This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Parametrized-Post-Newtonian Test of Black Hole Spacetime for Galactic Center Massive Black Hole Sgr A{}^{\ast\,}: Formulation and χ2\chi^{2} Fitting

Hiromi Saida [email protected] Department of Physics, Daido University, 10-3, Takiharu-cho, Minami-ku, Nagoya, Aichi 457-8530, Japan    Sena A. Matsui Division of Particle and Astrophysical Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan    Tsutomu T. Takeuchi The Research Center for Statistical Machine Learning, the Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan    Shogo Nishiyama Faculty of Education, Miyagi University of Education, 149 Aramaki-aza-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan    Rio Saitou    Yohsuke Takamori Department of Civil Engineering, National Institute of Technology, Wakayama College, 77 Noshima, Nada-cho, Gobo, Wakayama 644-0023, Japan    Masaaki Takahashi Department of Physics and Astronomy, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya, Aichi 448-8542, Japan
Abstract

We have performed a parametrized post-Newtonian (PPN) test of a black hole spacetime using observational data of the star S0-2/S2 orbiting the massive black hole at our galactic center Sgr A{}^{\ast\,}​. After introducing our PPN model of black hole spacetime, we report the result of χ2\chi^{2} fitting of the PPN model with the observational data. A new finding through our PPN model is a detectability of the gravitational lens effect on the null geodesics connecting S0-2 and observer under the present observational uncertainties, if a PPN parameter is about one order larger than the value for general relativity case. On the other hand, the effect of black hole spin on the S0-2’s motion is not detectable. Thus our present PPN test is performed with spherically symmetric vacuum black hole spacetime. The resultant value of the PPN parameter, which corresponds to the minimum χ2\chi^{2}, implies that the gravitational field of Sgr A{}^{\ast\,}is not of Schwarzschild metric or that there exists a sufficient amount of dark matters around Sgr A{}^{\ast\,}to be detected by present telescopes. However, the difference between the minimum χ2\chi^{2} and the χ2\chi^{2} of Schwarzschild case is not large enough to ensure a statistical significance of non-Schwarzschild result. A more precise statistical analysis than χ2\chi^{2} statistics is necessary to extract a statistically significant information of the gravitational field of Sgr A{}^{\ast\,}from present observational data. We will report a result by a Bayesian analysis in next paper.

\subjectindex

E00, E03, E31, E36  / Accepted for publication at 21 Aug. 2024

1 Introduction

Today, it is a common understanding that a massive black hole of mass 4.0×106M\simeq 4.0\times 10^{6}M_{\odot} exists at the center of our galaxy, called Sagittarius A (Sgr A{}^{\ast\,}), where MM_{\odot} is the mass of sun. It is also found that more than a hundred of stars, called S-stars, are orbiting around Sgr A{}^{\ast\,}. These celestial objects at our galactic center are observed by radio and infrared telescopes, since optical photons are not useful because of the strong absorption by interstellar dusts and X-rays are not useful because of its low resolution with present X-ray telescopes. Stellar motions are observed with near infrared photons, and interstellar gases are observed with radio waves. The first strong evidences of the existence of massive black hole at a “compact strong radio source” Sgr A{}^{\ast\,}were given by observing the motions of a few S-stars ref:ghez+2000 ; ref:schoedel+2002 , but not based on general relativity because the observational uncertainties at that time were larger than general relativistic effects such as the orbital shift of S-stars and the gravitational redshift received by photons coming from S-stars. In these first evidences, although no star’s entire orbital period had been observed, the fitting of the observational data with Newtonian elliptical motions had revealed the high dense concentration of extremely large mass at Sgr A{}^{\ast\,}whose spatial size was estimated less than 1 AU. (The mass was estimated to be 3.7×106M3.7\times 10^{6}M_{\odot} at that time, while the present estimation is about 4.0×106M4.0\times 10^{6}M_{\odot} as shown in Sect.4.) This extreme high density at Sgr A{}^{\ast\,}was reasonably regarded as a massive black hole candidate. Then the leaders of these pioneering observational studies ref:ghez+2000 ; ref:schoedel+2002 were awarded the Nobel prize in physics 2020.

Most of known S-stars have long orbital periods of more than hundreds of years. Their distances to Sgr A{}^{\ast\,}are so long that the observational uncertainties of the present instruments are larger than general relativistic effects appearing in the dynamics of those stars. Further, although a few S-stars, which were found in recent years, have short orbital periods of several years and close distances to Sgr A{}^{\ast\,}, they are so faint that the observational uncertainties are larger than general relativistic effects in their dynamics. However, it is a good fortune that an S-star called S0-2/S2 has a rather short orbital period of 1616 years and a short distance to Sgr A{}^{\ast\,}ranging from 120AU120\,\text{AU} to 1900AU1900\,\text{AU}, and is not so faint that the present largest infrared telescopes possess the capability for detecting a general relativistic effect in S0-2’s dynamics. (Note that the name “S0-2” is given by American group’s nomenclature ref:ghez+2000 , while “S2” is by European group’s nomenclature ref:schoedel+2002 . We adopts the American group’s one.)

The observational data of S0-2 have been obtained since 1992 by European group, 1995 by American group and 2014 by our Japanese group. The total of all data covers about two orbital periods of S0-2. The S0-2 passed the closest point to Sgr A{}^{\ast\,}(the pericenter on its orbit) in 2002 and 2018. The developments of observational instruments, especially the adaptive optics systems between 2002 and 2018, enabled us to measure the general relativistic effects during the pericenter passage in 2018, while the observational uncertainties of data until 2017 are larger than the general relativistic effects. The general relativistic effects raised from the mass of Sgr A{}^{\ast\,}have become detectable in 2018, but the effects of spin of Sgr A{}^{\ast\,}do not. Further, it should be noted that no evidence of interstellar matters among Sgr A{}^{\ast\,}and S-stars has been found so far, and that the distances between S-stars are so long that the gravitational interaction between them are negligible as estimated in Sect.2.1. This fact means that the system of Sgr A{}^{\ast\,}and S0-2 can be regarded as an isolated two body gravitational system. Therefore, using the observational data obtained since 1990s to 2018, the Newtonian elliptical motion of S0-2 and Schwarzschild’s geodesic motion of S0-2 were compared. Then the Newtonian gravity was rejected ref:gravity2018 ; ref:do+2019 ; ref:saida+2019 . Now, the current interesting issue is the comparison of Schwarzschild metric with the other metrics.

In this paper, we introduce a parametrized-post-Newtonian (PPN) model of black hole spacetime. As explained in detail in Sect.2, the PPN metric is a modification of Kerr metric by introducing some artificial parameters which express how the PPN metric deviates from Kerr metric. Such artificial parameters are called the PPN parameters. Let us denote the collection of all PPN parameters as 𝐗ppn{\bf X}_{\rm ppn}, and the PPN metric as 𝐠(𝐗ppn,m,a){\bf g}({\bf X}_{\rm ppn},m,a), where mm and aa are respectively the mass and spin angular momentum of black hole. Our aim is to determine the value of 𝐗ppn{\bf X}_{\rm ppn} by fitting the geodesic motion of S0-2 on 𝐠(𝐗ppn,m,a){\bf g}({\bf X}_{\rm ppn},m,a) with the observational data of S0-2’s motion. If the resultant value of 𝐗ppn{\bf X}_{\rm ppn} is not the value for Kerr metric, then the following two possibilities, or the hybrid of them, arise:

  • (I)

    If the region around Sgr A{}^{\ast\,}is vacuum, then the general relativity is rejected for the gravity of Sgr A{}^{\ast\,}.

  • (II)

    If the general relativity is the correct theory of gravity, then the region around Sgr A{}^{\ast\,}is not vacuum. There may exist dark matters whose amount is much enough to be detectable by the present telescopes through the motion of S0-2.

Note that a new finding through our PPN model, as shown in Sect.3.4, is a detectability of the gravitational lens effect on the null geodesics connecting S0-2 and observer under the present observational uncertainties, if a PPN parameter is about one order larger than the value for general relativity case. This detectability of lens effect had not been recognized in all previous papers of all groups observing S0-2 ref:ghez+2000 ; ref:schoedel+2002 ; ref:gillessen+2017 ; ref:gravity2018 ; ref:do+2019 ; ref:saida+2019 ; ref:gravity2020 . On the other hand, the effect of black hole spin on the S0-2’s motion is not detectable. Thus, our present PPN test is performed with spherically symmetric vacuum black hole spacetime with taking into account the gravitational lens effect.

We try to search for the best-fitting value of 𝐗ppn{\bf X}_{\rm ppn} by a simple statistical method, the χ2\chi^{2} fitting. If χ2\chi^{2} fitting gives us a statistically significant discrimination between the PPN case and the Schwarzschild case, then it is an enough information for discussing the physics of gravity around Sgr A{}^{\ast\,}. However, if we can not obtain a statistically significant result, then the need for a more complicated method such as a Bayesian analysis arises.

Here we should note that all parameters in the PPN formalism, not only 𝐗ppn{\bf X}_{\rm ppn} but also all the other parameters such as {m,a}\{m,a\} and the initial condition of S0-2’s motion, should be evaluated by fitting our PPN model with the present observational data. It is not good to search for best-fitting values of only 𝐗ppn{\bf X}_{\rm ppn} with fixing the other parameters at the Schwarzschild case, because the global minimum of χ2\chi^{2} may be out of the best-fitting values of the Schwarzschild case. Concerning this issue, a previous work using a PPN model ref:gainutdinov2020 is not statistically sufficient, because the parameters such as the mass of black hole are fixed at the Schwarzschild case. In addition, the previous work ref:gainutdinov2020 do not aware of the possible detectability of gravitational lens effects. Then, the resultant values of PPN parameters in the previous work ref:gainutdinov2020 are largely different from our result shown in Sect.4. Hence, our analysis is the first consistent application of PPN model to the system of Sgr A{}^{\ast\,}and S0-2.

In Sect.2, our PPN model of black hole spacetime is introduced. Further, although the present data do not enable us to test the spin effects of black hole, we develop our PPN model so as to include the largest spin effects, because those effects are expected to be measurable with the near future large telescope (e.g. Thirty-Meter-Telescope). Sect.3 is for deriving the formulas of observational quantities. The need for the gravitational lens effects for null geodesics, which were ignored in previous works, is also discussed under the present observational uncertainties. Sect.4 is devoted to the χ2\chi^{2} fitting of the PPN model prediction with the observational data taken by European, American and our Japanese groups, and the best-fitting parameter values are shown as well. Sect.5 is for discussions.

The units used throughout this paper are of c=1c=1 and G=1G=1. When showing the numerical values of physical quantities, the constants cc and GG will be shown explicitly. Greek index μ=0,1,2,3\mu=0,1,2,3 denotes the spacetime components of tensors, and Latin index j=1,2,3j=1,2,3 denotes the spatial components of tensors.

2 Parameterized post-Newtonian/Minkowskian formulation of our problem

After introducing the parameter of post-Newtonian expansion in Sect.2.1, the PPN formulations of metric, timelike geodesics and null geodesics are derived successively in Sect.2.2, 2.3, and 2.4. In Sect.2.5, we clarify the coordinate system for observation, the setup of the initial conditions of S0-2’s motion, and all the parameters which are to be evaluated by fitting our PPN model with observational data.

2.1 Post-Newtonian expansion parameter for the system of Sgr A{}^{\ast\,}and S0-2

The parameter ε\varepsilon of post-Newtonian (PN) expansion for the system composed of Sgr A{}^{\ast\,}and S0-2 is defined by

ε(r):=GMBHc2rv(r)22c2,\varepsilon(r):=\dfrac{GM_{\rm BH}}{c^{2}r}\simeq\dfrac{v(r)^{2}}{2c^{2}}\,, (2.1)

where rr is the distance (radial coordinate) of S0-2 to Sgr A{}^{\ast\,}, and v(r)v(r) is the speed of S0-2 at rr. This ε(r)\varepsilon(r) can be interpreted as the specific potential energy of S0-2. The similar equality “\simeq” in Eq.(2.1) is due to a general fact that the potential energy and the kinetic energy have the values of similar order for the object moving on a bounded orbit around a central mass.

Although the precise best-fitting values of parameters such as the mass of Sgr A{}^{\ast\,}are derived later in Sect.4, approximate values of those parameters have already been known ref:do+2019 ; ref:saida+2019 ; ref:gravity2020 . The approximate values of parameters needed in this section are as follows.

Mass of Sgr A:MBH4×106MDistance from Sun to Sgr A:RGC8kpcPericenter distance of S0-2 to Sgr A:rperi120AU,\begin{split}\text{Mass of Sgr\,A${}^{\ast\,}$}&:M_{\rm BH}\sim 4\times 10^{6}M_{\odot}\\ \text{Distance from Sun to Sgr\,A${}^{\ast\,}$}&:R_{\rm GC}\sim 8\,\text{kpc}\\ \text{Pericenter distance of S0-2 to Sgr\,A${}^{\ast\,}$}&:r_{\rm peri}\sim 120\,\text{AU}\,,\end{split} (2.2)

where the suffix “GC” means the galactic center. When the PN parameter ε\varepsilon is evaluated at the pericenter of S0-2, its value is

εperi:=ε(rperi)=GMBHc2rperi103,\varepsilon_{\rm peri}:=\varepsilon(r_{\rm peri})=\dfrac{GM_{\rm BH}}{c^{2}r_{\rm peri}}\sim 10^{-3}\,, (2.3)

while the PN parameter evaluated at the surface of the sun is ε:=GM/(c2r)106\varepsilon_{\odot}:=GM_{\odot}/(c^{2}r_{\odot})\sim 10^{-6}, where rr_{\odot} is the radius of the sun. The gravity produced by Sgr A{}^{\ast\,}at S0-2’s pericenter is about three orders of magnitude stronger than the gravity at the surface of sun.

The PN parameter of the gravity between S0-2 and one of the other S-stars is roughly estimated as εS:=GM/(c2rperi)=106εperi109\varepsilon_{\rm S}:=GM_{\odot}/(c^{2}r_{\rm peri})=10^{-6}\varepsilon_{\rm peri}\sim 10^{-9}, where the mass of each star and the distance among S-stars are respectively approximated by the solar mass MM_{\odot} and the S0-2’s pericenter distance rperir_{\rm peri}. The gravitational effect by εS109\varepsilon_{\rm S}\sim 10^{-9} is so small that the present telescopes cannot detect. Further, because significant interstellar gases around S-stars are not found, the so-called dynamical friction on S0-2 can be neglected. The effects of stellar spin of S0-2 and stellar wind from S0-2 are also negligible. Hence, we assume that the dynamics of S0-2 and photons emitted by S0-2 are described by, respectively, a timelike geodesic and null geodesics on the gravitational field produced by Sgr A{}^{\ast\,}.

Further, the telescopes detect the photons coming from S0-2, and any observable quantity is read from the detected photons. Therefore, we need the PPN formulations of the metric tensor of Sgr A{}^{\ast\,}, the timelike geodesic of S0-2 and the null geodesics of photons connecting S0-2 and the observer. These PPN formulations are given in the following subsections.

2.2 Parameterized post-Newtonian expansion of black hole metric

We develop the PPN formulas starting from the Kerr metric gμν(Kerr)g_{\mu^{\prime}\nu^{\prime}}^{\rm(Kerr)} in the Boyer-Lindquist coordinates, xμ=(t,r,θ,φ)x^{\mu^{\prime}}=(t,r,\theta,\varphi),

ds2=gμν(Kerr)dxμdxν=ΣΨZdt2+ZΣsin2θ[ωdtdφ]2+ΣΨdr2+Σdθ2,{\rm d}s^{2}=g^{\rm(Kerr)}_{\mu^{\prime}\nu^{\prime}}{\rm d}x^{\mu^{\prime}}{\rm d}x^{\nu^{\prime}}=-\dfrac{\Sigma\Psi}{Z}\,{\rm d}t^{2}+\dfrac{Z}{\Sigma}\sin^{2}\theta\,\Bigl{[}\omega\,{\rm d}t-{\rm d}\varphi\Bigr{]}^{2}+\dfrac{\Sigma}{\Psi}\,{\rm d}r^{2}+\Sigma\,{\rm d}\theta^{2}\,, (2.4a)
where the metric functions are
Ψ(r):=r2+a22mrΣ(r,θ):=r2+a2cos2θZ(r,θ):=(r2+a2)Σ(r,θ)+2mra2sin2θ=(r2+a2)2Ψ(r)a2sin4θω(r,θ):=2mrZ(r,θ)a,\begin{split}\Psi(r)&:=r^{2}+a^{2}-2mr\\ \Sigma(r,\theta)&:=r^{2}+a^{2}\cos^{2}\theta\\ Z(r,\theta)&:=(r^{2}+a^{2})\Sigma(r,\theta)+2mra^{2}\sin^{2}\theta\,=\,(r^{2}+a^{2})^{2}-\Psi(r)a^{2}\sin^{4}\theta\\ \omega(r,\theta)&:=\dfrac{2mr}{Z(r,\theta)}\,a\,,\end{split} (2.4b)

and mm and aa are respectively the black hole’s mass and spin angular momentum in the length dimension. We transform from the spherical coordinates xμ=(t,r,θ,φ)x^{\mu^{\prime}}=(t,r,\theta,\varphi) to the Cartesian-like coordinates xμ=(t,x,y,z)x^{\mu}=(t,x,y,z),

x=rsinθcosφ,y=rsinθsinφ,z=rcosθ,x=r\sin\theta\cos\varphi\quad,\quad y=r\sin\theta\sin\varphi\quad,\quad z=r\cos\theta\,, (2.5)

where zz-axis is the spin axis of Kerr black hole. Using the Cartesian-like coordinates, we avoid some numerical difficulties in the spherical coordinates arising from θ=0\theta=0 and π\pi.

The PN parameter (2.1) is expressed as ε(r)=m/r\varepsilon(r)=m/r in Eqs.(2.4). Let us expand the Kerr metric gμν(Kerr)g_{\mu\nu}^{\rm(Kerr)} with ε(r)\varepsilon(r) in the Cartesian-like coordinates, and introduce artificial parameters at each term needed for later discussions. The metric gμνg_{\mu\nu} obtained by this procedure is

g00=1+2Ntε(r)+Aε(r)2+O(ε3)g01=Nsxrε(r)+2Camyrε(r)2+O(ε3)g02=Nsyrε(r)2Camxrε(r)2+O(ε3)g03=Nszrε(r)+2Czamzrε(r)2+O(ε3)gij=δij+2Bxixjr2ε(r)+O(ε2),\begin{split}g_{00}&=-1+2N_{\rm t}\,\varepsilon(r)+A\varepsilon(r)^{2}+O(\varepsilon^{3})\\ g_{01}&=N_{\rm s}\,\dfrac{x}{r}\varepsilon(r)+2C_{\perp}\dfrac{a}{m}\,\dfrac{y}{r}\varepsilon(r)^{2}+O(\varepsilon^{3})\\ g_{02}&=N_{\rm s}\,\dfrac{y}{r}\varepsilon(r)-2C_{\perp}\dfrac{a}{m}\,\dfrac{x}{r}\varepsilon(r)^{2}+O(\varepsilon^{3})\\ g_{03}&=N_{\rm s}\,\dfrac{z}{r}\varepsilon(r)+2C_{z}\dfrac{a}{m}\,\dfrac{z}{r}\varepsilon(r)^{2}+O(\varepsilon^{3})\\ g_{ij}&=\delta_{ij}+2B\dfrac{x^{i}x^{j}}{r^{2}}\varepsilon(r)+O(\varepsilon^{2})\,,\end{split} (2.6)

where AA, BB, CzC_{z}, CC_{\perp} NtN_{\rm t} and NsN_{\rm s} are the non-dimensional artificial parameters under the assumption of the stationary axisymmetry about zz-axis and the spherical symmetry for the non-spinning case a=0a=0. This expansion (2.6) is our parametrized post-Newtonian (PPN) expansion of the Kerr metric in the Cartesian-like coordinates, and the coefficient parameters 𝐗ppn={A,B,Cz,C,Nt,Ns}{\bf X}_{\rm ppn}=\{A,B,C_{z},C_{\perp},N_{\rm t},N_{\rm s}\} are the PPN parameters. The value of 𝐗ppn{\bf X}_{\rm ppn} corresponding to the post-Newtonian expansion of Kerr metric (2.4) is

{A,B,Cz,C,Nt,Ns}(Kerr)={0,1,0,1,1,0}.\{A,B,C_{z},C_{\perp},N_{\rm t},N_{\rm s}\}^{\rm(Kerr)}=\{0,1,0,1,1,0\}\,. (2.7)

Here let us note about the spin parameter aa. We consider that, if a condition of extremely high spin parameter |a/m|1|a/m|\gg 1 was satisfied, then the Newtonian fitting of past data of S-stars in 2000’s (see the first paragraph in Sect.1) could not make a statistically significant result. Therefore, we assume the spin parameter satisfying

O(am)1.O\Bigl{(}\dfrac{a}{m}\Bigr{)}\lesssim 1\,. (2.8)

This means that we do not necessarily restrict our analysis to a slow spin case, but include the high spin case of O(a/m)1O(a/m)\sim 1. Indeed the PPN expansion (2.6) is based on the expansion of Kerr metric by only ε(r)\varepsilon(r), and no expansion by a/ma/m is introduced in Eq.(2.6). 111 Because only the ”1st order” spin parameter a/ma/m appears in g0jg_{0j} of Eq.(2.6), one might think the expansion by a/ma/m was also introduced. However, the appearance of a/ma/m in Eq.(2.6) is due to the metric function ω(r,θ)\omega(r,\theta) in Kerr metric’s g0j(Kerr)g_{0j}^{\rm(Kerr)} components, and the coefficients of terms of O(ε3)O(\varepsilon^{3}) in Eq.(2.6) include (a/m)2(a/m)^{2} and a/ma/m due to the metric functions in Eq.(2.4b).

Next, the other note we need to clarify is the independent PPN parameters under the aim of this paper. Although there appear six PPN parameters in Eq.(2.6), three of them {C,Nt,Ns}\{C_{\perp},N_{\rm t},N_{\rm s}\} are fixed to be the values of Kerr case (2.7) as explained below.

On the parameter NtN_{\rm t}, let us note that the term of O(ε)O(\varepsilon) in g00g_{00} expresses the Newtonian gravity, as will be shown by the PPN expansion of timelike geodesics in Sect.2.3 and Appendix A. Hence, by requiring that the Newtonian potential m/r(=ε)m/r(=\varepsilon) is recovered at non-relativistic situations, we fix as Nt=1N_{\rm t}=1. Further, one benefit of this fixation is the resolution of a degeneracy between 𝐗ppn{\bf X}_{\rm ppn} and mm. From Eq.(2.6) one can understand that one of the six PPN parameters in 𝐗ppn{\bf X}_{\rm ppn} cannot be distinguished from the mass mm by observations of S0-2, because not only 𝐗ppn{\bf X}_{\rm ppn} but also mm are to be evaluated by fitting with observational data. By the requirement Nt=1N_{\rm t}=1, the other PPN parameters are distinguished from mm.

On the parameter NsN_{\rm s}, let us note that the terms of O(ε)O(\varepsilon) in g0jg_{0j} raise a relativistic effect (so-called 0.5PN effect) which is larger than the pericenter shift of S0-2 (so-called 1PN effects), as will be shown by the PPN expansion of timelike geodesics in Sect.2.3 and Appendix A. This is interpreted as a modification of Newtonian potential so that the potential depends on the velocity of S0-2. If such velocity dependence in Newtonian potential exists, it should have to be already found so far through the observations of S0-2. However, such an effect has not been found. Therefore we fix as Ns=0N_{\rm s}=0.

On the parameter CC_{\perp}, one can understand from Eq.(2.6) that the PPN parameters CC_{\perp} or CzC_{z} cannot be distinguished from the spin aa by observations of S0-2, because not only {C,Cz}\{C_{\perp},C_{z}\} but also aa are to be evaluated by fitting with observational data. Therefore, we fix as C=1C_{\perp}=1, and leave CzC_{z} free.

From the above, the form of PPN metric we are going to use in the following sections is

g00=1+2ε(r)+Aε(r)2+O(ε3)g0j=2amDjε(r)2+O(ε3)gij=δij+2Bxixjr2ε(r)+O(ε2).\begin{split}g_{00}&=-1+2\,\varepsilon(r)+A\varepsilon(r)^{2}+O(\varepsilon^{3})\\ g_{0j}&=2\dfrac{a}{m}\,D_{j}\,\varepsilon(r)^{2}+O(\varepsilon^{3})\\ g_{ij}&=\delta_{ij}+2B\dfrac{x^{i}x^{j}}{r^{2}}\varepsilon(r)+O(\varepsilon^{2})\,.\end{split} (2.9a)
where Dj:=(y/r,x/r,Czz/r)D_{j}:=(y/r,-x/r,C_{z}z/r). For the later use, let us show the inverse metric gμνg^{\mu\nu},
g00=12ε(r)(4+A)ε(t)2+O(ε3)g0j=2amDjε(r)2+O(ε3)gij=δij2Bxixjr2ε(r)+O(ε2),\begin{split}g^{00}&=-1-2\varepsilon(r)-(4+A)\varepsilon(t)^{2}+O(\varepsilon^{3})\\ g^{0j}&=2\dfrac{a}{m}\,D^{j}\,\varepsilon(r)^{2}+O(\varepsilon^{3})\\ g^{ij}&=\delta^{ij}-2B\dfrac{x^{i}x^{j}}{r^{2}}\varepsilon(r)+O(\varepsilon^{2})\,,\end{split} (2.9b)

where δij=δij\delta_{ij}=\delta^{ij} is the Kronecker’s delta, and Dj=DjD^{j}=D_{j}. Note that the terms of O(ε2)O(\varepsilon^{2}) in g0jg_{0j} express the largest effect of the black hole spin. This spin effect is not detectable by the present telescopes as will be shown in Sect.3.4. However we derive our formulas without eliminating those terms in this section, because the largest spin effect is expected to be detectable by the near future telescopes, for example the Thirty-Meter-Telescope which is to be established in the Maunakea observatories.

Finally in this subsection, let us clarify the relation between our PPN metric (2.9) and the so-called standard PPN gauge established by C.M.Will ref:will1993 . The standard PPN gauge is originally formulated for self-gravitating fluid systems up to the terms of the order next to Newtonian gravity. In this gauge, the spatial coordinates are fixed so that the spatial parts of metric components are proportional to δij\delta_{ij} up to O(ε)O(\varepsilon). Therefore, the transformation between our Cartesian-like coordinates xμ=(t,x,y,z)x^{\mu}=(t,x,y,z) and the standard PPN coordinates x¯μ¯=(t¯,x¯,y¯,z¯)\bar{x}^{\bar{\mu}}=(\bar{t},\bar{x},\bar{y},\bar{z}) are given by

t=t¯,xj=(1+Bmr¯)x¯j¯,t=\bar{t}\quad,\quad x^{j}=\left(1+B\dfrac{m}{\bar{r}}\right)\bar{x}^{\bar{j}}\,, (2.10a)
where r¯:=x¯2+y¯2+z¯2\bar{r}:=\sqrt{\bar{x}^{2}+\bar{y}^{2}+\bar{z}^{2}}. The metric components in this coordinates are
g0¯0¯=1+2ε¯(r¯)+(A2B)ε¯(r¯)2+O(ε¯3)g0¯j¯=2amD¯j¯ε¯(r¯)2+O(ε¯3)gi¯j¯=(1+2Bε¯(r¯))δi¯j¯+O(ε2),\begin{split}g_{\bar{0}\bar{0}}&=-1+2\,\bar{\varepsilon}(\bar{r})+(A-2B)\,\bar{\varepsilon}(\bar{r})^{2}+O(\bar{\varepsilon}^{3})\\ g_{\bar{0}\bar{j}}&=2\dfrac{a}{m}\,\bar{D}_{\bar{j}}\,\bar{\varepsilon}(\bar{r})^{2}+O(\bar{\varepsilon}^{3})\\ g_{\bar{i}\bar{j}}&=\left(1+2B\bar{\varepsilon}(\bar{r})\right)\,\delta_{\bar{i}\bar{j}}+O(\varepsilon^{2})\,,\end{split} (2.10b)

where ε¯(r¯):=m/r¯\bar{\varepsilon}(\bar{r}):=m/\bar{r} and D¯j¯:=(y¯/r¯,x¯/r¯,Czz¯/r¯)\bar{D}_{\bar{j}}:=(\bar{y}/\bar{r},-\bar{x}/\bar{r},C_{z}\bar{z}/\bar{r}).

2.3 Parameterized post-Newtonian expansion of timelike geodesics

Before proceeding to the formulation of PPN expansion of timelike geodesics, let us point out one problem in solving numerically the geodesic equations of Kerr metric. In the Boyer-Lindquist coordinates, the usual form of the geodesic equations uννuμ=0u^{\nu}\nabla_{\nu}u^{\mu}=0 give a second order differential equation of the radial coordinate r(λ)r(\lambda) of the geodesic,

d2r(λ)dλ2=±combination of the metric functions (2.4b),\dfrac{{\rm d}^{2}r(\lambda)}{{\rm d}\lambda^{2}}=\pm\sqrt{\text{combination of the metric functions \eqref{eq:kerr-function}}}\,, (2.11)

where λ\lambda is an affine parameter, and the geodesic equation of the angular coordinate θ(λ)\theta(\lambda) of the geodesic has the same structure. The problem in numerical calculation arises from the signature “±\pm” of the right-hand side. In calculating numerical integrations, the signature of the right-hand side should be specified. Once the signature is mistaken, a serious numerical error occurs. Especially in the vicinity of zeros of the right-hand side, the numerical code for the choice of the signature needs a special care. This problem is not removed in the Cartesian-like coordinates. Because the PPN expansion of the geodesic equations is essentially the expansion of the right-hand side of Eq.(2.11) by the PN parameter ε(r)\varepsilon(r), the problem of the signature is not removed.

However, let us note that this problem becomes manifest in the case that the geodesic equations are expressed as the second order differential equations of the coordinates xμ(τ)x^{\mu}(\tau). This problem can be removed in the Hamiltonian formalism of geodesic equations, in which the geodesic equations are formulated as the simultaneous first order differential equations of not only coordinates xμ(λ)x^{\mu}(\lambda) but also tangent 1-forms uμ(λ)u_{\mu}(\lambda). Therefore, we adopt the Hamiltonian formalism of geodesic equations.

2.3.1 Hamiltonian

The dynamical variables in the Hamiltonian formalism of geodesic equations are the spacetime point on the geodesic xμ(τ)x^{\mu}(\tau) and the 1-form conjugate to the four velocity of the geodesic uμ(τ)u_{\mu}(\tau), where τ\tau is the proper length along the geodesic. The 1-form uμ(τ)u_{\mu}(\tau) has no dimension, while the point xμ(τ)x^{\mu}(\tau) has the length dimension. For these dynamical variables, the Hamiltonian of geodesics is given by

u(x,u)=12gμν(x)uμuν,\mathcal{H}_{\rm u}(x,u)=\dfrac{1}{2}g^{\mu\nu}(x)u_{\mu}u_{\nu}\,, (2.12a)
where xx and uu denote symbolically the dynamical variables, and the normalization constraint of four velocity is assigned for timelike geodesics,
u(x,u)=12.\mathcal{H}_{\rm u}(x,u)=-\dfrac{1}{2}\,. (2.12b)

The Hamilton equations are given by

duμ(τ)dτ=u(x,u)xμ,dxμ(τ)dτ=u(x,u)uμ.\dfrac{{\rm d}u_{\mu}(\tau)}{{\rm d}\tau}=-\dfrac{\partial\mathcal{H}_{\rm u}(x,u)}{\partial x^{\mu}}\quad,\quad\dfrac{{\rm d}x^{\mu}(\tau)}{{\rm d}\tau}=\dfrac{\partial\mathcal{H}_{\rm u}(x,u)}{\partial u_{\mu}}\,. (2.13)

The solution of these equations under the constraint (2.12b) is the timelike geodesic. The Hamilton equations (2.13) are the first order differential equations. We construct our PPN formulations of timelike geodesics from the Hamiltonian (2.12a). 222 Following the ordinary procedure of the analytical mechanics, the Lagrangian is related to the Hamiltonian through the Legendre transformation of the dynamical variables, L(x,x˙)=uμx˙μHL(x,\dot{x})=u_{\mu}\dot{x}^{\mu}-H, where x˙=dx/dτ\dot{x}={\rm d}x/{\rm d}\tau. The Euler-Lagrange equations of this Lagrangian are the second order differential equations of the same form with uννuμ=0u^{\nu}\nabla_{\nu}u^{\mu}=0.

Due to the stationary axial symmetry of spacetime, there are two conserved quantities along timelike geodesics,

E:=u0=constant,Lz:=xu2yu1=constant,E:=-u_{0}=\text{constant}\quad,\quad L_{z}:=xu_{2}-yu_{1}=\text{constant}\,, (2.14)

where dE/dτ=0{\rm d}E/{\rm d}\tau=0 and dLz/dτ=0{\rm d}L_{z}/{\rm d}\tau=0 are shown from u/t=0\partial\mathcal{H}_{\rm u}/\partial t=0, u/φ=0\partial\mathcal{H}_{\rm u}/\partial\varphi=0 and Eqs.(2.13). Physical meanings of EE and LzL_{z} are respectively the energy and the angular momentum around z-axis of a test particle (the star S0-2) moving on the timelike geodesic, where EE has no dimension normalized by the mass energy of S0-2 and LzL_{z} has the length dimension.

Note that, for Kerr spacetime, there exists the third constant of geodesic motions, Carter constant, due to the so-called hidden symmetry of spacetime described by Killing tensor. On the other hand, as shown by C.M.Will ref:will2009 in Newtonian gravity, a special case of stationary axisymmetric Newtonian gravitational potential allows the existence of a “Carter-like” constant for motions of test particles, which is different from the energy and angular momentum. Hence, in our PPN model (2.9) which possesses the stationary axisymmetry, there may exist a special set of values of PPN parameters 𝐗ppn{\bf X}_{\rm ppn}, other than the Kerr case (2.7), which generates a “Carter-like” constant for geodesic motions. However, even if such a special case exists in our PPN model, we do not fix the value of 𝐗ppn{\bf X}_{\rm ppn} at the special case, because our aim in this paper is the search of the value of 𝐗ppn{\bf X}_{\rm ppn} best-fitting with observational data. Hence, in this paper, we do not expect the existence of a third constant of geodesic motions. (The search for a “Carter-like” constant in our PPN model is an interesting issue, but not in the scope of this paper.)

The PPN expansion of u(x,u)\mathcal{H}_{\rm u}(x,u) is obtained by substituting the metric (2.9) into Eq.(2.12a),

u(x,u)=12g00E2g0jujE+12gijuiuj=12E2+12j=13uj2E2ε(r)0PN : up to O(ε)Bur2ε(r)4+A2E2ε(r)21PN : O(ε2)=O(εu2)+2am(LzrCzzrur)Eε(r)21.5PN : O(ε2u)=O(ε2.5)+O(ε3)higher PN,\begin{array}[]{rcll}\mathcal{H}_{\rm u}(x,u)&=&\displaystyle\dfrac{1}{2}g^{00}E^{2}-g^{0j}\,u_{j}\,E+\dfrac{1}{2}g^{ij}u_{i}u_{j}&\\[8.53581pt] &=&\displaystyle-\dfrac{1}{2}E^{2}+\dfrac{1}{2}\sum_{j=1}^{3}u_{j}^{2}-E^{2}\varepsilon(r)&\cdots\text{0PN : up to $O(\varepsilon)$}\\[11.38109pt] &&-Bu_{\rm r}^{2}\varepsilon(r)-\dfrac{4+A}{2}E^{2}\varepsilon(r)^{2}&\cdots\text{1PN : $O(\varepsilon^{2})=O(\varepsilon u^{2})$}\\[8.53581pt] &&+2\dfrac{a}{m}\Bigl{(}\,\dfrac{L_{z}}{r}-C_{z}\dfrac{z}{r}u_{\rm r}\,\Bigr{)}\,E\,\varepsilon(r)^{2}&\cdots\text{1.5PN : $O(\varepsilon^{2}u)=O(\varepsilon^{2.5})$}\\[8.53581pt] &&+O(\varepsilon^{3})&\cdots\text{higher PN}\,,\end{array} (2.15a)
where the summation of ii and jj by the Einstein rule is for spatial components, the order of terms is counted under the relation O(u)=O(ε1/2)O(u)=O(\varepsilon^{1/2}) shown in Eq.(2.1), and uru_{\rm r} is given by
ur:=1rxjuj.u_{\rm r}:=\dfrac{1}{r}x^{j}u_{j}\,. (2.15b)

In Eq.(2.15), “nnPN” means the terms of O(εn+1)O(\varepsilon^{n+1}). The 0PN terms express the Newtonian gravity in the framework of the special relativity. The 1PN terms express the largest non-Newtonian effect, which depends on the mass mm but not on the spin aa. The 1.5PN terms express the largest effect depending on the spin aa. Note that Eq.(A.1) in Appendix A shows the PPN expansion of u\mathcal{H}_{\rm u} with retaining {Nt,Ns,C}\{N_{\rm t},N_{\rm s},C_{\perp}\} in the metric (2.6).

2.3.2 Geodesic equations

The PPN timelike geodesic equations are obtained by substituting Eqs.(2.15) into Eq.(2.13). This procedure, usually, gives the geodesic equations in which the dynamical variables are regarded as the functions of the proper time τ\tau. On the other hand, the observational data produce, for example, the position of S0-2 x(t)x(t) as the function of the observer’s proper time which corresponds to the coordinate time tt, because the observer is far from Sgr A{}^{\ast\,}. Therefore we formulate our PPN geodesic equations with regarding the dynamical variables as the functions of tt through the following transformation,

dxj(t)dt=dxj(τ)dτ(dt(τ)dτ)1,duj(t)dt=duμ(τ)dτ(dt(τ)dτ)1,\dfrac{{\rm d}x^{j}(t)}{{\rm d}t}=\dfrac{{\rm d}x^{j}(\tau)}{{\rm d}\tau}\left(\dfrac{{\rm d}t(\tau)}{{\rm d}\tau}\right)^{-1}\quad,\quad\dfrac{{\rm d}u_{j}(t)}{{\rm d}t}=\dfrac{{\rm d}u_{\mu}(\tau)}{{\rm d}\tau}\left(\dfrac{{\rm d}t(\tau)}{{\rm d}\tau}\right)^{-1}\,, (2.16)

where the right-hand sides are given by the Hamilton equations with regarding {xμ(τ),uj(τ)}\{x^{\mu}(\tau),u_{j}(\tau)\} as the functions of τ\tau, and u0u_{0} is omitted because u0=Eu_{0}=-E is constant. The PPN timelike geodesic equations through the transformation (2.16) are as follows.

Edxj(t)dt=Edxj(τ)dτ(dt(τ)dτ)1=uj0PN2Burxjrε(r)2ujε(r)1PN+2am(djrCzzxjr2)E2ε(r)21.5PN+O(ε2.5)higher PN\begin{array}[]{rcll}E\dfrac{{\rm d}x^{j}(t)}{{\rm d}t}&=&E\dfrac{{\rm d}x^{j}(\tau)}{{\rm d}\tau}\,\Bigl{(}\dfrac{{\rm d}t(\tau)}{{\rm d}\tau}\Bigr{)}^{-1}&\\ &=&u_{j}&\cdots\text{0PN}\\[0.0pt] &&-2B\,u_{\rm r}\dfrac{x^{j}}{r}\,\varepsilon(r)-2u_{j}\,\varepsilon(r)&\cdots\text{1PN}\\[8.53581pt] &&+2\dfrac{a}{m}\Bigl{(}\,\dfrac{d^{j}}{r}-C_{z}\dfrac{zx^{j}}{r^{2}}\,\Bigr{)}E^{2}\varepsilon(r)^{2}&\cdots\text{1.5PN}\\[11.38109pt] &&+O(\varepsilon^{2.5})&\cdots\text{higher PN}\end{array} (2.17a)
Eduj(t)dt=Eduj(τ)dτ(dt(τ)dτ)1=E2xjr2ε(r)0PN+B(3xjrur22ujur)ε(r)r+(6A)E2xjr2ε(r)2}1PN+(6P(x,u)xjr2Qj(x,u))Eε(r)2r1.5PN+O(ε3)higher PN,\begin{array}[]{rcll}E\dfrac{{\rm d}u_{j}(t)}{{\rm d}t}&=&E\dfrac{{\rm d}u_{j}(\tau)}{{\rm d}\tau}\,\Bigl{(}\dfrac{{\rm d}t(\tau)}{{\rm d}\tau}\Bigr{)}^{-1}&\\[5.69054pt] &=&-E^{2}\,\dfrac{x^{j}}{r^{2}}\,\varepsilon(r)&\cdots\text{0PN}\\[5.69054pt] &&\!\!\!\left.\begin{array}[]{l}+B\,\Bigl{(}3\dfrac{x^{j}}{r}u_{\rm r}^{2}-2u_{j}u_{\rm r}\,\Bigr{)}\,\dfrac{\varepsilon(r)}{r}\\ +\bigl{(}6-A\bigr{)}E^{2}\dfrac{x^{j}}{r^{2}}\varepsilon(r)^{2}\end{array}\qquad\right\}&\cdots\text{1PN}\\[19.91692pt] &&+\Bigl{(}6P(x,u)\,\dfrac{x^{j}}{r}-2Q_{j}(x,u)\Bigr{)}\,E\,\dfrac{\varepsilon(r)^{2}}{r}&\cdots\text{1.5PN}\\[8.53581pt] &&+O(\varepsilon^{3})&\cdots\text{higher PN}\,,\end{array} (2.17b)
where uru_{\rm r} is given in Eq.(2.15b), dj=(y,x,0)d^{j}=(-y,x,0) in 1.5PN terms of Eq.(2.17a), and P(x,u)P(x,u) and Qj(x,u)Q_{j}(x,u) in 1.5PN terms of Eq.(2.17b) are
P(x,u):=am(LzrCzzrur)Qj(x,u):=am[qjCz{δj3ur+zr(ujrxjr2ur)}],\begin{split}P(x,u)&:=-\dfrac{a}{m}\Bigl{(}\,\dfrac{L_{z}}{r}-C_{z}\dfrac{z}{r}u_{\rm r}\,\Bigr{)}\\ Q_{j}(x,u)&:=-\dfrac{a}{m}\Bigl{[}\,q_{j}-C_{z}\Bigl{\{}\delta_{j3}u_{\rm r}+\dfrac{z}{r}\Bigl{(}\,\dfrac{u_{j}}{r}-\dfrac{x^{j}}{r^{2}}u_{\rm r}\,\Bigr{)}\,\Bigr{\}}\,\Bigr{]}\,,\end{split} (2.17c)

where qj=(u2,u1,0)q_{j}=(u_{2},-u_{1},0). Concerning these geodesic equations, let us make two notes.

  • Newtonian gravity is recovered by focusing on 0PN terms in Eqs.(2.17), where 3D velocity in Newtonian mechanics is given by vNewtonj:=uj/(u0)=uj/Ev_{\rm Newton}^{j}:=u_{j}/(-u_{0})=u_{j}/E.

  • Although six dynamical variables {xj(t),uj(t)}\{x^{j}(t),u_{j}(t)\} appear in Eqs.(2.17), one of four variables {x(t),y(t),u1(t),u2(t)}\{x(t),y(t),u_{1}(t),u_{2}(t)\} is dependent due to the conserved quantity LzL_{z} in Eq.(2.14). In integrating Eqs.(2.17) numerically, five dynamical variables need to be solved, once the values of EE and LzL_{z} are specified through the initial conditions of S0-2 (see Sect.2.5).

2.4 Parameterized post-Minkowskian expansion of null geodesics

Although the parameter ε(r)\varepsilon(r) in Eq.(2.1) is called the “post-Newtonian” parameter, the expansion of null geodesics using ε(r)\varepsilon(r) as the expansion parameter is called the post-Minkowskian (PM) expansion, because the leading order terms express null geodesics on Minkowski metric.

2.4.1 Hamiltonian

As for timelike geodesics, we adopt the Hamiltonian formalism for null geodesics. The dynamical variables are the spacetime point on the geodesic xμ(σ)x^{\mu}(\sigma) and the tangent 1-form of the geodesic kμ(σ)k_{\mu}(\sigma), where σ\sigma is an affine parameter along the geodesic. Hereafter, let σ\sigma have the length dimension, and the 1-form kμ(σ)k_{\mu}(\sigma) has no dimension, while the point xμ(σ)x^{\mu}(\sigma) has the length dimension. For these dynamical variables, the Hamiltonian and the null condition are, respectively, given by

k(x,k)\displaystyle\mathcal{H}_{\rm k}(x,k) =\displaystyle= 12gμν(x)kμkν\displaystyle\dfrac{1}{2}g^{\mu\nu}(x)k_{\mu}k_{\nu} (2.18a)
k(x,k)\displaystyle\mathcal{H}_{\rm k}(x,k) =\displaystyle= 0,\displaystyle 0\,, (2.18b)

where xx and kk denote symbolically the dynamical variables. The Hamilton equations are given by

dkμ(σ)dσ=k(x,k)xμ,dxμ(σ)dσ=k(x,k)kμ.\dfrac{{\rm d}k_{\mu}(\sigma)}{{\rm d}\sigma}=-\dfrac{\partial\mathcal{H}_{\rm k}(x,k)}{\partial x^{\mu}}\quad,\quad\dfrac{{\rm d}x^{\mu}(\sigma)}{{\rm d}\sigma}=\dfrac{\partial\mathcal{H}_{\rm k}(x,k)}{\partial k_{\mu}}\,. (2.19)

The solution of these equations under the constraint (2.18b) is the null geodesic. As for the conserved quantities along timelike geodesics (2.14), there are two conserved quantities along null geodesics,

w:=k0=constant,lz:=xk2yk1=constant.w:=-k_{0}=\text{constant}\quad,\quad l_{z}:=xk_{2}-yk_{1}=\text{constant}\,. (2.20)

Physical meanings of ww and lzl_{z} are respectively the energy and the angular momentum around z-axis of a photon propagating on the null geodesic, where ww has no dimension and lzl_{z} has the length dimension. We do not expect the existence of a “Carter-like” constant, as discussed in Sect.2.3.1.

The parametrized post-Minkowskian (PPM) expansion of k(x,k)\mathcal{H}_{\rm k}(x,k) is obtained by substituting the metric (2.9) into Eqs.(2.18),

k(x,k)=12g00w2g0jkjw+12gijkikj=12w2+12j=13kj20PM : O(1)(w2+Bkr2)ε(r)1PM : O(ε)+O(ε2)higher PM\begin{array}[]{rcll}\mathcal{H}_{\rm k}(x,k)&=&\displaystyle\dfrac{1}{2}g^{00}w^{2}-g^{0j}\,k_{j}\,w+\dfrac{1}{2}g^{ij}k_{i}k_{j}&\\[8.53581pt] &=&\displaystyle-\dfrac{1}{2}w^{2}+\dfrac{1}{2}\sum_{j=1}^{3}k_{j}^{2}&\cdots\text{0PM : $O(1)$}\\[11.38109pt] &&-(w^{2}+B\,k_{\rm r}^{2})\,\varepsilon(r)&\cdots\text{1PM : $O(\varepsilon)$}\\[8.53581pt] &&+O(\varepsilon^{2})&\cdots\text{higher PM}\end{array} (2.21a)
where the order of terms is counted with only the PN parameter ε(r)\varepsilon(r) because the order of tangent 1-form is O(k)=1O(k)=1 for photons, and krk_{\rm r} is given by
kr:=1rxjkj.k_{\rm r}:=\dfrac{1}{r}x^{j}k_{j}\,. (2.21b)

In Eq.(2.21a), “nnPM” means the terms of O(εn)O(\varepsilon^{n}). The 0PM terms express the null geodesic in the framework of the special relativity. The 1PM terms express the largest gravitational effect, which depends on the mass mm but not on the spin aa. Note that Eq.(A.3) in Appendix A shows the PPM expansion of k\mathcal{H}_{\rm k} with retaining {Nt,Ns,C}\{N_{\rm t},N_{\rm s},C_{\perp}\} in the metric (2.6).

2.4.2 Geodesic equations

The PPM null geodesic equations are obtained by substituting Eqs.(2.21) into Eq.(2.19). Here we summarize these equations with regarding the dynamical variables as the functions of the affine parameter σ\sigma, not of the coordinate time.

dt(σ)dσ=k(xα(σ),kα(σ))(w)=w0PM+2wε(r)1PM+O(ε2)higher PM\begin{array}[]{rcll}\dfrac{{\rm d}t(\sigma)}{{\rm d}\sigma}&=&\dfrac{\partial\mathcal{H}_{\rm k}\bigl{(}\,x^{\alpha}(\sigma)\,,\,k_{\alpha}(\sigma)\,\bigr{)}}{\partial(-w)}&\\ &=&w&\cdots\text{0PM}\\[2.84526pt] &&+2w\,\varepsilon(r)&\cdots\text{1PM}\\[2.84526pt] &&+O(\varepsilon^{2})&\cdots\text{higher PM}\end{array} (2.22a)
dxj(σ)dσ=k(xα(σ),kα(σ))kj(σ)=kj0PM2Bkrxjrε(r)1PM+O(ε2)higher PM\begin{array}[]{rcll}\dfrac{{\rm d}x^{j}(\sigma)}{{\rm d}\sigma}&=&\dfrac{\partial\mathcal{H}_{\rm k}\bigl{(}\,x^{\alpha}(\sigma)\,,\,k_{\alpha}(\sigma)\,\bigr{)}}{\partial k_{j}(\sigma)}&\\ &=&k_{j}&\cdots\text{0PM}\\[0.0pt] &&-2Bk_{\rm r}\dfrac{x^{j}}{r}\varepsilon(r)&\cdots\text{1PM}\\[5.69054pt] &&+O(\varepsilon^{2})&\cdots\text{higher PM}\end{array} (2.22b)
dkj(σ)dσ=k(xα(σ),kα(σ))xj(σ)=00PM[w2xjr+B(3xjrkr22kjkr)]ε(r)r1PM+O(ε2)higher PM,\begin{array}[]{rcll}\dfrac{{\rm d}k_{j}(\sigma)}{{\rm d}\sigma}&=&-\dfrac{\partial\mathcal{H}_{\rm k}\bigl{(}\,x^{\alpha}(\sigma)\,,\,k_{\alpha}(\sigma)\,\bigr{)}}{\partial x^{j}(\sigma)}&\\ &=&0&\cdots\text{0PM}\\[0.0pt] &&-\Bigr{[}\,w^{2}\dfrac{x^{j}}{r}+B\Bigl{(}3\dfrac{x^{j}}{r}k_{\rm r}^{2}-2k_{j}k_{\rm r}\Bigr{)}\,\Bigr{]}\,\dfrac{\varepsilon(r)}{r}&\cdots\text{1PM}\\[8.53581pt] &&+O(\varepsilon^{2})&\cdots\text{higher PM}\,,\end{array} (2.22c)

where k0=wk_{0}=-w is used. In Sect.3.1, from these geodesic equations, we will obtain analytic perturbative solutions of the 0PM and 1PM null geodesics which connect the star S0-2 and a distant observer representing us. As expected by the nullity of 0PM term of the acceleration (2.22c), the 0PM solution is of a constant velocity and corresponds to null geodesics on Minkowski metric.

2.5 Coordinate system, initial condition of S0-2 and model parameters

2.5.1 Coordinate system for observation

Let us introduce the observer representing us so as to match with the actual observation process. In the reduction of observational values from observational raw data, the following effects are removed; the effect of earth’s spin and revolution around the sun, and the effect of sun’s peculiar motion with respect to the Local Standard of Rest (LSR) reference frame. Therefore, we make our observer move with a velocity which is not removed in the above reduction process. The time scale of such observer’s motion is expected to be of a time scale determined by the size of our galaxy Lgal4×104L_{\rm gal}\sim 4\times 10^{4} pc, which gives Lgal/c1.3×105L_{\rm gal}/c\sim 1.3\times 10^{5} years. It is thus appropriate to assume that the observer’s relative velocity to Sgr A{}^{\ast\,}is constant, because the time scale of S0-2 observations is of a few ten years which is very shorter than 1.3×1051.3\times 10^{5} years.

From the known approximated values of some parameters (2.2), the distance from our sun to Sgr A{}^{\ast\,}is RGC2.4×1014R_{\rm GC}\sim 2.4\times 10^{14} km and the Schwarzschild radius of Sgr A{}^{\ast\,}is rsch1.2×107r_{\rm sch}\sim 1.2\times 10^{7} km. Then, the difference of time lapse between the sun and Sgr A{}^{\ast\,}due to Sgr A{}^{\ast\,}’s gravity, which is estimated from the gravitational redshift, is rsch/RGC5×108r_{\rm sch}/R_{\rm GC}\sim 5\times 10^{-8}. This means that, during 20 years observation from 2000 to 2020, a temporal difference of 20×rsch/RGC10620\times r_{\rm sch}/R_{\rm GC}\sim 10^{-6} years arises between the sun and Sgr A{}^{\ast\,}. Such small temporal uncertainty cannot be identified in the actual observation which needs about one day for obtaining one set of observational raw data. Further, when we estimate the magnitude of our observer’s velocity VobsV_{\rm obs} as an object bounded by Sgr A{}^{\ast\,}’s gravity, it becomes Vobs/cε1/2|r=RGC(rsch/RGC)1/2104V_{\rm obs}/c\sim\varepsilon^{1/2}\bigr{|}_{r=R_{\rm GC}}\sim(r_{\rm sch}/R_{\rm GC})^{1/2}\sim 10^{-4}. The difference of time lapse between the sun and the coordinate time tt due to the velocity VobsV_{\rm obs}, which is estimate from the Lorentz factor, is (Vobs/c)2108(V_{\rm obs}/c)^{2}\sim 10^{-8}. This difference is also not identifiable in the present observational data. Thus we regard the coordinate time tt as the proper time of our observer.

Refer to caption
Figure 1: The observer representing us and the spatial coordinate system (X,Y,Z)(X,Y,Z) appropriate to the observation. “BH” denotes Sgr A{}^{\ast\,}. The observer’s velocity Vobs\vec{V}_{\rm obs} is constant relative to Sgr A{}^{\ast\,}. At the time tobs.apot_{\rm obs.apo}, the photon emitted by S0-2 at the apocenter reaches the observer (see Sect.2.5.1). The origins of astrometry (observation of the stellar position on the sky plane) for Keck and VLT groups are assumed to be moving with constant velocity relative to Sgr A{}^{\ast\,}(see Sect.2.5.2)

The spatial coordinate system (X,Y,Z)(X,Y,Z) appropriate to the observation is introduced as shown in Fig.1. We set (X,Y,Z)(X,Y,Z) be related with the Cartesian-like coordinates (x,y,z)(x,y,z) by a spatial rotation which will be explained in Sect.2.5.3. The coordinate axes of (X,Y,Z)(X,Y,Z) are fixed by making use of the apocenter (the farthest point from Sgr A{}^{\ast\,}) of the S0-2’s orbit.

  • The ZZ-axis points from Sgr A{}^{\ast\,}to the spatial position of the observer where the photon emitted by S0-2 at the apocenter is received by the observer.

  • The YY-axis points the same direction as the right ascension (R.A.), from the west to the east seen from the observer.

  • The XX-axis points the same direction as the declination (Dec.), from the south to the north seen from the observer.

In this observational coordinate system, we define the distance from the sun to Sgr A{}^{\ast\,}, RGCR_{\rm GC}, as the ZZ coordinate of the crossing event of the observer’s orbit and ZZ-axis, at which the observer receives the photon emitted by S0-2 at the apocenter. Further, let tobs.apot_{\rm obs.apo} denote the observation time of the photon emitted by S0-2 at the apocenter, which occurred already in 2010. Then, in the observational coordinates (X,Y,Z)(X,Y,Z), the spatial position of our observer robs(t)\vec{r}_{\rm obs}(t) at a given observation time tt is given by

robs(t)=(ttobs.apo)Vobs+Aobs,\vec{r}_{\rm obs}(t)=(t-t_{\rm obs.apo})\vec{V}_{\rm obs}+\vec{A}_{\rm obs}\,, (2.23)

where Vobs=(VobsX,VobsY,VobsZ)\vec{V}_{\rm obs}=(V^{X}_{\rm obs},V^{Y}_{\rm obs},V^{Z}_{\rm obs}) is the constant velocity of the observer and Aobs=(0,0,RGC)\vec{A}_{\rm obs}=(0,0,R_{\rm GC}) in the observational coordinates (X,Y,Z)(X,Y,Z).

2.5.2 Astrometric origin on the sky plan

The visible 2D position of S0-2 on the sky plane (astrometric data) have been observed by European group (with VLT telescope) and American group (with mainly Keck telescope and partially Gemini telescope), while the redshift of photons coming from S0-2 (spectroscopic data) have been observed by those two groups and our Japanese group (with Subaru telescope). In Fig.1, two sky planes for VLT and Keck groups are depicted. As explained below, the use of the astrometric data of S0-2 raises some additional parameters to be evaluated by fitting observational data and theoretical predictions.

The observations of S0-2 have to be performed by infrared astronomical observations, because stars at the center of our galaxy can be observable by infrared photons. Further, although Sgr A{}^{\ast\,}itself is visible by radio waves radiated by very dilute plasma gases surrounding Sgr A{}^{\ast\,}, the infrared photons from the gases are so faint that Sgr A{}^{\ast\,}is not visible for infrared telescopes. This means that the origin of the 2D sky plane can not be set exactly at Sgr A{}^{\ast\,}in infrared observations. In the actual astrometric observations, the origin of the sky plane is set at a position of, for example, an infrared flare event observed in the past in the vicinity of Sgr A{}^{\ast\,}. The position of such past flare event is not exactly at Sgr A{}^{\ast\,}and may be moving relative to Sgr A{}^{\ast\,}. Therefore, we assume that the astrometric origin is moving relative to Sgr A{}^{\ast\,}with a constant velocity. Further, because the setup of astrometric origins by VLT and Keck groups are not the same, the relative motion of the origin to Sgr A{}^{\ast\,}should be introduced individually to the two astrometric data sets of VLT and Keck groups. Hence, the 2D displacement vector Oi(t)\vec{O}_{i}(t) (i=i= VLT, Keck) from Sgr A{}^{\ast\,}to the astrometric origin on the sky plane at a given observation time tt is expressed as

OVLT(t)=(ttobs.apo)VVLT+AVLT,OKeck(t)=(ttobs.apo)VKeck+AKeck\vec{O}_{\rm VLT}(t)=(t-t_{\rm obs.apo})\vec{V}_{\rm VLT}+\vec{A}_{\rm VLT}\quad,\quad\vec{O}_{\rm Keck}(t)=(t-t_{\rm obs.apo})\vec{V}_{\rm Keck}+\vec{A}_{\rm Keck} (2.24)

where Vi=(ViX,ViY)\vec{V}_{i}=(V^{X}_{i},V^{Y}_{i}) is the 2D constant velocity of the astrometric origin relative to Sgr A{}^{\ast\,}, and Ai=(AiX,AiY)\vec{A}_{i}=(A^{X}_{i},A^{Y}_{i}) is the 2D displacement of the astrometric origin from Sgr A{}^{\ast\,}at tobs.apot_{\rm obs.apo}.

We consider that every astrometric data is the offset of the visible 2D position of S0-2 from the origin Oi(t)\vec{O}_{i}(t) at observation time tt. In fitting theoretical prediction with astrometric observational data, the theoretically calculated 2D position on the sky plane need to be corrected by OVLT(t)\vec{O}_{\rm VLT}(t) for VLT’s astrometric data and by OKeck(t)\vec{O}_{\rm Keck}(t) for Keck’s astrometric data. Then, the best-fitting values of the eight parameters of the two astrometric origins, {VVLTX,VVLTY,AVLTX,AVLTY,VKeckX,VKeckY,AKeckX,AKeckY}\{V_{\rm VLT}^{X},V_{\rm VLT}^{Y},A_{\rm VLT}^{X},A_{\rm VLT}^{Y},V_{\rm Keck}^{X},V_{\rm Keck}^{Y},A_{\rm Keck}^{X},A_{\rm Keck}^{Y}\}, should be obtained at the same time with all the other parameters in our PPN modelling (see Sect.2.5.5).

Finally in this Sect.2.5.2, let us make a comment on our treatment of the astrometric origin. When using only one astrometric data set of, for example, Keck group, we can require reasonably that the astrometric origin is moving with the observer, VKeck=(VobsX,VobsY)\vec{V}_{\rm Keck}=(V^{X}_{\rm obs},V^{Y}_{\rm obs}). However, when using two astrometric data sets of both groups, we do not know how to fix the two velocities Vi\vec{V}_{i} (i=i= VLT, Keck) in relation with Vobs\vec{V}_{\rm obs}. In this paper, we leave the two velocities Vi\vec{V}_{i} as free parameters to be evaluated by fitting observational data and theoretical predictions.

2.5.3 Black Hole’s coordinate system

Refer to caption
Figure 2: Directional angles (ΘBH,ΦBH)(\Theta_{\rm BH},\Phi_{\rm BH}) of the spin axis of Sgr A{}^{\ast\,}in the observational spatial coordinates (X,Y,Z)(X,Y,Z). “BH” denotes Sgr A{}^{\ast\,}. This spin axis is the zz-axis of the Cartesian-like spatial coordinates (x,y,z)(x,y,z) which describe the metric (2.9). These angles (ΘBH,ΦBH)(\Theta_{\rm BH},\Phi_{\rm BH}) cannot be measured with the present observational uncertainties, and then we set (ΘBH,ΦBH)=(0,0)(\Theta_{\rm BH},\Phi_{\rm BH})=(0,0) and (X,Y,Z)=(x,y,z)(X,Y,Z)=(x,y,z) in this paper. The spin effects are expected to be measurable by the near future telescope, for example Thirty-Meter-Telescope.

As shown in Fig.2, we determine the spatial rotation relating the observational spatial coordinates (X,Y,Z)(X,Y,Z) and the Cartesian-like spatial coordinates of the black hole (x,y,z)(x,y,z) by the following two conditions.

  • Let us express the direction of the spin axis of Sgr A{}^{\ast\,}in the observational coordinates (X,Y,Z)(X,Y,Z) by the zenith and azimuth angles (ΘBH,ΦBH)(\Theta_{\rm BH},\Phi_{\rm BH}) as shown in Fig.2. This spin axis is the zz-axis of the Cartesian-like coordinates which describe the metric (2.9).

  • Let us fix the yy-axis of the Cartesian-like coordinates (x,y,z)(x,y,z) in the observational coordinates (X,Y,Z)(X,Y,Z) so as to be parallel to the outer product eZ×ez\vec{e}_{Z}\times\vec{e}_{z}, where ei\vec{e}_{i} denotes the unit spatial vector along ii-axis and i=z,Zi=z,Z. Then, xx-axis is automatically fixed as a right-handed system.

Under these conditions, the coordinate transformation is given by

(X,Y,Z)=(x,y,z)𝒯[ΘBH,ΦBH],(X,Y,Z)=(x,y,z)\,{\cal T}[\Theta_{\rm BH},\Phi_{\rm BH}]\,, (2.25a)
where 𝒯[ΘBH,ΦBH]{\cal T}[\Theta_{\rm BH},\Phi_{\rm BH}] is a rotation matrix given by
𝒯[ΘBH,ΦBH]=(cosΘBH0sinΘBH010sinΘBH0cosΘBH)(cosΦBHsinΦBH0sinΦBHcosΦBH0001).{\cal T}[\Theta_{\rm BH},\Phi_{\rm BH}]=\left(\begin{array}[]{ccc}\cos\Theta_{\rm BH}&0&-\sin\Theta_{\rm BH}\\ 0&1&0\\ \sin\Theta_{\rm BH}&0&\cos\Theta_{\rm BH}\end{array}\right)\left(\begin{array}[]{ccc}\cos\Phi_{\rm BH}&\sin\Phi_{\rm BH}&0\\ -\sin\Phi_{\rm BH}&\cos\Phi_{\rm BH}&0\\ 0&0&1\end{array}\right)\,. (2.25b)

It should be noted that the black hole spin effects of Sgr A{}^{\ast\,}is not measurable by the present telescopes, and the spin magnitude aa and angles (ΘBH,ΦBH)(\Theta_{\rm BH},\Phi_{\rm BH}) cannot be evaluated. Therefore, in comparing observational data with theoretical predictions in this paper, we assume (ΘBH,ΦBH)=(0,0)(\Theta_{\rm BH},\Phi_{\rm BH})=(0,0). Under this assumption, the coincidence of spatial coordinate systems (X,Y,Z)(x,y,z)(X,Y,Z)\equiv(x,y,z) holds. When next generation telescopes, such as the Thirty-Meter-Telescope, starts scientific operations, the detection of the spin effect will be realized.

2.5.4 Initial condition of S0-2’s motion

Given a initial time for calculating a stellar motion, the number of parameters for the initial condition of the stellar motion is six for the initial spatial position and the initial spatial velocity. We determine these six parameters for S0-2 as follows.

Let us note that the pericenter distance rpr_{\rm p} of S0-2 is about a thousand times the Schwarzschild radius rschr_{\rm sch} of Sgr A{}^{\ast\,}, rp103rschr_{\rm p}\sim 10^{3}r_{\rm sch}, as indicated by Eq.(2.3). Therefore the orbit of S0-2 is almost elliptic. Then, we set the initial condition at the apocenter observed in 2010. Because the radial component of S0-2’s velocity at the apocenter vanishes, the number of parameters for the initial condition at the apocenter is reduced from six to five.

Given the initial spatial position and velocity at the apocenter, one can imagine a Keplerian elliptic motion which is determined by the given initial condition with assuming Newtonian gravity of Sgr A{}^{\ast\,}. Further the difference between the imaginary Keplerian motion and the geodesic motion by Eqs.(2.17) is minimized, because the gravity of Sgr A{}^{\ast\,}on the orbit of S0-2 becomes weakest at the apocenter. As shown in Fig.3, with referring to the imaginary Keplerian motion, we introduce a spatial coordinate system (xic,yic,zic)(x_{\rm ic},y_{\rm ic},z_{\rm ic}) relating with (X,Y,Z)(X,Y,Z) by a spatial rotation which will be given in Eqs.(2.27).

  • The zicz_{\rm ic}-axis points the same direction as the spatial angular momentum of S0-2 at the apocenter observed in 2010.

  • The xicx_{\rm ic}-axis points from the apocenter to the pericenter of the imaginary Keplerian elliptic orbit,

  • The yicy_{\rm ic}-axis is automatically fixed as a right-handed system.

In this coordinate system, the imaginary Keplerian orbit is on the xicx_{\rm ic}-yicy_{\rm ic} plane.

Refer to caption
Figure 3: The initial condition of S0-2’s motion at its apocenter observed in 2010. The orbit of S0-2 is almost elliptic, and a Keplerian elliptic motion can be imagined for given spatial position and velocity at the apocenter. This imaginary Keplerian orbit is on the xicx_{\rm ic}-yicy_{\rm ic} plane. The apocenter distance rapor_{\rm apo} and speed vapov_{\rm apo} are given by the period TstarT_{\rm star} and the eccentricity estare_{\rm star} of the imaginary Keplerian orbit. Relation between two spatial coordinate systems (xic,yic,zic)(x_{\rm ic},y_{\rm ic},z_{\rm ic}) and (X,Y,Z)(X,Y,Z) is described by three angles, IstarI_{\rm star}, Ωstar\Omega_{\rm star} and ωstar\omega_{\rm star}, where L.I. in the figure is the line of intersection of XX-YY plane and xicx_{\rm ic}-yicy_{\rm ic} plane. The ascending node is the intersection point of L.I. and the stellar orbit, corresponding to the stellar velocity going away from the observer.

The five parameters for the initial condition at the apocenter can be expressed by the five orbital parameters of the imaginary Keplerian motion; the orbital period TstarT_{\rm star}, the orbital eccentricity estare_{\rm star}, the inclination angle IstarI_{\rm star}, the ascending node angle Ωstar\Omega_{\rm star}, and the pericenter angle from the ascending node ωstar\omega_{\rm star}. The definition of the angles {Istar,Ωstar,ωstar}\{I_{\rm star},\Omega_{\rm star},\omega_{\rm star}\} are shown in Fig.3, and the other two parameters {Tstar,estar}\{T_{\rm star},e_{\rm star}\} are transformed to the apocenter distance rapor_{\rm apo} and speed vapov_{\rm apo} by the Keplerian formulas,

rapo=(1+estar)(Tstarm2π)2/3,vapo=(2πmTstar)1/31estar1+estar,r_{\rm apo}=(1+e_{\rm star})\left(\dfrac{T_{\rm star}\sqrt{m}}{2\pi}\right)^{2/3}\quad,\quad v_{\rm apo}=\left(\dfrac{2\pi\,m}{T_{\rm star}}\right)^{1/3}\sqrt{\frac{1-e_{\rm star}}{1+e_{\rm star}}}\,, (2.26)

where mm is the mass of black hole, rapor_{\rm apo} has the dimension of length, and vapov_{\rm apo} has no dimension. Note that, as will be shown in Sect.4, the difference between the Keplerian orbital period TstarT_{\rm star} and the time interval between neighboring apocenters (or pericenters) in the framework of our PPN model is of a few days, while the duration of observational operation for obtaining one observational data is about one day. The Keplerian period TstarT_{\rm star} is a good approximation as the observational orbital period.

From these five parameters {rapo,vapo,Istar,Ωstar,ωstar}\{r_{\rm apo},v_{\rm apo},I_{\rm star},\Omega_{\rm star},\omega_{\rm star}\}, the initial spatial position (Xapo,Yapo,Zapo)(X_{\rm apo},Y_{\rm apo},Z_{\rm apo}) and velocity (VapoX,VapoY,VapoZ)(V^{X}_{\rm apo},V^{Y}_{\rm apo},V^{Z}_{\rm apo}) in the observational spatial coordinate system are calculated by

(Xapo,Yapo,Zapo)=(rapo,0,0)[Istar,Ωstar,ωstar](VapoX,VapoY,VapoZ)=(0,vapo,0)[Istar,Ωstar,ωstar],\begin{split}(X_{\rm apo},Y_{\rm apo},Z_{\rm apo})&=(-r_{\rm apo},0,0)\,{\cal R}[I_{\rm star},\Omega_{\rm star},\omega_{\rm star}]\\ (V^{X}_{\rm apo},V^{Y}_{\rm apo},V^{Z}_{\rm apo})&=(0,-v_{\rm apo},0)\,{\cal R}[I_{\rm star},\Omega_{\rm star},\omega_{\rm star}]\,,\end{split} (2.27a)
where [Istar,Ωstar,ωstar]{\cal R}[I_{\rm star},\Omega_{\rm star},\omega_{\rm star}] is a rotation matrix given by
[Istar,Ωstar,ωstar]=(cosωstarsinωstar0sinωstarcosωstar0001)(1000cosIstarsinIstar0sinIstarcosIstar)(cosΩstarsinΩstar0sinΩstarcosΩstar0001).\begin{split}&{\cal R}[I_{\rm star},\Omega_{\rm star},\omega_{\rm star}]=\\ &\left(\begin{array}[]{ccc}\cos\omega_{\rm star}&\sin\omega_{\rm star}&0\\ -\sin\omega_{\rm star}&\cos\omega_{\rm star}&0\\ 0&0&1\end{array}\right)\left(\begin{array}[]{ccc}1&0&0\\ 0&\cos I_{\rm star}&-\sin I_{\rm star}\\ 0&\sin I_{\rm star}&\cos I_{\rm star}\end{array}\right)\left(\begin{array}[]{ccc}\cos\Omega_{\rm star}&\sin\Omega_{\rm star}&0\\ -\sin\Omega_{\rm star}&\cos\Omega_{\rm star}&0\\ 0&0&1\end{array}\right)\,.\end{split} (2.27b)

The initial condition in the Cartesian-like coordinate system of black hole is given from the transformation (2.25),

(xapo,yapo,zapo)\displaystyle(x_{\rm apo},y_{\rm apo},z_{\rm apo}) =\displaystyle= (Xapo,Yapo,Zapo)𝒯[ΘBH,ΦBH]1\displaystyle(X_{\rm apo},Y_{\rm apo},Z_{\rm apo})\,{\cal T}[\Theta_{\rm BH},\Phi_{\rm BH}]^{-1}
=\displaystyle= (rapo,0,0)[Istar,Ωstar,ωstar]𝒯[ΘBH,ΦBH]1\displaystyle(-r_{\rm apo},0,0)\,{\cal R}[I_{\rm star},\Omega_{\rm star},\omega_{\rm star}]\,{\cal T}[\Theta_{\rm BH},\Phi_{\rm BH}]^{-1}
(uapo1,uapo2,uapo3)\displaystyle(u^{1}_{\rm apo},u^{2}_{\rm apo},u^{3}_{\rm apo}) =\displaystyle= (VapoX,VapoY,VapoZ)𝒯[ΘBH,ΦBH]1\displaystyle(V^{X}_{\rm apo},V^{Y}_{\rm apo},V^{Z}_{\rm apo})\,{\cal T}[\Theta_{\rm BH},\Phi_{\rm BH}]^{-1}
=\displaystyle= (0,vapo,0)[Istar,Ωstar,ωstar]𝒯[ΘBH,ΦBH]1.\displaystyle(0,-v_{\rm apo},0)\,{\cal R}[I_{\rm star},\Omega_{\rm star},\omega_{\rm star}]\,{\cal T}[\Theta_{\rm BH},\Phi_{\rm BH}]^{-1}\,.
The coordinate time tstar.apot_{\rm star.apo} at which S0-2 passed the apocenter is given by
tstar.apo=tobs.apoΔtapo,t_{\rm star.apo}=t_{\rm obs.apo}-\Delta t_{\rm apo}\,, (2.28c)
where tobs.apot_{\rm obs.apo} is the time (in 2010) defined at Eq.(2.23), and Δtapo\Delta t_{\rm apo} is the propagation time of the photon from the apocenter of S0-2’s orbit to the observer at (t,X,Y,Z)=(tobs.apo,0,0,RGC)(t,X,Y,Z)=(t_{\rm obs.apo},0,0,R_{\rm GC}). The concrete formula of Δtapo\Delta t_{\rm apo} will be given from Eq.(3.10) in Sect.3.1. Further, with regarding the spatial velocity uapoju^{j}_{\rm apo} as the spatial component of the initial four velocity, the temporal component is determined by the normalization condition gμνapouapoμuapoν=1g_{\mu\nu}^{\rm apo}u^{\mu}_{\rm apo}u^{\nu}_{\rm apo}=-1,
uapo0=1g00apo(g0japouapoj(g0japouapoj)2g00apo(gjqapouapojuapoq+1)),u^{0}_{\rm apo}=\dfrac{1}{g^{\rm apo}_{00}}\Bigl{(}\,-g^{\rm apo}_{0j}u_{\rm apo}^{j}-\sqrt{(g^{\rm apo}_{0j}u_{\rm apo}^{j})^{2}-g^{\rm apo}_{00}\,\bigl{(}g^{\rm apo}_{jq}u_{\rm apo}^{j}u_{\rm apo}^{q}+1\bigr{)}}\,\Bigr{)}\,, (2.28d)
where gμνapog_{\mu\nu}^{\rm apo} is the metric tensor at the apocenter. Note that the normalization condition is regarded as a second order algebraic equation of uapo0u^{0}_{\rm apo}, whose two solutions are future pointing and past pointing. Eq.(2.28d) is the future pointing solution. Then, the future pointing initial condition for the 1-form uμapou_{\mu}^{\rm apo} is given by
uμapo=gμνapouapoν.u_{\mu}^{\rm apo}=g_{\mu\nu}^{\rm apo}u^{\nu}_{\rm apo}\,. (2.28e)

The timelike geodesic equations (2.17) are numerically integrated with the initial condition xapoμ=(tstar.apo,xapo,yapo,zapo)x^{\mu}_{\rm apo}=(t_{\rm star.apo},x_{\rm apo},y_{\rm apo},z_{\rm apo}) and uμapou_{\mu}^{\rm apo}.

2.5.5 Parameters to be evaluated by observing S0-2

From the above, the model parameters in our PPN formulation are summarized in Table 1.

Table 1: PPN model parameters to be evaluated by fitting predictions of the PPN model with observational data.
parameters for BH/Sgr A{}^{\ast\,}
Black hole mass : mm see Eq.(2.9)
Black hole spin : aa, ΘBH\Theta_{\rm BH}, ΦBH\Phi_{\rm BH} see Eqs.(2.9), (2.25)
PPN parameters : AA, BB, CzC_{z} see Eq.(2.9)
parameters for observer
Distance to Sgr A{}^{\ast\,} : RGCR_{\rm GC} see Eq.(2.23)
Observer’s velocity : VobsXV^{X}_{\rm obs}, VobsYV^{Y}_{\rm obs}, VobsZV^{Z}_{\rm obs} see Eq.(2.23)
parameters for astrometric origin
Keck’s astrometry : VKeckXV^{X}_{\rm Keck}, VKeckYV^{Y}_{\rm Keck}, AKeckXA^{X}_{\rm Keck}, AKeckYA^{Y}_{\rm Keck} see Eq.(2.24)
VLT’s astrometry : VVLTXV^{X}_{\rm VLT}, VVLTYV^{Y}_{\rm VLT}, AVLTXA^{X}_{\rm VLT}, AVLTYA^{Y}_{\rm VLT} see Eq.(2.24)
parameters for S0-2’s initial condition
Apocenter observation : tobs.apot_{\rm obs.apo} see Eqs.(2.23), (2.24), (2.28c)
Orbital period : TstarT_{\rm star} (Keplerian) see Eqs.(2.26), (2.28)
Orbital eccentricity : estare_{\rm star} (Keplerian) see Eqs.(2.26), (2.28)
Inclination angle : IstarI_{\rm star} (Keplerian) see Eq.(2.28)
Ascending node angle : Ωstar\Omega_{\rm star} (Keplerian) see Eq.(2.28)
Pericenter angle : ωstar\omega_{\rm star} (Keplerian) see Eq.(2.28)

One may think that the apocenter observation time tobs.apot_{\rm obs.apo} is easily evaluated by observing continuously the motion of S0-2 near the apocenter passage. However such continuous observation is impossible in actual observations, and we can not necessarily obtain an observational data at the time tobs.apot_{\rm obs.apo}. Therefore, the apocenter observation time tobs.apot_{\rm obs.apo} needs to be treated as a model parameter whose value should be estimated by fitting observational data and theoretical predictions.

Here let us note that, as will be estimated quantitatively in Sect.3.4, the spin effects of Sgr A{}^{\ast\,}are not measurable with the present observational uncertainties. The spin effects are expected to be measured by the next generation telescopes. Therefore, in fitting our PPN model with the present observational data, we fix the parameters for spin effects as follows.

Present undetectability of spin:{a,ΘBH,ΦBH,Cz}={0,0,0,0}.\text{Present undetectability of spin}:\{a,\Theta_{\rm BH},\Phi_{\rm BH},C_{z}\}=\{0,0,0,0\}\,. (2.29)

Our PPN model under this assumption expresses a case that a star and photons move on geodesic orbits on a static spherically symmetric gravitational field.

3 Observational quantities

In this section, we derive the formulas of the following observational quantities as functions of the observational time tt.

  • The offset of declination of S0-2 from Sgr A{}^{\ast\,}, ΔDec(t)=ΔX(t)\Delta{\rm Dec}(t)=\Delta X(t)

  • The offset of right ascension of S0-2 from Sgr A{}^{\ast\,}, ΔRA(t)=ΔY(t)\Delta{\rm RA}(t)=\Delta Y(t)

  • The redshift of photons coming from S0-2, zrs(t)z_{\rm rs}(t)

These three observational quantities of S0-2 are being obtained by VLT, Keck and our Subaru groups. As explained in Sect.2.5.2, in comparing the astrometric observables (ΔX(t),ΔY(t))(\Delta X(t),\Delta Y(t)) with the observational data, the offsets of the astrometric origins from Sgr A{}^{\ast\,}given in Eq.(2.24) have to be added to the observational data, because the actual astrometric data express the offsets of S0-2’s declination and right ascension from the astrometric origins.

The definitions of the three observational quantities are given by tetrad components of the null vector of photon detected by our observer (2.23). In Sect.3.1, the analytic solutions of the PM null geodesic equations (2.22) are obtained, and the propagation time Δt\Delta t of photons from S0-2 to the observer is also obtained. Then, in Sect.3.2 and 3.3, the formulas of the three observational quantities are constructed by using the analytic PM solutions. In Sect.3.4, the PN and PM orders which are detectable with the present telescopes are estimated.

3.1 The null geodesic connecting S0-2 and observer, and the propagation time

In this section, we assume that the timelike geodesic equations (2.17) for the S0-2’s motion have already been solved under the initial condition of S0-2’s motion given in Sect.2.5.4. Given the motion of S0-2, the null geodesics we need have to connect S0-2 and our observer. This means that we have to solve the “boundary” value problem of the null geodesic equations (2.22).

The affine parameter σ\sigma of the null geodesics in Eqs.(2.22) has the length dimension, so as to clarify the similarity with and difference from timelike geodesics. However, for the convenience of solving the boundary value problem, let us re-define the affine parameter to be non-dimensional by

σσ~:=σσc,\sigma\to\widetilde{\sigma}:=\dfrac{\sigma}{\sigma_{c}}\,, (3.1a)
where σc\sigma_{c} is a constant of length dimension so as to satisfy
σ~={0at the emission of photon by S0-21at the detection of photon by our observer.\widetilde{\sigma}=\begin{cases}0&\text{at the emission of photon by S0-2}\\ 1&\text{at the detection of photon by our observer}\end{cases}\,. (3.1b)
The concrete value of σc\sigma_{c} is not needed for calculating the observational quantities, as will be shown in Sect.3.2 and 3.3. With adopting the new affine parameter σ~\widetilde{\sigma}, the tangent vector of the null geodesic is also re-defined as
kμ(σ)k~μ(σ~):=dxμ(σ~)dσ~=σckμ(σ),k^{\mu}(\sigma)\to\widetilde{k}^{\mu}(\widetilde{\sigma}):=\dfrac{{\rm d}x^{\mu}(\widetilde{\sigma})}{{\rm d}\widetilde{\sigma}}=\sigma_{c}k^{\mu}(\sigma)\,, (3.1c)

where xμ(σ~)x^{\mu}(\widetilde{\sigma}) is the spacetime point on the null geodesic parametrized with σ~\widetilde{\sigma}. This re-defined vector k~μ\widetilde{k}^{\mu} and the 1-form k~μ(σ~)=gμν(σ~)k~ν(σ~)\widetilde{k}_{\mu}(\widetilde{\sigma})=g_{\mu\nu}(\widetilde{\sigma})\widetilde{k}^{\nu}(\widetilde{\sigma}) have the dimension of lenght. The conserved quantities (2.20) are re-evaluated as w~:=k~0=σcw\widetilde{w}:=-\widetilde{k}_{0}=\sigma_{c}w (length dimension) and l~z:=xk~2yk~1=σclz\widetilde{l}_{z}:=x\widetilde{k}_{2}-y\widetilde{k}_{1}=\sigma_{c}l_{z} (squared length dimension).

In order to solve Eqs.(2.22), we expand the dynamical variables {xμ(σ~),k~j(σ~)}\{x^{\mu}(\widetilde{\sigma}),\widetilde{k}_{j}(\widetilde{\sigma})\} and w~\widetilde{w} as

xμ(σ~)=x(0)μ(σ~)+x(1)μ(σ~)+O(rpε2)k~j(σ~)=k~j(0)(σ~)+k~j(1)(σ~)+O(σcε2)w~=w~(0)+w~(1)+O(σcε2),\begin{split}x^{\mu}(\widetilde{\sigma})&=x^{\mu}_{\rm(0)}(\widetilde{\sigma})+x^{\mu}_{\rm(1)}(\widetilde{\sigma})+O(r_{\rm p}\varepsilon^{2})\\ \widetilde{k}_{j}(\widetilde{\sigma})&=\widetilde{k}_{j}^{\rm(0)}(\widetilde{\sigma})+\widetilde{k}_{j}^{\rm(1)}(\widetilde{\sigma})+O(\sigma_{c}\varepsilon^{2})\\ \widetilde{w}&=\widetilde{w}^{\rm(0)}+\widetilde{w}^{\rm(1)}+O(\sigma_{c}\varepsilon^{2})\,,\end{split} (3.2)

where rpr_{\rm p} is the spatial distance between Sgr A{}^{\ast\,}and the photon at the point xμ(σ~)x^{\mu}(\widetilde{\sigma}), and the suffix (n)(n) denotes nnPM terms of orders x(n)μ(σ~)O(rpεn)x^{\mu}_{(n)}(\widetilde{\sigma})\sim O(r_{\rm p}\varepsilon^{n}) and k~μ(n)O(σcεn)\widetilde{k}_{\mu}^{(n)}\sim O(\sigma_{c}\varepsilon^{n}). Note that, even if some PM terms w~(n)\widetilde{w}^{(n)} of w~\widetilde{w} may by functions of σ~\widetilde{\sigma}, the summation of those terms produces the constant w~\widetilde{w}. By substituting the expansion (3.2) into Eqs.(2.22), we obtain analytic 0PM and 1PM solutions.

3.1.1 0PM solution

The 0PM order terms of Eqs.(2.22) are

dt(0)(σ~)dσ~=w~(0),dx(0)j(σ~)dσ~=k~j(0),dk~j(0)dσ~=0,\dfrac{{\rm d}t_{\rm(0)}(\widetilde{\sigma})}{{\rm d}\widetilde{\sigma}}=\widetilde{w}^{\rm(0)}\quad,\quad\dfrac{{\rm d}x_{\rm(0)}^{j}(\widetilde{\sigma})}{{\rm d}\widetilde{\sigma}}=\widetilde{k}^{\rm(0)}_{j}\quad,\quad\dfrac{{\rm d}\widetilde{k}^{\rm(0)}_{j}}{{\rm d}\widetilde{\sigma}}=0\,, (3.3a)
where the null condition (2.18b) at 0PM order gives
w~(0)=k~0(0)=j=13(k~j(0))2.\widetilde{w}^{\rm(0)}=-\widetilde{k}^{\rm(0)}_{0}=\sqrt{\sum_{j=1}^{3}\bigl{(}\widetilde{k}^{\rm(0)}_{j}\bigr{)}^{2}}\,. (3.3b)

The appropriate boundary condition of the 0PM solution parametrized by σ~\widetilde{\sigma} consists of the following seven requirements,

t(0)(0)=temi,x(0)j(0)=xemij.x(0)j(1)=xobsj,t_{\rm(0)}(0)=t_{\rm emi}\quad,\quad x_{\rm(0)}^{j}(0)=x_{\rm emi}^{j}\quad.\quad x_{\rm(0)}^{j}(1)=x_{\rm obs}^{j}\,, (3.4)

where temit_{\rm emi} is the time coordinate at which S0-2 emits the photon, xemij:=xstarj(temi)x_{\rm emi}^{j}:=x_{\rm star}^{j}(t_{\rm emi}) is the spatial coordinate of S0-2 given by the solution of the timelike geodesic equations (2.17), and xobsj=(xobs,yobs,zobs):=robs(tobs(0))𝒯[ΘBH,ΦBH]1x_{\rm obs}^{j}=(x_{\rm obs},y_{\rm obs},z_{\rm obs}):=\vec{r}_{\rm obs}(t_{\rm obs(0)}){\cal T}[\Theta_{\rm BH},\Phi_{\rm BH}]^{-1} is the spatial coordinate of our observer (2.23) at the 0PM observation time tobs(0)t_{\rm obs(0)}. Here note that the time tobs(0)t_{\rm obs(0)} needs to be determined by using the 0PM solution t(0)(σ~)t_{\rm(0)}(\widetilde{\sigma}) as tobs(0)=t(0)(1)t_{\rm obs(0)}=t_{\rm(0)}(1).

These conditions and Eqs.(3.3a) denote that the 0PM spatial vector k~(0)=jk~j(0)\widetilde{k}^{\rm(0)}\,{}^{j}=\widetilde{k}^{\rm(0)}_{j} is a “positional vector” connecting from xemijx_{\rm emi}^{j} to xobsjx_{\rm obs}^{j} as shown in the upper panel of Fig.4,

k~j(0)=(w~(0)+temitobs.apo)Vobsj+xobs.apojxemij,\widetilde{k}^{\rm(0)}_{j}=(\widetilde{w}^{\rm(0)}+t_{\rm emi}-t_{\rm obs.apo})V_{\rm obs}^{j}+x_{\rm obs.apo}^{j}-x_{\rm emi}^{j}\,, (3.5)

where Vobsj=(Vobsx,Vobsy,Vobsz)=(VobsX,VobsY,VobsZ)𝒯[ΘBH,ΦBH]1V_{\rm obs}^{j}=(V_{\rm obs}^{x},V_{\rm obs}^{y},V_{\rm obs}^{z})=(V_{\rm obs}^{X},V_{\rm obs}^{Y},V_{\rm obs}^{Z}){\cal T}[\Theta_{\rm BH},\Phi_{\rm BH}]^{-1} is the constant velocity of our observer (2.23), and xobs.apoj=(0,0,RGC)𝒯[ΘBH,ΦBH]1x_{\rm obs.apo}^{j}=(0,0,R_{\rm GC}){\cal T}[\Theta_{\rm BH},\Phi_{\rm BH}]^{-1} is the spatial position of our observer at tobs.apot_{\rm obs.apo}. Substituting Eq.(3.3b) into the right-hand side of Eq.(3.5), k~j(0)\widetilde{k}^{\rm(0)}_{j} is obtained.

Eqs.(3.5) and (3.3b) become a quadratic equation of k~j(0)\widetilde{k}^{\rm(0)}_{j}. From the two solutions of it, we choose the solution which reduces to k~j(0)=xobs.apojxapoj\widetilde{k}^{\rm(0)}_{j}=x_{\rm obs.apo}^{j}-x_{\rm apo}^{j} at temi=tstar.apo(0)t_{\rm emi}=t_{\rm star.apo(0)}, where xapojx_{\rm apo}^{j} is the spatial position of the apocenter of S0-2’s orbit and tstar.apo(0)t_{\rm star.apo(0)} is the apocenter passage time of S0-2 evaluated with 0PM photon propagation.333 This time is given by tstar.apo(0)=tobs.apow~apo(0)t_{\rm star.apo(0)}=t_{\rm obs.apo}-\widetilde{w}^{\rm(0)}_{\rm apo}, where w~apo(0)\widetilde{w}^{\rm(0)}_{\rm apo} is the 0PM conserved quantity of photon emitted from S0-2 at the apocenter. This w~apo(0)\widetilde{w}^{\rm(0)}_{\rm apo} gives the 0PM propagation time of photon from the apocenter to our observer, and satisfies w~apo(0) 2=j(xobs.apojxapoj)2\widetilde{w}_{\rm apo}^{\rm(0)\,2}=\sum_{j}(x_{\rm obs.apo}^{j}-x_{\rm apo}^{j})^{2}. Consequently the analytic 0PM solutions of Eqs.(3.3) are

t(0)(σ~)=w~(0)σ~+temix(0)j(σ~)=k~j(0)σ~+xemijk~j(0)=𝒟x+Vobsj1Vobs2[𝒟t+Vobs𝒟x+],\begin{split}t_{\rm(0)}(\widetilde{\sigma})&=\widetilde{w}^{\rm(0)}\widetilde{\sigma}+t_{\rm emi}\\ x_{\rm(0)}^{j}(\widetilde{\sigma})&=\widetilde{k}^{\rm(0)}_{j}\widetilde{\sigma}+x_{\rm emi}^{j}\\ \widetilde{k}^{\rm(0)}_{j}&={\mathcal{D}}\vec{x}+\dfrac{V_{\rm obs}^{j}}{1-V_{\rm obs}^{2}}\,\Bigl{[}\,-{\mathcal{D}}t+\vec{V}_{\rm obs}\cdot{\mathcal{D}}\vec{x}+\sqrt{\heartsuit}\,\Bigr{]}\,,\end{split} (3.6a)
and the 0PM observation time becomes
tobs(0)=t(0)(1)=w~(0)+temi,t_{\rm obs(0)}=t_{\rm(0)}(1)=\widetilde{w}^{\rm(0)}+t_{\rm emi}\,, (3.6b)
where the spatial vectors Vobs\vec{V}_{\rm obs} and 𝒟x{\mathcal{D}}\vec{x} in the above solution are the collection of spatial components in the Cartesian-like coordinates and
𝒟t:=tobs.apotemi𝒟x:=(xobs.apoxemi,yobs.apoyemi,zobs.apozemi):=(𝒟x𝒟tVobs+Vobs×𝒟x)(𝒟x𝒟tVobsVobs×𝒟x),\begin{split}{\mathcal{D}}t&:=t_{\rm obs.apo}-t_{\rm emi}\\ {\mathcal{D}}\vec{x}&:=\big{(}\,x_{\rm obs.apo}-x_{\rm emi}\,,\,y_{\rm obs.apo}-y_{\rm emi}\,,\,z_{\rm obs.apo}-z_{\rm emi}\bigr{)}\\ \heartsuit&:=\bigl{(}\,{\mathcal{D}}\vec{x}-{\mathcal{D}}t\,\vec{V}_{\rm obs}+\vec{V}_{\rm obs}\times{\mathcal{D}}\vec{x}\,\bigr{)}\cdot\bigl{(}\,{\mathcal{D}}\vec{x}-{\mathcal{D}}t\,\vec{V}_{\rm obs}-\vec{V}_{\rm obs}\times{\mathcal{D}}\vec{x}\,\bigr{)}\,,\end{split} (3.6c)

where ab:=a1b1+a2b2+a3b3\vec{a}\cdot\vec{b}:=a^{1}b^{1}+a^{2}b^{2}+a^{3}b^{3} and a×b:=(a2b3a3b2,a3b1a1b3,a1b2a2b1)\vec{a}\times\vec{b}:=\big{(}\,a^{2}b^{3}-a^{3}b^{2}\,,\,a^{3}b^{1}-a^{1}b^{3}\,,\,a^{1}b^{2}-a^{2}b^{1}\,\bigr{)} for any spatial vectors a=(a1,a2,a3)\vec{a}=(a^{1},a^{2},a^{3}) and b=(b1,b2,b3)\vec{b}=(b^{1},b^{2},b^{3}).

Refer to caption
Figure 4: 1PM correction of null geodesics. The emission event (temi,xemij)(t_{\rm emi},x_{\rm emi}^{j}) and the observation position xobsjx_{\rm obs}^{j} of photons are fixed, while the observation time tobs=tobs(0)+tobs(1)t_{\rm obs}=t_{\rm obs(0)}+t_{\rm obs(1)} and the null 1-form k~μ=k~μ(0)+k~μ(1)\widetilde{k}_{\mu}=\widetilde{k}^{\rm(0)}_{\mu}+\widetilde{k}^{\rm(1)}_{\mu} are corrected from 0PM case to 1PM case. The spatial part of 0PM 1-form k~j(0)\widetilde{k}^{\rm(0)}_{j} is the “positional vector” connecting from xemijx_{\rm emi}^{j} to xobsjx_{\rm obs}^{j}. As defined in Sect.2.5.1, the ZZ-axis of coordinates (X,Y,Z)(X,Y,Z) passes the observation position xobs.apojx_{\rm obs.apo}^{j} of the photon emitted at the apocenter passage event of S0-2.

3.1.2 1PM solution

The 1PM order terms of Eqs.(2.22) are

dt(1)(σ~)dσ~=w~(1)+2w~(0)ε(0)dx(1)j(σ~)dσ~=k~j(1)2Bk~r(0)x(0)jr(0)ε(0)dk~j(1)(σ~)dσ~=[(w~(0))2x(0)jr(0)+B( 3(k~r(0))2x(0)jr(0)2k~r(0)k~j(0))]ε(0)r(0),\begin{split}\dfrac{{\rm d}t_{\rm(1)}(\widetilde{\sigma})}{{\rm d}\widetilde{\sigma}}&=\widetilde{w}^{\rm(1)}+2\widetilde{w}^{\rm(0)}\varepsilon_{\rm(0)}\\ \dfrac{{\rm d}x_{\rm(1)}^{j}(\widetilde{\sigma})}{{\rm d}\widetilde{\sigma}}&=\widetilde{k}^{\rm(1)}_{j}-2B\widetilde{k}_{\rm r}^{\rm(0)}\dfrac{x_{\rm(0)}^{j}}{r_{\rm(0)}}\varepsilon_{\rm(0)}\\ \dfrac{{\rm d}\widetilde{k}^{\rm(1)}_{j}(\widetilde{\sigma})}{{\rm d}\widetilde{\sigma}}&=-\Bigl{[}\,\bigl{(}\widetilde{w}^{\rm(0)}\bigr{)}^{2}\,\dfrac{x_{\rm(0)}^{j}}{r_{\rm(0)}}+B\Bigl{(}\,3\bigl{(}\widetilde{k}_{\rm r}^{\rm(0)}\bigr{)}^{2}\,\dfrac{x_{\rm(0)}^{j}}{r_{\rm(0)}}-2\widetilde{k}_{\rm r}^{\rm(0)}\,\widetilde{k}^{\rm(0)}_{j}\,\Bigr{)}\,\Bigr{]}\,\dfrac{\varepsilon_{\rm(0)}}{r_{\rm(0)}}\,,\end{split} (3.7a)
where r(0)(σ~)=x(0)2+y(0)2+z(0)2r_{\rm(0)}(\widetilde{\sigma})=\sqrt{x_{\rm(0)}^{2}+y_{\rm(0)}^{2}+z_{\rm(0)}^{2}}, ε(0)(σ~)=m/r(0)\varepsilon_{\rm(0)}(\widetilde{\sigma})=m/r_{\rm(0)}, k~r(0)(σ~)=r(0)1x(0)jk~j(0)\widetilde{k}^{\rm(0)}_{\rm r}(\widetilde{\sigma})=r_{\rm(0)}^{-1}x_{\rm(0)}^{j}\widetilde{k}^{\rm(0)}_{j}, and the null condition (2.18b) at 1PM order gives
w~(1)(σ~)=k~0(1)(σ~)=12w~(0)(g(1)μνk~μ(0)k~ν(0)+2j=13k~j(0)k~j(1)),\widetilde{w}^{\rm(1)}(\widetilde{\sigma})=-\widetilde{k}^{\rm(1)}_{0}(\widetilde{\sigma})=\dfrac{1}{2\widetilde{w}^{\rm(0)}}\Bigl{(}\,g_{\rm(1)}^{\mu\nu}\widetilde{k}^{\rm(0)}_{\mu}\widetilde{k}^{\rm(0)}_{\nu}+2\sum_{j=1}^{3}\widetilde{k}^{\rm(0)}_{j}\widetilde{k}^{\rm(1)}_{j}\,\Bigr{)}\,, (3.7b)
where g(1)μν(σ~)g_{\rm(1)}^{\mu\nu}(\widetilde{\sigma}) is the terms of O(ε)O(\varepsilon) in the inverse metric (2.9b),
g(1)00(σ~)=2ε(0),g(1)0j=0,g(1)ij(σ~)=2Bx(0)ix(0)jr(0)2ε(0).g_{\rm(1)}^{00}(\widetilde{\sigma})=-2\varepsilon_{\rm(0)}\quad,\quad g_{\rm(1)}^{0j}=0\quad,\quad g_{\rm(1)}^{ij}(\widetilde{\sigma})=-2B\dfrac{x_{\rm(0)}^{i}x_{\rm(0)}^{j}}{r_{\rm(0)}^{2}}\varepsilon_{\rm(0)}\,. (3.7c)

The appropriate boundary condition of the 1PM solution consists of the followings,

t(1)(0)=0,x(1)j(0)=0.x(1)j(1)=0.t_{\rm(1)}(0)=0\quad,\quad x_{\rm(1)}^{j}(0)=0\quad.\quad x_{\rm(1)}^{j}(1)=0\,. (3.8)

This boundary condition denotes that, as shown in Fig.4, the emission event of photon by S0-2 xemiμx_{\rm emi}^{\mu} and the spatial observation position of our observer xobsjx_{\rm obs}^{j} are the same with 0PM case, while the observation time is corrected as tobs=tobs(0)+tobs(1)t_{\rm obs}=t_{\rm obs(0)}+t_{\rm obs(1)}, where tobs(1)=t(1)(1)t_{\rm obs(1)}=t_{\rm(1)}(1).

Under the above conditions, the 1PM equations (3.7), with substituting the 0PM analytic solutions (3.6), can be integrated analytically. In Appendix B, a few notes on this integration is summarized. Further, let us emphasize that the necessary information for calculating the observational quantities are the observation time tobs(1)t_{\rm obs(1)}, and the null 1-forms at the emission k~μemi(1)=k~μ(1)(0)\widetilde{k}^{\rm emi(1)}_{\mu}=\widetilde{k}^{\rm(1)}_{\mu}(0) and at the observation k~μobs(1)=k~μ(1)(1)\widetilde{k}^{\rm obs(1)}_{\mu}=\widetilde{k}^{\rm(1)}_{\mu}(1). These necessary 1PM quantities, which are obtained by integrating Eqs.(3.7a), are as follows.

k~jemi(1)\displaystyle\widetilde{k}^{\rm emi(1)}_{j} =\displaystyle= 2Bm(xobsjrobsxemijremi)\displaystyle-2Bm\,\Bigl{(}\,\dfrac{x_{\rm obs}^{j}}{r_{\rm obs}}-\dfrac{x_{\rm emi}^{j}}{r_{\rm emi}}\,\Bigr{)}
mk~j(0)[1Bw~(0)ln|w~(0)+2w~(0)robs+b(0)w~(0)remi+b(0)|\displaystyle-m\,\widetilde{k}^{\rm(0)}_{j}\,\Biggl{[}\,\dfrac{1-B}{\widetilde{w}^{\rm(0)}}\ln\Bigl{|}\,\dfrac{\widetilde{w}^{\rm(0)}\,{}^{2}+\widetilde{w}^{\rm(0)}r_{\rm obs}+b^{\rm(0)}}{\widetilde{w}^{\rm(0)}r_{\rm emi}+b^{\rm(0)}}\,\Bigr{|}
Bw~(0)2(w~(0)+2b(0)robsb(0)remi+b(0)2remi3)1remi]\displaystyle\phantom{-m\,\widetilde{k}^{\rm(0)}_{j}\,\Bigl{[}\,}-\dfrac{B}{\widetilde{w}^{\rm(0)}\,{}^{2}}\Bigl{(}\,\dfrac{\widetilde{w}^{\rm(0)}\,{}^{2}+b^{\rm(0)}}{r_{\rm obs}}-\dfrac{b^{\rm(0)}}{r_{\rm emi}}+\dfrac{b^{\rm(0)}\,{}^{2}}{r_{\rm emi}^{3}}\,\Bigr{)}-\dfrac{1}{r_{\rm emi}}\,\Biggr{]}
mqj(0)[1+Bremi2(b(0)/w~(0))2(robsremi+b(0)remi)B(1robs1remi+b(0)remi3)]\displaystyle-m\,q^{\rm(0)}_{j}\,\Biggl{[}\,\dfrac{1+B}{r_{\rm emi}^{2}-(b^{\rm(0)}/\widetilde{w}^{\rm(0)})^{2}}\Bigl{(}\,r_{\rm obs}-r_{\rm emi}+\dfrac{b^{\rm(0)}}{r_{\rm emi}}\,\Bigr{)}-B\,\Bigl{(}\,\dfrac{1}{r_{\rm obs}}-\dfrac{1}{r_{\rm emi}}+\dfrac{b^{\rm(0)}}{r_{\rm emi}^{3}}\,\Bigr{)}\,\Biggr{]}
k~jobs(1)\displaystyle\widetilde{k}^{\rm obs(1)}_{j} =\displaystyle= k~emi(1)\displaystyle\widetilde{k}^{\rm emi(1)}
+mk~j(0)[(1+B)(1robs1remi)B(remi2(b(0)w~(0))2)(1robs31remi3)]\displaystyle+m\,\widetilde{k}^{\rm(0)}_{j}\,\Biggl{[}\,(1+B)\,\Bigl{(}\,\dfrac{1}{r_{\rm obs}}-\dfrac{1}{r_{\rm emi}}\,\Bigr{)}-B\Bigl{(}\,r_{\rm emi}^{2}-\Bigl{(}\dfrac{b^{\rm(0)}}{\widetilde{w}^{\rm(0)}}\Bigr{)}^{2}\,\Bigl{)}\,\Bigl{(}\,\dfrac{1}{r_{\rm obs}^{3}}-\dfrac{1}{r_{\rm emi}^{3}}\,\Bigr{)}\,\Biggr{]}
+mqj(0)[1+Bremi2(b(0)/w~(0))2(w~(0)+2b(0)robsb(0)remi)\displaystyle+m\,q^{\rm(0)}_{j}\,\Biggl{[}\,-\dfrac{1+B}{r_{\rm emi}^{2}-(b^{\rm(0)}/\widetilde{w}^{\rm(0)})^{2}}\Bigl{(}\,\dfrac{\widetilde{w}^{\rm(0)}\,{}^{2}+b^{\rm(0)}}{r_{\rm obs}}-\dfrac{b^{\rm(0)}}{r_{\rm emi}}\,\Bigr{)}
+B(w~(0)+2b(0)robs3b(0)remi3)]\displaystyle\phantom{+m\,q^{\rm(0)}_{j}\,\Biggl{[}\,}+B\Bigl{(}\,\dfrac{\widetilde{w}^{\rm(0)}\,{}^{2}+b^{\rm(0)}}{r_{\rm obs}^{3}}-\dfrac{b^{\rm(0)}}{r_{\rm emi}^{3}}\,\Bigr{)}\,\Biggr{]}
tobs(1)=Bmw~(0)(w~(0)+2b(0)robsb(0)remi)+(1+B)mln|w~(0)+2w~(0)robs+b(0)w~(0)remi+b(0)|,t_{\rm obs(1)}=-B\dfrac{m}{\widetilde{w}^{\rm(0)}}\Bigl{(}\,\dfrac{\widetilde{w}^{\rm(0)}\,{}^{2}+b^{\rm(0)}}{r_{\rm obs}}-\dfrac{b^{\rm(0)}}{r_{\rm emi}}\,\Bigr{)}+(1+B)\,m\,\ln\Bigl{|}\,\dfrac{\widetilde{w}^{\rm(0)}\,{}^{2}+\widetilde{w}^{\rm(0)}r_{\rm obs}+b^{\rm(0)}}{\widetilde{w}^{\rm(0)}r_{\rm emi}+b^{\rm(0)}}\,\Bigr{|}\,, (3.9c)
where remi=r(0)(0)r_{\rm emi}=r_{\rm(0)}(0), robs=r(0)(1)r_{\rm obs}=r_{\rm(0)}(1), and
b(0):=xemijk~j(0),qj(0):=xemijb(0)w~(0)2k~j(0).b^{\rm(0)}:=x_{\rm emi}^{j}\widetilde{k}^{\rm(0)}_{j}\quad,\quad q^{\rm(0)}_{j}:=x_{\rm emi}^{j}-\dfrac{b^{\rm(0)}}{\widetilde{w}^{\rm(0)}\,{}^{2}}\widetilde{k}^{\rm(0)}_{j}\,. (3.9d)

This qj(0)q^{\rm(0)}_{j} is the perpendicular part of xemijx_{\rm emi}^{j} to k~j(0)\widetilde{k}^{\rm(0)}_{j} as implied by an identity, jqj(0)k~j(0)0\sum_{j}q^{\rm(0)}_{j}\widetilde{k}^{\rm(0)}_{j}\equiv 0. The propagation time of photon Δt\Delta t up to 1PM order is given by

Δttobs(0)+tobs(1)temi,\Delta t\simeq t_{\rm obs(0)}+t_{\rm obs(1)}-t_{\rm emi}\,, (3.10)

and the term Δtapo\Delta t_{\rm apo} in Eq.(2.28c) is given by evaluating this Δt\Delta t at the apocenter passage of S0-2. Concerning these 1PM solutions, let us make two notes:

  • In the 1PM solutions (3.9), the PPN parameter BB appears explicitly, while the other PPN parameters AA and CzC_{z} do not. Because the 1PM null geodesic equations (3.7) includes BB but not AA and CzC_{z}.

  • The PPN parameters AA and CzC_{z} affect the 1PM solutions implicitly through the emission event of photon xemiμx_{\rm emi}^{\mu} which is determined by the S0-2’s motion. Because the S0-2’s motion is determined by the timelike geodesic equations (2.17) which depend on AA and BB at 1PN order and on CzC_{z} at 1.5PN order.

3.2 Astrometric observables: Right Ascension and Declination

Let us proceed to define the astrometric observables; the offsets of declination and right ascension of S0-2 from Sgr A{}^{\ast\,}, ΔDec=ΔX\Delta{\rm Dec}=\Delta X and ΔRA=ΔY\Delta{\rm RA}=\Delta Y. They are defined with the tetrad components of the observed photon’s four velocity vector kobs(I)=σc1k~obs(I)k_{\rm obs}^{(I)}=\sigma_{c}^{-1}\widetilde{k}_{\rm obs}^{(I)} (I=t,X,Y,ZI=t,X,Y,Z) aligned with the axes of observational coordinates (t,X,Y,Z)(t,X,Y,Z). The observables are defined as

ΔX:=arctankobs(X)kobs(Z)=arctank~obs(X)k~obs(Z),ΔY:=arctankobs(Y)kobs(Z)=arctank~obs(Y)k~obs(Z).\Delta X:=\arctan\dfrac{k^{(X)}_{\rm obs}}{k^{(Z)}_{\rm obs}}=\arctan\dfrac{\widetilde{k}^{(X)}_{\rm obs}}{\widetilde{k}^{(Z)}_{\rm obs}}\quad,\quad\Delta Y:=\arctan\dfrac{k^{(Y)}_{\rm obs}}{k^{(Z)}_{\rm obs}}=\arctan\dfrac{\widetilde{k}^{(Y)}_{\rm obs}}{\widetilde{k}^{(Z)}_{\rm obs}}\,. (3.11)

These are not affected by the value of σc\sigma_{c}. Here note that, because the gravity of Sgr A{}^{\ast\,}can be ignored at our observer as discussed in Sect.2.5.1, the tetrad components k~obs(I)\widetilde{k}_{\rm obs}^{(I)} are regarded as the coordinate components k~obsI=ηIJk~Jobs\widetilde{k}_{\rm obs}^{I}=\eta^{IJ}\widetilde{k}^{\rm obs}_{J} in the observational coordinates, where ηIJ=diag(1,1,1,1)\eta^{IJ}={\rm diag}(-1,1,1,1). Further, by the coordinate transformation (2.25), the spatial components of this null vector is calculated as

(k~obsX,k~obsY,k~obsZ)=(k~Xobs,k~Yobs,k~Zobs)=(k~xobs,k~yobs,k~zobs)𝒯[ΘBH,ΦBH],\bigl{(}\,\widetilde{k}_{\rm obs}^{X}\,,\,\widetilde{k}_{\rm obs}^{Y}\,,\,\widetilde{k}_{\rm obs}^{Z}\,\bigr{)}=\bigl{(}\,\widetilde{k}^{\rm obs}_{X}\,,\,\widetilde{k}^{\rm obs}_{Y}\,,\,\widetilde{k}^{\rm obs}_{Z}\,\bigr{)}=\bigl{(}\,\widetilde{k}^{\rm obs}_{x}\,,\,\widetilde{k}^{\rm obs}_{y}\,,\,\widetilde{k}^{\rm obs}_{z}\,\bigr{)}{\cal T}[\Theta_{\rm BH},\Phi_{\rm BH}]\,, (3.12)

where the null 1-form at our observer k~jobs=k~j(0)+k~jobs(1)+O(σcε2)\widetilde{k}^{\rm obs}_{j}=\widetilde{k}^{\rm(0)}_{j}+\widetilde{k}^{\rm obs(1)}_{j}+O(\sigma_{c}\varepsilon^{2}) in (x,y,z)(x,y,z) coordinates are already given in Eqs.(3.6) and (3.9).

Under the present undetectablity of BH’s spin (2.29), we set {ΘBH,ΦBH}={0,0}\{\Theta_{\rm BH},\Phi_{\rm BH}\}=\{0,0\} and then the PM expansion of the astrometric observables are obtained,

ΔX=ΔX(0)+ΔX(1)+O(ε2),ΔY=ΔY(0)+ΔY(1)+O(ε2),\Delta X=\Delta X^{\rm(0)}+\Delta X^{\rm(1)}+O(\varepsilon^{2})\quad,\quad\Delta Y=\Delta Y^{\rm(0)}+\Delta Y^{\rm(1)}+O(\varepsilon^{2})\,, (3.13a)
where the terms of O(1)O(1) are
ΔX(0)=k~x(0)k~z(0),ΔY(0)=k~y(0)k~z(0),\Delta X^{\rm(0)}=\dfrac{\widetilde{k}^{\rm(0)}_{x}}{\widetilde{k}^{\rm(0)}_{z}}\quad,\quad\Delta Y^{\rm(0)}=\dfrac{\widetilde{k}^{\rm(0)}_{y}}{\widetilde{k}^{\rm(0)}_{z}}\,, (3.13b)
and the terms of O(ε)O(\varepsilon) are
ΔX(1)=k~xobs(1)k~z(0)k~x(0)k~z(0)k~zobs(1)k~z(0),ΔY(1)=k~yobs(1)k~z(0)k~y(0)k~z(0)k~zobs(1)k~z(0).\Delta X^{\rm(1)}=\dfrac{\widetilde{k}^{\rm obs(1)}_{x}}{\widetilde{k}^{\rm(0)}_{z}}-\dfrac{\widetilde{k}^{\rm(0)}_{x}}{\widetilde{k}^{\rm(0)}_{z}}\dfrac{\widetilde{k}^{\rm obs(1)}_{z}}{\widetilde{k}^{\rm(0)}_{z}}\quad,\quad\Delta Y^{\rm(1)}=\dfrac{\widetilde{k}^{\rm obs(1)}_{y}}{\widetilde{k}^{\rm(0)}_{z}}-\dfrac{\widetilde{k}^{\rm(0)}_{y}}{\widetilde{k}^{\rm(0)}_{z}}\dfrac{\widetilde{k}^{\rm obs(1)}_{z}}{\widetilde{k}^{\rm(0)}_{z}}\,. (3.13c)

It should be emphasized that the unit of ΔX\Delta X and ΔY\Delta Y in Eq.(3.13) is radian, while the unit of astrometric observational values is usually arcsec.

3.3 Spectroscopic observable: Redshift

The redshift of photons coming from S0-2 to our observer, zrs(t)z_{\rm rs}(t), is defined from the frequency at the emission by S0-2, νemi\nu_{\rm emi}, and that at the observation by our observer, νobs\nu_{\rm obs},

zrs(tobs):=νemi(temi)νobs(tobs)1,z_{\rm rs}(t_{\rm obs}):=\dfrac{\nu_{\rm emi}(t_{\rm emi})}{\nu_{\rm obs}(t_{\rm obs})}-1\,, (3.14)

where temit_{\rm emi} is the emission time of the photon which is determined by the observation time tobst_{\rm obs}, and up to the 1PM order of photon’s propagation tobs=tobs(0)+tobs(1)t_{\rm obs}=t_{\rm obs(0)}+t_{\rm obs(1)}, Eq.(3.6b) gives temi=tobsw~(0)tobs(1)t_{\rm emi}=t_{\rm obs}-\widetilde{w}^{\rm(0)}-t_{\rm obs(1)}. The frequencies in the definition (3.14) are given by

νemi(temi):=ustarμkμemi=σc1ustarμk~μemiνobs(tobs):=uobsμkμobs=σc1uobsμk~μobs,\begin{split}\nu_{\rm emi}(t_{\rm emi})&:=-u_{\rm star}^{\mu}k^{\rm emi}_{\mu}=-\sigma_{c}^{-1}u_{\rm star}^{\mu}\widetilde{k}^{\rm emi}_{\mu}\\ \nu_{\rm obs}(t_{\rm obs})&:=-u_{\rm obs}^{\mu}k^{\rm obs}_{\mu}=-\sigma_{c}^{-1}u_{\rm obs}^{\mu}\widetilde{k}^{\rm obs}_{\mu}\,,\end{split} (3.15)

where ustarμu_{\rm star}^{\mu} is the four velocity of S0-2 at temit_{\rm emi}, and uobsμu_{\rm obs}^{\mu} is the four velocity of our observer at tobst_{\rm obs}, k~μemi\widetilde{k}^{\rm emi}_{\mu} and k~μobs\widetilde{k}^{\rm obs}_{\mu} are respectively the 1-from conjugate to the photon’s four velocity at the emission event and that at the observation event. It is obvious that the definition of redshift (3.14) is not affected by the value of σc\sigma_{c}.

The expansion of zrsz_{\rm rs} by the parameter ε=m/r\varepsilon=m/r is given by the expansion of frequencies νemi\nu_{\rm emi} and νobs\nu_{\rm obs}. Let us calculate the expansion of νemi\nu_{\rm emi} from the following form,

νemi=gemiμνuμstarkνemi=gemi00Ew+g0j(wujstar+Ekjemi)gemiijuistarkjemi,\nu_{\rm emi}=-g_{\rm emi}^{\mu\nu}u^{\rm star}_{\mu}k^{\rm emi}_{\nu}=-g_{\rm emi}^{00}Ew+g^{0j}\,(wu^{\rm star}_{j}+Ek^{\rm emi}_{j})-g_{\rm emi}^{ij}u^{\rm star}_{i}k^{\rm emi}_{j}\,, (3.16)

where gemiμνg^{\mu\nu}_{\rm emi} is the metric at the emission event. We need not only the expansion of spatial components ujemiu^{\rm emi}_{j} and kjemik^{\rm emi}_{j} but also the expansion of the conserved quantities E=u0starE=-u^{\rm star}_{0} and w=k0emiw=-k^{\rm emi}_{0}. Further, the expansion of EE and ww is obtained from the normalization conditions gemiμνuμstaruνstar=1g_{\rm emi}^{\mu\nu}u^{\rm star}_{\mu}u^{\rm star}_{\nu}=-1 and gemiμνkμemikνemi=0g_{\rm emi}^{\mu\nu}k^{\rm emi}_{\mu}k^{\rm emi}_{\nu}=0. Substituting the expansion of gemiμνg_{\rm emi}^{\mu\nu} given in Eq.(2.9b) into the normalization conditions, we obtain 444 The normalization conditions u2=1u^{2}=-1 and k2=0k^{2}=0 give quadratic equations of EE and ww. We choose the solutions satisfying E>0E>0 and w>0w>0 at the limit of no black hole, m0m\to 0 and a0a\to 0.

E=1+12j=13(ujemi)2εemi+O(εemi2)w=|kemi|[ 1{ 1+B(kremi|kemi|)2}εemi+O(εemi2)],\begin{split}E&=1+\dfrac{1}{2}\sum_{j=1}^{3}(u^{\rm emi}_{j})^{2}-\varepsilon_{\rm emi}+O(\varepsilon_{\rm emi}^{2})\\ w&=|k^{\rm emi}|\,\Bigl{[}\,1-\Bigl{\{}\,1+B\Bigl{(}\dfrac{k^{\rm emi}_{\rm r}}{|k^{\rm emi}|}\Bigr{)}^{2}\,\Bigr{\}}\,\varepsilon_{\rm emi}+O(\varepsilon_{\rm emi}^{2})\,\Bigr{]}\,,\end{split} (3.17)

where εemi=m/remi\varepsilon_{\rm emi}=m/r_{\rm emi} , |kemi|=j=13(kjemi)2|k^{\rm emi}|=\sqrt{\sum_{j=1}^{3}(k^{\rm emi}_{j})^{2}} and kremik_{\rm r}^{\rm emi} is in Eq.(2.21b). Then, substituting the expansion of gemiμνg_{\rm emi}^{\mu\nu} and Eq.(3.17) into Eq.(3.16), we obtain

νemiw=1O(1)jkjemi|kemi|ujemiO(εemi0.5)+12j(ujemi)2+εemiO(εemi)+[( 1+B(kremi|kemi|)2)jkjemi|kemi|ujemi+2Bkremi|kemi|uremi]εemiO(εemi1.5)+O(εemi2),\begin{array}[]{rll}\dfrac{\nu_{\rm emi}}{w}=&1&\cdots O(1)\\ &-\sum_{j}\dfrac{k^{\rm emi}_{j}}{|k^{\rm emi}|}u^{\rm emi}_{j}&\cdots O(\varepsilon_{\rm emi}^{0.5})\\ &+\dfrac{1}{2}\sum_{j}(u^{\rm emi}_{j})^{2}+\varepsilon_{\rm emi}&\cdots O(\varepsilon_{\rm emi})\\ &+\Bigl{[}\,\Bigl{(}\,1+B\Bigl{(}\dfrac{k^{\rm emi}_{\rm r}}{|k^{\rm emi}|}\Bigr{)}^{2}\,\Bigr{)}\sum_{j}\dfrac{k^{\rm emi}_{j}}{|k^{\rm emi}|}u^{\rm emi}_{j}+2B\dfrac{k^{\rm emi}_{\rm r}}{|k^{\rm emi}|}u^{\rm emi}_{\rm r}\,\Bigr{]}\,\varepsilon_{\rm emi}&\cdots O(\varepsilon_{\rm emi}^{1.5})\\ &+O(\varepsilon_{\rm emi}^{2})\,,&\end{array} (3.18)

where let us note that the expansions of the spatial components ujemiu^{\rm emi}_{j} and kjemik^{\rm emi}_{j} have not been substituted yet, and the order of terms is counted with kjemiO(1)k^{\rm emi}_{j}\sim O(1) and ujemiO(εemi0.5)u^{\rm emi}_{j}\sim O(\varepsilon_{\rm emi}^{0.5}).

Next, in order to calculate the expansion of νobs\nu_{\rm obs}, let us specify the four velocity of our observer,

uobsμ=γobs( 1,vobsx,vobsy,vobsz),γobs=(1vobs 2)1/21,u_{\rm obs}^{\mu}=\gamma_{\rm obs}\left(\,1\,,\,v_{\rm obs}^{x}\,,\,v_{\rm obs}^{y}\,,\,v_{\rm obs}^{z}\,\right)\quad,\quad\gamma_{\rm obs}=\bigl{(}1-\vec{v}_{\rm obs}^{\,2}\bigr{)}^{-1/2}\approx 1\,, (3.19)

where vobsjv_{\rm obs}^{j} is the spatial velocity in the Cartesian-like coordinates (x,y,z)(x,y,z), and we can approximate the gamma factor γobs\gamma_{\rm obs} being unity as discussed in Sect.2.5.1. Then, following the same line of calculations for Eq.(3.18) together with uμobsu^{\rm obs}_{\mu}, the expansion of νobs\nu_{\rm obs} is obtained,

νobsw=1O(1)jkjobs|kobs|ujobsO(εobs0.5)+O(εobs),\begin{array}[]{rcll}\dfrac{\nu_{\rm obs}}{w}&=&1&\cdots O(1)\\ &&-\sum_{j}\dfrac{k^{\rm obs}_{j}}{|k^{\rm obs}|}u^{\rm obs}_{j}&\cdots O(\varepsilon_{\rm obs}^{0.5})\\ &&+O(\varepsilon_{\rm obs})\,,&\end{array} (3.20)

where εobs=m/robs\varepsilon_{\rm obs}=m/r_{\rm obs}, and the expansion of the spatial component kjemik^{\rm emi}_{j} has not been substituted yet. Further let us note that, due to the order of parameters εobsvobs 2108\varepsilon_{\rm obs}\simeq\vec{v}_{\rm obs}^{\,2}\sim 10^{-8} as given in Sect.2.5.1 and εemiεperi103\varepsilon_{\rm emi}\simeq\varepsilon_{\rm peri}\sim 10^{-3} as given in Eq.(2.3), we need the expansion of νobs\nu_{\rm obs} up to the term of O(εobs0.5)O(εemi1.5)O(\varepsilon_{\rm obs}^{0.5})\simeq O(\varepsilon_{\rm emi}^{1.5}).

From the above we obtain the expansion of zrsz_{\rm rs} by substituting Eqs.(3.18) and (3.20) into the definition (3.14). Further we introduce the PN/PM expansion of ujemiu^{\rm emi}_{j}, kjemik^{\rm emi}_{j} and kjobsk^{\rm obs}_{j}, which can be expressed as

uj=uj(0.5)+uj(1)+u(1.5)+O(ε2),kj=kj(0)+kj(1)+O(ε2),u_{j}=u^{\rm(0.5)}_{j}+u^{\rm(1)}_{j}+u^{\rm(1.5)}+O(\varepsilon^{2})\quad,\quad k_{j}=k^{\rm(0)}_{j}+k^{\rm(1)}_{j}+O(\varepsilon^{2})\,, (3.21)

where O(uj(n))εnO(u^{\rm(n)}_{j})\sim\varepsilon^{n} (n=0.5,1,1.5,n=0.5,1,1.5,\cdots) due to εu 2\varepsilon\sim\vec{u}^{\,2}, and O(kj(l))εlO(k^{\rm(l)}_{j})\sim\varepsilon^{l} (l=0,1,2,l=0,1,2,\cdots). Thus we obtain

zrs=zrs(newton)+zrs(1PN)+zrs(1.5PN+1PM)+O(εemi2),z_{\rm rs}=z_{\rm rs}^{\rm(newton)}+z_{\rm rs}^{\rm(1PN)}+z_{\rm rs}^{\rm(1.5PN+1PM)}+O(\varepsilon_{\rm emi}^{2})\,, (3.22a)
where zrs(newton)z_{\rm rs}^{\rm(newton)} consists of the terms of O(εemi0.5)O(\varepsilon_{\rm emi}^{0.5}) and O(εobs0.5)O(\varepsilon_{\rm obs}^{0.5}) which correspond to the formula of redshift in Newtonian dynamics,
zrs(newton)=jkjobs(0)|kobs(0)|vobsjjkjemi(0)|kemi(0)|ujemi(0.5),z_{\rm rs}^{\rm(newton)}=\sum_{j}\dfrac{k^{\rm obs(0)}_{j}}{|k^{\rm obs(0)}|}v_{\rm obs}^{j}-\sum_{j}\dfrac{k^{\rm emi(0)}_{j}}{|k^{\rm emi(0)}|}u^{\rm emi(0.5)}_{j}\,, (3.22b)
zrs(1PN)z_{\rm rs}^{\rm(1PN)} consists of the terms of O(εemi)O(\varepsilon_{\rm emi}) which include up to 1PN effect of S0-2’s motion and 0PM effect of kμemik^{\rm emi}_{\mu},
zrs(1PN)=12j(ujemi(0.5))2+εemijkjemi(0)|kemi(0)|ujemi(1)z_{\rm rs}^{\rm(1PN)}=\dfrac{1}{2}\sum_{j}(u^{\rm emi(0.5)}_{j})^{2}+\varepsilon_{\rm emi}-\sum_{j}\dfrac{k^{\rm emi(0)}_{j}}{|k^{\rm emi(0)}|}u^{\rm emi(1)}_{j} (3.22c)
and zrs(1.5PN+1PM)z_{\rm rs}^{\rm(1.5PN+1PM)} consists of the terms of O(εemi1.5)O(\varepsilon_{\rm emi}^{1.5}) which include up to the 1.5PN effect of S0-2’s motion and the 1PM effect of kμemik^{\rm emi}_{\mu},
zrs(1.5PN+1PM)=[( 1+B(kremi(0)|kemi(0)|)2)jkjemi(0)|kemi(0)|ujemi(0.5)+2Bkremi(0)|kemi(0)|uremi(0.5)]εemij[kjemi(1)|kemi(0)|ujemi(0.5)+kjemi(0)qkqemi(1)|kemi(0)|3ujemi(0.5)+kjemi(0)|kemi(0)|ujemi(1.5)].\begin{split}z_{\rm rs}^{\rm(1.5PN+1PM)}=&\Biggl{[}\,\Bigl{(}\,1+B\Bigl{(}\dfrac{k^{\rm emi(0)}_{\rm r}}{|k^{\rm emi(0)}|}\Bigr{)}^{2}\,\Bigr{)}\sum_{j}\dfrac{k^{\rm emi(0)}_{j}}{|k^{\rm emi(0)}|}u^{\rm emi(0.5)}_{j}+2B\dfrac{k^{\rm emi(0)}_{\rm r}}{|k^{\rm emi(0)}|}u^{\rm emi(0.5)}_{\rm r}\,\Biggr{]}\,\varepsilon_{\rm emi}\\ &-\sum_{j}\Biggl{[}\,\dfrac{k^{\rm emi(1)}_{j}}{|k^{\rm emi(0)}|}u^{\rm emi(0.5)}_{j}+\dfrac{k^{\rm emi(0)}_{j}\sum_{q}k^{\rm emi(1)}_{q}}{|k^{\rm emi(0)}|^{3}}u^{\rm emi(0.5)}_{j}+\dfrac{k^{\rm emi(0)}_{j}}{|k^{\rm emi(0)}|}u^{\rm emi(1.5)}_{j}\,\Biggr{]}\,.\end{split} (3.22d)

Let us note on the term zrs(1.5PN+1PM)z_{\rm rs}^{\rm(1.5PN+1PM)} that the 1.5PN effect of S0-2’s motion appears as ujemi(1.5)u^{\rm emi(1.5)}_{j} in the last term in Eq.(3.22d), and the PPN parameter BB does not couple with ujemi(1.5)u^{\rm emi(1.5)}_{j}. The parameter BB couples with 0PN effect of S0-2’s motion and 0PM effect of photon’s emission momentum.

3.4 Observable PN/PM effects

In order to judge the highest PN/PM order which is detectable with the present telescopes, we need typical observational uncertainties of observables,

obs. uncertainty in astrometry:δ[ΔX],δ[ΔY]104arcsecobs. uncertainty in spectroscopy:δ[zrs]6×105cδ[zrs]20km/sobs. uncertainty of observation time:δ[tobs]1day1.5×103min,\begin{split}\text{obs. uncertainty in astrometry}&:\delta[\Delta X]\,,\,\delta[\Delta Y]\sim 10^{-4}\,\,\text{arcsec}\\ \text{obs. uncertainty in spectroscopy}&:\delta[z_{\rm rs}]\sim 6\times 10^{-5}\,\Leftrightarrow\,c\,\delta[z_{\rm rs}]\sim 20\,\text{km/s}\\ \text{obs. uncertainty of observation time}&:\delta[t_{\rm obs}]\sim 1\,\,\text{day}\sim 1.5\times 10^{3}\,\,\text{min}\,,\end{split} (3.23a)
where δ[O]\delta[O] denotes the observational uncertainty of observable OO. Note that, according to the observational values of {ΔX,ΔY}\{\Delta X,\Delta Y\} shown in Appendix C, the observational uncertainty in astrometry is typically translated to
δ[ΔX],δ[ΔY]1%.\delta[\Delta X]\,,\,\delta[\Delta Y]\sim 1\%\,. (3.23b)

On the other hand, we find from Eq.(2.2),

O(remirobs)120AU8kpc107.O\left(\dfrac{r_{\rm emi}}{r_{\rm obs}}\right)\sim\dfrac{120\,\,\text{AU}}{8\,\,\text{kpc}}\sim 10^{-7}\,. (3.24)

Further we find the following order relations from Eqs.(3.6) and (3.9d),

O(k~j(0))O(w~(0))O(𝒟x)O(robs)O(b(0))O(remirobs)O(qj(0))O(remi),\begin{split}O(\widetilde{k}^{\rm(0)}_{j})&\simeq O(\widetilde{w}^{\rm(0)})\simeq O({\mathcal{D}}\vec{x})\simeq O(r_{\rm obs})\\ O(b^{\rm(0)})&\simeq O(r_{\rm emi}r_{\rm obs})\\ O(q^{\rm(0)}_{j})&\simeq O(r_{\rm emi})\,,\end{split} (3.25a)
and from (3.9),
O(k~jemi(1))O(k~jobs(1))O(w~(1))O(Bεemirobs).O(\widetilde{k}^{\rm emi(1)}_{j})\simeq O(\widetilde{k}^{\rm obs(1)}_{j})\simeq O(\widetilde{w}^{\rm(1)})\simeq O(B\varepsilon_{\rm emi}r_{\rm obs})\,. (3.25b)

Then we obtain from Eq.(3.13),

O(ΔX(1)ΔX(0))O(ΔY(1)ΔY(0))}O(k~jobs(1)k~j(0))O(Bεemi)B×103,\left.\begin{array}[]{l}O\Bigl{(}\dfrac{\Delta X^{\rm(1)}}{\Delta X^{\rm(0)}}\Bigr{)}\\ O\Bigl{(}\dfrac{\Delta Y^{\rm(1)}}{\Delta Y^{\rm(0)}}\Bigr{)}\end{array}\right\}\simeq O\left(\dfrac{\widetilde{k}^{\rm obs(1)}_{j}}{\widetilde{k}^{\rm(0)}_{j}}\right)\simeq O(B\varepsilon_{\rm emi})\simeq B\times 10^{-3}\,, (3.26)

and from Eq.(3.22),

O(czrs(newton))O(cεemi0.5)103km/sO(czrs(1PN))O(cεemi)102km/sO(czrs(1.5PN+1PM))O(Bcεemi1.5)Bkm/s,\begin{split}O(cz_{\rm rs}^{\rm(newton)})&\simeq O(c\varepsilon_{\rm emi}^{0.5})\simeq 10^{3}\,\,\text{km/s}\\ O(cz_{\rm rs}^{\rm(1PN)})&\simeq O(c\varepsilon_{\rm emi})\simeq 10^{2}\,\,\text{km/s}\\ O(cz_{\rm rs}^{\rm(1.5PN+1PM)})&\simeq O(Bc\varepsilon_{\rm emi}^{1.5})\simeq B\,\,\text{km/s}\,,\end{split} (3.27)

where εemi103\varepsilon_{\rm emi}\sim 10^{-3} as given in Eq.(2.3). Further, for the 1PM correction of the observational time (3.9c), we find the following order relation,

O(tobs(1))O(Bm)BGMc310Bmin.O(t_{\rm obs(1)})\simeq O(Bm)\sim B\dfrac{GM}{c^{3}}\sim 10B\,\,\text{min}\,. (3.28)

From Eqs.(3.23) and (3.27), the redshift up to the term zrs(1PN)z_{\rm rs}^{\rm(1PN)} is already detectable by the present telescope. Thus we focus on the detectablity of ΔX(1)\Delta X^{\rm(1)}, ΔY(1)\Delta Y^{\rm(1)} and zrs(1.5PN+1PM)z_{\rm rs}^{\rm(1.5PN+1PM)}. Comparing the astrometric correction (3.26) with δ[ΔX]\delta[\Delta X] and δ[ΔY]\delta[\Delta Y] in Eq.(3.23b), and the order of zrs(1.5PN+1PM)z_{\rm rs}^{\rm(1.5PN+1PM)} in (3.27) with δ[zrs]\delta[z_{\rm rs}] in Eq.(3.23a), following relations hold,

O(B)10{O(ΔX(1)/ΔX(0))102δ[ΔX]O(ΔY(1)/ΔY(0))102δ[ΔY]O(czrs(1.5PN+1PM))10km/scδ[zrs].O(B)\gtrsim 10\quad\Rightarrow\quad\begin{cases}O(\Delta X^{\rm(1)}/\Delta X^{\rm(0)})&\gtrsim 10^{-2}\sim\delta[\Delta X]\\ O(\Delta Y^{\rm(1)}/\Delta Y^{\rm(0)})&\gtrsim 10^{-2}\sim\delta[\Delta Y]\\ O(cz_{\rm rs}^{\rm(1.5PN+1PM)})&\gtrsim 10\,\,\text{km/s}\sim c\delta[z_{\rm rs}]\,.\end{cases} (3.29a)
Further, comparing the temporal correction (3.28) with δ[tobs]\delta[t_{\rm obs}] in Eq.(3.23a), we find following relation,
O(B)100O(tobs(1))103minδ[tobs].O(B)\gtrsim 100\quad\Rightarrow\quad O(t_{\rm obs(1)})\gtrsim 10^{3}\,\,\text{min}\sim\delta[t_{\rm obs}]\,. (3.29b)

From the above estimations, we find some indications for fitting theoretical predictions with observational data.

  • (i)

    Because the redshift up to zrs(1PN)z_{\rm rs}^{\rm(1PN)} is detectable, we must solve the E.O.M of S0-2 (2.17) at least up to 1PN terms which include the PPN parameters AA and BB but not the BH’s spin effect.

  • (ii)

    Eq.(3.29a) denotes that, in order to assess whether the case O(B)10O(B)\gtrsim 10 is allowed by the present observational data, we need to calculate the astrometric observables up to ΔX(1)\Delta X^{\rm(1)} and ΔY(1)\Delta Y^{\rm(1)}, and the redshift up to the terms in zrs(1.5PN+1PM)z_{\rm rs}^{\rm(1.5PN+1PM)} depending on BB. This is consistent with the note (i).

  • (iii)

    From the note (ii), we must calculate the photon’s momentum up to 1PM terms k~jemi(1)\widetilde{k}^{\rm emi(1)}_{j} and k~obs(1)\widetilde{k}^{\rm obs(1)}, where k~emi(1)\widetilde{k}^{\rm emi(1)} is necessary to the terms in zrs(1.5PN+1PM)z_{\rm rs}^{\rm(1.5PN+1PM)} depending on BB and k~obs(1)\widetilde{k}^{\rm obs(1)} is necessary to ΔX(1)\Delta X^{\rm(1)} and ΔY(1)\Delta Y^{\rm(1)}.

  • (iv)

    Eq.(3.29b) denotes that, in order to assess whether the case O(B)100O(B)\gtrsim 100 is allowed by the present observational data, we need to calculate the observational time up to tobs(1)t_{\rm obs(1)}.

  • (v)

    If the true value of BB satisfies O(B)10O(B)\gtrsim 10, then it is expected that the fitting of PPN model predictions with observational data can determine the value of BB with a sufficiently small fitting error of BB. On the other hand, if the true value of BB is of the order of O(B)10O(B)\ll 10, then the fitting result should give a large fitting uncertainty and we can not judge which of PPN model or Schwarzschld case is preferable.

4 χ2\chi^{2} fitting

As mentioned in the third paragraph of Sect.1, the observations of S0-2’s motion have been performed by European group using mainly Very Large Telescope (VLT), American group using mainly Keck telescope, and our Japanese group using mainly Subaru telescope. American and European groups have been performing both of the astrometric and spectroscopic observations since 1990s. Our Japanese group, since 2014, have been focusing on higher precision spectroscopic observation than the other groups, while a much more time and efforts are required for analyzing raw data. The observed values of {ΔX,ΔY,zrs}\{\Delta X,\Delta Y,z_{\rm rs}\} used in this paper are those used in the previous papers by European group ref:gillessen+2017 , American group ref:do+2019 and our group ref:saida+2019 . Note that the units of those observational values are usually arcsecond (abbreviated as arcsec) for the astrometric observables and km/s for the spectroscopic observable. The summary of those observational values are in Appendix C. (In the European group’s paper published in 2020 ref:gravity2020 , their observational values are not written although some graphs including those data are shown. Therefore, we refer their paper published in 2017 ref:gillessen+2017 , whose observational values are available from their web cite.)

As explained in Sect.2.5.2, in comparing theoretical predictions of astrometric observables {ΔX(t),ΔY(t)}\{\Delta X(t),\Delta Y(t)\} with observational data, the offsets of the astrometric origins from Sgr A{}^{\ast\,}given in Eq.(2.24) have to be added to observational data, because the actual astrometric data express the offsets of S0-2’s declination and right ascension from the astrometric origins.

Then, we have performed the χ2\chi^{2} fitting of our PPN predictions of {ΔX,ΔY,zrs}\{\Delta X,\Delta Y,z_{\rm rs}\} with the observational data in Appendix C. Namely, we obtained the values of parameters in Table 1 under the condition (2.29) so as to minimize the so-called reduced chi-squared χred2\chi_{\rm red}^{2} ref:press+1992 ,

χred2:=1Nred[n=1DKeck(χ(X.Keck)n2+χ(Y.Keck)n2)+n=1DVLT(χ(X.VLT)n2+χ(Y.VLT)n2)+n=1Drsχ(rs)n2],\begin{split}\chi_{\rm red}^{2}\,:=\,\dfrac{1}{N_{\rm red}}\Biggl{[}\,&\sum_{n=1}^{D_{\rm Keck}}\bigl{(}\chi_{\rm(X.Keck)\it n}^{2}+\chi_{\rm(Y.Keck)\it n}^{2}\bigr{)}\\ &+\sum_{n=1}^{D_{\rm VLT}}\bigl{(}\chi_{\rm(X.VLT)\it n}^{2}+\chi_{\rm(Y.VLT)\it n}^{2}\bigr{)}+\sum_{n=1}^{D_{\rm rs}}\chi_{\rm(rs)\it n}^{2}\,\Biggr{]}\,,\end{split} (4.1a)
where DKeck(=46)D_{\rm Keck}(=46) is the number of astrometric data taken by American group, DVLT(=144)D_{\rm VLT}(=144) is the number of astrometric data taken by European group, Drs(=123)D_{\rm rs}(=123) is the number of all spectroscopic data taken by all three groups, and Nred=2DKeck+2DVLT+Drs21N_{\rm red}=2D_{\rm Keck}+2D_{\rm VLT}+D_{\rm rs}-21 where 2121 is the number of parameters whose values are to be determined by the present fitting process. Further the following formulas are used in each term of χred2\chi_{\rm red}^{2}, where the terms of astrometric observables of American group are
χ(X.Keck)n2=(TangΔX(tn)(DecnKeck+OKeckX(tn))δ[DecnKeck])2χ(Y.Keck)n2=(TangΔY(tn)(RAnKeck+OKeckY(tn))δ[RAnKeck])2,\begin{split}\chi_{\rm(X.Keck)\it n}^{2}&=\Bigl{(}\dfrac{T_{\rm ang}\Delta X(t_{n})-({\rm Dec}^{\rm Keck}_{n}+O^{X}_{\rm Keck}(t_{n})\,)}{\delta[{\rm Dec}^{\rm Keck}_{n}]}\Bigr{)}^{2}\\ \chi_{\rm(Y.Keck)\it n}^{2}&=\Bigl{(}\dfrac{T_{\rm ang}\Delta Y(t_{n})-({\rm RA}^{\rm Keck}_{n}+O^{Y}_{\rm Keck}(t_{n})\,)}{\delta[{\rm RA}^{\rm Keck}_{n}]}\Bigr{)}^{2}\,,\end{split} (4.1b)
the terms of astrometric observables of European group are
χ(X.VLT)n2=(TangΔX(tn)(DecnVLT+OVLTX(tn))δ[DecnVLT])2χ(Y.VLT)n2=(TangΔY(tn)(RAnVLT+OVLTY(tn))δ[RAnVLT])2,\begin{split}\chi_{\rm(X.VLT)\it n}^{2}&=\Bigl{(}\dfrac{T_{\rm ang}\Delta X(t_{n})-({\rm Dec}^{\rm VLT}_{n}+O^{X}_{\rm VLT}(t_{n})\,)}{\delta[{\rm Dec}^{\rm VLT}_{n}]}\Bigr{)}^{2}\\ \chi_{\rm(Y.VLT)\it n}^{2}&=\Bigl{(}\dfrac{T_{\rm ang}\Delta Y(t_{n})-({\rm RA}^{\rm VLT}_{n}+O^{Y}_{\rm VLT}(t_{n})\,)}{\delta[{\rm RA}^{\rm VLT}_{n}]}\Bigr{)}^{2}\,,\end{split} (4.1c)
and the term of spectroscopic observable of all groups is
χ(rs)n2=(czrs(tn)RVnδ[RVn])2,\chi_{\rm(rs)\it n}^{2}=\Bigl{(}\dfrac{cz_{\rm rs}(t_{n})-{\rm RV}_{n}}{\delta[{\rm RV}_{n}]}\Bigr{)}^{2}\,, (4.1d)

where Tang=(180/π)×60×60T_{\rm ang}=(180/\pi)\times 60\times 60 is the coefficient to change the unit of angle from radian to arcsec, the set of values {(Decni,δ[Decni]),(RAni,δ[RAni])}\{\,({\rm Dec}^{i}_{n},\delta[{\rm Dec}^{i}_{n}])\,,\,({\rm RA}^{i}_{n},\delta[{\rm RA}^{i}_{n}])\,\} denotes the nn-th astrometric observational values and its observational uncertainties in the unit of arcsec of American group for i=i= Keck and those of European group for i=i= VLT, the set of values (RVn,δ[RVn])({\rm RV}_{n},\delta[{\rm RV}_{n}]) denotes the nn-th spectroscopic observational value and its observational uncertainty in the unit of velocity km/s of all three groups, Oi(tn)\vec{O}_{i}(t_{n}) is the offset of the astrometric origin from Sgr A{}^{\ast\,}given in Eq.(2.24) at a given observational time tnt_{n}, and {ΔX(tn),ΔY(tn),zrs(tn)}\{\Delta X(t_{n}),\Delta Y(t_{n}),z_{\rm rs}(t_{n})\} are the PPN model predictions of three observables at tnt_{n}.

The minimum value of χred2\chi_{\rm red}^{2} is given by the best-fitting parameter values. According to the statistics of the co-called χ2\chi^{2} distribution, the minimum value of χred2\chi_{\rm red}^{2} tends to be unity if the observational data do not contradict the theoretical prediction which is assumed to be consistent with the data.

Table 2: Best-fitting parameter values, obtained by χ2\chi^{2} fitting of PPN model prediction with observational data. Four parameters {a,ΘBH,ΦBH,Cz}\{a\,,\,\Theta_{\rm BH}\,,\,\Phi_{\rm BH}\,,\,C_{z}\} are omitted due to the condition (2.29).
reduced chi-squared for PPN model
Minimum of χred2\chi_{\rm red}^{2} : 1.3021.302 no dimension
(parameter) (best-fitting) (fitting error) (unit)
parameters for BH/Sgr A{}^{\ast\,}
Black hole mass mm : 3.99553.9955 ±0.0049\pm 0.0049 106M10^{6}M_{\odot}
PPN parameters AA : 22.722.7 ±1.3\pm 1.3 no dimension
BB : 6.92-6.92 ±0.93\pm 0.93 no dimension
parameters for observer
Distance to Sgr A{}^{\ast\,}RGCR_{\rm GC} : 7.98787.9878 ±0.0043\pm 0.0043 kpc
Ovserver’s velocity VobsXV^{X}_{\rm obs} : 0.0800.080 ±0.012\pm 0.012 10310^{-3} arcsec/yr
VobsYV^{Y}_{\rm obs} : 0.126-0.126 ±0.027\pm 0.027 10310^{-3} arcsec/yr
VobsZV^{Z}_{\rm obs} : 9.61-9.61 ±0.49\pm 0.49 km/s
parameters for astrometric origin
Keck’s astrometry VKeckXV^{X}_{\rm Keck} : 0.291-0.291 ±0.017\pm 0.017 10310^{-3} arcsec/yr
VKeckYV^{Y}_{\rm Keck} : 0.0160.016 ±0.029\pm 0.029 10310^{-3} arcsec/yr
AKeckXA^{X}_{\rm Keck} : 1.522-1.522 ±0.091\pm 0.091 10310^{-3} arcsec
AKeckYA^{Y}_{\rm Keck} : 0.9280.928 ±0.082\pm 0.082 10310^{-3} arcsec
VLT’s astrometry VVLTXV^{X}_{\rm VLT} : 0.259-0.259 ±0.017\pm 0.017 10310^{-3} arcsec/yr
VVLTYV^{Y}_{\rm VLT} : 0.003-0.003 ±0.029\pm 0.029 10310^{-3} arcsec/yr
AVLTXA^{X}_{\rm VLT} : 0.0330.033 ±0.091\pm 0.091 10310^{-3} arcsec
AVLTYA^{Y}_{\rm VLT} : 0.728-0.728 ±0.084\pm 0.084 10310^{-3} arcsec
parameters for S0-2’s initial condition
Apocenter observation tobs.apot_{\rm obs.apo} : 2010.3350992010.335099 ±0.000026\pm 0.000026 AD
Orbital period TstarT_{\rm star} : 16.0606116.06061 ±0.00028\pm 0.00028 yr
Orbital eccentricity estare_{\rm star} : 0.8850510.885051 ±0.000030\pm 0.000030 no dimension
Inclination angle IstarI_{\rm star} : 133.960133.960 ±0.016\pm 0.016 degree
Ascending node angle Ωstar\Omega_{\rm star} : 227.809227.809 ±0.026\pm 0.026 degree
Pericenter angle ωstar\omega_{\rm star} : 66.33966.339 ±0.018\pm 0.018 degree

Our fitting result of the PPN model with the observational data is summarized in Table 2. We performed simulations for the χ2\chi^{2} fitting with Mathematica. The fitting method is a simple minimum search of χred2\chi_{\rm red}^{2}, and we have stopped the minimum search when the improvement of χred2\chi_{\rm red}^{2} becomes less than 10610^{-6}. The fitting error in Table 2 is calculated from the covariance matrix CIJC_{IJ} ref:press+1992 ,

CIJ:=12[2(Nredχred2)IJ]1,C_{IJ}:=\dfrac{1}{2}\Biggl{[}\dfrac{\partial^{2}(N_{\rm red}\chi_{\rm red}^{2})}{\partial I\partial J}\Biggr{]}^{-1}\,, (4.2a)
where II and JJ are the indices denoting the 21 parameters I,J=m,A,B,RGC,I,J=m\,,\,A\,,\,B\,,\,R_{\rm GC}\,,\,\cdots, the power 1-1 in the right hand side denotes the inverse matrix, and the fitting error δ[J]\delta[J] of a parameter JJ is given by
δ[J]:=CJJ|best-fitting.\delta[J]:=\sqrt{C_{JJ}}\,\bigr{|}_{\text{best-fitting}}\,. (4.2b)

Further, in Table 3, the result of χ2\chi^{2} fitting of the Schwarzschild case with the observational data is summarized, where the Schwarzschild case is given by fixing PPN parameters at {A,B}={0,1}\{A,B\}=\{0,1\}.

Table 3: Best-fitting parameter values, obtained by χ2\chi^{2} fitting of Schwarzschild model prediction with observational data. The PPN parameters are fixed at {A,B}={0, 1}\{A\,,\,B\}=\{0\,,\,1\}, and four parameters {a,ΘBH,ΦBH,Cz}\{a\,,\,\Theta_{\rm BH}\,,\,\Phi_{\rm BH}\,,\,C_{z}\} are omitted due to the condition (2.29).
reduced chi-squared for Schwarzschild model
Minimum of χred2\chi_{\rm red}^{2} : 1.3181.318 no dimension
(parameter) (best-fitting) (fitting error) (unit)
parameter for BH/Sgr A{}^{\ast\,}
Black hole mass mm : 4.0174.017 ±0.038\pm 0.038 106M10^{6}M_{\odot}
parameters for observer
Distance to Sgr A{}^{\ast\,}RGCR_{\rm GC} : 8.0088.008 ±0.037\pm 0.037 kpc
Ovserver’s velocity VobsXV^{X}_{\rm obs} : 0.0840.084 ±15.088\pm 15.088 10310^{-3} arcsec/yr
VobsYV^{Y}_{\rm obs} : 0.130-0.130 ±13.483\pm 13.483 10310^{-3} arcsec/yr
VobsZV^{Z}_{\rm obs} : 11.26-11.26 ±2.46\pm 2.46 km/s
parameters for astrometric origin
Keck’s astrometry VKeckXV^{X}_{\rm Keck} : 0.289-0.289 ±15.084\pm 15.084 10310^{-3} arcsec/yr
VKeckYV^{Y}_{\rm Keck} : 0.0380.038 ±13.480\pm 13.480 10310^{-3} arcsec/yr
AKeckXA^{X}_{\rm Keck} : 1.623-1.623 ±0.148\pm 0.148 10310^{-3} arcsec
AKeckYA^{Y}_{\rm Keck} : 0.7930.793 ±0.127\pm 0.127 10310^{-3} arcsec
VLT’s astrometry VVLTXV^{X}_{\rm VLT} : 0.263-0.263 ±15.090\pm 15.090 10310^{-3} arcsec/yr
VVLTYV^{Y}_{\rm VLT} : 0.0150.015 ±13.487\pm 13.487 10310^{-3} arcsec/yr
AVLTXA^{X}_{\rm VLT} : 0.061-0.061 ±0.150\pm 0.150 10310^{-3} arcsec
AVLTYA^{Y}_{\rm VLT} : 0.837-0.837 ±0.127\pm 0.127 10310^{-3} arcsec
parameters for S0-2’s initial condition
Apocenter observation tobs.apot_{\rm obs.apo} : 2010.335732010.33573 ±0.00072\pm 0.00072 AD
Orbital period TstarT_{\rm star} : 16.048716.0487 ±0.0013\pm 0.0013 yr
Orbital eccentricity estare_{\rm star} : 0.885580.88558 ±0.00032\pm 0.00032 no dimension
Inclination angle IstarI_{\rm star} : 134.01134.01 ±0.12\pm 0.12 degree
Ascending node angle Ωstar\Omega_{\rm star} : 227.85227.85 ±0.12\pm 0.12 degree
Pericenter angle ωstar\omega_{\rm star} : 66.39466.394 ±0.092\pm 0.092 degree

Note that, as explained in Sect.2.5.4, the orbital period TstarT_{\rm star} shown in Tables 2 and 3 is the Keplerian approximation given by the initial conditions (2.26). On the other hand, in our best-fitting PPN model, the time interval from the apocenter passage in 2010 to the next apocenter passage in 2026 becomes 16.050816.0508 yr, and the time interval from the pericenter passage in 2018 to the next pericenter passage in 2036 becomes 16.050916.0509 yr. These time intervals are different from TstarT_{\rm star} in Table 2 by 0.010.01 yr, a few days. This estimation supports the discussion after Eq.(2.26) that the Keplerian period TstarT_{\rm star} is a good approximation as the observational orbital period.

5 Discussions

Using the observational data of S0-2’s motion, we have been performing a PPN test of the black hole metric of Sgr A{}^{\ast\,}. Through formulating the PPN model, we have found a possibility that the gravitational lens effect is detectable under the present observational uncertainties, as estimated in Sect.3.4. This possibility is a new finding by this paper, because this possibility had not been recognized in all previous works by all groups practicing the observation of S0-2’s motion ref:ghez+2000 ; ref:schoedel+2002 ; ref:gillessen+2017 ; ref:gravity2018 ; ref:do+2019 ; ref:saida+2019 ; ref:gravity2020 .

The best-fitting values of PPN parameters in Table 2 are

Best-fitting PPN parameter:{A,B}={22.7±1.3,6.92±0.93}.\text{Best-fitting PPN parameter}:\{A,B\}=\{22.7\pm 1.3\,,\,-6.92\pm 0.93\}\,. (5.1)

This result does not include the Schwarzschild case {A,B}={0,1}\{A,B\}=\{0,1\} within the fitting error. This implies that the spacetime of Sgr A{}^{\ast\,}is not of Schwarzschild metric. If this is true, then we need to examine the possibilities (I) and (II) mentioned in Sect.1.

Note that, because the minimum χred2\chi_{\rm red}^{2} for PPN model in Table 2 is closer to unity than that for Schwarzschild case in Table 3, one may think the PPN model is better than the Schwarzschild case. However, the difference between the minimum χred2\chi_{\rm red}^{2} for PPN model and that for Schwarzschild case is of O(0.01)O(0.01), not large enough to ensure the statistical significance of non-Schwarzschild result in the framework of χ2\chi^{2} statistics. If this difference was about or greater than O(1)O(1), then the non-Schwarzschild result was statistically significant in the framework of χ2\chi^{2} statistics. Therefore, a more precise statistical analysis than χ2\chi^{2} statistics is necessary to extract a statistically significant information of the gravitational field of Sgr A{}^{\ast\,}from present observational data. We will report a result by a Bayesian analysis in next paper.

Although the statistical significance is not obtained from the values of χred2\chi_{\rm red}^{2}, we may have some insights into a statistical discrimination between PPN model and Schwarzschild case from Tables 2 and 3. Let us focus on six parameters {VobsX,VobsY,VKeckX,VKeckY,VVLTX,VVLTY}\{V_{\rm obs}^{X},V_{\rm obs}^{Y},V_{\rm Keck}^{X},V_{\rm Keck}^{Y},V_{\rm VLT}^{X},V_{\rm VLT}^{Y}\}, which are the velocities on the 2D sky plane and can not be measured without astrometric observational data. The best-fitting values of these six parameters in PPN model and those in Schwarzschild case are similar. However, the fitting errors of them for Schwarzschild case are much larger than those for PPN model as shown in Tables 2 and 3. In other words, the best-fitting values of the six parameters in PPN model are determined with much better statistical significance than those in Schwarzschild case. Thus, it may be expected that the PPN model fits with the present observational data better than Schwarzschild case. In order to check whether this insight is true, we are planning to perform a hierarchical Bayesian fitting of PPN model with observational data.

Acknowledgment

This research is based in part on data collected at Subaru Telescope operated by the National Astronomical Observatory of Japan. We are honored and grateful for the opportunity of observing the Galactic center from Maunakea, which has the cultural, historical and natural significance in Hawaii. In addition, we would like to express our gratitude to staffs of Subaru telescope, for their continuous supports for our observations over 10 years. H.S. was supported by JSPS KAKENHI, Grant-in-Aid for Scientific Research (B) 19H01900. S.N. was supported by JSPS KAKENHI, Grant-in-Aid for Scientific Research (A) 19H00695.

References

  • (1) A. Ghez, M. Morris, E.E. Becklin, A. Tanner and T. Kremenek, The acceleration of stars orbiting the Milky Way’s central black hole, Nature 407, 349-351 (2000).
  • (2) R. Scho¨\ddot{\text{o}}del, et al., A star in 15.2-year orbit around the supermassive black hole at the centre of the Milky Way, Nature 419, 694-696 (2002).
  • (3) S.Gillessen, et.al., An Update on Monitoring Stellar Orbits in the Galactic Center, Astrophys.J. 873, 30 (2017).
  • (4) GRAVITY Collab., Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole, Astron.Astrophys., 615, L15 (2018).
  • (5) T.Do, et.al., Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole, Science 365, 664 (2019).
  • (6) H.Saida, et.al., A significant feature in the general relativistic time evolution of the redshift of photons coming from a star orbiting Sgr A{}^{\ast\,}, Publ.Astron.Soc.Japan 71, 126 (2019).
  • (7) GRAVITY Collab., Detection of Schwarzschild precession in the orbit of the star S2 near Galactic centre massive black hole, Astron.Astrophys. 636, L5 (2020).
  • (8) R.I. Gainutdinov, PPN motion of S-stars around Sgr A{}^{\ast\,}, Astrophysics 63, 470-481 (2020).
  • (9) C.M.Will, Theory and experiment in gravitational physics, revised edition, Cambridge Univ. Press (1993).
  • (10) C.M.Will, Carter-like constants of the motion in Newtonian gravity and electrodynamics, Phys.Rev.Lett. 102, 061101 (2009).
  • (11) W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, Cambridge Univ. Press (1992).

Appendix A PPN/PPM expansion with all PPN parameters {A,B,C,Cz,Nt,Ns}\{A,B,C_{\perp},C_{z},N_{\rm t},N_{\rm s}\}

If the black hole mass mm and spin aa are already known, these parameters {m,a}\{m,a\} and the PPN parameters 𝐗ppn={A,B,C,Cz,Nt,Ns}{\bf X}_{\rm ppn}=\{A,B,C_{\perp},C_{z},N_{\rm t},N_{\rm s}\} do not degenerate in the PPN metric (2.6). For this case, the PPN expansion of timelike geodesic equations and the PPM expansion of null geodesic equations become as follows.

The PPN expansion of the Hamiltonian of timelike geodesics (2.12) is

u(x,u)=12E2+12j=13uj2NtE2ε(r)0PN : O(ε)NsEurε(r)0.5PN : O(ε1.5)Bur2ε(r)4Nt2+ANs22E2ε(r)21PN : O(ε2)2[(NtB)Nsuram(CLzrCzzrur)]Eε(r)21.5PN : O(ε2.5)+O(ε3)higer PN.\begin{array}[]{rcll}\mathcal{H}_{\rm u}(x,u)&=&\displaystyle-\dfrac{1}{2}E^{2}+\dfrac{1}{2}\sum_{j=1}^{3}u_{j}^{2}-N_{\rm t}E^{2}\varepsilon(r)&\cdots\text{0PN : $O(\varepsilon)$}\\ &&-N_{\rm s}\,E\,u_{\rm r}\,\varepsilon(r)&\cdots\text{0.5PN : $O(\varepsilon^{1.5})$}\\ &&-Bu_{\rm r}^{2}\varepsilon(r)-\dfrac{4N_{\rm t}^{2}+A-N_{\rm s}^{2}}{2}E^{2}\varepsilon(r)^{2}&\cdots\text{1PN : $O(\varepsilon^{2})$}\\ &&\!\!\begin{array}[]{l}-2\,\Bigl{[}(N_{\rm t}-B)N_{\rm s}u_{\rm r}\\ \phantom{-2\,\Bigl{[}}-\dfrac{a}{m}\Bigl{(}\,C_{\perp}\dfrac{L_{z}}{r}-C_{z}\dfrac{z}{r}u_{\rm r}\,\Bigr{)}\,\Bigr{]}\,E\,\varepsilon(r)^{2}\end{array}&\cdots\text{1.5PN : $O(\varepsilon^{2.5})$}\\ &&+O(\varepsilon^{3})&\cdots\text{higer PN}\,.\end{array} (A.1)

From this Hamiltonian, the PPN timelike geodesic equations corresponding to Eqs.(2.17) are

Edxj(t)dt=Edxj(τ)dτ(dt(τ)dτ)1=uj0PNNsExjrε(r)0.5PN2Burxjrε(r)2Ntujε(r)1PN2[(3NtB)Nsxjram(CdjrCzzrxjr)]Eε(r)2NsEurujε(r)}1.5PN+O(ε2.5)higher PN\begin{array}[]{rcll}E\dfrac{{\rm d}x^{j}(t)}{{\rm d}t}&=&E\dfrac{{\rm d}x^{j}(\tau)}{{\rm d}\tau}\,\Bigl{(}\dfrac{{\rm d}t(\tau)}{{\rm d}\tau}\Bigr{)}^{-1}&\\ &=&u_{j}&\cdots\text{0PN}\\ &&-N_{\rm s}E\,\dfrac{x^{j}}{r}\,\varepsilon(r)&\cdots\text{0.5PN}\\ &&-2B\,u_{\rm r}\dfrac{x^{j}}{r}\,\varepsilon(r)-2N_{\rm t}\,u_{j}\,\varepsilon(r)&\cdots\text{1PN}\\ &&\!\!\!\left.\begin{array}[]{l}-2\,\Bigl{[}(3N_{\rm t}-B)N_{\rm s}\dfrac{x^{j}}{r}\\ \phantom{-2\,\Bigl{[}}-\dfrac{a}{m}\Bigl{(}\,C_{\perp}\dfrac{d^{j}}{r}-C_{z}\dfrac{z}{r}\dfrac{x^{j}}{r}\,\Bigr{)}\,\Bigr{]}\,E\,\varepsilon(r)^{2}\\ -\dfrac{N_{\rm s}}{E}\,u_{\rm r}\,u_{j}\,\varepsilon(r)\end{array}\right\}&\cdots\text{1.5PN}\\ &&+O(\varepsilon^{2.5})&\cdots\text{higher PN}\end{array} (A.2a)
Eduj(t)dt=Eduj(τ)dτ(dt(τ)dτ)1=NtE2xjr2ε(r)0PN+NsE(2xjr2ur+ujr)ε(r)0.5PN+B(3xjrur22ujur)ε(r)r+(6Nt2A+Ns2)E2xjr2ε(r)2}1PN+6P~(x,u)Exjr2ε(r)22Q~j(x,u)Eε(r)2r+NtNsE( 5xjr2ur2ujr)ε(r)2}1.5PN+O(ε3)higer PN,\begin{array}[]{rcll}E\dfrac{{\rm d}u_{j}(t)}{{\rm d}t}&=&E\dfrac{{\rm d}u_{j}(\tau)}{{\rm d}\tau}\,\Bigl{(}\dfrac{{\rm d}t(\tau)}{{\rm d}\tau}\Bigr{)}^{-1}&\\ &=&-N_{\rm t}E^{2}\,\dfrac{x^{j}}{r^{2}}\,\varepsilon(r)&\cdots\text{0PN}\\ &&+N_{\rm s}E\,\Bigl{(}\,-2\dfrac{x^{j}}{r^{2}}u_{\rm r}+\dfrac{u_{j}}{r}\,\Bigr{)}\,\varepsilon(r)&\cdots\text{0.5PN}\\ &&\!\!\!\left.\begin{array}[]{l}+B\,\Bigl{(}3\dfrac{x^{j}}{r}u_{\rm r}^{2}-2u_{j}u_{\rm r}\,\Bigr{)}\,\dfrac{\varepsilon(r)}{r}\\ \qquad+\bigl{(}6N_{\rm t}^{2}-A+N_{\rm s}^{2}\bigr{)}E^{2}\dfrac{x^{j}}{r^{2}}\varepsilon(r)^{2}\end{array}\qquad\right\}&\cdots\text{1PN}\\ &&\!\!\!\left.\begin{array}[]{l}+6\widetilde{P}(x,u)\,E\,\dfrac{x^{j}}{r^{2}}\varepsilon(r)^{2}-2\widetilde{Q}_{j}(x,u)\,E\,\dfrac{\varepsilon(r)^{2}}{r}\\ +N_{\rm t}N_{\rm s}E\,\Bigl{(}\,5\dfrac{x^{j}}{r^{2}}u_{\rm r}-2\dfrac{u_{j}}{r}\,\Bigr{)}\,\varepsilon(r)^{2}\end{array}\right\}&\cdots\text{1.5PN}\\ &&+O(\varepsilon^{3})&\cdots\text{higer PN}\,,\end{array} (A.2b)
where uru_{\rm r} is given in Eq.(2.15b), dj=(y,x,0)d^{j}=(-y,x,0) in 1.5PN terms of Eq.(A.2a), and P~(x,u)\widetilde{P}(x,u) and Q~j(x,u)\widetilde{Q}_{j}(x,u) in 1.5PN terms of Eq.(A.2b) are
P~(x,u):=(NtB)Nsuram(CLzrCzzrur)Q~j(x,u):=(NrB)Nsuram[CqjCz{δj3ur+zr(ujrxjr2ur)}],\begin{split}\widetilde{P}(x,u)&:=(N_{\rm t}-B)N_{\rm s}u_{\rm r}-\dfrac{a}{m}\Bigl{(}\,C_{\perp}\dfrac{L_{z}}{r}-C_{z}\dfrac{z}{r}u_{\rm r}\,\Bigr{)}\\ \widetilde{Q}_{j}(x,u)&:=(N_{\rm r}-B)N_{\rm s}u_{\rm r}-\dfrac{a}{m}\Bigl{[}\,C_{\perp}q_{j}-C_{z}\Bigl{\{}\delta_{j3}u_{\rm r}+\dfrac{z}{r}\Bigl{(}\,\dfrac{u_{j}}{r}-\dfrac{x^{j}}{r^{2}}u_{\rm r}\,\Bigr{)}\,\Bigr{\}}\,\Bigr{]}\,,\end{split} (A.2c)

where qj=(u2,u1,0)q_{j}=(u_{2},-u_{1},0). From Eqs.(A.2), it is obvious that the PPN parameters NtN_{\rm t} and NsN_{\rm s} appear, respectively, in the 0PN terms and the 0.5PN terms.

The PPM expansion of the Hamiltonian of null geodesics (2.18) is

k(x,k)=12g00w2g0jkjw+12gijkikj=12w2+12j=13kj20PM : O(1)(N(t)w2+N(s)krw+Bkr2)ε(r)1PM : O(ε)+O(ε2)higher PM.\begin{array}[]{rcll}\mathcal{H}_{\rm k}(x,k)&=&\displaystyle\dfrac{1}{2}g^{00}w^{2}-g^{0j}\,k_{j}\,w+\dfrac{1}{2}g^{ij}k_{i}k_{j}&\\ &=&\displaystyle-\dfrac{1}{2}w^{2}+\dfrac{1}{2}\sum_{j=1}^{3}k_{j}^{2}&\cdots\text{0PM : $O(1)$}\\ &&-\Bigl{(}N_{\rm(t)}w^{2}+N_{\rm(s)}k_{\rm r}\,w+B\,k_{\rm r}^{2}\,\Bigr{)}\,\varepsilon(r)&\cdots\text{1PM : $O(\varepsilon)$}\\ &&+O(\varepsilon^{2})&\cdots\text{higher PM}\,.\end{array} (A.3)

From this Hamiltonian, the PPM null geodesic equations corresponding to Eqs.(2.22) are

dt(σ)dσ=k(xα(σ),kα(σ))(w)=w0PM+(2N(t)w+N(s)kr)ε(r)1PM+O(ε2)higher PM\begin{array}[]{rcll}\dfrac{{\rm d}t(\sigma)}{{\rm d}\sigma}&=&\dfrac{\partial\mathcal{H}_{\rm k}\bigl{(}\,x^{\alpha}(\sigma)\,,\,k_{\alpha}(\sigma)\,\bigr{)}}{\partial(-w)}&\\ &=&w&\cdots\text{0PM}\\ &&+\bigl{(}2N_{\rm(t)}w+N_{\rm(s)}k_{\rm r}\bigr{)}\,\varepsilon(r)&\cdots\text{1PM}\\ &&+O(\varepsilon^{2})&\cdots\text{higher PM}\end{array} (A.4a)
dxj(σ)dσ=k(xα(σ),kα(σ))kj(σ)=kj0PM[Nsw+2Bkr]xjrε(r)1PM+O(ε2)higher PM\begin{array}[]{rcll}\dfrac{{\rm d}x^{j}(\sigma)}{{\rm d}\sigma}&=&\dfrac{\partial\mathcal{H}_{\rm k}\bigl{(}\,x^{\alpha}(\sigma)\,,\,k_{\alpha}(\sigma)\,\bigr{)}}{\partial k_{j}(\sigma)}&\\ &=&k_{j}&\cdots\text{0PM}\\ &&-\Bigl{[}\,N_{\rm s}w+2Bk_{\rm r}\,\Bigr{]}\,\dfrac{x^{j}}{r}\varepsilon(r)&\cdots\text{1PM}\\ &&+O(\varepsilon^{2})&\cdots\text{higher PM}\end{array} (A.4b)
dkj(σ)dσ=k(xα(σ),kα(σ))xj(σ)=00PM+[N(t)w2xjr+N(s)w(kj2xjrkr)B(3xjrkr22kjkr)]ε(r)r}1PM+O(ε2)higher PM,\begin{array}[]{rcll}\dfrac{{\rm d}k_{j}(\sigma)}{{\rm d}\sigma}&=&-\dfrac{\partial\mathcal{H}_{\rm k}\bigl{(}\,x^{\alpha}(\sigma)\,,\,k_{\alpha}(\sigma)\,\bigr{)}}{\partial x^{j}(\sigma)}&\\ &=&0&\cdots\text{0PM}\\ &&\!\!\!\left.\begin{array}[]{l}+\Bigr{[}\,-N_{\rm(t)}w^{2}\dfrac{x^{j}}{r}\\ \phantom{+\Bigr{[}\,}+N_{\rm(s)}w\,\Bigl{(}k_{j}-2\dfrac{x^{j}}{r}k_{\rm r}\Bigr{)}\\ \phantom{+\Bigr{[}\,}-B\Bigl{(}3\dfrac{x^{j}}{r}k_{\rm r}^{2}-2k_{j}k_{\rm r}\Bigr{)}\,\Bigr{]}\,\dfrac{\varepsilon(r)}{r}\end{array}\right\}&\cdots\text{1PM}\\ &&+O(\varepsilon^{2})&\cdots\text{higher PM}\,,\end{array} (A.4c)

where krk_{\rm r} is given in Eq.(2.21b).

Appendix B Integral formulas for obtaining 1PM solution (3.9)

In obtaining the 1PM solution (3.9), the integral of 0PM radial quantity r(0)(σ~)=(x(0)2+y(0)2+z(0)2)1/2r_{\rm(0)}(\widetilde{\sigma})=(x_{\rm(0)}^{2}+y_{\rm(0)}^{2}+z_{\rm(0)}^{2})^{1/2} is necessary. By substituting the 0PM solution (3.6) into r(0)(σ~)r_{\rm(0)}(\widetilde{\sigma}), we have

r(0)(σ~)2=w~(0) 2σ~2+2b(0)σ~+remi2,r_{\rm(0)}(\widetilde{\sigma})^{2}=\widetilde{w}^{\rm(0)\,2}\,\widetilde{\sigma}^{2}+2b^{\rm(0)}\widetilde{\sigma}+r_{\rm emi}^{2}\,, (B.1)

where w~(0)\widetilde{w}^{\rm(0)} and b(0)b^{\rm(0)} are respectively in Eq.(3.3b) and Eq.(3.9d), which are independent of σ~\widetilde{\sigma}. Then, when integrating the 1PM differential equations (3.7a), the basic integral for obtaining the 1PM solution is of the following form,

I[l,n]:=dσ~σ~l(ασ~2+βσ~+γ)n,I[l,n]:=\int{\rm d}\widetilde{\sigma}\,\,\widetilde{\sigma}^{\,l}\left(\sqrt{\alpha\widetilde{\sigma}^{2}+\beta\widetilde{\sigma}+\gamma}\,\right)^{n}\,, (B.2)

where α=w~(0) 2\alpha=\widetilde{w}^{\rm(0)\,2}, β=2b(0)\beta=2b^{\rm(0)} and γ=remi2\gamma=r_{\rm emi}^{2}. The following cases of I[l,n]I[l,n] are useful for obtaining the 1PM solution (3.9).

I[0,1]=1αln| 2ασ~+β+2α(ασ~2+βσ~+γ)|I[1,1]=ασ~2+βσ~+γαβ2αI[0,1]I[0,n]=2(2ασ~+β)(n+2)(β24αγ)(ασ~2+βσ~+γ)1+n/24(n+3)α(n+2)(β24αγ)I[0,n+2]I[1,n]=1(n+2)α(ασ~2+βσ~+γ)1+n/2β2αI[0,n],\begin{split}I[0,-1]&=\dfrac{1}{\sqrt{\alpha}}\ln\left|\,2\alpha\widetilde{\sigma}+\beta+2\sqrt{\alpha(\alpha\widetilde{\sigma}^{2}+\beta\widetilde{\sigma}+\gamma)}\,\right|\\ I[1,-1]&=\dfrac{\sqrt{\alpha\widetilde{\sigma}^{2}+\beta\widetilde{\sigma}+\gamma}}{\alpha}-\dfrac{\beta}{2\alpha}I[0,-1]\\ I[0,n]&=\dfrac{2(2\alpha\widetilde{\sigma}+\beta)}{(n+2)(\beta^{2}-4\alpha\gamma)}\left(\alpha\widetilde{\sigma}^{2}+\beta\widetilde{\sigma}+\gamma\right)^{1+n/2}-\dfrac{4(n+3)\alpha}{(n+2)(\beta^{2}-4\alpha\gamma)}I[0,n+2]\\ I[1,n]&=\dfrac{1}{(n+2)\alpha}\left(\alpha\widetilde{\sigma}^{2}+\beta\widetilde{\sigma}+\gamma\right)^{1+n/2}-\dfrac{\beta}{2\alpha}I[0,n]\,,\end{split} (B.3)

where α>0\alpha>0 for I[0,1]I[0,-1] and n2n\neq-2 for I[1,n]I[1,n] and I[0,n]I[0,n].

Appendix C Observational data

This appendix shows the list of observational data used in Sect.4. Total number of observational data is 503503 being composed of 123123 redshift data and 190190 astrometric data, where one astrometric data includes two data values of right ascension and declination of S0-2’s position on the sky plane. We divide these data by grouping the date of observation in order to adjust the table size to the page size. Following are the notes for those tables.

  • The date of observation is the median of the duration of observational operation, and shown with the sideral year, 1yr=365.25636day1\,\,\text{yr}=365.25636\,\,\text{day}. The duration is usually about one day, and the uncertainty of observation time in Eq.(3.23a) is δ[tobs]1day\delta[t_{\rm obs}]\sim 1\,\,\text{day}. Then, due to 0.00636dayδ[tobs]0.00636\,\,\text{day}\ll\delta[t_{\rm obs}], we set 1yr=365.25day1\,\,\text{yr}=365.25\,\,\text{day} in our simulation of χ2\chi^{2} fitting.

  • The unit of spectroscopic observed value zrsz_{\rm rs} and uncertainty δ[zrs]\delta[z_{\rm rs}] is km/s.

  • The unit of astrometric observed value {ΔX,ΔY}\{\Delta X,\Delta Y\} and uncertainty {δ[ΔX],δ[ΔY]}\{\delta[\Delta X],\delta[\Delta Y]\} is milli-arcsecond, abbreviated as “mas”.

  • In the column of “obs” in all tables, the symbols “A”, “E” and “J” denote respectively American (Keck), European (VLT) and Japanese (Subaru) groups’ observation.

Further, let us make some additional notes to the data set shown below.

  • American and Japanese groups have released all observed values and uncertainties.

  • European group had released the observational values and uncertainties until 2016, but have not released those values from 2017.

  • Any astronomical observation is affected rather strongly by weather conditions, and one may think the variability of observational uncertainties is larger than that of usual ground experiments in Physics.

  • The pericenter passage of S0-2 occurred in May 2018. However in 2018, a rather big eruption of Kilauea volcano occurred in Hawaii island where the telescopes used by Japanese and American groups are located at the summit of Mt. Maunakea. Further a bad weather condition due to “La Nina” had continued through 2018. Because of these unexpected bad conditions, the number of Japanese data in 2018 were less than our original plan, and the observational uncertainties in 2018 became larger than those in previous data.

Table 4: Spectroscopic data from 2000 to 2013, the unit is km/s.
date zrsz_{\rm rs} δ[zrs]\delta[z_{\rm rs}] obs
2000.4764 1199 100 A
2002.4175 -473 39 A
2002.4203 -476 39 A
2003.2710 -1571 59 E
2003.3530 -1512 40 E
2003.4333 -1593 34 A
2003.4360 -1522 36 A
2003.4460 -1428 51 E
2004.4750 -1149 47 A
2004.5350 -1055 46 E
2004.5370 -1056 37 E
2004.6320 -1039 39 E
2005.1580 -1001 77 E
2005.2120 -960 37 E
2005.2150 -910 54 E
2005.4100 -964 37 A
2005.4550 -839 60 E
2005.4610 -907 43 E
2005.5031 -844 18 A
2005.6770 -774 77 E
2005.7690 -860 58 E
2006.2040 -702 42 E
2006.3050 -718 77 E
2006.4613 -711 25 A
2006.4942 -667 25 A
2006.4969 -688 26 A
2006.6240 -658 57 E
2007.2300 -586 57 E
2007.3040 -537 57 E
2007.5449 -489 22 A
2007.5500 -505 57 E
2007.6730 -482 57 E
2008.2620 -394 27 E
2008.3723 -384 18 A
2008.4310 -425 62 E
2008.5634 -379 17 A
date zrsz_{\rm rs} δ[zrs]\delta[z_{\rm rs}] obs
2009.3415 -254 16 A
2009.3443 -291 14 A
2009.3850 -241 45 E
2010.3491 -146 18 A
2010.3540 -134 27 E
2011.3170 -3 34 E
2011.5204 9 28 A
2011.5670 35 57 E
2012.2100 185 34 E
2012.3420 167 34 E
2012.4353 156 26 A
2012.4380 165 23 A
2012.4435 182 16 A
2012.4940 195 34 E
2012.5130 186 34 E
2012.5525 182 20 A
2012.5553 191 17 A
2012.6128 204 15 A
2012.6154 186 20 A
2012.7050 190 45 E
2013.2620 313 23 E
2013.3580 328 20 A
2013.3607 330 17 A
2013.3635 305 20 A
2013.3662 283 16 A
2013.3717 326 20 A
2013.3744 306 21 A
2013.5628 382 28 A
2013.5656 347 39 A
2013.5683 356 16 A
2013.6065 370 20 A
2013.6093 352 32 A
2013.6148 349 16 A
2013.6550 361 45 E
2013.7260 384 34 E
Table 5: Spectroscopic data from 2014 to 2018, the unit is km/s.
date zrsz_{\rm rs} δ[zrs]\delta[z_{\rm rs}] obs
2014.1850 490 28 E
2014.2630 515 34 E
2014.3765 488 19 A
2014.379 485.6 27.3 J
2014.3901 513 18 A
2014.5019 545 17 A
2014.5210 568 17 E
2015.2990 765 23 E
2015.3374 740 19 A
2015.5506 831 17 A
2015.636 886.5 17.5 J
2015.7060 869 45 E
2016.2840 1081 45 E
2016.3669 1104 17 A
2016.3696 1145 19 A
2016.3723 1140 16 A
2016.381 1096.2 17.9 J
2016.5190 1198 34 E
2017.343 1768.7 21.3 J
2017.348 1798.8 15.6 J
2017.3745 1809 13 A
2017.3772 1807 19 A
2017.3799 1782 14 A
2017.5464 1998 17 A
2017.5683 2014 15 A
2017.605 2133.3 27.8 J
date zrsz_{\rm rs} δ[zrs]\delta[z_{\rm rs}] obs
2017.609 2169.6 37.1 J
2017.6175 2095 16 A
2017.6694 2214 20 A
2018.2071 3798 22 A
2018.240 4001.9 37.2 J
2018.243 4096.6 40.1 J
2018.3109 3966 15 A
2018.3628 3000 13 A
2018.3684 2804 18 A
2018.3739 2622 63 A
2018.382 2466.4 67.7 J
2018.3874 2130 20 A
2018.3901 2038 32 A
2018.3901 2062 13 A
2018.4256 721 25 A
2018.508 -1102.3 53.5 J
2018.5540 -1479 14 A
2018.5786 -1626 14 A
2018.6087 -1719 14 A
2018.6250 -1764 18 A
2018.6277 -1778 17 A
2018.628 -1785.7 41.5 J
2018.6632 -1809 28 A
2018.6633 -1796 16 A
2018.6906 -1818 17 A
2018.7070 -1830 18 A
Table 6: Astrometric data from 1992.2 to 2003.6, the unit is mas.
date ΔX\Delta X δ[ΔY]\delta[\Delta Y] ΔY\Delta Y δ[ΔY]\delta[\Delta Y] obs
1992.224 170.2 3.8 -9.9 3.7 E
1994.314 177.5 2.9 -33.7 3.7 E
1995.4415 169.01 2.06 -43.54 1.39 A
1995.534 170.3 3.5 -41.8 3.0 E
1996.253 162.2 2.6 -47.6 2.9 E
1996.427 160.2 4.4 -50.3 1.7 E
1996.4853 155.18 3.53 -53.31 3.22 A
1997.3676 140.64 1.41 -58.81 1.11 A
1997.544 128.7 2.5 -63.3 2.9 E
1998.373 120.4 2.5 -69.2 3.5 E
1999.3347 96.92 0.55 -68.26 0.77 A
1999.465 104.2 3.5 -71.2 3.7 E
1999.5619 91.42 0.65 -68.69 0.59 A
2000.3046 65.69 3.74 -70.57 1.92 A
2000.3812 64.98 0.79 -68.12 0.58 A
2000.472 62.0 2.4 -58.7 4.1 E
2000.523 56.5 2.5 -67.0 2.5 E
2000.5483 59.22 1.65 -65.75 0.96 A
2000.7974 51.04 1.67 -64.65 1.91 A
2001.3511 27.74 0.73 -57.73 0.98 A
2001.502 22.0 1.6 -52.4 3.2 E
2001.5729 17.48 0.78 -52.75 1.01 A
2002.250 -14.4 4.5 -8.1 4.5 E
2002.335 -9.7 3.0 4.0 3.0 E
2002.393 -2.1 4.3 13.7 4.3 E
2002.409 -0.1 3.7 15.5 3.7 E
2002.412 0.2 3.7 14.7 3.7 E
2002.414 1.0 3.7 14.7 3.7 E
2002.488 12.9 8.4 24.9 9.0 E
2002.578 18.5 3.7 28.1 3.7 E
2002.660 24.7 3.6 31.4 3.6 E
2003.1403 71.97 0.87 36.6 0.88 A
2003.214 64.5 0.4 38.6 0.4 E
2003.351 72.9 0.4 39.0 0.4 E
2003.356 72.7 0.4 38.3 0.4 E
2003.446 77.7 0.6 38.2 0.6 E
2003.451 78.3 0.5 38.9 0.5 E
2003.452 78.4 0.4 39.1 0.4 E
2003.454 79.7 0.4 38.9 0.4 E
2003.454 78.5 0.4 38.5 0.4 E
2003.550 83.2 0.4 38.6 0.4 E
2003.5565 84.14 0.54 36.52 0.70 A
Table 7: Astrometric data from 2003.6 to 2008.5, the unit is mas.
date ΔX\Delta X δ[ΔX]\delta[\Delta X] ΔY\Delta Y δ[ΔY]\delta[\Delta Y] obs
2003.676 89.7 0.4 38.3 0.4 E
2003.678 89.5 0.7 38.8 0.7 E
2003.6851 92.56 1.52 37.66 1.41 A
2003.761 94.7 0.5 37.7 0.5 E
2004.240 111.1 1.0 35.0 1.0 E
2004.325 114.1 0.3 34.7 0.3 E
2004.3265 115.23 0.50 32.99 0.43 A
2004.347 115.5 0.4 33.9 0.4 E
2004.443 118.3 0.4 33.9 0.4 E
2004.511 120.6 0.4 33.0 0.4 E
2004.513 121.0 0.4 33.2 0.4 E
2004.516 121.0 0.7 33.1 0.6 E
2004.516 121.0 0.5 33.4 0.5 E
2004.5647 123.0 0.62 31.12 0.6 A
2004.574 121.8 0.6 32.2 0.6 E
2004.574 122.7 0.4 32.2 0.4 E
2004.6605 125.65 0.74 30.37 0.85 A
2004.664 125.1 0.3 31.5 0.3 E
2004.670 125.3 0.5 31.9 0.5 E
2004.730 126.8 0.8 31.8 0.8 E
2004.730 127.2 0.3 31.1 0.3 E
2005.270 141.0 0.4 26.0 0.4 E
2005.3120 141.79 0.46 23.13 0.48 A
2005.366 143.1 0.4 25.1 0.4 E
2005.371 143.3 0.4 24.7 0.4 E
2005.374 143.3 0.5 24.7 0.5 E
2005.467 144.9 0.4 24.3 0.4 E
2005.4962 146.84 0.47 22.09 0.26 A
2005.5674 147.93 1.30 21.23 1.16 A
2005.570 146.9 0.4 23.5 0.4 E
2005.576 147.3 0.4 23.0 0.4 E
2005.5811 148.36 0.24 21.31 0.2 A
2006.324 159.7 0.7 15.7 0.9 E
2007.545 173.6 0.8 1.3 1.0 E
2007.550 173.1 0.5 2.6 0.5 E
2007.686 173.9 0.6 1.0 0.6 E
2007.687 173.9 0.6 0.4 0.6 E
2008.148 177.0 0.4 -6.0 0.4 E
2008.197 177.0 0.4 -6.5 0.4 E
2008.268 178.0 0.4 -7.4 0.4 E
2008.3703 179.68 0.16 -10.27 0.16 A
2008.456 178.2 0.3 -9.7 0.4 E
Table 8: Astrometric data from 2008.5 to 2010,7, the unit is mas.
date ΔX\Delta X δ[ΔX]\delta[\Delta X] ΔY\Delta Y δ[ΔY]\delta[\Delta Y] obs
2008.472 178.6 0.4 -9.4 0.4 E
2008.473 178.2 0.5 -9.0 0.5 E
2008.5619 180.25 0.16 -12.38 0.16 A
2008.593 177.6 1.4 -10.0 1.6 E
2008.601 178.2 0.4 -11.8 0.4 E
2008.708 179.2 0.4 -12.6 0.4 E
2009.185 179.1 0.8 -18.4 0.8 E
2009.273 179.2 0.4 -19.1 0.4 E
2009.300 179.3 0.4 -19.6 0.4 E
2009.303 179.6 0.4 -19.3 0.4 E
2009.336 179.2 0.4 -19.5 0.4 E
2009.336 179.2 0.4 -19.4 0.4 E
2009.3402 180.75 0.16 -21.02 0.15 A
2009.371 179.0 0.4 -19.7 0.4 E
2009.502 179.0 0.5 -20.9 0.5 E
2009.505 179.2 0.4 -21.2 0.4 E
2009.557 179.4 0.4 -21.3 0.4 E
2009.557 179.5 0.4 -21.9 0.4 E
2009.5619 180.53 0.20 -23.34 0.16 A
2009.606 179.5 0.4 -22.3 0.4 E
2009.6906 180.33 0.18 -24.78 0.18 A
2009.718 179.1 0.4 -23.9 0.4 E
2009.776 179.0 0.4 -24.1 0.4 E
2010.234 177.5 0.4 -29.5 0.4 E
2010.239 177.1 0.4 -29.0 0.4 E
2010.239 176.6 0.4 -29.6 0.4 E
2010.245 176.8 0.4 -29.3 0.4 E
2010.3429 177.88 0.17 -31.87 0.14 A
2010.351 176.6 0.4 -30.6 0.4 E
2010.444 176.1 0.4 -31.8 0.4 E
2010.455 175.4 0.5 -31.2 0.5 E
2010.455 176.1 0.4 -31.4 0.4 E
2010.455 175.9 0.4 -31.8 0.4 E
2010.46 176.1 0.6 -31.3 0.6 E
2010.5127 177.15 0.15 -33.67 0.15 A
2010.616 174.4 0.4 -31.8 0.4 E
2010.619 175.1 0.4 -33.9 0.4 E
2010.622 175.1 0.4 -33.3 0.4 E
2010.6222 176.61 0.16 -34.82 0.17 A
2010.624 175.3 0.4 -33.2 0.4 E
2010.627 174.9 0.4 -33.5 0.4 E
2010.676 174.1 0.6 -33.6 0.6 E
2010.679 174.4 0.4 -34.2 0.4 E
Table 9: Astrometric data from 2011.2 to 2013.7, the unit is mas.
date ΔX\Delta X δ[ΔX]\delta[\Delta X] ΔY\Delta Y δ[ΔY]\delta[\Delta Y] obs
2011.238 170.7 0.4 -39.7 0.4 E
2011.241 170.6 1.9 -39.7 1.9 E
2011.244 170.4 0.4 -39.1 0.4 E
2011.249 170.3 0.5 -39.5 0.5 E
2011.312 169.8 0.4 -40.3 0.4 E
2011.313 169.9 0.5 -38.9 0.5 E
2011.315 169.7 0.4 -40.5 0.4 E
2011.337 169.3 0.3 -40.4 0.3 E
2011.4031 170.75 0.21 -42.62 0.21 A
2011.443 168.4 0.4 -41.4 0.4 E
2011.5455 169.01 0.15 -44.08 0.15 A
2011.553 167.6 0.6 -42.5 0.6 E
2011.613 166.9 0.7 -42.7 0.7 E
2011.6441 167.8 0.28 -44.93 0.18 A
2011.689 166.3 0.7 -44.0 0.7 E
2011.695 166.2 1.0 -42.8 1.0 E
2011.695 166.1 0.4 -43.9 0.4 E
2011.698 166.0 0.4 -43.9 0.4 E
2011.722 165.6 0.4 -44.1 0.4 E
2012.202 159.8 0.7 -48.0 0.7 E
2012.339 158.4 0.4 -49.6 0.4 E
2012.3703 159.94 0.15 -51.21 0.14 A
2012.497 156.2 0.4 -50.1 0.4 E
2012.533 156.2 0.4 -51.4 0.4 E
2012.544 156.1 0.4 -51.1 0.4 E
2012.552 155.8 0.4 -51.7 0.4 E
2012.552 155.8 0.4 -51.7 0.4 E
2012.552 155.8 0.4 -51.7 0.4 E
2012.5619 157.13 0.26 -53.02 0.18 A
2012.700 153.4 0.4 -52.0 0.4 E
2013.161 147.1 0.4 -55.3 0.4 E
2013.240 145.8 0.4 -55.5 0.4 E
2013.317 144.6 0.4 -56.5 0.4 E
2013.366 143.4 0.4 -56.7 0.4 E
2013.420 142.7 0.5 -56.7 0.5 E
2013.437 142.7 0.7 -56.0 0.7 E
2013.494 140.9 0.5 -57.3 0.5 E
2013.502 141.1 0.4 -57.3 0.4 E
2013.587 139.5 0.4 -57.9 0.4 E
2013.590 139.3 1.1 -57.3 1.1 E
2013.617 139.0 0.6 -58.3 0.6 E
Table 10: Astrometric data from 2015.4 to 2018.7, the unit is mas.
date ΔX\Delta X δ[ΔX]\delta[\Delta X] ΔY\Delta Y δ[ΔY]\delta[\Delta Y] obs
2015.432 97.7 0.4 -66.2 0.4 E
2015.517 95.3 0.4 -66.7 0.4 E
2015.706 90.1 0.5 -67.0 0.5 E
2015.747 88.5 0.4 -66.8 0.4 E
2016.221 73.3 0.4 -66.1 0.4 E
2016.287 70.8 0.5 -66.0 0.5 E
2016.325 69.7 0.8 -66.0 0.8 E
2016.3374 71.08 0.25 -67.14 0.17 A
2016.369 68.7 0.8 -66.2 0.8 E
2016.525 62.7 0.5 -64.4 0.5 E
2016.530 62.7 0.5 -65.1 0.5 E
2016.5318 64.49 0.20 -66.21 0.21 A
2017.3429 32.89 0.23 -57.42 0.17 A
2017.3484 33.1 0.33 -57.17 0.25 A
2017.6167 20.61 0.27 -51.33 0.27 A
2017.6496 19.22 0.32 -50.22 0.25 A
2018.2088 -8.20 0.31 -22.14 0.30 A
2018.2225 -8.27 0.40 -20.64 0.49 A
2018.2444 -9.18 0.31 -18.20 0.33 A
2018.3812 -6.73 0.98 1.07 1.12 A
2018.3949 -6.41 0.47 4.38 0.84 A
2018.6742 24.86 0.47 27.66 0.39 A