This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Partial stabilization of nonlinear systems along a given trajectory

Victoria Grushkovskaya1,3, Iryna Vasylieva1,3, and Alexander Zuyev2,3 1Institute of Mathematics, University of Klagenfurt, Universitätsstr. 65–67, 9020 Klagenfurt, Austria (Email: [email protected], [email protected])2Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany (Email: [email protected])3Institute of Applied Mathematics & Mechanics, National Academy of Sciences of Ukraine, G. Batiuka 19, 84100 Sloviansk, UkraineThis work is partially supported by the Austrian Science Fund (FWF): DOC 78.
Abstract

In this paper, the problem of partial stabilization of nonlinear systems along a given trajectory is considered. This problem is treated within the framework of stability of a family of sets. Sufficient conditions for the asymptotic stability of a one-parameter family of sets using time-dependent control in the form of trigonometric polynomials are derived. The obtained results are applied to a model mechanical system.

I Introduction

Trajectory tracking is one of the fundamental control problems which has numerous applications in robotics and process engineering. A theoretical justification of tracking properties of control algorithms requires the stability analysis of the tracking error dynamics in a neighborhood of the reference curve. The stability proof can be straightforwardly achieved, e.g., if the linearized error dynamics is completely controllable. Tracking algorithms, based on the feedback linearization and flatness techniques, are shown to be highly efficient for various engineering models.

For kinematically redundant manipulating robots, the tracking problem can be effectively formulated in terms of a part of the state variables that characterize the control objective. This analogy creates a connection between pragmatically driven issues in the field of robotics and the notion of partial stability, a concept that was rigorously defined by A.M. Lyapunov and has been extensively explored by many researchers (see, e.g., [31, 14, 38, 39, 40, 4, 22, 34, 41, 17, 25, 35, 15, 13, 42, 1, 27] and references therein). Specifically, the paper [14] explored the connection between partial stability and full-variable stability in nonholonomic mechanical systems, offering conditions for achieving partial stability. Issues of partial stabilization in the context of Lagrangian systems were investigated in [32, 18]. Controllers that utilize passivity-based approaches for partial stabilization have been suggested in [24, 3, 37]. The issue of achieving partial stabilization in stochastic dynamical systems is addressed, e.g., in the papers [28, 36, 44].

The issue of achieving partial stabilization within a finite time frame for systems in chained-form and cascade configurations has been investigated, as illustrated in [16, 5, 7]. An analysis of more extensive categories of nonlinear control systems can be found in [13, 19]. The suggested adequate conditions for partial stability are based on the premise that the system allows for a Lyapunov function, with the time derivative that is negatively definite concerning a specific subset of variables.

In the paper [29], the motion planning problem for autonomous vehicles is considered within the framework of manoeuvre automata. In order to ensure the safety of paths in complex environments, it is required to estimate the reachable set of each manoeuvre. The proposed motion planning scenario is illustrated by a unicycle mode with two controls corresponding to the angular velocity and the translational acceleration. The analogy between the equations of motion of nonholonomic systems and underwater vehicles has been pointed out in [2], where driftless control-affine systems have been used to model the kinematics of an autonomous submarine. These equations have been analyzed in the paper [10] in the context of trajectory tracking problem with oscillating inputs. A survey of recent advances in the motion planning of autonomous underwater vehicles (AUV) is presented in [26]. A mathematical model of an unmanned surface vehicle (USV) in the form of a nonlinear control-affine system with 6-dimensinal state and 3-dimensional force input is considered in [33]. For this dynamical model, a tracking controller is constructed under the assumption that the planar reference trajectory is regular enough and C2C^{2}-bounded. The stability proof of the tracking algorithm is based on Lyapunov’s direct method.

An important application of partial stability theory originates from planning the motion of robotic systems in task-spaces. The goal of the latter problem is to steer the output of a nonholonomic system to a neighborhood of the target point. As the number of output variables (which characterize the task space) is usually less than the dimension of the state space, this task fits into the framework of partial stabilization problems. An approach for solving the motion planning problem in task-space is proposed in [23] based on the Campbell–Baker–Hausdorff–Dynkin formula. The efficiency of this approach has been tested by the unicycle and car models with kinematic control. Fundamental solutions of the Laplace equation are exploited in [30] to generate obstacle-free motion of a disk robot in a bounded connected workspace. The control function, corresponding to the robot velocity, is obtained by an appropriate rescaling of the gradient of the potential function. The control scheme is implemented sequentially, and the convergence of the trajectories to the goal is proved. Computational complexity of the proposed control algorithm is estimated by numerical experiments.

While the field of partial stability theory has advanced substantially, contributions to the partial stabilization of underactuated nonlinear control systems remain relatively scarce. The challenge of partial stabilization persists for general nonholonomic systems due to the difficulty in formulating an appropriate Lyapunov-like function. In [9], practical conditions for partial asymptotic stability were introduced for control-affine systems that exhibit a partially asymptotically stable equilibrium in their averaged form. This paper tackles the issue of devising explicit partially stabilizing feedback mechanisms for nonlinear control-affine systems that comply with a specific Lie algebra rank condition in their vector fields.

This paper presents a novel approach to partial stabilization that significantly advances the state of the art by addressing the challenge of stabilizing along non-feasible curves – a task not previously tackled. By conceptualizing this problem through the lens of the stability of sets, we establish a unifies framework that allows for the stabilization of system behaviors in the vicinity of a given trajectory rather than at a fixed point. The introduction of time-varying feedback laws is a crucial point in our construction, ensuring exponential stability across a family of sets proximal to the non-feasible curve.

The rest of this paper is organized as follows. The partial stabilization problem is formulated in Section II within the framework of a family of sets. The main result (Theorem 1) is presented in Section III, and its proof is given in the Appendix. Section IV illustrates our control design scheme for an autonomous underwater vehicle model.

II Preliminaries

II-A Notations and definitions

Consider a nonlinear system of the form

x˙=f0(t,x)+k=1mfk(x)uk,\dot{x}=f_{0}(t,x)+\sum_{k=1}^{m}f_{k}(x)u_{k}, (1)

where x=(x1,,xn)TDnx=(x_{1},...,x_{n})^{T}\in D\subset{\mathbb{R}}^{n} is the state vector, u=(u1,,um)Tmu=(u_{1},...,u_{m})^{T}\in\mathbb{R}^{m} is the control, m<nm<n, f0:+×Dnf_{0}:\mathbb{R}^{+}\times D\to\mathbb{R}^{n}, and f1,,fm:Dnf_{1},\dots,f_{m}:D\to\mathbb{R}^{n}. We represent the state vector as x=(yT,zT)Tx=(y^{T},z^{T})^{T} with y=(y1,,yn1)Ty=(y_{1},...,y_{n_{1}})^{T} and z=(z1,,zn2)Tz=(z_{1},...,z_{n_{2}})^{T}, n1+n2=nn_{1}+n_{2}=n, and assume that D=Dy×n2D=D_{y}\times\mathbb{R}^{n_{2}}, where Dyn1D_{y}\subset{\mathbb{R}}^{n_{1}} is a domain containing the point y=0n1y=0\in\mathbb{R}^{n_{1}}.

We will consider the problem of stabilization of system (1) with respect to its yy-variables. For this purpose, we introduce some necessary notations and definitions which will be used throughout the paper.

For vector fields f,gC1(D;n)f,g\in C^{1}(D;\mathbb{R}^{n}) and a point xD,x^{*}\in D, we define the directional derivative gf(x)=f(x)xg(x)|x=x\mathcal{L}_{g}f(x^{*})=\frac{\partial f(x)}{\partial x}g(x)\bigg{|}_{x=x^{*}} and the Lie bracket [f,g](x)=fg(x)gf(x)[f,g](x^{*})=\mathcal{L}_{f}g(x^{*})-\mathcal{L}_{g}f(x^{*}). For a time dependent vector field fC1(+×D;n)f\in C^{1}(\mathbb{R}^{+}\times D;\mathbb{R}^{n}), the directional derivative at a point (t,x)+×D(t^{*},x^{*})\in\mathbb{R}^{+}\times D is

gf(t,x)=f(t,x)xg(x)|t=t,x=x.\mathcal{L}_{g}f(t^{*},x^{*})=\frac{\partial f(t^{*},x)}{\partial x}g(x)\bigg{|}_{{t=t^{*}},{x=x^{*}}}.

We say that an f:+×Dn,f:\mathbb{R}^{+}\times D\to\mathbb{R}^{n}, is:

  • -

    Lipschitz continuous with respect to xx uniformly in tt in a set D~D,\tilde{D}\subseteq D, if there exists an L>0L>0 such that f(t,x)f(t,x~)Lxx~\|f(t,x)-f(t,\tilde{x})\|\leq L\|x-\tilde{x}\| for all x,x~D~,x,\tilde{x}\in\tilde{D}, t0;t\geq 0;

  • -

    bounded uniformly in tt in a set D~D,\tilde{D}\subseteq D, if there exists an M>0M>0 such that f(t,x)M\|f(t,x)\|\leq M for all xD~,x\in\tilde{D}, t0.t\geq 0.

Definition 1

Given a time-varying feedback law uε:+×D×n1mu^{\varepsilon}:\mathbb{R}^{+}\times D\times\mathbb{R}^{n_{1}}\to\mathbb{R}^{m} depending on a parameter ε>0\varepsilon>0 and a vector function y:+Dyy^{*}:\mathbb{R}^{+}\to D_{y}, the πε\pi_{\varepsilon}-solution of (1) corresponding to the initial condition x0Dx^{0}\in D at t=t00t=t_{0}\geq 0 and the control u=uε(t,x,y(t))u=u^{\varepsilon}(t,x,y^{*}(t)) is an absolutely continuous function x(t)Dx(t)\in D, defined for t[t0,+)t\in[t_{0},+\infty), such that x(t0)=x0x(t_{0})=x^{0} and

x˙=f0(t,x(t))+k=1mukε(t,x(tj),y(tj))fk(x(t)),\dot{x}=f_{0}(t,x(t))+\sum_{k=1}^{m}u_{k}^{\varepsilon}(t,x(t_{j}),y^{*}(t_{j}))f_{k}(x(t)), (2)
tIj=[tj,tj+1),tj=t0+εj for each j=0,1,2,.t\in I_{j}=[t_{j},t_{j+1}),\;t_{j}=t_{0}+\varepsilon j\;\text{ for each }j=0,1,2,...\;.

The concept of πε\pi_{\varepsilon}-solutions has been used, e.g., in [6, 43], and its extension to the case of time-varying control parameters is introduced in [9].

Definition 2

A one-parametric family of non-empty sets {Yt}t0\{\mathit{Y_{t}}\}_{t\geq 0} with YtnY_{t}\subset\mathbb{R}^{n} is called asymptotically stable for system (1) with a feedback control of the form u=uε(t,x,y(t))u=u^{\varepsilon}(t,x,y^{*}(t)), if it is stable and attractive, i.e.:

  • -

    (stability) for every Δ>0,\Delta>0, there exists a δ>0\delta>0 such that, for every t00t_{0}\geq 0 and x0Bδ(Yt0),x^{0}\in B_{\delta}(\mathit{Y_{t_{0}}}), the corresponding πε\pi_{\varepsilon}-solution x(t)x(t) with the initial condition x(t0)=x0x(t_{0})=x^{0} is uniquely defined for tt0t\geq t_{0} and x(t)BΔ(Yt)x(t)\in\ B_{\Delta}(\mathit{Y_{t}}) for all t[t0;+)t\in[t_{0};+\infty);

  • -

    (attraction) for some δ>0\delta>0 and for every Δ>0\Delta>0, there exists a t10t_{1}\geq 0 such that, for any t00,t_{0}\geq 0, and x0Bδ(Yt0),x^{0}\in B_{\delta}(Y_{t_{0}}), the corresponding πε\pi_{\varepsilon}-solution x(t)x(t) with the initial condition x(t0)=x0x(t_{0})=x^{0} satisfies the property x(t)BΔ(Yt) for all t[t0+t1,).x(t)\in B_{\Delta}(\mathit{Y_{t}})\text{ for all }t\in[t_{0}+t_{1},\infty).

The stability concept for families of sets is described, e.g., in [21, 8, 9].

II-B Problem statement

Let Dyn1D_{y}\subset\mathbb{R}^{n_{1}} be a non-empty domain, y(t)y^{*}(t) be a curve in Dy,D_{y}, yC(+;Dy).y^{*}\in C(\mathbb{R}^{+};D_{y}). In this paper, we consider the following problem of stabilizing the yy-variables of system (1) along the curve y(t):y^{*}(t):

Problem 1. Given a curve yC(+;Dy)y^{*}\in C(\mathbb{R}^{+};D_{y}) and a number p>0,p>0, the goal is to find a control uε(t,x,y)u^{\varepsilon}(t,x,y^{*}) such that the family of sets {Ytp}t0\{\mathit{Y_{t}^{p}}\}_{t\geq 0} with

Ytp={x=(yT,zT)Tn1:y(t)y<p,zn2}\displaystyle Y_{t}^{p}=\{x=(y^{T},z^{T})^{T}\in\mathbb{R}^{n_{1}}:\|y^{*}(t)-y\|<p,z\in\mathbb{R}^{n_{2}}\} (3)

is asymptotically stable for the closed-loop system (1) with u=uε(t,x,y)u=u^{\varepsilon}(t,x,y^{*}) in the sense of Definitions 1 and 2.

In the sequel, by a neighborhood of a set Ytp,Y_{t}^{p}, t0,t\geq 0, we mean the set Bδ(Ytp)={xn:yyp+δ,zn2}B_{\delta}(Y_{t}^{p})=\{x\in\mathbb{R}^{n}:\|y-y^{*}\|\leq p+\delta,z\in\mathbb{R}^{n_{2}}\}. We assume that pp is small enough to guarantee that Bp(y(t))DyB_{p}(y^{*}(t))\subset D_{y} for all t0t\geq 0.

Note that the partial stabilization problem for the case of static y(t)consty^{*}(t)\equiv const is considered in [11] under appropriate controlability rank condition. In the paper [9], the problem of stabilizing the trajectories of a nonholonomic system to a reference curve in n\mathbb{R}^{n} is considered. Up to our best knowledge, the problem of partial stabilization to a curve is considered here for the first time for underactuated nonlinear systems.

For clarity of presentation, we rewrite system (1) as

y˙=g0(t,x)+k=1mgk(x)uk,z˙=h0(t,x)+k=1mhk(x)uk,\dot{y}=g_{0}(t,x)+\sum_{k=1}^{m}g_{k}(x)u_{k},\;\;\dot{z}=h_{0}(t,x)+\sum_{k=1}^{m}h_{k}(x)u_{k}, (4)

where gk:nn1g_{k}:\mathbb{R}^{n}\to\mathbb{R}^{n_{1}}, hk:nn2h_{k}:\mathbb{R}^{n}\to\mathbb{R}^{n_{2}}, g0:+×nn1g_{0}:\mathbb{R}^{+}\times\mathbb{R}^{n}\to\mathbb{R}^{n_{1}} and h0:+×nn2h_{0}:\mathbb{R}^{+}\times\mathbb{R}^{n}\to\mathbb{R}^{n_{2}} are such that the vector fields of system (1) are represented as

f0(t,x)=(g0(t,x)h0(t,x)),fk(x)=(gk(x)hk(x)),k=1,m¯.f_{0}(t,x)=\left(\begin{array}[]{c}g_{0}(t,x)\\ h_{0}(t,x)\end{array}\right),f_{k}(x)=\left(\begin{array}[]{c}g_{k}(x)\\ h_{k}(x)\end{array}\right),k=\overline{1,m}.

III Main result

In this section, we consider the class of systems (4), whose control vector fields gkC1(n;n1)g_{k}\in C^{1}(\mathbb{R}^{n};\mathbb{R}^{n_{1}}) satisfy the following rank condition for all xDx\in D:

 span{(gi(x))iS1,(In1×n[fi1,fi2](x))(i1,i2)S2}=n1,\text{ span}\left\{\big{(}g_{i}(x)\big{)}_{i\in S_{1}},\big{(}I_{n_{1}\times n}[f_{i_{1}},f_{i_{2}}](x)\big{)}_{(i_{1},i_{2})\in S_{2}}\right\}=\mathbb{R}^{n_{1}}, (5)

where S1S_{1}, S2S_{2} are some sets of indices S1{1,2,,m},S_{1}\subseteq\{1,2,...,m\}, S2{1,2,,m}2S_{2}\subseteq\{1,2,...,m\}^{2} such that |S1|+|S2|=n1|S_{1}|+|S_{2}|=n_{1}.

This assumption represents a relaxation of the controllability rank condition that the vector fields of system (1) with their Lie brackets span the whole tangent space:

 span{(fi(x))iS~1,([fi1,fi2](x))(i1,i2)S~2}=n\text{ span}\left\{\big{(}f_{i}(x)\big{)}_{i\in\widetilde{S}_{1}},\big{(}[f_{i_{1}},f_{i_{2}}](x)\big{)}_{(i_{1},i_{2})\in\widetilde{S}_{2}}\right\}=\mathbb{R}^{n}

at each xDx\in D with some S~1{1,2,,m},\widetilde{S}_{1}\subseteq\{1,2,...,m\}, S~2{1,2,,m}2\widetilde{S}_{2}\subseteq\{1,2,...,m\}^{2}, |S~1|+|S~2|=n|\widetilde{S}_{1}|+|\widetilde{S}_{2}|=n. For the partial stabilization problems, the latter requirement can be replaced with relaxed condition (5). Thus, we take into account only the first n1n_{1} coordinates of fi(x)f_{i}(x) and [fi1,fi2](x)[f_{i_{1}},f_{i_{2}}](x), i.e. we exploit the vector fields gi(x)g_{i}(x) and In1×n[fi1,fi2](x)=fi1(x)gi2(x)fi2(x)gi1(x)I_{n_{1}\times n}[f_{i_{1}},f_{i_{2}}](x)=\mathcal{L}_{f_{i_{1}}}(x)g_{i_{2}}(x)-\mathcal{L}_{f_{i_{2}}}(x)g_{i_{1}}(x). Consequently, a smaller set of vector fields is needed to satisfy the stabilizability condition, which simplifies the control design. Condition (5) has been proposed in [11] for the case y(t)const,y^{*}(t)\equiv const, and we exploit it here for solving Problem 1.

In order to stabilize the yy-variables of system (1) along a curve y(t),y^{*}(t), we will use a time-varying feedback control of the form

ukε(t,x,y)=\displaystyle u_{k}^{\varepsilon}(t,x,y^{*})= iS1ϕik(t,x,y)\displaystyle\sum\limits_{i\in S_{1}}\phi_{i}^{k}(t,x,y^{*}) (6)
+1ε(i1i2)S2ϕi1,i2k(t,x,y),k=1,m¯,\displaystyle+\frac{1}{\sqrt{\varepsilon}}\sum\limits_{(i_{1}i_{2})\in S_{2}}\phi_{i_{1},i_{2}}^{k}(t,x,y^{*}),k=\overline{1,m},

where

ϕik(t,x,y)=δkiai(x,y),\displaystyle\phi_{i}^{k}(t,x,y^{*})=\delta_{ki}a_{i}(x,y^{*}),
ϕi1,i2k(t,x,y)=2πκi1i2|ai1i2(x,y)|(δki1cos(2πκi1i2tε)\displaystyle\phi_{i_{1},i_{2}}^{k}(t,x,y^{*})=2\sqrt{\pi\kappa_{i_{1}i_{2}}|a_{i_{1}i_{2}}(x,y^{*})|}\left(\delta_{ki_{1}}\cos\left(\frac{2\pi\kappa_{i_{1}i_{2}}t}{\varepsilon}\right)\right.
+δki2sign(ai1i2(x,y))sin(2πκi1i2tε)).\displaystyle\qquad\qquad\left.+\delta_{ki_{2}}{\rm{sign}}(a_{i_{1}i_{2}}(x,y^{*}))\sin\left(\frac{2\pi\kappa_{i_{1}i_{2}}t}{\varepsilon}\right)\right).

Here, ε>0\varepsilon>0 is a small parameter, κi1i2\kappa_{i_{1}i_{2}}\in\mathbb{N} are pairwise distinct numbers, δij\delta_{ij} is the Kronecker delta, and ((ai(x,y))iS1,(ai1i2(x,y))(i1i2)S2)T=a(x,y),\left((a_{i}(x,y^{*}))_{i\in S_{1}},(a_{i_{1}i_{2}}(x,y^{*}))_{(i_{1}i_{2})\in S_{2}}\right)^{T}=a(x,y^{*}), where

a(x,y)=α1(x)(yy),α>0,a(x,y^{*})=-\alpha\mathcal{F}^{-1}(x)(y-y^{*}),\quad\alpha>0, (7)

with 1(x)\mathcal{F}^{-1}(x) denoting the inverse for n1×n1n_{1}\times n_{1} matrix

(x)=((gi(x))iS1,(In1×n[fi1,fi2](x))(i1i2)S2).\mathcal{F}(x)=\left((g_{i}(x))_{i\in S_{1}},(I_{n_{1}\times n}[f_{i_{1}},f_{i_{2}}](x))_{(i_{1}i_{2})\in S_{2}}\right).

Obviously, the matrix (x)\mathcal{F}(x) is nonsingular in DD because of condition (5).

Let us mention that controllers of the form (6)-(7) has been used, e.g. in [43, 9, 11]. In this paper, we adopt the control design from the above mentioned papers to solve Problem 1. Before formulating the main result of this section, we introduce several assumptions on the vector field of system (4) and the curve y(t)y^{*}(t).

Assumption 1

We suppose that the following properties hold in D=Dy×n2.D=D_{y}\times\mathbb{R}^{n_{2}}.

  • A1.1)

    The functions fkC1(D;n)f_{k}\in C^{1}(D;\mathbb{R}^{n}), k=1,m¯k=\overline{1,m}, satisfy the rank condition (5). Moreover, gkC2(D;n1)g_{k}\in C^{2}(D;\mathbb{R}^{n_{1}}), g0C1(+×D;n1),g_{0}\in C^{1}(\mathbb{R}^{+}\times D;\mathbb{R}^{n_{1}}), and h0C(+×D;n1)h_{0}\in C(\mathbb{R}^{+}\times D;\mathbb{R}^{n_{1}}).

  • A1.2)

    For any compact set Dy~Dy,\widetilde{D_{y}}\subset D_{y}, for all k1,k2,k31,m¯,k_{1},k_{2},k_{3}\in\overline{1,m}, j1,j20,m¯j_{1},j_{2}\in\overline{0,m},

    • the functions fk1,f_{k_{1}}, fk2gk1,\mathcal{L}_{f_{k_{2}}}g_{k_{1}}, fk1fk2gk1\mathcal{L}_{f_{k_{1}}}\mathcal{L}_{f_{k_{2}}}g_{k_{1}} are bounded in D~=Dy~×n2;\widetilde{D}=\widetilde{D_{y}}\times\mathbb{R}^{n_{2}};

    • the functions fk1f_{k_{1}} are Lipschits continuous in D~\widetilde{D};

    • the functions f0,f_{0}, fj1gj2,\mathcal{L}_{f_{j_{1}}}g_{j_{2}}, f0Lfk2gk1\mathcal{L}_{f_{0}}L_{f_{k_{2}}}g_{k_{1}} and g0t\frac{\partial g_{0}}{\partial t} are bounded uniformly in tt in D~;\widetilde{D};

    • the function f0f_{0} is Lipschits continuous with respect to xx uniformly in tt in D~.\widetilde{D}.

  • A1.3)

    The function y:+Dyy^{*}:\mathbb{R}^{+}\to D_{y} is Lipschitz continuous.

The following result shows that the family of controls (6)-(7) solves Problem 1 for system (4) under Assumption 1.

Theorem 1. Let Assumption 1 be satisfied for system (4) and a curve yC(+;Dy)y^{*}\in C(\mathbb{R}^{+};D_{y}), and let p,δ>0p,\delta>0 be arbitrary numbers such that Bδ(Ytp)DB_{\delta}(\mathit{Y_{t}^{p}})\subset D for all t0,t\geq 0, where the sets Ytp\mathit{Y_{t}^{p}} are defined in (3).

Then there exists an ε¯>0\overline{\varepsilon}>0 such that, for any ε(0,ε¯],\varepsilon\in(0,\overline{\varepsilon}], the family of sets {Ytp}t0\left\{\mathit{Y_{t}^{p}}\right\}_{t\geq 0} is asymptotically (and even exponentially) stable for system (4) with the controls uk=ukε(t,x,y)u_{k}=u_{k}^{\varepsilon}(t,x,y^{*}) defined by (6) and the initial conditions x(0)=x0Bδ(Ytp).x(0)=x^{0}\in B_{\delta}(\mathit{Y_{t}^{p}}).

The proof of this theorem is presented in the Appendix.

Remark 1

Unlike the paper [11], we do not require the zz-extendability of solutions to system (4), which is instead guaranteed by Assumptions A1.1)–A1.2). However, if it holds that z(t)z(t)-variables of the solutions of system (4) belong to some set D2n2D_{2}\subset\mathbb{R}^{n_{2}} whenever the corresponding part y(t)y(t) is in D1D_{1}, than we can take D~=Dy×D2\widetilde{D}=D_{y}\times D_{2} in A1.2). If, additionally, the functions g0,gkg_{0},g_{k} are bounded uniformly in tt in D~\widetilde{D}, then the boundedness and Lipschitz continuity properties of the functions h0,hkh_{0},h_{k} are not required. This can be easily seen from the proof of Theorem 1.

Remark 2

With the use of control formulas from [8], the obtained result can be easily extended to systems whose vector fields satisfy the controllability rank condition with first- and second-order Lie brackets.

IV Case study: an autonomous underwater vehicle model

Consider the equations of motion of an autonomous underwater vehicle with four independent controls:

x˙1=cos(x5)cos(x6)v,x˙2=cos(x5)sin(x6)v,x˙3=sin(x5)v,x˙4=ω1+ω2sin(x4)tan(x5)+ω3cos(x4)tan(x5),x˙5=ω2cos(x4)ω3sin(x4),x˙6=ω2sin(x4)sec(x5)+ω3cos(x4)sec(x5).\begin{array}[]{lcl}\dot{x}_{1}=\cos(x_{5})\cos(x_{6})v,\\ \dot{x}_{2}=\cos(x_{5})\sin(x_{6})v,\\ \dot{x}_{3}=-\sin(x_{5})v,\\ \dot{x}_{4}=\omega_{1}+\omega_{2}\sin(x_{4})\tan(x_{5})+\omega_{3}\cos(x_{4})\tan(x_{5}),\\ \dot{x}_{5}=\omega_{2}\cos(x_{4})-\omega_{3}\sin(x_{4}),\\ \dot{x}_{6}=\omega_{2}\sin(x_{4})\sec(x_{5})+\omega_{3}\cos(x_{4})\sec(x_{5}).\end{array} (8)

Here, (x1,x2,x3)(x_{1},x_{2},x_{3}) denote the position of the center of mass, (x4,x5,x6)(x_{4},x_{5},x_{6}) describe the vehicle orientation (Euler angles), vv is the translational velocity along the Ox1Ox_{1} axis, and ω1,ω2,ω3\omega_{1},\omega_{2},\omega_{3} are the angular velocity components. Such equations of motion have been presented, e.g., in [2]. The stabilization problem for system (8) by means of oscillating control is considered in [9]. In this section, we consider the problem of stabilizing the (x1,x2,x3)(x_{1},x_{2},x_{3}) coordinates of system (8) by three controls vv, ω2\omega_{2}, and ω3\omega_{3}, so we assume that the first component of the angular velocity cannot be controlled. Let us denote v=u1,ω2=u2,ω3=u3,v=u_{1},\omega_{2}=u_{2},\omega_{3}=u_{3}, y=(x1,x2,x3)Ty=(x_{1},x_{2},x_{3})^{T}, z=(x4,x5,x6)Tz=(x_{4},x_{5},x_{6})^{T}, x=(yT,zT)Tx=(y^{T},z^{T})^{T}, and rewrite system (8) in the form (4):

y˙=k=13ukgk(x),z˙=h0(t,x)+k=13ukhk(x),\displaystyle\dot{y}=\sum_{k=1}^{3}u_{k}g_{k}(x),\;\dot{z}=h_{0}(t,x)+\sum_{k=1}^{3}u_{k}h_{k}(x),

where

h0(t,x)\displaystyle h_{0}(t,x) =(ω1(t),0,0)T,\displaystyle=(\omega_{1}(t),0,0)^{T},
g1(x)\displaystyle g_{1}(x) =(cosx5cosx6,cosx5sinx6,sinx5)T,\displaystyle=(\cos x_{5}\cos x_{6},\cos x_{5}\sin x_{6},-\sin x_{5})^{T},
g2(x)\displaystyle g_{2}(x) =g3(x)=h1(x)=(0,0,0)T,\displaystyle=g_{3}(x)=h_{1}(x)=(0,0,0)^{T},
h2(x)\displaystyle h_{2}(x) =(sinx4tanx5,cosx4,sinx4secx5)T,\displaystyle=(\sin x_{4}\tan x_{5},\cos x_{4},\sin x_{4}\sec x_{5})^{T},
h3(x)\displaystyle h_{3}(x) =(cosx4tanx5,sinx4,cosx4secx5)T.\displaystyle=(\cos x_{4}\tan x_{5},-\sin x_{4},\cos x_{4}\sec x_{5})^{T}.

The rank condition (5) is satisfied in D={x6:π2<x5<π2}D=\{x\in\mathbb{R}^{6}:-\frac{\pi}{2}<x_{5}<\frac{\pi}{2}\} with S1={1},S_{1}=\{1\}, S2={(1,2),(1,3)}.S_{2}=\{(1,2),(1,3)\}. Indeed, it is easy to check that the matrix (x)\mathcal{F}(x) is nonsingular in DD with det(x)1\det\mathcal{F}(x)\equiv 1:

(x)=(g1(x)I3×6[f1,f2](x)I3×6[f1,f3](x)),\mathcal{F}(x)=\left(g_{1}(x)\quad I_{3\times 6}[f_{1},f_{2}](x)\quad I_{3\times 6}[f_{1},f_{3}](x)\right),

where

I3×6\displaystyle I_{3\times 6} [f1,f2](x)=(cosx4sinx5cosx6+sinx4sinx6,\displaystyle[f_{1},f_{2}](x)=\big{(}\cos x_{4}\sin x_{5}\cos x_{6}+\sin x_{4}\sin x_{6},
cosx4sinx5sinx6sinx4cosx6,cosx4cosx5)T,\displaystyle\cos x_{4}\sin x_{5}\sin x_{6}-\sin x_{4}\cos x_{6},\,\cos x_{4}\cos x_{5}\big{)}^{T},
I3×6\displaystyle I_{3\times 6} [f1,f3](x)=(sinx4sinx5cosx6+cosx4sinx6,\displaystyle[f_{1},f_{3}](x)=\big{(}-\sin x_{4}\sin x_{5}\cos x_{6}+\cos x_{4}\sin x_{6},
sinx4sinx5sinx6cosx4cosx6,sinx4cosx5)T.\displaystyle-\sin x_{4}\sin x_{5}\sin x_{6}-\cos x_{4}\cos x_{6},\,-\sin x_{4}\cos x_{5}\big{)}^{T}.

According to formulas (6), we define the controls as uk=ukε(t,x,y)u_{k}=u_{k}^{\varepsilon}(t,x,y^{*}), so that

u1=\displaystyle u_{1}= a1(x,y)+4πκ12|a12(x,y)|εcos2πκ12tε\displaystyle a_{1}(x,y^{*})+\sqrt{\frac{4\pi\kappa_{12}|a_{12}(x,y^{*})|}{\varepsilon}}\cos\frac{2\pi\kappa_{12}t}{\varepsilon} (9)
+4πκ13|a13(x,y)|εcos2πκ13tε,\displaystyle+\sqrt{\frac{4\pi\kappa_{13}|a_{13}(x,y^{*})|}{\varepsilon}}\cos\frac{2\pi\kappa_{13}t}{\varepsilon},
u2=\displaystyle u_{2}= sign(a12(x,y))4πκ12|a12(x,y)|εsin2πκ12tε,\displaystyle{\rm{sign}}(a_{12}(x,y^{*}))\sqrt{\frac{4\pi\kappa_{12}|a_{12}(x,y^{*})|}{\varepsilon}}\sin\frac{2\pi\kappa_{12}t}{\varepsilon},
u3=\displaystyle u_{3}= sign(a13(x,y))4πκ13|a13(x,y)|εsin2πκ13tε,\displaystyle{\rm{sign}}(a_{13}(x,y^{*}))\sqrt{\frac{4\pi\kappa_{13}|a_{13}(x,y^{*})|}{\varepsilon}}\sin\frac{2\pi\kappa_{13}t}{\varepsilon},

where a(x,y)=α1(x)(yy).a(x,y^{*})=-\alpha\mathcal{F}^{-1}(x)(y-y^{*}).

For numerical simulations, we choose y(t)=(0.2tcos(0.2t),0.2tsin(0.2t),0.2t)T{y^{*}(t)=(0.2t\cos(0.2t),0.2t\sin(0.2t),0.2t)^{T}}, ω1(t)=0.25cos(t)\omega_{1}(t)=0.25\cos(t) and put ε=0.1,\varepsilon=0.1, α=15\alpha=15. Fig. 1 illustrates the behavior of system (8) with control (9) and the initial condition x0=(0,0,0,π4,π4,π4)T{x^{0}=(0,0,0,\frac{\pi}{4},\frac{\pi}{4},\frac{\pi}{4})^{T}}.

Refer to caption
Figure 1: The blue graph illustrates the behavior of (x1,x2,x3)(x_{1},x_{2},x_{3})-components of the solution of system (8)–(9), and the red curve is y(t)y^{*}(t).

V Conclusion

The presented case study demonstrates that our approach is applicable to the class of underactuated control-affine systems adhering to a specific Lie algebra rank condition, thereby encompassing essentially nonlinear dynamical behavior. On one hand, our method extends the paradigm of partial stabilization to encompass curve-following behaviors; on the other hand, it generalizes our earlier results by encompassing systems with non-zero drift and situations where the reference curve is defined in a lower dimensional subspace. The outcome of this work is oriented towards robotics, where there is a compelling need to stabilize only a portion of a system’s states, enhancing the control and maneuverability of robotic platforms across diverse and potentially unpredictable environments.

The proof of Theorem 1 combines and extends the techniques introduced in the papers [9, 11, 12]. Note that the results of those papers cannot be directly applied because of more general assumptions. In particular, we do not require the zz-extendability of solutions.

Proof of Theorem 1. Given a p>0,p>0, let us fix δ,\delta, δ\delta^{{}^{\prime}} such that 0<δ<δ0<\delta<\delta^{{}^{\prime}} and Bδ(y(t))DyB_{\delta^{{}^{\prime}}}(y^{*}(t))\subset D_{y} for all t0.t\geq 0. Denote D=Bδ(y(t))×n2.D^{{}^{\prime}}=B_{\delta^{{}^{\prime}}}(y^{*}(t))\times\mathbb{R}^{n_{2}}. From assumption A1.2), there exist positive constants Mg,M_{g}, Mh,M_{h}, Mg0,M_{g_{0}}, Mh0,M_{h_{0}}, Lg,L_{g}, Lh,L_{h}, Lg0,L_{g_{0}}, Lh0,L_{h_{0}}, Mg2,M_{g_{2}}, Mg20,M_{g_{20}}, Lg20,L_{g_{20}}, Mg3,M_{g_{3}}, Mg30M_{g_{30}} such that for all x,x~D,x,\tilde{x}\in D^{{}^{\prime}}, t,t~0,t,\tilde{t}\geq 0, and k1,k2,k3{1,2,3,,m},k_{1},k_{2},k_{3}\in\{1,2,3,...,m\},

y(t)y(t~)L|tt~|,\displaystyle\|y^{*}(t){-}y^{*}(\tilde{t})\|\leq L^{*}|t{-}\tilde{t}|,
g0(t,x)Mg0,gk(x)Mg,g0(t,x)tLg20,\displaystyle\|g_{0}(t,x)\|\leq M_{g_{0}},\,\|g_{k}(x)\|\leq M_{g},\,\left\|\frac{\partial g_{0}(t,x)}{\partial t}\right\|\leq L_{g_{20}},
h0(t,x)Mh0,hk(x)Mh,fk2gk1(x)Mg2,\displaystyle\|h_{0}(t,x)\|\leq M_{h_{0}},\,\|h_{k}(x)\|\leq M_{h},\,\|\mathcal{L}_{f_{k_{2}}}g_{k_{1}}(x)\|\leq M_{g_{2}},
g0(t,x)g0(t,x~)Lg0xx~,\displaystyle\|g_{0}(t,x){-}g_{0}(t,\tilde{x})\|\leq L_{g_{0}}\|x{-}\tilde{x}\|,
h0(t,x)h0(t,x~)Lh0xx~,\displaystyle\|h_{0}(t,x){-}h_{0}(t,\tilde{x})\|\leq L_{h_{0}}\|x{-}\tilde{x}\|,
gk(x)gk(x~)Lgxx~,hk(x)hk(x~)Lhxx~,\displaystyle\|g_{k}(x){-}g_{k}(\tilde{x})\|\leq L_{g}\|x{-}\tilde{x}\|,\|h_{k}(x){-}h_{k}(\tilde{x})\|\leq L_{h}\|x{-}\tilde{x}\|,
max{f0g0(t,x),fkg0(t,x),f0gk(t,x)}Mg20,\displaystyle\max\{\|\mathcal{L}_{f_{0}}g_{0}(t,x)\|,\|\mathcal{L}_{f_{k}}g_{0}(t,x)\|,\,\|\mathcal{L}_{f_{0}}g_{k}(t,x)\|\}\leq M_{g_{20}},
fk3fk2gk1(x)Mg3,f0fk2gk1(t,x)Mg30.\displaystyle\|\mathcal{L}_{f_{k_{3}}}\mathcal{L}_{f_{k_{2}}}g_{k_{1}}(x)\|\leq M_{g_{3}},\,\|\mathcal{L}_{f_{0}}\mathcal{L}_{f_{k_{2}}}g_{k_{1}}(t,x)\|\leq M_{g_{30}}.

Furthermore, assumption A1.1) implies the existence of a μ>0\mu>0 such that 1(x)μ\|\mathcal{F}^{-1}(x)\|\leq\mu for all xD,x\in D^{\prime}, where 1(x)\mathcal{F}^{-1}(x) is the inverse matrix for (x).\mathcal{F}(x).

Let x0=(y0T,z0T)TBδ(Y0p),x^{0}=(y^{0^{T}},z^{0^{T}})^{T}\in B_{\delta}(\mathit{Y_{0}^{p}}), and denote

Uε=max0tεk=1m|ukε(t,x0,y0)|.{U^{\varepsilon}=\max\limits_{0\leq t\leq\varepsilon}\sum_{k=1}^{m}|u_{k}^{\varepsilon}(t,x^{0},y^{*}_{0})|.}

For the simplicity and without loss of generality, we put t0=0t_{0}=0. Using (7) and Hölder’s inequality, one can show that, for any x0Bδ(Y0p),x^{0}\in B_{\delta}(\mathit{Y_{0}^{p}}),

Uεc1y0y0+c2εy0y0cuy0y0ε,U^{\varepsilon}\leq c_{1}\|y^{0}-y_{0}^{*}\|+\frac{c_{2}}{\sqrt{\varepsilon}}\sqrt{\|y^{0}-y_{0}^{*}\|}\leq c_{u}\sqrt{\frac{\|y^{0}-y_{0}^{*}\|}{\varepsilon}}, (10)

where c1=|S1|αμ,c_{1}{=}\sqrt{|S_{1}|}\alpha\mu, c2=22απμ((j1j2)S2(κj1j2)23)34{c_{2}{=}2\sqrt{2\alpha\pi\mu}\left(\sum_{(j_{1}j_{2})\in S_{2}}(\kappa_{j_{1}j_{2}})^{\frac{2}{3}}\right)^{\frac{3}{4}}}, and cu=c1ε(p+δ)+c2c_{u}=c_{1}\sqrt{\varepsilon(p+\delta)}+c_{2}.

The first step of the proof is to show that all solutions of system (4) with initial conditions in Bδ(Y0p)B_{\delta}(\mathit{Y_{0}^{p}}) are well defined in DD^{\prime} on the time interval [0,ε][0,\varepsilon] with some small enough ε>0.{\varepsilon>0.} Using the integral representation of the yy-component of the solutions of system (4) with x0Bδ(Y0p)x^{0}\in B_{\delta}(\mathit{Y_{0}^{p}}), we get

y(t)y0=\displaystyle\|y(t){-}y^{0}\|= 0tg0(s,x(s))𝑑s+k=1m0tgk(x(s))uk(s)𝑑s\displaystyle\Big{\|}\int\limits_{0}^{t}g_{0}(s,x(s))ds{+}\sum_{k=1}^{m}\int\limits_{0}^{t}g_{k}(x(s))u_{k}(s)ds\Big{\|}
\displaystyle\leq 0tg0(s,x0)𝑑s+k=1mgk(x0)0t|uk(s)|𝑑s\displaystyle\int\limits_{0}^{t}\|g_{0}(s,x^{0})\|ds{+}\sum_{k=1}^{m}\|g_{k}(x^{0})\|\int\limits_{0}^{t}|u_{k}(s)|ds
+0tg0(s,x(s))g0(s,x0)\displaystyle{+}\int\limits_{0}^{t}\|g_{0}(s,x(s)){-}g_{0}(s,x^{0})\|
+k=1mgk(x(s))gk(x0)|uk(s)|ds\displaystyle{+}\sum_{k=1}^{m}\|g_{k}(x(s)){-}g_{k}(x^{0})\||u_{k}(s)|ds
\displaystyle\leq (L0+LgUε)0t(y(s)y0+z(s)z0)𝑑s\displaystyle(L_{0}{+}L_{g}U^{\varepsilon})\int\limits_{0}^{t}\Big{(}\|y(s){-}y^{0}\|{+}\|z(s){-}z^{0}\|\Big{)}ds
+(Mg0+MgUε)t.\displaystyle{+}(M_{g_{0}}{+}M_{g}U^{\varepsilon})t.

Similarly,

z(t)z0\displaystyle\|z(t){-}z^{0}\| (Lh0+UεLh)0t(y(s)y0+z(s)z0)𝑑s\displaystyle\leq(L_{h_{0}}{+}U^{\varepsilon}L_{h})\int\limits_{0}^{t}\left(\|y(s){-}y^{0}\|{+}\|z(s){-}z^{0}\|\right)ds
+(Mh0+UεMh)t.\displaystyle{+}(M_{h_{0}}{+}U^{\varepsilon}M_{h})t.

Applying Grönwall–Bellman inequality to the both estimates, we obtain:

y(t)y0\displaystyle\|y(t)-y^{0}\|\leq e(L0+LgUε)t((Mg0+UεMg)t\displaystyle e^{(L_{0}{+}L_{g}U^{\varepsilon})t}\Big{(}(M_{g_{0}}{+}U^{\varepsilon}M_{g})t
+(Lg0+UεLg)0tz(s)z0ds),\displaystyle{+}(L_{g_{0}}{+}U^{\varepsilon}L_{g})\int\limits_{0}^{t}\|z(s)-z^{0}\|ds\Big{)},
z(t)z0\displaystyle\|z(t)-z^{0}\|\leq e(Lh0+UεLh)t((Mh0+UεMh)t\displaystyle e^{(L_{h_{0}}{+}U^{\varepsilon}L_{h})t}\Big{(}(M_{h_{0}}{+}U^{\varepsilon}M_{h})t
+(Lh0+UεLh)0ty(s)y0ds).\displaystyle{+}(L_{h_{0}}{+}U^{\varepsilon}L_{h})\int\limits_{0}^{t}\|y(s)-y^{0}\|ds\Big{)}.

Thus, for any t[0,ε],t\in[0,\varepsilon], x0Bδ(Y0p),x^{0}\in B_{\delta}(Y_{0}^{p}),

y(t)y0ecgε(Mg0ε\displaystyle\|y(t)-y^{0}\|\leq e^{c_{g}\sqrt{\varepsilon}}\Big{(}M_{g_{0}}\varepsilon +Mgcuεy0y0\displaystyle+M_{g}c_{u}\sqrt{\varepsilon\|y^{0}-y^{*}_{0}\|} (11)
+cgε0tz(s)z0ds),\displaystyle+\frac{c_{g}}{\sqrt{\varepsilon}}\int\limits_{0}^{t}\|z(s)-z^{0}\|ds\Big{)},
z(t)z0echε(Mh0ε\displaystyle\|z(t)-z^{0}\|\leq e^{c_{h}\sqrt{\varepsilon}}\Big{(}M_{h_{0}}\varepsilon +Mhcuεy0y0\displaystyle+M_{h}c_{u}\sqrt{\varepsilon\|y^{0}-y^{*}_{0}\|} (12)
+chε0ty(s)y0ds),\displaystyle+\frac{c_{h}}{\sqrt{\varepsilon}}\int\limits_{0}^{t}\|y(s)-y^{0}\|ds\Big{)},

where

cg=Lg0ε+Lgcup+δ,ch=Lh0ε+Lhcup+δ.c_{g}{=}L_{g_{0}}\sqrt{\varepsilon}+L_{g}c_{u}\sqrt{p+\delta},\,c_{h}{=}L_{h_{0}}\sqrt{\varepsilon}+L_{h}c_{u}\sqrt{p+\delta}.

Substituting (12) into (11), we get:

y(t)y0\displaystyle\|y(t)-y^{0}\| ecgε(Mg0ε+Mgcuεy0y0\displaystyle\leq e^{c_{g}\sqrt{\varepsilon}}\Big{(}M_{g_{0}}\varepsilon+M_{g}c_{u}\sqrt{\varepsilon\|y^{0}-y_{0}^{*}\|}
+cgechε(Mh0ε3/2+Mhcuεy0y0\displaystyle+c_{g}e^{c_{h}\sqrt{\varepsilon}}\Big{(}M_{h_{0}}\varepsilon^{3/2}+M_{h}c_{u}\sqrt{\varepsilon\|y^{0}-y_{0}^{*}\|}
+chε0t0sy(p)y0dpds)).\displaystyle+\frac{c_{h}}{\varepsilon}\int\limits_{0}^{t}\int\limits_{0}^{s}\|y(p)-y^{0}\|dpds\Big{)}\Big{)}.

Then integration by part in the last term of the above estimate yields:

y(t)y0\displaystyle\|y(t)-y^{0}\|\leq ecgε(ε(Mg0+cgechεMh0ε)\displaystyle e^{c_{g}\sqrt{\varepsilon}}\Big{(}\varepsilon(M_{g_{0}}+c_{g}e^{c_{h}\sqrt{\varepsilon}}M_{h_{0}}\sqrt{\varepsilon})
+cuεy0y0(Mg+cgechεMhε))\displaystyle+c_{u}\sqrt{\varepsilon\|y^{0}-y_{0}^{*}\|}(M_{g}+c_{g}e^{c_{h}\sqrt{\varepsilon}}M_{h}\sqrt{\varepsilon})\Big{)}
+cgche(cg+ch)ε0ty(s)y0𝑑s.\displaystyle+c_{g}c_{h}e^{(c_{g}+c_{h})\sqrt{\varepsilon}}\int\limits_{0}^{t}\|y(s)-y^{0}\|ds.

Applying again Grönwall–Bellman inequality, we conclude that, for any ε>0\varepsilon>0 and for all t[0,ε],t\in[0,\varepsilon],

y(t)y0cy1εy0y0+cy2ε,\|y(t)-y^{0}\|\leq c_{y_{1}}\sqrt{\varepsilon\|y^{0}-y_{0}^{*}\|}+c_{y_{2}}\varepsilon, (13)

where

cy1=cu(Mg+cgechεMhε)eεcg(1+εche(cg+ch)ε),c_{y_{1}}=c_{u}(M_{g}+c_{g}e^{c_{h}\sqrt{\varepsilon}}M_{h}\sqrt{\varepsilon})e^{\sqrt{\varepsilon}c_{g}(1+\sqrt{\varepsilon}c_{h}e^{(c_{g}+c_{h})\sqrt{\varepsilon}})},
cy2=(Mg0+cgechεMh0ε)eεcg(1+εche(cg+ch)ε).c_{y_{2}}=(M_{g_{0}}+c_{g}e^{c_{h}\sqrt{\varepsilon}}M_{h_{0}}\sqrt{\varepsilon})e^{\sqrt{\varepsilon}c_{g}(1+\sqrt{\varepsilon}c_{h}e^{(c_{g}+c_{h})\sqrt{\varepsilon}})}.

With the obtained estimate, inequality (12) reads as

z(t)z0cz1εy0y0+εcz2,\|z(t)-z^{0}\|\leq c_{z_{1}}\sqrt{\varepsilon\|y^{0}-y_{0}^{*}\|}+\varepsilon c_{z_{2}}, (14)

where cz1=echε(Mhcu+εchcy1),c_{z_{1}}=e^{c_{h}\sqrt{\varepsilon}}(M_{h}c_{u}+\sqrt{\varepsilon}c_{h}c_{y_{1}}), cz2=echε(Mh0+εchcy2).c_{z_{2}}=e^{c_{h}\sqrt{\varepsilon}}(M_{h_{0}}+\sqrt{\varepsilon}c_{h}c_{y_{2}}).

Let us underline that the coefficients cy1,cy2,cz1c_{y_{1}},c_{y_{2}},c_{z_{1}} and cz2c_{z_{2}} in estimates (13) and (14) are monotonically increasing with respect to ε\varepsilon and δ.\delta.

Estimates (13) and (14) ensure the well-definiteness of the solutions of system (4) on the time interval [0,ε].[0,\varepsilon]. Indeed, estimate  (14) means that there is no blow-up of the zz-component of solutions of system (4) with initial condition x0Bδ(Y0p)¯.x^{0}\in\overline{B_{\delta}(\mathit{Y_{0}^{p}})}. To show that y(t)Bδ(y(t))y(t)\in B_{\delta}^{{}^{\prime}}(y^{*}(t)) for all t[0,ε],t\in[0,\varepsilon], we exploit the estimate (13):

y(t)y(t)y(t)y0+y(t)y0+y0y0\displaystyle\|y(t)-y^{*}(t)\|\leq\|y(t)-y^{0}\|+\|y^{*}(t)-y_{0}^{*}\|+\|y^{0}-y_{0}^{*}\| (15)
cy1εy0y0+cy2ε+Lε+p+δ.\displaystyle\leq c_{y_{1}}\sqrt{\varepsilon\|y^{0}-y_{0}^{*}\|}+c_{y_{2}}\varepsilon+L^{*}\varepsilon+p+\delta.

Thus, to ensure the well-definiteness of the solutions in DD^{{}^{\prime}} for t[0,ε],t\in[0,\varepsilon], it suffices to show that

y(t)y(t)dist(y(t),D)=p+δ\|y(t)-y^{*}(t)\|\leq{\rm{dist}}(y^{*}(t),\partial D^{{}^{\prime}})=p+\delta^{{}^{\prime}}

for each t[0,ε].t\in[0,\varepsilon].

As δ<δ,\delta<\delta^{{}^{\prime}}, we may define ε0\varepsilon_{0} as the positive root of the equation

cy1ε(p+δ)+ε(cy2+L)=δδ,c_{y_{1}}\sqrt{\varepsilon(p+\delta)}+\varepsilon(c_{y_{2}}+L^{*})=\delta^{{}^{\prime}}-\delta,

i.e.

ε0=((cy1p+δ2(cy2+L))2+δδcy2+Lcy1p+δ2(cy2+L))2.\varepsilon_{0}=\left(\sqrt{\left(\frac{c_{y_{1}}\sqrt{p+\delta}}{2(c_{y_{2}}+L^{*})}\right)^{2}+\frac{\delta^{{}^{\prime}}-\delta}{c_{y_{2}}+L^{*}}}-\frac{c_{y_{1}}\sqrt{p+\delta}}{2(c_{y_{2}}+L^{*})}\right)^{2}.

Then for any ε[0,ε0],\varepsilon\in[0,\varepsilon_{0}], the solutions of system (4) with controls (6) and initial conditions x0Bδ(Y0p)x^{0}\in B_{\delta}(Y_{0}^{p}) are well-defined in DD^{{}^{\prime}} for all t[0,ε].t\in[0,\varepsilon].

The next step of the proof is to show that the distance between y(t)y(t) and y(t)y^{*}(t) does not increase after the time t=ε,t=\varepsilon, i.e. y(ε)y(ε)y0y0.\|y(\varepsilon)-y^{*}(\varepsilon)\|\leq\|y^{0}-y^{*}_{0}\|. For this purpose, note that any solution of system (4) with initial data x0Bδ(Y0p)x^{0}\in B_{\delta}(\mathit{Y_{0}^{p}}) and controls (6) can be represented by means of the Chen–Fliess type series [20, 43, 9, 11]. For analyzing the value y(ε),y(\varepsilon), consider the yy-component of the series expansion, where the term ε(x0)a(x0,y0)\varepsilon\mathcal{F}(x^{0})a(x^{0},y^{*}_{0}) is added and subtracted:

y(ε)=y0\displaystyle y(\varepsilon)=y^{0} ±ε(x0)a(x0,y0)\displaystyle\pm\varepsilon\mathcal{F}(x^{0})a(x^{0},y^{*}_{0}) (16)
+0ε(g0(t,x)+k=1mgk(x)ukε(t,x,y))𝑑t\displaystyle+\int\limits_{0}^{\varepsilon}\left(g_{0}(t,x)+\sum_{k=1}^{m}g_{k}(x)u_{k}^{\varepsilon}(t,x,y^{*})\right)dt
=y0\displaystyle=y^{0} εα(y0y0)+εg0(0,x0)\displaystyle-\varepsilon\alpha(y^{0}-y_{0}^{*})+\varepsilon g_{0}(0,x^{0})
+σ1(ε,x0)+r0(ε)+r1(ε),\displaystyle+\sigma_{1}(\varepsilon,x^{0})+r_{0}(\varepsilon)+r_{1}(\varepsilon),

where

σ1(ε,x0)=ε(x0)a(x0,y0)+k=1mgk(x0)0εuk(s1)𝑑s1\displaystyle\sigma_{1}(\varepsilon,x^{0})=-\varepsilon\mathcal{F}(x^{0})a(x^{0},y^{*}_{0})+\sum_{k=1}^{m}g_{k}(x^{0})\int\limits_{0}^{\varepsilon}u_{k}(s_{1})ds_{1}
+k1,k2=1mfk2gk1(x0)0ε0s1uk1(s2)uk2(s2)𝑑s2𝑑s1,\displaystyle\quad+\sum_{k_{1},k_{2}=1}^{m}\mathcal{L}_{f_{k_{2}}}g_{k_{1}}(x^{0})\int\limits_{0}^{\varepsilon}\int\limits_{0}^{s_{1}}u_{k_{1}}(s_{2})u_{k_{2}}(s_{2})ds_{2}ds_{1},
r0(ε)=0ε0s1(g0(s2,x(s2))s2+f0g0(s2,x(s2))\displaystyle r_{0}(\varepsilon)=\int\limits_{0}^{\varepsilon}\int\limits_{0}^{s_{1}}\Big{(}\frac{\partial g_{0}(s_{2},x(s_{2}))}{\partial s_{2}}+\mathcal{L}_{f_{0}}g_{0}(s_{2},x(s_{2}))
+k=1m(fkg0(s2,x(s2))uk(s2)\displaystyle\quad\qquad+\sum_{k=1}^{m}\big{(}\mathcal{L}_{f_{k}}g_{0}(s_{2},x(s_{2}))u_{k}(s_{2})
+f0gk(s2,x(s2))uk(s1)))ds2ds1,\displaystyle\quad\qquad+\mathcal{L}_{f_{0}}g_{k}(s_{2},x(s_{2}))u_{k}(s_{1})\big{)}\Big{)}ds_{2}ds_{1},
r1(ε)=k1,k2=1m0t0s10s2(f0fk2gk1(x(s3))\displaystyle r_{1}(\varepsilon)=\sum_{k_{1},k_{2}=1}^{m}\int\limits_{0}^{t}\int\limits_{0}^{s_{1}}\int\limits_{0}^{s_{2}}\Big{(}\mathcal{L}_{f_{0}}\mathcal{L}_{f_{k_{2}}}g_{k_{1}}(x(s_{3}))
+k3=1mfk3fk2gk1(x(s3))uk3(s3))\displaystyle\quad\qquad+\sum_{k_{3}{=}1}^{m}\mathcal{L}_{f_{k_{3}}}\mathcal{L}_{f_{k_{2}}}g_{k_{1}}(x(s_{3}))u_{k_{3}}(s_{3})\Big{)}
×uk1(s1)uk2(s2)ds3ds2ds1.\displaystyle\quad\qquad\times u_{k_{1}}(s_{1})u_{k_{2}}(s_{2})ds_{3}ds_{2}ds_{1}.

Let us estimate the values of σ1(ε,x0)\|\sigma_{1}(\varepsilon,x^{0})\|, r0(ε)\|r_{0}(\varepsilon)\|, r1(ε).\|r_{1}(\varepsilon)\|.

Calculating the integrals in σ1(ε,x0)\sigma_{1}(\varepsilon,x^{0}) according to formula (6), we get

σ1(ε,x0)\displaystyle\sigma_{1}(\varepsilon,x^{0}) =ε(x0)a(x0,y0)+k=1mεgk(x0)ak(x0,y0)\displaystyle=-\varepsilon\mathcal{F}(x^{0})a(x^{0},y^{*}_{0})+\sum_{k=1}^{m}\varepsilon g_{k}(x^{0})a_{k}(x^{0},y_{0}^{*})
+ε(k1,k2)S2I[n1×n][fk1,fk2]ak1k2(x0,y0)\displaystyle+\varepsilon\sum_{(k_{1},k_{2})\in S_{2}}I_{[n_{1}\times n]}[f_{k_{1}},f_{k_{2}}]a_{k_{1}k_{2}}(x^{0},y_{0}^{*})
+ε22(k1,k2)S1fk2gk1(x0)ak1(x0,y0)ak2(x0,y0)\displaystyle+\frac{\varepsilon^{2}}{2}\sum_{(k_{1},k_{2})\in S_{1}}\mathcal{L}_{f_{k_{2}}}g_{k_{1}}(x^{0})a_{k_{1}}(x^{0},y_{0}^{*})a_{k_{2}}(x^{0},y_{0}^{*})
+ε3/2πk1S1ak1(x0,y0)k2=1mI[n1×n][fk1,fk2]\displaystyle+\frac{\varepsilon^{3/2}}{\sqrt{\pi}}\sum_{k_{1}\in S_{1}}a_{k_{1}}(x^{0},y_{0}^{*})\sum_{k_{2}=1}^{m}I_{[n_{1}\times n]}[f_{k_{1}},f_{k_{2}}]
×j:(j,k2)S2|ajk2(x0,y0)|κjk2sign(ajk2(x0,y0))\displaystyle\times\sum_{j:(j,{k_{2}})\in S_{2}}\sqrt{\frac{|a_{jk_{2}}(x^{0},y_{0}^{*})|}{\kappa_{jk_{2}}}}sign(a_{jk_{2}}(x^{0},y_{0}^{*}))
=ε22(k1,k2)S1fk2gk1(x0)ak1(x0,y0)ak2(x0,y0)\displaystyle=\frac{\varepsilon^{2}}{2}\sum_{(k_{1},k_{2})\in S_{1}}\mathcal{L}_{f_{k_{2}}}g_{k_{1}}(x^{0})a_{k_{1}}(x^{0},y_{0}^{*})a_{k_{2}}(x^{0},y_{0}^{*})
+ε3/2πk1S1ak1(x0,y0)k2=1mI[n1×n][fk1,fk2]\displaystyle+\frac{\varepsilon^{3/2}}{\sqrt{\pi}}\sum_{k_{1}\in S_{1}}a_{k_{1}}(x^{0},y_{0}^{*})\sum_{k_{2}=1}^{m}I_{[n_{1}\times n]}[f_{k_{1}},f_{k_{2}}]
×j:(j,k2)S2|ajk2(x0,y0)|κjk2sign(ajk2(x0,y0)).\displaystyle\times\sum_{j:(j,{k_{2}})\in S_{2}}\sqrt{\frac{|a_{jk_{2}}(x^{0},y_{0}^{*})|}{\kappa_{jk_{2}}}}sign(a_{jk_{2}}(x^{0},y_{0}^{*})).

Then from A1.3),

σ1\displaystyle\|\sigma_{1} (ε,x0)ε2Mg22a(x0,y0)2\displaystyle(\varepsilon,x^{0})\|\leq\frac{\varepsilon^{2}M_{g_{2}}}{2}\|a(x^{0},y^{*}_{0})\|^{2}
+2ε32Mg2πa(x0,y0)32j1=1m((j2,j1)S2κj2j123)34.\displaystyle+\frac{2\varepsilon^{\frac{3}{2}}M_{g_{2}}}{\sqrt{\pi}}\|a(x^{0},y^{*}_{0})\|^{\frac{3}{2}}\sum_{j_{1}=1}^{m}\left(\sum_{(j_{2},j_{1})\in S_{2}}\kappa_{j_{2}j_{1}}^{-\frac{2}{3}}\right)^{\frac{3}{4}}.

By the definition of a(x0,y0),a(x^{0},y_{0}^{*}),

σ1(ε,x0)cσε3/2y0y03/2,\|\sigma_{1}(\varepsilon,x^{0})\|\leq c_{\sigma}\varepsilon^{3/2}\|y_{0}^{*}-y^{0}\|^{3/2},

where

cσ=\displaystyle c_{\sigma}= εMg2α2μ22p+δ\displaystyle\frac{\sqrt{\varepsilon}M_{g_{2}}\alpha^{2}\mu^{2}}{2}\sqrt{p+\delta}
+2Mg2(αμ)3/2πj1=1m((j2,j1)S2κj2j123)34,\displaystyle+\frac{2M_{g_{2}}(\alpha\mu)^{3/2}}{\sqrt{\pi}}\sum_{j_{1}=1}^{m}\left(\sum_{(j_{2},j_{1})\in S_{2}}\kappa_{j_{2}j_{1}}^{-\frac{2}{3}}\right)^{\frac{3}{4}},

provided that x0Bδ(Y0p)x^{0}\in B_{\delta}(Y_{0}^{p})

For estimating r0(ε)\|r_{0}(\varepsilon)\| and r1(ε),\|r_{1}(\varepsilon)\|, we apply Assumption A1.2):

r0(ε)cr0ε32,r1(ε)cr1ε32y0y0,\|r_{0}(\varepsilon)\|\leq c_{r_{0}}\varepsilon^{\frac{3}{2}},\;\|r_{1}(\varepsilon)\|\leq c_{r_{1}}\varepsilon^{\frac{3}{2}}\|y^{0}-y_{0}^{*}\|,

where cr0=12ε(εLg20+Mg20(ε+cup+δ)),c_{r_{0}}=\frac{1}{2}\sqrt{\varepsilon}(\sqrt{\varepsilon}L_{g_{20}}+M_{g_{20}}(\sqrt{\varepsilon}+c_{u}\sqrt{p+\delta})),\quad\quad cr1=16cu2(Mg30ε+Mg3cup+δ).c_{r_{1}}=\frac{1}{6}c_{u}^{2}(M_{g_{30}}\sqrt{\varepsilon}+M_{g_{3}}c_{u}\sqrt{p+\delta}).

Let us analyse the value y(ε)y(ε).\|y(\varepsilon)-y^{*}(\varepsilon)\|. From (16),

y(ε)y(ε)=\displaystyle y(\varepsilon)-y^{*}(\varepsilon)= (1εα)(y0y0)(y(ε)y0)\displaystyle(1-\varepsilon\alpha)(y^{0}-y^{*}_{0})-(y^{*}(\varepsilon)-y^{*}_{0})
+εg0(0,x0)+σ1(ε,x0)+r0(ε)+r1(ε).\displaystyle+\varepsilon g_{0}(0,x^{0})+\sigma_{1}(\varepsilon,x^{0})+r_{0}(\varepsilon)+r_{1}(\varepsilon).

From A1.2), A1.3), and the above obtained estimates on σ1(ε,x0),\|\sigma_{1}(\varepsilon,x^{0})\|, r0(ε),\|r_{0}(\varepsilon)\|, r1(ε),\|r_{1}(\varepsilon)\|,

y(ε)\displaystyle\|y(\varepsilon) y(ε)(1εα)y0y0+Lε+εMg0\displaystyle-y^{*}(\varepsilon)\|\leq(1-\varepsilon\alpha)\|y^{0}-y^{*}_{0}\|+L^{*}\varepsilon+\varepsilon M_{g_{0}}
+cσε32y0y032+cr0ε32+cr1ε32y0y0\displaystyle+c_{\sigma}\varepsilon^{\frac{3}{2}}\|y^{0}-y^{*}_{0}\|^{\frac{3}{2}}+c_{r_{0}}\varepsilon^{\frac{3}{2}}+c_{r_{1}}\varepsilon^{\frac{3}{2}}\|y^{0}-y^{*}_{0}\|
y0y0(1ε(αcσε(p+δ)cr1ε))\displaystyle\leq\|y^{0}-y^{*}_{0}\|(1-\varepsilon(\alpha-c_{\sigma}\sqrt{\varepsilon(p+\delta)}-c_{r_{1}}\sqrt{\varepsilon}))
+ε(L+Mg0+cr0ε),\displaystyle+\varepsilon(L^{*}+M_{g_{0}}+c_{r_{0}}\sqrt{\varepsilon}),

provided that ε<ε1=1α\varepsilon<\varepsilon_{1}=\frac{1}{\alpha} and x0Bδ(Y0p).x^{0}\in B_{\delta}(Y_{0}^{p}).

Thus, we achieve the following estimate:

y(ε)y(ε)(1\displaystyle\|y(\varepsilon)-y^{*}(\varepsilon)\|\leq\big{(}1 ε(αεq))y0y0\displaystyle-\varepsilon(\alpha-\sqrt{\varepsilon}q)\big{)}\|y_{0}-y^{*}_{0}\|
+ε(L+Mg0+εcr0),\displaystyle+\varepsilon(L^{*}+M_{g_{0}}+\sqrt{\varepsilon}c_{r_{0}}),

where q=cσp+δ+cr1q=c_{\sigma}\sqrt{p+\delta}+c_{r_{1}} is monotonically increasing with respect to δ.\delta.

Our next goal is to show the attraction of the yy-components of the solution to the pp-neighborhood of the curve y(t)y^{*}(t). Assume that α>ν(L+Mg0)p\alpha>\frac{\nu(L^{*}+M_{g_{0}})}{p} with some ν>1\nu>1.

Using estimate (15), we may ensure the following property: if x0Y0pνx^{0}\in Y_{0}^{\frac{p}{\nu}} then x(t)Ytpx(t)\in Y^{p}_{t} for all t[0,ε]t\in[0,\varepsilon] with a small enough ε.\varepsilon. Indeed, let us define ε2\varepsilon_{2} as the positive root of the equation

cy1εpν+ε(cy2+L)=p(ν1)ν,c_{y_{1}}\sqrt{\frac{\varepsilon p}{\nu}}+\varepsilon(c_{y_{2}}+L^{*})=\frac{p(\nu-1)}{\nu},

i.e.

ε2=p(cy12+4(ν1)(cy2+L)cy1)24ν(cy2+L)2.\varepsilon_{2}=\frac{p\big{(}\sqrt{c_{y_{1}}^{2}+4(\nu-1)(c_{y_{2}}+L^{*})}-c_{y_{1}}\big{)}^{2}}{4\nu(c_{y_{2}}+L^{*})^{2}}.

Then estimate (15) yields

y(t)y(t)y(t)y0+y(t)y0+y0y0\displaystyle\|y(t)-y^{*}(t)\|\leq\|y(t)-y^{0}\|+\|y^{*}(t)-y^{*}_{0}\|+\|y^{0}-y^{*}_{0}\|
cy1εy0y0+εcy2+εL+pνp,\displaystyle\leq c_{y_{1}}\sqrt{\varepsilon\|y^{0}-y^{*}_{0}\|}+\varepsilon c_{y_{2}}+\varepsilon L^{*}+\frac{p}{\nu}\leq p,

provided that y0y0pν\|y^{0}-y_{0}^{*}\|\leq\frac{p}{\nu} and εε2.\varepsilon\leq\varepsilon_{2}.

Consider two possibilities:

  • 1.1)

    If x0Y0pν,x^{0}\in Y_{0}^{\frac{p}{\nu}}, then, as discussed above, y(t)y(t)p\|y(t)-y^{*}(t)\|\leq p for all t[0,ε],t\in[0,\varepsilon], that is x(t)Ytpx(t)\in Y_{t}^{p} for all t[0,ε]t\in[0,\varepsilon]

  • 1.2)

    If x0Bδ(Y0p)\Y0pν,x^{0}\in B_{\delta}(Y_{0}^{p})\backslash Y_{0}^{\frac{p}{\nu}}, i.e. y0y0pν,\|y^{0}-y^{*}_{0}\|\geq\frac{p}{\nu}, then

    y(ε)y(ε)\displaystyle\|y(\varepsilon)-y^{*}(\varepsilon)\| (1ε(αεq))y0y0\displaystyle\leq\big{(}1-\varepsilon(\alpha-\sqrt{\varepsilon}q)\big{)}\|y_{0}-y^{*}_{0}\|
    +ε(L+Mg0+εcr0)y0y0y0y0\displaystyle+\frac{\varepsilon(L^{*}+M_{g_{0}}+\sqrt{\varepsilon}c_{r_{0}})\|y_{0}-y^{*}_{0}\|}{\|y_{0}-y^{*}_{0}\|}
    (1ε(α\displaystyle\leq\bigg{(}1-\varepsilon\Big{(}\alpha ν(L+Mg0)p\displaystyle-\frac{\nu(L^{*}+M_{g_{0}})}{p}
    ε(q+νcr0p)))y0y0\displaystyle\qquad-\sqrt{\varepsilon}\Big{(}q+\frac{\nu c_{r_{0}}}{p}\Big{)}\Big{)}\bigg{)}\|y_{0}-y^{*}_{0}\|

    For an arbitrary λ(0,αν(L+Mg0)p)\lambda\in\Big{(}0,\alpha-\frac{\nu(L^{*}+M_{g_{0}})}{p}\Big{)}, let us define ε3=((αλ)pν(L+Mg0)pq+νcr0))2\varepsilon_{3}=\left(\frac{(\alpha-\lambda)p-\nu(L^{*}+M_{g_{0}})}{pq+\nu c_{r_{0}})}\right)^{2}. Then, for any ε(0,ε3),\varepsilon\in(0,\varepsilon_{3}),

    y(ε)y(ε)(1ελ)y0y0.\|y(\varepsilon)-y^{*}(\varepsilon)\|\leq(1-\varepsilon\lambda)\|y_{0}-y^{*}_{0}\|.

Thus, y(ε)y(ε)y0y0p+δ\|y(\varepsilon)-y^{*}(\varepsilon)\|\leq\|y^{0}-y^{*}_{0}\|\leq p+\delta and x(ε)Bδ(Yεp)D.x(\varepsilon)\in B_{\delta}(Y_{\varepsilon}^{p})\subset D^{{}^{\prime}}.

So we may repeat all the above argumentation for the solutions with the initial condition x(ε)x(\varepsilon) with the same choice of λ(0,αν(L+Mg0)p)\lambda\in\left(0,\alpha-\frac{\nu(L^{*}+M_{g_{0}})}{p}\right) and εmin{ε0,ε1,ε3}.\varepsilon\in\min\big{\{}\varepsilon_{0},\varepsilon_{1},\varepsilon_{3}\big{\}}. This proofs the well-definiteness in DD^{\prime} of the solutions of system (4) with x0Bδ(Y0p)x^{0}\in B_{\delta}(Y_{0}^{p}) for t[0,2ε].t\in[0,2\varepsilon]. Besides, we can consider again two cases:

  • 2.1)

    if y(ε)y(ε)pν\|y(\varepsilon)-y^{*}(\varepsilon)\|\leq\frac{p}{\nu} then y(t)y(t)p\|y(t)-y^{*}(t)\|\leq p for t[ε,2ε];t\in[\varepsilon,2\varepsilon];

  • 2.2)

    if y(ε)y(ε)>pν\|y(\varepsilon)-y^{*}(\varepsilon)\|>\frac{p}{\nu} then

    y(2ε)y(2ε)(1ελ)y(ε)y(ε).\|y(2\varepsilon)-y^{*}(2\varepsilon)\|\leq(1-\varepsilon\lambda)\|y(\varepsilon)-y^{*}(\varepsilon)\|.

Iterating all above-described steps, we may conclude that the solutions of system (4) with control (6) and initial conditions x0Bδ(Y0p)x^{0}\in{B_{\delta}(Y_{0}^{p})} are well defined in DD^{\prime} for all t0.t\geq 0. Furthermore, if x0Y0pνx^{0}\in Y_{0}^{\frac{p}{\nu}} then x(t)Y0px(t)\in Y_{0}^{p} for all t0.t\geq 0. If x0Bδ(Y0p)\Y0pν,x^{0}\in{B_{\delta}(Y_{0}^{p})}\backslash Y_{0}^{\frac{p}{\nu}}, then there exists an NN\in\mathbb{N} such that y(t)y(t)>p\|y(t)-y^{*}(t)\|>p for each t=0,ε,2ε,,(N1)εt=0,\varepsilon,2\varepsilon,...,(N-1)\varepsilon and y(t)y(t)pν\|y(t)-y^{*}(t)\|\leq\frac{p}{\nu} for all t[0,+).t\in[0,+\infty). It remains to describe the behavior of y(t)y(t) for an arbitrary t[0,Nε].t\in[0,N\varepsilon].

As follows from the previous argumentation, the following estimate holds for t=0,ε,2ε,,(N1)ε:t=0,\varepsilon,2\varepsilon,...,(N-1)\varepsilon:

y(jε)y(jε)(1ελ)jy0y0eλjεy0y0,y(j\varepsilon)-y^{*}(j\varepsilon)\leq(1-\varepsilon\lambda)^{j}\|y^{0}-y^{*}_{0}\|\leq e^{-\lambda j\varepsilon}\|y^{0}-y^{*}_{0}\|,

for j=0,1,,N1.j=0,1,...,N-1.

For an arbitrary t[0,Nε],t\in[0,N\varepsilon], denote by tin=[tε]t_{in}=\left[\frac{t}{\varepsilon}\right] the integer part of tε.\frac{t}{\varepsilon}. Notice that ttinε<ε,t-t_{in}\varepsilon<\varepsilon, then

y(t)y(t)\displaystyle\|y(t)-y^{*}(t)\| y(tinε)y(tinε)+y(t)y(tinε)\displaystyle\leq\|y(t_{in}\varepsilon)-y^{*}(t_{in}\varepsilon)\|+\|y(t)-y(t_{in}\varepsilon)\|
+y(t)\displaystyle+\|y^{*}(t) y(tinε)y(tinε)y(tinε)\displaystyle-y^{*}(t_{in}\varepsilon)\|\leq\sqrt{\|y(t_{in}\varepsilon)-y^{*}(t_{in}\varepsilon)\|}
×(cy1ε+\displaystyle\times\Big{(}c_{y_{1}}\sqrt{\varepsilon}+ y(tinε)y(tinε))+ε(cy2+L)\displaystyle\sqrt{\|y(t_{in}\varepsilon)-y^{*}(t_{in}\varepsilon)\|}\Big{)}+\varepsilon(c_{y_{2}}+L^{*})
γ1(y0y0)eλt2+εγ2,\displaystyle\leq\gamma_{1}(\|y^{0}-y_{0}^{*}\|)e^{-\frac{\lambda t}{2}}+\varepsilon\gamma_{2},

where

γ1(y0y0)=eελ2y0y0(cy1ε+eελ2y0y0)\gamma_{1}(\|y^{0}-y_{0}^{*}\|)=e^{\frac{\varepsilon\lambda}{2}}\sqrt{\|y^{0}-y^{*}_{0}\|}\big{(}c_{y_{1}}\sqrt{\varepsilon}+e^{\frac{\varepsilon\lambda}{2}}\sqrt{\|y^{0}-y^{*}_{0}\|}\big{)}

is monotonically increasing with respect to y0y0,{\|y^{0}-y^{*}_{0}\|,} and γ2=cy2+L\gamma_{2}=c_{y_{2}}+L^{*}.

This completes the proof of Theorem 1.

References

  • [1] A. Aleksandrov, E. Aleksandrova, A. Zhabko, and C. Yangzhou. Partial stability analysis of some classes of nonlinear systems. Acta Mathematica Scientia, 37(2):329–341, 2017.
  • [2] J. Barraquand and J.-C. Latombe. On nonholonomic mobile robots and optimal maneuvering. In Proc. IEEE International Symposium on Intelligent Control, pages 340–347, 1989.
  • [3] T. Binazadeh and M.J. Yazdanpanah. Application of passivity based control for partial stabilization. Nonlinear Dynamics and Systems Theory, 11(4):373–382, 2011.
  • [4] V. Chellaboina and W. M. Haddad. A unification between partial stability and stability theory for time-varying systems. IEEE Control Systems Magazine, 22(6):66–75, 2002.
  • [5] H. Chen, B. Li, B. Zhang, and L. Zhang. Global finite-time partial stabilization for a class of nonholonomic mobile robots subject to input saturation. International Journal of Advanced Robotic Systems, 12(11):159, 2015.
  • [6] F. H. Clarke, Y. S. Ledyaev, E. D. Sontag, and A. I. Subbotin. Asymptotic controllability implies feedback stabilization. IEEE Tran on Automatic Control, 42(10):1394–1407, 1997.
  • [7] M. Golestani, I. Mohammadzaman, and M. J. Yazdanpanah. Robust finite-time stabilization of uncertain nonlinear systems based on partial stability. Nonlinear Dynamics, 85(1):87–96, 2016.
  • [8] V. Grushkovskaya and A. Zuyev. Obstacle avoidance problem for second degree nonholonomic systems. In Proc. 57th IEEE Conf. on Decision and Control, pages 1500–1505, 2018.
  • [9] V. Grushkovskaya and A. Zuyev. Partial stability concept in extremum seeking problems. IFAC-PapersOnLine, 52(16):682–687, 2019.
  • [10] V. Grushkovskaya and A. Zuyev. Stabilization of non-admissible curves for a class of nonholonomic systems. In 2019 18th European Control Conference (ECC), pages 656–661. IEEE, 2019.
  • [11] V. Grushkovskaya and A. Zuyev. Partial stabilization of nonholonomic systems with application to multi-agent coordination. In Proc. of the 2020 European Control Conference (ECC), pages 1665–1670, 2020.
  • [12] V. Grushkovskaya and A. Zuyev. Motion planning and stabilization of nonholonomic systems using gradient flow approximations. Nonlinear Dynamics, 2023.
  • [13] W. M. Haddad and A. L’Afflitto. Finite-time partial stability and stabilization, and optimal feedback control. Journal of the Franklin Institute, 352(6):2329–2357, 2015.
  • [14] Z. Hai-ping and M. Feng-xiang. On the stability of nonholonomic mechanical systems with respect to partial variables. Applied Mathematics and Mechanics, 16(3):237–245, 1995.
  • [15] E. J. Hancock and D. J. Hill. Restricted partial stability and synchronization. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(11):3235–3244, 2014.
  • [16] C. Jammazi. Continuous and discontinuous homogeneous feedbacks finite-time partially stabilizing controllable multichained systems. SIAM Journal on Control and Optimization, 52(1):520–544, 2014.
  • [17] J.-G. Jian and X.-X. Liao. Partial exponential stability of nonlinear time-varying large-scale systems. Nonlinear Analysis: Theory, Methods & Applications, 59(5):789–800, 2004.
  • [18] O. Kolesnichenko and A. S. Shiriaev. Partial stabilization of underactuated Euler–Lagrange systems via a class of feedback transformations. Systems & Control Letters, 45(2):121–132, 2002.
  • [19] A. L’Afflitto, W. M. Haddad, and E. Bakolas. Partial-state stabilization and optimal feedback control. International Journal of Robust and Nonlinear Control, 26(5):1026–1050, 2016.
  • [20] F Lamnabhi-Lagarrigue. Volterra and Fliess series expansions for nonlinear systems. In W. S. Levine, editor, The Control Handbook, pages 879–888. CRC Press, 1995.
  • [21] J. A. Langa, J. C. Robinson, and A. Suárez. Stability, instability, and bifurcation phenomena in non-autonomous differential equations. Nonlinearity, 15(3):887, 2002.
  • [22] A.N. Michel, A.P. Molchanov, and Y. Sun. Partial stability of discontinuous dynamical systems. In Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), volume 1, pages 74–79. IEEE, 2002.
  • [23] Arkadiusz Mielczarek and Ignacy Duleba. Development of task-space nonholonomic motion planning algorithm based on Lie-algebraic method. Applied Sciences, 11(21):10245, 2021.
  • [24] I. V. Miroshnik. Partial stabilization and geometric problems of nonlinear control. IFAC Proceedings Volumes, 35(1):151–156, 2002.
  • [25] I. V. Miroshnik. Attractors and partial stability of nonlinear dynamical systems. Automatica, 40(3):473–480, 2004.
  • [26] M. Panda, B. Das, B. Subudhi, and B. B. Pati. A comprehensive review of path planning algorithms for autonomous underwater vehicles. International Journal of Automation and Computing, 17(3):321–352, 2020.
  • [27] Y. Qin, Y. Kawano, B. D.O. Anderson, and M. Cao. Partial exponential stability analysis of slow-fast systems via periodic averaging. IEEE Transactions on Automatic Control, 2021.
  • [28] T. Rajpurohit and W. M. Haddad. Partial-state stabilization and optimal feedback control for stochastic dynamical systems. Journal of Dynamic Systems, Measurement, and Control, 139(9):091001, 2017.
  • [29] A. Rizaldi, F. Immler, B. Schürmann, and M. Althoff. A formally verified motion planner for autonomous vehicles. In International Symposium on Automated Technology for Verification and Analysis, pages 75–90. Springer, 2018.
  • [30] P. Rousseas, C. P. Bechlioulis, and K. J. Kyriakopoulos. Trajectory planning in unknown 2d workspaces: A smooth, reactive, harmonics-based approach. IEEE Robotics and Automation Letters, 7(2):1992–1999, 2022.
  • [31] V. V. Rumyantsev and A. S. Oziraner. Stability and Stabilization of Motion with Respect to Part of the Variables. Nauka, 1987. (in Russian).
  • [32] A.S. Shiriaev and O. Kolesnichenko. On passivity based control for partial stabilization of underactuated systems. In Proc. 39th IEEE Conf. on Decision and Control, volume 3, pages 2174–2179, 2000.
  • [33] X. Sun, G. Wang, and Y. Fan. Adaptive trajectory tracking control of vector propulsion unmanned surface vehicle with disturbances and input saturation. Nonlinear Dynamics, 106(3):2277–2291, 2021.
  • [34] Y. Sun and A. N. Michel. Partial stability of general dynamical systems under arbitrary initial z-perturbations. In Proc. 41st IEEE Conf. on Decision and Control, volume 3, pages 2663–2668, 2002.
  • [35] V. I. Vorotnikov. Partial stability and control. Springer Science & Business Media, 2012.
  • [36] V. I. Vorotnikov and Y. G. Martyshenko. On the partial stability in probability of nonlinear stochastic systems. Automation and Remote Control, 80(5):856–866, 2019.
  • [37] B. Wang, H. Ashrafiuon, and S. Nersesov. Leader–follower formation stabilization and tracking control for heterogeneous planar underactuated vehicle networks. Systems & Control Letters, 156:105008, 2021.
  • [38] A. Zuiev. On Brockett’s condition for smooth stabilization with respect to a part of the variables. In 1999 European Control Conference (ECC), pages 1729–1732. IEEE, 1999.
  • [39] A. Zuyev. Stabilization of non-autonomous systems with respect to a part of variables by means of controlled lyapunov functions. Journal of Automation and Information Sciences, 32(10), 2000.
  • [40] A. Zuyev. Application of control lyapunov functions technique for partial stabilization. In Proceedings of the 2001 IEEE International Conference on Control Applications (CCA’01), pages 509–513. IEEE, 2001.
  • [41] A Zuyev. Partial asymptotic stability and stabilization of nonlinear abstract differential equations. In Proc. 42nd IEEE Conf on Decision and Control, volume 2, pages 1321–1326, 2003.
  • [42] A. Zuyev. Partial asymptotic stability of abstract differential equations. Ukrainian Mathematical Journal, 58(5):709–717, 2006.
  • [43] A. Zuyev. Exponential stabilization of nonholonomic systems by means of oscillating controls. SIAM Journal on Control and Optimization, 54(3):1678–1696, 2016.
  • [44] A. Zuyev and I. Vasylieva. Partial stabilization of stochastic systems with application to rotating rigid bodies. IFAC-PapersOnLine, 52(16):162–167, 2019.