This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Path Integral in Modular Space

Yigit Yargic1,2 [email protected]
( 1Perimeter Institute for Theoretical Physics,
31 Caroline Street North, Waterloo, Ontario, N2L 2Y5, Canada
2Department of Physics and Astronomy, University of Waterloo,
200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
)

The modular spaces are a family of polarizations of the Hilbert space that are based on Aharonov’s modular variables and carry a rich geometric structure. We construct here, step by step, a Feynman path integral for the quantum harmonic oscillator in a modular polarization. This modular path integral is endowed with novel features such as a new action, winding modes, and an Aharonov-Bohm phase. Its saddle points are sequences of superposition states and they carry a non-classical concept of locality in alignment with the understanding of quantum reference frames. The action found in the modular path integral can be understood as living on a compact phase space and it possesses a new set of symmetries. Finally, we propose a prescription analogous to the Legendre transform, which can be applied generally to the Hamiltonian of a variety of physical systems to produce similar modular actions.

1 Introduction

The notion of space that underlies the physical reality has been a crucial element for most approaches in the history of physics. In Newtonian mechanics, this is a three-dimensional space, which describes the possible positions of a given object. We call this space here the Schrödinger space after the corresponding polarization in quantum mechanics. Since the phase space variables do not commute as quantum operators, the representations in quantum theory require choosing a commutative subset of these variables, which also defines an underlying space as a basis. Although the Schrödinger space carries a special role for its link to the classical descriptions, it is essentially one among many polarizations of the Hilbert space.

The correspondence principle posits that the calculations in quantum mechanics must reproduce classical calculations in the limit of large quantum numbers, or 0\hbar\rightarrow 0. Although this requirement has been historically useful for the development of quantum theory, it is widely accepted today that quantum physics is a more fundamental and accurate description of Nature, while classical physics is merely an approximation thereof. The reliance on the Schrödinger space is a classical relic in quantum mechanics – one we aim to eliminate in this paper.

It is natural to ask here what we can replace the Schrödinger space with. It is advocated in the study of quantum reference frames [1] that polarizations are observer-dependent properties and do not carry a fundamental meaning for Nature. In this respect, any quantum reference frame can provide a consistent description for physics. However, since each representation carries a different geometry with various properties, it will be advantageous for us to formulate the physics on a background that is both simple and rich in its geometric structures.

A generic class of polarizations of the Weyl algebra known as the modular representations [2] will be our main point of focus in this paper. In fact, both Schrödinger and momentum representations are included in this class as two opposite limits, as we will discuss. The idea for the modular representations goes back to the study of modular variables [3, 4] for the Aharonov-Bohm effect.

A modular representation is based on the quotient of the phase space by a so-called modular lattice. This quotient is a torus with the volume (2π)d\left(2\pi\hbar\right)^{d} and it is called a modular space. Since the modular space has twice the number of dimensions as the Schrödinger space, a modular state is labeled by a pair of position and momentum variables. Although it is counter-intuitive to be able to label a quantum state with both its position and momentum, these labels are defined periodically with respect to the modular lattice, therefore they reconcile with Heisenberg’s uncertainty principle.

The modular spaces have several advantages over the Schrödinger space. Firstly, they admit a length and momentum scale in their construction, while also respecting Lorentz symmetry [2]. This observation makes them valuable in the pursuit for quantum gravity where a fundamental scale, the Planck scale, has to be incorporated into the quantum structure of spacetime without breaking its symmetries. Secondly, the limits in which the Schrödinger and momentum representations are obtained from the modular ones are singular, and many geometric structures, such as the symplectic structure and an Abelian gauge symmetry, are lost from the configuration space in this limit. This carries the risk that any approach to quantum gravity that relies on the classical space can be missing these essential geometric ingredients. Finally, the modular representations form a continuous class. This makes it possible for future research to explore the physical consequences of infinitesimal changes in the quantum reference frame and therefore in the notion of locality.

Our work in this paper is focused on replacing the Schrödinger space with the modular space in one particular framework of the quantum theory: the Feynman path integral. In the standard formulation of the Feynman path integral [5], a quantum transition amplitude is expressed as a weighted sum over all trajectories between two points in the Schrödinger space. Each one of these trajectories is a sequence of classical configurations, i.e. local states in the Schrödinger space. Therefore, the Feynman path integral only seems to support the historical misconception that the Schrödinger space has a preferred status in quantum mechanics and justify its use at the foundation of quantum gravity.

In this paper, we give a step-by-step construction of a path integral in the modular space, following analogous steps to Feynman’s original construction. We use the Hamiltonian of a quantum harmonic oscillator in the framework of non-relativistic quantum mechanics for this purpose. The resulting modular path integral is a weighted sum over trajectories in the modular space. Each trajectory in this path integral, including its saddle points, is a sequence of classically non-local states. As this non-locality is manifested in quantum superpositions, one may interpret the trajectories in the path integral as being purely quantum mechanical. Another example of a path integral with this particular feature has been studied in [6] using tensor network techniques. The modular path integral provides further evidence that the quantum theory does not need the classical notion of Schrödinger space and breaks the associated concept of locality.

As expected, our modular path integral displays some novel features that vanish in the singular Schrödinger limit. Firstly, it contains a new action on the phase space with a larger set of symmetries. Secondly, since the modular space is toroidally compact, the path integral involves a sum over the winding number around the modular space. Thirdly, the trajectories are weighted by an additional phase that depends on their winding number, which is analogous to an Aharonov-Bohm phase.

There are two possible approaches to argue for the role of modular spaces in fundamental physics. In the “radical” approach, one may postulate that the underlying geometry of Nature is a modular space(-time) with a preferred scale. This proposal arose from the study of Born reciprocity [7] and metastring theory [8], and it has been further pursued by Freidel, Leigh and Minic in [2, 9, 10, 11]. In particular, a path integral in the phase space is sketched in [11] from a different perspective, where it is interpreted as representing the trajectories of a so-called metaparticle.

The second, “algebraic” approach to the modular spaces is to consider them on the same footing as the Schrödinger space as arbitrary polarizations of the Weyl algebra. In this approach, the Nature does not have a commutative space(-time) for a preferred background, but each polarization serves as a reference frame aligned to an observer or a physical subsystem. For example, the quantum state of an electron that passes through an infinite grid is projected onto a modular state. This electron sees itself as localized in a modular space (whose length scale is given by the spacing of the grid), while a lab observer sees the electron in a non-local superposition. This example demonstrates that locality can be an observer-dependent property in quantum mechanics. This approach is aligned with the perspective brought by the study of quantum reference frames [1, 12]. We remain agnostic between these two approaches in this paper.

Since the action found in the modular path integral differs from the standard action, it is interesting to formulate the transformation from a Hamiltonian to the associated modular Lagrangian as a new kind of Legendre transform. We conjecture here a new prescription, called the modular Legendre transform, which can be applied more generally to a wider range of physical systems to obtain a similar modular action.

The paper is organized as follows. In Section 2, we introduce the modular representation of the Weyl algebra and discuss its relationship with the Schrödinger representation. We give the explicit construction of a path integral in modular space in Section 3 using the Hamiltonian for a quantum harmonic oscillator. The equation (61) marks our main result in this paper. We analyze the new modular action in Section 4 for its solutions and canonical formulation. In Section 5, we discuss how the modular path integral recovers the Feynman path integral in a certain limit. We conclude in Section 7 with the discussion and interpretation of our results.

2 Representations of the Weyl algebra

We consider the quantum mechanics of a single non-relativistic particle in dd dimensions. The position and momentum operators, q^a\hat{q}^{a} and p^a\hat{p}_{a}, a=1,,da=1,...,d, obey Heisenberg’s canonical commutation relation [q^a,p^b]=iδba[\hat{q}^{a},\hat{p}_{b}]=i\hbar\,\delta^{a}_{b}.

Since the position and momentum operators are unbounded, it is advantageous to consider their exponentiated versions. For each a,bda,b\in{\mathbb{R}}^{d}, where aa has the units of length and bb has the units of momentum, we define the Weyl operator W^(a,b){\hat{W}_{(a,b)}} by

W^(a,b)\displaystyle{\hat{W}_{(a,b)}} ei(bq^ap^)/.\displaystyle\equiv e^{i(b\cdot\hat{q}-a\cdot\hat{p})/\hbar}\;. (1)

The Weyl operators build the Weyl algebra 𝒲\mathcal{W} together with the relations

W^(a,b)\displaystyle{\hat{W}_{(a,b)}^{\dagger}} =W^(a,b),\displaystyle={\hat{W}_{(-a,-b)}^{\phantom{\dagger}}}\;, (2)
W^(a,b)W^(a,b)\displaystyle{\hat{W}_{(a,b)}}\,{\hat{W}_{(a^{\prime},b^{\prime})}} =e12i(baab)/W^(a+a,b+b).\displaystyle=e^{{\frac{1}{2}}i(b\cdot a^{\prime}-a\cdot b^{\prime})/\hbar}\,{\hat{W}_{(a+a^{\prime},b+b^{\prime})}}\;. (3)

As such, the Weyl algebra is a non-commutative C*-algebra.

In order to construct a representation of the Weyl algebra 𝒲\mathcal{W}, we usually choose a commutative subalgebra of 𝒲\mathcal{W} that becomes diagonalized in this representation. Once a commutative C*-subalgebra is chosen, the Gelfand-Naimark theorem [13] provides an associated topological space, such that the subalgebra is isometrically *-isomorphic to an algebra of complex functions on this space. We view this space provided by the Gelfand-Naimark theorem as the quantum configuration space for the chosen representation of the Weyl algebra.

In the following, we will briefly review the standard Schrödinger representation and its dual to set up our notation, then we will introduce the modular representations, which are the focus of this paper.

2.1 Schrödinger representation

The Schrödinger representation is based on a commutative subalgebra of 𝒲\mathcal{W} that is spanned by the elements {W^(0,b)|bd}\{{\hat{W}_{(0,b)}}\,|\,b\in{\mathbb{R}}^{d}\}. In other words, the position operators q^a\hat{q}^{a} and their exponentials are diagonalized in this representation. Their common eigenvectors are denoted by |xSch\ket{x}_{\mathrm{Sch}}, xdx\in{\mathbb{R}}^{d}, and they satisfy q^a|xSch=xa|xSch\hat{q}^{a}\ket{x}_{\mathrm{Sch}}=x^{a}\ket{x}_{\mathrm{Sch}} and W^(0,b)|xSch=eibx/|xSch{\hat{W}_{(0,b)}}\ket{x}_{\mathrm{Sch}}=e^{ib\cdot x/\hbar}\ket{x}_{\mathrm{Sch}}.

A general quantum state can be written in the Schrödinger representation as

|ψ=dddxψ(x)|xSch,\displaystyle\ket{\psi}=\int_{{\mathbb{R}}^{d}}\differential^{d}x\;\psi(x)\ket{x}_{\mathrm{Sch}}\;, (4)

where ψL2(d)\psi\in L^{2}({\mathbb{R}}^{d}) is the Schrödinger wave function. The momentum operators act on the wave functions as p^aψ(x)ixaψ(x)\hat{p}_{a}\psi(x)\sim-i\hbar\,\frac{\partial}{\partial x^{a}}\psi(x).

One can similarly construct the momentum representation from the commutative subalgebra of 𝒲\mathcal{W} spanned by {W^(a,0)|ad}\{{\hat{W}_{(a,0)}}\,|\,a\in{\mathbb{R}}^{d}\}. The momentum eigenvectors |x~mom\ket{{\tilde{x}}}_{\mathrm{mom}}, x~d{\tilde{x}}\in{\mathbb{R}}^{d}, satisfy p^a|x~mom=x~a|x~mom\hat{p}_{a}\ket{{\tilde{x}}}_{\mathrm{mom}}={\tilde{x}}_{a}\ket{{\tilde{x}}}_{\mathrm{mom}}, and they are related to the position eigenvectors by a Fourier transform, x|x~momSch=(2π)d/2eixx~/{}^{\phantom{*}}_{\mathrm{Sch}}\!\innerproduct{x}{{\tilde{x}}}_{\mathrm{mom}}=\left(2\pi\hbar\right)^{-d/2}e^{ix\cdot{\tilde{x}}/\hbar}.

2.2 Modular representation

After having considered two standard examples, we may now look for the generic commutative subalgebras of the Weyl algebra 𝒲\mathcal{W}. The commutator of two Weyl operators can be written as

[W^(a,b),W^(a,b)]\displaystyle\left[{\hat{W}_{(a,b)}},{\hat{W}_{(a^{\prime},b^{\prime})}}\right] =(ei(baab)/1)e12i(baab)/W^(a+a,b+b).\displaystyle=\left(e^{i(b\cdot a^{\prime}-a\cdot b^{\prime})/\hbar}-1\right)e^{-{\frac{1}{2}}i(b\cdot a^{\prime}-a\cdot b^{\prime})/\hbar}\,{\hat{W}_{(a+a^{\prime},b+b^{\prime})}}\;. (5)

This implies that

[W^(a,b),W^(a,b)]=012π(abab).\displaystyle\left[{\hat{W}_{(a,b)}},{\hat{W}_{(a^{\prime},b^{\prime})}}\right]=0\qquad\Leftrightarrow\qquad\frac{1}{2\pi\hbar}\left(a^{\prime}\cdot b-a\cdot b^{\prime}\right)\in{\mathbb{Z}}\;. (6)

Since this relation is bilinear, the arguments (a,b)2d(a,b)\in{\mathbb{R}}^{2d} of the Weyl operators in a generic commutative subalgebra of 𝒲\mathcal{W} are supported on a lattice in the phase space.

Hereafter, we follow the notation in [2], where double-stroke, capital letters such as 𝕏A=(xa,x~a){\mathbb{X}}^{A}=(x^{a},{\tilde{x}}_{a}) denote a pair of position and momentum variables, which are represented by lowercase letters without and with a tilde, respectively. These composite objects are vectors on the phase space 𝒫=dd{\mathcal{P}}={\mathbb{R}}^{d}\oplus{\mathbb{R}}^{d}.

We introduce a symplectic structure ω\omega on 𝒫{\mathcal{P}} by ω(𝕏,𝕐)=ωAB𝕏A𝕐Bx~yxy~\omega({\mathbb{X}},{\mathbb{Y}})=\omega_{AB}\,{\mathbb{X}}^{A}\,{\mathbb{Y}}^{B}\equiv{\tilde{x}}\cdot y-x\cdot{\tilde{y}} for any 𝕏,𝕐𝒫{\mathbb{X}},{\mathbb{Y}}\in{\mathcal{P}}. We say that Λ𝒫\Lambda\subset{\mathcal{P}} is a modular lattice if it is a maximal subset that satisfies ω(Λ,Λ)2π\omega(\Lambda,\Lambda)\subseteq 2\pi\hbar\,{\mathbb{Z}}. Our discussion above shows that each maximal commutative *-subalgebra 𝒲Λ𝒲{\mathcal{W}_{\Lambda}}\subset{\mathcal{W}} corresponds to a modular lattice Λ\Lambda, i.e. it is generated by the elements {W^𝕂|𝕂Λ}\{{\hat{W}_{{\mathbb{K}}}}\,|\,{\mathbb{K}}\in\Lambda\}.111The Schrödinger and momentum representations correspond to two singular limits of modular lattices, which we will discuss later in Section 2.4.

In the following, we will assume that the modular lattice Λ\Lambda is of the form Λ={(λn,λ~n~)𝒫|n,n~d}\Lambda=\{(\lambda n,{\tilde{\lambda}}{\tilde{n}})\in{\mathcal{P}}\,|\,n,{\tilde{n}}\in{\mathbb{Z}}^{d}\}, where λab\lambda^{a}{}_{b} and λ~ab{\tilde{\lambda}}_{a}{}^{b} are diagonal d×dd\times d-matrices, which satisfy λcλ~ca=b2πδab\lambda^{c}{}_{a}{\tilde{\lambda}}_{c}{}^{b}=2\pi\hbar\,\delta_{a}^{b}. Note that any modular lattice can be brought to this form by a symplectic coordinate transformation.

The common eigenvectors of 𝒲Λ{\mathcal{W}_{\Lambda}} are called the modular vectors. A modular vector |𝕏Λ\ket{{\mathbb{X}}}_{\Lambda}, 𝕏𝒫{\mathbb{X}}\in{\mathcal{P}}, can be expressed in terms of Schrödinger’s position eigenvectors through a Zak transform [14], such that222These modular vectors can equivalently be expressed in terms of momentum eigenvectors as |𝕏Λ\displaystyle\ket{{\mathbb{X}}}_{\Lambda} (detλ)1/2e12ixx~/n~deixλ~n~/|x~+λ~n~mom.\displaystyle\equiv(\det\lambda)^{-1/2}\,e^{-{\frac{1}{2}}ix\cdot{\tilde{x}}/\hbar}\sum_{{\tilde{n}}\in{\mathbb{Z}}^{d}}e^{-ix\cdot{\tilde{\lambda}}{\tilde{n}}/\hbar}\,|{\tilde{x}}+{\tilde{\lambda}}{\tilde{n}}\rangle_{\mathrm{mom}}^{\phantom{\dagger}}\;. (7)

|𝕏Λ\displaystyle\ket{{\mathbb{X}}}_{\Lambda} (detλ~)1/2e12ixx~/ndeix~λn/|x+λnSch.\displaystyle\equiv\big{(}\!\det{\tilde{\lambda}}\big{)}^{-1/2}\,e^{{\frac{1}{2}}ix\cdot{\tilde{x}}/\hbar}\sum_{n\in{\mathbb{Z}}^{d}}e^{i{\tilde{x}}\cdot\lambda n/\hbar}\ket{x+\lambda n}_{\mathrm{Sch}}\;. (8)

These vectors satisfy the eigenvalue equation

W^𝕂|𝕏Λ\displaystyle{\hat{W}_{{\mathbb{K}}}}\ket{{\mathbb{X}}}_{\Lambda} =e12ikk~/eiω(𝕂,𝕏)/|𝕏Λ,𝕂Λ,𝕏𝒫.\displaystyle=e^{{\frac{1}{2}}ik\cdot{\tilde{k}}/\hbar}\,e^{i\omega({\mathbb{K}},{\mathbb{X}})/\hbar}\ket{{\mathbb{X}}}_{\Lambda}\;,\qquad{\mathbb{K}}\in\Lambda\;,\;{\mathbb{X}}\in{\mathcal{P}}\;. (9)

for any The action of a generic Weyl operator on a modular vector is given by

W^𝕐|𝕏Λ\displaystyle{\hat{W}_{{\mathbb{Y}}}}\ket{{\mathbb{X}}}_{\Lambda} =e12iω(𝕐,𝕏)/|𝕏+𝕐Λ,𝕏,𝕐𝒫.\displaystyle=e^{{\frac{1}{2}}i\omega({\mathbb{Y}},{\mathbb{X}})/\hbar}\ket{{\mathbb{X}}+{\mathbb{Y}}}_{\Lambda}\;,\qquad{\mathbb{X}},{\mathbb{Y}}\in{\mathcal{P}}\;. (10)

Moreover, the modular vectors are quasi-periodic under discrete translations along the modular lattice, such that

|𝕏+𝕂Λ\displaystyle\ket{{\mathbb{X}}+{\mathbb{K}}}_{\Lambda} =e12ikk~/e12iω(𝕂,𝕏)/|𝕏Λ,𝕂Λ,𝕏𝒫.\displaystyle=e^{{\frac{1}{2}}ik\cdot{\tilde{k}}/\hbar}\,e^{{\frac{1}{2}}i\omega({\mathbb{K}},{\mathbb{X}})/\hbar}\ket{{\mathbb{X}}}_{\Lambda}\;,\qquad{\mathbb{K}}\in\Lambda\;,\;{\mathbb{X}}\in{\mathcal{P}}\;. (11)

In the following, we will often drop the subscript Λ\Lambda on modular vectors for better readability.

The quasi-periodicity implies that not all modular vectors are linearly independent. In order to construct a basis from the modular vectors, we consider the quotient TΛ𝒫/ΛT_{\Lambda}\equiv{\mathcal{P}}/\Lambda, which is called a modular space. Each element333We abuse the notation by using the same symbol 𝕏{\mathbb{X}} both for the elements of 𝒫{\mathcal{P}} as well as for the corresponding equivalence classes on TΛ{T_{\Lambda}}. 𝕏TΛ{\mathbb{X}}\in{T_{\Lambda}} of the modular space is an equivalence class of the points (𝕏+Λ)𝒫({\mathbb{X}}+\Lambda)\subset{\mathcal{P}}, which can be represented by any of those points. The modular space is topologically a torus in 2d2d dimensions and it has the volume (2π)d(2\pi\hbar)^{d}. It is the associated Gelfand-Naimark space for a modular representation, which we will regard as a quantum configuration space.

We define a modular cell MΛ𝒫{M_{\Lambda}}\subset{\mathcal{P}} as any set of representatives of the modular space TΛ{T_{\Lambda}}. Then, the vectors {|𝕏Λ|𝕏MΛ}\{\ket{{\mathbb{X}}}_{\Lambda}\!\,|\,{\mathbb{X}}\in{M_{\Lambda}}\} form a complete and orthonormal basis of the Hilbert space. The orthogonality relation reads

𝕏|𝕐=δ2d(𝕏𝕐),𝕏,𝕐MΛ,\displaystyle\innerproduct{{\mathbb{X}}}{{\mathbb{Y}}}=\delta^{2d}({\mathbb{X}}-{\mathbb{Y}})\;,\qquad{\mathbb{X}},{\mathbb{Y}}\in{M_{\Lambda}}\;, (12)

where δ2d\delta^{2d} denotes the 2d2d-dimensional Dirac delta distribution. While the relation (12) gives the inner product of two modular vectors from the same modular cell, the inner product of two generic modular vectors is given by

𝕏|𝕐=𝕂Λe12ikk~/e12iω(𝕂,𝕏)/δ2d(𝕏𝕐+𝕂),𝕏,𝕐𝒫.\displaystyle\innerproduct{{\mathbb{X}}}{{\mathbb{Y}}}=\sum_{{\mathbb{K}}\in\Lambda}e^{{\frac{1}{2}}ik\cdot{\tilde{k}}/\hbar}\,e^{{\frac{1}{2}}i\omega({\mathbb{K}},{\mathbb{X}})/\hbar}\,\delta^{2d}({\mathbb{X}}-{\mathbb{Y}}+{\mathbb{K}})\;,\qquad{\mathbb{X}},{\mathbb{Y}}\in{\mathcal{P}}\;. (13)

The completeness relation for modular vectors reads

𝟙=TΛd2d𝕏|𝕏𝕏|.\displaystyle\mathbbm{1}=\int_{{T_{\Lambda}}}\differential^{2d}{\mathbb{X}}\,\outerproduct{{\mathbb{X}}}{{\mathbb{X}}}\;. (14)

Note that writing the integration in (14) over the modular space TΛ{T_{\Lambda}} employs the fact that |𝕏𝕏|\outerproduct{{\mathbb{X}}}{{\mathbb{X}}} is periodic and therefore independent of the choice of the modular cell.

We can write a general quantum state in the modular basis as

|ϕ=TΛd2d𝕏ϕ(𝕏)|𝕏Λ,\displaystyle\ket{\phi}=\int_{{T_{\Lambda}}}\differential^{2d}{\mathbb{X}}\;\phi({\mathbb{X}})\ket{{\mathbb{X}}}_{\Lambda}\;, (15)

where ϕ(𝕏)\phi({\mathbb{X}}) is called a modular wave function444This function can be thought of as mapping ϕ:𝒫\phi:{\mathcal{P}}\rightarrow\mathbb{C} under the restriction (16), while a more rigorous definition is given below in terms of EΛE_{\Lambda}.. This integral is well-defined only when the integrand ϕ(𝕏)|𝕏Λ\phi({\mathbb{X}})\ket{{\mathbb{X}}}_{\Lambda} is periodic on TΛT_{\Lambda}. Therefore, we require the modular wave functions to be also quasi-periodic, such that

ϕ(𝕏+𝕂)\displaystyle\phi({\mathbb{X}}+{\mathbb{K}}) =e12ikk~/e12iω(𝕂,𝕏)/ϕ(𝕏),𝕂Λ,𝕏𝒫.\displaystyle=e^{-{\frac{1}{2}}ik\cdot{\tilde{k}}/\hbar}\,e^{-{\frac{1}{2}}i\omega({\mathbb{K}},{\mathbb{X}})/\hbar}\,\phi({\mathbb{X}})\;,\qquad{\mathbb{K}}\in\Lambda\;,\;{\mathbb{X}}\in{\mathcal{P}}\;. (16)

In order to reformulate this statement in a more abstract way as in [2], one may define a U(1)U(1)-bundle EΛTΛE_{\Lambda}\rightarrow{T_{\Lambda}} over the modular space together with the identification

EΛ:(θ,𝕏)(θe12ikk~/e12iω(𝕂,𝕏)/,𝕏+𝕂),𝕂Λ,𝕏𝒫,θU(1).\displaystyle E_{\Lambda}:\quad\left(\theta,{\mathbb{X}}\right)\sim\left(\theta\,e^{{\frac{1}{2}}ik\cdot{\tilde{k}}/\hbar}\,e^{{\frac{1}{2}}i\omega({\mathbb{K}},{\mathbb{X}})/\hbar},{\mathbb{X}}+{\mathbb{K}}\right)\;,\quad{\mathbb{K}}\in\Lambda\;,\;{\mathbb{X}}\in{\mathcal{P}}\;,\;\theta\in U(1)\;. (17)

Then, the modular wave functions ϕL2(EΛ)\phi\in L^{2}(E_{\Lambda}) correspond to the square-integrable sections of EΛE_{\Lambda}.

Finally, we examine the action of Heisenberg operators q^a\hat{q}^{a} and p^a\hat{p}_{a} on a quantum state in the modular representation. After some calculation, we find

q^a|ϕ\displaystyle\hat{q}^{a}\ket{\phi} =TΛd2d𝕏(ix~aϕ(𝕏)+12xaϕ(𝕏))|𝕏Λ,\displaystyle=\int_{{T_{\Lambda}}}\differential^{2d}{\mathbb{X}}\left(i\hbar\,\frac{\partial}{\partial{\tilde{x}}_{a}}\,\phi({\mathbb{X}})+{\frac{1}{2}}\,x^{a}\,\phi({\mathbb{X}})\right)\ket{{\mathbb{X}}}_{\Lambda}\;, (18a)
p^a|ϕ\displaystyle\hat{p}_{a}\ket{\phi} =TΛd2d𝕏(ixaϕ(𝕏)+12x~aϕ(𝕏))|𝕏Λ.\displaystyle=\int_{{T_{\Lambda}}}\differential^{2d}{\mathbb{X}}\left(-i\hbar\,\frac{\partial}{\partial x^{a}}\,\phi({\mathbb{X}})+{\frac{1}{2}}\,{\tilde{x}}_{a}\,\phi({\mathbb{X}})\right)\ket{{\mathbb{X}}}_{\Lambda}\;. (18b)

These equations can be expressed more compactly in terms of an Abelian connection555Unlike all other double-stroke letters in this paper, 𝔸{\mathbb{A}} denotes a co-vector on 𝒫{\mathcal{P}}, rather than a vector. 𝔸=𝔸Ad𝕏A{\mathbb{A}}={\mathbb{A}}_{A}\,\differential{\mathbb{X}}^{A} on EΛE_{\Lambda}, given by

𝔸A(𝕏)(12x~a,12xa).\displaystyle{\mathbb{A}}_{A}({\mathbb{X}})\equiv\left({\frac{1}{2}}\,{\tilde{x}}_{a},-{\frac{1}{2}}\,x^{a}\right)\;. (19)

The key property of this modular connection 𝔸{\mathbb{A}} is that its curvature form coincides with the symplectic form, i.e. d𝔸=ω\differential{\mathbb{A}}=\omega. Using the modular connection, we can define a covariant derivative \nabla, which acts on the modular wave functions as

Aϕ(𝕏)\displaystyle\nabla_{A}\phi({\mathbb{X}}) Aϕ(𝕏)+i𝔸A(𝕏)ϕ(𝕏),\displaystyle\equiv\partial_{A}\phi({\mathbb{X}})+\frac{i}{\hbar}\,{\mathbb{A}}_{A}({\mathbb{X}})\,\phi({\mathbb{X}})\;, (20)

where A(xa,x~a)\partial_{A}\equiv\big{(}\frac{\partial}{\partial x^{a}},\frac{\partial}{\partial{\tilde{x}}_{a}}\big{)}. Defining also ^A(q^a,p^a){\hat{\mathbb{Q}}}^{A}\equiv(\hat{q}^{a},\hat{p}_{a}), we can finally write the action of Heisenberg operators in the modular representation as ^Ai(ω1)ABB{\hat{\mathbb{Q}}}^{A}\sim i\hbar\,(\omega^{-1})^{AB}\,\nabla_{B}.

One can check that the actions of the Weyl operators W^𝕐{\hat{W}_{{\mathbb{Y}}}} and the Heisenberg operators ^A{\hat{\mathbb{Q}}}^{A} on a modular wave function preserve the condition (16), therefore these are well-defined operators on the modular Hilbert space L2(EΛ)L^{2}(E_{\Lambda}).

2.3 Modular gauge transformation

There is a U(1)U(1)-gauge freedom in defining the modular vectors as follows. For any real, smooth function αC(𝒫)\alpha\in C^{\infty}({\mathcal{P}}) on the phase space, we may redefine the modular vectors as

|𝕏Λ|𝕏Λαeiα(𝕏)|𝕏Λ.\displaystyle\ket{{\mathbb{X}}}_{\Lambda}\rightarrow\ket{{\mathbb{X}}}_{\Lambda}^{\alpha}\equiv e^{i\alpha({\mathbb{X}})}\ket{{\mathbb{X}}}_{\Lambda}\;. (21)

While the eigenvalue equation (9) is unaffected by this gauge transformation, the action (10) of a generic Weyl operator on a modular vector becomes

W^𝕐|𝕏Λα\displaystyle{\hat{W}_{{\mathbb{Y}}}}\ket{{\mathbb{X}}}_{\Lambda}^{\alpha} =eiα(𝕏)iα(𝕏+𝕐)e12iω(𝕐,𝕏)/|𝕏+𝕐Λα,𝕏,𝕐𝒫.\displaystyle=e^{i\alpha({\mathbb{X}})-i\alpha({\mathbb{X}}+{\mathbb{Y}})}\,e^{{\frac{1}{2}}i\omega({\mathbb{Y}},{\mathbb{X}})/\hbar}\ket{{\mathbb{X}}+{\mathbb{Y}}}_{\Lambda}^{\alpha}\;,\qquad{\mathbb{X}},{\mathbb{Y}}\in{\mathcal{P}}\;. (22)

Similarly, the gauge transformation changes the quasi-periodicity relation (11) to

|𝕏+𝕂Λα\displaystyle\ket{{\mathbb{X}}+{\mathbb{K}}}_{\Lambda}^{\alpha} =eiβα(𝕏,𝕂)|𝕏Λα,𝕂Λ,𝕏𝒫,\displaystyle=e^{i\beta_{\alpha}({\mathbb{X}},{\mathbb{K}})}\ket{{\mathbb{X}}}_{\Lambda}^{\alpha}\;,\qquad{\mathbb{K}}\in\Lambda\;,\;{\mathbb{X}}\in{\mathcal{P}}\;, (23)

where

βα(𝕏,𝕂)\displaystyle\beta_{\alpha}({\mathbb{X}},{\mathbb{K}}) α(𝕏+𝕂)α(𝕏)+12kk~+12ω(𝕂,𝕏).\displaystyle\equiv\alpha({\mathbb{X}}+{\mathbb{K}})-\alpha({\mathbb{X}})+\frac{1}{2\hbar}\,k\cdot{\tilde{k}}+\frac{1}{2\hbar}\,\omega({\mathbb{K}},{\mathbb{X}})\;. (24)

Hence, it changes the condition (16) accordingly. The U(1)U(1)-bundle is modified to EΛαTΛE_{\Lambda}^{\alpha}\rightarrow{T_{\Lambda}} defined by the identification

EΛα:(θ,𝕏)(θeiβα(𝕏,𝕂),𝕏+𝕂),𝕂Λ,𝕏𝒫,θU(1).\displaystyle E_{\Lambda}^{\alpha}:\quad\left(\theta,{\mathbb{X}}\right)\sim\left(\theta\,e^{i\beta_{\alpha}({\mathbb{X}},{\mathbb{K}})},{\mathbb{X}}+{\mathbb{K}}\right)\;,\quad{\mathbb{K}}\in\Lambda\;,\;{\mathbb{X}}\in{\mathcal{P}}\;,\;\theta\in U(1)\;. (25)

The modular connection 𝔸{\mathbb{A}} also transforms under this gauge transformation such that

𝔸A(𝕏)𝔸A(𝕏)+Aα(𝕏).\displaystyle{\mathbb{A}}_{A}({\mathbb{X}})\rightarrow{\mathbb{A}}_{A}({\mathbb{X}})+\hbar\,\partial_{A}\alpha({\mathbb{X}})\;. (26)

Note that the curvature ω=d𝔸\omega=\differential{\mathbb{A}} of the modular connection is invariant under the gauge transformations.

For modular vectors |𝕏Λα\ket{{\mathbb{X}}}_{\Lambda}^{\alpha} in a generic gauge α\alpha, we can write the components of the modular connection as

𝔸A(𝕏)=12𝕏BωBA+Aα(𝕏).\displaystyle{\mathbb{A}}_{A}({\mathbb{X}})={\frac{1}{2}}\,{\mathbb{X}}^{B}\,\omega_{BA}+\hbar\,\partial_{A}\alpha({\mathbb{X}})\;. (27)

While the modular vectors defined in the last section had their gauge fixed as α=0\alpha=0, we will consider an arbitrary choice of gauge hereafter, even though we often omit the label α\alpha for better readability. We will also find out in the next section that a specific gauge fixing is required to obtain the Schrödinger and momentum representations as singular limits of the modular ones.

2.4 Singular limits of modular representations

Roughly speaking, the Schrödinger and momentum representations correspond to the limits of the family of modular representations when the spacing of the modular lattice goes to infinity and zero. In this section, we will discuss the details of this limiting process.

Consider the 1-parameter family of modular lattices Λ=d~d\Lambda=\ell{\mathbb{Z}}^{d}\oplus\tilde{\ell}{\mathbb{Z}}^{d}, where \ell and ~\tilde{\ell} are length and momentum scales such that ~=2π\ell\tilde{\ell}=2\pi\hbar. The modular space TΛ{T_{\Lambda}} has the size d×~d\ell^{d}\times\tilde{\ell}^{d}. Recall also that the Heisenberg operators are represented in the modular representations by

(q^a,p^a)(12xaα(𝕏)x~a+ix~a,12x~a+α(𝕏)xaixa).\displaystyle\left(\hat{q}^{a},\hat{p}_{a}\right)\sim\left({\frac{1}{2}}\,x^{a}-\hbar\,\frac{\partial\alpha({\mathbb{X}})}{\partial{\tilde{x}}_{a}}+i\hbar\,\frac{\partial}{\partial{\tilde{x}}_{a}}\,,\,{\frac{1}{2}}\,{\tilde{x}}_{a}+\hbar\,\frac{\partial\alpha({\mathbb{X}})}{\partial x^{a}}-i\hbar\,\frac{\partial}{\partial x^{a}}\right)\;. (28)

Now, let’s consider the limit \ell\rightarrow\infty. As the position part of the modular space TΛ{T_{\Lambda}} grows to infinite size and becomes decompactified, its momentum part shrinks to a point. This has two consequences for the representation of the Heisenberg operators: Firstly, the term /x~a\partial/\partial{\tilde{x}}_{a} drops, since the wave functions cannot depend non-trivially on momentum. Secondly, the terms α(𝕏)/x~a\hbar\,\partial\alpha({\mathbb{X}})/\partial{\tilde{x}}_{a} and x~a/2+α(𝕏)/xa{\tilde{x}}^{a}/2+\hbar\,\partial\alpha({\mathbb{X}})/\partial x^{a} must be independent of momentum, otherwise they would become ill-defined in the limit. This implies that α\alpha must be of the form α(𝕏)=12xx~+f(x)\alpha({\mathbb{X}})=-\frac{1}{2\hbar}\,x\cdot{\tilde{x}}+f(x) for the limit \ell\rightarrow\infty to be well-defined. Comparing the representation of the momentum operator to the one in the Schrödinger representation, we find that the gauge choice

αSch(𝕏)=12xx~+const.,\displaystyle\alpha_{\mathrm{Sch}}({\mathbb{X}})=-\frac{1}{2\hbar}\,x\cdot{\tilde{x}}+\mathrm{const.}\;, (29)

is needed to obtain the Schrödinger representation, in which (q^a,p^a)(xa,ixa)(\hat{q}^{a},\hat{p}_{a})\sim(x^{a},-i\hbar\,\frac{\partial}{\partial x^{a}}). We name (29) the Schrödinger gauge. One can check with this gauge fixing that (22) also resembles the action of Weyl operators on Schrödinger eigenvectors given by W^𝕐|xSch=e12iyy~/eixy~/|x+ySch{\hat{W}_{{\mathbb{Y}}}}\ket{x}_{\mathrm{Sch}}=e^{{\frac{1}{2}}iy\cdot{\tilde{y}}/\hbar}\,e^{ix\cdot{\tilde{y}}/\hbar}\ket{x+y}_{\mathrm{Sch}}.

Our argument for (29) is also supported by the quasi-periodicity phase function βαSch(𝕏,𝕂)=kx~/\beta_{\alpha_{\mathrm{Sch}}}({\mathbb{X}},{\mathbb{K}})=-k\cdot{\tilde{x}}/\hbar. Note that this is independent of the momentum winding number k~{\tilde{k}} as it should be, since the momentum part of the modular space shrinks to a point and any dependency on the momentum winding number would result in an ill-defined phase. A winding number kk in the position directions, on the other hand, becomes irrelevant as the configuration space is decompactified.

In the limit \ell\rightarrow\infty, the modular lattice transitions to the momentum space. This transition can be understood in a coarse-graining approximation to the momentum space, although it is in fact a singular transition from a discrete set in 2d2d dimensions to a continuous set in dd dimensions. The continuous momentum space is qualified as a modular lattice by definition, since it is a maximal subset Λ𝒫\Lambda\subseteq{\mathcal{P}} satisfying ω(Λ,Λ)2π\omega(\Lambda,\Lambda)\subset 2\pi\hbar\,{\mathbb{Z}}, although in fact ω(Λ,Λ)={0}\omega(\Lambda,\Lambda)=\left\{0\right\}. The modular space TΛ{T_{\Lambda}} also changes its topology as it becomes the Schrödinger configuration space.

In order to see how the modular vectors behave in the Schrödinger limit, one can expand them in terms of momentum eigenvectors as in the footnote 2. We find

lim(detλ~)1/2|𝕏ΛαSch\displaystyle\lim_{\ell\rightarrow\infty}\big{(}\!\det{\tilde{\lambda}}\big{)}^{1/2}\,\ket{{\mathbb{X}}}_{\Lambda}^{\alpha_{\mathrm{Sch}}} =lim~0(2π)d/2(detλ~)n~deix(x~+λ~n~)/|x~+λ~n~mom\displaystyle=\lim_{\tilde{\ell}\rightarrow 0}\left(2\pi\hbar\right)^{-d/2}\big{(}\!\det{\tilde{\lambda}}\big{)}\sum_{{\tilde{n}}\in{\mathbb{Z}}^{d}}e^{-ix\cdot({\tilde{x}}+{\tilde{\lambda}}{\tilde{n}})/\hbar}\,|{\tilde{x}}+{\tilde{\lambda}}{\tilde{n}}\rangle_{\mathrm{mom}}^{\phantom{\dagger}}
=(2π)d/2dddx~eix(x~+λ~n~)/|x~+λ~n~mom\displaystyle=\left(2\pi\hbar\right)^{-d/2}\int_{{\mathbb{R}}^{d}}\differential^{d}{\tilde{x}}\;e^{-ix\cdot({\tilde{x}}+{\tilde{\lambda}}{\tilde{n}})/\hbar}\,|{\tilde{x}}+{\tilde{\lambda}}{\tilde{n}}\rangle_{\mathrm{mom}}^{\phantom{\dagger}}
=|xSch.\displaystyle=\ket{x}_{\mathrm{Sch}}\;. (30)

Hence, up to a normalization factor, the modular vectors converge to the position eigenvectors. This concludes our analysis: Although the limit \ell\rightarrow\infty is a singular one in which the topology of the (modular) configuration space changes, we have enough evidence to identify the Schrödinger representation with this limit of modular representations.

A similar discussion applies to the momentum representation in the limit 0\ell\rightarrow 0. However, this limit requires a different choice of gauge fixing, namely

αmom(𝕏)=+12xx~+const..\displaystyle\alpha_{\mathrm{mom}}({\mathbb{X}})=+\frac{1}{2\hbar}\,x\cdot{\tilde{x}}+\mathrm{const.}\;. (31)

To the best of our knowledge, this is the first study in literature that addresses the role of gauge fixing for the singular limits and the fact that Schrödinger and momentum representations require two different choices of modular gauge.

3 Path integral construction

In the previous section, we introduced the mathematical details underlying the modular representations of the Weyl algebra and their relationship with the Schrödinger representation. We can finally use these modular representations to construct a path integral and compare this path integral to Feynman’s original path integral in the Schrödinger representation. This will be the goal of this section. We focus here on the special example of a quantum harmonic oscillator for its simplicity, since it is possible to evaluate Gaussian integrals analytically.

We consider the Hamiltonian operator for a non-relativistic quantum harmonic oscillator, given by

H^\displaystyle\hat{H} =12mg1(p^,p^)+12mΩ2g(q^,q^),\displaystyle=\frac{1}{2m}\,g^{-1}(\hat{p},\hat{p})+{\frac{1}{2}}\,m\;\!\Omega^{2}\;\!g(\hat{q},\hat{q})\;, (32)

where gg is the flat Euclidean metric on d{\mathbb{R}}^{d}, mm is the particle mass, and Ω\Omega is the angular frequency of the oscillator. It will be more convenient to express this Hamiltonian in terms of a positive definite metric GG on 𝒫{\mathcal{P}} such that

H^=12ΩG(^,^),GAB(mΩgab00(mΩ)1gab).\displaystyle\hat{H}={\frac{1}{2}}\,\Omega\,G({\hat{\mathbb{Q}}},{\hat{\mathbb{Q}}})\;,\qquad G_{AB}\equiv{\begin{pmatrix}m\Omega\,g_{ab}&0\\ 0&\left(m\Omega\right)^{-1}g^{ab}\end{pmatrix}}\;. (33)

Note that detG=1\det G=1.

3.1 Schrödinger-Feynman path integral

In this section, we will list some key results from Feynman’s path integral in the Schrödinger representation. These are well-known in the literature, but they will be useful later as a reference when we compare them to our new path integral in the modular representation.

The transition amplitude between two position eigenvectors over a finite time interval [t0,tf][t_{0},t_{f}] can be expressed via the path integral

xf|Schei(tft0)H^/|x0Sch\displaystyle{}^{\phantom{\dagger}}_{\mathrm{Sch}}\!\!\!\;\bra{x_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{x_{0}}_{\mathrm{Sch}} =x(t0)=x0x(tf)=xf𝒟xexp[iSSch[x]].\displaystyle=\int_{x(t_{0})=x_{0}}^{x(t_{f})=x_{f}}\mathcal{D}x\,\exp\!\left[\frac{i}{\hbar}\,S_{\mathrm{Sch}}[x]\right]\;. (34)

On the right-hand side, the functional integral runs over all paths from x0x_{0} to xfx_{f} on the configuration space d{\mathbb{R}}^{d}. The path measure 𝒟x\mathcal{D}x is defined as

𝒟x\displaystyle\mathcal{D}x limN((i2πmNtft0)d/2detg)Nn=1N1ddxn.\displaystyle\equiv\lim_{N\rightarrow\infty}\left(\left(\frac{-i}{2\pi\hbar}\,\frac{mN}{t_{f}-t_{0}}\right)^{d/2}\sqrt{\det g}\right)^{N}\prod_{n=1}^{N-1}\differential^{d}x_{n}\;. (35)

The action SSchS_{\mathrm{Sch}} is given by

SSch[x]\displaystyle S_{\mathrm{Sch}}[x] =t0tfdtSch(x(t),x˙(t)),\displaystyle=\int_{t_{0}}^{t_{f}}\differential t\,\mathcal{L}_{\mathrm{Sch}}(x(t),\dot{x}(t))\;, (36a)
Sch(x,x˙)\displaystyle\mathcal{L}_{\mathrm{Sch}}(x,\dot{x}) =12mg(x˙,x˙)12mΩ2g(x,x),\displaystyle={\frac{1}{2}}\,m\;\!g(\dot{x},\dot{x})-{\frac{1}{2}}\,m\;\!\Omega^{2}\;\!g(x,x)\;, (36b)

where the dot ˙\dot{} over a variable denotes its time derivative. We can make a Legendre transformation on the Lagrangian Sch\mathcal{L}_{\mathrm{Sch}} to recover the classical Hamiltonian function Sch\mathcal{H}_{\mathrm{Sch}}, given by

Sch(x,x~)\displaystyle\mathcal{H}_{\mathrm{Sch}}(x,{\tilde{x}}) =12mg1(x~,x~)+12mΩ2g(x,x)=12ΩG((x,x~),(x,x~)),\displaystyle=\frac{1}{2m}\,g^{-1}({\tilde{x}},{\tilde{x}})+{\frac{1}{2}}\,m\;\!\Omega^{2}\;\!g(x,x)={\frac{1}{2}}\,\Omega\,G((x,{\tilde{x}}),(x,{\tilde{x}}))\;, (37)

where x~=Sch/x˙{\tilde{x}}=\partial\mathcal{L}_{\mathrm{Sch}}/\partial\dot{x}. Defining 𝕏A(xa,x~a){\mathbb{X}}^{A}\equiv(x^{a},{\tilde{x}}_{a}), we can write the (classical) Hamilton equations as

𝕏˙(t)=Ωω1G𝕏(t).\displaystyle\dot{{\mathbb{X}}}(t)=\Omega\,\omega^{-1}G\,{\mathbb{X}}(t)\;. (38)

3.2 Modular path integral

In this section, we will construct, step by step, a path integral formulation for the transition amplitude 𝕏f|Λαei(tft0)H^/|𝕏0Λα{}^{\alpha}_{\Lambda}\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}}_{\Lambda}^{\alpha} between two modular vectors over a finite time interval [t0,tf][t_{0},t_{f}]. We assume here that the gauge α\alpha is arbitrary, and that the modular lattice is of the form Λ=λdλ~d\Lambda=\lambda{\mathbb{Z}}^{d}\oplus{\tilde{\lambda}}{\mathbb{Z}}^{d}, where λ\lambda and λ~{\tilde{\lambda}} are diagonal d×dd\times d-matrices that satisfy λcλ~ca=b2πδab\lambda^{c}{}_{a}{\tilde{\lambda}}_{c}{}^{b}=2\pi\hbar\,\delta_{a}^{b}, as mentioned previously in Section 2.2. We will often omit the labels Λ\Lambda and α\alpha on the modular vectors. The Hamiltonian operator is that of a quantum harmonic oscillator given in (32).

Decomposition of paths

Following the idea in Feynman’s original derivation [5], we pick a large integer NN\in{\mathbb{N}} and split the interval [t0,tf][t_{0},t_{f}] into NN equal pieces [tn,tn+δt][t_{n},t_{n}+\delta t], n=0,,N1n=0,...,N-1, where

δt\displaystyle\delta t tft0N=tn+1tn,tnt0+nδt,tNtf.\displaystyle\equiv\frac{t_{f}-t_{0}}{N}=t_{n+1}-t_{n}\;,\qquad t_{n}\equiv t_{0}+n\,\delta t\;,\qquad t_{N}\equiv t_{f}\;. (39)

We decompose the unitary evolution operator into a product of NN operators, such that ei(tft0)H^/=eiδtH^/eiδtH^/e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}=e^{-i\;\!\delta t\;\!\hat{H}/\hbar}\,\cdots\,e^{-i\;\!\delta t\;\!\hat{H}/\hbar}. Next, we insert the resolution of the identity (14) before each of these NN unitary operators,

𝕏f|ei(tft0)H^/|𝕏0\displaystyle\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}} =𝕏f|(TΛd2d𝕏N|𝕏N𝕏N|)eiδtH^/\displaystyle=\bra{{\mathbb{X}}_{f}}\left(\int_{{T_{\Lambda}}}\differential^{2d}{\mathbb{X}}_{N}\outerproduct{{\mathbb{X}}_{N}}{{\mathbb{X}}_{N}}\right)e^{-i\;\!\delta t\;\!\hat{H}/\hbar}\,\cdots
eiδtH^/(TΛd2d𝕏1|𝕏1𝕏1|)eiδtH^/|𝕏0\displaystyle\hskip 42.67912pt\cdots\,e^{-i\;\!\delta t\;\!\hat{H}/\hbar}\left(\int_{{T_{\Lambda}}}\differential^{2d}{\mathbb{X}}_{1}\outerproduct{{\mathbb{X}}_{1}}{{\mathbb{X}}_{1}}\right)e^{-i\;\!\delta t\;\!\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}}
=TΛd2d𝕏Nd2d𝕏1𝕏f|𝕏Nn=0N1𝕏n+1|eiδtH^/|𝕏n.\displaystyle=\int_{T_{\Lambda}}\differential^{2d}{\mathbb{X}}_{N}\cdots\differential^{2d}{\mathbb{X}}_{1}\innerproduct{{\mathbb{X}}_{f}}{{\mathbb{X}}_{N}}\prod_{n=0}^{N-1}\bra{{\mathbb{X}}_{n+1}}e^{-i\;\!\delta t\;\!\hat{H}/\hbar}\ket{{\mathbb{X}}_{n}}\;. (40)

Each of the integrals in (3.2) are over the modular space TΛ{T_{\Lambda}}, which means that they are over arbitrary modular cells in the phase space. We are free to specify their integration domains as any modular cell. Since we are going to identify the variables 𝕏n{\mathbb{X}}_{n} later as points on a continuous path in 𝒫{\mathcal{P}}, we make the choice that each integral over 𝕏n{\mathbb{X}}_{n} (for n=1,,Nn=1,...,N) is taken over MΛ(𝕏n1)𝒫{M_{\Lambda}}({\mathbb{X}}_{n-1})\subset{\mathcal{P}}, which is a box-shaped modular cell centered at the previous point 𝕏n1{\mathbb{X}}_{n-1}. Hence, we write

TΛd2d𝕏Nd2d𝕏1\displaystyle\int_{T_{\Lambda}}\differential^{2d}{\mathbb{X}}_{N}\cdots\differential^{2d}{\mathbb{X}}_{1} =MΛ(𝕏0)d2d𝕏1MΛ(𝕏1)d2d𝕏2MΛ(𝕏N1)d2d𝕏N.\displaystyle=\int_{{M_{\Lambda}}({\mathbb{X}}_{0})}\differential^{2d}{\mathbb{X}}_{1}\int_{{M_{\Lambda}}({\mathbb{X}}_{1})}\differential^{2d}{\mathbb{X}}_{2}\,\cdots\int_{{M_{\Lambda}}({\mathbb{X}}_{N-1})}\differential^{2d}{\mathbb{X}}_{N}\;. (41)

We can simplify this expression by changing the integration variables. We define

𝕏n𝕏0+j=0n1δ𝕏j\displaystyle{\mathbb{X}}_{n}\equiv{\mathbb{X}}_{0}+\sum_{j=0}^{n-1}\delta{\mathbb{X}}_{j} (42)

for n=1,,Nn=1,...,N, and we change the integration variables from 𝕏nMΛ(𝕏n1){\mathbb{X}}_{n}\in{M_{\Lambda}}({\mathbb{X}}_{n-1}) to δ𝕏n1MΛ(0)\delta{\mathbb{X}}_{n-1}\in{M_{\Lambda}}(0), where MΛ(0)=λ[12,12)dλ~[12,12)d𝒫{M_{\Lambda}}(0)=\lambda\left[-{\frac{1}{2}},{\frac{1}{2}}\right)^{d}\oplus{\tilde{\lambda}}\left[-{\frac{1}{2}},{\frac{1}{2}}\right)^{d}\subset{\mathcal{P}} is a box-shaped modular cell centered at the origin. Then, we get

𝕏f|ei(tft0)H^/|𝕏0\displaystyle\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}} =MΛ(0)d2dδ𝕏0MΛ(0)d2dδ𝕏N1\displaystyle=\int_{{M_{\Lambda}}(0)}\differential^{2d}\delta{\mathbb{X}}_{0}\,\cdots\int_{{M_{\Lambda}}(0)}\differential^{2d}\delta{\mathbb{X}}_{N-1}
×𝕏f|𝕏Nn=0N1𝕏n+1|eiδtH^/|𝕏n,\displaystyle\hskip 14.22636pt\times\innerproduct{{\mathbb{X}}_{f}}{{\mathbb{X}}_{N}}\prod_{n=0}^{N-1}\bra{{\mathbb{X}}_{n+1}}e^{-i\;\!\delta t\;\!\hat{H}/\hbar}\ket{{\mathbb{X}}_{n}}\;, (43)

together with the definitions (42).

Infinitesimal transition amplitude

We focus on calculating the infinitesimal transition amplitudes 𝕏n+1|eiδtH^/|𝕏n\bra{{\mathbb{X}}_{n+1}}e^{-i\;\!\delta t\;\!\hat{H}/\hbar}\ket{{\mathbb{X}}_{n}} in (3.2) up to linear order in δt\delta t. Using the Lie-Trotter product formula, we can split the unitary evolution operator as

eiδtH^/\displaystyle e^{-i\;\!\delta t\;\!\hat{H}/\hbar} =exp[iδt12mg1(p^,p^)]exp[iδt12mΩ2g(q^,q^)]+𝒪(δt2).\displaystyle=\exp\left[-\frac{i}{\hbar}\,\delta t\,\frac{1}{2m}\,g^{-1}(\hat{p},\hat{p})\right]\exp\left[-\frac{i}{\hbar}\,\delta t\,{\frac{1}{2}}\,m\;\!\Omega^{2}\;\!g(\hat{q},\hat{q})\right]+\mathcal{O}(\delta t^{2})\;. (44)

We will also expand the modular vectors in terms of Schrödinger and momentum eigenvectors, respectively. Namely, we have

|𝕏n\displaystyle\ket{{\mathbb{X}}_{n}} =(detλ~)1/2eiα(𝕏n)e12ixnx~n/kλdeikx~n/|xn+kSch,\displaystyle=\big{(}\!\det{\tilde{\lambda}}\big{)}^{-1/2}\,e^{i\alpha({\mathbb{X}}_{n})}\,e^{{\frac{1}{2}}ix_{n}\cdot{\tilde{x}}_{n}/\hbar}\sum_{k\in\lambda{\mathbb{Z}}^{d}}e^{ik\cdot{\tilde{x}}_{n}/\hbar}\ket{x_{n}+k}_{\mathrm{Sch}}\;, (45a)
𝕏n+1|\displaystyle\bra{{\mathbb{X}}_{n+1}} =(detλ)1/2eiα(𝕏n+1)e12ixn+1x~n+1/k~λ~deik~xn+1/x~n+1+k~|mom.\displaystyle=\left(\det\lambda\right)^{-1/2}\,e^{-i\alpha({\mathbb{X}}_{n+1})}\,e^{{\frac{1}{2}}ix_{n+1}\cdot{\tilde{x}}_{n+1}/\hbar}\sum_{{\tilde{k}}\in{\tilde{\lambda}}{\mathbb{Z}}^{d}}e^{i{\tilde{k}}\cdot x_{n+1}/\hbar}\,{\langle{\tilde{x}}_{n+1}+{\tilde{k}}|}_{\mathrm{mom}}\;. (45b)

Using these expressions and omitting the 𝒪(δt2)\mathcal{O}(\delta t^{2}) terms in (44), we find

𝕏n+1|eiδtH^/|𝕏n\displaystyle\bra{{\mathbb{X}}_{n+1}}e^{-i\;\!\delta t\;\!\hat{H}/\hbar}\ket{{\mathbb{X}}_{n}} =(2π)deiα(𝕏n+1)+iα(𝕏n)e12ix~n+1(xn+1xn)/12ixn(x~n+1x~n)/\displaystyle=\left(2\pi\hbar\right)^{-d}e^{-i\alpha({\mathbb{X}}_{n+1})+i\alpha({\mathbb{X}}_{n})}\,e^{{\frac{1}{2}}i{\tilde{x}}_{n+1}\cdot(x_{n+1}-x_{n})/\hbar\,-{\frac{1}{2}}ix_{n}\cdot({\tilde{x}}_{n+1}-{\tilde{x}}_{n})/\hbar}
×kλdk~λ~deiδt(12mg1(x~n+1+k~,x~n+1+k~)+12mΩ2g(xn+k,xn+k))\displaystyle\hskip 14.22636pt\times\sum_{k\in\lambda{\mathbb{Z}}^{d}}\sum_{{\tilde{k}}\in{\tilde{\lambda}}{\mathbb{Z}}^{d}}e^{-\frac{i}{\hbar}\delta t\,\left(\frac{1}{2m}g^{-1}({\tilde{x}}_{n+1}+{\tilde{k}},{\tilde{x}}_{n+1}+{\tilde{k}})+{\frac{1}{2}}m\Omega^{2}g(x_{n}+k,x_{n}+k)\right)}
×eik~(xn+1xn)/ik(x~n+1x~n)/.\displaystyle\hskip 14.22636pt\times e^{i{\tilde{k}}\cdot(x_{n+1}-x_{n})/\hbar\,-ik\cdot({\tilde{x}}_{n+1}-{\tilde{x}}_{n})/\hbar}\;. (46)

By defining 𝕂(k,k~)Λ{\mathbb{K}}\equiv(k,{\tilde{k}})\in\Lambda and 𝕏n(xn,x~n+1)𝒫{\mathbb{X}}_{n}^{*}\equiv(x_{n},{\tilde{x}}_{n+1})\in{\mathcal{P}}, we can formulate the last expression more compactly as

𝕏n+1|eiδtH^/|𝕏n\displaystyle\bra{{\mathbb{X}}_{n+1}}e^{-i\;\!\delta t\;\!\hat{H}/\hbar}\ket{{\mathbb{X}}_{n}} =(2π)deiα(𝕏n+1)+iα(𝕏n)ei2ω(𝕏n,δ𝕏n)ei2ΩδtG(𝕏n,𝕏n)\displaystyle=\left(2\pi\hbar\right)^{-d}e^{-i\alpha({\mathbb{X}}_{n+1})+i\alpha({\mathbb{X}}_{n})}\,e^{\frac{i}{2\hbar}\;\!\omega({\mathbb{X}}_{n}^{*},\delta{\mathbb{X}}_{n})}\,e^{-\frac{i}{2\hbar}\;\!\Omega\,\delta t\,G({\mathbb{X}}_{n}^{*},{\mathbb{X}}_{n}^{*})}
×𝕂Λei2ΩδtG(𝕂,𝕂)eiΩδtG(𝕂,𝕏n)eiω(𝕂,δ𝕏n).\displaystyle\hskip 14.22636pt\times\sum_{{\mathbb{K}}\in\Lambda}e^{-\frac{i}{2\hbar}\;\!\Omega\,\delta t\,G({\mathbb{K}},{\mathbb{K}})}\,e^{-\frac{i}{\hbar}\;\!\Omega\,\delta t\,G({\mathbb{K}},{\mathbb{X}}_{n}^{*})}\,e^{\frac{i}{\hbar}\;\!\omega({\mathbb{K}},\delta{\mathbb{X}}_{n})}\;. (47)

It is easier to handle the infinite sum in this expression if we express it in terms of Jacobi’s theta function, whose properties are well-studied. Jacobi’s theta function (in 2d2d dimensions), ϑ:2d×2d\vartheta:\mathbb{C}^{2d}\times\mathfrak{H}_{2d}\rightarrow\mathbb{C}, is defined over a complex vector space 2d\mathbb{C}^{2d} and the Siegel upper-half space666The Siegel upper-half space 2d\mathfrak{H}_{2d} is defined as the set of symmetric, complex 2d×2d2d\times 2d-matrices whose imaginary parts are positive definite. 2d\mathfrak{H}_{2d} by

ϑ(z,τ)n2dexp[iπnTτn+2πinTz].\displaystyle\vartheta(z,\tau)\equiv\sum_{n\in{\mathbb{Z}}^{2d}}\exp\left[i\pi\,n^{T}\tau\,n+2\pi i\,n^{T}z\right]\;. (48)

Some important properties of this function are included in Appendix A.

In our case, we have a sum over the modular lattice Λ=Λ¯2d\Lambda={\bar{\Lambda}}{\mathbb{Z}}^{2d}, where Λ¯ABλabλ~ab{\bar{\Lambda}}^{A}{}_{B}\equiv\lambda^{a}{}_{b}\oplus{\tilde{\lambda}}_{a}{}^{b}. The matrix ΞΩδt2πΛ¯TGΛ¯\Xi\equiv-\frac{\Omega\,\delta t}{2\pi\hbar}\,{\bar{\Lambda}}^{T}G\,{\bar{\Lambda}} is however real, and thus not in the Siegel upper-half space 2d\mathfrak{H}_{2d}. In order to avoid this problem, we add a small imaginary part to Ξ\Xi and consider ΞϵΞ+iϵ\Xi_{\epsilon}\equiv\Xi+i\epsilon instead, where ϵ\epsilon is a positive definite matrix. Hence, we can express (3.2) as

𝕏n+1|eiδtH^/|𝕏n\displaystyle\bra{{\mathbb{X}}_{n+1}}e^{-i\;\!\delta t\;\!\hat{H}/\hbar}\ket{{\mathbb{X}}_{n}} =(2π)deiα(𝕏n+1)+iα(𝕏n)ei2ω(𝕏n,δ𝕏n)ei2ΩδtG(𝕏n,𝕏n)\displaystyle=\left(2\pi\hbar\right)^{-d}e^{-i\alpha({\mathbb{X}}_{n+1})+i\alpha({\mathbb{X}}_{n})}\,e^{\frac{i}{2\hbar}\;\!\omega({\mathbb{X}}_{n}^{*},\delta{\mathbb{X}}_{n})}\,e^{-\frac{i}{2\hbar}\;\!\Omega\,\delta t\,G({\mathbb{X}}_{n}^{*},{\mathbb{X}}_{n}^{*})}
×ϑ(ΞϵΛ¯1𝕏n+12πΛ¯Tωδ𝕏n,Ξϵ).\displaystyle\hskip 14.22636pt\times\vartheta\!\left(\Xi_{\epsilon}\;\!{\bar{\Lambda}}^{-1}\;\!{\mathbb{X}}^{*}_{n}+\frac{1}{2\pi\hbar}\,{\bar{\Lambda}}^{T}\omega\,\delta{\mathbb{X}}_{n},\,\Xi_{\epsilon}\right)\;. (49)

One important feature of Jacobi’s theta function is the inversion identity (111), which is included in the Appendix A. Using this identity, we get

ϑ(ΞϵΛ¯1𝕏n+12πΛ¯Tωδ𝕏n,Ξϵ)\displaystyle\vartheta\!\left(\Xi_{\epsilon}\;\!{\bar{\Lambda}}^{-1}\;\!{\mathbb{X}}^{*}_{n}+\frac{1}{2\pi\hbar}\,{\bar{\Lambda}}^{T}\omega\,\delta{\mathbb{X}}_{n},\,\Xi_{\epsilon}\right) =(iΩδt)deiω(𝕏n,δ𝕏n)ei2ΩδtGϵ(𝕏n,𝕏n)\displaystyle=\left(i\,\Omega\,\delta t\right)^{-d}\,e^{-\frac{i}{\hbar}\;\!\omega({\mathbb{X}}^{*}_{n},\delta{\mathbb{X}}_{n})}\,e^{\frac{i}{2\hbar}\;\!\Omega\,\delta t\,G_{\epsilon}({\mathbb{X}}^{*}_{n},{\mathbb{X}}^{*}_{n})}
×ϑ(Λ¯1𝕏n+12πΞϵ1Λ¯Tωδ𝕏n,Ξϵ1)\displaystyle\hskip 14.22636pt\times\vartheta\!\left({\bar{\Lambda}}^{-1}\;\!{\mathbb{X}}^{*}_{n}+\frac{1}{2\pi\hbar}\,\Xi_{\epsilon}^{-1}\;\!{\bar{\Lambda}}^{T}\;\!\omega\,\delta{\mathbb{X}}_{n},\,-\Xi_{\epsilon}^{-1}\right)
×exp[i2(Ωδt)1δ𝕏nTωTGϵ1ωδ𝕏n].\displaystyle\hskip 14.22636pt\times\exp\!\left[\frac{i}{2\hbar}\left(\Omega\,\delta t\right)^{-1}\delta{\mathbb{X}}_{n}^{T}\,\omega^{T}G_{\epsilon}^{-1}\omega\,\delta{\mathbb{X}}_{n}\right]\;. (50)

Inserting this equation back into (3.2) and noting that ωTG1ω=G\omega^{T}G^{-1}\omega=G, we find

𝕏n+1|eiδtH^/|𝕏n\displaystyle\bra{{\mathbb{X}}_{n+1}}e^{-i\;\!\delta t\;\!\hat{H}/\hbar}\ket{{\mathbb{X}}_{n}} =(2πiΩδt)deiα(𝕏n+1)+iα(𝕏n)ei2ω(𝕏n,δ𝕏n)ei21ΩδtGϵ(δ𝕏n,δ𝕏n)\displaystyle=\left(2\pi i\hbar\,\Omega\,\delta t\right)^{-d}e^{-i\alpha({\mathbb{X}}_{n+1})+i\alpha({\mathbb{X}}_{n})}\,e^{-\frac{i}{2\hbar}\;\!\omega({\mathbb{X}}^{*}_{n},\delta{\mathbb{X}}_{n})}\,e^{\frac{i}{2\hbar}\frac{1}{\Omega\;\!\delta t}\,G_{\epsilon}(\delta{\mathbb{X}}_{n},\delta{\mathbb{X}}_{n})}
×ϑ(Λ¯1𝕏n+12πΞϵ1Λ¯Tωδ𝕏n,Ξϵ1).\displaystyle\hskip 14.22636pt\times\vartheta\!\left({\bar{\Lambda}}^{-1}\;\!{\mathbb{X}}^{*}_{n}+\frac{1}{2\pi\hbar}\,\Xi_{\epsilon}^{-1}\;\!{\bar{\Lambda}}^{T}\;\!\omega\,\delta{\mathbb{X}}_{n},-\Xi_{\epsilon}^{-1}\right)\;. (51)

Finally, we can use this expression to write the transition amplitude in (3.2) as

𝕏f|ei(tft0)H^/|𝕏0\displaystyle\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}} =MΛ(0)d2dδ𝕏0MΛ(0)d2dδ𝕏N1(2πiΩδt)Nd𝕏f|𝕏N\displaystyle=\int_{{M_{\Lambda}}(0)}\differential^{2d}\delta{\mathbb{X}}_{0}\,\cdots\int_{{M_{\Lambda}}(0)}\differential^{2d}\delta{\mathbb{X}}_{N-1}\left(2\pi i\hbar\,\Omega\,\delta t\right)^{-Nd}\innerproduct{{\mathbb{X}}_{f}}{{\mathbb{X}}_{N}}
×n=0N1(eiα(𝕏n+1)+iα(𝕏n)ei2ω(𝕏n,δ𝕏n)ei21ΩδtGϵ(δ𝕏n,δ𝕏n)\displaystyle\hskip 14.22636pt\times\prod_{n=0}^{N-1}\bigg{(}e^{-i\alpha({\mathbb{X}}_{n+1})+i\alpha({\mathbb{X}}_{n})}\,e^{-\frac{i}{2\hbar}\;\!\omega({\mathbb{X}}^{*}_{n},\delta{\mathbb{X}}_{n})}\,e^{\frac{i}{2\hbar}\frac{1}{\Omega\;\!\delta t}\,G_{\epsilon}(\delta{\mathbb{X}}_{n},\delta{\mathbb{X}}_{n})}
×ϑ(Λ¯1𝕏n+12πΞϵ1Λ¯Tωδ𝕏n,Ξϵ1)).\displaystyle\hskip 56.9055pt\times\vartheta\!\left({\bar{\Lambda}}^{-1}\;\!{\mathbb{X}}^{*}_{n}+\frac{1}{2\pi\hbar}\,\Xi_{\epsilon}^{-1}\;\!{\bar{\Lambda}}^{T}\;\!\omega\,\delta{\mathbb{X}}_{n},-\Xi_{\epsilon}^{-1}\right)\!\bigg{)}\;. (52)

Limit NN\rightarrow\infty

In order to reformulate (3.2) as a path integral, we need to take the limit NN\rightarrow\infty, or equivalently δt0\delta t\rightarrow 0. For this limit to be well-defined, we need to hold the ratio

𝕏˙nδ𝕏nδt\displaystyle{\dot{\mathbb{X}}}_{n}\equiv\frac{\delta{\mathbb{X}}_{n}}{\delta t} (53)

fixed during the limiting process. The variable 𝕏˙n{\dot{\mathbb{X}}}_{n} will be interpreted as the velocity of a path 𝕏:[t0,tf]𝒫{\mathbb{X}}:[t_{0},t_{f}]\rightarrow{\mathcal{P}} at the time tnt_{n}.

This limit has several consequences for the expression (3.2). Firstly, we can make a Taylor expansion around δt=0\delta t=0 to find

iα(𝕏n+1)+iα(𝕏n)i2ω(𝕏n,δ𝕏n)\displaystyle-i\alpha({\mathbb{X}}_{n+1})+i\alpha({\mathbb{X}}_{n})-\frac{i}{2\hbar}\,\omega({\mathbb{X}}^{*}_{n},\delta{\mathbb{X}}_{n}) =iδt𝕏˙nA𝔸A(𝕏n)+𝒪(δt2).\displaystyle=-\frac{i}{\hbar}\,\delta t\,{\dot{\mathbb{X}}}_{n}^{A}\,{\mathbb{A}}_{A}({\mathbb{X}}_{n})+\mathcal{O}(\delta t^{2})\;. (54)

Secondly, since Ξϵ1δt1\Xi_{\epsilon}^{-1}\propto\delta t^{-1}, the theta function in (3.2) converges to 11 as δt0\delta t\rightarrow 0 due to the property (112) of Jacobi’s theta function, which is included in the Appendix A. Finally, we change the integration variables once again from δ𝕏n\delta{\mathbb{X}}_{n} to 𝕏˙n{\dot{\mathbb{X}}}_{n}. Hence, up to terms of order 𝒪(δt2)\mathcal{O}(\delta t^{2}), we get

𝕏f|ei(tft0)H^/|𝕏0\displaystyle\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}} =1δtMΛ(0)d2d𝕏˙01δtMΛ(0)d2d𝕏˙N1(δt2πiΩ)Nd𝕏f|𝕏N\displaystyle=\int_{\frac{1}{\delta t}{M_{\Lambda}}(0)}\differential^{2d}{\dot{\mathbb{X}}}_{0}\,\cdots\int_{\frac{1}{\delta t}{M_{\Lambda}}(0)}\differential^{2d}{\dot{\mathbb{X}}}_{N-1}\left(\frac{\delta t}{2\pi i\hbar\,\Omega}\right)^{Nd}\innerproduct{{\mathbb{X}}_{f}}{{\mathbb{X}}_{N}}
×n=0N1exp[iδt(𝕏˙nA𝔸A(𝕏n)+12ΩG(𝕏˙n,𝕏˙n))],\displaystyle\hskip 14.22636pt\times\prod_{n=0}^{N-1}\exp\!\left[\frac{i}{\hbar}\,\delta t\left(-{\dot{\mathbb{X}}}_{n}^{A}\,{\mathbb{A}}_{A}({\mathbb{X}}_{n})+\frac{1}{2\Omega}\,G({\dot{\mathbb{X}}}_{n},{\dot{\mathbb{X}}}_{n})\right)\right]\;, (55)

where we dropped the iϵi\epsilon scheme as it is not needed any more. The inner product 𝕏f|𝕏N\innerproduct{{\mathbb{X}}_{f}}{{\mathbb{X}}_{N}} in this expression can be evaluated using (13) as

𝕏f|𝕏N\displaystyle\innerproduct{{\mathbb{X}}_{f}}{{\mathbb{X}}_{N}} =𝕎Λeiα(𝕏f+𝕎)iα(𝕏f)e12iww~/e12iω(𝕎,𝕏f)/δ2d(𝕏f+𝕎𝕏N).\displaystyle=\sum_{{\mathbb{W}}\in\Lambda}e^{i\alpha({\mathbb{X}}_{f}+{\mathbb{W}})-i\alpha({\mathbb{X}}_{f})}\,e^{{\frac{1}{2}}iw\cdot\tilde{w}/\hbar}\,e^{{\frac{1}{2}}i\omega({\mathbb{W}},{\mathbb{X}}_{f})/\hbar}\,\delta^{2d}({\mathbb{X}}_{f}+{\mathbb{W}}-{\mathbb{X}}_{N})\;. (56)

The new parameter 𝕎(w,w~)Λ{\mathbb{W}}\equiv(w,\tilde{w})\in\Lambda that enters the modular path integral here will soon play an important role.

We can finally take the limit NN\rightarrow\infty and write (3.2) as a path integral in 𝒫{\mathcal{P}}. We introduce the path function 𝕏:[t0,tf]𝒫{\mathbb{X}}:[t_{0},t_{f}]\rightarrow{\mathcal{P}} as

𝕏(tn)𝕏n=𝕏0+δtj=0n1𝕏˙j.\displaystyle{\mathbb{X}}(t_{n})\equiv{\mathbb{X}}_{n}={\mathbb{X}}_{0}+\delta t\sum_{j=0}^{n-1}{\dot{\mathbb{X}}}_{j}\;. (57)

The Dirac delta term δ2d(𝕏f+𝕎𝕏N)\delta^{2d}({\mathbb{X}}_{f}+{\mathbb{W}}-{\mathbb{X}}_{N}) restricts the endpoint of these paths to 𝕏N=𝕏f+𝕎{\mathbb{X}}_{N}={\mathbb{X}}_{f}+{\mathbb{W}}. In the space of all paths in 𝒫{\mathcal{P}} from 𝕏0{\mathbb{X}}_{0} to 𝕏f+𝕎{\mathbb{X}}_{f}+{\mathbb{W}}, we define the modular path measure

𝒟𝕏\displaystyle\mathcal{D}{\mathbb{X}} limN(δt2πiΩ)Ndδ2d(𝕏f+𝕎𝕏N)n=0N1d2d𝕏˙n.\displaystyle\equiv\lim_{N\rightarrow\infty}\left(\frac{\delta t}{2\pi i\hbar\,\Omega}\right)^{Nd}\delta^{2d}({\mathbb{X}}_{f}+{\mathbb{W}}-{\mathbb{X}}_{N})\prod_{n=0}^{N-1}\differential^{2d}{\dot{\mathbb{X}}}_{n}\;. (58)

We also introduce the modular action

Smod[𝕏]\displaystyle S_{\mathrm{mod}}[{\mathbb{X}}] t0tfdtmod(𝕏(t),𝕏˙(t)),\displaystyle\equiv\int_{t_{0}}^{t_{f}}\differential t\,\mathcal{L}_{\mathrm{mod}}({\mathbb{X}}(t),{\dot{\mathbb{X}}}(t))\;, (59a)
mod(𝕏,𝕏˙)\displaystyle\mathcal{L}_{\mathrm{mod}}({\mathbb{X}},{\dot{\mathbb{X}}}) 𝕏˙𝔸(𝕏)+12ΩG(𝕏˙,𝕏˙),\displaystyle\equiv-{\dot{\mathbb{X}}}\cdot{\mathbb{A}}({\mathbb{X}})+\frac{1}{2\Omega}\,G({\dot{\mathbb{X}}},{\dot{\mathbb{X}}})\;, (59b)

where 𝕏˙(t)ddt𝕏(t){\dot{\mathbb{X}}}(t)\equiv\frac{\differential}{\differential t}{\mathbb{X}}(t) is the velocity function. Moreover, we write for simplicity

βα(𝕏f,𝕎)\displaystyle\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{W}}) =α(𝕏f+𝕎)α(𝕏f)+12ww~+12ω(𝕎,𝕏f).\displaystyle=\alpha({\mathbb{X}}_{f}+{\mathbb{W}})-\alpha({\mathbb{X}}_{f})+\frac{1}{2\hbar}\,w\cdot\tilde{w}+\frac{1}{2\hbar}\,\omega({\mathbb{W}},{\mathbb{X}}_{f})\;. (60)

Combining all of these definitions, we are finally able to express the transition amplitude between two modular vectors by the path integral

𝕏f|ei(tft0)H^/|𝕏0=𝕎Λeiβα(𝕏f,𝕎)𝕏(t0)=𝕏0𝕏(tf)=𝕏f+𝕎𝒟𝕏exp[iSmod[𝕏]].\displaystyle\boxed{\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}}=\sum_{{\mathbb{W}}\in\Lambda}e^{i\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{W}})}\int_{{\mathbb{X}}(t_{0})={\mathbb{X}}_{0}}^{{\mathbb{X}}(t_{f})={\mathbb{X}}_{f}+{\mathbb{W}}}\mathcal{D}{\mathbb{X}}\,\exp\!\left[\frac{i}{\hbar}\,S_{\mathrm{mod}}[{\mathbb{X}}]\right]}\;. (61)

This modular path integral is the main result of our paper. It is clearly different from Feynman’s path integral (34) as their domains consist of trajectories on two different spaces with a different dimensionality. Moreover, the modular path integral displays at least three new features:

  1. 1.

    The expression (61) contains a sum over the modular lattice, which is due to the topology of the modular space. The parameter 𝕎Λ{\mathbb{W}}\in\Lambda should be interpreted as a winding number for each path around the modular space.

  2. 2.

    The paths of each winding number 𝕎{\mathbb{W}} around the modular space obtain an additional phase βα(𝕏f,𝕎)\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{W}}) depending on their winding number. This phase can be interpreted as analogous to the Aharonov-Bohm phase.

  3. 3.

    The modular action (59) is different from the usual action (36), especially through its dependence on the time derivatives of both position xx and momentum x~\tilde{x} variables. As we will see in Section (4.3), this signifies a larger modular phase space with twice the number of dimensions.

We will discuss these points and their implications in the following section. We supplement the expression (61) in Appendix B with the proof of its consistency under modular lattice translations and gauge transformations.

4 Analysis of the modular action

In this section, we aim to analyse the new modular action (59) and compare it to the standard Schrödinger action (36).

4.1 Stationary paths

The variation of the modular action (59) with respect to the path 𝕏{\mathbb{X}} is given by

δSmod\displaystyle\delta S_{\mathrm{mod}} =t0tfdt(ddt(𝔸δ𝕏+1ΩG(𝕏˙,δ𝕏))δ𝕏A(ωAB𝕏˙B+1ΩGAB𝕏¨B)).\displaystyle=\int_{t_{0}}^{t_{f}}\differential t\left(\frac{\differential}{\differential t}\left(-{\mathbb{A}}\cdot\delta{\mathbb{X}}+\frac{1}{\Omega}\,G({\dot{\mathbb{X}}},\delta{\mathbb{X}})\right)-\delta{\mathbb{X}}^{A}\left(\omega_{AB}\,{\dot{\mathbb{X}}}^{B}+\frac{1}{\Omega}\,G_{AB}\,{\ddot{\mathbb{X}}}^{B}\right)\right)\;. (62)

The Euler-Lagrange equation of motion can be read from the (second) bulk term. Using G1ω=ω1GG^{-1}\omega=-\omega^{-1}G, we write it as

𝕏¨(t)=Ωω1G𝕏˙(t).\displaystyle{\ddot{\mathbb{X}}}(t)=\Omega\,\omega^{-1}G\,{\dot{\mathbb{X}}}(t)\;. (63)

This (Lagrangian) equation of motion is comparable to the Hamilton equations (38) in the Schrödinger case, but it contains an additional time derivative. If we integrate (63), we get

𝕏˙(t)=Ωω1G(𝕏(t)χ)\displaystyle{\dot{\mathbb{X}}}(t)=\Omega\,\omega^{-1}G\left({\mathbb{X}}(t)-\chi\right) (64)

with a new integration constant χ𝒫\chi\in{\mathcal{P}}.

In order to solve the equation of motion (63), we note that ω1G\omega^{-1}G is a complex structure on 𝒫{\mathcal{P}}, i.e. it is a 2d×2d2d\times 2d matrix that satisfies (ω1G)2=𝟙\left(\omega^{-1}G\right)^{2}=-\mathbbm{1}, where 𝟙\mathbbm{1} is the identity matrix. Combining (63) and (64) gives 𝕏¨(t)=Ω2(𝕏(t)χ){\ddot{\mathbb{X}}}(t)=-\Omega^{2}\left({\mathbb{X}}(t)-\chi\right). The solutions to this equation are of the form

𝕏(t)=χ+ξsin(Ωt)ω1Gξcos(Ωt),\displaystyle{\mathbb{X}}(t)=\chi+\xi\sin\!\left(\Omega t\right)-\omega^{-1}G\,\xi\cos\!\left(\Omega t\right)\;, (65)

where ξ𝒫\xi\in{\mathcal{P}} is another integration constant. These integration constants, χ\chi and ξ\xi, are fixed by the boundary conditions of a path 𝕏(t){\mathbb{X}}(t). If we require 𝕏(t0)=𝕏0{\mathbb{X}}(t_{0})={\mathbb{X}}_{0} and 𝕏(tf)=𝕏f+𝕎{\mathbb{X}}(t_{f})={\mathbb{X}}_{f}+{\mathbb{W}} as in the path integral (61), the stationary paths 𝕏𝕎s{\mathbb{X}}^{\mathrm{s}}_{\mathbb{W}} are explicitly given by777We assume here that Ω(tft0)2π\Omega(t_{f}-t_{0})\notin 2\pi{\mathbb{Z}}, since otherwise 𝕏(t0)=𝕏(tf){\mathbb{X}}(t_{0})={\mathbb{X}}(t_{f}).

𝕏𝕎s(t)\displaystyle{\mathbb{X}}^{\mathrm{s}}_{\mathbb{W}}(t) =χ+ξsin(Ω(ttf+t02))ω1Gξcos(Ω(ttf+t02)),\displaystyle=\chi+\xi\sin\!\left(\Omega\left(t-\frac{t_{f}+t_{0}}{2}\right)\right)-\omega^{-1}G\,\xi\cos\!\left(\Omega\left(t-\frac{t_{f}+t_{0}}{2}\right)\right)\;, (66a)
χ\displaystyle\chi =12(𝕏0+𝕏f+𝕎)+12ω1G(𝕏f+𝕎𝕏0)cot(12Ω(tft0)),\displaystyle={\frac{1}{2}}\left({\mathbb{X}}_{0}+{\mathbb{X}}_{f}+{\mathbb{W}}\right)+{\frac{1}{2}}\,\omega^{-1}G\left({\mathbb{X}}_{f}+{\mathbb{W}}-{\mathbb{X}}_{0}\right)\cot\!\left({\frac{1}{2}}\,\Omega\left(t_{f}-t_{0}\right)\right)\;, (66b)
ξ\displaystyle\xi =12(𝕏f+𝕎𝕏0)csc(12Ω(tft0)).\displaystyle={\frac{1}{2}}\left({\mathbb{X}}_{f}+{\mathbb{W}}-{\mathbb{X}}_{0}\right)\csc\!\left({\frac{1}{2}}\,\Omega\left(t_{f}-t_{0}\right)\right)\;. (66c)

There are several important distinctions between these stationary paths and the usual result in the Schrödinger reprentation.

  • Firstly, these two sets of paths are defined on different spaces. Schrödinger paths run over the corresponding configuration space d{\mathbb{R}}^{d}, whereas the modular paths as in (66) run over the universal cover of the modular space TΛ{T_{\Lambda}}, which is 2d{\mathbb{R}}^{2d}. They are also associated with different phase spaces. The phase space for Schrödinger paths is 𝒫=2d{\mathcal{P}}={\mathbb{R}}^{2d}, whereas the phase space for modular paths is 𝒫mod=4d{\mathcal{P}}_{\mathrm{mod}}={\mathbb{R}}^{4d}, as we will discuss in Section 4.3.

  • The second difference is the number of stationary paths. For any boundary conditions x(t0)=x0x(t_{0})=x_{0} and x(tf)=xfx(t_{f})=x_{f}, there is a unique classical solution888Again, we assume Ω(tft0)π\Omega(t_{f}-t_{0})\notin\pi{\mathbb{Z}}, since otherwise x(t0)=±x(tf)x(t_{0})=\pm x(t_{f}). to the harmonic oscillator in the Schrödinger representation. One the other hand, there is one solution (66) for each winding number 𝕎Λ{\mathbb{W}}\in\Lambda in the modular representation, meaning that there are infinitely many stationary paths in total. This result stems from the compact topology of the modular space.

  • Heuristically, we can match the phase space 𝒫{\mathcal{P}} of the Schrödinger representation with the universal cover 2d{\mathbb{R}}^{2d} of the modular space, despite their different physical interpretations. Then, we can compare the solutions in both representations on this common space. The phase space diagram for the Schrödinger solution is an ellipse centered at the origin. On the other hand, the paths (66) are infinitely many ellipses which intersect at the point 𝕏0{\mathbb{X}}_{0}, see Figure 1.

Refer to caption
Refer to caption
Figure 1: On the left, we have the phase space diagram for a stationary solution to the quantum harmonic oscillator in the Schrödinger representation. On the right, four stationary trajectories with different winding numbers in the modular representation are illustrated. These two figures demonstrate the contrast between the trajectories on 𝒫2d{\mathcal{P}}\sim{\mathbb{R}}^{2d} for the two representations.

4.2 Semi-classical approximation

For each such stationary path in (66), the value of the on-shell modular action is

Smod[𝕏𝕎s]\displaystyle S_{\mathrm{mod}}[{\mathbb{X}}^{\mathrm{s}}_{\mathbb{W}}] =α(𝕏f+𝕎)+α(𝕏0)12ω(𝕏0,𝕏f+𝕎)\displaystyle=-\hbar\,\alpha({\mathbb{X}}_{f}+{\mathbb{W}})+\hbar\,\alpha({\mathbb{X}}_{0})-{\frac{1}{2}}\,\omega({\mathbb{X}}_{0},{\mathbb{X}}_{f}+{\mathbb{W}})
+14cot(12Ω(tft0))G(𝕏f+𝕎𝕏0,𝕏f+𝕎𝕏0).\displaystyle\hskip 14.22636pt+\frac{1}{4}\cot\!\left({\frac{1}{2}}\,\Omega\left(t_{f}-t_{0}\right)\right)G({\mathbb{X}}_{f}+{\mathbb{W}}-{\mathbb{X}}_{0},{\mathbb{X}}_{f}+{\mathbb{W}}-{\mathbb{X}}_{0})\;. (67)

In the semi-classical approximation 0\hbar\rightarrow 0, the path integral is dominated by the stationary paths. Moreover, since the second functional derivative of the modular action is independent of the winding number, as in

δ2Smodδ𝕏A(t)δ𝕏B(t)\displaystyle\frac{\delta^{2}S_{\mathrm{mod}}}{\delta{\mathbb{X}}^{A}(t)\,\delta{\mathbb{X}}^{B}(t^{\prime})} =ωABddtδ(tt)1ΩGABd2dt2δ(tt),\displaystyle=-\,\omega_{AB}\,\frac{\differential}{\differential t}\,\delta(t-t^{\prime})-\frac{1}{\Omega}\,G_{AB}\,\frac{\differential^{2}}{\differential t^{2}}\,\delta(t-t^{\prime})\;, (68)

each stationary path contributes to the path integral with equal weight. Hence, we find that in the semi-classical approximation the transition amplitude becomes

𝕏f|ei(tft0)H^/|𝕏0\displaystyle\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}} 0𝕎Λeiβα(𝕏f,𝕎)eiSmod[𝕏𝕎s]\displaystyle\underset{\hbar\rightarrow 0}{\sim}\sum_{{\mathbb{W}}\in\Lambda}e^{i\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{W}})}\,e^{\frac{i}{\hbar}S_{\mathrm{mod}}[{\mathbb{X}}^{\mathrm{s}}_{\mathbb{W}}]}
=eiα(𝕏f)+iα(𝕏0)ei2ω(𝕏0,𝕏f)𝕎Λei2ww~ei2ω(𝕎,𝕏0+𝕏f)\displaystyle\hskip 4.0pt=e^{-i\alpha({\mathbb{X}}_{f})+i\alpha({\mathbb{X}}_{0})}\,e^{-\frac{i}{2\hbar}\,\omega({\mathbb{X}}_{0},{\mathbb{X}}_{f})}\sum_{{\mathbb{W}}\in\Lambda}e^{\frac{i}{2\hbar}\,w\cdot\tilde{w}}\,e^{\frac{i}{2\hbar}\,\omega({\mathbb{W}},{\mathbb{X}}_{0}+{\mathbb{X}}_{f})}\,
×ei4cot(Ω2(tft0))G(𝕎+𝕏f𝕏0,𝕎+𝕏f𝕏0)\displaystyle\hskip 4.0pt\hskip 85.35826pt\times e^{\frac{i}{4\hbar}\cot(\frac{\Omega}{2}(t_{f}-t_{0}))\,G({\mathbb{W}}+{\mathbb{X}}_{f}-{\mathbb{X}}_{0},{\mathbb{W}}+{\mathbb{X}}_{f}-{\mathbb{X}}_{0})} (69)

up to a constant factor. We can rewrite this expression in terms of Jacobi’s theta function that is defined in (48) and discussed in Appendix A. For this purpose, we introduce a new metric999This O(d,d)O(d,d) metric η\eta is commonly introduced in several frameworks that are inspired from the T-duality in string theory, including generalized geometry [15], double field theory [16], and Born geometry [7]. η\eta on 𝒫{\mathcal{P}} defined as η(𝕏,𝕐)x~y+xy~\eta({\mathbb{X}},{\mathbb{Y}})\equiv{\tilde{x}}\cdot y+x\cdot{\tilde{y}} for any 𝕏,𝕐𝒫{\mathbb{X}},{\mathbb{Y}}\in{\mathcal{P}}. Then, the last expression can be written as

𝕏f|ei(tft0)H^/|𝕏0\displaystyle\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}}
0eiα(𝕏f)+iα(𝕏0)ei2ω(𝕏0,𝕏f)ei4cG(𝕏f𝕏0,𝕏f𝕏0)\displaystyle\underset{\hbar\rightarrow 0}{\sim}e^{-i\alpha({\mathbb{X}}_{f})+i\alpha({\mathbb{X}}_{0})}\,e^{-\frac{i}{2\hbar}\,\omega({\mathbb{X}}_{0},{\mathbb{X}}_{f})}\,e^{\frac{i}{4\hbar}c\,G({\mathbb{X}}_{f}-{\mathbb{X}}_{0},{\mathbb{X}}_{f}-{\mathbb{X}}_{0})}
×ϑ(14πΛ¯T(ω(𝕏0+𝕏f)+cG(𝕏f𝕏0)),14πΛ¯T(η+cG)Λ¯+iϵ),\displaystyle\hskip 4.0pt\hskip 14.22636pt\hskip 4.0pt\times\vartheta\!\left(\frac{1}{4\pi\hbar}\,{\bar{\Lambda}}^{T}\left(\omega\left({\mathbb{X}}_{0}+{\mathbb{X}}_{f}\right)+c\;\!G\left({\mathbb{X}}_{f}-{\mathbb{X}}_{0}\right)\right),\,\frac{1}{4\pi\hbar}\,{\bar{\Lambda}}^{T}\left(\eta+c\;\!G\right){\bar{\Lambda}}+i\epsilon\right)\;, (70)

where ccot(Ω2(tft0))c\equiv\cot(\frac{\Omega}{2}(t_{f}-t_{0})). We used here the iϵi\epsilon prescription to make the sum converge, where ϵ\epsilon is a positive-definite matrix.

4.3 Canonical analysis

We introduce conjugate momenta 2d{\mathbb{P}}\in{\mathbb{R}}^{2d} to the coordinates 𝕏𝒫{\mathbb{X}}\in{\mathcal{P}} with respect to the modular action (59). These are defined as

AδSmodδ𝕏˙A=𝔸A(𝕏)+1ΩGAB𝕏˙B.\displaystyle{\mathbb{P}}_{A}\equiv\frac{\delta S_{\mathrm{mod}}}{\delta{\dot{\mathbb{X}}}^{A}}=-{\mathbb{A}}_{A}({\mathbb{X}})+\frac{1}{\Omega}\,G_{AB}\,{\dot{\mathbb{X}}}^{B}\;. (71)

The modular phase space 𝒫mod=4d{\mathcal{P}}_{\mathrm{mod}}={\mathbb{R}}^{4d} consists of the pairs of variables (𝕏,)({\mathbb{X}},{\mathbb{P}}). Note that this has twice the number of dimensions compared to its Schrödinger counterpart 𝒫{\mathcal{P}}.

The symplectic potential Θ\Theta on the modular phase space 𝒫mod{\mathcal{P}}_{\mathrm{mod}} can be read from the boundary term in the variation of the modular action (62) as

Θ=Ad𝕏A.\displaystyle\Theta={\mathbb{P}}_{A}\,\differential{\mathbb{X}}^{A}\;. (72)

The exterior derivative of this symplectic potential gives the modular symplectic form

ωmod=dAd𝕏A.\displaystyle\omega_{\mathrm{mod}}=\differential{\mathbb{P}}_{A}\wedge\differential{\mathbb{X}}^{A}\;. (73)

We can also perform a Legendre transform on the modular Lagrangian (59b) to get the modular Hamiltonian

mod(𝕏,)=12ΩG1(+𝔸(𝕏),+𝔸(𝕏)).\displaystyle\mathcal{H}_{\mathrm{mod}}({\mathbb{X}},{\mathbb{P}})=\frac{1}{2}\,\Omega\,G^{-1}({\mathbb{P}}+{\mathbb{A}}({\mathbb{X}}),{\mathbb{P}}+{\mathbb{A}}({\mathbb{X}}))\;. (74)

Hamilton’s principal function Smods(𝕏,t)S^{\mathrm{s}}_{\mathrm{mod}}({\mathbb{X}},t) for this system can be read from the on-shell modular action (4.2) as

Smods(𝕏,t)\displaystyle S^{\mathrm{s}}_{\mathrm{mod}}({\mathbb{X}},t) =α(𝕏)+α(𝕏0)12ω(𝕏0,𝕏)\displaystyle=-\hbar\,\alpha({\mathbb{X}})+\hbar\,\alpha({\mathbb{X}}_{0})-{\frac{1}{2}}\,\omega({\mathbb{X}}_{0},{\mathbb{X}})
+14cot(12Ω(tt0))G(𝕏𝕏0,𝕏𝕏0).\displaystyle\hskip 14.22636pt+\frac{1}{4}\cot\!\left({\frac{1}{2}}\,\Omega\left(t-t_{0}\right)\right)G({\mathbb{X}}-{\mathbb{X}}_{0},{\mathbb{X}}-{\mathbb{X}}_{0})\;. (75)

This function satisfies the Hamilton-Jacobi equation for the Hamiltonian (74).

4.4 Symmetries

In this section, we will discuss some of the symmetries of the modular action in (59). While the symmetries (e.g., rotation and time translation) of the old action (36) are still present with formally different currents, we find here a whole new set of symmetries that correspond to translations over the phase space, i.e. spatial translations and momentum translations.

In the following, we give a list of some symmetries of the modular harmonic oscillator together with their corresponding Noether currents.

  • Phase space translation

    Spatial and momentum translations are not among the symmetries of the Schrödinger harmonic oscillator, but we will show here that they are a new set of symmetries for the modular action (59). Consider an infinitesimal translation of the phase space coordinates by a constant vector 𝒫\mathcal{E}\in{\mathcal{P}}, such that

    δ𝕏A\displaystyle\delta{\mathbb{X}}^{A} =A.\displaystyle=\mathcal{E}^{A}\;. (76)

    The modular Lagrangian changes by a total derivative,

    δmod\displaystyle\delta\mathcal{L}_{\mathrm{mod}} =ddt(𝔸(𝕏)+ω(𝕏,)).\displaystyle=\frac{\differential}{\differential t}\left(-\mathcal{E}\cdot{\mathbb{A}}({\mathbb{X}})+\omega({\mathbb{X}},\mathcal{E})\right)\;. (77)

    We find that the Noether current for this transformation is given by

    χ\displaystyle\chi =𝕏(t)+1Ωω1G𝕏˙(t),\displaystyle={\mathbb{X}}(t)+\frac{1}{\Omega}\,\omega^{-1}G\,{\dot{\mathbb{X}}}(t)\;, (78)

    which is no different than the integration constant we found in (64). This quantity is conserved on-shell and it denotes the midpoint of the elliptical trajectories we found in (66).

    The new conserved current χ\chi vanishes in the Schrödinger limit where the classical Hamilton equations (38) are imposed. Therefore, it has no analog in the Schrödinger mechanics.

  • Time translation

    Consider an infinitesimal shift of the time parameter tt+ϵt\rightarrow t+\epsilon, which results in

    δ𝕏A\displaystyle\delta{\mathbb{X}}^{A} =ϵ𝕏˙A,δmod=ddt(ϵmod).\displaystyle=\epsilon\;\!{\dot{\mathbb{X}}}^{A}\;,\qquad\delta\mathcal{L}_{\mathrm{mod}}=\frac{\differential}{\differential t}\left(\epsilon\;\!\mathcal{L}_{\mathrm{mod}}\right)\;. (79)

    The associated Noether current is the total energy, given by

    E=12ΩG(𝕏˙(t),𝕏˙(t)).\displaystyle E=\frac{1}{2\Omega}\,G({\dot{\mathbb{X}}}(t),{\dot{\mathbb{X}}}(t))\;. (80)

    Although they are formally different, this expression for conserved energy recovers the usual formula E=12mg(x˙,x˙)+12mΩ2g(x,x)E={\frac{1}{2}}mg(\dot{x},\dot{x})+{\frac{1}{2}}m\Omega^{2}g(x,x) when the classical Hamilton equations (38) are imposed.

  • Rotation

    For any infinitesimal, anti-symmetric 2-tensor LabL_{ab} on d{\mathbb{R}}^{d}, we consider the rotation as

    δxa=gabLbcxc,δx~a=Labgbcx~c.\displaystyle\delta x^{a}=-g^{ab}L_{bc}\,x^{c}\;,\qquad\delta{\tilde{x}}_{a}=-L_{ab}\,g^{bc}\,{\tilde{x}}_{c}\;. (81)

    The modular Lagrangian changes by a total derivative,

    δmod\displaystyle\delta\mathcal{L}_{\mathrm{mod}} =ddt(𝔸a(𝕏)Laxbb+𝔸a(𝕏)Lax~bbx~aLaxbb),\displaystyle=\frac{\differential}{\differential t}\left({\mathbb{A}}_{a}({\mathbb{X}})\,L^{a}{}_{b}\,x^{b}+{\mathbb{A}}^{a}({\mathbb{X}})\,L_{a}{}^{b}\,{\tilde{x}}_{b}-{\tilde{x}}_{a}\,L^{a}{}_{b}\,x^{b}\right)\;, (82)

    where we used the metric gg to raise and lower indices on d{\mathbb{R}}^{d}. The conserved Noether current is given by

    Jab\displaystyle J^{ab} =x~[axb]mx˙[axb]1mΩ2x~˙[ax~b].\displaystyle={\tilde{x}}^{[a}x^{b]}-m\,\dot{x}^{[a}x^{b]}-\frac{1}{m\Omega^{2}}\,\dot{{\tilde{x}}}^{[a}{\tilde{x}}^{b]}\;. (83)

    Once again, although they are formally different, this expression recovers the angular momentum Jab=x[ax~b]J^{ab}=x^{[a}{\tilde{x}}^{b]} when the classical Hamilton equations (38) are imposed.

  • Symplectic transformation

    Finally, we consider an infinitesimal transformation of the form δ𝕏=ϵω1G𝕏\delta{\mathbb{X}}=\epsilon\,\omega^{-1}G\,{\mathbb{X}}, or equivalently,

    δxa=ϵmΩgabx~b,δx~a=ϵmΩgabxb.\displaystyle\delta x^{a}=\frac{\epsilon}{m\Omega}\,g^{ab}\,{\tilde{x}}_{b}\;,\qquad\delta{\tilde{x}}_{a}=-\epsilon\;\!m\;\!\Omega\,g_{ab}\,x^{b}\;. (84)

    The modular Lagrangian changes again by a total derivative,

    δmod\displaystyle\delta\mathcal{L}_{\mathrm{mod}} =ddt(ϵ𝔸(𝕏)ω1G𝕏+ϵ2G(𝕏,𝕏)).\displaystyle=\frac{\differential}{\differential t}\left(-\epsilon\,{\mathbb{A}}({\mathbb{X}})\,\omega^{-1}G\,{\mathbb{X}}+\frac{\epsilon}{2}\,G({\mathbb{X}},{\mathbb{X}})\right)\;. (85)

    We find the conserved Noether current

    κ\displaystyle\kappa =1Ωω(𝕏,𝕏˙)12G(𝕏,𝕏).\displaystyle=\frac{1}{\Omega}\,\omega({\mathbb{X}},{\dot{\mathbb{X}}})-{\frac{1}{2}}\,G({\mathbb{X}},{\mathbb{X}})\;. (86)

    This quantity is not independent of the previous conserved currents and it can be written as

    κ=1ΩE12G(χ,χ).\displaystyle\kappa=\frac{1}{\Omega}\,E-{\frac{1}{2}}\,G(\chi,\chi)\;. (87)

    Note that this symmetry mixes the variables xx and x~{\tilde{x}}, therefore it is a hidden symmetry for the Schrödinger action. As in this example, the modular action can promote hidden symmetries to explicit symmetries.

Looking at the above examples, we can draw the following conclusions:

  1. 1.

    The symmetries of the standard action are maintained in the modular action. The corresponding Noether currents can be formally different in the new modular formulation, but they recover their standard expressions under the classical equations of motion.

  2. 2.

    The modular action has a new set of translation symmetries for both position and momentum variables. The corresponding Noether currents vanish under the classical equations of motion.

  3. 3.

    Since the modular action is formulated on the classical phase space, the hidden symmetries that mix the configuration variable xx with the conjugate momentum x~{\tilde{x}} can be expressed as explicit symmetries of the action for the composite configuration variable (x,x~)(x,{\tilde{x}}).

We conjecture that these three conclusions hold in general for any modular action, i.e. any action that is derived in the same way from the modular representation of an arbitrary physical system.

Finally, it is worth mentioning that the modular action (59) is also invariant under the U(1)U(1) gauge symmetry in (26). When the modular connection is transformed as 𝔸A𝔸A+Aα{\mathbb{A}}_{A}\rightarrow{\mathbb{A}}_{A}+\hbar\,\partial_{A}\alpha for a scalar function α\alpha, the modular Lagrangian changes by a total derivative,

δmod\displaystyle\delta\mathcal{L}_{\mathrm{mod}} =ddt(α(𝕏)).\displaystyle=\frac{\differential}{\differential t}\left(-\hbar\,\alpha({\mathbb{X}})\right)\;. (88)

5 Schrödinger limit of the modular path integral

We discussed previously in Section 2.4 that the Schrödinger representation of the Weyl algebra can be identified with the limit of the modular representations as the length scale \ell of the modular lattice goes to infinity. This limit is a singular one, in which the topology of the configuration space changes, nevertheless it is well-defined.

In this section, we show a similar result for the modular path integral (61). Considering the 1-parameter family of modular lattices Λ=d~d\Lambda=\ell{\mathbb{Z}}^{d}\oplus\tilde{\ell}{\mathbb{Z}}^{d}, where \ell is a length scale and ~2π/\tilde{\ell}\equiv 2\pi\hbar/\ell is a momentum scale, we demonstrate how the path integral (61) in modular space can be identified with the Feynman path integral in Schrödinger space (see Section 3.1) in the limit \ell\rightarrow\infty.

As discussed in Section 2.4, the Schrödinger limit \ell\rightarrow\infty can be well-defined only in the Schrödinger gauge (29). Therefore, we fix the modular gauge in this section as such, i.e.

𝔸(𝕏)=(0,x).\displaystyle{\mathbb{A}}({\mathbb{X}})=\left(0,-x\right)\;. (89)

In this gauge, we have

βαSch(𝕏f,𝕎)\displaystyle\beta_{\alpha_{\mathrm{Sch}}}({\mathbb{X}}_{f},{\mathbb{W}}) =1wx~f\displaystyle=-\frac{1}{\hbar}\,w\cdot{\tilde{x}}_{f} (90)

and

Smod[𝕏]\displaystyle S_{\mathrm{mod}}[{\mathbb{X}}] =t0tfdt(x(t)x~˙(t)+m2g(x˙(t),x˙(t))+12mΩ2g1(x~˙(t),x~˙(t))).\displaystyle=\int_{t_{0}}^{t_{f}}\differential t\left(x(t)\cdot\dot{{\tilde{x}}}(t)+\frac{m}{2}\,g(\dot{x}(t),\dot{x}(t))+\frac{1}{2m\Omega^{2}}\,g^{-1}(\dot{{\tilde{x}}}(t),\dot{{\tilde{x}}}(t))\right)\;. (91)

We remark that the term 𝕏˙𝔸=xx~˙-{\dot{\mathbb{X}}}\cdot{\mathbb{A}}=x\cdot\dot{{\tilde{x}}} in the above expression is reminiscent of relative locality [17].

We consider the expression

wdw~~deiwx~f𝕏(t0)=𝕏0𝕏(tf)=𝕏f+𝕎𝒟𝕏exp[iSmod[𝕏]],\displaystyle\sum_{\!\phantom{\tilde{\ell}}w\in\ell{{\mathbb{Z}}}^{d}\phantom{\tilde{\ell}}\!}\sum_{\tilde{w}\in\tilde{\ell}{\mathbb{Z}}^{d}}e^{-\frac{i}{\hbar}w\cdot{\tilde{x}}_{f}}\int_{{\mathbb{X}}(t_{0})={\mathbb{X}}_{0}}^{{\mathbb{X}}(t_{f})={\mathbb{X}}_{f}+{\mathbb{W}}}\mathcal{D}{\mathbb{X}}\,\exp\!\left[\frac{i}{\hbar}\,S_{\mathrm{mod}}[{\mathbb{X}}]\right]\;, (92)

where 𝕎=(w,w~){\mathbb{W}}=(w,\tilde{w}), ~=2π/\tilde{\ell}=2\pi\hbar/\ell, and Smod[𝕏]S_{\mathrm{mod}}[{\mathbb{X}}] is given in (91). As we change the parameter \ell in (92), the functional integral is not affected (except for its boundaries), since it is on 𝒫{\mathcal{P}}, which is independent of \ell.

In the limit \ell\rightarrow\infty and ~0\tilde{\ell}\rightarrow 0, the modular lattice Λ\Lambda converges to the momentum space in a coarse-graining approximation. Note that this is a singular transition from a countable set in 2d2d dimensions to an uncountable set in dd dimensions. The sum over w~~d\tilde{w}\in\tilde{\ell}{\mathbb{Z}}^{d} approaches an integral over w~d\tilde{w}\in{\mathbb{R}}^{d}. Recall that the Dirac delta term δ2d(𝕏f+𝕎𝕏N)\delta^{2d}({\mathbb{X}}_{f}+{\mathbb{W}}-{\mathbb{X}}_{N}) inside the modular path measure (58) restricts both the position and momentum endpoints of the paths. An integral over w~d\tilde{w}\in{\mathbb{R}}^{d} cancels with δd(x~f+w~x~N)\delta^{d}({\tilde{x}}_{f}+\tilde{w}-{\tilde{x}}_{N}) and sets the momentum endpoints of the paths free. Then, the expression in (92) approaches

wdeiwx~fx(t0)=x0x(tf)=xf+w𝒟x𝒟x~exp[iSmod[𝕏]],\displaystyle\sum_{w\in\ell{{\mathbb{Z}}}^{d}}e^{-\frac{i}{\hbar}w\cdot{\tilde{x}}_{f}}\int_{x(t_{0})=x_{0}}^{x(t_{f})=x_{f}+w}\mathcal{D}x\,\int\mathcal{D}{\tilde{x}}\,\exp\!\left[\frac{i}{\hbar}\,S_{\mathrm{mod}}[{\mathbb{X}}]\right]\;, (93)

up to a constant factor. Here, 𝒟x\mathcal{D}x and 𝒟x~\mathcal{D}{\tilde{x}} are the standard path measures on the Schrödinger and momentum spaces, respectively.

We note that the action (91) can be written as

Smod[𝕏]\displaystyle S_{\mathrm{mod}}[{\mathbb{X}}] =SSch[x]+12mΩ2t0tfdtg1(x~˙(t)+mΩ2gx(t),x~˙(t)+mΩ2gx(t)),\displaystyle=S_{\mathrm{Sch}}[x]+\frac{1}{2m\Omega^{2}}\int_{t_{0}}^{t_{f}}\differential t\,g^{-1}\!\left(\dot{{\tilde{x}}}(t)+m\Omega^{2}gx(t),\dot{{\tilde{x}}}(t)+m\Omega^{2}gx(t)\right)\;, (94)

where SSch[x]S_{\mathrm{Sch}}[x] is given in (36). The integral

𝒟x~exp[i12mΩ2t0tfdtg1(x~˙+mΩ2gx,x~˙+mΩ2gx)]\displaystyle\int\mathcal{D}{\tilde{x}}\,\exp\!\left[\frac{i}{\hbar}\,\frac{1}{2m\Omega^{2}}\int_{t_{0}}^{t_{f}}\differential t\,g^{-1}(\dot{{\tilde{x}}}+m\Omega^{2}gx,\dot{{\tilde{x}}}+m\Omega^{2}gx)\right] (95)

is equal to an irrelevant constant. Hence, (93) becomes

wdeiwx~fx(t0)=x0x(tf)=xf+w𝒟xexp[iSSch[x]],\displaystyle\sum_{w\in\ell{{\mathbb{Z}}}^{d}}e^{-\frac{i}{\hbar}w\cdot{\tilde{x}}_{f}}\int_{x(t_{0})=x_{0}}^{x(t_{f})=x_{f}+w}\mathcal{D}x\,\exp\!\left[\frac{i}{\hbar}\,S_{\mathrm{Sch}}[x]\right]\;, (96)

up to constant factors. Finally, as \ell\rightarrow\infty, the winding modes ww become unattainable as they require infinite action. Therefore we set w=0w=0 and remove the sum, getting

x(t0)=x0x(tf)=xf𝒟xexp[iSSch[x]]\displaystyle\int_{x(t_{0})=x_{0}}^{x(t_{f})=x_{f}}\mathcal{D}x\,\exp\!\left[\frac{i}{\hbar}\,S_{\mathrm{Sch}}[x]\right] (97)

from the modular path integral as \ell\rightarrow\infty. Regarding the left-hand side in (61), we already found in (2.4) that modular vectors converge to the corresponding position eigenvectors in the limit \ell\rightarrow\infty. Hence, we conclude that the modular path integral (61) recovers the Schrödinger-Feynman path integral (34) in this limit.

6 Modular Legendre transform

In the previous sections, we discussed in detail the modular path integral formulation for the quantum harmonic oscillator. One particular feature of the path integral is that it transforms the Hamiltonian of a system to a Lagrangian function. The transformation from the Hamiltonian to the Schrödinger Lagrangian, which is found in the Feynman path integral, is well-known and formulated in general as the Legendre transform. However, the modular Lagrangian found in the modular path integral is different from the Schrödinger Lagrangian, even though it starts from the same Hamiltonian. This result raises the question of whether we can formulate the transformation from the Hamiltonian to the modular Lagrangian in general in a compact form, analogously to the standard Legendre transform. We call this new transformation the modular Legendre transform.

We will construct the modular Legendre transform by following the construction for the harmonic oscillator in Section 3. In this example, the classical Hamiltonian function was given by =12ΩG(,)\mathcal{H}={\frac{1}{2}}\,\Omega\,G({\mathbb{Q}},{\mathbb{Q}}), where =(q,p)2d{\mathbb{Q}}=(q,p)\in{\mathbb{R}}^{2d}.

The first task is to identify the conjugate variables. In the standard Legendre transform, these are the configuration variable qdq\in{\mathbb{R}}^{d} and the conjugate momentum pdp\in{\mathbb{R}}^{d}. In the modular framework, Aharonov’s modular variables 𝕏TΛ=2d/Λ{\mathbb{X}}\in{T_{\Lambda}}={\mathbb{R}}^{2d}/\Lambda replace the configuration variables. We consider the representation101010We will use here the same symbol for the equivalence classes 𝕏TΛ{\mathbb{X}}\in{T_{\Lambda}} and their representatives 𝕏MΛ{\mathbb{X}}\in{M_{\Lambda}}, abusing the notation. of the variables 𝕏{\mathbb{X}} on an arbitrary modular cell MΛ2d{M_{\Lambda}}\subset{\mathbb{R}}^{2d}. Once a modular lattice Λ\Lambda is chosen, we can split the variable 2d{\mathbb{Q}}\in{\mathbb{R}}^{2d} into two parts,

=𝕏+𝕂,\displaystyle{\mathbb{Q}}={\mathbb{X}}+{\mathbb{K}}\;, (98)

where 𝕏MΛ{\mathbb{X}}\in{M_{\Lambda}} is a periodic variable and 𝕂Λ{\mathbb{K}}\in\Lambda is a discrete variable. Hence, we identify 𝕏{\mathbb{X}} as the configuration variable and 𝕂{\mathbb{K}} as the conjugate variable in the modular framework. Then, the classical Hamiltonian function for the harmonic oscillator can be written as

(𝕏,𝕂)=Ω2G(𝕏+𝕂,𝕏+𝕂).\displaystyle\mathcal{H}({\mathbb{X}},{\mathbb{K}})=\frac{\Omega}{2}\,G({\mathbb{X}}+{\mathbb{K}},{\mathbb{X}}+{\mathbb{K}})\;. (99)

With an inspiration from the standard Legendre transform, we make the ansatz that the modular Legendre transform can be written in the form

(𝕏,𝕏˙)=(𝕏,𝕏˙,𝕂(𝕏,𝕏˙))(𝕏,𝕂(𝕏,𝕏˙)),\displaystyle\mathcal{L}({\mathbb{X}},{\dot{\mathbb{X}}})=\mathcal{B}({\mathbb{X}},{\dot{\mathbb{X}}},{\mathbb{K}}({\mathbb{X}},{\dot{\mathbb{X}}}))-\mathcal{H}({\mathbb{X}},{\mathbb{K}}({\mathbb{X}},{\dot{\mathbb{X}}}))\;, (100)

where \mathcal{B} is the Berry phase and the function 𝕂(𝕏,𝕏˙){\mathbb{K}}({\mathbb{X}},{\dot{\mathbb{X}}}) is to be determined.

The second task is to find the Berry phase. For this purpose, we analyze the step (3.2) of the construction in Section 3. We identify the summation parameter 𝕂{\mathbb{K}} in the said equation with our conjugate variable 𝕂{\mathbb{K}} here, since they both represent the remainder part in {\mathbb{Q}}. Moreover, we identify iδt\frac{i}{\hbar}\,\delta t\,\mathcal{L} with the exponent in the right-hand side of (3.2) in the limit δt0\delta t\rightarrow 0. We get

=𝕏˙𝔸(𝕏)+ω(𝕏+𝕂,𝕏˙)Ω2G(𝕏+𝕂,𝕏+𝕂).\displaystyle\mathcal{L}=-{\dot{\mathbb{X}}}\cdot{\mathbb{A}}({\mathbb{X}})+\omega({\mathbb{X}}+{\mathbb{K}},{\dot{\mathbb{X}}})-\frac{\Omega}{2}\,G({\mathbb{X}}+{\mathbb{K}},{\mathbb{X}}+{\mathbb{K}})\;. (101)

Hence, we find that the Berry phase is given by

=𝕏˙𝔸(𝕏)+ω(𝕏+𝕂,𝕏˙).\displaystyle\mathcal{B}=-{\dot{\mathbb{X}}}\cdot{\mathbb{A}}({\mathbb{X}})+\omega({\mathbb{X}}+{\mathbb{K}},{\dot{\mathbb{X}}})\;. (102)

Note that this Berry phase recovers the standard expression =x~x˙\mathcal{B}={\tilde{x}}\cdot\dot{x} if we use the Schrödinger gauge fixing as in (89) and set 𝕂=0{\mathbb{K}}=0.

The final task is to determine the function 𝕏˙(𝕏,𝕂){\dot{\mathbb{X}}}({\mathbb{X}},{\mathbb{K}}), which shall give 𝕂(𝕏,𝕏˙){\mathbb{K}}({\mathbb{X}},{\dot{\mathbb{X}}}) upon inversion. Recall that this step is given in the standard Legendre transform by q˙=(q,p)/p\dot{q}=\partial\mathcal{H}(q,p)/\partial p. We would like to imitate this formula by taking the derivative of the Hamiltonian function (𝕏,𝕂)\mathcal{H}({\mathbb{X}},{\mathbb{K}}) with respect to the conjugate variable 𝕂{\mathbb{K}}. However, 𝕂{\mathbb{K}} is a discrete variable and the said derivative is not well-defined.

Recall that the Hamiltonian \mathcal{H} is originally a function of =𝕏+𝕂{\mathbb{Q}}={\mathbb{X}}+{\mathbb{K}}. Therefore, the missing derivative with respect to 𝕂{\mathbb{K}} can equivalently be expressed as a partial derivative with respect to 𝕏{\mathbb{X}}. Hence, we postulate

𝕏˙A=(ω1)AB(𝕏,𝕂)𝕏B.\displaystyle{\dot{\mathbb{X}}}^{A}=(\omega^{-1})^{AB}\,\frac{\partial\mathcal{H}({\mathbb{X}},{\mathbb{K}})}{\partial{\mathbb{X}}^{B}}\;. (103)

For the harmonic oscillator, we find 𝕏˙=Ωω1G(𝕏+𝕂){\dot{\mathbb{X}}}=\Omega\,\omega^{-1}G\,({\mathbb{X}}+{\mathbb{K}}) and subsequently 𝕂=𝕏Ω1ω1G𝕏˙{\mathbb{K}}=-{\mathbb{X}}-\Omega^{-1}\omega^{-1}G\,{\dot{\mathbb{X}}}. Inserting this expression for 𝕂(𝕏,𝕏˙){\mathbb{K}}({\mathbb{X}},{\dot{\mathbb{X}}}) into the Lagrangian (101) gives the modular Lagrangian function that we found in Section 3. In conclusion, this reconstruction of the modular Legendre transform produces the correct result that we found through the path integral construction of the harmonic oscillator.

We conjecture that the modular Legendre transform that we found here by inspecting the example of the harmonic oscillator holds in general for all systems. To summarize, we found the following prescription for the modular Legendre transform:

  1. 1.

    Start from a Hamiltonian function ()\mathcal{H}({\mathbb{Q}}) on the phase space.

  2. 2.

    Calculate

    𝕏˙A(ω1)AB()B.\displaystyle{\dot{\mathbb{X}}}^{A}\equiv(\omega^{-1})^{AB}\,\frac{\partial\mathcal{H}({\mathbb{Q}})}{\partial{\mathbb{Q}}^{B}}\;. (104)
  3. 3.

    Invert the relation 𝕏˙(){\dot{\mathbb{X}}}({\mathbb{Q}}) found in (104) to obtain (𝕏˙){\mathbb{Q}}({\dot{\mathbb{X}}}).

  4. 4.

    Evaluate the modular Lagrangian by

    mod(𝕏,𝕏˙)=𝕏˙𝔸(𝕏)+ω((𝕏˙),𝕏˙)((𝕏˙)).\displaystyle\boxed{\mathcal{L}_{\mathrm{mod}}({\mathbb{X}},{\dot{\mathbb{X}}})=-{\dot{\mathbb{X}}}\cdot{\mathbb{A}}({\mathbb{X}})+\omega({\mathbb{Q}}({\dot{\mathbb{X}}}),{\dot{\mathbb{X}}})-\mathcal{H}({\mathbb{Q}}({\dot{\mathbb{X}}}))}\;. (105)

This prescription can be applied to most physical systems in their Hamiltonian formalism to produce a modular Lagrangian function as in (105). We will explore this opportunity in a subsequent paper.

7 Conclusion

In this paper, we gave a detailed presentation for the modular representations of the Weyl algebra. We used this framework to construct a path integral based on a modular representation. Our result is important for both its mathematical novelties and the physical interpretation it carries.

The modular path integral and the modular action found in it for the quantum harmonic oscillator are different from their standard Schrödinger counterparts in several ways:

  • The domain of the modular path integral consists of trajectories on the modular space, which has twice the number of dimensions as the classical configuration space.

  • The trajectories in the modular path integral are sequences of superposition states in the Schrödinger representation. Therefore, they carry a non-classical interpretation of locality.

  • The modular action maintains all symmetries of the standard action. Although the associated Noether currents are formally different, they recover their standard expressions under the classical equations of motion. In addition, the modular action also reveals the hidden symmetries of the standard action, which contain a mixing of the phase space variables.

  • The modular action is invariant under translations in the modular space. This new set of translation symmetries are not found in the standard action and the associated Noether currents vanish under the classical equations of motion.

  • The modular path integral contains a sum over the winding numbers of the paths around the modular space. Moreover, an Aharonov-Bohm phase that depends on the winding numbers multiplies the path integral.

We formulated the transformation from a classical Hamiltonian function to a modular Lagrangian in a novel prescription that we called the modular Legendre transform. While this prescription is derived here from the study of the harmonic oscillator, we propose that it can be applied to a variety of physical systems including field theories and gravity. This opportunity can provide new formulations and understanding of our physical theories. This is subject for future research.

Acknowledgements

I am grateful to Laurent Freidel for inspiring this work through his research and discussions, and to Lee Smolin for supporting me throughout this project. I am also thankful to Marc Geiller, Flaminia Giacomini, Tomáš Gonda, Tomás Reis, and Barbara Šoda for fruitful conversations and reviewing the drafts of this paper. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canada, and by the Province of Ontario through the Ministry of Economic Development, Job Creation and Trade. This research was also partly supported by grants from John Templeton Foundation and FQXi.

Appendix A Jacobi’s theta function

We give here a brief introduction for Jacobi’s theta function. We refer the reader to [18] for proofs and more details.

For DD\in{\mathbb{N}}, let D\mathfrak{H}_{D} denote the set of symmetric D×DD\times D complex matrices whose imaginary part is positive definite. D\mathfrak{H}_{D} is an open subset in D(D+1)/2\mathbb{C}^{D(D+1)/2} called the Siegel upper-half space. Jacobi’s theta function ϑ:D×D\vartheta:\mathbb{C}^{D}\times\mathfrak{H}_{D}\rightarrow\mathbb{C} is defined as

ϑ(z,τ)n2dexp(iπnTτn+2πinTz)\displaystyle\vartheta(z,\tau)\equiv\sum_{n\in{\mathbb{Z}}^{2d}}\exp(i\pi\,n^{T}\tau\,n+2\pi i\,n^{T}z) (106)

for any zDz\in\mathbb{C}^{D} and τD\tau\in\mathfrak{H}_{D}. Some important properties of this function are listed in the following.

Lemma 1 (Periodicity).

For all mDm\in{\mathbb{Z}}^{D}, zDz\in\mathbb{C}^{D} and τD\tau\in\mathfrak{H}_{D},

ϑ(z+m,τ)=ϑ(z,τ).\displaystyle\vartheta(z+m,\tau)=\vartheta(z,\tau)\;. (107)
Lemma 2 (Quasi-periodicity).

For all mDm\in{\mathbb{Z}}^{D}, zDz\in\mathbb{C}^{D} and τD\tau\in\mathfrak{H}_{D},

ϑ(z+τm,τ)=exp(iπmTτm2πimTz)ϑ(z,τ).\displaystyle\vartheta(z+\tau m,\tau)=\exp(-i\pi\,m^{T}\tau\,m-2\pi i\,m^{T}z)\,\vartheta(z,\tau)\;. (108)
Lemma 3.

For all AGL(D,)A\in GL(D,{\mathbb{Z}}),111111GL(D,)GL(D,{\mathbb{Z}}) is defined as the group of invertible D×DD\times D matrices with integer entries, whose inverses are also integer matrices. and for all zDz\in\mathbb{C}^{D} and τD\tau\in\mathfrak{H}_{D},

ϑ(ATz,ATτA)=ϑ(z,τ).\displaystyle\vartheta(A^{T}z,A^{T}\tau A)=\vartheta(z,\tau)\;. (109)
Lemma 4.

For all integer, even-diagonal121212An even-diagonal matrix BB is one for which nTBnn^{T}B\,n is an even integer for all nDn\in{\mathbb{Z}}^{D}. and symmetric D×DD\times D matrices BB, and for all zDz\in\mathbb{C}^{D} and τD\tau\in\mathfrak{H}_{D},

ϑ(z,τ+B)=ϑ(z,τ).\displaystyle\vartheta(z,\tau+B)=\vartheta(z,\tau)\;. (110)
Lemma 5 (Inversion identity).

For all zDz\in\mathbb{C}^{D} and τD\tau\in\mathfrak{H}_{D},

ϑ(τ1z,τ1)\displaystyle\vartheta(\tau^{-1}z,-\tau^{-1}) =det[iτ]1/2exp[iπzTτ1z]ϑ(z,τ).\displaystyle=\det\!\left[-i\tau\right]^{1/2}\exp\!\left[i\pi z^{T}\tau^{-1}z\right]\vartheta(z,\tau)\;. (111)
Lemma 6.

The following limit holds for all zDz\in\mathbb{C}^{D} and τD\tau\in\mathfrak{H}_{D},

lima+ϑ(z,aτ)=1,\displaystyle\lim_{a\rightarrow+\infty}\vartheta(z,a\tau)=1\;, (112)

where a+a\in{\mathbb{R}}_{+}. The convergence is stronger than quadratic, i.e. ϑ(z,aτ)=1+𝒪(a2)\vartheta(z,a\tau)=1+\mathcal{O}(a^{-2}).

Appendix B Consistency of the modular path integral

In this appendix, we will prove various properties of the modular path integral (61), which are necessary for its consistency. Throughout this section, we will frequently use the fact that the modular action (59) can be written as

Smod[𝕏]\displaystyle S_{\mathrm{mod}}[{\mathbb{X}}] =α(𝕏(tf))+α(𝕏(t0))+t0tfdt(12ω(𝕏,𝕏˙)+12ΩG(𝕏˙,𝕏˙)),\displaystyle=-\hbar\,\alpha({\mathbb{X}}(t_{f}))+\hbar\,\alpha({\mathbb{X}}(t_{0}))+\int_{t_{0}}^{t_{f}}\differential t\left(-{\frac{1}{2}}\,\omega({\mathbb{X}},{\dot{\mathbb{X}}})+\frac{1}{2\Omega}\,G({\dot{\mathbb{X}}},{\dot{\mathbb{X}}})\right)\;, (113)

which follows from (27).

B.1 Discrete translations

Here, we will show that the modular path integral (61) is consistent under a discrete translation of its endpoints. 𝕂Λ{\mathbb{K}}\in\Lambda denotes an arbitrary lattice point in this section. The proof consists of two parts.

Firstly, we examine a shift in the final point, i.e.

𝕏f+𝕂|ei(tft0)H^/|𝕏0\displaystyle\bra{{\mathbb{X}}_{f}+{\mathbb{K}}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}} =𝕎Λeiβα(𝕏f+𝕂,𝕎)𝕏(t0)=𝕏0𝕏(tf)=𝕏f+𝕂+𝕎𝒟𝕏exp[iSmod[𝕏]]\displaystyle=\sum_{{\mathbb{W}}\in\Lambda}e^{i\beta_{\alpha}({\mathbb{X}}_{f}+{\mathbb{K}},{\mathbb{W}})}\int_{{\mathbb{X}}(t_{0})={\mathbb{X}}_{0}}^{{\mathbb{X}}(t_{f})={\mathbb{X}}_{f}+{\mathbb{K}}+{\mathbb{W}}}\mathcal{D}{\mathbb{X}}\,\exp\!\left[\frac{i}{\hbar}\,S_{\mathrm{mod}}[{\mathbb{X}}]\right]
=𝕎Λeiβα(𝕏f+𝕂,𝕎𝕂)𝕏(t0)=𝕏0𝕏(tf)=𝕏f+𝕎𝒟𝕏exp[iSmod[𝕏]],\displaystyle=\sum_{{\mathbb{W}}\in\Lambda}e^{i\beta_{\alpha}({\mathbb{X}}_{f}+{\mathbb{K}},{\mathbb{W}}-{\mathbb{K}})}\int_{{\mathbb{X}}(t_{0})={\mathbb{X}}_{0}}^{{\mathbb{X}}(t_{f})={\mathbb{X}}_{f}+{\mathbb{W}}}\mathcal{D}{\mathbb{X}}\,\exp\!\left[\frac{i}{\hbar}\,S_{\mathrm{mod}}[{\mathbb{X}}]\right]\;,

where we redefined the summation variable 𝕎{\mathbb{W}} in the second line. We have

βα(𝕏f+𝕂,𝕎𝕂)\displaystyle\beta_{\alpha}({\mathbb{X}}_{f}+{\mathbb{K}},{\mathbb{W}}-{\mathbb{K}}) =βα(𝕏f,𝕎)βα(𝕏f,𝕂)+1(kw)k~.\displaystyle=\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{W}})-\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{K}})+\frac{1}{\hbar}\left(k-w\right)\cdot{\tilde{k}}\;.

Since ei(kw)k~=1e^{\frac{i}{\hbar}\left(k-w\right)\cdot{\tilde{k}}}=1, we find

𝕏f+𝕂|ei(tft0)H^/|𝕏0=eiβα(𝕏f,𝕂)𝕏f|ei(tft0)H^/|𝕏0.\displaystyle\bra{{\mathbb{X}}_{f}+{\mathbb{K}}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}}=e^{-i\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{K}})}\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}}\;.

This is consistent with the quasi-periodicity (23) of the modular vector.

The second part of the proof consists of examining a shift in the initial point, i.e.

𝕏f|ei(tft0)H^/|𝕏0+𝕂\displaystyle\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}+{\mathbb{K}}} =𝕎Λeiβα(𝕏f,𝕎)𝕏(t0)=𝕏0+𝕂𝕏(tf)=𝕏f+𝕎𝒟𝕏exp[iSmod[𝕏]].\displaystyle=\sum_{{\mathbb{W}}\in\Lambda}e^{i\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{W}})}\int_{{\mathbb{X}}(t_{0})={\mathbb{X}}_{0}+{\mathbb{K}}}^{{\mathbb{X}}(t_{f})={\mathbb{X}}_{f}+{\mathbb{W}}}\mathcal{D}{\mathbb{X}}\,\exp\!\left[\frac{i}{\hbar}\,S_{\mathrm{mod}}[{\mathbb{X}}]\right]\;.

For any path t[t0,tf]𝕏(t)t\in[t_{0},t_{f}]\mapsto{\mathbb{X}}(t), let 𝕏+𝕂{\mathbb{X}}+{\mathbb{K}} denote the parallel path shifted by the constant 𝕂{\mathbb{K}}. We can shift the integration variable in the path integral and write

𝕏f|ei(tft0)H^/|𝕏0+𝕂\displaystyle\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}+{\mathbb{K}}} =𝕎Λeiβα(𝕏f,𝕎)𝕏(t0)=𝕏0𝕏(tf)=𝕏f+𝕎𝕂𝒟𝕏exp[iSmod[𝕏+𝕂]]\displaystyle=\sum_{{\mathbb{W}}\in\Lambda}e^{i\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{W}})}\int_{{\mathbb{X}}(t_{0})={\mathbb{X}}_{0}}^{{\mathbb{X}}(t_{f})={\mathbb{X}}_{f}+{\mathbb{W}}-{\mathbb{K}}}\mathcal{D}{\mathbb{X}}\,\exp\!\left[\frac{i}{\hbar}\,S_{\mathrm{mod}}[{\mathbb{X}}+{\mathbb{K}}]\right]
=𝕎Λeiβα(𝕏f,𝕎+𝕂)𝕏(t0)=𝕏0𝕏(tf)=𝕏f+𝕎𝒟𝕏exp[iSmod[𝕏+𝕂]],\displaystyle=\sum_{{\mathbb{W}}\in\Lambda}e^{i\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{W}}+{\mathbb{K}})}\int_{{\mathbb{X}}(t_{0})={\mathbb{X}}_{0}}^{{\mathbb{X}}(t_{f})={\mathbb{X}}_{f}+{\mathbb{W}}}\mathcal{D}{\mathbb{X}}\,\exp\!\left[\frac{i}{\hbar}\,S_{\mathrm{mod}}[{\mathbb{X}}+{\mathbb{K}}]\right],

where we redefined the summation variable 𝕎{\mathbb{W}} in the second line. Using the expression (113), we find that the action transforms as

Smod[𝕏+𝕂]\displaystyle S_{\mathrm{mod}}[{\mathbb{X}}+{\mathbb{K}}] =Smod[𝕏]12ω(𝕂,𝕏(tf)𝕏(t0))α(𝕏(tf)+𝕂)+α(𝕏(tf))\displaystyle=S_{\mathrm{mod}}[{\mathbb{X}}]-{\frac{1}{2}}\,\omega({\mathbb{K}},{\mathbb{X}}(t_{f})-{\mathbb{X}}(t_{0}))-\hbar\,\alpha({\mathbb{X}}(t_{f})+{\mathbb{K}})+\hbar\,\alpha({\mathbb{X}}(t_{f}))
+α(𝕏(t0)+𝕂)α(𝕏(t0))\displaystyle\hskip 14.22636pt+\hbar\,\alpha({\mathbb{X}}(t_{0})+{\mathbb{K}})-\hbar\,\alpha({\mathbb{X}}(t_{0}))
=Smod[𝕏]βα(𝕏(tf),𝕂)+βα(𝕏(t0),𝕂).\displaystyle=S_{\mathrm{mod}}[{\mathbb{X}}]-\hbar\beta_{\alpha}({\mathbb{X}}(t_{f}),{\mathbb{K}})+\hbar\beta_{\alpha}({\mathbb{X}}(t_{0}),{\mathbb{K}})\;.

Finally, we note that

βα(𝕏f,𝕎+𝕂)βα(𝕏f+𝕎,𝕂)\displaystyle\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{W}}+{\mathbb{K}})-\beta_{\alpha}({\mathbb{X}}_{f}+{\mathbb{W}},{\mathbb{K}}) =βα(𝕏f,𝕎)+1kw~.\displaystyle=\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{W}})+\frac{1}{\hbar}\,k\cdot\tilde{w}\;.

Since eikw~=1e^{\frac{i}{\hbar}k\cdot\tilde{w}}=1, we obtain

𝕏f|ei(tft0)H^/|𝕏0+𝕂\displaystyle\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}+{\mathbb{K}}} =eiβα(𝕏0,𝕂)𝕏f|ei(tft0)H^/|𝕏0.\displaystyle=e^{i\beta_{\alpha}({\mathbb{X}}_{0},{\mathbb{K}})}\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}}\;.

Once again, this is consistent with the quasi-periodicity (23) of the modular vector.

B.2 Gauge transformations

Here, we will show that the modular path integral (61) transforms covariantly under a gauge transformation 𝔸A𝔸A+Aα¯{\mathbb{A}}_{A}\rightarrow{\mathbb{A}}_{A}+\hbar\,\partial_{A}\bar{\alpha}. The modular action (113) and the phase factor transform as

Smod[𝕏]\displaystyle S_{\mathrm{mod}}[{\mathbb{X}}] Smod[𝕏]α¯(𝕏f+𝕎)+α¯(𝕏0)\displaystyle\rightarrow S_{\mathrm{mod}}[{\mathbb{X}}]-\hbar\;\!\bar{\alpha}({\mathbb{X}}_{f}+{\mathbb{W}})+\hbar\;\!\bar{\alpha}({\mathbb{X}}_{0})
βα(𝕏f,𝕎)\displaystyle\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{W}}) βα(𝕏f,𝕎)+α¯(𝕏f+𝕎)α¯(𝕏f).\displaystyle\rightarrow\beta_{\alpha}({\mathbb{X}}_{f},{\mathbb{W}})+\bar{\alpha}({\mathbb{X}}_{f}+{\mathbb{W}})-\bar{\alpha}({\mathbb{X}}_{f})\;.

Combining these two expressions, we get

𝕏f|ei(tft0)H^/|𝕏0\displaystyle\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}} eiα¯(𝕏f)+iα¯(𝕏0)𝕏f|ei(tft0)H^/|𝕏0,\displaystyle\rightarrow e^{-i\bar{\alpha}({\mathbb{X}}_{f})+i\bar{\alpha}({\mathbb{X}}_{0})}\bra{{\mathbb{X}}_{f}}e^{-i\;\!(t_{f}-t_{0})\hat{H}/\hbar}\ket{{\mathbb{X}}_{0}}\;,

which is consistent with (21).

References