This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Parabolic weighted Sobolev-Poincaré type inequalities

Lars Diening Lars Diening, University Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany [email protected] Mikyoung Lee Mikyoung Lee, Department of Mathematics, Pusan National University, Busan 46241, Republic of Korea [email protected]  and  Jihoon Ok Jihoon Ok, Department of Mathematics, Sogang University, Seoul 04107, Republic of Korea [email protected]
Abstract.

We derive weighted Sobolev-Poincaré type inequalities in function spaces concerned with parabolic partial differential equations. We consider general weights depending on both space and time variables belonging to a Muckenhoupt class, so-called the parabolic ApA_{p}-class, where only the parabolic cubes are involved in the definition.

Key words and phrases:
Sobolev-Poincaré inequality, parabolic equation, weight, parabolic Muckenhupt class
2020 Mathematics Subject Classification:
46E35; 35K10,35A23

1. Introduction

Sobolev and Poincaré type inequalities are fundamental tools investigating relevant Sobolev spaces and related partial differential equations (PDEs). For classical weighted Sobolev spaces they have been studied for a long time in for instance [1, 5, 6, 10, 11, 14, 16, 20, 27]. In particular, Fabes, Kenig and Serapioni [16] obtained the weighted Sobolev-Poincaré inequality

(1.1) (1w(Br)Br|f(f)Br|pkw𝑑x)1pkcr(1w(Br)Br|Df|pw𝑑x)1p,\left(\frac{1}{w(B_{r})}\int_{B_{r}}|f-(f)_{B_{r}}|^{pk}w\,dx\right)^{\frac{1}{pk}}\leqslant c\,r\left(\frac{1}{w(B_{r})}\int_{B_{r}}|Df|^{p}w\,dx\right)^{\frac{1}{p}},

and, using this, proved CαC^{\alpha}-regularity and Harnack’s inequality for a solution to a degenerate linear elliptic equation. In the above inequality, BrB_{r} is a ball in n\mathbb{R}^{n}, 1<p<1<p<\infty, a weight w:n[0,)w:\mathbb{R}^{n}\to[0,\infty) is in the ApA_{p}-class, and k>1k>1 can be chosen as

k=nn1+δk=\frac{n}{n-1}+\delta

for some δ>0\delta>0. We also refer to [6] for a simpler proof of (1.1). After then, regularity theory for degenerate parabolic equations have been actively studied, see for instance [7, 8, 9, 19, 28]. However, the weights treated in the preceding papers are independent of the time variable or satisfy the ApA_{p} condition on the time or the space variables separately. In this paper, we consider Sobolev spaces arising from parabolic PDEs and weights in the so-called parabolic ApA_{p}-class (cf. Section 2), which is a natural Muckenhoupt class in the parabolic setting, and derive the Sobolev-Poincaré type inequalities in this parabolic setting.

More precisely, we consider a function uL1(I,W11(Ω))u\in L^{1}(I,W^{1}_{1}(\Omega)) that is a distributional solution of the following divergence type linear parabolic equations:

(1.2) ut=divxGin Ω×I,u_{t}=\mathrm{div}_{x}\,G\quad\text{in }\ \Omega\times I,

where z=(x,t)Ω×In×z=(x,t)\in\Omega\times I\subset\mathbb{R}^{n}\times\mathbb{R}, when GL1(Ω×I,n)G\in L^{1}(\Omega\times I,\mathbb{R}^{n}). Here the distributional solution uu of (1.2) means it satisfies that

Ω×Iuφt𝑑z=Ω×IGDxφ𝑑zfor all φC0(Ω×I).\int_{\Omega\times I}u\varphi_{t}\,dz=\int_{\Omega\times I}G\cdot D_{x}\varphi\,dz\quad\text{for all }\ \varphi\in C^{\infty}_{0}(\Omega\times I).

The crucial point is that uu may not be differentiable with respect to tt but satisfies (1.2) in the distributional sense. Regarding this point, a parabolic Poincaré type inequality for uu in the framework of Orlicz space, which is a larger class than the LpL^{p} space, was derived in [12]. In this paper we obtain Sobolev-Poincaré type inequalities for uu with weight w=w(x,t)w=w(x,t) in the parabolic ApA_{p} class and GLwp(Ω×I,n)G\in L^{p}_{w}(\Omega\times I,\mathbb{R}^{n}) for some p>1p>1, in Theorem 3.1 and its corollaries. A typical case of (1.2) is when G(x,t)=𝐀(x,t)Du+F(x,t)G(x,t)=\mathbf{A}(x,t)Du+F(x,t), where 𝐀\mathbf{A} is an n×nn\times n matrix satisfying suitable uniform ellipticity and boundedness conditions. In this case there have been studied regularity estimates for DuDu when FLwp(Ω×I,n)F\in L^{p}_{w}(\Omega\times I,\mathbb{R}^{n}) in [3, 25] and hence, applying our main result, improved regularity for the solution uu can be also observed, see Remark 3.17.

Non-divergence type second order linear parabolic equations have the form

(1.3) utaij(x,t)uxixj=fin ΩT,u_{t}-a_{ij}(x,t)u_{x_{i}x_{j}}=f\quad\text{in }\ \Omega_{T},

where the n×nn\times n matrix 𝐀=[aij]\mathbf{A}=[a_{ij}] satisfies suitable uniform ellipticity and boundedness conditions. For this equation, it is well known that if Ω\Omega is in C1,1C^{1,1}, 𝐀\mathbf{A} is continuous and fLp(ΩT)f\in L^{p}(\Omega_{T}), then there exists a strong solution uu in Wp2,1(ΩT)W^{2,1}_{p}(\Omega_{T}), i.e., weak derivatives utu_{t}, DuDu, D2uD^{2}u exist in LpL^{p}-space, with u=0u=0 on the parabolic boundary of ΩT\Omega_{T}. (We may consider discontinuous coefficient matrix 𝐀\mathbf{A} in VMO type spaces, see [21].) Here, Du=DxuDu=D_{x}u and D2u=Dx2uD^{2}u=D^{2}_{x}u are the spatial gradient and Hessian of uu, respectively. Regarding to the Wp2,1W^{2,1}_{p}-space, we have the following Sobolev-Poincaré type inequality

(1.4) (Cr|Du(Du)Cr|pk𝑑z)1pkcr(Cr[|ut|p+|D2u|p]𝑑z)1p\left(\fint_{C_{r}}|Du-(Du)_{C_{r}}|^{pk}\,dz\right)^{\frac{1}{pk}}\leqslant c\,r\left(\fint_{C_{r}}\big{[}|u_{t}|^{p}+|D^{2}u|^{p}\big{]}\,dz\right)^{\frac{1}{p}}

for any parabolic cylinder CrC_{r} and any function uWp2,1(Cr)u\in W^{2,1}_{p}(C_{r}), where k=n+2n+2p>1k=\frac{n+2}{n+2-p}>1 if p<n+2p<n+2, see for instance [23, Theorem 19]. The main point in the above inequality is that the right-hand side does not involve the derivative of DuDu with respect to variable tt but utu_{t}. Therefore it is enough to consider utu_{t} and D2uD^{2}u when LpL^{p}-regularity theory is studied for (1.3). In recent papers [2, 4, 13] there have been studied strong solutions in the setting of weighted spaces, but the weighted version of (1.4) has not been investigated. In this paper, we derive the weighted version of (1.4) in Theorem 4.1 as a direct consequence of the main result. Moreover, we also obtain its boundary version on an upper half region of a parabolic cube/cylinder for functions with zero value on the flat boundary.

The main difficulty is that, in contrast to the unweighted case, we cannot take advantage of the classical weighted Sobolev-Poincaré inequality (1.1) on each time slice, because the restriction of a weight function in the parabolic ApA_{p}-class on each time slice, xw(x,t)x\mapsto w(x,t), does not belong to the ApA_{p}-class in general. In order to overcome this difficulty, we present an alternative approach. Its main idea is that by making use of the parabolic Poincaré type estimates obtained in [12] (cf. Lemma 2.4) we derive pointwise estimates in terms of a parabolic version of Riesz potential, which is called the caloric Riesz potential (cf. (2.3)) introduced in [15] (see also [22]), and then we apply the boundedness of a maximal operator in LwpL^{p}_{w}-spaces with the ApA_{p} weight ww in the parabolic setting. We notice that similar arguments have been used in, for instance, [17, 26], where weighted Sobolev-Poincaré type inequalities are derived in the setting of spaces of homogeneous type. In this paper, we are interested in solutions of parabolic PDEs and Sobolev-Poincaré type inequalities in relevant weighted spaces.

2. Preliminaries

Notation

We write z=(x,t)=(x1,,xn,t)z=(x,t)=(x_{1},\dots,x_{n},t) as a point in n×=n+1\mathbb{R}^{n}\times\mathbb{R}=\mathbb{R}^{n+1}. We define the parabolic distance dpd_{\text{p}} between two points z=(x,t)z=(x,t) and z~=(x~,t~)\tilde{z}=(\tilde{x},\tilde{t}) in n+1\mathbb{R}^{n+1} by

dp(z,z~):=max{|xx~|,|tt~|},d_{\text{p}}(z,\tilde{z}):=\max\Big{\{}|x-\tilde{x}|,\sqrt{|t-\tilde{t}|}\Big{\}},

where |||\cdot| is the Euclidean distance. For α>0\alpha>0, z=(x,t)n+1z=(x,t)\in\mathbb{R}^{n+1} and 𝐫:=(𝐫~,rn+1)=(r1,,rn,rn+1)\mathbf{r}:=(\tilde{\mathbf{r}},r_{n+1})=(r_{1},\dots,r_{n},r_{n+1}) with ri>0r_{i}>0, i=1,,n+1i=1,\dots,n+1, the α\alpha-parabolic rectangle Q𝐫α(z)Q^{\alpha}_{\mathbf{r}}(z) is defined by

Q𝐫α(z):=K𝐫~(x)×(tαrn+12,t+αrn+12)Q^{\alpha}_{\mathbf{r}}(z):=K_{\tilde{\mathbf{r}}}(x)\times(t-\alpha r_{n+1}^{2},t+\alpha r_{n+1}^{2})

where K𝐫~(x):={y=(y1,,yn)n:|xiyi|<ri,i=1,,n}K_{\tilde{\mathbf{r}}}(x):=\{y=(y_{1},\dots,y_{n})\in\mathbb{R}^{n}:|x_{i}-y_{i}|<r_{i},\ i=1,\dots,n\} is the nn-dimensional rectangle. In particular, for r>0r>0, if ri=rr_{i}=r for all i=1,,n+1i=1,\dots,n+1, we write Qrα(z)=Q𝐫α(z)Q^{\alpha}_{r}(z)=Q^{\alpha}_{\mathbf{r}}(z). Note that Qrα(z)Q^{\alpha}_{r}(z) is called an α\alpha-parabolic cube. In addition, for α,r>0\alpha,r>0, the α\alpha-parabolic cylinder Crα(z)C^{\alpha}_{r}(z) is defined by

Crα(z):=Br(x)×(tαr2,t+αr2),C^{\alpha}_{r}(z):=B_{r}(x)\times(t-\alpha r^{2},t+\alpha r^{2}),

where Br(x)={yn:|xy|<r}B_{r}(x)=\{y\in\mathbb{R}^{n}:|x-y|<r\} is the nn-dimensional ball centered at xx with radius rr. In particular, when α=1\alpha=1, we abbreviate Qr1(z)=Qr(z)Q^{1}_{r}(z)=Q_{r}(z) and Cr1(z)=Cr(z)C^{1}_{r}(z)=C_{r}(z), which are called a parabolic cube and a parabolic cylinder, respectively.

We also denote

(2.1) Qr+(z)=Qr(z){xn>0} and Cr+(z)=Cr(z){t>0}.Q_{r}^{+}(z)=Q_{r}(z)\cap\{x_{n}>0\}\textrm{ and }C_{r}^{+}(z)=C_{r}(z)\cap\{t>0\}.

For the sake of simplicity, we omit the center zz when z=0z=0 in the above notation, for example, Qr=Qr(0)Q_{r}=Q_{r}(0), Qr+=Qr+(0)Q_{r}^{+}=Q_{r}^{+}(0),…. In addition, we denote

(2.2) Tr=Qr(0){xn=0}=Cr(0){xn=0}.T_{r}=Q_{r}(0)\cap\left\{x_{n}=0\right\}=C_{r}(0)\cap\left\{x_{n}=0\right\}.

Let UU be a bounded open set in n+1.\mathbb{R}^{n+1}. For a function v:Uv:U\rightarrow\mathbb{R}, we denote the spatial gradient of vv by Dv=(vx1,,vxn)Dv=(v_{x_{1}},\dots,v_{x_{n}}), the spatial Hessian of vv by D2vD^{2}v, and the time derivative of vv by vtv_{t}. For an integrable function gg in UU, we define the mean of gg in UU by

(g)U:=Ug(z)𝑑z:=1|U|Ug(z)𝑑z.(g)_{U}:=\fint_{U}g(z)dz:=\frac{1}{|U|}\int_{U}g(z)\,dz.

Finally, the caloric Riesz potential of a measurable function gg in n+1\mathbb{R}^{n+1} is defined by

(2.3) βg(z):=n+1g(z~)dp(z,z~)n+2β𝑑z~,zn,\mathcal{I}_{\beta}g(z):=\int_{\mathbb{R}^{n+1}}\frac{g(\tilde{z})}{d_{\mathrm{p}}(z,\tilde{z})^{n+2-\beta}}\,d\tilde{z},\quad z\in\mathbb{R}^{n},

where 0<βn+20<\beta\leqslant n+2.

Parabolic ApA_{p}-class and weighted spaces

For 1<p<1<p<\infty, a weight ww in n+1\mathbb{R}^{n+1}, i.e., a locally integrable nonnegative function ww in n+1\mathbb{R}^{n+1}, is called a parabolic ApA_{p} weight, denoted by wApw\in A_{p}, if

[w]p:=supQ(Qw𝑑z)(Qw1p1𝑑z)p1<,[w]_{p}:=\sup_{Q}\left(\fint_{Q}w\,dz\right)\left(\fint_{Q}w^{\frac{-1}{p-1}}\,dz\right)^{p-1}<\infty,

where the supremum is taken over all parabolic cubes Qn+1Q\subset\mathbb{R}^{n+1}. Every parabolic ApA_{p} weight has the doubling property, and monotonicity Ap1Ap2A_{p_{1}}\subset A_{p_{2}} for p1p2p_{1}\leqslant p_{2}. We identify weight ww with measure w(E):=Ew(z)𝑑zw(E):=\int_{E}w(z)\,dz, for measurable sets En+1.E\subset\mathbb{R}^{n+1}. For the properties of ApA_{p} weight, we refer to, for instance, [3, 18].

Let Un+1U\subset\mathbb{R}^{n+1} be bounded. Given wApw\in A_{p}, Lwp(U)L_{w}^{p}(U) denotes the weighted Lebesgue space which contains all measurable functions uu on UU such that uLwp(U):=(U|u|pw𝑑z)1/p<\|u\|_{L_{w}^{p}(U)}:=\left(\int_{U}|u|^{p}w\,dz\right)^{1/p}<\infty. We define the space Wp,w2,1(U)W_{p,w}^{2,1}(U) as the set of functions uu satisfying that u,ut,Du,D2uu,u_{t},Du,D^{2}u exist in Lwp(U)L_{w}^{p}(U). When w1w\equiv 1, we write Wp2,1(U)=Wp,12,1(U)W_{p}^{2,1}(U)=W_{p,1}^{2,1}(U).

For Ωn\Omega\subset\mathbb{R}^{n}, we define Wp1(Ω)W_{p}^{1}(\Omega) by the set of functions uu satisfying that u,Duu,Du exist in Lp(Ω)L^{p}(\Omega). In addition, for 1p<1\leqslant p<\infty and an interval II\subset\mathbb{R}, uLp(I,Wp1(Ω))u\in L^{p}(I,W^{1}_{p}(\Omega)) means that u(,t)Wp1(Ω)u(\cdot,t)\in W^{1}_{p}(\Omega) a.e. tIt\in I and DuLp(Ω×I)Du\in L^{p}(\Omega\times I).

Poincaré type inequalities

We introduce Poincaré type inequalities under a parabolic equation in divergence form. From now on, if ariba\leqslant r_{i}\leqslant b for all i=1,2,,n+1i=1,2,\dots,n+1 and for some 0<a<b0<a<b, we write a𝐫ba\leqslant\mathbf{r}\leqslant b where 𝐫=(r1,,rn+1)\mathbf{r}=(r_{1},\dots,r_{n+1}).

Lemma 2.4 (Theorem 2.8, [12]).

For α,r>0\alpha,r>0, let C=Ω×In×C=\Omega\times I\subset\mathbb{R}^{n}\times\mathbb{R} be an α\alpha-parabolic cylinder CrαC^{\alpha}_{r} or α\alpha-parabolic rectangle Q𝐫αQ^{\alpha}_{\mathbf{r}} with r/2𝐫2rr/2\leqslant\mathbf{r}\leqslant 2r. If uL1(I,W11(Ω))u\in L^{1}(I,W^{1}_{1}(\Omega)) is a distributional solution of ut=divGu_{t}=\mathrm{div}\,G in CC with GL1(C,n)G\in L^{1}(C,\mathbb{R}^{n}), then we have

(2.5) C|u(u)C|𝑑zcrC|Du|𝑑z+cαrC|G|𝑑z\fint_{C}|u-(u)_{C}|\,dz\leqslant c\,r\fint_{C}|Du|\,dz+c\alpha r\fint_{C}|G|\,dz

for some c=c(n)>0c=c(n)>0.

Note that in [12, Theorem 2.8], only the α\alpha-parabolic cylinders CrαC^{\alpha}_{r} are considered, but the inequality (2.5) still holds for the α\alpha-parabolic rectangles Q𝐫αQ^{\alpha}_{\mathbf{r}} as stated in the above lemma without any significant modification to the proof.

3. Weighted Sobolev inequalities for solutions of parabolic equations in divergence form.

We consider a distributional solution uu to (1.2), for which we obtain the following Sobolev-Poincaré type inequality that is the main result in this paper.

Theorem 3.1.

Let 1<p<1<p<\infty and wApw\in A_{p}. If uL1((r2,r2),W11(Kr))u\in L^{1}((-r^{2},r^{2}),W^{1}_{1}(K_{r})) with DuLwp(Qr,n)Du\in L^{p}_{w}(Q_{r},\mathbb{R}^{n}) is a distributional solution to ut=divGu_{t}=\mathrm{div}\,G in QrQ_{r}, where GLwp(Qr,n)G\in L^{p}_{w}(Q_{r},\mathbb{R}^{n}), then uLwpk(Qr)u\in L^{pk}_{w}(Q_{r}) with

(3.2) k=n+2n+1+δ>1for some δ=δ(n,p,[w]p)>0,k=\frac{n+2}{n+1}+\delta>1\quad\text{for some }\ \delta=\delta(n,p,[w]_{p})>0,

and we have

(1w(Qr)Qr|u(u)Qr|pkw𝑑z)1pkcr(1w(Qr)Qr[|Du|+|G|]pw𝑑z)1p\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}|u-(u)_{Q_{r}}|^{pk}w\,dz\right)^{\frac{1}{pk}}\leqslant c\,r\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}\big{[}|Du|+|G|\big{]}^{p}w\,dz\right)^{\frac{1}{p}}

for some c=c(n,p,[w]p)>0c=c(n,p,[w]_{p})>0.

Moreover, the theorem holds true if we replace the nn-dimensional cube KrK_{r} and the parabolic cube QrQ_{r} by the nn-dimensional ball BrB_{r} and the parabolic cylinder CrC_{r}, respectively.

Remark 3.3.

A more specific expression of the constant kk can be found in (3.6) in the proof of Lemma 3.4 below. In the unweighted case (i.e., w1w\equiv 1) with p<n+2p<n+2, we can choose k=n+2n+2pk=\frac{n+2}{n+2-p}, since w1A1w\equiv 1\in A_{1} and hence the constant qq in the proof of Lemma 3.4 can be taken as 11.

In order to prove Theorem 3.1, we first prove a higher integrability of the caloric Riesz potential in the weighted Lebesgue spaces under the parabolic setting.

Lemma 3.4.

Let 1<p<1<p<\infty and wApw\in A_{p}. If fLwp(n+1)f\in L^{p}_{w}(\mathbb{R}^{n+1}) and f0f\equiv 0 in n+1Qr\mathbb{R}^{n+1}\setminus Q_{r}, then we have

(3.5) (1w(Qr)Qr[1|f|]pkw𝑑z)1pkcr(1w(Qr)Qr|f|pw𝑑z)1p,\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}[\mathcal{I}_{1}|f|]^{pk}w\,dz\right)^{\frac{1}{pk}}\leqslant c\,r\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}|f|^{p}w\,dz\right)^{\frac{1}{p}},

where k>1k>1 is given in (3.2), for some c=c(n,p,[w]p)>0c=c(n,p,[w]_{p})>0.

Moreover, the lemma holds true if we replace the parabolic cube QrQ_{r} by the parabolic cylinder CrC_{r}.

Proof.

Note that wAqw\in A_{q} for some q(1,p)q\in(1,p) and [w]q>0[w]_{q}>0 depending only on nn, pp and [w]p[w]_{p}, see [18]. Moreover, we shall assume that q>pn+2q>\frac{p}{n+2}. For any ε>0\varepsilon>0 we have

1|f|(z)=dp(z~,z)ε|f(z~)|dp(z,z~)n+1dz~+dp(z~,z)>ε|f(z~)|dp(z,z~)n+1dz~=:I1+I2.\mathcal{I}_{1}|f|(z)=\int_{d_{\text{p}}(\tilde{z},z)\leqslant\varepsilon}\frac{|f(\tilde{z})|}{d_{\text{p}}(z,\tilde{z})^{n+1}}\,d\tilde{z}+\int_{d_{\text{p}}(\tilde{z},z)>\varepsilon}\frac{|f(\tilde{z})|}{d_{\text{p}}(z,\tilde{z})^{n+1}}\,d\tilde{z}=:I_{1}+I_{2}.

For I1I_{1},

I1\displaystyle I_{1} =j=02j1ε<dp(z~,z)2jε|f(z~)|dp(z,z~)n+1𝑑z~j=02(j+1)(n+1)ε(n+1)dp(z~,z)2jε|f(z~)|𝑑z~\displaystyle=\sum_{j=0}^{\infty}\int_{2^{-j-1}\varepsilon<d_{\text{p}}(\tilde{z},z)\leqslant 2^{-j}\varepsilon}\frac{|f(\tilde{z})|}{d_{\text{p}}(z,\tilde{z})^{n+1}}\,d\tilde{z}\leqslant\sum_{j=0}^{\infty}2^{(j+1)(n+1)}\varepsilon^{-(n+1)}\int_{d_{\text{p}}(\tilde{z},z)\leqslant 2^{-j}\varepsilon}|f(\tilde{z})|\,d\tilde{z}
c(n)εj=02jQ2jε(z)|f(z~)|𝑑z~c(n)εf(z)j=02jc(n)εf(z),\displaystyle\leqslant c(n)\varepsilon\sum_{j=0}^{\infty}2^{-j}\fint_{Q_{2^{-j}\varepsilon}(z)}|f(\tilde{z})|\,d\tilde{z}\leqslant c(n)\varepsilon\mathcal{M}f(z)\sum_{j=0}^{\infty}2^{-j}\leqslant c(n)\varepsilon\mathcal{M}f(z),

where f(z):=sups>0Qs(z)|f(z~)|𝑑z~\mathcal{M}f(z):=\sup_{s>0}\fint_{Q_{s}(z)}|f(\tilde{z})|\,d\tilde{z} is the parabolic maximal function of ff, and we used the fact that |Q2jε(z)|=2n+1(2jε)n+2|Q_{2^{-j}\varepsilon}(z)|=2^{n+1}(2^{-j}\varepsilon)^{n+2}. For I2I_{2}, by Hölder’s inequality and the facts that f0f\equiv 0 on (Qr)c(Q_{r})^{\mathrm{c}} and wAqw\in A_{q},

I2\displaystyle I_{2} (Qr|f|pw𝑑z~)1p(Qrw1q1𝑑z~)q1p(dp(z~,z)>εdp(z,z~)p(n+1)pq𝑑z)pqp\displaystyle\leqslant\left(\int_{Q_{r}}|f|^{p}w\,d\tilde{z}\right)^{\frac{1}{p}}\left(\int_{Q_{r}}w^{-\frac{1}{q-1}}\,d\tilde{z}\right)^{\frac{q-1}{p}}\left(\int_{d_{\text{p}}(\tilde{z},z)>\varepsilon}d_{\text{p}}(z,\tilde{z})^{-\frac{p(n+1)}{p-q}}\,dz\right)^{\frac{p-q}{p}}
c(Qr|f|pw𝑑z~)1p(Qrw1q1𝑑z~)q1pε1q(n+2)p.\displaystyle\leqslant c\left(\int_{Q_{r}}|f|^{p}w\,d\tilde{z}\right)^{\frac{1}{p}}\left(\int_{Q_{r}}w^{-\frac{1}{q-1}}\,d\tilde{z}\right)^{\frac{q-1}{p}}\varepsilon^{1-\frac{q(n+2)}{p}}.

Note that in the last inequality we used the following fact

dp(z~,z)>εdp(z,z~)p(n+1)pq𝑑z\displaystyle\int_{d_{\text{p}}(\tilde{z},z)>\varepsilon}d_{\text{p}}(z,\tilde{z})^{-\frac{p(n+1)}{p-q}}\,dz
=20ε2{xn:|x|>ε}|x|p(n+1)pq𝑑x𝑑t+2ε2{xn:|x|>t}|x|p(n+1)pq𝑑x𝑑t\displaystyle\qquad=2\int^{\varepsilon^{2}}_{0}\int_{\{x\in\mathbb{R}^{n}:|x|>\varepsilon\}}|x|^{-\frac{p(n+1)}{p-q}}\,dx\,dt+2\int^{\infty}_{\varepsilon^{2}}\int_{\{x\in\mathbb{R}^{n}:|x|>\sqrt{t}\}}|x|^{-\frac{p(n+1)}{p-q}}\,dx\,dt
+2ε2{xn:0<|x|t}tp(n+1)2(pq)𝑑x𝑑t\displaystyle\qquad\quad+2\int^{\infty}_{\varepsilon^{2}}\int_{\{x\in\mathbb{R}^{n}:0<|x|\leqslant\sqrt{t}\}}t^{-\frac{p(n+1)}{2(p-q)}}\,dx\,dt
c0ε2εp(n+1)pq+n𝑑t+c0ε2tp(n+1)2(pq)+n2𝑑t=cεp(n+1)pq+n+2.\displaystyle\qquad\leqslant c\int^{\varepsilon^{2}}_{0}\varepsilon^{-\frac{p(n+1)}{p-q}+n}\,dt+c\int^{\varepsilon^{2}}_{0}t^{-\frac{p(n+1)}{2(p-q)}+\frac{n}{2}}\,dt=c\varepsilon^{-\frac{p(n+1)}{p-q}+n+2}.

Now, we take ε>0\varepsilon>0 such that

εf(z)=(Qr|f|pw𝑑z~)1p(Qrw1q1𝑑z~)q1pε1q(n+2)p,\varepsilon\mathcal{M}f(z)=\left(\int_{Q_{r}}|f|^{p}w\,d\tilde{z}\right)^{\frac{1}{p}}\left(\int_{Q_{r}}w^{-\frac{1}{q-1}}\,d\tilde{z}\right)^{\frac{q-1}{p}}\varepsilon^{1-\frac{q(n+2)}{p}},

hence

ε=[f(z)]pq(n+2)(Qr|f|pw𝑑z~)1q(n+2)(Qrw1q1𝑑z~)q1q(n+2).\varepsilon=[\mathcal{M}f(z)]^{-\frac{p}{q(n+2)}}\left(\int_{Q_{r}}|f|^{p}w\,d\tilde{z}\right)^{\frac{1}{q(n+2)}}\left(\int_{Q_{r}}w^{-\frac{1}{q-1}}\,d\tilde{z}\right)^{\frac{q-1}{q(n+2)}}.

Therefore, we obtain

1|f|(z)=I1+I2c[f(z)]1pq(n+2)(Qr|f|pw𝑑z~)1q(n+2)(Qrw1q1𝑑z~)q1q(n+2).\mathcal{I}_{1}|f|(z)=I_{1}+I_{2}\leqslant c[\mathcal{M}f(z)]^{1-\frac{p}{q(n+2)}}\left(\int_{Q_{r}}|f|^{p}w\,d\tilde{z}\right)^{\frac{1}{q(n+2)}}\left(\int_{Q_{r}}w^{-\frac{1}{q-1}}\,d\tilde{z}\right)^{\frac{q-1}{q(n+2)}}.

Then, letting

(3.6) k=q(n+2)q(n+2)p=n+2n+2p/q=:n+2n+1+δ,k=\frac{q(n+2)}{q(n+2)-p}=\frac{n+2}{n+2-p/q}=:\frac{n+2}{n+1}+\delta,

we have

(Qr[1|f|]pkw𝑑z)1pkc(Qr|f|pw𝑑z~)1q(n+2)(Qrw1q1𝑑z~)q1q(n+2)(Qr[f]pw𝑑z)1pk.\left(\int_{Q_{r}}[\mathcal{I}_{1}|f|]^{pk}w\,dz\right)^{\frac{1}{pk}}\leqslant c\left(\int_{Q_{r}}|f|^{p}w\,d\tilde{z}\right)^{\frac{1}{q(n+2)}}\left(\int_{Q_{r}}w^{-\frac{1}{q-1}}\,d\tilde{z}\right)^{\frac{q-1}{q(n+2)}}\left(\int_{Q_{r}}[\mathcal{M}f]^{p}w\,dz\right)^{\frac{1}{pk}}.

Since wApw\in A_{p}, by the boundedness of the maximal operator in Lwp(n+1)L^{p}_{w}(\mathbb{R}^{n+1}) in the parabolic setting, see [3, Eq. (2.4)] and [18], and using the fact that f0f\equiv 0 in (Qr)c(Q_{r})^{\mathrm{c}},

(Qr[1|f|]pkw𝑑z)1pkc(Qr|f|pw𝑑z)1p(Qrw1q1𝑑z)q1q(n+2).\left(\int_{Q_{r}}[\mathcal{I}_{1}|f|]^{pk}w\,dz\right)^{\frac{1}{pk}}\leqslant c\left(\int_{Q_{r}}|f|^{p}w\,dz\right)^{\frac{1}{p}}\left(\int_{Q_{r}}w^{-\frac{1}{q-1}}\,dz\right)^{\frac{q-1}{q(n+2)}}.

Finally, since wAqw\in A_{q},

(Qr[1|f|]pkw𝑑z)1pk\displaystyle\left(\int_{Q_{r}}[\mathcal{I}_{1}|f|]^{pk}w\,dz\right)^{\frac{1}{pk}} c(Qr|f|pw𝑑z)1p|Qr|q1q(n+2)(w(Qr)|Qr|)1q(n+2)\displaystyle\leqslant c\left(\int_{Q_{r}}|f|^{p}w\,dz\right)^{\frac{1}{p}}|Q_{r}|^{\frac{q-1}{q(n+2)}}\left(\frac{w(Q_{r})}{|Q_{r}|}\right)^{-\frac{1}{q(n+2)}}
cr(1w(Qr)Qr|f|pw𝑑z)1pw(Qr)1pk.\displaystyle\leqslant c\,r\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}|f|^{p}w\,dz\right)^{\frac{1}{p}}w(Q_{r})^{\frac{1}{pk}}.

This implies (3.5).

If we consider the parabolic cylinder CrC_{r} instead of QrQ_{r}, the result directly follows from (3.5) and the fact that

(3.7) 1w(Qr)w(A)[w]p(|Qr||A|)p,whenever AQr1\leqslant\frac{w(Q_{r})}{w(A)}\leqslant[w]_{p}\left(\frac{|Q_{r}|}{|A|}\right)^{p},\quad\text{whenever }\ A\subset Q_{r}

(see [18, Eq. (9.2.1)]). Indeed, since CrQrC_{r}\subset Q_{r} and f0f\equiv 0 in n+1Cr\mathbb{R}^{n+1}\setminus C_{r},

(1w(Cr)Cr[1|f|]pkw𝑑z)1pk\displaystyle\left(\frac{1}{w(C_{r})}\int_{C_{r}}[\mathcal{I}_{1}|f|]^{pk}w\,dz\right)^{\frac{1}{pk}} c(1w(Qr)Qr[1|f|]pkw𝑑z)1pk\displaystyle\leqslant c\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}[\mathcal{I}_{1}|f|]^{pk}w\,dz\right)^{\frac{1}{pk}}
cr(1w(Qr)Qr|f|pw𝑑z)1pcr(1w(Cr)Cr|f|pw𝑑z)1p.\displaystyle\leqslant c\,r\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}|f|^{p}w\,dz\right)^{\frac{1}{p}}\leqslant c\,r\left(\frac{1}{w(C_{r})}\int_{C_{r}}|f|^{p}w\,dz\right)^{\frac{1}{p}}.

Now we start the proof of Theorem 3.1.

Proof of Theorem 3.1.

We first consider the parabolic cube QrQ_{r}. It suffices to prove the theorem for the case that (u)Qr=0(u)_{Q_{r}}=0, since v:=u(u)Qrv:=u-(u)_{Q_{r}} also satisfies vt=divGv_{t}=\mathrm{div}\,G in the distributional sense.

Let z~Qr\tilde{z}\in Q_{r} satisfy that

(3.8) limρ0Qρ(z~)|u(z)u(z~)|𝑑z=0.\lim_{\rho\to 0}\fint_{Q_{\rho}(\tilde{z})}|u(z)-u(\tilde{z})|\,dz=0.

Such a point z~\tilde{z} is called the parabolic Lebesgue point of uu. One can easily see that the set of points that are not the parabolic Lebesgue points has Lebesgue measure zero in n+1\mathbb{R}^{n+1}. Define rj:=21jrr_{j}:=2^{1-j}r, j=0,1,2,j=0,1,2,\dots, and Q~j:=Qrj(z~)Qr\tilde{Q}_{j}:=Q_{r_{j}}(\tilde{z})\cap Q_{r}. Then we see that Q~0=Qr\tilde{Q}_{0}=Q_{r} and Q~j\tilde{Q}_{j} is a parabolic rectangle Q𝐫1(ξ)Q^{1}_{\mathbf{r}}(\xi) with rj/2𝐫rjr_{j}/2\leqslant\mathbf{r}\leqslant r_{j} for some ξQr\xi\in Q_{r}, hence |Q~j||Qrj(z~)|rjn+2|\tilde{Q}_{j}|\approx|Q_{r_{j}}(\tilde{z})|\approx r_{j}^{n+2}, where relevant constants depend only on nn.

Applying (2.5) in Lemma 2.4 with C=Q~jC=\tilde{Q}_{j} (i.e., α=1\alpha=1), we have

(3.9) |u(z~)|j=0|(u)Q~j(u)Q~j+1|cj=0Q~j|u(u)Q~j|𝑑zcj=0Q~jrj[|Du|+|G|]𝑑z.\displaystyle|u(\tilde{z})|\leqslant\sum_{j=0}^{\infty}|(u)_{\tilde{Q}_{j}}-(u)_{\tilde{Q}_{j+1}}|\leqslant c\sum_{j=0}^{\infty}\fint_{\tilde{Q}_{j}}|u-(u)_{\tilde{Q}_{j}}|\,dz\leqslant c\sum_{j=0}^{\infty}\fint_{\tilde{Q}_{j}}r_{j}\left[|Du|+|G|\right]\,dz.

Then, since Qrj(z~)=i=j(Qri(z~)Qri+1(z~))Q_{r_{j}}(\tilde{z})=\ \cdot\bigcup_{i=j}^{\infty}(Q_{r_{i}}(\tilde{z})\setminus Q_{r_{i+1}}(\tilde{z})), for almost every z~Qr\tilde{z}\in Q_{r},

|u(z~)|\displaystyle|u(\tilde{z})| cj=0i=j(Qri(z~)Qri+1(z~))Qrrjn1[|Du|+|G|]𝑑z\displaystyle\leqslant c\sum_{j=0}^{\infty}\sum_{i=j}^{\infty}\int_{(Q_{r_{i}}(\tilde{z})\setminus Q_{r_{i+1}}(\tilde{z}))\cap Q_{r}}r_{j}^{-n-1}[|Du|+|G|]\,dz
=ci=0(j=0irjn1)(Qri(z~)Qri+1(z~))Qr[|Du|+|G|]𝑑z\displaystyle=c\sum_{i=0}^{\infty}\bigg{(}\sum_{j=0}^{i}r_{j}^{-n-1}\bigg{)}\int_{(Q_{r_{i}}(\tilde{z})\setminus Q_{r_{i+1}}(\tilde{z}))\cap Q_{r}}[|Du|+|G|]\,dz
=ci=0(j=0i2(n+1)(ij))(Qri(z~)Qri+1(z~))Qrrin1[|Du|+|G|]𝑑z\displaystyle=c\sum_{i=0}^{\infty}\bigg{(}\sum_{j=0}^{i}2^{-(n+1)(i-j)}\bigg{)}\int_{(Q_{r_{i}}(\tilde{z})\setminus Q_{r_{i+1}}(\tilde{z}))\cap Q_{r}}r_{i}^{-n-1}[|Du|+|G|]\,dz
ci=0(Qri(z~)Qri+1(z~))Qrrin1[|Du|+|G|]𝑑z\displaystyle\leqslant c\sum_{i=0}^{\infty}\int_{(Q_{r_{i}}(\tilde{z})\setminus Q_{r_{i+1}}(\tilde{z}))\cap Q_{r}}r_{i}^{-n-1}[|Du|+|G|]\,dz
cQr|Du(z)|+|G(z)|dp(z,z~)n+1𝑑z=c1(|Du|+|G|)χQr(z~).\displaystyle\leqslant c\int_{Q_{r}}\frac{|Du(z)|+|G(z)|}{d_{\text{p}}(z,\tilde{z})^{n+1}}\,dz=c\mathcal{I}_{1}(|Du|+|G|)\chi_{Q_{r}}(\tilde{z}).

Finally, applying Lemma 3.4 with f=(|Du|+|G|)χQrf=(|Du|+|G|)\chi_{Q_{r}}, we have

(1w(Qr)Qr|u|pkw𝑑z)1pk\displaystyle\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}|u|^{pk}w\,dz\right)^{\frac{1}{pk}} (1w(Qr)Qr[1(|Du|+|G|)χQr]pkw𝑑z)1pk\displaystyle\leqslant\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}\big{[}\mathcal{I}_{1}(|Du|+|G|)\chi_{Q_{r}}\big{]}^{pk}w\,dz\right)^{\frac{1}{pk}}
cr(1w(Qr)Qr[|Du|+|G|]pw𝑑z)1p.\displaystyle\leqslant c\,r\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}\big{[}|Du|+|G|\big{]}^{p}w\,dz\right)^{\frac{1}{p}}.

This completes the proof.

We next consider the parabolic cylinder CrC_{r}. Let z~=(x~,t~)Cr\tilde{z}=(\tilde{x},\tilde{t})\in C_{r} satisfy that

limρ0Cρ(z~)|u(z)u(z~)|𝑑z=0.\lim_{\rho\to 0}\fint_{C_{\rho}(\tilde{z})}|u(z)-u(\tilde{z})|\,dz=0.

Note that this equality is equivalent to (3.8). Define rj:=21jrr_{j}:=2^{1-j}r, j=0,1,2,j=0,1,2,\dots. Then there exists j0j_{0}\in\mathbb{N} such that Crj0+1(z~)CrCrj0(z~)C_{r_{j_{0}+1}}(\tilde{z})\subset C_{r}\not\subset C_{r_{j_{0}}}(\tilde{z}). Put C~0=Cr\tilde{C}_{0}=C_{r} and C~j=Crj(z~)\tilde{C}_{j}=C_{r_{j}}(\tilde{z}) for j>j0j>j_{0}. On the other hand, for j=1,,j0j=1,\dots,j_{0}, we can find ρj,αj>0\rho_{j},\alpha_{j}>0 and zj=(yj,τj)Crj(z~)Crz_{j}=(y_{j},\tau_{j})\in C_{r_{j}}(\tilde{z})\cap C_{r} such that

12rjρjrj,12αj4,andC~j:=Cρjαj(zj)Crj(z~)Cr.\tfrac{1}{2}r_{j}\leqslant\rho_{j}\leqslant r_{j},\ \ \tfrac{1}{2}\leqslant\alpha_{j}\leqslant 4,\ \ \text{and}\ \ \tilde{C}_{j}:=C^{\alpha_{j}}_{\rho_{j}}(z_{j})\subset C_{r_{j}}(\tilde{z})\cap C_{r}.

Indeed, we can choose

ρj:={rj+r|x~|2ifrj>r|x~|,rjifrjr|x~|,αj:={rj2+r2|t~|2ρj2ifrj2>r2|t~|,rj2ρj2ifrj2r2|t~|,\rho_{j}:=\left\{\begin{array}[]{ccl}\frac{r_{j}+r-|\tilde{x}|}{2}&\text{if}&r_{j}>r-|\tilde{x}|,\\ r_{j}&\text{if}&r_{j}\leqslant r-|\tilde{x}|,\end{array}\right.\quad\alpha_{j}:=\left\{\begin{array}[]{ccl}\tfrac{r_{j}^{2}+r^{2}-|\tilde{t}|}{2\rho_{j}^{2}}&\text{if}&r_{j}^{2}>r^{2}-|\tilde{t}|,\\ \tfrac{r_{j}^{2}}{\rho_{j}^{2}}&\text{if}&r_{j}^{2}\leqslant r^{2}-|\tilde{t}|,\end{array}\right.
yj:={(rρj)x~|x~|ifrj>r|x~|,x~ifrjr|x|,andτj:={(r2αjρj2)t~|t~|ifrj2>r2|t~|,t~ifrj2r2|t~|,y_{j}:=\left\{\begin{array}[]{ccl}(r-\rho_{j})\frac{\tilde{x}}{|\tilde{x}|}&\text{if}&r_{j}>r-|\tilde{x}|,\\ \tilde{x}&\text{if}&r_{j}\leqslant r-|x|,\end{array}\right.\quad\text{and}\quad\tau_{j}:=\left\{\begin{array}[]{ccl}(r^{2}-\alpha_{j}\rho_{j}^{2})\tfrac{\tilde{t}}{|\tilde{t}|}&\text{if}&r_{j}^{2}>r^{2}-|\tilde{t}|,\\ \tilde{t}&\text{if}&r_{j}^{2}\leqslant r^{2}-|\tilde{t}|,\end{array}\right.

so that Bρj(yj)B_{\rho_{j}}(y_{j}) is the largest ball in Brj(x~)BrB_{r_{j}}(\tilde{x})\cap B_{r} and (τjαjρj2,τj+αjρj2)=(t~rj2,t~+rj2)(r2,r2)(\tau_{j}-\alpha_{j}\rho_{j}^{2},\tau_{j}+\alpha_{j}\rho_{j}^{2})=(\tilde{t}-r_{j}^{2},\tilde{t}+r_{j}^{2})\cap(-r^{2},r^{2}). Note that for every j=0,1,2,j=0,1,2,\dots, C~j+1C~jC~0=Cr\tilde{C}_{j+1}\subset\tilde{C}_{j}\subset\tilde{C}_{0}=C_{r} and |C~j|rjn+2|\tilde{C}_{j}|\approx r_{j}^{n+2} with relevant constant depending only on nn and independent of jj. Therefore, applying (2.5) in Lemma 2.4 with C=C~jC=\tilde{C}_{j}, we have

|u(z~)|cj=0C~j|u(u)C~j|𝑑z\displaystyle|u(\tilde{z})|\leqslant c\sum_{j=0}^{\infty}\fint_{\tilde{C}_{j}}|u-(u)_{\tilde{C}_{j}}|\,dz cj=0C~jrj[|Du|+|G|]𝑑z\displaystyle\leqslant c\sum_{j=0}^{\infty}\fint_{\tilde{C}_{j}}r_{j}\left[|Du|+|G|\right]\,dz
cj=0Crj(z~)Crrj[|Du|+|G|]𝑑z,\displaystyle\leqslant c\sum_{j=0}^{\infty}\fint_{C_{r_{j}}(\tilde{z})\cap C_{r}}r_{j}\left[|Du|+|G|\right]\,dz,

which is the counterpart of (3.9). The rest part of the proof is exactly same as the one for the parabolic cube QrQ_{r}. ∎

The following higher integrability of |u|pw|u|^{p}w follows from Theorem 3.1.

Corollary 3.10.

Let 1<p<1<p<\infty and wApw\in A_{p}. If uL1((r2,r2),W11(Kr))u\in L^{1}((-r^{2},r^{2}),W^{1}_{1}(K_{r})) with DuLwp(Qr,n)Du\in L^{p}_{w}(Q_{r},\mathbb{R}^{n}) is a distributional solution to ut=divGu_{t}=\mathrm{div}\,G in QrQ_{r}, where GLwp(Qr,n)G\in L^{p}_{w}(Q_{r},\mathbb{R}^{n}), then |u|pwLγ(Qr)|u|^{p}w\in L^{\gamma}(Q_{r}) for some γ(1,k)\gamma\in(1,k) depending only on nn, pp and [w]p[w]_{p}, where k>1k>1 is given in (3.2) (see (3.12) below), and we have

(1|Qr|Qr[|u(u)Qr|pw]γ𝑑z)1pγcr(1|Qr|Qr[|Du|p+|G|p]w𝑑z)1p\displaystyle\left(\frac{1}{|Q_{r}|}\int_{Q_{r}}\big{[}|u-(u)_{Q_{r}}|^{p}w\big{]}^{\gamma}\,dz\right)^{\frac{1}{p\gamma}}\leqslant c\,r\left(\frac{1}{|Q_{r}|}\int_{Q_{r}}\left[|Du|^{p}+|G|^{p}\right]w\,dz\right)^{\frac{1}{p}}

for some c=c(n,p,[w]p)>0c=c(n,p,[w]_{p})>0.

Moreover, the corollary holds true if we replace the parabolic cube QrQ_{r} by the parabolic cylinder CrC_{r}.

Proof.

We recall the following reverse Hölder type inequality for an ApA_{p}-weight:

(3.11) (Qrw1+ε0𝑑z)11+ε0cQrw𝑑z,\left(\fint_{Q_{r}}w^{1+\varepsilon_{0}}\,dz\right)^{\frac{1}{1+\varepsilon_{0}}}\leqslant c\fint_{Q_{r}}w\,dz,

where ε0,c>0\varepsilon_{0},c>0 depend only on nn, pp and [w]p[w]_{p} (see [18]). Then choose γ(1,k)\gamma\in(1,k) such that

(3.12) 1<(k1)γkγ<1+ε0.1<\frac{(k-1)\gamma}{k-\gamma}<1+\varepsilon_{0}.

By Hölder’s inequality,

1w(Qr)Qr\displaystyle\frac{1}{w(Q_{r})}\int_{Q_{r}} [|u(u)Qr|pw]γdz=1w(Qr)Qr|u(u)Qr|pγwγkwγγk𝑑z\displaystyle\big{[}|u-(u)_{Q_{r}}|^{p}w\big{]}^{\gamma}\,dz=\frac{1}{w(Q_{r})}\int_{Q_{r}}|u-(u)_{Q_{r}}|^{p\gamma}w^{\frac{\gamma}{k}}w^{\gamma-\frac{\gamma}{k}}\,dz
(1w(Qr)Qr|u(u)Qr|pkw𝑑z)γk(1w(Qr)Qrw(k1)γkγ𝑑z)kγk,\displaystyle\quad\leqslant\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}|u-(u)_{Q_{r}}|^{pk}w\,dz\right)^{\frac{\gamma}{k}}\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}w^{\frac{(k-1)\gamma}{k-\gamma}}\,dz\right)^{\frac{k-\gamma}{k}},

and moreover, using Hölder’s inequality with (3.12) and (3.11),

(1w(Qr)Qrw(k1)γkγ𝑑z)kγk\displaystyle\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}w^{\frac{(k-1)\gamma}{k-\gamma}}\,dz\right)^{\frac{k-\gamma}{k}} =(|Qr|w(Qr))kγk(Qrw(k1)γkγ𝑑z)kγk\displaystyle=\left(\frac{|Q_{r}|}{w(Q_{r})}\right)^{\frac{k-\gamma}{k}}\left(\fint_{Q_{r}}w^{\frac{(k-1)\gamma}{k-\gamma}}\,dz\right)^{\frac{k-\gamma}{k}}
c(|Qr|w(Qr))kγk(Qrw𝑑z)(k1)γk=c(w(Qr)|Qr|)γ1.\displaystyle\leqslant c\left(\frac{|Q_{r}|}{w(Q_{r})}\right)^{\frac{k-\gamma}{k}}\left(\fint_{Q_{r}}w\,dz\right)^{\frac{(k-1)\gamma}{k}}=c\left(\frac{w(Q_{r})}{|Q_{r}|}\right)^{\gamma-1}.

Therefore, it directly follows from Theorem 3.1 that

(1w(Qr)Qr[|u(u)Qr|pw]γ𝑑z)1pγ\displaystyle\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}\big{[}|u-(u)_{Q_{r}}|^{p}w\big{]}^{\gamma}\,dz\right)^{\frac{1}{p\gamma}}
cr(1w(Qr)Qr[|Du|p+|G|p]w𝑑z)1p(w(Qr)|Qr|)γ1γp,\displaystyle\qquad\leqslant c\,r\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}\left[|Du|^{p}+|G|^{p}\right]w\,dz\right)^{\frac{1}{p}}\left(\frac{w(Q_{r})}{|Q_{r}|}\right)^{\frac{\gamma-1}{\gamma p}},

which implies the desired estimates. ∎

We next consider distributional solutions to (1.2) in the upper half parabolic cube Qr+Q_{r}^{+}, or cylinder Cr+C^{+}_{r}, in (2.1) with zero boundary condition on TrT_{r} in (2.2).

Theorem 3.13.

Let 1<p<1<p<\infty and wApw\in A_{p}. If uL1((r2,r2),W11(Kr+))u\in L^{1}((-r^{2},r^{2}),W^{1}_{1}(K_{r}^{+})) with DuLwp(Qr,n)Du\in L^{p}_{w}(Q_{r},\mathbb{R}^{n}) is a distributional solution of ut=divGu_{t}=\mathrm{div}\,G in Qr+Q_{r}^{+} with u=0u=0 on TrT_{r}, where GLwp(Qr+,n)G\in L^{p}_{w}(Q_{r}^{+},\mathbb{R}^{n}), then uLwpk(Qr+)u\in L^{pk}_{w}(Q_{r}^{+}) with k>1k>1 given in (3.2), and we have

(3.14) (1w(Qr+)Qr+|u|pkw𝑑z)1pkcr(1w(Qr+)Qr+[|Du|+|G|]pw𝑑z)1p\left(\frac{1}{w(Q_{r}^{+})}\int_{Q^{+}_{r}}|u|^{pk}w\,dz\right)^{\frac{1}{pk}}\leqslant c\,r\left(\frac{1}{w(Q_{r}^{+})}\int_{Q^{+}_{r}}\big{[}|Du|+|G|\big{]}^{p}w\,dz\right)^{\frac{1}{p}}

for some c=c(n,p,[w]p)>0c=c(n,p,[w]_{p})>0.

Moreover, the theorem holds true if we replace the parabolic cube QrQ_{r} by the parabolic cylinder CrC_{r}.

Proof.

This is a consequence of Theorem 3.1 with an extension argument. For a function vv on Qr+Q_{r}^{+} we define v~\tilde{v} and v¯\overline{v} on QrQ_{r} by the odd extension and the even extension of vv, respectively, i.e.,

v~(z)=v(x1,,xn,t)={v(x1,,xn1,xn,t)ifxn>0,v(x1,,xn1,xn,t)ifxn<0,\tilde{v}(z)=v(x_{1},\dots,x_{n},t)=\left\{\begin{array}[]{ccl}v(x_{1},\dots,x_{n-1},x_{n},t)&\text{if}&x_{n}>0,\\ -v(x_{1},\dots,x_{n-1},-x_{n},t)&\text{if}&x_{n}<0,\end{array}\right.

and

v¯(z)=v(x1,,xn,t)={v(x1,,xn1,xn,t)ifxn>0,v(x1,,xn1,xn,t)ifxn<0.\overline{v}(z)=v(x_{1},\dots,x_{n},t)=\left\{\begin{array}[]{ccl}v(x_{1},\dots,x_{n-1},x_{n},t)&\text{if}&x_{n}>0,\\ v(x_{1},\dots,x_{n-1},-x_{n},t)&\text{if}&x_{n}<0.\end{array}\right.

Let G=(g1,,gn)G=(g_{1},\dots,g_{n}) and define G:=(g1~,,gn1~,gn¯)G^{*}:=(\widetilde{g_{1}},\dots,\widetilde{g_{n-1}},\overline{g_{n}}). Then we can see that u~\tilde{u} (the even extension of uu) is in L1((r2,r2),W11(Kr))L^{1}((-r^{2},r^{2}),W^{1}_{1}(K_{r})) and satisfies

(3.15) u~t=divGin Qr,in the distribution sense.\tilde{u}_{t}=\mathrm{div}\,G^{*}\ \ \text{in }Q_{r},\quad\text{in the distribution sense.}

This can be proved by using a cut-off function, see for instance [24, Theorem 3.4]. Indeed, for any small ε(0,1)\varepsilon\in(0,1), let Uε={(x,xn,t):0xnε}U_{\varepsilon}=\{(x^{\prime},x_{n},t):0\leqslant x_{n}\leqslant\varepsilon\} and ηεC0()\eta_{\varepsilon}\in C^{\infty}_{0}(\mathbb{R}) such that 0ηε10\leqslant\eta_{\varepsilon}\leqslant 1, ηε(τ)=1\eta_{\varepsilon}(\tau)=1 if |τ|ε2|\tau|\leqslant\frac{\varepsilon}{2}, ηε(τ)=0\eta_{\varepsilon}(\tau)=0 if |τ|ε|\tau|\geqslant\varepsilon, ηε(τ)=ηε(τ)\eta_{\varepsilon}(-\tau)=\eta_{\varepsilon}(\tau) for all τ\tau\in\mathbb{R}, and |ηε|4/ε|\eta_{\varepsilon}^{\prime}|\leqslant 4/\varepsilon. Then we have that for any φC0(Qr)\varphi\in C^{\infty}_{0}(Q_{r}),

Qru~φt𝑑z\displaystyle\int_{Q_{r}}\tilde{u}\varphi_{t}\,dz =Qr+u~(φ(x,xn,t)φ(x,xn,t))t𝑑z\displaystyle=\int_{Q_{r}^{+}}\tilde{u}(\varphi(x^{\prime},x_{n},t)-\varphi(x^{\prime},-x_{n},t))_{t}\,dz
=Qr+u[(1ηε(xn))(φ(x,xn,t)φ(x,xn,t)]tdz\displaystyle=\int_{Q_{r}^{+}}u[(1-\eta_{\varepsilon}(x_{n}))(\varphi(x^{\prime},x_{n},t)-\varphi(x^{\prime},-x_{n},t)]_{t}\,dz
+Qr+Uεu[ηε(xn)(φ(x,xn,t)φ(x,xn,t)]tdz=:I1\displaystyle\qquad+\underbrace{\int_{Q_{r}^{+}\cap U_{\varepsilon}}u[\eta_{\varepsilon}(x_{n})(\varphi(x^{\prime},x_{n},t)-\varphi(x^{\prime},-x_{n},t)]_{t}\,dz}_{=:I_{1}}
=Qr+GD[(1ηε(xn))(φ(x,xn,t)φ(x,xn,t))]𝑑z+I1\displaystyle=\int_{Q_{r}^{+}}G\cdot D[(1-\eta_{\varepsilon}(x_{n}))(\varphi(x^{\prime},x_{n},t)-\varphi(x^{\prime},-x_{n},t))]\,dz+I_{1}
=Qr+GD(φ(x,xn,t)φ(x,xn,t))𝑑z\displaystyle=\int_{Q_{r}^{+}}G\cdot D(\varphi(x^{\prime},x_{n},t)-\varphi(x^{\prime},-x_{n},t))\,dz
+Qr+UεGD[ηε(xn)(φ(x,xn,t)φ(x,xn,t))]𝑑z=:I2+I1\displaystyle\qquad+\underbrace{\int_{Q_{r}^{+}\cap U_{\varepsilon}}G\cdot D[\eta_{\varepsilon}(x_{n})(\varphi(x^{\prime},x_{n},t)-\varphi(x^{\prime},-x_{n},t))]\,dz}_{=:I_{2}}+I_{1}
=QrGDφ𝑑z+I1+I2.\displaystyle=\int_{Q_{r}}G^{*}\cdot D\varphi\,dz+I_{1}+I_{2}.

This implies (3.15) since

|I1|cφtQr+Uε|u|dz 0as ε 0,|I_{1}|\leqslant c\|\varphi_{t}\|_{\infty}\int_{Q^{+}_{r}\cap U_{\varepsilon}}|u|\,dz\ \ \longrightarrow\ \ 0\quad\text{as }\ \varepsilon\ \to\ 0,
|I2|cDφQr+Uε|G|dz 0as ε 0.|I_{2}|\leqslant c\|D\varphi\|_{\infty}\int_{Q^{+}_{r}\cap U_{\varepsilon}}|G|\,dz\ \ \longrightarrow\ \ 0\quad\text{as }\ \varepsilon\ \to\ 0.

Finally, from Theorem 3.1 with the facts that (u~)Qr=0(\tilde{u})_{Q_{r}}=0 and 1w(Qr)w(Qr+)[w]p2p1\leqslant\frac{w(Q_{r})}{w(Q^{+}_{r})}\leqslant[w]_{p}2^{p} by (3.7), we have that

(1w(Qr+)Qr+|u|pkw𝑑z)1pk\displaystyle\left(\frac{1}{w(Q_{r}^{+})}\int_{Q^{+}_{r}}|u|^{pk}w\,dz\right)^{\frac{1}{pk}} (1w(Qr)Qr|u~|pkw𝑑z)1pk\displaystyle\leqslant\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}|\tilde{u}|^{pk}w\,dz\right)^{\frac{1}{pk}}
cr(1w(Qr)Qr[|Du~|+|G|]pw𝑑z)1p\displaystyle\leqslant c\,r\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}\big{[}|D\tilde{u}|+|G^{*}|\big{]}^{p}w\,dz\right)^{\frac{1}{p}}
cr(1w(Qr+)Qr+[|Du|+|G|]pw𝑑z)1p.\displaystyle\leqslant c\,r\left(\frac{1}{w(Q_{r}^{+})}\int_{Q_{r}^{+}}\big{[}|Du|+|G|\big{]}^{p}w\,dz\right)^{\frac{1}{p}}.\qed
Remark 3.16.

In stead of the zero boundary condition on the flat, we can consider a zero initial condition. More precisely, under the same setting as in the above theorem, if uL1((r2,r2),W11(Kr))u\in L^{1}((-r^{2},r^{2}),W^{1}_{1}(K_{r})) with DuLwp(Qr,n)Du\in L^{p}_{w}(Q_{r},\mathbb{R}^{n}) is a distributional solution of ut=divGu_{t}=\mathrm{div}\,G in QrQ_{r}, where GLwp(Qr,n)G\in L^{p}_{w}(Q_{r},\mathbb{R}^{n}) and satisfies that

limtrsrst(Kr|u(x,s)|𝑑x)𝑑s=0,\lim_{t\searrow-r^{s}}\fint_{-r^{s}}^{t}\left(\int_{K_{r}}|u(x,s)|\,dx\right)\,ds=0,

then we have the estimate (3.14), replacing Qr+Q_{r}^{+} with QrQ_{r}. Its proof is almost the same as the one of the above theorem.

We end this section with an application of the above results to typical linear parabolic equations in divergence form.

Remark 3.17.

We consider the following linear parabolic equation

(3.18) {utdiv(𝐀(x,t)Du)=divFinCr,u=0onp(Cr),\left\{\begin{array}[]{rclcl}u_{t}-\mathrm{div}(\mathbf{A}(x,t)Du)&=&\mathrm{div}F&\text{in}&C_{r},\\ u&=&0&\text{on}&\partial_{\text{p}}(C_{r}),\end{array}\right.

where p(Cr)=(Br×(r2,r2))(Br×{t=r2})\partial_{\text{p}}(C_{r})=(\partial B_{r}\times(-r^{2},r^{2}))\cup(B_{r}\times\{t=-r^{2}\}) as the parabolic boundary of CrC_{r}. Then in view of [25], one can see that, under suitable assumptions on 𝐀\mathbf{A}, for instance that 𝐀\mathbf{A} is bounded, satisfies the uniform ellipticity and is of VMO(vanishing mean oscillation), if FLwp(Cr,n)F\in L^{p}_{w}(C_{r},\mathbb{R}^{n}) for some 1<p<1<p<\infty and wApw\in A_{p}, there exists uLq((r2,r2);Wq1(Br))u\in L^{q}((-r^{2},r^{2});W^{1}_{q}(B_{r})) for some q>1q>1 such that uu is a distributional solution of (3.18) and

Cr|Du|pw𝑑zcCr|F|pw𝑑z.\int_{C_{r}}|Du|^{p}w\,dz\leqslant c\int_{C_{r}}|F|^{p}w\,dz.

Therefore, by Theorem 3.13, we obtain that uLwpk(Cr)u\in L^{pk}_{w}(C_{r}) and

(1w(Cr)Cr|u(u)Cr|pkw𝑑z)1pkcr(1w(Cr)Cr|F|pw𝑑z)1p.\left(\frac{1}{w(C_{r})}\int_{C_{r}}|u-(u)_{C_{r}}|^{pk}w\,dz\right)^{\frac{1}{pk}}\leqslant c\,r\left(\frac{1}{w(C_{r})}\int_{C_{r}}|F|^{p}w\,dz\right)^{\frac{1}{p}}.

4. Weighted Sobolev-Poincaré type inequalities for the spatial gradient

We consider functions in W12,1W^{2,1}_{1}-space and obtain weighted Sobolev-Poincaré type inequalities for DuDu with a weight wApw\in A_{p} and 1<p<1<p<\infty as consequences of the results in the previous section.

Theorem 4.1.

Let 1<p<1<p<\infty and wApw\in A_{p}. If uW12,1(Qr)u\in W^{2,1}_{1}(Q_{r}) and ut,|D2u|Lwp(Qr)u_{t},|D^{2}u|\in L^{p}_{w}(Q_{r}), then DuLwpk(Qr,n)Du\in L^{pk}_{w}(Q_{r},\mathbb{R}^{n}) with k>1k>1 given in (3.2), and we have

(1w(Qr)Qr|Du(Du)Qr|pkw𝑑z)1pkcr(1w(Qr)Qr[|D2u|p+|ut|p]w𝑑z)1p\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}|Du-(Du)_{Q_{r}}|^{pk}w\,dz\right)^{\frac{1}{pk}}\leqslant c\,r\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}\left[|D^{2}u|^{p}+|u_{t}|^{p}\right]w\,dz\right)^{\frac{1}{p}}

for some c=c(n,p,[w]p)>0c=c(n,p,[w]_{p})>0.

Proof.

For i=1,2,,ni=1,2,\dots,n, set vi:=uxiv_{i}:=u_{x_{i}}. Then we have (vi)t=(ut)xi=divGi(v_{i})_{t}=(u_{t})_{x_{i}}=\mathrm{div}\,G^{i} a.e. in QrQ_{r}, where Gi=(g1i,,gni)G^{i}=(g^{i}_{1},\dots,g^{i}_{n}) with gii=utg^{i}_{i}=u_{t} and gji=0g^{i}_{j}=0 for all jij\neq i. Therefore, by Theorem 3.1, we have for each i=1,,ni=1,\dots,n,

(1w(Qr)Qr|uxi(uxi)Qr|pkw𝑑z)1pk\displaystyle\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}|u_{x_{i}}-(u_{x_{i}})_{Q_{r}}|^{pk}w\,dz\right)^{\frac{1}{pk}} cr(1w(Qr)Qr[|D(uxi)|p+|Gi|p]w𝑑z)1p\displaystyle\leqslant c\,r\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}\left[|D(u_{x_{i}})|^{p}+|G^{i}|^{p}\right]w\,dz\right)^{\frac{1}{p}}
cr(1w(Qr)Qr[|D2u|p+|ut|p]w𝑑z)1p.\displaystyle\leqslant c\,r\left(\frac{1}{w(Q_{r})}\int_{Q_{r}}\left[|D^{2}u|^{p}+|u_{t}|^{p}\right]w\,dz\right)^{\frac{1}{p}}.

This completes the proof. ∎

Theorem 4.2.

Let 1<p<1<p<\infty and wApw\in A_{p}. If uW12,1(Qr+)u\in W^{2,1}_{1}(Q_{r}^{+}) with ut,|D2u|Lwp(Qr+)u_{t},|D^{2}u|\in L^{p}_{w}(Q_{r}^{+}) and u=0u=0 on TrT_{r}, then DuLwpk(Qr+,n)Du\in L^{pk}_{w}(Q_{r}^{+},\mathbb{R}^{n}) with k>1k>1 given in (3.2), and we have

(1w(Qr+)Qr+[i=1n1|uxi|+|uxn(uxn)Qr+|]pkw𝑑z)1pk\displaystyle\bigg{(}\frac{1}{w(Q_{r}^{+})}\int_{Q^{+}_{r}}\bigg{[}\sum_{i=1}^{n-1}|u_{x_{i}}|+|u_{x_{n}}-(u_{x_{n}})_{Q^{+}_{r}}|\bigg{]}^{pk}w\,dz\bigg{)}^{\frac{1}{pk}}
cr(1w(Qr+)Qr+[|ut|p+|D2u|p]w𝑑z)1p\displaystyle\qquad\qquad\qquad\qquad\qquad\leqslant c\,r\left(\frac{1}{w(Q_{r}^{+})}\int_{Q_{r}^{+}}\left[|u_{t}|^{p}+|D^{2}u|^{p}\right]w\,dz\right)^{\frac{1}{p}}

for some c=c(n,p,[w]p)>0c=c(n,p,[w]_{p})>0.

Proof.

Since uxi=0u_{x_{i}}=0 on TrT_{r} for i=1,,n1i=1,\dots,n-1, in view of the proofs of Theorem 4.1 and Theorem 3.13 we have that for each i=1,,n1i=1,\dots,n-1,

(1w(Qr+)Qr|uxi|pkw𝑑z)1pkcr(1w(Qr+)Qr+[|D2u|p+|ut|p]w𝑑z)1p.\displaystyle\left(\frac{1}{w(Q^{+}_{r})}\int_{Q_{r}}|u_{x_{i}}|^{pk}w\,dz\right)^{\frac{1}{pk}}\leqslant c\,r\left(\frac{1}{w(Q_{r}^{+})}\int_{Q_{r}^{+}}\left[|D^{2}u|^{p}+|u_{t}|^{p}\right]w\,dz\right)^{\frac{1}{p}}.

On the other hand, for uxnu_{x_{n}}, we directly apply Theorem 3.1. Note that clearly Theorem 3.1 still holds if we replace QrQ_{r} by Qr+Q_{r}^{+}. Since (vi)t=(ut)xi=divG(v_{i})_{t}=(u_{t})_{x_{i}}=\mathrm{div}\,G a.e. in Qr+Q_{r}^{+}, where Gi=(0,,0,ut)G^{i}=(0,\dots,0,u_{t}), we obtain

(1w(Qr+)Qr+|uxn(uxn)Qr+|pkw𝑑z)1pk\displaystyle\left(\frac{1}{w(Q_{r}^{+})}\int_{Q_{r}^{+}}|u_{x_{n}}-(u_{x_{n}})_{Q_{r}^{+}}|^{pk}w\,dz\right)^{\frac{1}{pk}} cr(1w(Qr+)Qr+[|D(uxn)|p+|G|p]w𝑑z)1p\displaystyle\leqslant c\,r\left(\frac{1}{w(Q_{r}^{+})}\int_{Q_{r}^{+}}\left[|D(u_{x_{n}})|^{p}+|G|^{p}\right]w\,dz\right)^{\frac{1}{p}}
cr(1w(Qr+)Qr+[|D2u|p+|ut|p]w𝑑z)1p.\displaystyle\leqslant c\,r\left(\frac{1}{w(Q_{r}^{+})}\int_{Q_{r}^{+}}\left[|D^{2}u|^{p}+|u_{t}|^{p}\right]w\,dz\right)^{\frac{1}{p}}.

This completes the proof. ∎

Remark 4.3.

Theorems 3.13, 4.1 and 4.2 still hold if we replace the parabolic cube QrQ_{r} by the parabolic cylinder CrC_{r}. Moreover, we also have the counterparts of Corollary 3.10 for those theorems.

5. Acknowledgment

We thank the referee for helpful comments. L. Diening was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1283/2 2021 – 317210226. M. Lee was supported by the National Research Foundation of Korea (NRF-2019R1F1A1061295). J. Ok was supported by the National Research Foundation of Korea (NRF-2017R1C1B2010328)

References

  • [1] B. Bojarski, Remarks on Sobolev imbedding inequalities. Complex analysis, Lecture Notes in Math., 1351, Springer, Berlin, 1988.
  • [2] S. Byun and M. Lee, Weighted estimates for nondivergence parabolic equations in Orlicz spaces, J. Funct. Anal. 269 (2015), no. 8, 2530–2563.
  • [3] S. Byun, D.K. Palagachev and L.G. Softova, Global gradient estimates in weighted Lebesgue spaces for parabolic operators, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 1, 67–83.
  • [4] S. Byun, M. Lee and J. Ok, Nondivergence parabolic equations in weighted variable exponent spaces, Trans. Amer. Math. Soc. 370 (2018), no. 4, 2263–2298.
  • [5] S. Chanillo and R.L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985), no. 5, 1191–1226.
  • [6] F. Chiarenza and M. Frasca, A note on a weighted Sobolev inequality, Proc. Amer. Math. Soc. 93 (1985), no. 4, 703–704.
  • [7] F. Chiarenza and R.P. Serapioni, A Harnack inequality for degenerate parabolic equations, Comm. Partial Differential Equations 9 (1984), no. 8, 719–749.
  • [8] F. Chiarenza and R.P. Serapioni, Degenerate parabolic equations and Harnack inequality, Ann. Mat. Pura Appl. (4) 137 (1984), 139–162.
  • [9] F. Chiarenza and R. P. Serapioni, Pointwise estimates for degenerate parabolic equations, Appl. Anal. 23 (1987), no. 4, 287–299.
  • [10] S. K. Chua, Weighted Sobolev’s inequalities on domains satisfying the chain condition, Proc. Amer. Math. Soc. 117 (1993), 449–457.
  • [11] S. K. Chua, Weighted inequalities on John domains, J. Math. Anal. Appl. 258 (2001), 763–776.
  • [12] L. Diening, S. Schwarzacher, B. Stroffolini and A, Verde, Parabolic Lipschitz truncation and caloric approximation, Calc. Var. Partial Differential Equations 56 (2017), no. 4, Art. 120, 27 pp.
  • [13] H. Dong and D. Kim, On LpL_{p}-estimates for elliptic and parabolic equations with ApA_{p} weights, Trans. Amer. Math. Soc. 370 (2018), no. 7, 5081–5130.
  • [14] I. Drelichman and R.G. Durán, Improved Poincaré inequalities with weights, J. Math. Anal. Appl. 347 (2008), no. 1, 286–293.
  • [15] F. Duzaar and G. Mingione, Gradient estimates via non-linear potentials, Amer. J. Math. 133 (2011), no. 4, 1093–1149.
  • [16] E. Fabes, C.E. Kenig and R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77–116.
  • [17] B. Franchi, C. Pérez and R. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), no. 1, 108–146.
  • [18] L. Grafakos, Modern Fourier analysis. Second edition, Graduate Texts in Mathematics, 250. Springer, New York, 2009.
  • [19] C. E. Gutiérrez and R. Wheeden, Harnack’s inequality for degenerate parabolic equations, Comm. Partial Differential Equations 16 (1991), no. 4-5, 745–770.
  • [20] P. Hajlasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688.
  • [21] D. Kim and N. V. Krylov, Parabolic equations with measurable coefficients, Potential Anal. 26 (2007), no. 4, 345–361.
  • [22] T. Kuusi and G. Mingione, Riesz potentials and nonlinear parabolic equations, Arch. Ration. Mech. Anal. 212 (2014), no. 3, 727–780.
  • [23] G.M. Lieberman, A mostly elementary proof of Morrey space estimates for elliptic and parabolic equations with VMOVMO coefficients, J. Funct. Anal. 201 (2003), no. 2, 457–479.
  • [24] O. Martio, Reflection principle for solutions of elliptic partial differential equations and quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 1, 179–187.
  • [25] Q. H. Nguyen Gradient weighted norm inequalities for very weak solutions of linear parabolic equations with BMO coefficient, arXiv:1705.07438.
  • [26] E. Sawyer and R.L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), no. 4, 813–874.
  • [27] J. Strömberg and R.L. Wheeden, Fractional integrals on weighted HpH^{p} and LpL^{p} spaces, Trans. Amer. Math. Soc. 287 (1985), no. 1, 293–321.
  • [28] M. Surnachev, A Harnack inequality for weighted degenerate parabolic equations, J. Differential Equations 248 (2010), no. 8, 2092–2129.