This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Packing sets in Euclidean space by affine transformations

Alex Iosevich Department of Mathematics, University of Rochester, USA. [email protected] Pertti Mattila Department of Mathematics and Statistics, University of Helsinki, Finland. [email protected] Eyvindur Palsson Department of Mathematics, Virginia Tech, USA. [email protected] Minh-Quy Pham Department of Mathematics, University of Rochester, USA. [email protected] Thang Pham University of Science, Vietnam National University, Hanoi, Vietnam. [email protected] Steven Senger Department of Mathematics, Missouri State University, USA. [email protected]  and  Chun-Yen Shen Department of Mathematics, National Taiwan University, Taiwan. [email protected]
Abstract.

For Borel subsets ΘO(d)×d\Theta\subset O(d)\times\mathbb{R}^{d} (the set of all rigid motions) and EdE\subset\mathbb{R}^{d}, we define

Θ(E):=(g,z)Θ(gE+z).\displaystyle\Theta(E):=\bigcup_{(g,z)\in\Theta}(gE+z).

In this paper, we investigate the Lebesgue measure and Hausdorff dimension of Θ(E)\Theta(E) given the dimensions of the Borel sets EE and Θ\Theta, when Θ\Theta has product form. We also study this question by replacing rigid motions with the class of dilations and translations; and similarity transformations. The dimensional thresholds are sharp. Our results are variants of some previously known results in the literature when EE is restricted to smooth objects such as spheres, kk-planes, and surfaces.

Keywords: Packing sets, Hausdorff dimensions, dilations, translations, rigid motions, similarity transformations, finite fields.

Mathematics Subject Classification: 28A75.

A.I. was supported in part by the National Science Foundation Grant NSF DMS - 2154232.

1. Introduction

1.1. Packing problem in Euclidean space

Let 𝒜\mathcal{A} be a metric space of maps f:ddf:\mathbb{R}^{d}\to\mathbb{R}^{d}, d1d\geq 1.

For Borel sets EdE\subset\mathbb{R}^{d}, Λ𝒜\Lambda\subset\mathcal{A}, we define

Λ(E):=fΛf(E)={f(x):xE,fΛ}d.\displaystyle\Lambda(E):=\bigcup_{f\in\Lambda}f(E)=\{f(x):x\in E,f\in\Lambda\}\subset\mathbb{R}^{d}.

The packing problem in this setting can be formulated as follows: Is it possible for a set of zero dd-dimensional Lebesgue measure to contain an image f(E)f(E) of EE for every fΛf\in\Lambda?

The study of the packing problem has a long history, see for example [14], [31], and [23]. For the planar case, lines and circles are special cases of curve-packing problems. If we consider EE as a line segment in the plane, and let 𝒜\mathcal{A} be the set of all rigid motions, then the above problem dates back to the works of Besicovitch [1], [2] in the 1920s. In these papers, he constructed a set named after him which has zero Lebesgue measure and contains a line segment of unit length in every direction. Now let E=S1E=S^{1}, the unit circle, let 𝒜=2×>0\mathcal{A}=\mathbb{R}^{2}\times\mathbb{R}_{>0}, and define for each γ=(z,r)𝒜\gamma=(z,r)\in\mathcal{A}, x2x\in\mathbb{R}^{2},

γ(x)=rx+z.\displaystyle\gamma(x)=rx+z.

Then Λ(S1)\Lambda(S^{1}) is the union of all circles centered at zz, of radius rr, for (z,r)Λ(z,r)\in\Lambda. In 1968, Besicovitch and Rado [3], and Kinney [25] showed that there exists a set in the plane of Lebesgue measure zero containing a circle of radius rr for each r>0r>0 (see also Davies [9]). Later, in 1980, Talagrand [44] proved that there exists a set of measure zero containing a circle centered at xx, for all xx on a given straight line. Thus it is natural to ask which conditions will guarantee that the union of lines (circles) has positive measure.

In this paper, we will study the following question, which generalizes the question for lines and circles above: Under which conditions on the dimensions of EE and Λ\Lambda, the Lebesgue measure of Λ(E)\Lambda(E) is positive? Note that when this holds, we certainly can not pack Λ(E)\Lambda(E) into any set of zero Lebesgue measures. Similarly, we can ask: Given a constant 0<ud0<u\leq d, how large do the Hausdorff dimensions dimE\dim_{\mathcal{H}}E and dimΛ\dim_{\mathcal{H}}\Lambda need to be to ensure that

dimΛ(E)u\displaystyle\dim_{\mathcal{H}}\Lambda(E)\geq u

holds?

For circles in the plane, in 1985, Bourgain [4], and independently Marstrand [28], demonstrated that if the centers form a set of positive Lebesgue measure, then the union of the circles must have positive Lebesgue measure, which answer a question by Falconer [14] (see also Bourgain [5]). Earlier Stein [43], as a consequence of his work on the spherical means maximal operator, proved that the same conclusion holds true for spheres in d,d3\mathbb{R}^{d},d\geq 3. The case d=2d=2 turned out to be much more difficult. Since the spheres have dimension d1d-1, we can expect that it is enough for the centers of the spheres to form a set of Hausdorff dimension bigger than one to give a positive result. This was shown by Mitsis [34] for d3d\geq 3 and by Wolff [49] for d=2d=2 (see also D. Oberlin [35]). In a paper published in 1997, Wolff [47] also showed that if the set of centers has Hausdorff dimension ss, 0<s10<s\leq 1, the corresponding union of circles has dimension of at least 1+s1+s. For results in higher dimensions, see D. Oberlin [36].

We can get similar results by replacing the circle in the plane with rather general smooth curves in d\mathbb{R}^{d}. If EE is a nondegenerate (i.e., derivatives span the whole space) curve in d\mathbb{R}^{d}, d3d\geq 3, Ham, Ko, Lee, and Oh [17] showed that if the set of translations and dilations has dimension >α>\alpha, for 0<αd10<\alpha\leq d-1, then the union of all curves has dimension α+1\geq\alpha+1. For results in the plane, see [22]. Simon and Taylor [41], [42] studied properties of A+ΓA+\Gamma, where Γ\Gamma is a planar curve with at least one point of non-vanishing curvature. For general results on the packing of curves, surfaces, and manifolds, see for example Falconer [13], Wisewell [46].

Turning to the case of affine hyperplanes in d\mathbb{R}^{d}, we denote the Grassmanian manifold of all affine hyperplanes by 𝒢(d,d1)\mathcal{G}(d,d-1). Then if the set of hyperplanes has Hausdorff dimension larger than 11, the union of these hyperplanes has a positive Lebesgue measure. In fact, we can say more, if 0<s<10<s<1, and the dimension of the set of hyperplanes is ss, then the union of hyperplanes will have dimension at least d1+sd-1+s. These results are due to D. Oberlin [36]. Later, in [37], he generalized to affine kk-planes in d\mathbb{R}^{d}. More precisely, he showed that if the set of affine kk-planes has Hausdorff dimension α>(k+1)(dk)k\alpha>(k+1)(d-k)-k, then the union of corresponding kk-planes has a positive Lebesgue measure. The result is sharp, in the sense that for every ε>0\varepsilon>0, there exists a set of kk-planes of dimension (k+1)(dk)kε(k+1)(d-k)-k-\varepsilon such that the union of these kk-planes has zero Lebesgue measure. In 2016, R. Oberlin [38] conjectured that if a set of lines LL in d\mathbb{R}^{d} has dimension 2(k1)+β\geq 2(k-1)+\beta, with integer 1kd1\leq k\leq d, then the union of these lines has dimension at least k+βk+\beta. Recently, this conjecture was proved by Zahl [50]. For the variant of this problem when LL is replaced by a set of kk-dimensional affine subspaces in d\mathbb{R}^{d}, see [15], [20], [19], and [16]. For results on packing skeletons of polytopes, see [24], [45], and [7].

In this paper, instead of limiting the study to certain smooth objects, we will consider the packing problem for general Borel sets in d\mathbb{R}^{d}. In particular, we are interested in packing problems in the case where 𝒜\mathcal{A} is the set of dilations and translations; rigid transformations; or similarity transformations.

Similar questions for rigid motions in finite field settings have also been studied in [39].

1.2. Packing sets by dilations and translations

In this section, we will discuss the results of packing problems by using dilations and translations.

Let d1d\geq 1, we denote Γ(d)=d×>0\Gamma(d)=\mathbb{R}^{d}\times\mathbb{R}_{>0} as the set of all translations and dilations. For each γ=(z,r)Γ(d)\gamma=(z,r)\in\Gamma(d) and xdx\in\mathbb{R}^{d}, we define γ(x)=rx+z\gamma(x)=rx+z. For EdE\subset\mathbb{R}^{d}, and ΓΓ(d)\Gamma\subset\Gamma(d), set

Γ(E)=γ=(z,r)Γ(rE+z)={γ(x):γΓ,xE}.\displaystyle\Gamma(E)=\bigcup_{\gamma=(z,r)\in\Gamma}(rE+z)=\{\gamma(x):\gamma\in\Gamma,x\in E\}.

In other words, Γ(E)\Gamma(E) is the union of all dilated and translated copies γ(E)\gamma(E) of EE, with γΓ\gamma\in\Gamma. If Γ\Gamma is of the form Z×TZ\times T, where ZdZ\subset\mathbb{R}^{d}, T>0T\subset\mathbb{R}_{>0}, by denoting TE={rx:xE,rT}TE=\{rx:x\in E,r\in T\}, we can write

Γ(E)=TE+Z.\displaystyle\Gamma(E)=TE+Z.

We restate the packing problem using dilations and translations as follows: For Borel sets EE and Γ\Gamma, can a set of zero dd-dimensional Lebesgure measure contains dilated and translated copies γ(E)=rE+z\gamma(E)=rE+z of EE for each element γ=(z,r)Γ\gamma=(z,r)\in\Gamma?

Recently, by assuming that the set of dilations and translations has product form Z×Td×>0Z\times T\subset\mathbb{R}^{d}\times\mathbb{R}_{>0}, Hambrook and Taylor [18] proved the following theorem. Throughout this paper, dim\dim_{\mathcal{F}} denotes the Fourier dimension, see section 2 for details.

Theorem A.

[18, Theorem 1.1] Let T>0T\subset\mathbb{R}_{>0}, E,ZdE,Z\subset\mathbb{R}^{d}, be non-empty compact sets. Let δ=max{dim(TE)+dimZ,dim(TE)+dimZ}.\delta=\max\{\dim_{\mathcal{F}}(TE)+\dim_{\mathcal{H}}Z,\dim_{\mathcal{H}}(TE)+\dim_{\mathcal{F}}Z\}.

  • (i)

    If δ>d\delta>d, then d(TE+Z)>0\mathcal{L}^{d}(TE+Z)>0.

  • (ii)

    If δd\delta\leq d, then dim(TE+Z)δ\dim_{\mathcal{H}}(TE+Z)\geq\delta.

Remark 1.1.

Theorem A is a variant of some classical results for smooth objects. For example, when EE is the unit sphere Sd1S^{d-1} in d\mathbb{R}^{d}, this theorem recovers results of Wolff [47], [49] and D. Oberlin [35] in the case the set of centers and radii has product structure, which we mentioned in the introduction. However, Theorem A is still not a complete generalization, since the much deeper results by Wolff and D. Oberlin take the union of spheres over an arbitrary set Γ\Gamma of translations and dilations, while Theorem A takes the union of spheres over the Cartesian product set Γ=Z×T\Gamma=Z\times T (see also the discussion in [18]).

Theorem A holds in the more general form as follows. Throughout this paper, dim𝒮\dim_{\mathcal{S}} denotes the Sobolev dimension. We say that a set AdA\subset\mathbb{R}^{d} has Sobolev dimension dim𝒮As\dim_{\mathcal{S}}A\geq s if AA carries a Borel probability measure μ\mu such that

|μ^(x)|2(1+|x|)sd𝑑x<.\displaystyle\int|\widehat{\mu}(x)|^{2}(1+|x|)^{s-d}dx<\infty.
Theorem B.

Let A,BdA,B\subset\mathbb{R}^{d} be Borel sets. Then

  • (i)

    dim𝒮(A+B)dimA+dimB.\dim_{\mathcal{S}}(A+B)\geq\dim_{\mathcal{F}}A+\dim_{\mathcal{H}}B.

  • (ii)

    If dimA+dimB>d\dim_{\mathcal{F}}A+\dim_{\mathcal{H}}B>d, then d(A+B)>0.\mathcal{L}^{d}(A+B)>0.

  • (iii)

    If for 0<u<d0<u<d, dimA+dimB>u\dim_{\mathcal{F}}A+\dim_{\mathcal{H}}B>u, then dim(A+B)u.\dim_{\mathcal{H}}(A+B)\geq u.

The proof of Theorem B is as in [18] (see Section 2 for details).

While Theorem A is sharp (for example, take E={0}dE=\{0\}\subset\mathbb{R}^{d}, T={1}T=\{1\} and ZdZ\subset\mathbb{R}^{d} such that dimHZ=d\dim_{H}Z=d, while d(Z)=0\mathcal{L}^{d}(Z)=0), the role of the Hausdorff dimension of EE in this problem is not provided. Additionally, finding lower bounds for dim(TE)\dim_{\mathcal{F}}(TE) in Theorem A is important.

Our first main result is the following, which answers the above questions.

Theorem 1.1.

Let d1d\geq 1. Let E,ZdE,Z\subset\mathbb{R}^{d}, T>0T\subset\mathbb{R}_{>0} be Borel sets, and put Γ=Z×T\Gamma=Z\times T. Then we have the following:

  • (i)

    dimTEdimE+dimTd\dim_{\mathcal{F}}TE\geq\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}T-d, and

    dim𝒮Γ(E)dimE+dimZ+dimTd.\dim_{\mathcal{S}}\Gamma(E)\geq\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}Z+\dim_{\mathcal{H}}T-d.
  • (ii)

    If dimE+dimZ+dimT>2d\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}Z+\dim_{\mathcal{H}}T>2d, then

    d(Γ(E))>0.\mathcal{L}^{d}(\Gamma(E))>0.
  • (iii)

    For 0<u<d0<u<d, if dimE+dimZ+dimT>d+u\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}Z+\dim_{\mathcal{H}}T>d+u, then

    dimΓ(E)u.\dim_{\mathcal{H}}\Gamma(E)\geq u.
Remark 1.2.
  • (i)

    The bounds in Theorem 1.1 (i)(i), and (ii)(ii) are sharp. Indeed, for part (ii)(ii), one can take E=[0,1]dE=[0,1]^{d}, T={0}T=\{0\}, ZdZ\subset\mathbb{R}^{d} such that dimZ=d\dim_{\mathcal{H}}Z=d, and d(Z)=0\mathcal{L}^{d}(Z)=0. Then dimE+dimZ+dimT=2d\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}Z+\dim_{\mathcal{H}}T=2d, while d(TE+Z)=d(Z)=0\mathcal{L}^{d}(TE+Z)=\mathcal{L}^{d}(Z)=0. The sharpness of part (i)(i) follows by the sharpness of part (i)(i). For other examples, see 6.

  • (ii)

    When d=1d=1, Theorem 1.1 is the result of Bourgain [6, Theorem 7]. Also, when d=1d=1, part (ii)(ii) follows from Falconer’s exceptional estimate for projections [13] and part (iii)(iii) from a recent result of Ren and Wang [40].

To emphasize the importance of the estimates for lower bounds of the Fourier dimension, we give an immediate corollary of Theorem 1.1 to the kk-fold sum-product set without proof, see [31, Proposition 3.14]. Let AdA\subset\mathbb{R}^{d}, we denote A(k)=A++AkA^{(k)}=\underbrace{A+\cdots+A}_{k} as the kk-fold sum-set of AA.

Corollary 1.1.

Let d1d\geq 1, k1k\geq 1. Let EdE\subset\mathbb{R}^{d} and T>0T\subset\mathbb{R}_{>0} be Borel sets.

  • (i)

    If dimE+dimT>d(1+1k)\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}T>d\left(1+\frac{1}{k}\right), then

    d((TE)(k))=d(TE++TE)>0.\displaystyle\mathcal{L}^{d}\left((TE)^{(k)}\right)=\mathcal{L}^{d}(TE+\dots+TE)>0.
  • (ii)

    For 0<u<d0<u<d, if dimE+dimT>d+uk\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}T>d+\frac{u}{k}, then

    dim((TE)(k))u.\displaystyle\dim_{\mathcal{H}}\left((TE)^{(k)}\right)\geq u.
  • (iii)

    If dimE+dimT>d(1+2k)\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}T>d\left(1+\frac{2}{k}\right), then (TE)k(TE)^{k} has non empty interior.

Remark 1.3.
  • (i)

    For d1d\geq 1, we can find set EdE\subset\mathbb{R}^{d} such that dimE=d\dim_{\mathcal{H}}E=d, d(E)=0\mathcal{L}^{d}(E)=0, while E(k)=E++EE^{(k)}=E+\cdots+E has d(E(k))=0\mathcal{L}^{d}(E^{(k)})=0, for all k1k\geq 1, see Section 6 for details.

  • (ii)

    When d=1d=1, (i),(ii)(i),(ii) follow from a result of Erdoğan, Hart, and Iosevich [12].

We also obtain a similar result when Γ\Gamma is a general set in Γ(d)\Gamma(d).

Theorem 1.2.

Let d1d\geq 1. Let EdE\subset\mathbb{R}^{d}, and ΓΓ(d)\Gamma\subset\Gamma(d) be Borel sets. We have the following:

  • (i)

    dim𝒮Γ(E)dimE+dimΓd.\dim_{\mathcal{S}}\Gamma(E)\geq\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}\Gamma-d.

  • (ii)

    If dimE+dimΓ>2d\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}\Gamma>2d, then

    d(Γ(E))>0.\mathcal{L}^{d}(\Gamma(E))>0.
  • (iii)

    For 0<u<d0<u<d, if dimE+dimΓ>d+u\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}\Gamma>d+u, then

    dimΓ(E)u.\dim_{\mathcal{H}}\Gamma(E)\geq u.
Remark 1.4.
  • (i)

    The bounds in Theorem 1.2 (i)(i), (ii)(ii) are sharp by the examples in Remark 1.2.

  • (ii)

    Theorem 1.2 generalizes Theorem 1.1, which is restricted to the case Γ\Gamma has product structure.

More generally, we also consider the packing problem by multi-parameter dilations and translations as follows. Denote Γ~(d)=d×>0d\tilde{\Gamma}(d)=\mathbb{R}^{d}\times\mathbb{R}_{>0}^{d} as the set of all multi-parameter dilations and translations. For each γ~=(z,r)=(z1,,zd,r1,,rd)Γ~(d)\tilde{\gamma}=(z,r)=(z_{1},\dots,z_{d},r_{1},\dots,r_{d})\in\tilde{\Gamma}(d), and for each xdx\in\mathbb{R}^{d} we define

γ~(x)=(r1x1,,rdxd)+(z1,,zd).\displaystyle\tilde{\gamma}(x)=(r_{1}x_{1},\dots,r_{d}x_{d})+(z_{1},\dots,z_{d}).

Let EdE\subset\mathbb{R}^{d}, and Γ~Γ~(d)\tilde{\Gamma}\subset\tilde{\Gamma}(d) be Borel sets, set

Γ~(E)={γ~(x):xE,γΓ~}.\displaystyle\tilde{\Gamma}(E)=\{\tilde{\gamma}(x):x\in E,\gamma\in\tilde{\Gamma}\}.

Our next main result is the following.

Theorem 1.3.

Let d1d\geq 1. Let EdE\subset\mathbb{R}^{d}, and Γ~Γ~(d)\tilde{\Gamma}\subset\tilde{\Gamma}(d) be Borel sets. We have the following:

  • (i)

    dim𝒮Γ~(E)dimE+dimΓ~2d+1.\dim_{\mathcal{S}}\tilde{\Gamma}(E)\geq\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}\tilde{\Gamma}-2d+1.

  • (ii)

    If dimE+dimΓ~>3d1\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}\tilde{\Gamma}>3d-1, then

    d(Γ~(E))>0.\mathcal{L}^{d}(\tilde{\Gamma}(E))>0.
  • (iii)

    For 0<u<d0<u<d, if dimE+dimΓ~>2d1+u\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}\tilde{\Gamma}>2d-1+u, then

    dimΓ~(E)u.\dim_{\mathcal{H}}\tilde{\Gamma}(E)\geq u.
Remark 1.5.

The bounds in Theorem 1.3 (i)(i), (ii)(ii) are sharp. See examples in Section 6.

1.3. Packing sets by rigid motions

We shall now investigate the packing problem in Euclidean space by using another class of affine transformations, the set of all rigid motions.

Let d2d\geq 2, we denote E(d)=O(d)×dE(d)=O(d)\times\mathbb{R}^{d} as the Euclidean group or the set of all rigid motions. For each θ=(g,z)E(d)\theta=(g,z)\in E(d), xdx\in\mathbb{R}^{d}, we define θ(x)=g(x)+z\theta(x)=g(x)+z. Let ΘE(d)\Theta\subset E(d) and EdE\subset\mathbb{R}^{d}, we define

Θ(E)=θΘθ(E)={g(x)+z:(g,z)Θ,xE}.\displaystyle\Theta(E)=\bigcup_{\theta\in\Theta}\theta(E)=\{g(x)+z:(g,z)\in\Theta,x\in E\}.

When Θ=G×Z\Theta=G\times Z, where GO(d)G\subset O(d) and ZdZ\subset\mathbb{R}^{d}, we denote

GE={g(x):xE,gG}, and GE+Z={y+z:yGE,zZ}.\displaystyle GE=\{g(x):x\in E,g\in G\}\,\,\text{, and }\,\,GE+Z=\{y+z:y\in GE,z\in Z\}.

From definition, Θ(E)\Theta(E) is the union of all rotated and translated copies θ(E)=g(E)+z\theta(E)=g(E)+z of EE, for θ=(g,z)Θ\theta=(g,z)\in\Theta. We will find conditions on the dimensions of EE and Θ\Theta to ensure that the set containing all rotated and translated copies θ(E)=g(E)+z\theta(E)=g(E)+z of EE for each element θ=(g,z)Θ\theta=(g,z)\in\Theta has positive Lebesgue measure.

Before stating the theorem, we will recall the definition of spherical Fourier dimension (see [29]). For a given Borel set EdE\subset\mathbb{R}^{d}, the spherical Fourier dimension of EE, denoted by dim𝒮E\dim_{\mathcal{SF}}E, is defined by

dim𝒮E=sup{αd:μ(E) such that σ(μ)(r)rα for all r>0},\displaystyle\dim_{\mathcal{SF}}E=\sup\{\alpha\leq d:\exists\mu\in\mathcal{M}(E)\text{ such that }\sigma(\mu)(r)\lesssim r^{-\alpha}\text{ for all }r>0\},

where σ(μ)(r)\sigma(\mu)(r) is the L2L^{2} spherical average of the Fourier transform of μ\mu, see (2.3). We have the following lemma, see Section 2 for more details.

Lemma 1.1.

Let EdE\subset\mathbb{R}^{d} be a Borel set. Then one has dimEdim𝒮EdimE.\dim_{\mathcal{H}}E\geq\dim_{\mathcal{SF}}E\geq\dim_{\mathcal{F}}E. Moreover,

dim𝒮E\displaystyle\dim_{\mathcal{SF}}E =dimE, if dimE(d1)/2,\displaystyle=\dim_{\mathcal{H}}E,\quad\text{ if }\dim_{\mathcal{H}}E\leq(d-1)/2,
and dim𝒮E\displaystyle\text{ and }\quad\dim_{\mathcal{SF}}E d1ddimE.\displaystyle\geq\frac{d-1}{d}\dim_{\mathcal{H}}E.

The main result in this section is the following.

Theorem 1.4.

Let d2d\geq 2. Let E,ZdE,Z\subset\mathbb{R}^{d}, and GO(d)G\subset O(d) be Borel sets such that dimG>(d1)(d2)2\dim_{\mathcal{H}}G>\frac{(d-1)(d-2)}{2}. Then we have the following:

  • (i)

    dim(GE)dim𝒮E+dimGd2d2\dim_{\mathcal{F}}(GE)\geq\dim_{\mathcal{SF}}E+\dim_{\mathcal{H}}G-\frac{d^{2}-d}{2}, and

    dim𝒮(GE+Z)dim𝒮E+dimG+dimZd2d2.\displaystyle\dim_{\mathcal{S}}(GE+Z)\geq\dim_{\mathcal{SF}}E+\dim_{\mathcal{H}}G+\dim_{\mathcal{H}}Z-\frac{d^{2}-d}{2}.
  • (ii)

    If dim𝒮E+dimG+dimZ>d2+d2\dim_{\mathcal{SF}}E+\dim_{\mathcal{H}}G+\dim_{\mathcal{H}}Z>\frac{d^{2}+d}{2}, then

    d(GE+Z)>0.\mathcal{L}^{d}(GE+Z)>0.
  • (iii)

    For 0<u<d0<u<d, if dim𝒮E+dimG+dimZ>d2d2+u,\dim_{\mathcal{SF}}E+\dim_{\mathcal{H}}G+\dim_{\mathcal{H}}Z>\frac{d^{2}-d}{2}+u, then

    dim(GE+Z)u.\dim_{\mathcal{H}}(GE+Z)\geq u.

Recalling Lemma 1.1 we have

Corollary 1.2.

Let d2d\geq 2. Let E,ZdE,Z\subset\mathbb{R}^{d}, and GO(d)G\subset O(d) be Borel sets such that dimG>(d1)(d2)2\dim_{\mathcal{H}}G>\frac{(d-1)(d-2)}{2}. Then we have the following:

  • (i)

    If d1ddimE+dimG+dimZ>d2+d2\frac{d-1}{d}\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}G+\dim_{\mathcal{H}}Z>\frac{d^{2}+d}{2}, then

    d(GE+Z)>0.\mathcal{L}^{d}(GE+Z)>0.
  • (ii)

    For 0<u<d0<u<d, if d1ddimE+dimG+dimZ>d2d2+u,\frac{d-1}{d}\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}G+\dim_{\mathcal{H}}Z>\frac{d^{2}-d}{2}+u, then

    dim(GE+Z)u.\dim_{\mathcal{H}}(GE+Z)\geq u.
Remark 1.6.
  • (i)

    The conditions in Theorem 1.4 (i)(i), (ii)(ii), and Corollary 1.2 (i)(i) are generally sharp. The sharpness examples are given in Section 6.

  • (ii)

    Corollary 1.2 also follows from [33, Theorem 4.3].

Based on the above theorem, it is plausible to make the following conjecture for packing arbitrary Borel sets in Euclidean space using rigid transformations.

Conjecture 1.

Let EdE\subset\mathbb{R}^{d} and ΘE(d)\Theta\subset E(d) be Borel sets. If

dim𝒮E+dimΘ>d2+d2,thend(Θ(E))>0.\dim_{\mathcal{SF}}E+\dim_{\mathcal{H}}\Theta>\frac{d^{2}+d}{2},\quad\text{then}\quad\mathcal{L}^{d}(\Theta(E))>0.

1.4. Packing sets by similarity transformations

Instead of using rigid motions, we can extend the study of the packing problems to the class of similarity transformations.

Let d2d\geq 2, for each ω=(g,z,r)Ω(d)=O(d)×d×>0\omega=(g,z,r)\in\Omega(d)=O(d)\times\mathbb{R}^{d}\times\mathbb{R}_{>0}, the set of similarity transformations, and xdx\in\mathbb{R}^{d}, we define ω(x)=rg(x)+z\omega(x)=rg(x)+z. Let ΩΩ(d)\Omega\subset\Omega(d) and EdE\subset\mathbb{R}^{d}, we set

Ω(E):=ωΩω(E)={rg(x)+z:(g,z,r)Ω,xE}.\displaystyle\Omega(E):=\bigcup_{\omega\in\Omega}\omega(E)=\{rg(x)+z:(g,z,r)\in\Omega,x\in E\}.

When Ω=G×Z×T\Omega=G\times Z\times T, where GO(d)G\subset O(d), ZdZ\subset\mathbb{R}^{d}, and T>0T\subset\mathbb{R}_{>0}, we denote

GTE={rg(x):(g,r)G×T,xE}, and GTE+Z={y+z:yGTE,zZ}.\displaystyle GTE=\{rg(x):(g,r)\in G\times T,x\in E\},\,\,\text{ and }\,\,GTE+Z=\{y+z:y\in GTE,z\in Z\}.

Observe that Ω(E)\Omega(E) is the union of all dilated, rotated, and translated copies ω(E)\omega(E) of EE, for each ωΩ\omega\in\Omega.

Similar to the packing problem using rigid motions, we ask: Under which conditions of the dimensions of EE and Ω\Omega, we can not pack Ω(E)\Omega(E) into a set of zero Lebesgue measure in d\mathbb{R}^{d}?

The main result in this section is the following.

Theorem 1.5.

Let d2d\geq 2. Let E,ZdE,Z\subset\mathbb{R}^{d}, T>0T\subset\mathbb{R}_{>0}, and ΩΩ(d)\Omega\subset\Omega(d) be Borel sets. Assume that dimG>(d1)(d2)2\dim_{\mathcal{H}}G>\frac{(d-1)(d-2)}{2}. Then we have the following:

  • (i)

    dim(GTE)dimE+dimG+dimTd2d+22\dim_{\mathcal{F}}(GTE)\geq\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}G+\dim_{\mathcal{H}}T-\frac{d^{2}-d+2}{2}, and

    dim𝒮(GTE+Z)dimE+dimG+dimZ+dimTd2d+22.\displaystyle\dim_{\mathcal{S}}(GTE+Z)\geq\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}G+\dim_{\mathcal{H}}Z+\dim_{\mathcal{H}}T-\frac{d^{2}-d+2}{2}.
  • (ii)

    If dimE+dimG+dimZ+dimT>d2+d+22\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}G+\dim_{\mathcal{H}}Z+\dim_{\mathcal{H}}T>\frac{d^{2}+d+2}{2}, then

    d(GTE+Z)>0.\mathcal{L}^{d}(GTE+Z)>0.
  • (iii)

    For 0<u<d0<u<d, if dimE+dimG+dimZ+dimT>d2d+22+u,\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}G+\dim_{\mathcal{H}}Z+\dim_{\mathcal{H}}T>\frac{d^{2}-d+2}{2}+u, then

    dim(GTE+Z)u.\dim_{\mathcal{H}}(GTE+Z)\geq u.
Remark 1.7.
  • (i)

    Theorem 1.5 is a fractal variant of results in [7] by Chang, Csörnyei, Héra, and Keleti, where the authors considered scaled, rotated, and translated skeletons of polytopes.

  • (ii)

    The conditions in Theorem 1.5 (i)(i), and (ii)(ii) are sharp, see examples in Section 6.

1.5. Union of sets by rigid motions in finite fields

In this section, we will discuss analogous packing results in vector spaces over finite fields.

Let 𝔽qd\mathbb{F}_{q}^{d} be the dd-dimensional vector space over a finite field 𝔽q\mathbb{F}_{q} with qq elements, where qq is an odd prime power, d2d\geq 2.

For each x𝔽qd,θ=(g,z)O(d)×𝔽qdx\in\mathbb{F}_{q}^{d},\theta=(g,z)\in O(d)\times\mathbb{F}_{q}^{d}, we define θ(x)=gx+z\theta(x)=gx+z. For E𝔽qdE\subset\mathbb{F}_{q}^{d}, and ΘO(d)×𝔽qd\Theta\subset O(d)\times\mathbb{F}_{q}^{d}, we define

Θ(E)=θΘθ(E).\displaystyle\Theta(E)=\bigcup_{\theta\in\Theta}\theta(E).

The following three theorems are proved in [39] using bounds on the incidence between points and rigid motions. We refer the reader to [39] for a discussion on the sharpness of these results.

Theorem 1.6.

Let E𝔽q2E\subset\mathbb{F}_{q}^{2} and ΘO(2)×𝔽q2\Theta\subset O(2)\times\mathbb{F}_{q}^{2} with q3mod4q\equiv 3\mod 4. Assume that |E|1/2|Θ|q3|E|^{1/2}|\Theta|\gg q^{3}, then we have |Θ(E)|q2|\Theta(E)|\gg q^{2}.

Theorem 1.7.

Let E𝔽qdE\subset\mathbb{F}_{q}^{d} and ΘO(d)×𝔽qd\Theta\subset O(d)\times\mathbb{F}_{q}^{d}, with d2d\geq 2. We have

|Θ(E)|min{qd,|E||Θ|qd|O(d1)|}.\left|\Theta(E)\right|\gg\min\left\{q^{d},~{}\frac{|E||\Theta|}{q^{d}|O(d-1)|}\right\}.
Theorem 1.8.

Let E𝔽qdE\subset\mathbb{F}_{q}^{d} and ΘO(d)×𝔽qd\Theta\subset O(d)\times\mathbb{F}_{q}^{d}. Assume in addition that either (d3d\geq 3 odd) or (d2mod4d\equiv 2\mod 4 and q3mod4q\equiv 3\mod 4).

  1. (1)

    If |E|<qd12|E|<q^{\frac{d-1}{2}}, then we have

    |Θ(E)|min{qd,|E||Θ|qd1|O(d1)|}.\left|\Theta(E)\right|\gg\min\left\{q^{d},~{}\frac{|E||\Theta|}{q^{d-1}|O(d-1)|}\right\}.
  2. (2)

    If qd12|E|qd+12q^{\frac{d-1}{2}}\leq|E|\leq q^{\frac{d+1}{2}}, then we have

    |Θ(E)|min{qd,|Θ|qd12|O(d1)|}.\left|\Theta(E)\right|\gg\min\left\{q^{d},~{}\frac{|\Theta|}{q^{\frac{d-1}{2}}|O(d-1)|}\right\}.

We provide simple alternative proofs of these results using some of the ideas from our d{\mathbb{R}}^{d} results. However, we do not currently have an 2{\mathbb{R}}^{2} variant of Theorem 1.6. We hope to address this issue in the sequel.

The structure of the rest of the paper is as follows: In Section 2, we will give some notations, preliminaries, and lemmas needed for the rest of the paper. The proofs of Theorems 1.1, 1.4 and 1.5 will be given in Section 3. Theorems 1.2 and 1.3 will be proved in Section 4. In Section 5, we will review some basic background on Fourier analysis over finite fields, and then give the proof of Theorem 1.6. Some examples related to our results will be presented in Section 6.

2. Preliminaries

Throughout the paper, we will write AαBA\lesssim_{\alpha}B if ACBA\leq CB where C>0C>0 is a constant depending on α\alpha. If it is clear from the context what CC should depend on, we may write only ABA\lesssim B. If ABA\lesssim B and BAB\lesssim A, we write ABA\approx B. In the metric space XX, the closed ball with center xx and radius r>0r>0 will be denoted by BX(x,t)B_{X}(x,t), and we write B(x,t)B(x,t) if XX is clear in the context. We denote by d\mathcal{L}^{d} the Lebesgue measure in the Euclidean space d\mathbb{R}^{d}, d1d\geq 1. The orthogonal group of d\mathbb{R}^{d} is O(d)O(d), and its Haar probability measure is dgdg. The set of all rigid motions in d\mathbb{R}^{d} is denoted by E(d)=O(d)×dE(d)=O(d)\times\mathbb{R}^{d}, and Ω(d)=O(d)×d×>0\Omega(d)=O(d)\times\mathbb{R}^{d}\times\mathbb{R}_{>0} stands for the set of all similarity transformations in d\mathbb{R}^{d}. Let AdA\subset\mathbb{R}^{d} (O(d),E(d)O(d),E(d), or Ω(d)\Omega(d)). We denote (A)\mathcal{M}(A) as the set of non-zero Radon measures μ\mu on d\mathbb{R}^{d} with compact support spt μA\textrm{spt }\mu\subset A. The Hausdorff dimension and Fourier dimension of AA will be denoted by dimA\dim_{\mathcal{H}}A and dimA\dim_{\mathcal{F}}A, resprectively. The Fourier transform of μ\mu is defined by

μ^(ξ)=e2πiξx𝑑μ(x),ξd.\displaystyle\widehat{\mu}(\xi)=\int e^{-2\pi i\xi\cdot x}\,d\mu(x),\quad\xi\in\mathbb{R}^{d}.

2.1. Frostman’s lemma, dimensions of sets, ball averages, and spherical averages

Lemma 2.1 (Frostman’s lemma, Theorem 2.7, [31]).

Let 0sd0\leq s\leq d. For a Borel set EdE\subset\mathbb{R}^{d}, the ss-dimensional Hausdorff measure of EE is positive if and only if there exists a measure μ(E)\mu\in\mathcal{M}(E) satisfying

μ(B(x,t))rs,xd,r>0.\displaystyle\mu(B(x,t))\lesssim r^{s},\quad\forall\,x\in\mathbb{R}^{d},\,\,r>0.

In particular, Frostman’s lemma implies that given any exponent 0<s<dim(E)0<s<\dim_{\mathcal{H}}(E), there exists a probability measure μ\mu on EE such that

μ(B(x,t))rs,xd,r>0.\displaystyle\mu(B(x,t))\lesssim r^{s},\quad\forall\,x\in\mathbb{R}^{d},r>0. (2.1)

A measure satisfying condition (2.1) is often called an ss-dimensional Frostman measure (or ss-Frostman measure). The ss-energy integral of a measure μ(d)\mu\in\mathcal{M}(\mathbb{R}^{d}) (see [30, 31]) is

Is(μ)=|xy|s𝑑μ(x)𝑑μ(y)=c(n,s)|μ^(ξ)|2|ξ|sd𝑑ξ.\displaystyle I_{s}(\mu)=\iint|x-y|^{-s}\,d\mu(x)d\mu(y)=c(n,s)\int|\widehat{\mu}(\xi)|^{2}|\xi|^{s-d}d\xi.

If μ(d)\mu\in\mathcal{M}(\mathbb{R}^{d}) satisfies the Frostman condition (2.1)\eqref{eq_Frostman_measure}, then It(μ)<I_{t}(\mu)<\infty for all 0<t<s0<t<s.

We have for any Borel set AdA\subset\mathbb{R}^{d} with Hausdorff dimension dimA>0\dim_{\mathcal{H}}A>0, (see Theorem 8.9 in [30]),

dimA\displaystyle\dim_{\mathcal{H}}A =sup{sd:μ(A) such that μ(B(x,r))rs for xd,r>0}\displaystyle=\sup\{s\leq d:\exists\mu\in\mathcal{M}(A)\text{ such that }\mu(B(x,r))\leq r^{s}\text{ for }x\in\mathbb{R}^{d},r>0\}
=sup{sd:μ(A) such that Is(μ)<}.\displaystyle=\sup\{s\leq d:\exists\mu\in\mathcal{M}(A)\text{ such that }I_{s}(\mu)<\infty\}.

The Fourier dimension of a set AdA\subset\mathbb{R}^{d} is

dimA=sup{sd:μ(A) such that |μ^(x)|(1+|x|)s2, for all xd}.\displaystyle\dim_{\mathcal{F}}A=\sup\{s\leq d:\exists\mu\in\mathcal{M}(A)\text{ such that }|\widehat{\mu}(x)|\lesssim(1+|x|)^{-\frac{s}{2}},\text{ for all }x\in\mathbb{R}^{d}\}.

The Sobolev dimension of a measure μ(d)\mu\in\mathcal{M}(\mathbb{R}^{d}) is

dim𝒮μ=sup{s:|μ^(x)|2(1+|x|)sd𝑑x<}.\displaystyle\dim_{\mathcal{S}}\mu=\sup\{s\in\mathbb{R}:\int|\widehat{\mu}(x)|^{2}(1+|x|)^{s-d}dx<\infty\}.

We will say that a set AdA\subset\mathbb{R}^{d} has Sobolev dimension dim𝒮As\dim_{\mathcal{S}}A\geq s if AA carries a Borel probability measure μ\mu such that dim𝒮μs\dim_{\mathcal{S}}\mu\geq s. The greater the Sobolev dimension is, the smoother the measure is in some sense. We recall the following well-known result, see [31].

Proposition 2.1 ([31, Theorem 5.4]).

Let μ(d)\mu\in\mathcal{M}(\mathbb{R}^{d}).

  • (i)

    If 0<dim𝒮μ<d0<\dim_{\mathcal{S}}\mu<d, then dim𝒮μ=sup{s>0:Is(μ)<}\dim_{\mathcal{S}}\mu=\sup\{s>0:I_{s}(\mu)<\infty\}.

  • (ii)

    If dim𝒮μ>d\dim_{\mathcal{S}}\mu>d, then μL2(d)\mu\in L^{2}(\mathbb{R}^{d}).

  • (iii)

    If dim𝒮μ>2d\dim_{\mathcal{S}}\mu>2d, then μ\mu is a continuous function.

Let μ(d)\mu\in\mathcal{M}(\mathbb{R}^{d}) be an ss-Frostman measure. We have the following ball average estimate (see [31, Section 3.8]),

B(0,R)|μ^(ξ)|2𝑑ξRds,R>0.\displaystyle\int_{B(0,R)}|\widehat{\mu}(\xi)|^{2}d\xi\lesssim R^{d-s},\quad R>0. (2.2)

Next, given a Radon measure μ\mu with compact support on d\mathbb{R}^{d}, d2d\geq 2, we define the L2L^{2} spherical averages of the Fourier transform of μ\mu by

σ(μ)(r)=Sd1|μ^(rv)|2𝑑σ(v),r>0,\displaystyle\sigma(\mu)(r)=\int_{S^{d-1}}|\widehat{\mu}(rv)|^{2}d\sigma(v),\quad r>0, (2.3)

where σ\sigma is the surface measure on the unit sphere Sd1S^{d-1}. In [29], Mattila developed a method to study Falconer’s distance problem by studying the decay rates of spherical averages of fractal measures, namely, the supremum of the numbers β\beta for which for all r>1r>1, one has

σ(μ)(r)rβ.\displaystyle\sigma(\mu)(r)\lesssim r^{-\beta}. (2.4)

For any ss-Frostman measure μ\mu we have for all ε>0\varepsilon>0, r>1r>1,

σ(μ)(r){rs+ε,s(0,d12],rd12+ε,s[d12,d2],r(d1)sd+ε,s(0,d).\sigma(\mu)(r)\lesssim\left\{\begin{array}[]{lll}r^{-s+\varepsilon},&s\in\big{(}0,\frac{d-1}{2}\big{]},\\ r^{-\frac{d-1}{2}+\varepsilon},&s\in\big{[}\frac{d-1}{2},\frac{d}{2}\big{]},\\ r^{-\frac{(d-1)s}{d}+\varepsilon},&s\in(0,d).\end{array}\right. (2.5)

The first two estimates were proved in [29]. The last estimate is the deepest. It is due to Wolff [48] for d=2d=2, to Du-Guth-Ou-Wang-Wilson-Zhang [10] for d=3,3/2<s2d=3,3/2<s\leq 2, and to Du-Zhang [11] for d=3,2s<3d=3,2\leq s<3, and d4d\geq 4. The first estimate is always sharp and for d=2d=2 they all are sharp.

The lower bounds for the spherical Fourier dimension in Lemma 1.1 follow from the best known decay of spherical averages (2.5).

2.2. Some lemmas

In this section, we will recall some results needed for the proof of the theorems.

First, we give a proof for Theorem B.

Proof of Theorem B.

Let α<dimA\alpha<\dim_{\mathcal{F}}A and β<dimB\beta<\dim_{\mathcal{H}}B, μ(A),ν(B)\mu\in\mathcal{M}(A),\nu\in\mathcal{M}(B) such that |μ^(ξ)|2|ξ|α|\widehat{\mu}(\xi)|^{2}\leq|\xi|^{-\alpha} and Iβ(ν)<I_{\beta}(\nu)<\infty. Then one has μν(A+B)\mu\ast\nu\in\mathcal{M}(A+B) and

|μν^(ξ)|2|ξ|α+βd𝑑ξ|ν^(ξ)|2|ξ|βd𝑑ξ=cIβ(ν)<.\displaystyle\int|\widehat{\mu\ast\nu}(\xi)|^{2}|\xi|^{\alpha+\beta-d}d\xi\leq\int|\widehat{\nu}(\xi)|^{2}|\xi|^{\beta-d}d\xi=cI_{\beta}(\nu)<\infty.

This gives (i)(i). Parts (ii)(ii) and (iii)(iii) follow from (i)(i) and Proposition 2.1. ∎

Next, we recall the following lemmas. The proofs can be found in [32], and [33].

Lemma 2.2 ([33], Lemma 3.1).

Let γ(O(d))\gamma\in\mathcal{M}(O(d)) be an α\alpha-dimensional Frostman measure, α>(d1)(d2)2\alpha>\frac{(d-1)(d-2)}{2}, and put β=α(d1)(d2)2\beta=\alpha-\frac{(d-1)(d-2)}{2}. Then for x,yd{0}x,y\in\mathbb{R}^{d}\setminus\{0\}, δ>0\delta>0,

γ({g:|g(y)x|<δ})min{(δ|y|)β,(δ|x|)β}.\displaystyle\gamma\big{(}\{g:|g(y)-x|<\delta\}\big{)}\lesssim\min\bigg{\{}\bigg{(}\frac{\delta}{|y|}\bigg{)}^{\beta},\bigg{(}\frac{\delta}{|x|}\bigg{)}^{\beta}\bigg{\}}. (2.6)

Let γ(O(d))\gamma\in\mathcal{M}(O(d)), and μ(d)\mu\in\mathcal{M}(\mathbb{R}^{d}). We define

σγ(μ)(ξ)=|μ^(g1(ξ))|2𝑑γ(g),ξd.\displaystyle\sigma_{\gamma}(\mu)(\xi)=\int|\widehat{\mu}(g^{-1}(\xi))|^{2}d\gamma(g),\quad\xi\in\mathbb{R}^{d}.

The following lemma is the key to relating Hausdorff dimensions of the sets EdE\subset\mathbb{R}^{d} and GO(d)G\subset O(d) to packing problems in many cases involving rotations. This lemma follows from the estimates for the decay rates of the spherical averages (2.5).

Lemma 2.3 ([33], Lemma 4.1).

Let γ(O(d))\gamma\in\mathcal{M}(O(d)) be a measure which satisfies condition (2.6) with some exponent β(0,d1]\beta\in(0,d-1]. Assume that μ(d)\mu\in\mathcal{M}(\mathbb{R}^{d}) is such that (2.4) holds for exponent sμds_{\mu}\leq d. Then for ξd\xi\in\mathbb{R}^{d} with |ξ|>1|\xi|>1, and for ε>0\varepsilon>0, we have

σγ(μ)(ξ)|ξ|(sμ+β+1dε).\displaystyle\sigma_{\gamma}(\mu)(\xi)\lesssim|\xi|^{-(s_{\mu}+\beta+1-d-\varepsilon)}.

Next, we will give modifications of Lemma 2.3. Let μ(d)\mu\in\mathcal{M}(\mathbb{R}^{d}), γ(O(d))\gamma\in\mathcal{M}(O(d)), and ζ(>0)\zeta\in\mathcal{M}(\mathbb{R}_{>0}). For ξd\xi\in\mathbb{R}^{d}, we define

σ~ζ(μ)(ξ)\displaystyle\tilde{\sigma}_{\zeta}(\mu)(\xi) =|μ^(rξ)|2𝑑ζ(r),\displaystyle=\int|\widehat{\mu}(r\xi)|^{2}\,d\zeta(r),
σγ,ζ(μ)(ξ)\displaystyle\sigma_{\gamma,\zeta}(\mu)(\xi) =|μ^(rg1(ξ))|2𝑑γ(g)𝑑ζ(r).\displaystyle=\iint|\widehat{\mu}(rg^{-1}(\xi))|^{2}\,d\gamma(g)\,d\zeta(r).
Lemma 2.4.

Let γ(O(d))\gamma\in\mathcal{M}(O(d)) be a measure which satisfies condition (2.6) with some exponent β(0,d1]\beta\in(0,d-1]. Assume that μ(d)\mu\in\mathcal{M}(\mathbb{R}^{d}), ζ(>0)\zeta\in\mathcal{M}(\mathbb{R}_{>0}) are Frostman measures with exponents sμs_{\mu} and sζs_{\zeta}, respectively. Then for ξd\xi\in\mathbb{R}^{d} with |ξ|>1|\xi|>1, and for 0<ε<10<\varepsilon<1, we have

σγ,ζ(μ)(ξ)|ξ|(sμ+sζ+βdε).\displaystyle\sigma_{\gamma,\zeta}(\mu)(\xi)\lesssim|\xi|^{-(s_{\mu}+s_{\zeta}+\beta-d-\varepsilon)}.
Lemma 2.5.

Let μ(d)\mu\in\mathcal{M}(\mathbb{R}^{d}), ζ(>0)\zeta\in\mathcal{M}(\mathbb{R}_{>0}) be Frostman measures with exponents sμs_{\mu} and sζs_{\zeta}, respectively. Then for ξd\xi\in\mathbb{R}^{d} with |ξ|>1|\xi|>1, and for 0<ε<10<\varepsilon<1, we have

σ~ζ(μ)(ξ)|ξ|(sμ+sζdε).\displaystyle\tilde{\sigma}_{\zeta}(\mu)(\xi)\lesssim|\xi|^{-(s_{\mu}+s_{\zeta}-d-\varepsilon)}.
Proof of Lemma 2.4.

Without loss of generality, we assume that spt ζ[1,2]\textrm{spt }\zeta\subset[1,2]. Let ϕ\phi be a smooth compactly supported function such that ϕ0\phi\geq 0, and ϕ=1\phi=1 on spt μ\textrm{spt }\mu. Then μ^=ϕμ^=ϕ^μ^\widehat{\mu}=\widehat{\phi\mu}=\widehat{\phi}\ast\widehat{\mu}. Thus for |ξ|>1|\xi|>1, one can write

σγ,ζ(ξ)\displaystyle\sigma_{\gamma,\zeta}(\xi) =|ϕμ^(rg1(ξ))|2𝑑γ(g)𝑑ζ(r)\displaystyle=\iint|\widehat{\phi\mu}(rg^{-1}(\xi))|^{2}\,d\gamma(g)\,d\zeta(r)
=|ϕ^(rg1(ξ)x)μ^(x)𝑑x|2𝑑γ(g)𝑑ζ(r).\displaystyle=\iint\bigg{|}\int\widehat{\phi}(rg^{-1}(\xi)-x)\widehat{\mu}(x)\,dx\bigg{|}^{2}\,d\gamma(g)\,d\zeta(r).

By applying the Cauchy-Schwarz inequality and the fast decay property of ϕ^\widehat{\phi}, the integral is dominated by

(|ϕ^(rg1(ξ)x)|𝑑x)(|ϕ^(rg1(ξ)x)||μ^(x)|2𝑑x)𝑑γ(g)𝑑ζ(r)\displaystyle\lesssim\iint\bigg{(}\int|\widehat{\phi}(rg^{-1}(\xi)-x)|dx\bigg{)}\cdot\bigg{(}\int|\widehat{\phi}(rg^{-1}(\xi)-x)||\widehat{\mu}(x)|^{2}\,dx\bigg{)}\,d\gamma(g)\,d\zeta(r)
{|rg1(ξ)x||ξ|ε}|μ^(x)|2𝑑γ(g)𝑑ζ(r)𝑑x\displaystyle\lesssim\iiint_{\{|rg^{-1}(\xi)-x|\leq|\xi|^{\varepsilon}\}}|\widehat{\mu}(x)|^{2}\,d\gamma(g)\,d\zeta(r)\,dx
+j=1{|ξ|εj|rg1(ξ)x||ξ|ε(j+1)}|ϕ^(rg1(ξ)x)||μ^(x)|2𝑑γ(g)𝑑ζ(r)𝑑x.\displaystyle\hskip 56.9055pt+\sum_{j=1}^{\infty}\iiint_{\{|\xi|^{\varepsilon j}\leq|rg^{-1}(\xi)-x|\leq|\xi|^{\varepsilon(j+1)}\}}|\widehat{\phi}(rg^{-1}(\xi)-x)||\widehat{\mu}(x)|^{2}\,d\gamma(g)\,d\zeta(r)\,dx.
=I1(ξ)+I2(ξ).\displaystyle=I_{1}(\xi)+I_{2}(\xi).

To estimate I1(ξ)I_{1}(\xi), note that if |rg1(ξ)x||ξ|ε|rg^{-1}(\xi)-x|\leq|\xi|^{\varepsilon}, then |r|x|/|ξ|||ξ|ε1\big{|}r-|x|/|\xi|\big{|}\leq|\xi|^{\varepsilon-1}, whence, by (2.6),

γ×ζ({(g,r):|rg1(ξ)x||ξ|ε})\displaystyle\gamma\times\zeta(\{(g,r):|rg^{-1}(\xi)-x|\leq|\xi|^{\varepsilon}\})
={r:|r|x|/|ξ|||ξ|ε1}γ({g:|rg1(ξ)x||ξ|ε})𝑑ζ(r)\displaystyle=\int_{\{r:|r-|x|/|\xi||\leq|\xi|^{\varepsilon-1}\}}\gamma(\{g:|rg^{-1}(\xi)-x|\leq|\xi|^{\varepsilon}\})\,d\zeta(r)
{r:|r|x|/|ξ|||ξ|ε1}|ξ|β(ε1)𝑑ζ(r)\displaystyle\lesssim\int_{\{r:|r-|x|/|\xi||\leq|\xi|^{\varepsilon-1}\}}|\xi|^{\beta(\varepsilon-1)}d\zeta(r)
|ξ|(ε1)(β+sζ).\displaystyle\lesssim|\xi|^{(\varepsilon-1)(\beta+s_{\zeta})}.

Hence the first integral is bounded by

I1(ξ)|ξ|(ε1)(β+sζ){|x|3|ξ|}|μ^(x)|2d(x)|ξ|(ε1)(β+sζ)+dsμ,I_{1}(\xi)\lesssim|\xi|^{(\varepsilon-1)(\beta+s_{\zeta})}\int_{\{|x|\leq 3|\xi|\}}|\widehat{\mu}(x)|^{2}\,d(x)\lesssim|\xi|^{(\varepsilon-1)(\beta+s_{\zeta})+d-s_{\mu}},

where in the last inequality, we used the ball average estimate (2.2).

For I2(ξ)I_{2}(\xi), we have, again by the fast decay of ϕ^\widehat{\phi}, and the ball average estimate (2.2),

I2(ξ)\displaystyle I_{2}(\xi) j=1{|ξ|εj|rg1(ξ)x||ξ|ε(j+1)}|ξ|Nεj𝑑γ(g)𝑑ζ(r)|μ^(x)|2𝑑x\displaystyle\lesssim\sum_{j=1}^{\infty}\iiint_{\{|\xi|^{\varepsilon j}\leq|rg^{-1}(\xi)-x|\leq|\xi|^{\varepsilon(j+1)}\}}|\xi|^{-N\varepsilon j}\,d\gamma(g)\,d\zeta(r)|\widehat{\mu}(x)|^{2}\,dx
j=1{|x|3|ξ|j+1}|ξ|Nεjγ×ζ({(g,r):|rg1(ξ)x||ξ|ε(j+1)})|μ^(x)|2𝑑x\displaystyle\lesssim\sum_{j=1}^{\infty}\int_{\{|x|\leq 3|\xi|^{j+1}\}}|\xi|^{-N\varepsilon j}\gamma\times\zeta\big{(}\{(g,r):|rg^{-1}(\xi)-x|\leq|\xi|^{\varepsilon(j+1)}\}\big{)}|\widehat{\mu}(x)|^{2}\,dx
j=1{|x|3|ξ|j+1}|ξ|Nεj|ξ|(ε(j+1)1)(β+sζ)|μ^(x)|2𝑑x\displaystyle\lesssim\sum_{j=1}^{\infty}\int_{\{|x|\leq 3|\xi|^{j+1}\}}|\xi|^{-N\varepsilon j}|\xi|^{(\varepsilon(j+1)-1)(\beta+s_{\zeta})}|\widehat{\mu}(x)|^{2}\,dx
j=1|ξ|Nεj|ξ|(ε(j+1)1)(β+sζ)|ξ|(j+1)(dsμ)\displaystyle\lesssim\sum_{j=1}^{\infty}|\xi|^{-N\varepsilon j}|\xi|^{(\varepsilon(j+1)-1)(\beta+s_{\zeta})}|\xi|^{(j+1)(d-s_{\mu})}
|ξ|dβsζsμ+εj=1|ξ|j(Nεd+sμ(β+sζ)ε)\displaystyle\lesssim|\xi|^{d-\beta-s_{\zeta}-s_{\mu}+\varepsilon}\sum_{j=1}^{\infty}|\xi|^{-j(N\varepsilon-d+s_{\mu}-(\beta+s_{\zeta})\varepsilon)}
|ξ|dβsζsμ+ε,\displaystyle\lesssim|\xi|^{d-\beta-s_{\zeta}-s_{\mu}+\varepsilon},

provided NN is chosen big enough so that Nε+sμ>(β+sζ)ε+dN\varepsilon+s_{\mu}>(\beta+s_{\zeta})\varepsilon+d. The lemma then follows. ∎

Proof of Lemma 2.5.

Without loss of generality, we assume that spt ζ[1,2]\textrm{spt }\zeta\subset[1,2]. Let ϕ\phi be a smooth compactly supported function such that ϕ0\phi\geq 0, and ϕ=1\phi=1 on spt μ\textrm{spt }\mu. Then μ^=ϕμ^=ϕ^μ^\widehat{\mu}=\widehat{\phi\mu}=\widehat{\phi}\ast\widehat{\mu}. Thus for |ξ|>1|\xi|>1, one can write

σ~ζ(ξ)\displaystyle\tilde{\sigma}_{\zeta}(\xi) =|ϕμ^(rξ)|2𝑑ζ(r)=|ϕ^(rξx)μ^(x)𝑑x|2𝑑ζ(r).\displaystyle=\int|\widehat{\phi\mu}(r\xi)|^{2}\,d\zeta(r)=\int\bigg{|}\int\widehat{\phi}(r\xi-x)\widehat{\mu}(x)\,dx\bigg{|}^{2}\,d\zeta(r).

By applying the Cauchy-Schwarz inequality and the fast decay property of ϕ^\widehat{\phi}, the integral is dominated by

(|ϕ^(rξx)|𝑑x)(|ϕ^(rξx)||μ^(x)|2𝑑x)𝑑ζ(r)\displaystyle\lesssim\int\bigg{(}\int|\widehat{\phi}(r\xi-x)|dx\bigg{)}\cdot\bigg{(}\int|\widehat{\phi}(r\xi-x)||\widehat{\mu}(x)|^{2}\,dx\bigg{)}\,d\zeta(r)
{|rξx||ξ|ε}|μ^(x)|2𝑑ζ(r)𝑑x\displaystyle\lesssim\iint_{\{|r\xi-x|\leq|\xi|^{\varepsilon}\}}|\widehat{\mu}(x)|^{2}\,d\zeta(r)\,dx
+j=1{|ξ|εj|rξx||ξ|ε(j+1)}|ϕ^(rξx)||μ^(x)|2𝑑ζ(r)𝑑x.\displaystyle\hskip 56.9055pt+\sum_{j=1}^{\infty}\iint_{\{|\xi|^{\varepsilon j}\leq|r\xi-x|\leq|\xi|^{\varepsilon(j+1)}\}}|\widehat{\phi}(r\xi-x)||\widehat{\mu}(x)|^{2}\,d\zeta(r)\,dx.
=I1(ξ)+I2(ξ).\displaystyle=I_{1}(\xi)+I_{2}(\xi).

To estimate I1(ξ)I_{1}(\xi), note that if |rξx||ξ|ε|r\xi-x|\leq|\xi|^{\varepsilon}, then |r|x|/|ξ|||ξ|ε1\big{|}r-|x|/|\xi|\big{|}\leq|\xi|^{\varepsilon-1}, whence by assumption on ζ\zeta, one has

ζ({r:|rξx||ξ|ε})ζ(B(|x|/|ξ|,|ξ|ε1))|ξ|(ε1)sζ.\displaystyle\zeta\big{(}\{r:|r\xi-x|\leq|\xi|^{\varepsilon}\}\big{)}\lesssim\zeta\big{(}B(|x|/|\xi|,|\xi|^{\varepsilon-1})\big{)}\lesssim|\xi|^{(\varepsilon-1)s_{\zeta}}.

Hence the first integral is bounded by

I1(ξ)|ξ|(ε1)sζ{|x|3|ξ|}|μ^(x)|2d(x)|ξ|dsμ(1ε)sζ,I_{1}(\xi)\lesssim|\xi|^{(\varepsilon-1)s_{\zeta}}\int_{\{|x|\leq 3|\xi|\}}|\widehat{\mu}(x)|^{2}\,d(x)\lesssim|\xi|^{d-s_{\mu}-(1-\varepsilon)s_{\zeta}},

where in the last inequality, we used the ball average estimate (2.2).

For I2(ξ)I_{2}(\xi), we have, again by the fast decay of ϕ^\widehat{\phi}, and the ball average estimate (2.2),

I2(ξ)\displaystyle I_{2}(\xi) j=1{|ξ|εj|rξx||ξ|ε(j+1)}|ξ|Nεj𝑑ζ(r)|μ^(x)|2𝑑x\displaystyle\lesssim\sum_{j=1}^{\infty}\iint_{\{|\xi|^{\varepsilon j}\leq|r\xi-x|\leq|\xi|^{\varepsilon(j+1)}\}}|\xi|^{-N\varepsilon j}\,d\zeta(r)|\widehat{\mu}(x)|^{2}\,dx
j=1{|x|3|ξ|j+1}|ξ|Nεjζ({r:|rξx||ξ|ε(j+1)})|μ^(x)|2𝑑x\displaystyle\lesssim\sum_{j=1}^{\infty}\int_{\{|x|\leq 3|\xi|^{j+1}\}}|\xi|^{-N\varepsilon j}\zeta\big{(}\{r:|r\xi-x|\leq|\xi|^{\varepsilon(j+1)}\}\big{)}|\widehat{\mu}(x)|^{2}\,dx
j=1{|x|3|ξ|j+1}|ξ|Nεj|ξ|(ε(j+1)1)sζ|μ^(x)|2𝑑x\displaystyle\lesssim\sum_{j=1}^{\infty}\int_{\{|x|\leq 3|\xi|^{j+1}\}}|\xi|^{-N\varepsilon j}|\xi|^{(\varepsilon(j+1)-1)s_{\zeta}}|\widehat{\mu}(x)|^{2}\,dx
j=1|ξ|Nεj|ξ|(ε(j+1)1)sζ|ξ|(j+1)(dsμ)\displaystyle\lesssim\sum_{j=1}^{\infty}|\xi|^{-N\varepsilon j}|\xi|^{(\varepsilon(j+1)-1)s_{\zeta}}|\xi|^{(j+1)(d-s_{\mu})}
|ξ|dsζsμ+εj=1|ξ|j(Nεd+sμsζε)\displaystyle\lesssim|\xi|^{d-s_{\zeta}-s_{\mu}+\varepsilon}\sum_{j=1}^{\infty}|\xi|^{-j(N\varepsilon-d+s_{\mu}-s_{\zeta}\varepsilon)}
|ξ|dsζsμ+ε\displaystyle\lesssim|\xi|^{d-s_{\zeta}-s_{\mu}+\varepsilon}

provided NN is chosen big enough so that Nε+sμ>sζε+dN\varepsilon+s_{\mu}>s_{\zeta}\varepsilon+d. The lemma then follows. ∎

3. Proofs of Theorems 1.1, 1.4, and 1.5

In this section, we will give the proofs of our main results for the packing problems in Euclidean space using affine transformations, assuming the above sets of transformations have product structure.

3.1. Proof of Theorem 1.1

We will prove part (i)(i). Combining part (i)(i) and Theorem B, we get parts (ii)(ii) and (iii)(iii).

Without loss of generality, we may assume that T[1,2]T\subset[1,2].

To prove part (i)(i), let 0<sE<dimE0<s_{E}<\dim_{\mathcal{H}}E, 0<sT<dimT0<s_{T}<\dim_{\mathcal{H}}T. Let μ\mu and ζ\zeta be Frostman measures on EE and TT, respectively, with exponents sEs_{E} and sTs_{T}.

Define a measure ν\nu supported on TETE by relation

f(u)𝑑ν(u)=f(rx)𝑑μ(x)𝑑ζ(r),fC0(d).\int f(u)\,d\nu(u)=\iint f(rx)\,d\mu(x)\,d\zeta(r),\quad\forall f\in C_{0}(\mathbb{R}^{d}).

In other words, ν\nu is the push forward measure of μ×ζ\mu\times\zeta under the map (x,r)rx(x,r)\mapsto rx.

For ξd\xi\in\mathbb{R}^{d}, the Fourier transform of ν\nu at ξ\xi is given by

ν^(ξ)\displaystyle\widehat{\nu}(\xi) =e2πiξ(rx)𝑑μ(x)𝑑ζ(r)=μ^(rξ)𝑑ζ(r).\displaystyle=\iint e^{-2\pi i\xi\cdot(rx)}\,d\mu(x)\,d\zeta(r)=\int\widehat{\mu}(r\xi)\,d\zeta(r).

Hence, by Cauchy-Schwarz inequality, one has

|ν^(ξ)|2|μ^(rξ)|2𝑑ζ(r)=σ~ζ(ξ).\displaystyle|\widehat{\nu}(\xi)|^{2}\lesssim\int|\widehat{\mu}(r\xi)|^{2}\,d\zeta(r)=\tilde{\sigma}_{\zeta}(\xi).

Let 0<ε<10<\varepsilon<1, and apply Lemma 2.5, we obtain

|ν^(ξ)|2\displaystyle|\widehat{\nu}(\xi)|^{2} (1+|ξ|)(sE+sTdε),ξd.\displaystyle\lesssim(1+|\xi|)^{-(s_{E}+s_{T}-d-\varepsilon)},\quad\forall\xi\in\mathbb{R}^{d}. (3.1)

By the definition of Fourier dimension, this implies that

dim(TE)sE+sTdε.\displaystyle\dim_{\mathcal{F}}(TE)\geq s_{E}+s_{T}-d-\varepsilon.

It can be seen easily that when letting sEdimEs_{E}\to\dim_{\mathcal{H}}E, sTdimTs_{T}\to\dim_{\mathcal{H}}T, and ε0\varepsilon\to 0, one gets

dim(TE)dimE+dimTd.\displaystyle\dim_{\mathcal{F}}(TE)\geq\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}T-d.

This completes the proof of the theorem.

\Box

3.2. Proof of Theorem 1.4

We will give the proof of part (i)(i), as combining (i)(i) with Theorem B, we obtain parts (ii)(ii) and (iii)(iii).

To prove part (i)(i), we choose 0<sE<dim𝒮E0<s_{E}<\dim_{\mathcal{SF}}E, (d1)(d2)2<sG<dimG\frac{(d-1)(d-2)}{2}<s_{G}<\dim_{\mathcal{H}}G.

Let μ(E)\mu\in\mathcal{M}(E) be a Radon measure supported on EE such that

σ(μ)(r)rsE,r>0.\displaystyle\sigma(\mu)(r)\lesssim r^{-s_{E}},\quad\forall r>0.

Let γ\gamma be Frostman measure supported on GG with exponent sGs_{G}.

We define a measure ν(GE)\nu\in\mathcal{M}(GE) by the following relation

f(u)𝑑u=f(gx)𝑑μ(x)𝑑γ(g),fC0(d).\displaystyle\int f(u)\,du=\iint f(gx)\,d\mu(x)\,d\gamma(g),\quad\forall f\in C_{0}(\mathbb{R}^{d}).

In other words, ν\nu is the push forward measure of μ×γ\mu\times\gamma under the map (x,g)g(x)(x,g)\mapsto g(x).

The Fourier transform of ν\nu at ξd\xi\in\mathbb{R}^{d} is given by

ν^(ξ)\displaystyle\widehat{\nu}(\xi) =e2πiξg(x)𝑑μ(x)𝑑γ(g)=μ^(g1(ξ))𝑑γ(g).\displaystyle=\iint e^{-2\pi i\xi\cdot g(x)}\,d\mu(x)d\gamma(g)=\int\widehat{\mu}(g^{-1}(\xi))d\gamma(g).

Thus, by invoking Cauchy-Schwarz inequality, one has

|ν^(ξ)|2|μ^(g1(ξ))|2𝑑γ(g)=σγ(μ)(ξ).\displaystyle|\widehat{\nu}(\xi)|^{2}\lesssim\int|\widehat{\mu}(g^{-1}(\xi))|^{2}d\gamma(g)=\sigma_{\gamma}(\mu)(\xi).

Choose ε>0\varepsilon>0, and then applying Lemma 2.3 with β=sG(d1)(d2)2\beta=s_{G}-\frac{(d-1)(d-2)}{2}, we have

|ν^(ξ)|2σγ(μ)(ξ)(1+|ξ|)(sE+sGd(d1)2ϵ),ξd,\begin{split}|\widehat{\nu}(\xi)|^{2}\lesssim\sigma_{\gamma}(\mu)(\xi)\lesssim(1+|\xi|)^{-(s_{E}+s_{G}-\frac{d(d-1)}{2}-\epsilon)},\quad\quad\forall\xi\in\mathbb{R}^{d},\end{split}

which yields that

dim(GE)sE+sGd(d1)2ϵ.\displaystyle\dim_{\mathcal{F}}(GE)\geq s_{E}+s_{G}-\frac{d(d-1)}{2}-\epsilon.

Let sEdim𝒮Es_{E}\to\dim_{\mathcal{SF}}E, sGdimGs_{G}\to\dim_{\mathcal{H}}G, and ε0\varepsilon\to 0, we find that

dim(GE)dim𝒮E+dimGd(d1)2.\displaystyle\dim_{\mathcal{F}}(GE)\geq\dim_{\mathcal{SF}}E+\dim_{\mathcal{H}}G-\frac{d(d-1)}{2}.

This finishes the proof of the theorem.

\Box

3.3. Proof of Theorem 1.5

We will give the proof of part (i)(i). For parts (ii)(ii) and (iii)(iii), the proof follows by combining (i)(i) with Theorem B.

Without loss of generality, we may assume that T[1,2]T\subset[1,2]. Let 0<sE<dimE0<s_{E}<\dim_{\mathcal{H}}E, 0<(d1)(d2)2<sG<dimG0<\frac{(d-1)(d-2)}{2}<s_{G}<\dim_{\mathcal{H}}G, and 0<sT<dimT0<s_{T}<\dim_{\mathcal{H}}T. Let μ,γ\mu,\gamma, and ζ\zeta be Frostman measures on E,GE,G and TT, respectively, with exponents sE,sGs_{E},s_{G} and sTs_{T}.

Define a measure ν\nu supported on GTEGTE by relation

f(u)𝑑ν(u)=f(rg(x))𝑑μ(x)𝑑γ(g)𝑑ζ(r),fC0(d).\int f(u)\,d\nu(u)=\iiint f(rg(x))\,d\mu(x)\,d\gamma(g)\,d\zeta(r),\quad\forall f\in C_{0}(\mathbb{R}^{d}).

We have for ξd\xi\in\mathbb{R}^{d},

ν^(ξ)=μ^(rg1(ξ))𝑑γ(g)𝑑ζ(r).\widehat{\nu}(\xi)=\iint\widehat{\mu}(rg^{-1}(\xi))\,d\gamma(g)\,d\zeta(r).

By Cauchy-Schwarz inequality, one has

|ν^(ξ)|2|μ^(rg1(ξ))|2𝑑γ(g)𝑑ζ(r)=σγ,ζ(ξ).|\widehat{\nu}(\xi)|^{2}\lesssim\iint|\widehat{\mu}(rg^{-1}(\xi))|^{2}d\gamma(g)d\zeta(r)=\sigma_{\gamma,\zeta}(\xi).

Let 0<ε<10<\varepsilon<1, and apply Lemma 2.4 with β=sG(d1)(d2)/2\beta=s_{G}-(d-1)(d-2)/2, we obtain

|ν^(ξ)|2\displaystyle|\widehat{\nu}(\xi)|^{2} (1+|ξ|)(sE+sG+sT(d1)(d2)2dε),ξd.\displaystyle\lesssim(1+|\xi|)^{-(s_{E}+s_{G}+s_{T}-\frac{(d-1)(d-2)}{2}-d-\varepsilon)},\quad\quad\forall\xi\in\mathbb{R}^{d}.

Hence we find that

dim(GTE)sE+sG+sTd2d+22ε.\displaystyle\dim_{\mathcal{F}}(GTE)\geq s_{E}+s_{G}+s_{T}-\frac{d^{2}-d+2}{2}-\varepsilon.

Letting sEdimEs_{E}\to\dim_{\mathcal{H}}E, sGdimGs_{G}\to\dim_{\mathcal{H}}G, sTdimTs_{T}\to\dim_{\mathcal{H}}T, and ε0\varepsilon\to 0, we conclude that

dim(GTE)dimE+dimG+dimTd2d+22.\displaystyle\dim_{\mathcal{F}}(GTE)\geq\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}G+\dim_{\mathcal{H}}T-\frac{d^{2}-d+2}{2}.

This completes the proof of the theorem.

\Box

4. Proofs of Theorems 1.2 and 1.3

In this section, we will give proofs of Theorems 1.2 and 1.3. First, we will recall a result of D. Oberlin [37] on the exceptional estimate for projections.

Let 0ln0\leq l\leq n be integers. For each xl(nl)x\in\mathbb{R}^{l(n-l)}, we define the projection Px:nlP_{x}:\mathbb{R}^{n}\to\mathbb{R}^{l} by

Px(y1,,yn)=(y1,,yl)+X(yl+1,,yn)T=y~+Xy¯.\displaystyle P_{x}(y_{1},\dots,y_{n})=(y_{1},\dots,y_{l})+X\cdot(y_{l+1},\dots,y_{n})^{T}=\tilde{y}+X\cdot\bar{y}.

Here X=(xij)Ml×(nl)X=(x_{ij})\in M_{l\times(n-l)} is the matrix identified by xx, y~=(y1,,yl)\tilde{y}=(y_{1},\dots,y_{l}) and y¯=(yl+1,,yn)\bar{y}=(y_{l+1},\dots,y_{n}).

With xx and XX as above, for each ξl\xi\in\mathbb{R}^{l}, we define the map Tx:lnlT_{x}:\mathbb{R}^{l}\to\mathbb{R}^{n-l} by

Tx(ξ)=XTξT.\displaystyle T_{x}(\xi)=X^{T}\cdot\xi^{T}.
Theorem 4.1 ([37, Theorem 1.2]).

Suppose λ\lambda is a compactly supported nonnegative Borel measure on l(nl)\mathbb{R}^{l(n-l)} which satisfies the condition

λ({xl(nl):|Tx(ξ)p|δ})cδβ,\displaystyle\lambda(\{x\in\mathbb{R}^{l(n-l)}:|T_{x}(\xi)-p|\leq\delta\})\leq c\delta^{\beta}, (4.1)

for some c>0c>0 and all ξl\xi\in\mathbb{R}^{l} with |ξ|=1|\xi|=1, pnlp\in\mathbb{R}^{n-l}, and δ>0\delta>0. Suppose EnE\subset\mathbb{R}^{n} is a Borel set with Hausdorff dimension at least α\alpha. Suppose

nl+σα<β.\displaystyle n-l+\sigma-\alpha<\beta. (4.2)

Then for λ\lambda-almost all xl(nl)x\in\mathbb{R}^{l(n-l)}, dim𝒮Px(E)σ\dim_{\mathcal{S}}P_{x}(E)\geq\sigma.

4.1. Proof of Theorem 1.2

We will give the proof for part (i)(i). Parts (ii)(ii) and (iii)(iii) follow from (i)(i) and Proposition 2.1.

Let 0<sE<dimE0<s_{E}<\dim_{\mathcal{H}}E and 0<sΓ<dimΓ0<s_{\Gamma}<\dim_{\mathcal{H}}\Gamma. Let μ\mu be a Frostman measure supported on EE with exponent sEs_{E}. Furthermore, without loss of generality, we may assume that spt μEB(0,1)\textrm{spt }\mu\subset E\subset B(0,1).

We will define a family of projections as follows. Put n=d+1n=d+1, and l=dl=d. For xdx\in\mathbb{R}^{d}, we define the map

Px:d+1\displaystyle P_{x}:\mathbb{R}^{d+1} d\displaystyle\to\mathbb{R}^{d}
(z,r)\displaystyle(z,r) rx+z=z+Xr.\displaystyle\mapsto rx+z=z+Xr.

where X=(x1xd)Md×1X=\begin{pmatrix}x_{1}\\ \vdots\\ x_{d}\end{pmatrix}\in M_{d\times 1}. Then we can write

Γ(E)={rx+z:xE,(z,r)Γ}=xEPx(Γ).\displaystyle\Gamma(E)=\{rx+z:x\in E,(z,r)\in\Gamma\}=\bigcup_{x\in E}P_{x}(\Gamma).

We will show that if

dimE+dimΓ>d+u,\displaystyle\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}\Gamma>d+u,

then dim𝒮Γ(E)u\dim_{\mathcal{S}}\Gamma(E)\geq u.

For each xx, we define Tx:dT_{x}:\mathbb{R}^{d}\to\mathbb{R} by

Tx(ξ)=XTξT=(x1xd)(ξ1ξd)=ξ1x1++ξdxd.\displaystyle T_{x}(\xi)=X^{T}\cdot\xi^{T}=\begin{pmatrix}x_{1}&\cdots&x_{d}\end{pmatrix}\cdot\begin{pmatrix}\xi_{1}\\ \vdots\\ \xi_{d}\end{pmatrix}=\xi_{1}x_{1}+\cdots+\xi_{d}x_{d}.

To apply Theorem 4.1, we need to verify that condition (4.1) holds with measure μ\mu for some exponent β\beta.

Let ξd\xi\in\mathbb{R}^{d}, |ξ|=1|\xi|=1, pp\in\mathbb{R}, and δ>0\delta>0. Observe that

|Tx(ξ)p|δ|ξ1x1++ξdxdp|δ.\displaystyle|T_{x}(\xi)-p|\leq\delta\quad\Longrightarrow\quad|\xi_{1}x_{1}+\cdots+\xi_{d}x_{d}-p|\leq\delta.

Put Hξ={xd:ξ1x1++ξdxd=p}H_{\xi}=\{x\in\mathbb{R}^{d}:\xi_{1}x_{1}+\cdots+\xi_{d}x_{d}=p\}, then HξH_{\xi} is a (d1)(d-1)-dimensional affine space in d\mathbb{R}^{d}. Hence

{xE:|Tx(ξ)p|δ}\displaystyle\{x\in E:|T_{x}(\xi)-p|\leq\delta\} {xE:|ξ1x1++ξdxdp|δ}Hξ(δ)B(0,1),\displaystyle\subset\{x\in E:|\xi_{1}x_{1}+\cdots+\xi_{d}x_{d}-p|\leq\delta\}\subset H_{\xi}(\delta)\cap B(0,1),

where A(ϵ)A(\epsilon) denotes the ϵ\epsilon-neighborhood of AA. Since HξH_{\xi} has dimension d1d-1, we can cover Hξ(δ)B(0,1)H_{\xi}(\delta)\cap B(0,1) by δ(d1)\lesssim\delta^{-(d-1)} balls of radius δ\delta with bounded overlaps. By Frostman condition, we have

μ({xE:|Tx(ξ)p|δ})δ(d1)δsE=δd+1+sE.\displaystyle\mu\big{(}\{x\in E:|T_{x}(\xi)-p|\leq\delta\}\big{)}\lesssim\delta^{-(d-1)}\delta^{s_{E}}=\delta^{-d+1+s_{E}}.

Thus (4.1) holds with β=d+1+sE\beta=-d+1+s_{E}.

Apply Theorem 4.1, we find that if

(d+1)d+u<sΓ+1+sEdsE+sΓ>d+u,\displaystyle(d+1)-d+u<s_{\Gamma}+1+s_{E}-d\quad\Longleftrightarrow\quad s_{E}+s_{\Gamma}>d+u,

then for μ\mu-almost all xdx\in\mathbb{R}^{d},

dim𝒮Px(Γ)u.\displaystyle\dim_{\mathcal{S}}P_{x}(\Gamma)\geq u.

This finishes the proof of the theorem.

\Box

4.2. Proof of Theorem 1.3

Let 0<sE<dimE0<s_{E}<\dim_{\mathcal{H}}E and 0<sΓ~<dimΓ~0<s_{\tilde{\Gamma}}<\dim_{\mathcal{H}}\tilde{\Gamma}. Let μ\mu be a Frostman measure supported on EE with exponent sEs_{E}. Furthermore, without loss of generality, we may assume that spt μEB(0,1)\textrm{spt }\mu\subset E\subset B(0,1).

We will define a family of projections as follows. Put n=2dn=2d, and l=dl=d. For each xdx\in\mathbb{R}^{d}, let Px:2ddP_{x}:\mathbb{R}^{2d}\to\mathbb{R}^{d} is the map defined by

(z,r)\displaystyle(z,r) z+XrT=(z1z2zd)+(x1000x2000xd.)(r1r2rd).\displaystyle\mapsto z+Xr^{T}=\begin{pmatrix}z_{1}\\ z_{2}\\ \vdots\\ z_{d}\end{pmatrix}+\begin{pmatrix}x_{1}&0&\cdots&0\\ 0&x_{2}&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&x_{d}.\end{pmatrix}\cdot\begin{pmatrix}r_{1}\\ r_{2}\\ \vdots\\ r_{d}\end{pmatrix}.

Then we can write

Γ~(E)=xEPx(Γ~).\displaystyle\tilde{\Gamma}(E)=\bigcup_{x\in E}P_{x}(\tilde{\Gamma}).

For each xx, we define Tx:ddT_{x}:\mathbb{R}^{d}\to\mathbb{R}^{d} by

Tx(ξ)=XTξT=(x1000x2000xd.)(ξ1ξ2ξd)=(x1ξ1x2ξ2xdξd).\displaystyle T_{x}(\xi)=X^{T}\cdot\xi^{T}=\begin{pmatrix}x_{1}&0&\cdots&0\\ 0&x_{2}&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&x_{d}.\end{pmatrix}\cdot\begin{pmatrix}\xi_{1}\\ \xi_{2}\\ \vdots\\ \xi_{d}\end{pmatrix}=\begin{pmatrix}x_{1}\xi_{1}\\ x_{2}\xi_{2}\\ \vdots\\ x_{d}\xi_{d}\end{pmatrix}.

Let ξd\xi\in\mathbb{R}^{d}, |ξ|=1|\xi|=1, pdp\in\mathbb{R}^{d}, and δ>0\delta>0. We have

|Tx(ξ)p|δ|(ξ1x1p1,,ξdxdpd)|δ.\displaystyle|T_{x}(\xi)-p|\leq\delta\quad\Longrightarrow\quad|(\xi_{1}x_{1}-p_{1},\cdots,\xi_{d}x_{d}-p_{d})|\leq\delta.

Since |ξ|=1|\xi|=1, by pigeonholing, there is 1kd1\leq k\leq d such that |ξk|1d1/2|\xi_{k}|\geq\frac{1}{d^{1/2}}. Thus

{xE:|Tx(ξ)p|δ}i=1d{xE:|xiξipi|δ}{xE:|xkξkpk|δ}.\displaystyle\{x\in E:|T_{x}(\xi)-p|\leq\delta\}\subset\bigcap\limits_{i=1}^{d}\{x\in E:|x_{i}\xi_{i}-p_{i}|\leq\delta\}\subset\{x\in E:|x_{k}\xi_{k}-p_{k}|\leq\delta\}.

Put Hξk={xd:xkξk=pk}H_{\xi_{k}}=\{x\in\mathbb{R}^{d}:x_{k}\xi_{k}=p_{k}\}, then HξkH_{\xi_{k}} is a (d1)(d-1)-dimensional affine space in d\mathbb{R}^{d}. Hence

{xE:|Tx(ξ)p|δ}Hξk(d1/2δ)B(0,1).\displaystyle\{x\in E:|T_{x}(\xi)-p|\leq\delta\}\subset H_{\xi_{k}}(d^{1/2}\delta)\cap B(0,1).

Since HξkH_{\xi_{k}} has dimension d1d-1, we can cover Hξ(d1/2δ)B(0,1)H_{\xi}(d^{1/2}\delta)\cap B(0,1) by δ(d1)\lesssim\delta^{-(d-1)} balls of radius δ\delta with bounded overlaps. By Frostman condition, we have

μ({xE:|Tx(ξ)p|δ})δ(d1)δsE=δd+1+sE.\displaystyle\mu\big{(}\{x\in E:|T_{x}(\xi)-p|\leq\delta\}\big{)}\lesssim\delta^{-(d-1)}\delta^{s_{E}}=\delta^{-d+1+s_{E}}.

Thus (4.1) holds with β=d+1+sE\beta=-d+1+s_{E}.

Apply Theorem 4.1, one can see that if

2dd+u<sΓ~+1+sEdsE+sΓ~>2d1+u,\displaystyle 2d-d+u<s_{\tilde{\Gamma}}+1+s_{E}-d\quad\Longleftrightarrow\quad s_{E}+s_{\tilde{\Gamma}}>2d-1+u,

then for μ\mu-almost all xdx\in\mathbb{R}^{d},

dim𝒮Px(Γ~)u.\displaystyle\dim_{\mathcal{S}}P_{x}(\tilde{\Gamma})\geq u.

This finishes the proof of the theorem.

\Box

5. Union of sets by rigid motions over finite fields

In this section, we will give proof of Theorem 1.6 in dimension two. In higher dimensions, the proofs of Theorem 1.7 and Theorem 1.8 follow by using the same argument and the fact that the stabilizer of a non-zero element in 𝔽qd\mathbb{F}_{q}^{d} is about |O(d1)||O(d-1)|. We begin by reviewing some basic background on Fourier analysis over finite fields.

Let 𝔽qd\mathbb{F}_{q}^{d} be the dd-dimensional vector space over a finite field 𝔽q\mathbb{F}_{q} with qq elements, where qq is an odd prime power. The Fourier transform of a complex-valued function ff on 𝔽qd\mathbb{F}_{q}^{d} with respect to a nontrivial principal additive character χ\chi on 𝔽q\mathbb{F}_{q} is given by

f^(m)=qdx𝔽qdχ(xm)f(x),\displaystyle\widehat{f}(m)=q^{-d}\sum_{x\in\mathbb{F}_{q}^{d}}\chi(-x\cdot m)f(x),

and the Fourier inversion formula takes the form

f(x)=m𝔽qdχ(xm)f^(m).\displaystyle f(x)=\sum_{m\in\mathbb{F}_{q}^{d}}\chi(x\cdot m)\widehat{f}(m).

We also have the Plancherel theorem

m𝔽dd|f^(m)|2=1qdx𝔽qd|f(x)|2,\displaystyle\sum_{m\in\mathbb{F}_{d}^{d}}|\widehat{f}(m)|^{2}=\frac{1}{q^{d}}\sum_{x\in\mathbb{F}_{q}^{d}}|f(x)|^{2},

which can be proved easily by using the following orthogonal property of the canonical additive character

m𝔽qdχ(mx)={0 if x(0,,0),qd if x=(0,,0).\displaystyle\sum_{m\in\mathbb{F}_{q}^{d}}\chi(m\cdot x)=\begin{cases}0&\text{ if }x\neq(0,\dots,0),\\ q^{d}&\text{ if }x=(0,\dots,0).\end{cases}

We will identify the set E𝔽qdE\subset\mathbb{F}_{q}^{d} with the characteristic function on the set EE, and we denote by |E||E| the cardinality of the set E𝔽qdE\subset\mathbb{F}_{q}^{d}.

For E𝔽qdE\subset\mathbb{F}_{q}^{d}, define

M(E)=maxj0mSj|E^(m)|2,andM(E)=maxj𝔽qmSj|E^(m)|2.M^{*}(E)=\max_{j\neq 0}\sum_{m\in S_{j}}|\widehat{E}(m)|^{2},~{}\mbox{and}~{}M(E)=\max_{j\in\mathbb{F}_{q}}\sum_{m\in S_{j}}|\widehat{E}(m)|^{2}.

By Plancherel, it is trivial that

M(E),M(E)|E|qd.M(E),M^{*}(E)\leq\frac{|E|}{q^{d}}.

We recall the following improvements from [8] and [26].

Theorem 5.1.

Let E𝔽qdE\subset\mathbb{F}_{q}^{d}. We have

  1. (1)

    If d=2d=2, then M(E)q3|E|3/2M^{*}(E)\ll q^{-3}|E|^{3/2}.

  2. (2)

    If d4d\geq 4 even, then M(E)min{|E|qd,|E|qd+1+|E|2q3d+12}M^{*}(E)\ll\min\left\{\frac{|E|}{q^{d}},~{}\frac{|E|}{q^{d+1}}+\frac{|E|^{2}}{q^{\frac{3d+1}{2}}}\right\}.

  3. (3)

    If d3d\geq 3 odd, then M(E)min{|E|qd,|E|qd+1+|E|2q3d+12}M(E)\ll\min\left\{\frac{|E|}{q^{d}},~{}\frac{|E|}{q^{d+1}}+\frac{|E|^{2}}{q^{\frac{3d+1}{2}}}\right\}.

In some specific dimensions, the same restriction estimate holds for the sphere of radius zero. A detailed proof can be found in [21].

Theorem 5.2.

Let E𝔽qdE\subset\mathbb{F}_{q}^{d}. Assume d2mod4d\equiv 2\mod{4} and q3mod4q\equiv 3\mod{4}, then we have

mS0|E^(m)|2|E|qd+1+|E|2q3d+22.\sum_{m\in S_{0}}|\widehat{E}(m)|^{2}\ll\frac{|E|}{q^{d+1}}+\frac{|E|^{2}}{q^{\frac{3d+2}{2}}}.

Now we are ready to prove Theorem 1.6.

5.1. Proof of Theorem 1.6

Let λΘ\lambda_{\Theta} be a function defined by

y𝔽q2f(y)λΘ(y):=xE(g,z)Θf(gx+z)Θ(g,z),\sum_{y\in\mathbb{F}_{q}^{2}}f(y)\lambda_{\Theta}(y):=\sum_{x\in E}\sum_{(g,z)\in\Theta}f(gx+z)\Theta(g,z),

for all functions f:𝔽q2f\colon\mathbb{F}_{q}^{2}\to\mathbb{C}.

Let ff be the characteristic function of the set Θ(E)\Theta(E). Then we have

xf(x)λΘ(x)=|E||Θ|.\sum_{x}f(x)\lambda_{\Theta}(x)=|E||\Theta|.

By the Cauchy-Schwarz inequality, one has

|Θ(E)||E|2|Θ|2xλΘ(x)2.|\Theta(E)|\geq\frac{|E|^{2}|\Theta|^{2}}{\sum_{x}\lambda_{\Theta}(x)^{2}}.

In the next step, we are going to bound xλΘ(x)2\sum_{x}\lambda_{\Theta}(x)^{2} from above. It suffices to prove that

xλΘ(x)2|Θ|2|E|2q2+q|E|3/2|Θ|.\sum_{x}\lambda_{\Theta}(x)^{2}\ll\frac{|\Theta|^{2}|E|^{2}}{q^{2}}+q|E|^{3/2}|\Theta|.

We have

λΘ^(m)\displaystyle\widehat{\lambda_{\Theta}}(m) =1q2g,z,xχ(m(gx+z))E(x)Θ(g,z)=g,zE^(g1m)χ(mz)Θ(g,z)\displaystyle=\frac{1}{q^{2}}\sum_{g,z,x}\chi(-m\cdot(gx+z))E(x)\Theta(g,z)=\sum_{g,z}\widehat{E}(g^{-1}m)\chi(-m\cdot z)\Theta(g,z)
=q2gE^(g1m)(1q2zχ(mz)Θ(g,z))=q2gE^(g1m)fg(m),\displaystyle=q^{2}\sum_{g}\widehat{E}(g^{-1}m)\left(\frac{1}{q^{2}}\sum_{z}\chi(-m\cdot z)\Theta(g,z)\right)=q^{2}\sum_{g}\widehat{E}(g^{-1}m)f_{g}(m),

where

fg(m)=1q2zχ(mz)Θ(g,z).f_{g}(m)=\frac{1}{q^{2}}\sum_{z}\chi(-m\cdot z)\Theta(g,z).

For m=(0,0)m=(0,0), a direct computation shows that λΘ^(0,0)=|E||Θ|q2\widehat{\lambda_{\Theta}}(0,0)=\frac{|E||\Theta|}{q^{2}}.

For m(0,0)m\neq(0,0), we can apply Cauchy-Schwarz to get

|λΘ^(m)|2q4g|E^(gm)|2g|fg(m)|2.\displaystyle|\widehat{\lambda_{\Theta}}(m)|^{2}\leq q^{4}\sum_{g}|\widehat{E}(gm)|^{2}\sum_{g}|f_{g}(m)|^{2}.

Note that m0||m||\neq 0 when m(0,0)m\neq(0,0) since q3mod4q\equiv 3\mod 4. In the plane 𝔽q2\mathbb{F}_{q}^{2}, the stabilizer of a non-zero element is of size at most 22. Thus, given mm with m=j0||m||=j\neq 0, by Theorem 5.1, we have

g|E^(gm)|2M(E)|E|3/2q3.\sum_{g}|\widehat{E}(gm)|^{2}\ll M^{*}(E)\ll|E|^{3/2}q^{-3}.

So,

|λΘ^(m)|2q4|E|3/2q3g|fg(m)|2,|\widehat{\lambda_{\Theta}}(m)|^{2}\ll q^{4}\cdot\frac{|E|^{3/2}}{q^{3}}\cdot\sum_{g}|f_{g}(m)|^{2},

which is bounded further by

|E|3/2q3θu,vχ((uv)m)Θ(g,u)Θ(g,v).\frac{|E|^{3/2}}{q^{3}}\sum_{\theta}\sum_{u,v}\chi((u-v)\cdot m)\Theta(g,u)\Theta(g,v).

Taking the sum over all mm and use the orthogonality of χ\chi, one has

m|λΘ^(m)|2|Θ|2|E|2q4+|E|3/2|Θ|q.\sum_{m}|\widehat{\lambda_{\Theta}}(m)|^{2}\ll\frac{|\Theta|^{2}|E|^{2}}{q^{4}}+\frac{|E|^{3/2}|\Theta|}{q}.

Using the fact that

xλΘ(x)2=q2m|λΘ(m)|2,\sum_{x}\lambda_{\Theta}(x)^{2}=q^{2}\sum_{m}|\lambda_{\Theta}(m)|^{2},

we obtain

xλΘ(x)2|Θ|2|E|2q2+q|E|3/2|Θ|.\sum_{x}\lambda_{\Theta}(x)^{2}\ll\frac{|\Theta|^{2}|E|^{2}}{q^{2}}+q|E|^{3/2}|\Theta|.

This completes the proof of the theorem.

\Box

6. Examples

In this section, we will give some examples regarding our results for packing problems using affine transformations.

In the first example, we want to emphasize that our results recover the known results for spheres in a special case.

Example 6.1.

Let EdE\subset\mathbb{R}^{d} be the unit sphere Sd1S^{d-1} in d\mathbb{R}^{d}, d2d\geq 2. Let ZdZ\subset\mathbb{R}^{d} be a set of translations, and put Θ=O(d)×Z\Theta=O(d)\times Z. Due to Theorem 1.4, since Sd1S^{d-1} is a Salem set, if

dimZ>1\displaystyle\dim_{\mathcal{H}}Z>1

then d(Θ(Sd1))>0\mathcal{L}^{d}(\Theta(S^{d-1}))>0. In other words, the union zZ(z+Sd1)\bigcup_{z\in Z}(z+S^{d-1}) of spheres with radius 11, whose centers at zZz\in Z, has positive Lebesgue measure if dimZ>1\dim_{\mathcal{H}}Z>1. Similarly, if dimZ>u\dim_{\mathcal{H}}Z>u, for 0<u<10<u<1, then we find that

dimzZ(z+Sd1)d1+u.\displaystyle\dim_{\mathcal{H}}\bigcup_{z\in Z}(z+S^{d-1})\geq d-1+u.

Thus our results recover the results by Wolff [47], [49] and Oberlin [35] in the case spheres with a fixed given radius.

Next, we will give some examples to illustrate the best dimensional thresholds that one can expect for packing problems using dilations and translations; rigid motions; and similarity transformations. Note that the Fourier dimension estimates in Theorems 1.1, 1.4, and 1.5 must be sharp since the consequences for the measure estimates are sharp.

Example 6.2.
  • (i)

    The bounds in Theorems 1.1 (ii)(ii) and 1.2 (ii)(ii) are sharp. By Theorem 1.3 in [27], there exists a closed set EdE\subset\mathbb{R}^{d} such that dimE=d\dim_{\mathcal{H}}E=d, and d(E+E)=0\mathcal{L}^{d}(E+E)=0. Thus we can choose T={1}T=\{1\}, Z=EZ=E. Then one has

    dimE+dimZ+dimT=2d,\displaystyle\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}Z+\dim_{\mathcal{H}}T=2d,

    while d(TE+Z)=0\mathcal{L}^{d}(TE+Z)=0.

  • (ii)

    The bound in Theorem 1.3 (ii)(ii) is also sharp. Let d2d\geq 2. Let E=[0,1]d1×{0}dE=[0,1]^{d-1}\times\{0\}\subset\mathbb{R}^{d}, T=[0,1]dT=[0,1]^{d}, and A[0,1]A\subset[0,1] such that dimA=1\dim_{\mathcal{H}}A=1, while 1(A)=0\mathcal{L}^{1}(A)=0. Put Z=[0,1]d1×AZ=[0,1]^{d-1}\times A, and Γ~=Z×T\tilde{\Gamma}=Z\times T. Then one can see that

    dimE+dimΓ~=3d1,\displaystyle\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}\tilde{\Gamma}=3d-1,

    while d(Γ~(E))=d(Z)=0\mathcal{L}^{d}(\tilde{\Gamma}(E))=\mathcal{L}^{d}(Z)=0.

Example 6.3.

Let d2d\geq 2, E=d1×{0}E=\mathbb{R}^{d-1}\times\{0\}, and G={gO(d):g(ed)=ed}O(d1)G=\{g\in O(d):g(e_{d})=e_{d}\}\cong O(d-1), the stabilizer of ede_{d} in O(d)O(d). Let A[0,1]A\subset[0,1] be a compact set of dimension dimA=1\dim_{\mathcal{H}}A=1, such that 1(A)=0\mathcal{L}^{1}(A)=0, and take Z=[0,1]d1×AZ=[0,1]^{d-1}\times A. Choose Θ=G×ZE(d)\Theta=G\times Z\subset E(d), then we have

dim𝒮E+dimΘ=d1+(d1)(d2)2+d=d2+d2,\displaystyle\dim_{\mathcal{SF}}E+\dim_{\mathcal{H}}\Theta=d-1+\frac{(d-1)(d-2)}{2}+d=\frac{d^{2}+d}{2},

while d(Θ(E))=0\mathcal{L}^{d}(\Theta(E))=0. This illustrates that the bound in Theorem 1.4 (ii)(ii) is sharp.

To see that dim𝒮E=d1\dim_{\mathcal{SF}}E=d-1 let μ\mu be any compactly supported measure on EE with CC^{\infty} density. Then μ^(x,t)=μ^(x,0)\widehat{\mu}(x,t)=\widehat{\mu}(x,0) for all xd1,tx\in\mathbb{R}^{d-1},t\in\mathbb{R}. Let 0<σ<d10<\sigma<d-1. Splitting the integration over the sphere {(x,t):|x|2+t2=r2}\{(x,t):|x|^{2}+t^{2}=r^{2}\} to |x|r(d1σ)/(d1)|x|\leq r^{(d-1-\sigma)/(d-1)} and |x|>r(d1σ)/(d1)|x|>r^{(d-1-\sigma)/(d-1)}, we have for sufficiently large NN and any r>1r>1,

{yd:|y|=r}|μ^(y)|2𝑑yrd1σ+rN2rd1σ.\int_{\{y\in\mathbb{R}^{d}:|y|=r\}}|\widehat{\mu}(y)|^{2}dy\lesssim r^{d-1-\sigma}+r^{-N}\leq 2r^{d-1-\sigma}.
Example 6.4.

Let d2d\geq 2, by [27, Theorem 1.3], there exists a closed set A[0,1]A\subset[0,1] such that dimA=1\dim_{\mathcal{H}}A=1, and 1(A+A)=0\mathcal{L}^{1}(A+A)=0. Thus we can choose GG as the stabilizer of ede_{d} in O(d)O(d), E=Z=[0,1]d1×AdE=Z=[0,1]^{d-1}\times A\subset\mathbb{R}^{d}, and put Θ=G×Z\Theta=G\times Z. Then one has

d1ddimE+dimΘ=d1+(d1)(d2)2+d=d2+d2,\displaystyle\frac{d-1}{d}\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}\Theta=d-1+\frac{(d-1)(d-2)}{2}+d=\frac{d^{2}+d}{2},

while d(Θ(E))=0\mathcal{L}^{d}(\Theta(E))=0. This implies that the dimensional threshold in Corollary 1.2 (i)(i) is sharp.

Example 6.5.

Let d2d\geq 2, EE, GG, and ZZ as in Example 6.3. Let T=[1,2]T=[1,2], and put Ω=G×Z×T\Omega=G\times Z\times T, then

dimE+dimΩ=d2+d+22,\displaystyle\dim_{\mathcal{H}}E+\dim_{\mathcal{H}}\Omega=\frac{d^{2}+d+2}{2},

and d(Θ(E))=0\mathcal{L}^{d}(\Theta(E))=0. This shows that the bound in Theorem 1.5 (ii)(ii) is sharp.

Acknowledgements

The authors would like to thank the Vietnam Institute for Advanced Study in Mathematics (VIASM) for the hospitality and the excellent working conditions, where part of this work was done.

References

  • [1] A. S. Besicovitch, Sur deux questions d’intégrabilité des fonctions, J. Soc. Phys. Math, Perm, 2 (1919), pp. 105–123.
  • [2]  , On Kakeya’s problem and a similar one, Math. Z., 27 (1928), pp. 312–320.
  • [3] A. S. Besicovitch and R. Rado, A plane set of measure zero containing circumferences of every radius, J. Lond. Math. Soc., 43 (1968), pp. 717–719.
  • [4] J. Bourgain, Estimations de certaines fonctions maximales, C.R. Acad. Sci. Paris Sér. I Math., 301 (1985), pp. 499–512.
  • [5]  , Averages in the plane over convex curves and maximal operators, J. Anal. Math., 47 (1986), pp. 69–85.
  • [6]  , The discretized sum-product and projection theorems, J. Anal. Math., 112 (2010), pp. 193–236.
  • [7] A. Chang, M. Csörnyei, K. Héra, and T. Keleti, Small unions of affine subspaces and skeletons via baire category, Adv. Math., 328 (2018), pp. 801–821.
  • [8] J. Chapman, M. B. Erdoğan, D. Hart, A. Iosevich, and D. Koh, Pinned distance sets, kk-simplices, Wolff’s exponent in finite fields and sum-product estimates, Math. Z., 271 (2012), pp. 63–93.
  • [9] R. O. Davies, Another thin set of circles, J. Lond. Math. Soc., 5 (1972), pp. 191–192.
  • [10] X. Du, L. Guth, Y. Ou, H. Wang, B. Wilson, and R. Zhang, Weighted restriction estimates and application to Falconer distance set problem, Amer. J. Math., 142 (2021), pp. 175–211.
  • [11] X. Du and R. Zhang, Sharp L2L^{2} estimates of the Schrödinger maximal function in higher dimensions, Ann. of Math., 189 (2019), pp. 837–861.
  • [12] B. Erdoğan, D. Hart, and A. Iosevich, Multiparameter projection theorems with applications to sums-products and finite point configurations in the euclidean setting, in Recent Advances in Harmonic Analysis and Applications, New York, NY, 2013, Springer New York, pp. 93–103.
  • [13] K. J. Falconer, Hausdorff dimension and the exceptional set of projections, Mathematika, 29 (1982), pp. 109–115.
  • [14]  , The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, Cambridge University Press, 1985.
  • [15] K. J. Falconer and P. Mattila, Strong Marstrand theorems and dimensions of sets formed by subsets of hyperplanes, J. Fractal Geom., 3 (2016), pp. 319–329.
  • [16] S. Gan, Hausdorff dimension of unions of kk-planes, arxiv:2305.14544, (2023).
  • [17] S. Ham, H. Ko, S. Lee, and S. Oh, Remarks on dimension of unions of curves, Nonlinear Anal., 229 (2023), pp. 113–207.
  • [18] K. Hambrook and K. Taylor, Measure and dimension of sums and products, Proc. Amer. Math. Soc., 149 (2021), pp. 3765–3780.
  • [19] K. Héra, Hausdorff dimension of Furstenberg-type sets associated to families of affine subspaces, Ann. Acad. Sci. Fenn. Math., 44 (2019), pp. 903–923.
  • [20] K. Héra, T. Keleti, and A. Máthé, Hausdorff dimension of unions of affine subspaces and of Furstenberg-type sets, J. Fractal Geom., 6 (2019), pp. 263–284.
  • [21] A. Iosevich, D. Koh, S. Lee, T. Pham, and C.-Y. Shen, On restriction estimates for the zero radius sphere over finite fields, Canad. J. Math., 73 (2021), p. 769–786.
  • [22] A. Käenmäki, T. Orponen, and L. Venieri, A Marstrand-type restricted projection theorem in d\mathbb{R}^{d}, arXiv:1708.04859, (2017).
  • [23] T. Keleti, Small union with large set of centers, in Recent Developments in Fractals and Related Fields, J. Barral and S. Seuret, eds., Cham, 2017, Springer International Publishing, pp. 189–206.
  • [24] T. Keleti, D. T. Nagy, and P. Shmerkin, Squares and their centers, J. Anal. Math., 134 (2018), pp. 643–669.
  • [25] J. R. Kinney, A thin set of circles, Amer. Math. Monthly, 75 (1968), pp. 1077–1081.
  • [26] D. Koh and H.-S. Sun, Distance sets of two subsets of vector spaces over finite fields, Proc. Amer. Math. Soc., 143 (2015), pp. 1679–1692.
  • [27] T. W. Körner, Hausdorff dimension of sums of sets with themselves, Studia Math., 188 (2008), pp. 287–295.
  • [28] J. M. Marstrand, Packing circles in the plane, Proc. London. Math. Soc., s3-55 (1987), pp. 37–58.
  • [29] P. Mattila, Spherical averages of Fourier transforms of measures with finite energy; dimensions of intersections and distance sets, Mathematika, 34 (1987), p. 207–228.
  • [30]  , Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1995.
  • [31]  , Fourier Analysis and Hausdorff Dimension, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2015.
  • [32]  , Exceptional set estimates for the Hausdorff dimension of intersections, Ann. Acad. Sci. Fenn. Math., 42 (2017), pp. 611–620.
  • [33]  , Hausdorff dimension and projections related to intersections, Publ. Mat., 66 (2022), pp. 305 – 323.
  • [34] T. Mitsis, On a problem related to sphere and circle packing, J. Lond. Math. Soc., 60 (1999), pp. 501–516.
  • [35] D. M. Oberlin, Packing spheres and fractal Strichartz estimates in d\mathbb{R}^{d} for d3d\geq 3, Proc. Amer. Math. Soc., 134 (2006), pp. 3201–3209.
  • [36]  , Unions of hyperplanes, unions of spheres, and some related estimates, Illinois J. Math., 51 (2007), pp. 1265 – 1274.
  • [37]  , Exceptional sets of projections, unions of kk-planes and associated transforms, Isr. J. Math., 202 (2014), pp. 331 – 342.
  • [38] R. Oberlin, Unions of lines in 𝔽n\mathbb{F}^{n}, Mathematika, 62 (2016), p. 738–752.
  • [39] T. Pham, Triangles with one fixed side–length, a Furstenberg-type problem, and incidences in finite vector spaces, Forum Math., (2024).
  • [40] K. Ren and H. Wang, Furstenberg sets estimate in the plane, arXiv:2308.08819, (2023).
  • [41] K. Simon and K. Taylor, Interior of sums of planar sets and curves, Math. Proc. Camb. Philos. Soc., 168 (2020), p. 119–148.
  • [42]  , Dimension and measure of sums of planar sets and curves, Mathematika, 68 (2022), pp. 1364–1392.
  • [43] E. M. Stein, Maximal functions: spherical means, Proc. Nat. Acad. Sci. U.S.A., 73 (1976), pp. 2174–2175.
  • [44] M. Talagrand, Sur la mesure de la projection d’un compact set certaines families de cercles, Bull. Sci. Math., 104 (1980), pp. 225–231.
  • [45] R. Thornton, Cubes and their centers, Acta Math. Hungar., 152 (2017), pp. 291–313.
  • [46] L. Wisewell, Families of surfaces lying in a null set, Mathematika, 51 (2004), p. 155–162.
  • [47] T. Wolff, A Kakeya-type problem for circles, Amer. J. Math., 119 (1997), pp. 985–1026.
  • [48]  , Decay of circular means of Fourier transforms of measures, Int. Math. Res. Not., 1999 (1999), pp. 547–567.
  • [49]  , Local smoothing type estimate on LpL^{p} for large pp, Geom. Funct. Anal., 10 (2000), pp. 1237–1288.
  • [50] J. Zahl, Unions of lines in n\mathbb{R}^{n}, Mathematika, 69 (2023), pp. 473–481.