This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Overspinning a rotating black hole in semiclassical gravity with type-A trace anomaly

Jie Jiang [email protected] College of Education for the Future, Beijing Normal University, Zhuhai 519087, China    Ming Zhang [email protected] (Corresponding author) Department of Physics, Jiangxi Normal University, Nanchang 330022, China
Abstract

Recently, Fernandes discovered an analytic solution for rotating black holes in semiclassical gravity induced by the trace anomaly. These solutions exhibit some distinctive characteristics, including a non-spherically symmetric event horizon and violations of the Kerr bound. As a crucial assumption to uphold causality in spacetime, we investigate the validity of the weak cosmic censorship conjecture (WCCC) within this class of solutions with type-A trace anomaly by introducing a test particle on the equatorial plane. Our study reveals three distinct mechanisms that can potentially destroy the event horizon, leading to a violation of the WCCC. Our findings indicate that, with the exception of extremal Kerr, static extremal, and static singular black holes, the WCCC may be violated under the first-order perturbation of the test particle. These results suggest the need for further exploration of modifications to the behavior of the test particle under quantum effects in order to address the violation of the WCCC in this system.

I Introduction

The Hawking-Penrose singularity theorem states that gravitational collapse inevitably ends up in a spacetime singularity Penrose:1964wq ; Hawking:1970zqf . However, these singularities in gravitational theories can lead to unpredictable results, making it difficult for us to understand the rules of the universe. Penrose suggested a solution known as the weak cosmic censorship conjecture (WCCC) Penrose:1969pc , which proposes that these singularities must be hidden by an event horizon, maintaining the predictability of gravitational theories. Resolving this issue is crucial for understanding classical gravitational theory and could offer significant insights into the nature of the universe.

The WCCC has been tested in various ways, such as through numerical simulations with collapsing matter fields and disturbed black holes, and in simulations of merging black holes in higher dimensions Christodoulou:1984mz ; Ori:1987hg ; Shapiro:1991zza ; Lemos:1991uz ; Choptuik:1992jv ; Corelli:2021ikv ; Eperon:2019viw ; Crisford:2017zpi ; Figueras:2017zwa ; Figueras:2015hkb ; Lehner:2010pn ; Hertog:2003zs ; Andrade:2020dgc ; Andrade:2019edf ; Andrade:2018yqu ; Sperhake:2009jz . In 1974, Wald designed a gedanken experiment Wald:1974 , which demonstrated that an extremal Kerr-Newman black hole could resist destruction from a test particle under the first-order approximation from the particle perturbation. Then, Hubeny expanded it to consider near-extremal black holes and second-order perturbations, suggesting these black holes could potentially be destroyed Hubeny:1998ga . Many follow-up studies agreed with this finding deFelice:2001wj ; Hod:2002pm ; Jacobson:2010iu ; Chirco:2010rq ; Saa:2011wq ; Gao:2012ca . However, as Hubeny Hubeny:1998ga discussed, to confirm whether black holes actually disintegrate, all second-order effects must be taken into account. In 2017, a more complex version of the gedanken experiment was proposed by Sorce and Wald based on the Noether charge method, which considered the full dynamics of spacetime and perturbation matters Sorce:2017dst and showed that a near-extremal Kerr-Newman black hole cannot be destroyed under second-order perturbation when the matters satisfy the null energy condition. Additionally, field scattering is another method used to examine the WCCC across different gravitational systems Semiz:2005gs ; Gwak:2018akg ; Gwak:2021tcl ; Liang:2020hjz ; Natario:2016bay ; Goncalves:2020ccm ; Gwak:2019rcz ; Yang:2020iat ; Yang:2020czk ; Feng:2020tyc ; Yang:2022yvq

The exploration of quantum phenomena offers us a deeper understanding of the universal laws of physics. Trace anomaly is one such phenomenon that emerges in a fundamentally conformally invariant classical theory due to the breaking of conformal symmetry by one-loop quantum corrections Capper:1974ic ; Duff:1993wm . This results in the renormalization of the stress-energy tensor, leading to a non-zero trace. Interestingly, this trace is independent of the quantum state of the quantum fields and solely depends on the local curvature of spacetime, marking it as a general characteristic of quantum theories in gravitational fields Anderson:2007eu ; Mottola:2022tcn ; Mottola:2006ew ; Mottola:2016mpl .

In a four-dimensional spacetime, the trace anomaly can be expressed in terms of the square of the Weyl tensor CC and the Gauss-Bonnet scalar 𝒢\mathcal{G}, which are commonly referred to as type-A and type-B anomalies respectively Deser:1993yx . This can be captured by the following equation,

gμνTμν=β2C2α2𝒢.\displaystyle g^{\mu\nu}\left\langle T_{\mu\nu}\right\rangle=\frac{\beta}{2}C^{2}-\frac{\alpha}{2}\mathcal{G}\,. (1)

When contemplating modifications to General Relativity, the contributions of the trace anomaly are critical. They are anticipated to produce observable macroscopic effects Mottola:2022tcn ; Mottola:2006ew ; Mottola:2016mpl , thereby necessitating their inclusion in the low-energy effective field theory of gravity.

Refer to caption
Figure 1: The (α/M2,a/M)\left(\alpha/M^{2},a/M\right) diagram illustrating the domain of existence for black hole solutions. The shaded region represents the parameter space where black hole solutions exist. The boundary of this region is determined by three distinct boundaries. The type-I boundary (red) is defined by Δequatormin=0\Delta_{\text{equator}}^{\text{min}}=0, the type-II boundary (blue) is defined by Δpolesmin=0\Delta_{\text{poles}}^{\text{min}}=0, and the type-III boundary (red) corresponds to the singular black hole solutions defined by Δequatorrs=0\Delta_{\text{equator}}^{r_{s}}=0.

Utilizing the semi-classical approach allows us to account for the backreaction of quantum fields and their influence on spacetime geometry. This process transforms the Einstein equation into

Rμν12gμνR=8πGTμν.\displaystyle R_{\mu\nu}-\frac{1}{2}g_{\mu\nu}R=8\pi G\left\langle T_{\mu\nu}\right\rangle\,. (2)

A notable challenge when studying the backreaction of quantum fields lies in the typically unknown expectation value of the renormalized stress-energy tensor even in the static and spherically symmetric system Christensen:1977jc ; Ho:2018fwq ; Abedi:2015yga . To overcome this challenge, Ref. Cai:2009ua introduces an additional condition: the geometry should rely solely on a single free function, which effectively establishes an additional equation of state for the stress-energy tensor. Through the adoption of this methodology, and focusing solely on the type-A anomaly (β=0)(\beta=0), Ref. Cai:2009ua manages to fully derive the renormalized stress-energy tensor and obtain an analytic static and spherically symmetric black hole solution from the semi-classical Einstein equations. Intriguingly, these solutions show a logarithmic correction to their entropy, aligning with the expectation that primary quantum corrections to black hole entropy should be logarithmic Page:2004xp ; Sen:2012dw . Most recently, an analytic stationary and axially-symmetric black hole solution to the semiclassical Einstein equations induced by the trace anomaly has been found in Ref. Fernandes:2023vux . Unlike conventional stationary black hole solutions, this new solution presents several distinct features, including the violation of the Kerr bound and an event horizon that lacks spherical symmetry, leading to a mismatch between the event horizon and the Killing horizon.

As a fundamental assumption for ensuring causality in spacetime, a natural question arises as to whether the WCCC still holds when considering quantum effects such as the trace anomaly. Therefore, the aim of this paper is to examine the WCCC in the rotating stationary solutions obtained in Ref. Fernandes:2023vux . Specifically, we will investigate the possibility of destroying the event horizon by dropping a test particle into the black hole, thereby forming a naked singularity. The structure of this paper is as follows. In Sec. II, we will introduce rotating black hole solutions in semiclassical gravity with type-A trace anomaly and discuss their spacetime structures. In Sec. III, we will first present the equations of motion for test particles on the equatorial plane and derive the condition for test particle to enter the black hole. We will then discuss whether the black hole can be destroyed under the first-order approximation of the perturbation caused by the test particle, thus violating the WCCC. Finally, in Sec. IV, we will provide our conclusions and summarize the findings of our paper.

II Rotating black hole solutions in semiclassical gravity

In this paper, we focus exclusively on type-A anomalies (i.e., β=0\beta=0) in Einstein gravity. Most recently, Ref. Fernandes:2023vux provides the solution to the semiclassical Einstein equations with trace anomaly, which corresponds to an asymptotically flat and rotating spacetime. In the ingoing Kerr-like coordinates xμ=(v,r,θ,φ)x^{\mu}=(v,r,\theta,\varphi), the metric is given by

ds2=\displaystyle ds^{2}= (12(r,θ)rΣ)(dvasin2θdφ)2\displaystyle-\left(1-\frac{2\mathcal{M}(r,\theta)r}{\Sigma}\right)\left(dv-a\sin^{2}\theta d\varphi\right)^{2} (3)
+2(dvasin2θdφ)(drasin2θdφ)\displaystyle+2\left(dv-a\sin^{2}\theta d\varphi\right)\left(dr-a\sin^{2}\theta d\varphi\right)
+Σ(dθ2+sin2θdφ2),\displaystyle+\Sigma\left(d\theta^{2}+\sin^{2}\theta d\varphi^{2}\right),

where

(r,θ)\displaystyle\mathcal{M}(r,\theta) =2M1+18αrξM/Σ3,\displaystyle=\frac{2M}{1+\sqrt{1-{8\alpha r\xi M}/{\Sigma^{3}}}}\,, (4)
Σ\displaystyle\Sigma =r2+a2cos2θ,\displaystyle=r^{2}+a^{2}\cos^{2}\theta\,,
ξ\displaystyle\xi =r23a2cos2θ.\displaystyle=r^{2}-3a^{2}\cos^{2}\theta\,.

Here, after assuming the spacetime is asymptotically flat, the symbol MM represents an integration constant. The mass and angular momentum of the spacetime can be obtained by using the Komar integral, which yields MM and J=MaJ=Ma, respectively.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Diagrams illustrating the process of destroying an event horizon by increasing the angular momentum in parameter-region I (1α/M20-1\leq\alpha/M^{2}\leq 0). The profile shows the coordinate location of the inner horizon (represented by the red line) and the event horizon (represented by the blue line) as a function of the angular coordinate θ\theta. We consider a black hole with α/M2=0.3\alpha/M^{2}=-0.3 and varying values of a/M2a/M^{2}. Here, aex/M=0.667538a_{\text{ex}}/M=0.667538 corresponds to the extremal value of a/Ma/M for α/M2=0.3\alpha/M^{2}=-0.3. The black dashed line indicates the position of the curvature singularity.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: Diagrams illustrating the process of destroying an event horizon by increasing the angular momentum in parameter-region II ((0<α/M2<6.2754)(0<\alpha/M^{2}<6.2754)). The profile shows the coordinate location of the inner horizon (represented by the red line) and the event horizon (represented by the blue line) as a function of the angular coordinate θ\theta. We consider a black hole with α/M2=2\alpha/M^{2}=2 and varying values of a/M2a/M^{2}. Here, aex/M=0.890307a_{\text{ex}}/M=0.890307 corresponds to the extremal value of a/Ma/M for α/M2=2\alpha/M^{2}=2. The black dashed line indicates the position of the curvature singularity.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Diagrams illustrating the process of destroying an event horizon by increasing the angular momentum in parameter-region III (6.2754α/M286.2754\leq\alpha/M^{2}\leq 8). The profile shows the coordinate location of the event horizon (represented by the blue line) and the singularity (represented by the black dashed line) as a function of the angular coordinate θ\theta. We consider a black hole with α/M2=7\alpha/M^{2}=7 and varying values of a/Ma/M. Here, asb/M=0.816227a_{\text{sb}}/M=0.816227 corresponds to the angular momentum of the singular black hole when α/M2=7\alpha/M^{2}=7.

By analyzing the spacetime metric (3), we can identify the existence of two singularities. The first singularity is the well-known ring singularity, positioned at Σ=0\Sigma=0, which corresponds to r=0r=0 and θ=π/2\theta=\pi/2. The second singularity arises due to the quantum effects of Gauss-Bonnet theory. It is located at the point r=rs(θ)r=r_{s}(\theta) where the expression inside the square root in the mass function (4) becomes zero, i.e.,

18αrξΣ3M=0.\displaystyle 1-\frac{8\alpha r\xi}{\Sigma^{3}}M=0\,. (5)

Solving this condition requires a numerical approach, except for θ=π/2\theta=\pi/2, where we find

rs(π/2)=2(Mα)1/3.\displaystyle r_{s}(\pi/2)=2(M\alpha)^{1/3}\,. (6)

In the context of describing a black hole spacetime, there exists an event horizon located at r=rH(θ)r=r_{H}(\theta) that conceals the singularity within it. This event horizon satisfies the following differential equation

[θrH(θ)]2+Δ|r=rH(θ)=0,\displaystyle\begin{aligned} \left[\partial_{\theta}r_{H}(\theta)\right]^{2}+\left.\Delta\right|_{r=r_{H}(\theta)}=0\,,\end{aligned} (7)

where

Δ=r2+a22r(r,θ).\Delta=r^{2}+a^{2}-2r\mathcal{M}(r,\theta). (8)

Considering the symmetries of the problem, we need to establish the boundary conditions θrH(0)=θrH(π/2)=0\partial_{\theta}r_{H}(0)=\partial_{\theta}r_{H}(\pi/2)=0. Together with Eq. (7), these boundary conditions imply

Δpoles|r=rH(0)=0,andΔequator|r=rH(π/2)=0,\displaystyle\begin{aligned} \Delta_{\text{poles}}|_{r=r_{H}(0)}=0\,,\quad\text{and}\quad\Delta_{\text{equator}}|_{r=r_{H}(\pi/2)}=0\,,\end{aligned} (9)

in which we define

Δpoles(r)Δ(r,θ=0,π),Δequator(r)Δ(r,θ=π/2).\displaystyle\begin{aligned} \Delta_{\text{poles}}(r)&\equiv\Delta(r,\theta=0,\pi)\,,\\ \Delta_{\text{equator}}(r)&\equiv\Delta(r,\theta=\pi/2)\,.\end{aligned} (10)

To establish the presence of an event horizon, it is necessary for both Δpoles(r)\Delta_{\text{poles}}(r) and Δequator(r)\Delta_{\text{equator}}(r) to have at least one root. Solving Eq. (7) using the pseudospectral method enables us to determine the range of black hole existence, illustrated in Fig. 1. The figure reveals three distinct boundary behaviors within this range.

First, in the parameter-region I (1α/M20)(-1\leq\alpha/M^{2}\leq 0), the boundary of the black hole solution is represented by the red curve in Fig. 1. They describe extremal black hole solutions where the event horizon and the inner horizon coincide at the equator (θ=π/2\theta=\pi/2), see Fig. 2. In this case, Δequator(rH(π/2))=rΔequator(rH(π/2))=0\Delta_{\text{equator}}(r_{H}(\pi/2))=\partial_{r}\Delta_{\text{equator}}(r_{H}(\pi/2))=0, or the minimum value of Δequator(r)\Delta_{\text{equator}}(r), denoted as Δequatormin\Delta_{\text{equator}}^{\text{min}}, is zero. Increasing the angular momentum further results in the absence of positive roots for Δequator(r)\Delta_{\text{equator}}(r) (i.e., Δequatormin>0\Delta_{\text{equator}}^{\text{min}}>0), leading to the destruction of the event horizon and the exposure of the singularity.

Second, in the parameter-region II (0<α/M2<6.2754)(0<\alpha/M^{2}<6.2754), the boundary of the black hole solutions is represented by the blue curve in Fig. 1. They describe extremal black hole solutions where the event horizon and the inner horizon overlap at θ=0\theta=0 and π\pi, see Fig. 3. In this case, the minimum value of Δpoles(r)\Delta_{\text{poles}}(r), denoted as Δpolesmin\Delta_{\text{poles}}^{\text{min}}, is zero. Further increasing the angular momentum leads to Δpolesmin<0\Delta_{\text{poles}}^{\text{min}}<0, resulting in the destruction of the event horizon.

Finally, in the parameter-region III (6.2754α/M28)(6.2754\leq\alpha/M^{2}\leq 8), we find the boundary of the third type showed by the green curve in Fig. 1, where the event horizon and the singularity overlap, see Fig. 4. Specifically, this boundary is determined by the equation rH(π/2)=rs(π/2)=2(Mα)1/3r_{H}(\pi/2)=r_{s}(\pi/2)=2(M\alpha)^{1/3}, which also implies

ΔequatorrsΔequator|r=rs(π/2)=0.\displaystyle\begin{aligned} \Delta_{\text{equator}}^{r_{s}}\equiv\Delta_{\text{equator}}|_{r=r_{s}(\pi/2)}=0\,.\end{aligned} (11)

III Destroy the event horizon by throwing a test particle

In this section, our goal is to investigate whether the event horizon of a rotating black hole in semiclassical gravity with type-A anomaly can be destroyed after absorbing a test charged particle. The equation of motion for the test particle is given by

UbbUa=0,\displaystyle\begin{aligned} U^{b}\nabla_{b}U^{a}=0,\end{aligned} (12)

where

Ua=(τ)a\displaystyle\begin{aligned} U^{a}=\left(\frac{\partial}{\partial\tau}\right)^{a}\end{aligned} (13)

represents the four-velocity of the particle, and τ\tau denotes the particle’s proper time, ensuring UaUa=1U^{a}U_{a}=-1. The energy EE and angular momentum LL of the test particle are defined as

EmUa(v)a=mUv,LmUa(φ)a=mUφ.\displaystyle\begin{aligned} E&\equiv-mU_{a}\left(\frac{\partial}{\partial v}\right)^{a}=-mU_{v}\,,\\ L&\equiv mU_{a}\left(\frac{\partial}{\partial\varphi}\right)^{a}=mU_{\varphi}\,.\end{aligned} (14)

For simplicity and without loss of generality in our subsequent analysis, we set m=1m=1. To treat the particle as a test body, we assume that its energy EE and angular momentum LL are small compared to those of the black hole, i.e.,

EM,andLJ.\displaystyle E\ll M\,,\quad\text{and}\quad L\ll J\,. (15)

Considering the reflection symmetry of the black hole with respect to the equatorial plane, we focus on the scenario where the particle moves on the equatorial plane (θ=π/2)(\theta=\pi/2) with some angular momentum, resulting in zero components of velocity Uθ=0U_{\theta}=0. Using the normalized condition UaUa=1U^{a}U_{a}=-1 and the definitions of energy and angular momentum, we can obtain the following expressions,

(drdτ)2=a2(EΩHL)2[rH2+(aEL)2]ΔrH4ΩH2|θ=π/2,dvdτ=rH2(a2+rH2)+𝒪(E,L)2rH2(a2EaL+ErH2)|θ=π/2,\displaystyle\begin{aligned} \left(\frac{dr}{d\tau}\right)^{2}&=\left.\frac{a^{2}\left(E-\Omega_{H}L\right)^{2}-[r_{H}^{2}+(aE-L)^{2}]\Delta}{r_{H}^{4}\Omega_{H}^{2}}\right|_{\theta=\pi/2}\,,\\ \frac{dv}{d\tau}&=\left.\frac{r_{H}^{2}(a^{2}+r_{H}^{2})+\mathcal{O}(E,L)}{2r_{H}^{2}(a^{2}E-aL+Er_{H}^{2})}\right|_{\theta=\pi/2}\,,\end{aligned} (16)

in which

ΩHaa2+rH2\displaystyle\begin{aligned} \Omega_{H}\equiv\frac{a}{a^{2}+r_{H}^{2}}\end{aligned} (17)

is the angular velocity of the Killing horizon r=rK(θ)r=r_{K}(\theta), determined by Δ(r,θ)=0\Delta(r,\theta)=0.

The condition for the test particle to enter the event horizon on the equatorial plane requires its motion near the event horizon r=rHr=r_{H} to be timelike and future-directed, which implies

E>ΩHequatorL\displaystyle E>\Omega_{H}^{\text{equator}}L (18)

with

ΩHequatorΩH|θ=π/2.\displaystyle\begin{aligned} \Omega_{H}^{\text{equator}}\equiv\Omega_{H}|_{\theta=\pi/2}\,.\end{aligned} (19)

Here we have used the assumption (15). The above inequality gives the lower bound of E/L>ΩHequatorE/L>\Omega_{H}^{\text{equator}} such that the test particle can enter the event horizon on the equatorial plane.

Next, we explore the conditions required to destroy the black hole. Specifically, the test particle must be capable of entering the event horizon, and the black hole should become overspun after absorbing the test particle. These conditions establish a relationship between the energy EE and angular momentum JJ of the test particle. After the test particle is dropped into the black hole, the parameters of the final state become

MM=M+δM,JJ=J+δJ,\displaystyle\begin{aligned} M&\rightarrow M^{\prime}=M+\delta M,\\ J&\rightarrow J^{\prime}=J+\delta J,\end{aligned} (20)

where δM=E\delta M=E and δJ=L\delta J=L. To examine the validity of the WCCC, we need to determine whether the spacetime with mass MM^{\prime} and JJ^{\prime} still represents a black hole solution, i.e., whether (M,J)(M^{\prime},J^{\prime}) lies within the domain of existence of black holes as shown in Fig. 1.

In the previous section, we showed that there are three different types of parameter regions, each associated with distinct mechanisms for the destruction of the event horizon. In the following, we will discuss the conditions for the destruction of black holes in each parameter region and analyze the possibility of black hole destruction when considering the particle conditions mentioned earlier.

Refer to caption
Refer to caption
Figure 5: MΔequator(rmin,M,J)\partial_{M}\Delta_{\text{equator}}(r_{\text{min}},M,J) and ΔΩI\Delta\Omega_{\text{I}} of the extremal black hole solution as a function of the coupling constant in the parameter-region I.

III.1 Type-I violation

Firstly, let’s consider the case where the coupling constant satisfies 1α/M20-1\leq\alpha/M^{2}\leq 0, which corresponds to parameter-region I. In this region, the boundary curve of the black hole solutions represents extremal black holes where the event horizon and the inner horizon overlap at the equator θ=π/2\theta=\pi/2. To illustrate the mechanism for destroying the event horizon and exposing the singularity, in Fig. 2, we depict the profiles of the inner horizon, outer horizon, and singularity in (θ,r/M)(\theta,r/M) coordinates with α/M2=0.3\alpha/M^{2}=-0.3 and different angular momenta near the boundary line. From the figure, we observe that by increasing the angular momentum, the inner and event horizons will tend to coincide at the equator θ=π/2\theta=\pi/2, and ultimately, the event horizon is destroyed when the angular momentum exceeds its extremal value a=aexa=a_{\text{ex}}. We refer to this phenomenon as a type-I violation of the black hole in our study. Therefore, we can use Δequatormin\Delta_{\text{equator}}^{\text{min}} to determine whether the spacetime describes a black hole in parameter-region I. Through numerical calculations, we find that the boundary (red line in Fig. 1) is determined by Δequatormin=0\Delta_{\text{equator}}^{\text{min}}=0, Δequatormin<0\Delta_{\text{equator}}^{\text{min}}<0 in the red shaded region in Fig. 1, and Δequatormin>0\Delta_{\text{equator}}^{\text{min}}>0 in the white region of Fig. 1. Hence, the destruction of the black hole after dropping a test particle in this parameter region implies that

Δ>equatormin0,\Delta^{\prime}{}_{\text{equator}}^{\text{min}}>0, (21)

where Δequatormin\Delta^{\prime}{}_{\text{equator}}^{\text{min}} is the minimal value of

Δequator(r,M+δM,J+δJ)Δ(r,π/2,M+δM,J+δJ).\Delta_{\text{equator}}(r,M+\delta M,J+\delta J)\equiv\Delta(r,\pi/2,M+\delta M,J+\delta J). (22)

Next, we consider only the first-order approximation from the test particle, and the initial state of the spacetime is an extremal black hole, i.e., the solution lies on the red boundary curve in Fig. 1. Let rminr_{\text{min}} be the point of minimal value for the function Δequator(r,M,J)\Delta_{\text{equator}}(r,M,J), meaning that we have Δequatormin=Δequator(rmin,M,J)\Delta_{\text{equator}}^{\text{min}}=\Delta_{\text{equator}}(r_{\text{min}},M,J). The condition for the initial state to be extremal implies

Δequator(rmin,M,J)=0,\Delta_{\text{equator}}(r_{\text{min}},M,J)=0, (23)

which also implies that rmin=rH(π/2)r_{\text{min}}=r_{H}(\pi/2).

After dropping a test particle, the minimal point shifts infinitesimally to rmin+δrminr_{\text{min}}+\delta r_{\text{min}}. For infinitesimal changes, we have

Δequatormin\displaystyle\Delta^{\prime}{}_{\text{equator}}^{\text{min}} =Δequator(rmin+δrmin,M+δM,J+δJ)\displaystyle=\Delta_{\text{equator}}(r_{\text{min}}+\delta r_{\text{min}},M+\delta M,J+\delta J) (24)
=ΔequatorMδM+ΔequatorJδJ,\displaystyle=\frac{\partial\Delta_{\text{equator}}}{\partial M}\delta M+\frac{\partial\Delta_{\text{equator}}}{\partial J}\delta J,

under the first-order approximation of the particle perturbation. Here, we have used the assumption (23) that the initial state is extremal and the condition that rminr_{\text{min}} is the point of minimal value of Δequator(r,M,J)\Delta_{\text{equator}}(r,M,J), i.e.,

rΔequator(rmin,M,J)=0.\partial_{r}\Delta_{\text{equator}}(r_{\text{min}},M,J)=0. (25)

In the left panel of Fig. 5, we demonstrate that

MΔequator(rmin,M,J)<0\partial_{M}\Delta_{\text{equator}}(r_{\text{min}},M,J)<0 (26)

for the extremal black hole solutions in parameter-region I, where 1α/M20-1\leq\alpha/M^{2}\leq 0. Then, the destruction condition (21), together with Eq. (24), yields

δM<ΩIδJ,\delta M<\Omega_{\text{I}}\delta J, (27)

where we define

ΩI=JΔequator(rmin,M,J)MΔequator(rmin,M,J).\Omega_{\text{I}}=-\frac{\partial_{J}\Delta_{\text{equator}}(r_{\text{min}},M,J)}{\partial_{M}\Delta_{\text{equator}}(r_{\text{min}},M,J)}. (28)

This provides an upper bound for E/L=δM/δJE/L=\delta M/\delta J. Together with the condition (18) that the particle can be dropped into the black hole on the equatorial plane, the allowed range of E/LE/L for destroying the black hole is

ΩHequator<E/L<ΩI.\Omega_{H}^{\text{equator}}<E/L<\Omega_{\text{I}}. (29)

In the right panel of Fig. 5, we show the allowed length

ΔΩIΩIΩHequator\Delta\Omega_{\text{I}}\equiv\Omega_{\text{I}}-\Omega_{H}^{\text{equator}} (30)

of E/LE/L as a function of the coupling constant α/M2\alpha/M^{2} in parameter-region I. Consequently, we observe that the allowed length ΔΩ\Delta\Omega is positive in the parameter region 1<α/M2<0-1<\alpha/M^{2}<0, and ΔΩ=0\Delta\Omega=0 for α/M2=0\alpha/M^{2}=0 and α/M2=1\alpha/M^{2}=-1. The above results indicate that, except for the extremal Kerr limit (α/M2=0\alpha/M^{2}=0) and static limit (α/M2=1\alpha/M^{2}=-1) cases, the extremal black hole can be overspun by throwing a test particle. In other words, the WCCC is violated in these cases.

Refer to caption
Refer to caption
Figure 6: MΔequator(rmin,M,J)\partial_{M}\Delta_{\text{equator}}(r_{\text{min}},M,J) and ΔΩII\Delta\Omega_{\text{II}} of the extremal black hole solution as a function of the coupling constant in the parameter-region II.

III.2 Type-II violation

Let’s proceed to analyze the situation when the coupling constant satisfies 0<α/M2<6.27540<\alpha/M^{2}<6.2754, which corresponds to the parameter-region II. In this region, the boundary curve of the black hole solution represents extremal black hole where the event horizon and the inner horizon overlap at the poles θ=0,π\theta=0,\pi. To illustrate the mechanism for destroying the event horizon and exposing the singularity, in Fig. 3, we present the profiles of the inner horizon, outer horizon, and singularity in (θ,r/M)(\theta,r/M) coordinates with α/M2=2\alpha/M^{2}=2 and different angular momenta near the boundary line. From this figure, we observe that by increasing the angular momentum, the inner and event horizons tend to overlap at the poles, and eventually, the event horizon is destroyed when the angular momentum exceeds its extremal value a=aexa=a_{\text{ex}}. This scenario is referred to as a type-II violation of the black hole in our study. In this case, whether the solutions describe a black hole or a naked singularity is determined by the judging function Δpolesmin\Delta_{\text{poles}}^{\text{min}}, which represents the minimal value of Δpoles(r,M,J)\Delta_{\text{poles}}(r,M,J).

When Δpolesmin>0\Delta_{\text{poles}}^{\text{min}}>0, the spacetime solution represents a naked singularity, otherwise, it is a black hole. Therefore, the destruction of the black hole after dropping a test particle in parameter-region II requires

Δ=polesminΔpoles(r~min,M+δM,J+δJ)>0,\Delta^{\prime}{}_{\text{poles}}^{\text{min}}=\Delta_{\text{poles}}(\tilde{r}^{\prime}_{\text{min}},M+\delta M,J+\delta J)>0, (31)

where r~min\tilde{r}^{\prime}_{\text{min}} is the minimal point of the function Δpoles(r,M+δM,J+δJ)\Delta_{\text{poles}}(r,M+\delta M,J+\delta J). Let r~min\tilde{r}_{\text{min}} denote the minimal point of Δpoles(r,M,J)\Delta_{\text{poles}}(r,M,J). Similar to the previous subsection, we assume that the initial state of the spacetime is an extremal black hole, i.e., the solution lies on the blue boundary curve in Fig. 1. Therefore, we have r~min=rH(0)\tilde{r}_{\text{min}}=r_{H}(0), which implies

rΔpoles(r~min,M,J)=Δpoles(r~min,M,J)=0.\partial_{r}\Delta_{\text{poles}}(\tilde{r}_{\text{min}},M,J)=\Delta_{\text{poles}}(\tilde{r}_{\text{min}},M,J)=0. (32)

After dropping a test particle, the minimal point shifts infinitesimally to r~min=r~min+δr~min\tilde{r}^{\prime}_{\text{min}}=\tilde{r}_{\text{min}}+\delta\tilde{r}_{\text{min}}. Utilizing the above results, the destruction condition (31) implies

Δpoles(r~min+δr~min,M+δM,J+δJ)\displaystyle\Delta_{\text{poles}}(\tilde{r}_{\text{min}}+\delta\tilde{r}_{\text{min}},M+\delta M,J+\delta J) (33)
=ΔpolesMδM+ΔpolesJδJ>0,\displaystyle=\frac{\partial\Delta_{\text{poles}}}{\partial M}\delta M+\frac{\partial\Delta_{\text{poles}}}{\partial J}\delta J>0,

under the first-order approximation of the particle perturbation. In the left panel of Fig. 6, we demonstrate that

rΔpoles(r~min,M,J)<0{\partial_{r}}\Delta_{\text{poles}}(\tilde{r}_{\text{min}},M,J)<0 (34)

for the extremal black hole solutions in parameter-region II, where 0<α/M2<6.27540<\alpha/M^{2}<6.2754. Consequently, the destruction condition (LABEL:descdII) gives

δM<ΩIIδJ,\delta M<\Omega_{\text{II}}\delta J, (35)

where we define

ΩII=JΔpoles(r~min,M,J)MΔpoles(r~min,M,J).\Omega_{\text{II}}=-\frac{\partial_{J}\Delta_{\text{poles}}(\tilde{r}_{\text{min}},M,J)}{\partial_{M}\Delta_{\text{poles}}(\tilde{r}_{\text{min}},M,J)}. (36)

This provides an upper bound for E/LE/L. Together with the condition (18) that the particle can be dropped into the black hole on the equatorial plane, the allowed range of E/LE/L for destroying the black hole is

ΩHequator<E/L<ΩII.\Omega_{H}^{\text{equator}}<E/L<\Omega_{\text{II}}. (37)

In the right panel of Fig. 6, we illustrate the allowed length

ΔΩIIΩIIΩHequator\Delta\Omega_{\text{II}}\equiv\Omega_{\text{II}}-\Omega_{H}^{\text{equator}} (38)

of E/LE/L as a function of the coupling constant α/M2\alpha/M^{2} in parameter-region II. As a result, we observe that the allowed length ΔΩ\Delta\Omega is positive in the parameter region 0<α/M2<6.27540<\alpha/M^{2}<6.2754, indicating that an extremal rotating black hole in these cases can be overspun by throwing a test particle.

Refer to caption
Refer to caption
Figure 7: MΔequator(rmin,M,J)\partial_{M}\Delta_{\text{equator}}(r_{\text{min}},M,J) and ΔΩIII\Delta\Omega_{\text{III}} of the extremal black hole solution as a function of the coupling constant in the parameter-region III.

III.3 Type-III violation

Lastly, let’s examine the scenario where the coupling constant satisfies 6.2754α/M286.2754\leq\alpha/M^{2}\leq 8, which corresponds to parameter-region III. In this region, the boundary curve of the black hole solutions represents singular black holes where the event horizon and the singularity overlap at the equator θ=π/2\theta=\pi/2. To illustrate the mechanism for destroying the event horizon and exposing the singularity, in Fig. 4, we present the profiles of the outer horizon and singularity in (θ,r/M)(\theta,r/M) coordinates with α/M2=7\alpha/M^{2}=7 and different angular momenta near the boundary line. From this figure, we can observe that by increasing the angular momentum, the event horizon and the singularity will tend to overlap at the equator, and eventually, the event horizon is destroyed when the angular momentum exceeds the critical value a=asba=a_{\text{sb}}. This phenomenon is referred to as a type-III violation of the black hole in our paper. To determine whether the solutions describe a black hole or a naked singularity in parameter-region III, we introduce the judging function

Δequatorrs(J,M)=Δequator(rs)=J2/M28M(αM)1/3+4(αM)2/3.\displaystyle\begin{aligned} \Delta_{\text{equator}}^{r_{s}}(J,M)&=\Delta_{\text{equator}}(r_{s})\\ &={J^{2}}/{M^{2}}-8M(\alpha M)^{1/3}+4(\alpha M)^{2/3}\,.\end{aligned} (39)

When Δequatorrs>0\Delta_{\text{equator}}^{r_{s}}>0, the solution corresponds to a naked singularity, otherwise, it describes a black hole. Therefore, the destruction of the black hole after dropping a test particle in parameter-region III requires that

Δequatorrs(M+δM,J+δJ)>0.\Delta_{\text{equator}}^{r_{s}}(M+\delta M,J+\delta J)>0. (40)

Since we are considering only the first-order approximation under the perturbation of the test particle, we focus on the scenario where the initial state of the spacetime is a singular black hole, meaning the solution lies on the green boundary curve in Fig. 1, and we have rH(π/2)=rsr_{H}(\pi/2)=r_{s}. Consequently, the destruction condition (40) can be expressed as

ΔequatorrsMδM+ΔequatorrsJδJ>0,\frac{\partial\Delta_{\text{equator}}^{r_{s}}}{\partial M}\delta M+\frac{\partial\Delta_{\text{equator}}^{r_{s}}}{\partial J}\delta J>0, (41)

within the first-order approximation of the particle perturbation. In the left panel of Fig. 7, we demonstrate that

MΔequatorrs(M,J)<0,\partial_{M}\Delta_{\text{equator}}^{r_{s}}(M,J)<0, (42)

for the singular black hole solutions in parameter-region III, i.e., 6.2754α/M286.2754\leq\alpha/M^{2}\leq 8. Based on Eq. (42), we obtain the destruction condition

δM<ΩIIIδJ,\delta M<\Omega_{\text{III}}\delta J, (43)

where we define

ΩIII=JΔequatorrs(M,J)MΔequatorrs(M,J).\Omega_{\text{III}}=-\frac{\partial_{J}\Delta_{\text{equator}}^{r_{s}}(M,J)}{\partial_{M}\Delta_{\text{equator}}^{r_{s}}(M,J)}. (44)

This provides an upper bound for E/LE/L. Combining it with the condition (18) that the particle can be dropped into the black hole on the equatorial plane, we conclude that the allowed range of E/LE/L for destroying the black hole is

ΩHequator<E/L<ΩIII.\Omega_{H}^{\text{equator}}<E/L<\Omega_{\text{III}}. (45)

In the right panel of Fig. 7, we display the allowed length

ΔΩIIIΩIIIΩHequator\Delta\Omega_{\text{III}}\equiv\Omega_{\text{III}}-\Omega_{H}^{\text{equator}} (46)

of E/LE/L as a function of the coupling constant α/M2\alpha/M^{2} in parameter-region III. Consequently, we observe that the allowed range ΔΩIII\Delta\Omega_{\text{III}} is positive for 6.2754α/M2<86.2754\leq\alpha/M^{2}<8, while ΔΩIII=0\Delta\Omega_{\text{III}}=0 in the case of the static singular black hole where α/M2=8\alpha/M^{2}=8 and a=0a=0. This indicates that, except for the static limit scenario at α/M2=8\alpha/M^{2}=8, the singular black hole can be overspun by introducing a test particle, violating the WCCC.

IV Conclusion

In the present work, we have delved deeply into the WCCC for rotating black holes in semiclassical gravity with a type-A trace anomaly. Specifically, we have meticulously examined how a test particle alters the spacetime of extremal or singular rotating black holes in such effective gravitational theories, unveiling any potential violations of the WCCC. Through our investigations, we found that depending on the three different ranges of the coupling constant α/M2\alpha/M^{2}, we can observe three distinct boundary characteristics of the black hole solutions, corresponding to three distinct types of WCCC violations. The three types of violations of WCCC was explored by launching a test particle towards the black hole on the equatorial plane. With the exception of extremal Kerr, static extremal, and static singular black holes (i.e., α/M2=0,1,8\alpha/M^{2}=0,-1,8), our results demonstrate that all extremal black holes and singular black holes can be destroyed under the first-order perturbation of the test particle, leading to a violation of the WCCC.

For the non-static cases, the aforementioned analyses have clearly demonstrated the possibility of breaching the WCCC. Taking the Type-I violation as an example, even in near-extremal black hole scenarios, the destruction conditions can still be satisfied as long as the initial state is very close to extremal. Thus, if we can observe that the event horizon of extremal (singular) black holes can be destroyed, then the possibility of destruction in the near-extremal (singular) black holes also exists. Therefore, we would only need to consider the near-extremal (singular) and the second-order perturbation approximations in cases where the black hole cannot be destroyed under the first-order perturbation, which precisely corresponds to the α/M2=1,0,8\alpha/M^{2}=-1,0,8 cases in our model. This will be left for future investigations. Furthermore, the equations of particle motion are governed by the classical geodesic equation, with no considerations for the impact of quantum corrections. As such, these findings suggest that the preservation of the WCCC may necessitate the consideration of modifications to the test particle behavior in the presence of quantum effects.

Acknowledgements

JJ is supported by the National Natural Science Founda- tion of China with Grant No. 12205014, the Guangdong Basic and Applied Research Foundation with Grant No. 217200003 and the Talents Introduction Foundation of Beijing Normal University with Grant No. 310432102. MZ is supported by the National Natural Science Foundation of China with Grant No. 12005080.

References

  • (1) R. Penrose, “Gravitational collapse and space-time singularities,” Phys. Rev. Lett. 14, 57-59 (1965).
  • (2) S. W. Hawking and R. Penrose, “The Singularities of gravitational collapse and cosmology,” Proc. Roy. Soc. Lond. A 314, 529-548 (1970).
  • (3) R. Penrose, “Gravitational collapse: The role of general relativity,” Riv. Nuovo Cim. 1, 252-276 (1969).
  • (4) D. Christodoulou, “Violation of cosmic censorship in the gravitational collapse of a dust cloud,” Commun. Math. Phys. 93, 171-195 (1984)
  • (5) A. Ori and T. Piran, “Naked Singularities in Selfsimilar Spherical Gravitational Collapse,” Phys. Rev. Lett. 59, 2137 (1987).
  • (6) S. L. Shapiro and S. A. Teukolsky, “Formation of naked singularities: The violation of cosmic censorship,” Phys. Rev. Lett. 66, 994-997 (1991)
  • (7) J. P. S. Lemos, “Naked singularities: Gravitationally collapsing configurations of dust or radiation in spherical symmetry. A Unified treatment,” Phys. Rev. Lett. 68, 1447-1450 (1992)
  • (8) M. W. Choptuik, “Universality and scaling in gravitational collapse of a massless scalar field,” Phys. Rev. Lett. 70, 9-12 (1993)
  • (9) F. Corelli, T. Ikeda and P. Pani, “Challenging cosmic censorship in Einstein-Maxwell-scalar theory with numerically simulated gedanken experiments,” Phys. Rev. D 104, no.8, 084069 (2021)
  • (10) F. C. Eperon, B. Ganchev and J. E. Santos, “Plausible scenario for a generic violation of the weak cosmic censorship conjecture in asymptotically flat four dimensions,” Phys. Rev. D 101, no.4, 041502 (2020)
  • (11) T. Crisford and J. E. Santos, “Violating the Weak Cosmic Censorship Conjecture in Four-Dimensional Anti–de Sitter Space,” Phys. Rev. Lett. 118, no.18, 181101 (2017)
  • (12) P. Figueras, M. Kunesch, L. Lehner and S. Tunyasuvunakool, “End Point of the Ultraspinning Instability and Violation of Cosmic Censorship,” Phys. Rev. Lett. 118, no.15, 151103 (2017)
  • (13) P. Figueras, M. Kunesch and S. Tunyasuvunakool, “End Point of Black Ring Instabilities and the Weak Cosmic Censorship Conjecture,” Phys. Rev. Lett. 116, no.7, 071102 (2016)
  • (14) L. Lehner and F. Pretorius, “Black Strings, Low Viscosity Fluids, and Violation of Cosmic Censorship,” Phys. Rev. Lett. 105, 101102 (2010)
  • (15) T. Hertog, G. T. Horowitz and K. Maeda, “Generic cosmic censorship violation in anti-de Sitter space,” Phys. Rev. Lett. 92, 131101 (2004)
  • (16) T. Andrade, P. Figueras and U. Sperhake, “Evidence for violations of Weak Cosmic Censorship in black hole collisions in higher dimensions,” JHEP 03, 111 (2022)
  • (17) T. Andrade, R. Emparan, D. Licht and R. Luna, “Black hole collisions, instabilities, and cosmic censorship violation at large DD,” JHEP 09, 099 (2019)
  • (18) T. Andrade, R. Emparan, D. Licht and R. Luna, “Cosmic censorship violation in black hole collisions in higher dimensions,” JHEP 04, 121 (2019)
  • (19) U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, T. Hinderer and N. Yunes, “Cross section, final spin and zoom-whirl behavior in high-energy black hole collisions,” Phys. Rev. Lett. 103, 131102 (2009)
  • (20) R. Wald, “Gedanken experiments to destroy a black hole”, Ann. Phys. 82, 548 (1974)
  • (21) V. E. Hubeny, “Overcharging a black hole and cosmic censorship,” Phys. Rev. D 59, 064013 (1999)
  • (22) F. de Felice and Y. Q. Yu, “Turning a black hole into a naked singularity,” Class. Quant. Grav. 18, 1235-1244 (2001)
  • (23) S. Hod, “Cosmic censorship, area theorem, and selfenergy of particles,” Phys. Rev. D 66, 024016 (2002)
  • (24) T. Jacobson and T. P. Sotiriou, “Destroying black holes with test bodies,” J. Phys. Conf. Ser. 222, 012041 (2010)
  • (25) G. Chirco, S. Liberati and T. P. Sotiriou, “Gedanken experiments on nearly extremal black holes and the Third Law,” Phys. Rev. D 82, 104015 (2010)
  • (26) A. Saa and R. Santarelli, “Destroying a near-extremal Kerr-Newman black hole,” Phys. Rev. D 84, 027501 (2011)
  • (27) S. Gao and Y. Zhang, “Destroying extremal Kerr-Newman black holes with test particles,” Phys. Rev. D 87, no.4, 044028 (2013)
  • (28) J. Sorce and R. M. Wald, “Gedanken experiments to destroy a black hole. II. Kerr-Newman black holes cannot be overcharged or overspun,” Phys. Rev. D 96, no.10, 104014 (2017)
  • (29) I. Semiz, “Dyonic Kerr-Newman black holes, complex scalar field and cosmic censorship,” Gen. Rel. Grav. 43, 833-846 (2011)
  • (30) B. Gwak, “Weak Cosmic Censorship Conjecture in Kerr-(Anti-)de Sitter Black Hole with Scalar Field,” JHEP 09, 081 (2018)
  • (31) B. Gwak, “Weak cosmic censorship conjecture in Kerr-Newman-(anti-)de Sitter black hole with charged scalar field,” JCAP 10, 012 (2021)
  • (32) J. Liang, X. Guo, D. Chen and B. Mu, “Remarks on the weak cosmic censorship conjecture of RN-AdS black holes with cloud of strings and quintessence under the scalar field,” Nucl. Phys. B 965, 115335 (2021)
  • (33) J. Natario, L. Queimada and R. Vicente, “Test fields cannot destroy extremal black holes,” Class. Quant. Grav. 33, no.17, 175002 (2016)
  • (34) J. Goncalves and J. Natário, “Proof of the weak cosmic censorship conjecture for several extremal black holes,” Gen. Rel. Grav. 52, no.9, 94 (2020)
  • (35) B. Gwak, “Weak Cosmic Censorship in Kerr-Sen Black Hole under Charged Scalar Field,” JCAP 03, 058 (2020)
  • (36) S. J. Yang, J. Chen, J. J. Wan, S. W. Wei and Y. X. Liu, “Weak cosmic censorship conjecture for a Kerr-Taub-NUT black hole with a test scalar field and particle,” Phys. Rev. D 101, no.6, 064048 (2020)
  • (37) S. J. Yang, J. J. Wan, J. Chen, J. Yang and Y. Q. Wang, “Weak cosmic censorship conjecture for the novel 4D4D charged Einstein-Gauss-Bonnet black hole with test scalar field and particle,” Eur. Phys. J. C 80, no.10, 937 (2020)
  • (38) W. B. Feng, S. J. Yang, Q. Tan, J. Yang and Y. X. Liu, “Overcharging a Reissner-Nordström Taub-NUT regular black hole,” Sci. China Phys. Mech. Astron. 64, no.6, 260411 (2021)
  • (39) S. J. Yang, Y. P. Zhang, S. W. Wei and Y. X. Liu, “Destroying the event horizon of a nonsingular rotating quantum-corrected black hole,” JHEP 04, 066 (2022)
  • (40) D. M. Capper and M. J. Duff, “Trace anomalies in dimensional regularization,” Nuovo Cim. A 23, 173-183 (1974)
  • (41) M. J. Duff, “Twenty years of the Weyl anomaly,” Class. Quant. Grav. 11, 1387-1404 (1994)
  • (42) P. R. Anderson, E. Mottola and R. Vaulin, “Stress Tensor from the Trace Anomaly in Reissner-Nordstrom Spacetimes,” Phys. Rev. D 76, 124028 (2007)
  • (43) E. Mottola, “The effective theory of gravity and dynamical vacuum energy,” JHEP 11, 037 (2022)
  • (44) E. Mottola and R. Vaulin, “Macroscopic Effects of the Quantum Trace Anomaly,” Phys. Rev. D 74, 064004 (2006)
  • (45) E. Mottola, “Scalar Gravitational Waves in the Effective Theory of Gravity,” JHEP 07, 043 (2017) [erratum: JHEP 09, 107 (2017)]
  • (46) S. Deser and A. Schwimmer, “Geometric classification of conformal anomalies in arbitrary dimensions,” Phys. Lett. B 309, 279-284 (1993)
  • (47) S. M. Christensen and S. A. Fulling, “Trace Anomalies and the Hawking Effect,” Phys. Rev. D 15, 2088-2104 (1977)
  • (48) P. M. Ho, H. Kawai, Y. Matsuo and Y. Yokokura, “Back Reaction of 4D Conformal Fields on Static Geometry,” JHEP 11, 056 (2018)
  • (49) J. Abedi and H. Arfaei, “Obstruction of black hole singularity by quantum field theory effects,” JHEP 03, 135 (2016)
  • (50) R. G. Cai, L. M. Cao and N. Ohta, “Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy,” JHEP 04, 082 (2010)
  • (51) D. N. Page, “Hawking radiation and black hole thermodynamics,” New J. Phys. 7, 203 (2005)
  • (52) A. Sen, “Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions,” JHEP 04, 156 (2013)
  • (53) P. G. S. Fernandes, “Rotating black holes in semiclassical gravity,” [arXiv:2305.10382 [gr-qc]].