This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.



Parameterized Multi-observable Sum Uncertainty Relations

Jing-Feng Wu1    Qing-Hua Zhang1,111Corresponding authors.
[email protected](Q. H. Zhang).
[email protected](S. M. Fei).
   Shao-Ming Fei1,2,11footnotemark: 1 1School of Mathematical Sciences, Capital Normal University, 100048 Beijing, China
2Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
Abstract

The uncertainty principle is one of the fundamental features of quantum mechanics and plays an essential role in quantum information theory. We study uncertainty relations based on variance for arbitrary finite NN quantum observables. We establish a series of parameterized uncertainty relations in terms of the parameterized norm inequalities, which improve the exiting variance-based uncertainty relations. The lower bounds of our uncertainty inequalities are non-zero unless the measured state is a common eigenvector of all the observables. Detailed examples are provided to illustrate the tightness of our uncertainty relations.

I Introduction

The uncertainty principle is one of the cornerstones of quantum mechanics, which reveals the intrinsic differences between classical and quantum world. The uncertainty principle was firstly introduced by Heisenberg in 1927 Heisenberg (1927). It shows that if one measures the momentum of a particle with certainty, one can not measure its position with certainty at the same time. Since then a lot of research works have been dedicated to interpret the uncertainty relations via different forms, such as in terms of quantum variance Nielsen and Chuang (2002); Robertson (1929a); Schrödinger (1930); Maccone and Pati (2014); Kennard (1927); Schrödinger (1930); Robertson (1929b); Mondal et al. (2017); Chiew and Gessner (2022); Tóth and Fröwis (2022), entropy Maassen and Uffink (1988); Wu et al. (2009); Coles et al. (2017), noise and disturbance Busch et al. (2013), successive measurement Deutsch (1983); Distler and Paban (2013), majorization technique Puchała et al. (2013); Friedland et al. (2013), skew information Luo (2003); Zhang et al. (2021a); Zhang and Fei (2021); Ma et al. (2022) etc. These uncertainty relations play an important role in a wide range of applications such as entanglement detection Gühne (2004); Zhang and Fei (2020); Zhang et al. (2021b), quantum metrology Giovannetti et al. (2006), quantum steering Schneeloch et al. (2013), quantum gravity Hall (2005) and quantum cryptography Fuchs and Peres (1996).

Robertson Robertson (1929a) generalized the variance-based uncertainty relation for position and momentum to any two observables AA and BB,

ΔAΔB12|ψ|[A,B]|ψ|,\Delta A\Delta B\geq\frac{1}{2}|\langle\psi|[A,B]|\psi\rangle|, (1)

where Δ\Delta stands for the standard deviation of the observable with respect to a fixed state |ψ|\psi\rangle and [A,B][A,B] represents the commutator of the observables AA and BB. Eq. (1) was later improved by Schrödinger Schrödinger (1930),

ΔAΔB12|{A,B}AB|2+|[A,B]|2.\Delta A\Delta B\geq\frac{1}{2}\sqrt{|\langle\{A,B\}\rangle-\langle A\rangle\langle B\rangle|^{2}+|\langle[A,B]\rangle|^{2}}. (2)

Here, the lower bounds of the inequalities (1) and (2) may vanish even if the observables AA and BB are not commutative. For instance, when the measured state |ψ|\psi\rangle is an eigenvector of either AA or BB, the right hands of the inequality (1) and (2) are trivially zero. To overcome the flaw, uncertainty relations with respect to the sum of variances have been presented by Maccone and Pati Maccone and Pati (2014),

Δ2A+Δ2B\displaystyle\Delta^{2}A+\Delta^{2}B ±iψ|[A,B]|ψ+|ψ|A±iB|ψ|2,\displaystyle\geq\pm i\langle\psi|[A,B]|\psi\rangle+|\langle\psi|A\pm iB|\psi^{\perp}\rangle|^{2}, (3)
Δ2\displaystyle\Delta^{2} A+Δ2B12Δ2(A+B),\displaystyle A+\Delta^{2}B\geq\frac{1}{2}\Delta^{2}(A+B), (4)

where the signs ±\pm on the right-hand side of (3) are taken so that the ±iψ|[A,B]|ψ\pm i\langle\psi|[A,B]|\psi\rangle is positive, |ψ|\psi^{\perp}\rangle satisfies ψ|ψ=0\langle\psi|\psi^{\perp}\rangle=0. The lower bound in (3) is nonzero for most choices of |ψ|\psi^{\perp}\rangle if AA and BB are not commutative.

Besides the variance-based uncertainty relations with respect to pairs of non-commutative observables, the uncertainty relations related to three non-commutative observables such as the three components of spins and angular momentums Kechrimparis and Weigert (2014); Dammeier et al. (2015); Ma et al. (2017) have been also investigated. The variance-based uncertainty relations for general multiple observables have been further studied either in summation form Chen et al. (2016); Chen and Fei (2015); Chen et al. (2019) or in product form Qin et al. (2016); Xiao and Jing (2016). For instance, Song etal.et\ al. derived an elegant variance-based uncertainty relation in Song et al. (2017),

i=1NΔρ2(Ai)1NΔρ2(i=1NAi)+2N2(N1)[1i<jNΔρ(AiAj)]2.\sum_{i=1}^{N}\Delta_{\rho}^{2}(A_{i})\geq\frac{1}{N}\Delta_{\rho}^{2}(\sum_{i=1}^{N}A_{i})+\frac{2}{N^{2}(N-1)}\Big{[}\sum_{1\leq i<j\leq N}\Delta_{\rho}(A_{i}-A_{j})\Big{]}^{2}. (5)

Recently, based on the inequalities of vector norm, Zhang etal.et\ al. Zhang et al. (2023) proposed an improved variance-based sum uncertainty relation for NN arbitrary incompatible observables,

i=1NΔρ2(Ai)maxx{0,1}\displaystyle\sum_{i=1}^{N}\Delta_{\rho}^{2}(A_{i})\geq\max_{x\in\{0,1\}} 12N2{2N(N1)[1i<jNΔρ(Ai+(1)xAj)]2\displaystyle\frac{1}{2N-2}\bigg{\{}\frac{2}{N(N-1)}\Big{[}\sum_{1\leq i<j\leq N}\Delta_{\rho}(A_{i}+(-1)^{x}A_{j})\Big{]}^{2} (6)
+1i<jNΔρ2(Ai+(1)x+1Aj)}.\displaystyle+\sum_{1\leq i<j\leq N}\Delta_{\rho}^{2}(A_{i}+(-1)^{x+1}A_{j})\bigg{\}}.

This paper is aimed to improve these uncertainty relations for NN arbitrary observables. Motivated by the skew information-based uncertainty relations proposed in Zhang et al. (2023) and Li et al. (2022), we combine the parameterized parallelogram law of vector norm with Cauchy-Schwarz inequality to improve the lower bounds of uncertainty relations for NN observables.

II uncertainty relations via variance

Denote HdH_{d} the Hilbert space with dd dimension. Let G=(gij)l×pG=(g_{ij})_{l\times p} be a rectangular matrix with entries gijg_{ij}. The vectorization of GG is given by the vector |G=(g11,,gl1,,g1p,,glp)t|G\rangle=(g_{11},\dots,g_{l1},\dots,g_{1p},\dots,g_{lp})^{t} with tt denoting the transpose. It is verified that |GT=(IG)|T|GT\rangle=(I\otimes G)|T\rangle for any matrix TT and identity II in suitable size. The quantum variance of any quantum state ρ\rho on HdH_{d} with respect to an observable MM is defined by

Δρ2(M)\displaystyle\Delta^{2}_{\rho}(M) =Tr(ρM2)[Tr(ρM)]2=Tr(ρ(δM)2ρ)\displaystyle={\rm Tr}(\rho M^{2})-[{\rm Tr}(\rho M)]^{2}={\rm Tr}(\sqrt{\rho}(\delta M)^{2}\sqrt{\rho}) (7)
=δMρ|δMρ=ρ|Id(δM)2|ρ\displaystyle=\langle\delta M\sqrt{\rho}|\delta M\sqrt{\rho}\rangle=\langle\sqrt{\rho}|I_{d}\otimes(\delta M)^{2}|\sqrt{\rho}\rangle
=IdδM|ρ2,\displaystyle=\|I_{d}\otimes\delta M|\sqrt{\rho}\rangle\|^{2},

where IdI_{d} is the identity operator in HdH_{d}, δM=MTr(ρM)\delta M=M-{\rm Tr}(\rho M), |ρ|\sqrt{\rho}\rangle denotes the vectorization of ρ\sqrt{\rho} and \|\cdot\| the 22-norm of a vector. Especially, when the quantum state ρ\rho is pure, that is ρ=|ψψ|\rho=|\psi\rangle\langle\psi|, one has Δρ2(M)=δM|ψ2\Delta^{2}_{\rho}(M)=\|\delta M|\psi\rangle\|^{2}. By using the parallelogram law of vector 22-norm,

(2N2)i=1Nai2=1i<jNai+aj2+1i<jNaiaj2(2N-2)\sum_{i=1}^{N}\|a_{i}\|^{2}=\sum_{1\leq i<j\leq N}\|a_{i}+a_{j}\|^{2}+\sum_{1\leq i<j\leq N}\|a_{i}-a_{j}\|^{2} (8)

for a set of vectors aia_{i}, i=1,,Ni=1,...,N, we have the following uncertainty relation.

Theorem 1

For NN arbitrary observables A1,A2,,ANA_{1},A_{2},\dots,A_{N}, the following variance-based sum uncertainty relation holds for any quantum state ρ\rho,

i=1NΔρ2(Ai)LB1=maxx{0,1}y{0,1}\displaystyle\sum_{i=1}^{N}\Delta_{\rho}^{2}(A_{i})\geq\rm{LB1}=\mathop{\max_{{x\in\{0,1\}}\atop{y\in\{0,1\}}}} 1(1+α2)(N1){2N(N1)[1i<jNΔρ(α1xAi+(1)yαxAj)]2\displaystyle\frac{1}{(1+\alpha^{2})(N-1)}\bigg{\{}\frac{2}{N(N-1)}\Big{[}\sum_{1\leq i<j\leq N}\Delta_{\rho}(\alpha^{1-x}A_{i}+(-1)^{y}\alpha^{x}A_{j})\Big{]}^{2} (9)
+1i<jNΔρ2(αxAi+(1)1yα1xAj)},\displaystyle+\sum_{1\leq i<j\leq N}\Delta_{\rho}^{2}(\alpha^{x}A_{i}+(-1)^{1-y}\alpha^{1-x}A_{j})\bigg{\}},

where α\alpha is any non-negative real number.

[Proof] For all x{0,1}x\in\{0,1\} and y{0,1}y\in\{0,1\}, the following parameterized parallelogram equality holds for 22-norm of any vectors aia_{i},

i=1Nai2=\displaystyle\sum_{i=1}^{N}\|a_{i}\|^{2}= 1(1+α2)(N1)[1i<jNα1xai+(1)yαxaj2\displaystyle\frac{1}{(1+\alpha^{2})(N-1)}\Big{[}\sum_{1\leq i<j\leq N}\|\alpha^{1-x}a_{i}+(-1)^{y}\alpha^{x}a_{j}\|^{2} (10)
+1i<jNαxai+(1)1yα1xaj2].\displaystyle+\sum_{1\leq i<j\leq N}\|\alpha^{x}a_{i}+(-1)^{1-y}\alpha^{1-x}a_{j}\|^{2}\Big{]}.

Using the Cauchy-Schwarz inequality,

1i<jNα1xai+(1)yαxaj22N(N1)[1i<jNα1xai+(1)yαxaj]2,\sum_{1\leq i<j\leq N}\|\alpha^{1-x}a_{i}+(-1)^{y}\alpha^{x}a_{j}\|^{2}\geq\frac{2}{N(N-1)}\Big{[}\sum_{1\leq i<j\leq N}\|\alpha^{1-x}a_{i}+(-1)^{y}\alpha^{x}a_{j}\|\Big{]}^{2}, (11)

we obtain

i=1Nai2\displaystyle\sum_{i=1}^{N}\|a_{i}\|^{2}\geq 1(1+α2)(N1){2N(N1)[1i<jNα1xai+(1)yαxaj]2\displaystyle\frac{1}{(1+\alpha^{2})(N-1)}\bigg{\{}\frac{2}{N(N-1)}\Big{[}\sum_{1\leq i<j\leq N}\|\alpha^{1-x}a_{i}+(-1)^{y}\alpha^{x}a_{j}\|\Big{]}^{2} (12)
+1i<jNαxai+(1)1yα1xaj2}.\displaystyle+\sum_{1\leq i<j\leq N}\|\alpha^{x}a_{i}+(-1)^{1-y}\alpha^{1-x}a_{j}\|^{2}\bigg{\}}.

Set ai=IdδAi|ρ=ΔρAi\|a_{i}\|=\|I_{d}\otimes\delta A_{i}|\sqrt{\rho}\rangle\|=\Delta_{\rho}A_{i} and α1xai+(1)yαxaj=Δρ(α1xAi+(1)yαxAj)\|\alpha^{1-x}a_{i}+(-1)^{y}\alpha^{x}a_{j}\|=\Delta_{\rho}(\alpha^{1-x}A_{i}+(-1)^{y}\alpha^{x}A_{j}). We have

i=1NΔρ2(Ai)\displaystyle\sum_{i=1}^{N}\Delta_{\rho}^{2}(A_{i})\geq 1(1+α2)(N1){2N(N1)[1i<jNΔρ(α1xAi+(1)yαxAj)]2\displaystyle\frac{1}{(1+\alpha^{2})(N-1)}\bigg{\{}\frac{2}{N(N-1)}\Big{[}\sum_{1\leq i<j\leq N}\Delta_{\rho}(\alpha^{1-x}A_{i}+(-1)^{y}\alpha^{x}A_{j})\Big{]}^{2} (13)
+1i<jNΔρ2(αxAi+(1)1yα1xAj)}.\displaystyle+\sum_{1\leq i<j\leq N}\Delta_{\rho}^{2}(\alpha^{x}A_{i}+(-1)^{1-y}\alpha^{1-x}A_{j})\bigg{\}}.

Namely, i=1NΔρ2(Ai)LB1\sum_{i=1}^{N}\Delta_{\rho}^{2}(A_{i})\geq\rm{LB1}. \Box

Theorem 1 provides a series of uncertainty relations depending on the values of the parameter α\alpha. We can obtain more stringent bound on the uncertainty relations by selecting the optimal parameters α\alpha. The uncertainty relations (6) is a special case of Theorem 1 corresponding to α=1\alpha=1. Note that the lower bound of Theorem 1 is non-zero unless the measured state |ψ|\psi\rangle is a common eigenvector of all AiA_{i}. That is to say, no matter whether the observables are commutable or not, the lower bound of Theorem 1 does not vanish if |ψ|\psi\rangle is not a common eigenvector of all observables.

In fact, the lower bound in Theorem 1 should be understood under the permutation of the observables. Let πS(N)\pi\in S(N) be an arbitrary NN-element permutation. Define

LB1π=maxx{0,1}y{0,1}\displaystyle{\rm LB1}_{\pi}=\mathop{\max_{{x\in\{0,1\}}\atop{y\in\{0,1\}}}} 1(1+α2)(N1){2N(N1)[1i<jNΔρ(α1xAπ(i)+(1)yαxAπ(j))]2\displaystyle\frac{1}{(1+\alpha^{2})(N-1)}\bigg{\{}\frac{2}{N(N-1)}\Big{[}\sum_{1\leq i<j\leq N}\Delta_{\rho}(\alpha^{1-x}A_{\pi(i)}+(-1)^{y}\alpha^{x}A_{\pi(j)})\Big{]}^{2} (14)
+1i<jNΔρ2(αxAπ(i)+(1)1yα1xAπ(j))}.\displaystyle+\sum_{1\leq i<j\leq N}\Delta_{\rho}^{2}(\alpha^{x}A_{\pi(i)}+(-1)^{1-y}\alpha^{1-x}A_{\pi(j)})\bigg{\}}.

The following variance-based uncertainty relation under the element permutation of all observables holds,

i=1NΔρ2(Ai)maxπS(N)LB1π.\sum_{i=1}^{N}\Delta_{\rho}^{2}(A_{i})\geq\max_{\pi\in S(N)}{\rm LB1}_{\pi}. (15)

According to the following equalities,

1i<jNai+aj2=i=1Nai2+(N2)i=1Nai2\sum_{1\leq i<j\leq N}\|a_{i}+a_{j}\|^{2}=\|\sum_{i=1}^{N}a_{i}\|^{2}+(N-2)\sum_{i=1}^{N}\|a_{i}\|^{2} (16)

and

1i<jNaiaj2=Ni=1Nai2i=1Nai2,\sum_{1\leq i<j\leq N}\|a_{i}-a_{j}\|^{2}=N\sum_{i=1}^{N}\|a_{i}\|^{2}-\|\sum_{i=1}^{N}a_{i}\|^{2}, (17)

one has Li et al. (2022),

[αN+(N2)β]i=1Nai2=\displaystyle\left[\alpha N+(N-2)\beta\right]\sum_{i=1}^{N}\|a_{i}\|^{2}= β1i<jNai+aj2+α1i<jNaiaj2\displaystyle\beta\sum_{1\leq i<j\leq N}\|a_{i}+a_{j}\|^{2}+\alpha\sum_{1\leq i<j\leq N}\|a_{i}-a_{j}\|^{2} (18)
+(αβ)i=1Nai2,\displaystyle+(\alpha-\beta)\|\sum_{i=1}^{N}a_{i}\|^{2},

where both α,β\alpha,\beta are arbitrary real numbers.

Theorem 2

Let A1,A2,,ANA_{1},A_{2},\dots,A_{N} be NN arbitrary observables. For any quantum state ρ\rho, we have the following uncertainty relation satisfied by quantum variances,

i=1NΔρ2(Ai)LB2=max{X,Y,Z},\sum_{i=1}^{N}\Delta_{\rho}^{2}(A_{i})\geq\rm{LB2}=\max\{\rm{X},\rm{Y},\rm{Z}\}, (19)

where

X=\displaystyle\rm{X}= 1αN+(N2)β{2βN(N1)[1i<jNΔρ(Ai+Aj)]2\displaystyle\frac{1}{\alpha N+(N-2)\beta}\bigg{\{}\frac{2\beta}{N(N-1)}\Big{[}\sum_{1\leq i<j\leq N}\Delta_{\rho}(A_{i}+A_{j})\Big{]}^{2} (20)
+α1i<jNΔρ2(AiAj)+(αβ)Δρ2(i=1NAi)}\displaystyle+\alpha\sum_{1\leq i<j\leq N}\Delta_{\rho}^{2}(A_{i}-A_{j})+(\alpha-\beta)\Delta_{\rho}^{2}(\sum_{i=1}^{N}A_{i})\bigg{\}}

and

Y=\displaystyle\rm{Y}= 1αN+(N2)β{2αN(N1)[1i<jNΔρ(AiAj)]2\displaystyle\frac{1}{\alpha N+(N-2)\beta}\bigg{\{}\frac{2\alpha}{N(N-1)}\Big{[}\sum_{1\leq i<j\leq N}\Delta_{\rho}(A_{i}-A_{j})\Big{]}^{2} (21)
+β1i<jNΔρ2(Ai+Aj)+(αβ)Δρ2(i=1NAi)}\displaystyle+\beta\sum_{1\leq i<j\leq N}\Delta_{\rho}^{2}(A_{i}+A_{j})+(\alpha-\beta)\Delta_{\rho}^{2}(\sum_{i=1}^{N}A_{i})\bigg{\}}

for α,β>0\alpha,\beta>0,

Z=\displaystyle\rm{Z}= 1αN+(N2)β{β1i<jNΔρ2(Ai+Aj)\displaystyle\frac{1}{\alpha N+(N-2)\beta}\bigg{\{}\beta\sum_{1\leq i<j\leq N}\Delta_{\rho}^{2}(A_{i}+A_{j}) (22)
+α1i<jNΔρ2(AiAj)+αβ(N1)2[1i<jNΔρ(Ai+Aj)]2}\displaystyle+\alpha\sum_{1\leq i<j\leq N}\Delta_{\rho}^{2}(A_{i}-A_{j})+\frac{\alpha-\beta}{(N-1)^{2}}\Big{[}\sum_{1\leq i<j\leq N}\Delta_{\rho}(A_{i}+A_{j})\Big{]}^{2}\bigg{\}}

for β>α>0\beta>\alpha>0.

[Proof] For all α,β>0\alpha,\beta>0, by using (18) and the Cauchy-Schwarz inequality (11), we get

i=1Nai2\displaystyle\sum_{i=1}^{N}\|a_{i}\|^{2}\geq 1αN+(N2)β[2βN(N1)(1i<jNai+aj)2\displaystyle\frac{1}{\alpha N+(N-2)\beta}\Big{[}\frac{2\beta}{N(N-1)}(\sum_{1\leq i<j\leq N}\|a_{i}+a_{j}\|)^{2} (23)
+α1i<jNaiaj2+(αβ)i=1Nai2]\displaystyle+\alpha\sum_{1\leq i<j\leq N}\|a_{i}-a_{j}\|^{2}+(\alpha-\beta)\|\sum_{i=1}^{N}a_{i}\|^{2}\Big{]}

and

i=1Nai2\displaystyle\sum_{i=1}^{N}\|a_{i}\|^{2}\geq 1αN+(N2)β[β1i<jNai+aj2\displaystyle\frac{1}{\alpha N+(N-2)\beta}\Big{[}\beta\sum_{1\leq i<j\leq N}\|a_{i}+a_{j}\|^{2} (24)
+2αN(N1)(1i<jNaiaj)2+(αβ)i=1Nai2].\displaystyle+\frac{2\alpha}{N(N-1)}(\sum_{1\leq i<j\leq N}\|a_{i}-a_{j}\|)^{2}+(\alpha-\beta)\|\sum_{i=1}^{N}a_{i}\|^{2}\Big{]}.

When β>α>0\beta>\alpha>0, due to i=1Nai21(N1)2(1i<jNai+aj)2\|\sum\limits_{i=1}^{N}a_{i}\|^{2}\leq\frac{1}{(N-1)^{2}}(\sum\limits_{1\leq i<j\leq N}\|a_{i}+a_{j}\|)^{2}, we obtain

i=1Nai2\displaystyle\sum_{i=1}^{N}\|a_{i}\|^{2}\geq 1αN+(N2)β[β1i<jNai+aj2+α1i<jNaiaj2\displaystyle\frac{1}{\alpha N+(N-2)\beta}\Big{[}\beta\sum_{1\leq i<j\leq N}\|a_{i}+a_{j}\|^{2}+\alpha\sum_{1\leq i<j\leq N}\|a_{i}-a_{j}\|^{2} (25)
+(αβ)(N1)2(1i<jNai+aj)2].\displaystyle+\frac{(\alpha-\beta)}{(N-1)^{2}}(\sum_{1\leq i<j\leq N}\|a_{i}+a_{j}\|)^{2}\Big{]}.

Substituting ai=Δρ(Ai)\|a_{i}\|=\Delta_{\rho}(A_{i}) and ai±aj=Δρ(Ai±Aj)\|a_{i}\pm a_{j}\|=\Delta_{\rho}(A_{i}\pm A_{j}) into the inequalities (23)-(25), we complete the proof. \Box

In Theorem 2 we note that, for a given amount of observables NN, the larger α\alpha and the smaller β\beta mean larger XX and ZZ given by (20) and (22), respectively. Nevertheless, the larger β\beta and the smaller α\alpha correspond to larger YY given by (21). If one takes α=β\alpha=\beta in Theorem 2, the lower bound of Theorem 2 is coincident to that of (6). If one respectively takes β<α\beta<\alpha for X and β>α\beta>\alpha for Y, the lower bound of Theorem 2 is tighter than that of (6). In Li et al. (2022), Li etal.et\ al. proved that (23) and (24) are strictly tighter than those of norm inequalities related to (5) and (6) for appropriate α\alpha and β\beta.

In particular, when one takes α=2\alpha=2 and β=1\beta=1 for (20), α=1\alpha=1 and β=2\beta=2 for (21) and (22), then X\rm{X}, Y\rm{Y} and Z\rm{Z} respectively reduce to

X=\displaystyle\rm{X}= 13N2{2N(N1)[1i<jNΔρ(Ai+Aj)]2\displaystyle\frac{1}{3N-2}\bigg{\{}\frac{2}{N(N-1)}\Big{[}\sum_{1\leq i<j\leq N}\Delta_{\rho}(A_{i}+A_{j})\Big{]}^{2} (26)
+21i<jNΔρ2(AiAj)+Δρ2(i=1NAi)},\displaystyle+2\sum_{1\leq i<j\leq N}\Delta_{\rho}^{2}(A_{i}-A_{j})+\Delta_{\rho}^{2}(\sum_{i=1}^{N}A_{i})\bigg{\}},
Y=\displaystyle\rm{Y}= 13N4{2N(N1)[1i<jNΔρ(AiAj)]2\displaystyle\frac{1}{3N-4}\bigg{\{}\frac{2}{N(N-1)}\Big{[}\sum_{1\leq i<j\leq N}\Delta_{\rho}(A_{i}-A_{j})\Big{]}^{2} (27)
+21i<jNΔρ2(Ai+Aj)Δρ2(i=1NAi)},\displaystyle+2\sum_{1\leq i<j\leq N}\Delta_{\rho}^{2}(A_{i}+A_{j})-\Delta_{\rho}^{2}(\sum_{i=1}^{N}A_{i})\bigg{\}},
Z=\displaystyle\rm{Z}= 13N4{21i<jNΔρ2(Ai+Aj)+1i<jNΔρ2(AiAj)\displaystyle\frac{1}{3N-4}\bigg{\{}2\sum_{1\leq i<j\leq N}\Delta_{\rho}^{2}(A_{i}+A_{j})+\sum_{1\leq i<j\leq N}\Delta_{\rho}^{2}(A_{i}-A_{j}) (28)
1(N1)2[1i<jNΔρ(Ai+Aj)]2}.\displaystyle-\frac{1}{(N-1)^{2}}\Big{[}\sum_{1\leq i<j\leq N}\Delta_{\rho}(A_{i}+A_{j})\Big{]}^{2}\bigg{\}}.

For convenience, we consider the above special scenario of Theorem 2 in following concrete examples. We compare the lower bounds LB1\rm{LB1} and LB2\rm{LB2} respectively given in Theorem 1 and 2 with the ones given in (5) and (6).

Example 1 Consider the qubit mixed state given by Bloch vector r=(32cosθ,32sinθ,0)\vec{r}=(\frac{\sqrt{3}}{2}\cos\theta,\frac{\sqrt{3}}{2}\sin\theta,0),

ρ=12(I2+rσ),\rho=\frac{1}{2}(I_{2}+\vec{r}\cdot\vec{\sigma}), (29)

where the components of the vector σ=(σx,σy,σz)\vec{\sigma}=(\sigma_{x},\sigma_{y},\sigma_{z}) are the standard Pauli matrices, I2I_{2} is 2×22\times 2 identity matrix. We choose Pauli matrices σxσz\sigma_{x}-\sigma_{z}, σy+σz\sigma_{y}+\sigma_{z} and σz\sigma_{z} as the observables A1A_{1}, A2A_{2} and A3A_{3}, respectively.

As shown in Fig. 1, we can obtain more stringent bound on the uncertainty relations in most choices of parameter α\alpha. Especially, set α=1/2\alpha=1/2 in Theorem 1, the results are shown in Fig. 1. Obviously, the lower bounds LB1 and LB2 are strictly tighter than the bounds of (5) and (6) in this case. In fact, our lower bonds depend on both the parameter α\alpha and the given set of observables. Generally it is difficult to find an analytical relation among the optimal lower bonds, the parameter α\alpha and the arbitrary set of observables. To illustrate their relationships, we consider two fixed states with θ=π/4\theta=\pi/4 and θ=π/2\theta=\pi/2 to show how our lower bounds change with the α\alpha, see Fig. 1 and Fig. 1.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Example of comparison of LB1 , LB2, the right-hand sides (RHS) of (5) and (6). We choose three observables A1=σxσzA_{1}=\sigma_{x}-\sigma_{z}, A2=σy+σzA_{2}=\sigma_{y}+\sigma_{z} and A3=σzA_{3}=\sigma_{z}, and a family of states parameterized by θ\theta. In (a), the red surface denotes the lower bound(LB1) of our new uncertainty relation; green surface represent LB2\rm{LB2}; pink surface and blue surface represent the right-hand sides (RHS) of (5) and (6), respectively. In (b), (c) and (d), the upper black (dashed) denotes the sum of variances sum=Δρ2(A1)+Δρ2(A2)+Δρ2(A3)\rm{sum}=\Delta_{\rho}^{2}(A_{1})+\Delta_{\rho}^{2}(A_{2})+\Delta_{\rho}^{2}(A_{3}). The red (solid) curve exhibit LB1\rm{LB1} in (b: α=1/2\alpha=1/2) and in (c: θ=π/4\theta=\pi/4) and (d: θ=π/2\theta=\pi/2). The green (dashed) curve represents LB2\rm{LB2}. The pink (dot-dashed) and the blue (dotted) curves represent the right-hand sides (RHS) of (5) and (6), respectively. Note that the new uncertainty relation (9) is stronger than the others when we select the appropriate parameters.

Example 2 Consider the following class of quantum states given by convex combination of the maximally entangled state and the maximally mixed state,

ρθ=1θd21(Id2|Ψ+Ψ+|)+θ|Ψ+Ψ+|,\rho_{\theta}=\frac{1-\theta}{d^{2}-1}(I_{d^{2}}-|\Psi^{+}\rangle\langle\Psi^{+}|)+\theta|\Psi^{+}\rangle\langle\Psi^{+}|, (30)

with 0θ10\leq\theta\leq 1 and |Ψ+=1di=1d|ii|\Psi^{+}\rangle=\frac{1}{\sqrt{d}}\sum_{i=1}^{d}|ii\rangle. Consider two-qubit case (d=2d=2) and take σ3σ1+σ3σ2\sigma_{3}\otimes\sigma_{1}+\sigma_{3}\otimes\sigma_{2}, σ3σ2\sigma_{3}\otimes\sigma_{2} and σ3σ3σ3σ2\sigma_{3}\otimes\sigma_{3}-\sigma_{3}\otimes\sigma_{2} as the observables A1A_{1}, A2A_{2} and A3A_{3}, respectively.

As shown in Fig. 2, we can obtain more stringent bound on the uncertainty relations by selecting the appropriate parameter α\alpha. For comparison, set α=5\alpha=5 in Theorem 1, the results are shown in Fig. 2, the comparison among our bounds, Song etal.et\ al. and Zhang etal.et\ al.’s lower bounds is depicted in Fig. 2.

Refer to caption
Refer to caption
Figure 2: Comparison among our bounds, Song etal.et\ al. and Zhang etal.et\ al.’s bounds for isotropic state (30). (a) Red and green surfaces respectively represent LB1\rm{LB1} and LB2\rm{LB2}. Pink and blue surfaces represent the right-hand sides (RHS) of (5) and (6), respectively. For most choices of α\alpha, our lower bounds are able to cover the lower bounds of (5) and (6). (b) Black (dashed) line is the sum=Δρ2(A1)+Δρ2(A2)+Δρ2(A3){\rm sum}=\Delta_{\rho}^{2}(A_{1})+\Delta_{\rho}^{2}(A_{2})+\Delta_{\rho}^{2}(A_{3}). Pink (dot-dashed) and blue (dotted) curves represent the right-hand sides (RHS) of (5) and (6), respectively. Our bounds LB1 and LB2 are shown by the red (solid) and green (dashed) curves, which are larger than ones shown by the blue and pink curves.

Example 3 Consider the following pure state of spin-1 system,

|ψ=sinθcosϕ|1+sinθsinϕ|0+cosθ|1,|\psi\rangle=\sin\theta\cos\phi|1\rangle+\sin\theta\sin\phi|0\rangle+\cos\theta|-1\rangle, (31)

where θ[0,π]\theta\in[0,\pi] and ϕ[0,2π]\phi\in[0,2\pi]. We respectively take LxLyL_{x}-L_{y}, LyL_{y} and Lz+LyL_{z}+L_{y} as the observables A1,A2A_{1},A_{2} and A3A_{3}, where Lx,LyL_{x},L_{y} and LzL_{z} are the angular momentum operators (=1\hbar=1):

Lx=12(010101010),Ly=12(0i0i0i0i0),Lz=(100000001).L_{x}=\frac{1}{\sqrt{2}}\begin{pmatrix}0&1&0\\ 1&0&1\\ 0&1&0\end{pmatrix},~{}~{}~{}L_{y}=\frac{1}{\sqrt{2}}\begin{pmatrix}0&-i&0\\ i&0&-i\\ 0&i&0\end{pmatrix},~{}~{}~{}L_{z}=\begin{pmatrix}1&0&0\\ 0&0&0\\ 0&0&-1\end{pmatrix}. (32)

Set ϕ=π2\phi=\frac{\pi}{2}. We show in Fig. 3 the comparison among our lower bounds of Theorem 1 and Theorem 2, and those of (5) and (6). In this scenario, it is easily seen that our bounds are tighter than others by selecting the appropriate parameter α\alpha.

Refer to caption
Refer to caption
Figure 3: (a) Red surface represents LB1\rm{LB1}, and green surface represents LB2\rm{LB2}. Pink and blue surface represent the right-hand sides (RHS) of (5) and (6), respectively. (b) Black (dashed) curve is the sum=Δρ2(A1)+Δρ2(A2)+Δρ2(A3){\rm sum}=\Delta_{\rho}^{2}(A_{1})+\Delta_{\rho}^{2}(A_{2})+\Delta_{\rho}^{2}(A_{3}). Red (solid) curve represents LB1\rm{LB1} and green (dashed) curve represents LB2\rm{LB2}. Pink (dot-dashed) and blue (dotted) curves represent the right-hand sides (RHS) of (5) and (6), respectively.

III Conclusion

We have studied tighter variance-based sum uncertainty relations for NN arbitrary observables. By employing the parameterized norm identities and Cauchy-Schwarz inequalities we have derived more general and tighter sum uncertainty relations. Furthermore, we have showed that the bounds of our uncertainty relations are tighter than the existing variance-based uncertainty ones. These results and the simple approaches used in this article may highlight further investigations on related uncertainty relations.


Acknowledgments  This work is supported by NSFC (Grant Nos. 12075159, 12171044), Beijing Natural Science Foundation (Z190005) and the Academician Innovation Platform of Hainan Province.

Data availability  Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  • Heisenberg (1927) W. Heisenberg, Zeitschrift für Physik 43, 198 (1927).
  • Nielsen and Chuang (2002) M. A. Nielsen and I. Chuang, Quantum computation and quantum information (2002).
  • Robertson (1929a) H. P. Robertson, Phys. Rev. 34, 163 (1929a).
  • Schrödinger (1930) E. Schrödinger, Acad. Wiss p. 296 (1930).
  • Maccone and Pati (2014) L. Maccone and A. K. Pati, Phys. Rev. Lett. 113, 260401 (2014).
  • Kennard (1927) E. H. Kennard, Zeitschrift für Physik 44, 326 (1927).
  • Schrödinger (1930) E. Schrödinger, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse 14, 296 (1930).
  • Robertson (1929b) H. P. Robertson, Phys. Rev. 34, 163 (1929b).
  • Mondal et al. (2017) D. Mondal, S. Bagchi, and A. K. Pati, Physical Review A 95, 052117 (2017).
  • Chiew and Gessner (2022) S.-H. Chiew and M. Gessner, Phys. Rev. Research 4, 013076 (2022).
  • Tóth and Fröwis (2022) G. Tóth and F. Fröwis, Phys. Rev. Research 4, 013075 (2022).
  • Maassen and Uffink (1988) H. Maassen and J. B. M. Uffink, Phys. Rev. Lett. 60, 1103 (1988).
  • Wu et al. (2009) S. Wu, S. Yu, and K. Mølmer, Phys. Rev. A 79, 022104 (2009).
  • Coles et al. (2017) P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, Rev. Mod. Phys. 89, 015002 (2017).
  • Busch et al. (2013) P. Busch, P. Lahti, and R. F. Werner, Phys. Rev. Lett. 111, 160405 (2013).
  • Deutsch (1983) D. Deutsch, Phys. Rev. Lett. 50, 631 (1983).
  • Distler and Paban (2013) J. Distler and S. Paban, Phys. Rev. A 87, 062112 (2013).
  • Puchała et al. (2013) Z. Puchała, Ł. Rudnicki, and K. Życzkowski, Journal of Physics A: Mathematical and Theoretical 46, 272002 (2013).
  • Friedland et al. (2013) S. Friedland, V. Gheorghiu, and G. Gour, Physical review letters 111, 230401 (2013).
  • Luo (2003) S. Luo, Phys. Rev. Lett. 91, 180403 (2003).
  • Zhang et al. (2021a) Q.-H. Zhang, J.-F. Wu, and S.-M. Fei, Laser Physics Letters 18, 095204 (2021a).
  • Zhang and Fei (2021) Q.-H. Zhang and S.-M. Fei, Quantum Information Processing 20, 1 (2021).
  • Ma et al. (2022) X. Ma, Q.-H. Zhang, and S.-M. Fei, Laser Physics Letters 19, 055205 (2022).
  • Gühne (2004) O. Gühne, Phys. Rev. Lett. 92, 117903 (2004).
  • Zhang and Fei (2020) Q.-H. Zhang and S.-M. Fei, Laser Physics Letters 17, 065202 (2020).
  • Zhang et al. (2021b) J.-B. Zhang, T. Li, Q.-H. Zhang, S.-M. Fei, and Z.-X. Wang, Scientific reports 11, 1 (2021b).
  • Giovannetti et al. (2006) V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006).
  • Schneeloch et al. (2013) J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, Phys. Rev. A 87, 062103 (2013).
  • Hall (2005) M. J. Hall, General Relativity and Gravitation 37, 1505 (2005).
  • Fuchs and Peres (1996) C. A. Fuchs and A. Peres, Phys. Rev. A 53, 2038 (1996).
  • Kechrimparis and Weigert (2014) S. Kechrimparis and S. Weigert, Physical Review A 90, 062118 (2014).
  • Dammeier et al. (2015) L. Dammeier, R. Schwonnek, and R. F. Werner, New Journal of Physics 17, 093046 (2015).
  • Ma et al. (2017) W. Ma, B. Chen, Y. Liu, M. Wang, X. Ye, F. Kong, F. Shi, S.-M. Fei, and J. Du, Physical Review Letters 118, 180402 (2017).
  • Chen et al. (2016) B. Chen, N.-P. Cao, S.-M. Fei, and G.-L. Long, Quantum Information Processing 15, 3909 (2016).
  • Chen and Fei (2015) B. Chen and S.-M. Fei, Scientific reports 5, 1 (2015).
  • Chen et al. (2019) Z.-X. Chen, H. Wang, J.-L. Li, Q.-C. Song, and C.-F. Qiao, Scientific Reports 9, 1 (2019).
  • Qin et al. (2016) H.-H. Qin, S.-M. Fei, and X. Li-Jost, Scientific Reports 6, 1 (2016).
  • Xiao and Jing (2016) Y. Xiao and N. Jing, Scientific Reports 6, 1 (2016).
  • Song et al. (2017) Q.-C. Song, J.-L. Li, G.-X. Peng, and C.-F. Qiao, Scientific Reports 7, 1 (2017).
  • Zhang et al. (2023) Q.-H. Zhang, J.-F. Wu, X. Ma, and S.-M. Fei, Quantum Information Processing 22, 1 (2023).
  • Li et al. (2022) H. Li, T. Gao, and F. Yan, Physica Scripta 98, 015024 (2022).