, X. Liu, Y. Liu, H. Tian, and Y. Chen, “Resource allocation for multi-cell IRS-aided NOMA networks,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4253-4268, Jul. 2021.
  • [6] Z. Yang, W. Xu, C. Huang, J. Shi, and M. Shikh-Bahaei, “Beamforming design for multiuser transmission through reconfigurable intelligent surface,” IEEE Trans. Commun., vol. 69, no. 1, pp. 589-601, Jan. 2021.
  • [7] J. Zuo, Y. Liu, and N. Al-Dhahir, “Reconfigurable intelligent surface assisted cooperative non-orthogonal multiple access systems,” IEEE Trans. Commun., vol. 69, no. 10, pp. 6750-6764, Oct. 2021.
  • [8] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157-4170, Aug. 2019.
  • [9] J. Li, S. Xu, J. Liu, Y. Cao, and W. Gao, “Reconfigurable intelligent surface enhanced secure aerial-ground communication,” IEEE Trans. Commun., vol. 69, no. 9, pp. 6185-6197, Sept. 2021.
  • [10] W. Wang, H. Tian, and W. Ni, “Secrecy performance analysis of IRS-aided UAV relay system,” IEEE Wireless Commun. Lett., vol. 10, no. 12, pp. 2693-2697, Dec. 2021.
  • [11] E. Basar and H. V. Poor, “Present and future of reconfigurable intelligent surface-empowered communications [perspectives],” IEEE Signal Process. Mag., vol. 38, no. 6, pp. 146–152, Nov. 2021.
  • [12] Z. Zhang et al., “Active RIS vs. passive RIS: Which will prevail in 6G?,” IEEE Trans. Commun., vol. 71, no. 3, pp. 1707-1725, Mar. 2023.
  • [13] L. Dong, H. -M. Wang, and J. Bai, “Active reconfigurable intelligent surface aided secure transmission,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 2181-2186, Feb. 2022.
  • [14] R. Long, Y. -C. Liang, Y. Pei, and E. G. Larsson, “Active reconfigurable intelligent surface-aided wireless communications,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 4962-4975, Aug. 2021.
  • [15] N. T. Nguyen, V. -D. Nguyen, H. Van Nguyen, H. Q. Ngo, S. Chatzinotas, and M. Juntti, “Spectral efficiency analysis of hybrid relay-reflecting intelligent surface-assisted cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 22, no. 5, pp. 3397-3416, May 2023.
  • [16] S. Hu, Z. Wei, Y. Cai, C. Liu, D. W. K. Ng, and J. Yuan, “Robust and secure sum-rate maximization for multiuser MISO downlink systems with self-sustainable IRS,” IEEE Trans. Commun., vol. 69, no. 10, pp. 7032-7049, Oct. 2021.
  • [17] B. Lyu, P. Ramezani, D. T. Hoang, S. Gong, Z. Yang, and A. Jamalipour, “Optimized energy and information relaying in self-sustainable IRS-empowered WPCN,” IEEE Trans. Commun., vol. 69, no. 1, pp. 619-633, Jan. 2021.
  • [18] Y. Zou, S. Gong, J. Xu, W. Cheng, D. T. Hoang, and D. Niyato, “Wireless powered intelligent reflecting surfaces for enhancing wireless communications,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12369-12373, Jul. 2020.
  • [19] L. Dai et al., “Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results,” IEEE Access, vol. 8, pp. 45913-45923, 2020.
  • [20] D. C. Erb, O. C. Onar, and A. Khaligh, “An integrated bi-directional power electronic converter with multi-level AC-DC/DC-AC converter and non-inverted buck-boost converter for PHEVs with minimal grid level disruptions,” in Proc. IEEE Vehicle Power Propuls. Conf., Lille, France, Sept. 2010, pp. 1-6.
  • [21] S. P S, V. Suresh Babu, and G. Shiny, “Annealing effects on capacitance density and voltage coefficient of capacitance (VCC) of thin-film capacitor for energy harvesting application,” in Proc. TEQIP III Spons. Int. Conf. Microw. Integr. Circuits Photon. Wireless Netw., Tiruchirappalli, India, May 2019, pp. 223-227.
  • [22] Z. Zeng, S. Shen, B. Wang, J. J. Estrada-Lopez, R. Murch, and E. Sanchez-Sinencio, “An ultra-low-power power management circuit with output bootstrapping and reverse leakage reduction function for RF energy harvesting,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Los Angeles, CA, USA, Aug. 2020, pp. 1059-1062.
  • [23] F. Amato, C. W. Peterson, B. P. Degnan, and G. D. Durgin, “Tunneling RFID tags for long-range and low-power microwave applications,” IEEE J. Radio Freq. Identificat., vol. 2, no. 2, pp. 93-103, Jun. 2018.
  • [24] P. Zeng, Q. Wu, and D. Qiao, “Energy minimization for IRS-aided WPCNs with non-linear energy harvesting model,” IEEE Wireless Commun. Lett., vol. 10, no. 11, pp. 2592-2596, Nov. 2021.
  • [25] E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Practical non-linear energy harvesting model and resource allocation for SWIPT systems,” IEEE Commun. Lett., vol. 19, no. 12, pp. 2082-2085, Dec. 2015.
  • [26] K. Zhi, C. Pan, H. Ren, K. K. Chai, and M. Elkashlan, “Active RIS versus passive RIS: Which is superior with the same power budget?,” IEEE Commun. Lett., vol. 26, no. 5, pp. 1150-1154, May 2022.
  • [27] K. Liu, Z. Zhang, L. Dai, S. Xu, and F. Yang, “Active reconfigurable intelligent surface: Fully-connected or sub-connected?,” IEEE Commun. Lett., vol. 26, no. 1, pp. 167-171, Jan. 2022.
  • [28] C. You and R. Zhang, “Wireless communication aided by intelligent reflecting surface: Active or passive?,” IEEE Wireless Commun. Lett., vol. 10, no. 12, pp. 2659-2663, Dec. 2021.
  • [29] C. You, B. Zheng, and R. Zhang, “Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2604-2620, Nov. 2020.
  • [30] P. Cao, J. Thompson, and H. V. Poor, “A sequential constraint relaxation algorithm for rank-one constrained problems,” in Proc. Eur. Signal Process. Conf., Kos, Greece, Aug. 2017, pp. 1060-1064.
  • [31] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” [Online]. Available: http: //cvxr.com/cvx/, 2014.
  • [32] W. Wang, W. Ni, H. Tian, Z. Yang, C. Huang, and K. -K. Wong, “Safeguarding NOMA networks via reconfigurable dual-functional surface under imperfect CSI,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 950-966, Aug. 2022.
  • [33] Z.-Q. Luo, J. F. Sturm, and S. Zhang, “Multivariate nonnegative quadratic mappings,” SIAM J. Optim., vol. 14, no. 4, pp. 1140-1162, Jan. 2004.
  • [34] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
  • [35] I. R. Petersen, “A stabilization algorithm for a class of uncertain linear systems,” Syst. Contr. Lett., vol. 8, no. 4, pp. 351-357, Jan. 1987.
  • [36] G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels,” IEEE Trans. Signal Process., vol. 68, pp. 5092-5106, Jan. 2020.