This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Overgroups of exterior powers of an elementary group.
Levels

Roman Lubkov St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences [email protected]  and  Ilia Nekrasov Department of Mathematics, University of Michigan, Ann Arbor, MI [email protected], [email protected]
Abstract.

We prove a first part of the standard description of groups HH lying between an exterior power of an elementary group mEn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R) and a general linear group GL(nm)(R)\operatorname{GL}_{\binom{n}{m}}(R) for a commutative ring R,2RR,2\in R^{*} and n3mn\geqslant 3m. The description uses the classical notion of a level: for every group HH we find a unique ideal AA of the ground ring RR which describes HH.

Key words and phrases:
General linear group, elementary group, overgroup, fundamental representation, exterior power, level
1991 Mathematics Subject Classification:
20G35
The main results of the present paper were proven in the framework of the RSF project 17-11-01261

Introduction

The present paper is devoted to the solution of the following general problem.

Problem.

Let RR be an arbitrary commutative associative ring with 11 and let Φ\Phi be a reduced irreducible root system. G(Φ,)G(\Phi,\mathord{\hbox to6.45831pt{\hrulefill}}\,) is a Chevalley–Demazure group scheme and ρ:G(Φ,)GLN()\rho\colon G(\Phi,\mathord{\hbox to6.45831pt{\hrulefill}}\,)\longrightarrow\operatorname{GL}_{N}(\mathord{\hbox to6.45831pt{\hrulefill}}\,) is its arbitrary representation. Describe all overgroups HH of the elementary subgroup EG(Φ,R)\operatorname{E}_{G}(\Phi,R) in the representation ρ\rho:

EG,ρ(Φ,R)HGLN(R).\operatorname{E}_{G,\rho}(\Phi,R)\leqslant H\leqslant\operatorname{GL}_{N}(R).

The conjectural answer, the standard overgroup description, in a general case can be formulated as follows. For any overgroup HH of the elementary group there exists a net of ideals 𝔸\mathbb{A} of the ring RR such that

EG,ρ(Φ,R)EN(R,𝔸)HNGLN(R)(EG,ρ(Φ,R)EN(R,𝔸)),\operatorname{E}_{G,\rho}(\Phi,R)\cdot\operatorname{E}_{N}(R,\mathbb{A})\leqslant H\leqslant N_{\operatorname{GL}_{N}(R)}\big{(}\operatorname{E}_{G,\rho}(\Phi,R)\cdot\operatorname{E}_{N}(R,\mathbb{A})\big{)},

where EN(R,𝔸)\operatorname{E}_{N}(R,\mathbb{A}) is a relative elementary subgroup for the net 𝔸\mathbb{A}.

In the special case of a trivial net, i. e., 𝔸={A}\mathbb{A}=\{A\} consists of one ideal AA of the initial ring RR, overgroups of the group EG(Φ,R)\operatorname{E}_{G}(\Phi,R) can be parametrized by the ideal AA of the ring RR:

(1) EG,ρ(Φ,R)EN(R,A)HNGLN(R)(EG,ρ(Φ,R)EN(R,A)),\operatorname{E}_{G,\rho}(\Phi,R)\cdot\operatorname{E}_{N}(R,A)\leqslant H\leqslant N_{\operatorname{GL}_{N}(R)}\big{(}\operatorname{E}_{G,\rho}(\Phi,R)\cdot\operatorname{E}_{N}(R,A)\big{)},

where EN(R,A)\operatorname{E}_{N}(R,A) equals EN(A)EN(R)\operatorname{E}_{N}(A)^{\operatorname{E}_{N}(R)} by definition.

Based on the classification of finite simple groups in 1984, Michael Aschbacher proved the Subgroup structure theorem [1]. It states that every maximal subgroup of a finite classical group either falls into one of the eight explicitly described classes 𝒞1\mathcal{C}_{1}𝒞8\mathcal{C}_{8}, or is an ‘‘almost’’ simple group in an irreducible representation (class 𝒮\mathcal{S}). In the recent past, many experts studied overgroups of groups from the Aschbacher classes for some special cases of fields. For finite fields and algebraically closed fields maximality of subgroups was obtained by Peter Kleidman and Martin Liebeck, see [2, 3]. Oliver King, Roger Dye, and Shang Zhi Li proved maximality of groups from Aschbacher classes for arbitrary fields or described its overgroups in cases where they are not maximal, see [4, 5, 6, 7, 8, 9, 10, 11, 12]. We recommend the surveys [13, 14, 15], which contain necessary preliminaries, complete history, and known results about the initial problem.

In the present paper, we consider the case of the mm-th fundamental representation of a simply connected group of type An1A_{n-1}, i. e., the scheme Gρ(Φ,)G_{\rho}(\Phi,\mathord{\hbox to6.45831pt{\hrulefill}}\,) equals a [Zariski] closure of the affine group scheme SLn()\operatorname{SL}_{n}(\mathord{\hbox to6.45831pt{\hrulefill}}\,) in the representation with the highest weight ϖm\varpi_{m}. In our case the extended Chevalley group scheme coincides with the mm-th fundamental representation of the general linear group scheme GLn()\operatorname{GL}_{n}(\mathord{\hbox to6.45831pt{\hrulefill}}\,). This case corresponds to the Aschbacher class 𝒮{\mathcal{S}} consisting of almost simple groups in certain absolutely irreducible representations. Morally, the paper is a continuation of a series of papers by the St. Petersburg school on subgroups in classical groups over a commutative ring, see [16, 17, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

We deal only with the case of a trivial net, i. e., a net consists of only one ideal AA. As shown below (Propositions 1 and 16), it imposes a constraint n3mn\geqslant 3m, we proceed with this restriction. In this case the general answer has the following form. Let N=(nm)N=\binom{n}{m} and HH be a subgroup in GLN(R)\operatorname{GL}_{N}(R) containing mEn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R). Then there exists a unique maximal ideal ARA\trianglelefteqslant R such that

() mEn(R)EN(R,A)HNGLN(R)(mEn(R)EN(R,A)).\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)\cdot\operatorname{E}_{N}(R,A)\leqslant H\leqslant N_{\operatorname{GL}_{N}(R)}\big{(}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)\cdot\operatorname{E}_{N}(R,A)\big{)}.

The present paper is the first part in the serial study of the problem. We construct a level and calculate a normalizer of connected (i. e., perfect) intermediate subgroups. Further, it is necessary to construct invariant forms for mSLn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{SL}_{n}(R) and calculate a normalizer of mEn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R). Finally, we will extract an elementary transvection from an intermediate subgroup HH. These steps are enough to solve the problem completely, see [29].

There are separate results for special cases of the ring RR such as a finite field KK or an algebraically closed field. For finite fields Bruce Cooperstein proved maximality of the normalizer NG(2En(K))N_{G}\bigl{(}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(K)\bigr{)} in GLN(K)\operatorname{GL}_{N}(K) [30]. For algebraically closed fields a description of overgroups of mEn(K)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(K) follows from the classical results about maximal subgroups of classical algebraic groups, for instance, see [31].

The present paper is organized as follows. In the next Section we formulate main results of the paper. In Section 2 we set up the notation. Section 3 contains all complete proofs, for instance, in §3.1 we have considered an important special case — a level computation for exterior squares of elementary groups. In §3.2–§3.4 we develop a technique for an arbitrary general exterior power. Finally, a level reduction for exterior powers is proved in §3.5.

Acknowledgment. We would like to express our sincere gratitude to our scientific adviser Nikolai Vavilov for formulating the problem and for a constant support, without which this paper would never have been written. The authors are grateful to Alexei Stepanov for carefully reading our original manuscript and for numerous remarks and corrections. Also, we would like to thank an anonymous referee for bringing our attention to the paper [32].

1. Main results

Fundamental representations of the general linear group GLn\operatorname{GL}_{n}, as well as of the special linear group SLn\operatorname{SL}_{n}, are the ones with the highest weights ϖm=(1,,1)m\varpi_{m}=\underbrace{(1,\dots,1)}_{m} for m=1,,nm=1,\dots,n. The representation with the highest weight ϖn\varpi_{n} degenerates for the group SLn\operatorname{SL}_{n}. The explicit description of these representations uses exterior powers of the standard representation.

In detail, for a commutative ring RR by mRn\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}R^{n} we denote an mm-th exterior power of the free module RnR^{n}. We consider the following natural transformation, an exterior power,

m:GLnGL(nm)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}:\operatorname{GL}_{n}\rightarrow\operatorname{GL}_{\binom{n}{m}}

which extends the action of the group GLn(R)\operatorname{GL}_{n}(R) from RnR^{n} to mRn\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}R^{n}.

An elementary group En(R)\operatorname{E}_{n}(R) is a subgroup of the group of points GLn(R)\operatorname{GL}_{n}(R), so its exterior power mEn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R) is a well defined subgroup of the group of points mGLn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R). A more user–friendly description of the elementary group mEn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R) will be presented in Subsections 3.1 and 3.2.

Let HH be an arbitrary overgroup of an elementary group mEn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R):

mEn(R)HGL(nm)(R).\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)\leqslant H\leqslant\operatorname{GL}_{\binom{n}{m}}(R).

For any unequal weights I,Jm[n]I,J\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}[n], which are indices for matrix entries of elements from GL(nm)(R)\operatorname{GL}_{\binom{n}{m}}(R), by AI,JA_{I,J} we denote the following set

AI,J:={ξR|tI,J(ξ)H}R.A_{I,J}:=\{\xi\in R\;|\;t_{I,J}(\xi)\in H\}\subseteq R.

It turns out these sets are ideals that coincide for any pair of unequal weights IJI\neq J.

Proposition 1.

Sets AI,JA_{I,J} coincide for n3mn\geqslant 3m.

In the case n3mn\frac{n}{3}\leqslant m\leqslant n description of overgroups cannot be done by a parametrization only by a single ideal. Moreover, as it could be seen from further calculations we need up to mm ideals in some cases for a complete parametrization of overgroups. There are a lot of nontrivial relationships between the ideals. So even the notion of a relative elementary group is far more complicated and depends on a Chevalley group (for instance, see [28]), let alone formulations of the Main Theorems. The authors work in this direction and hope this problem would be solved in the near future. In a general case this [partially ordered] set of ideals forms a net of ideals (due to Zenon Borevich; for a definition see [33], for further progress in the direction of subgroup classification see [34, 35]).

Back to the case n3mn\geqslant 3m, the set A:=AI,JA:=A_{I,J} is called a level of an overgroup HH. The description of overgroups goes as follows.

Theorem 2 (Level computation).

Let RR be a commutative ring and nn, mm be natural numbers with the constraint n3mn\geqslant 3m. For an arbitrary overgroup HH of the group mEn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R) there exists a unique maximal ideal AA of the ring RR such that

mEn(R)EN(R,A)H.\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)\cdot\operatorname{E}_{N}(R,A)\leqslant H.

Namely, if a transvection tI,J(ξ)t_{I,J}(\xi) belongs to the group HH, then ξA\xi\in A.

The left–hand side subgroup is denoted by EmEn(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A). We note that this group is perfect (Lemma 22). Motivated by the expected relations ()(*), we present an alternative description of the normalizer NGLN(R)(EmEn(R,A))N_{\operatorname{GL}_{N}(R)}\bigl{(}\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)\bigr{)}.

For this we introduce the canonical projection ρA:RR/A\rho_{A}:R\longrightarrow R/A mapping λR\lambda\in R to λ¯=λ+AR/A\bar{\lambda}=\lambda+A\in R/A. Applying the projection to all entries of a matrix, we get the reduction homomorphism

ρA:GLn(R)GLn(R/A)aa¯=(a¯i,j)\begin{array}[]{rcl}\rho_{A}:\operatorname{GL}_{n}(R)&\longrightarrow&\operatorname{GL}_{n}(R/A)\\ a&\mapsto&\overline{a}=(\overline{a}_{i,j})\end{array}

Eventually, we have the following explicit congruence description.

Theorem 3 (Level reduction).

Let n3mn\geqslant 3m. For any ideal ARA\trianglelefteqslant R, we have

NGLN(R)(EmEn(R,A))=ρA1(mGLn(R/A)).N_{\operatorname{GL}_{N}(R)}\bigl{(}\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)\bigr{)}=\rho_{A}^{-1}\left(\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R/A)\right).

2. Principal notation

Our notation for the most part is fairly standard in Chevalley group theory. We recall all necessary notion below for the purpose of self-containment.

First, let GG be a group. By a commutator of two elements we always mean the left-normed commutator [x,y]=xyx1y1[x,y]=xyx^{-1}y^{-1}, where x,yGx,y\in G. Multiple commutators are also left-normed; in particular, [x,y,z]=[[x,y],z][x,y,z]=[[x,y],z]. By yx=xyx1{}^{x}y=xyx^{-1} we denote the left conjugates of yy by xx. Similarly, by yx=x1yxy^{x}=x^{-1}yx we denote the right conjugates of yy by xx. In the sequel, we will use the Hall–Witt identity:

[x,y1,z1]x[z,x1,y1]z[y,z1,x1]y=e.[x,y^{-1},z^{-1}]^{x}\cdot[z,x^{-1},y^{-1}]^{z}\cdot[y,z^{-1},x^{-1}]^{y}=e.

For a subset XGX\subseteq G, we denote by X\langle X\rangle a subgroup it generates. The notation HGH\leqslant G means that HH is a subgroup in GG, while the notation HGH\trianglelefteqslant G means that HH is a normal subgroup in GG. For HGH\leqslant G, we denote by XH\langle X\rangle^{H} the smallest subgroup in GG containing XX and normalized by HH. For two groups F,HGF,H\leqslant G, we denote by [F,H][F,H] their mutual commutator: [F,H]=[f,g] for fF,hH.[F,H]=\langle[f,g]\text{ for }f\in F,h\in H\rangle.

Also we need some elementary ring theory notation. Let RR be an associative ring with 11. By default, it is assumed to be commutative. By an ideal II of a ring RR we understand the two-sided ideal and this is denoted by IRI\trianglelefteqslant R. As usual, RR^{*} denotes a multiplicative group of a ring RR. A multiplicative group of matrices over a ring RR is called a general linear group and is denoted by GLn(R)=Mn(R)\operatorname{GL}_{n}(R)=\operatorname{M}_{n}(R)^{*}. A special linear group SLn(R)\operatorname{SL}_{n}(R) is a subgroup of GLn(R)\operatorname{GL}_{n}(R) consisting of matrices of determinant 11. By ai,ja_{i,j} we denote an entry of a matrix aa at the position (i,j)(i,j), where 1i,jn1\leqslant i,j\leqslant n. Further, ee denotes the identity matrix and ei,je_{i,j} denotes the standard matrix unit, i. e., the matrix that has 11 at the position (i,j)(i,j) and zeros elsewhere. For entries of the inverse matrix we will use the standard notation ai,j:=(a1)i,ja_{i,j}^{\prime}:=(a^{-1})_{i,j}.

By ti,j(ξ)t_{i,j}(\xi) we denote an elementary transvection, i. e., a matrix of the form ti,j(ξ)=e+ξei,jt_{i,j}(\xi)=e+\xi e_{i,j}, 1ijn1\leqslant i\neq j\leqslant n, ξR\xi\in R. Hereinafter, we use (without any references) standard relations [36] among elementary transvections such as

  1. (1)

    additivity:

    ti,j(ξ)ti,j(ζ)=ti,j(ξ+ζ).t_{i,j}(\xi)t_{i,j}(\zeta)=t_{i,j}(\xi+\zeta).
  2. (2)

    the Chevalley commutator formula:

    [ti,j(ξ),th,k(ζ)]={e, if jh,ik,ti,k(ξζ), if j=h,ik,th,j(ζξ), if jh,i=k.[t_{i,j}(\xi),t_{h,k}(\zeta)]=\begin{cases}e,&\text{ if }j\neq h,i\neq k,\\ t_{i,k}(\xi\zeta),&\text{ if }j=h,i\neq k,\\ t_{h,j}(-\zeta\xi),&\text{ if }j\neq h,i=k.\end{cases}

A subgroup En(R)GLn(R)\operatorname{E}_{n}(R)\leqslant\operatorname{GL}_{n}(R) generated by all elementary transvections is called an ((absolute)) elementary group:

En(R)=ti,j(ξ),1ijn,ξR.\operatorname{E}_{n}(R)=\langle t_{i,j}(\xi),1\leqslant i\neq j\leqslant n,\xi\in R\rangle.

Now define a normal subgroup of En(R)\operatorname{E}_{n}(R), which plays a crucial role in calculating the level of intermediate subgroups. Let II be an ideal in RR. Consider a subgroup En(R,I)\operatorname{E}_{n}(R,I) generated by all elementary transvections of level II, i. e., En(R,I)\operatorname{E}_{n}(R,I) is a normal closure of En(I)\operatorname{E}_{n}(I) in En(R)\operatorname{E}_{n}(R). This group is called an ((relative)) elementary group of level II:

En(R,I)=ti,j(ξ),1ijn,ξIEn(R).\operatorname{E}_{n}(R,I)=\langle t_{i,j}(\xi),1\leqslant i\neq j\leqslant n,\xi\in I\rangle^{\operatorname{E}_{n}(R)}.

It is well known (due to Andrei Suslin [37]) that the elementary group is normal in the general linear group GLn(R)\operatorname{GL}_{n}(R) for n3n\geqslant 3. The normality is crucial for further considerations, so hereafter we suppose that n3n\geqslant 3. Furthermore, the relative elementary group En(R,I)\operatorname{E}_{n}(R,I) is normal in GLn(R)\operatorname{GL}_{n}(R) if n3n\geqslant 3. This fact, first proved in [37], is cited as Suslin’s theorem. Moreover, if n3n\geqslant 3, then the group En(R,I)\operatorname{E}_{n}(R,I) is generated by transvections of the form zi,j(ξ,ζ)=tj,i(ζ)ti,j(ξ)tj,i(ζ)z_{i,j}(\xi,\zeta)=t_{j,i}(\zeta)t_{i,j}(\xi)t_{j,i}(-\zeta), 1ijn1\leqslant i\neq j\leqslant n, ξI\xi\in I, ζR\zeta\in R. This fact was proved by Leonid Vaserstein and Andrey Suslin [38] and, in the context of Chevalley groups, by Jacques Tits [39].

By [n][n] we denote the set {1,2,,n}\{1,2,\dots,n\} and by m[n]\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}[n] we denote an exterior power of the set [n][n]. Elements of m[n]\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}[n] are ordered subsets I[n]I\subseteq[n] of cardinality mm without repeating entries:

m[n]={(i1,i2,,im)|ij[n],ijil}.\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}[n]=\{(i_{1},i_{2},\dots,i_{m})\;|\;i_{j}\in[n],i_{j}\neq i_{l}\}.

We use the lexicographic order on m[n]\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}[n] by default: 12(m1)m<12(m1)(m+1)<12\dots(m-1)m<12\dots(m-1)(m+1)<\dots

Usually, we write an index I={ij}j=1mI=\{i_{j}\}_{j=1}^{m} in the ascending order, i1<i2<<imi_{1}<i_{2}<\dots<i_{m}. Sign sgn(I)\operatorname{sgn}(I) of the index I=(i1,,im)I=(i_{1},\dots,i_{m}) equals the sign of the permutation mapping (i1,,im)(i_{1},\dots,i_{m}) to the same set in the ascending order. For example, sgn(1234)=sgn(1342)=+1\operatorname{sgn}(1234)=\operatorname{sgn}(1342)=+1, but sgn(1324)=sgn(4123)=1\operatorname{sgn}(1324)=\operatorname{sgn}(4123)=-1.

Finally, let n3n\geqslant 3 and mnm\leqslant n. By NN we denote the binomial coefficient (nm)\binom{n}{m}. In the sequel, we denote an elementary transvection in EN(R)\operatorname{E}_{N}(R) by tI,J(ξ)t_{I,J}(\xi) for I,Jm[n]I,J\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}[n] and ξR\xi\in R. For instance, the transvection t12,13(ξ)t_{12,13}(\xi) equals the matrix with 11’s on the diagonal and ξ\xi in the position (12,13)(12,13).

3. Proofs & Computations

We consider a case of an exterior square of a group scheme GLn\operatorname{GL}_{n} at first. We have two reasons for this way of presentation. Firstly, proofs of statements in a general case belong to the type of technically overloaded statements. At the same time, simpler proofs in the basic case present all ideas necessary for a general case. In particular, for n=4n=4 Nikolai Vavilov and Victor Petrov completed the standard description of overgroups111The restriction of the exterior square map 2:GL4(R)GL6(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}:\operatorname{GL}_{4}(R)\longrightarrow\operatorname{GL}_{6}(R) to the group E4(R)\operatorname{E}_{4}(R) is an isomorphism onto the elementary orthogonal group EO6(R)\operatorname{EO}_{6}(R) [18].. Secondly, for exterior squares there are several important results that cannot be obtained for the exterior cube or other powers, see [40, 41, 42]. For example, in [41] the author construct a transvection T2En(R)T\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(R) such that it stabilizes an arbitrary column of a matrix gg in GL(n2)(R)\operatorname{GL}_{\binom{n}{2}}(R). And there are no such transvections for other exterior powers.

3.1. Exterior square of elementary groups

Let RR be a commutative ring with 11, nn be a natural number greater than 33, and RnR^{n} be a right free RR-module with the standard basis {e1,,en}\{e_{1},\dots,e_{n}\}. By 2Rn\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}R^{n} we denote a universal object in the category of alternating bilinear maps from RnR^{n} to RR-modules. Concretely, take a free module of rank N=(n2)N=\binom{n}{2} with the basis eieje_{i}\wedge e_{j}, 1ijn1\leavevmode\nobreak\ \leqslant\leavevmode\nobreak\ i\leavevmode\nobreak\ \neq\leavevmode\nobreak\ j\leavevmode\nobreak\ \leqslant\leavevmode\nobreak\ n. The elements eieje_{i}\wedge e_{j} for arbitrary 1i,jn1\leqslant i,j\leqslant n are defined by the relation eiej=ejeie_{i}\wedge e_{j}=-e_{j}\wedge e_{i}.

An action of the group GLn(R)\operatorname{GL}_{n}(R) on the module 2Rn\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}R^{n} is diagonal:

2(g)(eiej):=(gei)(gej) for any gGLn(R) and 1ijn.\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}(g)(e_{i}\wedge e_{j}):=(ge_{i})\wedge(ge_{j})\text{ for any }g\in\operatorname{GL}_{n}(R)\text{ and }1\leqslant i\neq j\leqslant n.

In the basis {eI,I2[n]}\{e_{I},I\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}[n]\} of the module 2Rn\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}R^{n} a matrix 2(g)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}(g) consists of second order minors of the matrix gg with lexicographically ordered columns and rows:

(2(g))I,J=(2(g))(i1,i2),(j1,j2)=Mi1,i2j1,j2(x)=gi1,j1gi2,j2gi1,j2gi2,j1.\left(\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}(g)\right)_{I,J}=\left(\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}(g)\right)_{(i_{1},i_{2}),(j_{1},j_{2})}=M_{i_{1},i_{2}}^{j_{1},j_{2}}(x)=g_{i_{1},j_{1}}\cdot g_{i_{2},j_{2}}-g_{i_{1},j_{2}}\cdot g_{i_{2},j_{1}}.

By the Cauchy–Binet theorem the map π:GLn(R)GLN(R)\pi\colon\operatorname{GL}_{n}(R)\longrightarrow\operatorname{GL}_{N}(R), x2(x)x\mapsto\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}(x) is a homomorphism. Thus the map π\pi is a representation of the group GLn(R)\operatorname{GL}_{n}(R), called the bivector representation or the second fundamental representation (the representation with the highest weight ϖ2\varpi_{2}). The image of the latter action is called the exterior square of the group GLn(R)\operatorname{GL}_{n}(R). En(R)\operatorname{E}_{n}(R) is a subgroup of GLn(R)\operatorname{GL}_{n}(R), therefore the exterior square of the elementary group is well defined. The following lemma is a corollary of Suslin’s theorem.

Lemma 4.

The image of an elementary group is normal in the image of a general linear group under the exterior square homomorphism:

2(En(R))2(GLn(R)).\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\bigl{(}\operatorname{E}_{n}(R)\bigr{)}\trianglelefteqslant\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\bigl{(}\operatorname{GL}_{n}(R)\bigr{)}.

Note that 2(GLn(R))\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\bigl{(}\operatorname{GL}_{n}(R)\bigr{)} does not equal 2GLn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{GL}_{n}(R) for arbitrary rings. For detail see the extended description in §3.2.

Let us consider a structure of the group 2En(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(R) in detail. The following proposition can be extracted from the very definition of 2(GLn(R))\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\big{(}\operatorname{GL}_{n}(R)\big{)}.

Proposition 5.

Let ti,j(ξ)t_{i,j}(\xi) be an elementary transvection. For n3n\geqslant 3, 2ti,j(ξ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{i,j}(\xi) can be presented as the following product:

(2) 2ti,j(ξ)=k=1i1tki,kj(ξ)l=i+1j1til,lj(ξ)m=j+1ntim,jm(ξ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{i,j}(\xi)=\prod\limits_{k=1}^{i-1}t_{ki,kj}(\xi)\,\cdot\prod\limits_{l=i+1}^{j-1}t_{il,lj}(-\xi)\,\cdot\prod\limits_{m=j+1}^{n}t_{im,jm}(\xi)

for any 1i<jn1\leqslant i<j\leqslant n.

Remark.

For i>ji>j a similar equality holds:

2ti,j(ξ)=k=1j1tki,kj(ξ)l=j+1i1tli,jl(ξ)m=i+1ntim,jm(ξ).\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{i,j}(\xi)=\prod\limits_{k=1}^{j-1}t_{ki,kj}(\xi)\,\cdot\prod\limits_{l=j+1}^{i-1}t_{li,jl}(-\xi)\,\cdot\prod\limits_{m=i+1}^{n}t_{im,jm}(\xi).

Likewise, one can get an explicit form of torus elements hϖ2(ξ)h_{\varpi_{2}}(\xi) of the group 2GLn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{GL}_{n}(R).

Proposition 6.

Let di(ξ)=e+(ξ1)ei,id_{i}(\xi)=e+(\xi-1)e_{i,i} be a torus generator, 1in1\leqslant i\leqslant n. Then the exterior square of di(ξ)d_{i}(\xi) equals a diagonal matrix, with diagonal entries 1 everywhere except in n1n-1 positions:

(3) 2(di(ξ))I,I={ξ, if iI,1, otherwise.\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\bigl{(}d_{i}(\xi)\bigr{)}_{I,I}=\begin{cases}\xi,&\text{ if }i\in I,\\ 1,&\text{ otherwise}.\end{cases}

It follows from the propositions that 2ti,j(ξ)En2(N,R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{i,j}(\xi)\in\operatorname{E}^{n-2}(N,R), where a set EM(N,R)\operatorname{E}^{M}(N,R) consists of products of MM or less elementary transvections, e. g., 2t1,3(ξ)=t12,23(ξ)t14,24(ξ)t15,25(ξ)2E5(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{1,3}(\xi)=t_{12,23}(-\xi)t_{14,24}(\xi)t_{15,25}(\xi)\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}E_{5}(R).

Let HH be an overgroup of the exterior square of the elementary group 2En(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(R):

2En(R)HGLN(R).\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(R)\leqslant H\leqslant\operatorname{GL}_{N}(R).

We consider two indices I,J2[n]I,J\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}[n]. By AI,JA_{I,J} we denote the set

AI,J:={ξR|tI,J(ξ)H}R.A_{I,J}:=\{\xi\in R\;|\;t_{I,J}(\xi)\in H\}\subseteq R.

By definition diagonal sets AI,IA_{I,I} equals whole ring RR for any index II. In the rest of the section, we prove that these sets are ideals, i. .e., AI,JA_{I,J} form a net of ideals. Moreover, we will get DD-net in terms of Zenon Borevich [33] by the latter statement.

Let tI,J(ξ)t_{I,J}(\xi) be an elementary transvection. We define a height of tI,J(ξ)t_{I,J}(\xi) (generally, of the pair (I,J)(I,J)) as a cardinality of the intersection IJI\cap J:

ht(tI,J(ξ))=ht(I,J)=|IJ|.\operatorname{ht}(t_{I,J}(\xi))=\operatorname{ht}(I,J)=|I\cap J|.

This combinatorial characteristic of transvections is useful in commutator calculations.

The height splits up all sets AI,JA_{I,J} into two classes: the one with ht(I,J)=0\operatorname{ht}(I,J)=0 and the other with ht(I,J)=1\operatorname{ht}(I,J)=1. In fact, these classes are equal for n6n\geqslant 6. The set A:=AI,JA:=A_{I,J} is called a level of an overgroup HH. Note that for n=4n=4 the level is unique, that follows from [18].

Lemma 7.

If n6n\geqslant 6, then every set AI,JA_{I,J} is an ideal of the ring RR. Moreover, for any IJI\neq J and KLK\neq L the ideals AI,JA_{I,J} and AK,LA_{K,L} coincide.

Proof.

A complete proof is presented in Section 3.4, Proposition 16. Here we sketch calculations in the case (n,m)=(4,2)(n,m)=(4,2) exclusively. These calculations present the general idea in a transparent way.

  1. (1)

    Firstly, take any ξA12,34\xi\in A_{12,34}, i. e., t12,34(ξ)Ht_{12,34}(\xi)\in H. Then

    [t12,34(ξ),2t4,2(ζ)]=t14,23(ξζ2)t14,34(ζξ)t12,23(ξζ)H.[t_{12,34}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{4,2}(\zeta)]=t_{14,23}(-\xi\zeta^{2})t_{14,34}(-\zeta\xi)t_{12,23}(-\xi\zeta)\in H.

    It remains to provide this calculation with ζ-\zeta and to product two right-hand sides; then we obtain t14,23(2ξζ2)Ht_{14,23}(-2\xi\zeta^{2})\in H. By the condition 2R2\in R^{*}, this means that A12,34A14,23A_{12,34}\subseteq A_{14,23}. It follows that

    AI,JAK,L for IJ=KL={1234}.A_{I,J}\subseteq A_{K,L}\text{ for }I\cup J=K\cup L=\{1234\}.
  2. (2)

    Secondly, take any ξA12,34\xi\in A_{12,34}, then [t12,34(ξ),2t4,5(ζ)]=t12,35(ξζ)[t_{12,34}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{4,5}(\zeta)]=t_{12,35}(\xi\zeta). Consequently,

    AI,JAK,L for ht(I,J)=ht(K,L)=0.A_{I,J}\subseteq A_{K,L}\text{ for }\operatorname{ht}(I,J)=\operatorname{ht}(K,L)=0.
  3. (3)

    Thirdly, let ξA12,13\xi\in A_{12,13}, then [t12,13(ξ),2t1,4(ζ)]=t12,34(ξζ)H[t_{12,13}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{1,4}(\zeta)]=t_{12,34}(-\xi\zeta)\in H. Consider two commutators of the latter transvection with 2t4,1(ζ1)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{4,1}(\zeta_{1}) and 2t4,1(ζ1)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{4,1}(-\zeta_{1}) respectively. We obtain that t24,13(ζ12ξζ)Ht_{24,13}(\zeta_{1}^{2}\xi\zeta)\in H and also t12,13(ξζζ1)t24,34(ζ1ξζ)Ht_{12,13}(-\xi\zeta\zeta_{1})t_{24,34}(\zeta_{1}\xi\zeta)\in H. Hence t24,34(ζ1ξζ)Ht_{24,34}(\zeta_{1}\xi\zeta)\in H. This means that

    AI,JAK,L for any ht(I,J)=ht(K,L)=1.A_{I,J}\subseteq A_{K,L}\text{ for any }\operatorname{ht}(I,J)=\operatorname{ht}(K,L)=1.
  4. (4)

    Now, take any ξA12,23\xi\in A_{12,23}, then [t12,23(ξ),2t4,2(ζ)]=t14,23(ζξ)[t_{12,23}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{4,2}(\zeta)]=t_{14,23}(-\zeta\xi). Thus

    AI,JAK,L for ht(I,J)=1,ht(K,L)=0.A_{I,J}\subseteq A_{K,L}\text{ for }\operatorname{ht}(I,J)=1,\operatorname{ht}(K,L)=0.
  5. (5)

    Finally, let ξA12,34\xi\in A_{12,34}. As in (1), consider the commutator t12,34(ξ)t_{12,34}(\xi) with 2t4,2(ζ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{4,2}(\zeta). We obtain t14,23(2ξζ2)Ht_{14,23}(-2\xi\zeta^{2})\in H and t14,34(ζξ)t12,23(ξζ)Ht_{14,34}(-\zeta\xi)t_{12,23}(-\xi\zeta)\in H. By the same argument we can provide these calculations with the transvection t45,16(ξ)t_{45,16}(\xi) and 2t6,4(ζ1)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{6,4}(\zeta_{1}). We get that t56,14(2ζ12ξ)Ht_{56,14}(-2\zeta_{1}^{2}\xi)\in H and t45,14(ξζ1)t56,16(ζ1ξ)Ht_{45,14}(\xi\zeta_{1})t_{56,16}(\zeta_{1}\xi)\in H. To finish the proof it remains to commutate latter two products. Then t45,34(ξ2ζ1ζ)Ht_{45,34}(-\xi^{2}\zeta_{1}\zeta)\in H, or

    AI,JAK,L for ht(I,J)=0,ht(K,L)=1.A_{I,J}\subseteq A_{K,L}\text{ for }\operatorname{ht}(I,J)=0,\operatorname{ht}(K,L)=1.

The following lemma is crucial for the rest. It gives an alternative description of the relative elementary group.

Lemma 8.

Let n6n\geqslant 6. For any ideal ARA\trianglelefteqslant R, we have

EN(A)2En(R)=EN(R,A),\operatorname{E}_{N}(A)^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(R)}=\operatorname{E}_{N}(R,A),

where by definition EN(R,A)=EN(A)EN(R).\operatorname{E}_{N}(R,A)=\operatorname{E}_{N}(A)^{\operatorname{E}_{N}(R)}.

Proof.

The inclusion \leqslant is trivial. By Vaserstein–Suslin’s lemma [38], the group EN(R,A)\operatorname{E}_{N}(R,A) is generated by elements of the form

zij,hk(ξ,ζ)=zI,J(ξ,ζ)=tJ,I(ζ)tI,J(ξ)tJ,I(ζ),ξA,ζR.z_{ij,hk}(\xi,\zeta)=z_{I,J}(\xi,\zeta)=t_{J,I}(\zeta)\,t_{I,J}(\xi)\,t_{J,I}(-\zeta),\;\xi\in A,\zeta\in R.

Hence to prove the reverse inclusion, it sufficient to check the matrix zij,hk(ξ,ζ)z_{ij,hk}(\xi,\zeta) to belong to F:=EN(A)2En(R)F:=\operatorname{E}_{N}(A)^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(R)} for any ξA\xi\in A, ζR\zeta\in R. Let us consider two cases:

  • Suppose that there exists one pair of the same indices. Without loss of generality, we can assume that i=ki=k. Then this inclusion is obvious:

    zij,hi(ξ,ζ)=tij,hithi,ij(ζ)(ξ)=tij,hi2th,j(ζ)(ξ)F.z_{ij,hi}(\xi,\zeta)={}^{t_{hi,ij}(\zeta)}t_{ij,hi}(\xi)={}^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{h,j}(\zeta)}t_{ij,hi}(\xi)\in F.
  • Thus, we are left with the inclusion zij,hk(ξ,ζ)Fz_{ij,hk}(\xi,\zeta)\in F with different indices i,j,h,ki,\,j\,,h\,,k. Firstly, we express tij,hk(ξ)t_{ij,hk}(\xi) as a commutator of elementary transvections:

    zij,hk(ξ,ζ)=tij,hkthk,ij(ζ)(ξ)=[tij,jh(ξ),tjh,hk(1)]thk,ij(ζ).z_{ij,hk}(\xi,\zeta)={}^{t_{hk,ij}(\zeta)}t_{ij,hk}(\xi)={}^{t_{hk,ij}(\zeta)}[t_{ij,jh}(\xi),t_{jh,hk}(1)].

    Conjugating arguments of the commutator by thk,ij(ζ)t_{hk,ij}(\zeta), we get

    zij,hk(ξ,ζ)=[tij,jh(ξ)thk,jh(ζξ),tjh,ij(ζ)tjh,hk(1)]=:[ab,cd].z_{ij,hk}(\xi,\zeta)=[t_{ij,jh}(\xi)t_{hk,jh}(\zeta\xi),t_{jh,ij}(-\zeta)t_{jh,hk}(1)]=:[ab,cd].

    Next, we decompose the right-hand side with a help of the formula

    [ab,cd]=[b,c]a[b,d]ac[a,c][a,d]c,[ab,cd]={}^{a}[b,c]\cdot{}^{ac}[b,d]\cdot[a,c]\cdot{}^{c}[a,d],

    and observe the exponent aa belongs to EN(A)\operatorname{E}_{N}(A), so can be ignored. Now a direct calculation, based upon the Chevalley commutator formula, shows that

    [b,c]\displaystyle[b,c] =[thk,jh(ζξ),tjh,ij(ζ)]=thk,ij(ζ2ξ)EN(A);\displaystyle=[t_{hk,jh}(\zeta\xi),t_{jh,ij}(-\zeta)]=t_{hk,ij}(-\zeta^{2}\xi)\in\operatorname{E}_{N}(A);
    [b,d]c{}^{c}[b,d] =[thk,jh(ζξ),tjh,hk(1)]tjh,ij(ζ)=\displaystyle={}^{t_{jh,ij}(-\zeta)}[t_{hk,jh}(\zeta\xi),t_{jh,hk}(1)]=
    =thk,ik(ξζ2(1+ξζ))tjh,ik(ξζ2)[thk,jh(ξζ),2tj,k(1)]2th,i(ζ);\displaystyle=t_{hk,ik}(-\xi\zeta^{2}(1+\xi\zeta))t_{jh,ik}(-\xi\zeta^{2})\cdot\,{}^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{h,i}(\zeta)}[t_{hk,jh}(\xi\zeta),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{j,k}(-1)];
    [a,c]\displaystyle[a,c] =[tij,jh(ξ),tjh,ij(ζ)]=[tij,jh(ξ),2th,i(ζ)];\displaystyle=[t_{ij,jh}(\xi),t_{jh,ij}(-\zeta)]=[t_{ij,jh}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{h,i}(-\zeta)];
    [a,d]c{}^{c}[a,d] =[tij,jh(ξ),tjh,hk(1)]tjh,ij(ζ)=\displaystyle={}^{t_{jh,ij}(-\zeta)}[t_{ij,jh}(\xi),t_{jh,hk}(1)]=
    =tjh,ik(ξζ2)tij,ik(ξζ)[tij,jh(ξ),2tj,k(1)]2th,i(ζ),\displaystyle=t_{jh,ik}(\xi\zeta^{2})t_{ij,ik}(-\xi\zeta)\cdot\,{}^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{h,i}(\zeta)}[t_{ij,jh}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{j,k}(-1)],

    where all factors on the right-hand side belong to FF.

Remark.

The attentive reader can remark these calculations to be almost completely coincide with the calculations for the orthogonal and symplectic cases [18, 19, 20]. In the special case (n,m)=(4,2)(n,m)=(4,2) calculations are the same due to the isomorphism 2E4(R)EO6(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{4}(R)\cong\operatorname{EO}_{6}(R). Amazingly this argument proves a similar proposition in the case of general exterior power (see Section 3.4, Lemma 20).

Corollary 9.

Let AA be an arbitrary ideal of RR. Then

2En(R)EN(R,A)=2En(R)EN(A).\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(R)\cdot\operatorname{E}_{N}(R,A)=\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(R)\cdot\operatorname{E}_{N}(A).

Summarizing above two lemmas, we get the main result of the paper for bivectors.

Theorem 10 (Level Computation).

Let n6n\geqslant 6 and let HH be a subgroup in GLN(R)\operatorname{GL}_{N}(R) containing 2En(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(R). Then there exists a unique maximal ideal ARA\trianglelefteqslant R such that

2En(R)EN(R,A)H.\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(R)\cdot\operatorname{E}_{N}(R,A)\leqslant H.

Namely, if tI,J(ξ)Ht_{I,J}(\xi)\in H for some II and JJ, then ξA\xi\in A.

Lemma 8 asserts precisely 2En(R)EN(R,A)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(R)\cdot\operatorname{E}_{N}(R,A) to be generated as a subgroup by transvections 2ti,j(ζ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{i,j}(\zeta), ζR\zeta\in R, and by elementary transvections tij,hk(ξ)t_{ij,hk}(\xi), ξA\xi\in A of level AA. As usual, we assume that n6n\geqslant 6 and 2R2\in R^{*}.

We formulate a perfectness of the lower bound subgroup from the latter Theorem. The proof follows from Lemma 22.

Lemma 11.

Let n6n\geqslant 6. The group 2En(R)EN(R,A)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}\operatorname{E}_{n}(R)\cdot\operatorname{E}_{N}(R,A) is perfect for any ideal ARA\trianglelefteqslant R.

3.2. Exterior powers of elementary groups

In this section, we lift the previous statements from the level of an exterior square to the case of an arbitrary exterior power functor.

Let us define an mm-th exterior power of an RR-module RnR^{n} as follows. A basis of this module consists of exterior products ei1eime_{i_{1}}\wedge\dots\wedge e_{i_{m}}, where 1i1<<imn1\leqslant i_{1}<\dots<i_{m}\leqslant n. Products ei1eime_{i_{1}}\wedge\dots\wedge e_{i_{m}} are defined for any set i1,,imi_{1},\dots,i_{m} as eσ(i1)eσ(im)=sgn(σ)ei1eime_{\sigma(i_{1})}\wedge\ldots\wedge e_{\sigma(i_{m})}=\operatorname{sgn}(\sigma)\,e_{i_{1}}\wedge\ldots\wedge e_{i_{m}} for any permutation σ\sigma in the permutation group SmS_{m}. We denote the mm-th exterior power of RnR^{n} by mRn\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}R^{n}.

For every mm the group GLn(R)\operatorname{GL}_{n}(R) acts diagonally on the module mRn\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}R^{n}. Namely, an action of a matrix gGLn(R)g\in\operatorname{GL}_{n}(R) on decomposable mm-vectors is set according to the rule

m(g)(ei1eim):=(gei1)(geim)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}(g)(e_{i_{1}}\wedge\dots\wedge e_{i_{m}}):=(ge_{i_{1}})\wedge\dots\wedge(ge_{i_{m}})

for every ei1,,eimRne_{i_{1}},\dots,e_{i_{m}}\in R^{n}. In the basis eI,Im[n]e_{I},I\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}[n] a matrix m(g)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}(g) consists of mm-order minors of the matrix gg with lexicographically ordered columns and rows:

(m(g))I,J=(m(g))(i1,,im),(j1,,jm)=Mi1,,imj1,,jm(g).\left(\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}(g)\right)_{I,J}=\left(\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}(g)\right)_{(i_{1},\dots,i_{m}),(j_{1},\dots,j_{m})}=M_{i_{1},\dots,i_{m}}^{j_{1},\dots,j_{m}}(g).

By the Cauchy–Binet theorem the map π:GLn(R)GLN(R)\pi\colon\operatorname{GL}_{n}(R)\longrightarrow\operatorname{GL}_{N}(R), xm(x)x\mapsto\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}(x) is homomorphism. Thus, the map π\pi is a representation of the group GLn(R)\operatorname{GL}_{n}(R) called the mm-th vector representation or the mm-th fundamental representation (the representation with the highest weight ϖm\varpi_{m}). The image of the latter action is called the mm-th exterior power of the group GLn(R)\operatorname{GL}_{n}(R). En(R)\operatorname{E}_{n}(R) is a subgroup of GLn(R)\operatorname{GL}_{n}(R), therefore the exterior power of the elementary group is well defined.

We cannot but emphasize the difference for arbitrary rings between the groups222The same strict inclusions are still true with changing GL\operatorname{GL} to SL\operatorname{SL}.

m(GLn(R))<mGLn(R)<GL(nm)(R).\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\bigl{(}\operatorname{GL}_{n}(R)\bigr{)}<\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R)<\operatorname{GL}_{\binom{n}{m}}(R).

The first group is a set-theoretic image of the [abstract] group GLn(R)\operatorname{GL}_{n}(R) under the Cauchy–Binet homomorphism m:GLn(R)GL(nm)(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}:\operatorname{GL}_{n}(R)\longrightarrow\operatorname{GL}_{\binom{n}{m}}\left(R\right), while the second one is a group of RR-points of the categorical image of the group scheme GLn\operatorname{GL}_{n} under the natural transformation corresponding to the Cauchy–Binet homomorphism. Since the epimorphism of algebraic groups on points is not surjective in this situation, we see that mGLn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R) is strictly larger than m(GLn(R))\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\bigl{(}\operatorname{GL}_{n}(R)\bigr{)}. In fact, elements of mGLn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R) are still images of matrices, but coefficients are not from the ring itself, but from its extensions. This means that for any commutative ring RR elements g~mGLn(R)\widetilde{g}\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R) can be represent in the form g~=mg\widetilde{g}=\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}g, gGLn(S)g\in\operatorname{GL}_{n}(S), where SS is an extension of the ring RR. We refer the reader to [43] for more precise results about the difference between these groups.

As in Section 3.1, mEn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R) is a normal subgroup of m(GLn(R))\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}(\operatorname{GL}_{n}(R)) by Suslin’s lemma. Moreover, mEn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R) is normal in mGLn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R). This fact follows from [44, Theorem 1].

Theorem 12.

Let RR be a commutative ring, n3n\geqslant 3, then mEn(R)mGLn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)\trianglelefteqslant\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R).

For further computations we calculate an exterior power of an elementary transvection in the following proposition. The proof is straightforward by the very definition of the [classical] Binet–Cauchy homomorphism.

Proposition 13.

Let ti,j(ξ)t_{i,j}(\xi) be an elementary transvection in En(R)\operatorname{E}_{n}(R), n3n\geqslant 3. Then mti,j(ξ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{i,j}(\xi) equals

(4) mti,j(ξ)=Lm1[n{i,j}]tLi,Lj(sgn(L,i)sgn(L,j)ξ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{i,j}(\xi)=\prod\limits_{L\,\in\,\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m-1}}$}}}\,[n\setminus\{i,j\}]}t_{L\cup i,L\cup j}(\operatorname{sgn}(L,i)\operatorname{sgn}(L,j)\xi)

for any 1ijn1\leqslant i\neq j\leqslant n.

Similarly, one can get an explicit form of torus elements hϖm(ξ)h_{\varpi_{m}}(\xi) of the group mGLn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R).

Proposition 14.

Let di(ξ)=e+(ξ1)ei,id_{i}(\xi)=e+(\xi-1)e_{i,i} be a torus generator, 1in1\leqslant i\leqslant n. Then the exterior power of di(ξ)d_{i}(\xi) equals a diagonal matrix, with diagonal entries 1 everywhere except in n1n-1 positions:

(5) m(di(ξ))I,I={ξ, if iI,1, otherwise.\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}(d_{i}(\xi))_{I,I}=\begin{cases}\xi,&\text{ if }i\in I,\\ 1,&\text{ otherwise}.\end{cases}

As an example, consider 3t1,3(ξ)=t124,234(ξ)t125,235(ξ)t145,345(ξ)3E5(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!3}}$}}}t_{1,3}(\xi)=t_{124,234}(-\xi)t_{125,235}(-\xi)t_{145,345}(\xi)\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!3}}$}}}\operatorname{E}_{5}(R) and 4d2(ξ)=diag(ξ,ξ,ξ,1,ξ)4E5(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!4}}$}}}d_{2}(\xi)=\operatorname{diag}(\xi,\xi,\xi,1,\xi)\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!4}}$}}}\operatorname{E}_{5}(R). It follows from the propositions mti,j(ξ)E(n2m1)(N,R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{i,j}(\xi)\in\operatorname{E}^{\binom{n-2}{m-1}}(N,R), where by definition every element of the set EM(N,R)\operatorname{E}^{M}(N,R) is a product of MM or less elementary transvections. In other words, a residue of a transvection res(mti,j(ξ))\operatorname{res}(\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{i,j}(\xi)) equals the binomial coefficient (n2m1)\binom{n-2}{m-1}. Recall that a residue res(g)\operatorname{res}(g) of a transformation gg is called the rank of geg-e. Finally, there is a simple connection between the determinant of a matrix gGLn(R)g\in\operatorname{GL}_{n}(R) and the determinant of mgmGLn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}g\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R), see [45, Proof of Theorem 4]:

detmg=(det(g))(nm)mn=(det(g))(n1m1).\det\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}g=\bigl{(}\det(g)\bigr{)}^{\binom{n}{m}\cdot\frac{m}{n}}=\bigl{(}\det(g)\bigr{)}^{\binom{n-1}{m-1}}.

3.3. Elementary calculations technique

For an arbitrary exterior power calculations with elementary transvections are huge. In this section, we organize all possible calculations of a commutator of an elementary transvection with an exterior transvection.

Proposition 15.

Up to the action of the permutation group there exist three types of commutators with a fixed transvection tI,J(ξ)EN(R)t_{I,J}(\xi)\in\operatorname{E}_{N}(R):

  1. (1)

    [tI,J(ξ),mtj,i(ζ)]=1[t_{I,J}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j,i}(\zeta)]=1 if both iIi\not\in I and jJj\not\in J hold;

  2. (2)

    [tI,J(ξ),mtj,i(ζ)]=tI~,J~(±ζξ)[t_{I,J}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j,i}(\zeta)]=t_{\tilde{I},\tilde{J}}(\pm\zeta\xi) if either iIi\in I or jJj\in J. And then I~=I\ij\tilde{I}=I\backslash i\cup j or J~=J\ji\tilde{J}=J\backslash j\cup i respectively;

  3. (3)

    If both iIi\in I and jJj\in J hold, then we have the equality:

    [tI,J(ξ),mtj,i(ζ)]=tI~,J(±ζξ)tI,J~(±ζξ)tI~,J~(±ζ2ξ).[t_{I,J}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j,i}(\zeta)]=t_{\tilde{I},J}(\pm\zeta\xi)\cdot t_{I,\tilde{J}}(\pm\zeta\xi)\cdot t_{\tilde{I},\tilde{J}}(\pm\zeta^{2}\xi).

Note that the latter case is true whenever IiJjI\setminus i\neq J\setminus j, otherwise we obtain [tI,J(ξ),tJ,I(±ζ)][t_{I,J}(\xi),t_{J,I}(\pm\zeta)]. This commutator cannot be presented in a simpler form than the very definition.

The rule for commutator calculations from the latter proposition can be translated into the language of weight diagrams:
Weight diagrams tutorial.

  1. (1)

    Let G(An1,)G(A_{n-1},\mathord{\hbox to6.45831pt{\hrulefill}}\,) be a Chevalley–Demazure group scheme, and let (I,J)m[n]2(I,J)\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}[n]^{2} be a pair of different weights for the mm-th exterior power of G(An1,)G(A_{n-1},\mathord{\hbox to6.45831pt{\hrulefill}}\,). Consider any unipotent xα(ξ)x_{\alpha}(\xi) for a root α\alpha of the root system An1A_{n-1}, i. e., xα(ξ)x_{\alpha}(\xi) equals an elementary transvection mti,j(ξ)mEn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{i,j}(\xi)\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R);

  2. (2)

    By Ar(α)\operatorname{Ar}(\alpha) denote all paths on the weight diagram333Recall that we consider the representation with the highest weight ϖm\varpi_{m}. of this representation corresponding to the root α\alpha;

  3. (3)

    Then there exist three different scenarios corresponding to the cases of Proposition 15:

    • sets of the initial and the terminal vertices of paths from Ar(α)\operatorname{Ar}(\alpha) do not contain the vertex (I,J)(I,J);

    • the vertex (I,J)(I,J) is initial or terminal for one path from Ar(α)\operatorname{Ar}(\alpha);

    • the vertex (I,J)(I,J) is simultaneously initial and terminal for some path444From root systems geometry any vertex can be initial or terminal for at most one α\alpha-path. from Ar(α)\operatorname{Ar}(\alpha).

  4. (4)

    Finally, let us consider a commutator of the transvection tI,J(ξ)t_{I,J}(\xi) and the element mti,j(ζ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{i,j}(\zeta). It equals a product of transvections. These transvections correspond to the paths from the previous step. Transvections’ arguments are monomials in ξ\xi and ζ\zeta. Namely, in the second case the argument equals ±ξζ\pm\xi\zeta; in the third case it equals ±ξζ2\pm\xi\zeta^{2}.

In Figure 3.3(a)(a) we present all three cases from step (3)(3) for m=2m=2 and α=α2\alpha=\alpha_{2}:

  • (I,J)=(14,15)(I,J)=(14,15), then [t14,15(ξ),2t2,3(ζ)]=1[t_{14,15}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{2,3}(\zeta)]=1;

  • (I,J)=(13,35)(I,J)=(13,35), then [t13,35(ξ),2t2,3(ζ)]=t12,35(ξζ)[t_{13,35}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{2,3}(\zeta)]=t_{12,35}(-\xi\zeta);

  • (I,J)=(13,24)(I,J)=(13,24), then [t13,24(ξ),2t2,3(ζ)]=t12,24(ξζ)t12,34(ξζ2)t13,34(ζξ)[t_{13,24}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!2}}$}}}t_{2,3}(\zeta)]=t_{12,24}(-\xi\zeta)t_{12,34}(\xi\zeta^{2})t_{13,34}(\zeta\xi).

Similarly, for the case m=3m=3 the elementary calculations can be seen directly from Figure 3.3(b)(b).

12\textstyle{{\overset{12}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}13missing\textstyle{{\overset{13}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\textbf{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces missing}}2\scriptstyle{2}14\textstyle{{\overset{14}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}15\textstyle{{\overset{15}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}23\textstyle{{\overset{23}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}24\textstyle{{\overset{24}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}25\textstyle{{\overset{25}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}34missing\textstyle{{\overset{34}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\textbf{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces missing}}2\scriptstyle{2}35missing\textstyle{{\overset{35}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\textbf{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces missing}}2\scriptstyle{2}45\textstyle{\overset{45}{\bullet}}(a)\textstyle{(a)}
     
123\textstyle{{\overset{123}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}124\textstyle{{\overset{124}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}missing125\textstyle{\textbf{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces missing}{\overset{125}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}4\scriptstyle{4}126\textstyle{{\overset{126}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}134\textstyle{{\overset{134}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}135missing\textstyle{{\overset{135}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\textbf{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces missing}}4\scriptstyle{4}136\textstyle{{\overset{136}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}145\textstyle{{\overset{145}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}146\textstyle{{\overset{146}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}234\textstyle{{\overset{234}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}235missing\textstyle{{\overset{235}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\textbf{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces missing}}4\scriptstyle{4}236\textstyle{{\overset{236}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}156missing\textstyle{{\overset{156}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\textbf{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces missing}}4\scriptstyle{4}245\textstyle{{\overset{245}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}246\textstyle{{\overset{246}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}256missing\textstyle{{\overset{256}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\textbf{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces missing}}4\scriptstyle{4}345\textstyle{{\overset{345}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}346\textstyle{{\overset{346}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}356missing\textstyle{{\overset{356}{\bullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\textbf{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces missing}}4\scriptstyle{4}456\textstyle{\overset{456}{\bullet}}(b)\textstyle{(b)}
Figure 1. Weight diagrams for (a)(a): (A4,ϖ2)(A_{4},\varpi_{2}), α=α2\alpha=\alpha_{2} and (b)(b): (A5,ϖ3)(A_{5},\varpi_{3}), α=α4\alpha=\alpha_{4}

3.4. Level computation

We generalize the notion of ideals AI,JA_{I,J} to the case of the mm-th exterior power. Let HH be an overgroup of the exterior power of the elementary group mEn(R)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R):

mEn(R)HGLN(R).\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)\leqslant H\leqslant\operatorname{GL}_{N}(R).

Let

AI,J:={ξR|tI,J(ξ)H}A_{I,J}:=\{\xi\in R\;|\;t_{I,J}(\xi)\in H\}

for any indices I,Jm[n]I,J\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}[n]. As usual, diagonal sets AI,IA_{I,I} equal the whole ring RR for any index Im[n]I\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}[n]. Thus, we will construct DD-net of ideals of the ring RR. Recall that the desired parametrization is given by an explicit juxtaposition for any overgroup HH its level, namely an ideal AA of the ring RR. We compute this ideal AA in the present section.

We assume that n2mn\geqslant 2m due to the isomorphism mV(dim(V)mV)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}V^{*}\cong(\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!\dim(V)-m}}$}}}V)^{*} for an arbitrary free RR-module VV. The first step toward the level description is the following observation.

Proposition 16.

If |IJ|=|KL||I\cap J|=|K\cap L|, then sets AI,JA_{I,J} and AK,LA_{K,L} coincide. In fact, AI,JA_{I,J} are ideals of RR.

But first, we prove a weaker statement.

Lemma 17.

Let I,J,K,LI,J,K,L be different elements of the set m[n]\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}[n] such that |IJ|=|KL|=0|I\cap J|=|K\cap L|=0. If n2mn\geqslant 2m, then sets AI,JA_{I,J} and AK,LA_{K,L} coincide.

Proof of the lemma.

The sets AI,JA_{I,J} coincide when the set IJI\cup J is fixed. This fact can be proved by the third type commutation due to Proposition 15 with ζ\zeta and ζ-\zeta. If ξAI,J\xi\in A_{I,J} we get a transvection tI,J(ξ)Ht_{I,J}(\xi)\in H. Then the following two products also belong to HH:

[tI,J(ξ),mtj,i(ζ)]\displaystyle[t_{I,J}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j,i}(\zeta)] =tI~,J(±ζξ)tI,J~(±ζξ)tI~,J~(±ζ2ξ)\displaystyle=t_{\tilde{I},J}(\pm\zeta\xi)\cdot t_{I,\tilde{J}}(\pm\zeta\xi)\cdot t_{\tilde{I},\tilde{J}}(\pm\zeta^{2}\xi)
[tI,J(ξ),mtj,i(ζ)]\displaystyle[t_{I,J}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j,i}(-\zeta)] =tI~,J(ζξ)tI,J~(ζξ)tI~,J~(±ζ2ξ).\displaystyle=t_{\tilde{I},J}(\mp\zeta\xi)\cdot t_{I,\tilde{J}}(\mp\zeta\xi)\cdot t_{\tilde{I},\tilde{J}}(\pm\zeta^{2}\xi).

This implies that the product of two factors on the right-hand sides tI~,J~(±2ζ2ξ)t_{\tilde{I},\tilde{J}}(\pm 2\zeta^{2}\xi) belongs to HH.

It can be easily proved the set IJI\cup J can be changed by the second type commutations. For example, the set I1J1={1,2,3,4,5,6}I_{1}\cup J_{1}=\{1,2,3,4,5,6\} can be replaced by the set I2J2={1,2,3,4,5,7}I_{2}\cup J_{2}=\{1,2,3,4,5,7\} as follows

[t123,456(ξ),3t6,7(ζ)]=t123,457(ξζ).[t_{123,456}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!3}}$}}}t_{6,7}(\zeta)]=t_{123,457}(\xi\zeta).

Proof of Proposition 16.

Arguing as above, we see that the sets AI,JA_{I,J} and AK,LA_{K,L} coincide in the case IJ=KLI\cap J=K\cap L, where n1=n|IJ|2m2|IJ|=2m1n_{1}=n-|I\cap J|\geqslant 2\cdot m-2\cdot|I\cap J|=2\cdot m_{1}.

In a general case, we can prove the statement by both the second and the third types commutations. Let us give an example of this calculation with replacing the set IJ={1,2}I\cap J=\{1,2\} by the set {1,5}\{1,5\}.

Let t123,124(ξ)Ht_{123,124}(\xi)\in H. So we have [t123,124(ξ),3t2,5(ζ)]=t123,145(ξζ)H[t_{123,124}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!3}}$}}}t_{2,5}(\zeta)]=t_{123,145}(-\xi\zeta)\in H. We commute this transvection with the element 3t5,2(ζ1)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!3}}$}}}t_{5,2}(\zeta_{1}). Then the transvection t135,124(ζ12ξζ)t_{135,124}(-\zeta_{1}^{2}\xi\zeta) belongs to HH as well as the product t123,124(ξζζ1)t135,145(ζ1ξζ)Ht_{123,124}(\xi\zeta\zeta_{1})\cdot t_{135,145}(-\zeta_{1}\xi\zeta)\in H. From the latter inclusion we can see t135,145(ζ1ξζ)Ht_{135,145}(-\zeta_{1}\xi\zeta)\in H and IJ={1,5}I\cap J=\{1,5\}.

To prove all AI,JA_{I,J} are ideals in RR it is sufficient to commute any elementary transvection with exterior transvections with ζ\zeta and 11:

tI,J(ξζ)=[tI,J(ξ),mtj,i(ζ),mti,j(±1)]H.t_{I,J}(\xi\zeta)=[t_{I,J}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j,i}(\zeta),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{i,j}(\pm 1)]\in H.

Let tI,J(ξ)t_{I,J}(\xi) be an elementary transvection. Let us define a height of tI,J(ξ)t_{I,J}(\xi) (more abstractly, of the pair (I,J)(I,J)) as the cardinality of the set IJI\cap J:

ht(tI,J(ξ))=ht(I,J)=|IJ|.\operatorname{ht}(t_{I,J}(\xi))=\operatorname{ht}(I,J)=|I\cap J|.

This combinatorial characteristic plays the same role as the distance function d(λ,μ)d(\lambda,\mu) for roots λ\lambda and μ\mu on a weight diagram of a root system. Now Proposition 16 can be rephrased as follows. Sets AI,JA_{I,J} and AK,LA_{K,L} coincide for the same heights: AI,J=AK,L=A|IJ|A_{I,J}=A_{K,L}=A_{|I\cap J|}. Suppose that the height of (I,J)(I,J) is larger than the height of (K,L)(K,L), then using Proposition 15, we get AI,JAK,LA_{I,J}\leqslant A_{K,L}.

Summarizing the above arguments, we have the height grading:

A0A1A2Am2Am1.A_{0}\geqslant A_{1}\geqslant A_{2}\geqslant\dots\geqslant A_{m-2}\geqslant A_{m-1}.

The following result proves a coincidence of the sets {Ak}k=0m1\{A_{k}\}_{k=0\dots m-1}.

Proposition 18.

The ideals AkA_{k} coincide for n3mn\geqslant 3m. More accurately, the inverse inclusion AkAk+1A_{k}\leqslant A_{k+1} takes place if n3m2kn\geqslant 3m-2k.

Proof.

The statement can be proved by the double third type commutation as follows. Let ξAk\xi\in A_{k}, i. e., a transvection tI,J(ξ)Ht_{I,J}(\xi)\in H for ht(tI,J(ξ))=k\operatorname{ht}(t_{I,J}(\xi))=k. By the third type commutation with a transvection mtj,i(ζ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j,i}(\zeta), we have tI~,J(±ζξ)tI,J~(±ζξ)Ht_{\tilde{I},J}(\pm\zeta\xi)\cdot t_{I,\tilde{J}}(\pm\zeta\xi)\in H. Let us consider an analogous commutator with a specifically chosen transvections tI1,J1(ξ)Ht_{I_{1},J_{1}}(\xi)\in H and mtj1,i1(ζ1)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j_{1},i_{1}}(\zeta_{1}). We get that tI~1,J1(±ζ1ξ)tI1,J~1(±ζ1ξ)Ht_{\tilde{I}_{1},J_{1}}(\pm\zeta_{1}\xi)\cdot t_{I_{1},\tilde{J}_{1}}(\pm\zeta_{1}\xi)\in H. The final step is to commute the latter products.

The choice of transvections goes in the way such that the final commutator (initially of the form [ab,cd][ab,cd]) equals an elementary transvection. This choice is possible due to the condition n3m2kn\geqslant 3m-2k.

Let us give a particular example of such calculations for the case m=4m=4. This calculation could be easily generalized. The first three steps below correspond to the inclusions A0A1A_{0}\leqslant A_{1}, A1A2A_{1}\leqslant A_{2}, and A2A3A_{2}\leqslant A_{3} respectively. We emphasize that the ideas of the proof of all three steps are completely identical. The difference has to do only with a choice of the appropriate indices. We replace the numbers 1010, 1111, 1212 with the letters α\alpha, β\beta, γ\gamma respectively.

  1. (1)

    Let ξA0\xi\in A_{0}. Consider the mutual commutator

    [[t1234,5678(ξ),4t8,4(ζ)],[t49αβ,123γ(ξ),4tγ,4(ζ1)]]H.\bigl{[}[t_{1234,5678}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!4}}$}}}t_{8,4}(\zeta)],[t_{49\alpha\beta,123\gamma}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!4}}$}}}t_{\gamma,4}(\zeta_{1})]\bigr{]}\in H.

    It is equal to the commutator

    [t1234,4567(ξζ)t1238,5678(ζξ),t49αβ,1234(ξζ1)t9αβγ,123γ(ζ1ξ)]H,[t_{1234,4567}(-\xi\zeta)\cdot t_{1238,5678}(-\zeta\xi),t_{49\alpha\beta,1234}(\xi\zeta_{1})\cdot t_{9\alpha\beta\gamma,123\gamma}(\zeta_{1}\xi)]\in H,

    which is a transvection t49αβ,4567(ξ2ζ1ζ)Ht_{49\alpha\beta,4567}(\xi^{2}\zeta_{1}\zeta)\in H. As the result, A0A1A_{0}\leqslant A_{1}.

  2. (2)

    For ξA1\xi\in A_{1} consider similar commutator

    [[t1234,1567(ξ),4t7,4(ζ)],[t1489,123α(ξ),4tα,4(ζ1)]]H.\bigl{[}[t_{1234,1567}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!4}}$}}}t_{7,4}(\zeta)],[t_{1489,123\alpha}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!4}}$}}}t_{\alpha,4}(\zeta_{1})]\bigr{]}\in H.

    Thus,

    [t1234,1456(ξζ)t1237,1567(ζξ),t1489,1234(ξζ1)t189α,123α(ζ1ξ)]H.[t_{1234,1456}(\xi\zeta)\cdot t_{1237,1567}(-\zeta\xi),t_{1489,1234}(\xi\zeta_{1})\cdot t_{189\alpha,123\alpha}(-\zeta_{1}\xi)]\in H.

    Again this commutator is equal to t1489,1456(ξ2ζ1ζ)Ht_{1489,1456}(-\xi^{2}\zeta_{1}\zeta)\in H, i. e., A1A2A_{1}\leqslant A_{2}.

  3. (3)

    Finally, let ξA2\xi\in A_{2}. Consider the commutator

    [[t1234,1256(ξ),4t6,4(ζ)],[t1248,1237(ξ),4t7,4(ζ1)]]H.\bigl{[}[t_{1234,1256}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!4}}$}}}t_{6,4}(\zeta)],[t_{1248,1237}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!4}}$}}}t_{7,4}(\zeta_{1})]\bigr{]}\in H.

    It is equal to the commutator

    [t1234,1245(ξζ)t1236,1256(ζξ),t1248,1234(ξζ1)t1278,1237(ζ1ξ)]H,[t_{1234,1245}(-\xi\zeta)\cdot t_{1236,1256}(-\zeta\xi),t_{1248,1234}(\xi\zeta_{1})\cdot t_{1278,1237}(-\zeta_{1}\xi)]\in H,

    which is an elementary transvection t1248,1245(ξ2ζ1ζ)Ht_{1248,1245}(\xi^{2}\zeta_{1}\zeta)\in H. Thus, A2A3A_{2}\leqslant A_{3}.

We proved that all ideals AiA_{i} coincide for a large enough nn. However, the following proposition shows relations between the ideals without this restriction. Recall that a residue res\operatorname{res} of an exterior transvection mti,j(ξ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{i,j}(\xi) equals the binomial coefficient (n2m1)\binom{n-2}{m-1}.

Proposition 19.

For ideals {A0,,Am1}\{A_{0},\dots,A_{m-1}\} the following relations hold:

AkAk+1, for n3m2k;\displaystyle A_{k}\leqslant A_{k+1},\text{ for }n\geqslant 3m-2k;
A0A1A2Am2Am1;\displaystyle A_{0}\geqslant A_{1}\geqslant A_{2}\geqslant\dots\geqslant A_{m-2}\geqslant A_{m-1};
resAm2Am1.\displaystyle\operatorname{res}\cdot A_{m-2}\leqslant A_{m-1}.

Note that we have not included the relations from the notion of DD-net AI,JAJ,KAI,KA_{I,J}\cdot A_{J,K}\leqslant A_{I,K}, since they hold for any net of ideals by the definition.

Proof.

The first two series of relations have already been proved. Therefore, we must only prove that resAm2Am1\operatorname{res}\cdot A_{m-2}\leqslant A_{m-1}. Again we will use the third type commutation.

Let ξAm2\xi\in A_{m-2},i. e., for any indices I,JI,J with ht(I,J)=m2\operatorname{ht}(I,J)=m-2 a transvection tI,J(ξ)Ht_{I,J}(\xi)\in H. Note that if iI,jJi\in I,j\in J, then in the commutator

[tI,J(ξ),mtj,i(ζ)]=tI~,J(±ζξ)tI,J~(±ζξ)tI~,J~(±ζ2ξ)[t_{I,J}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j,i}(\zeta)]=t_{\tilde{I},J}(\pm\zeta\xi)\cdot t_{I,\tilde{J}}(\pm\zeta\xi)\cdot t_{\tilde{I},\tilde{J}}(\pm\zeta^{2}\xi)

the transvection tI~,J~(±ζ2ξ)t_{\tilde{I},\tilde{J}}(\pm\zeta^{2}\xi) belongs to the group HH. Indeed, the height of indices I~=I\ij\tilde{I}=I\backslash i\cup j и J~=J\ji\tilde{J}=J\backslash j\cup i coincide with the height of I,JI,J. At the same time the height of I~,J\tilde{I},J and I,J~I,\tilde{J} equals m1m-1. Thus tI~,J(±ζξ)tI,J~(±ζξ)Ht_{\tilde{I},J}(\pm\zeta\xi)\cdot t_{I,\tilde{J}}(\pm\zeta\xi)\in H for all indices I,JI,J with ht(I,J)=m2\operatorname{ht}(I,J)=m-2 and all different iI,jJi\in I,j\in J.

Consider mt1,2(ξζ)H\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{1,2}(\xi\zeta)\in H, where ζR\zeta\in R. By the definition of exterior transvections (4), we have mt1,2(ξζ)=LtL1,L2(ξζ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{1,2}(\xi\zeta)=\prod\limits_{L}t_{L\cup 1,L\cup 2}(\xi\zeta). The proof is to consistently reduce the number of factors in the product by multiplication mt1,2(ξζ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{1,2}(\xi\zeta) on suitable transvections tI~,J(±ζξ)tI,J~(±ζξ)Ht_{\tilde{I},J}(\pm\zeta\xi)\cdot t_{I,\tilde{J}}(\pm\zeta\xi)\in H. Finally, we get an elementary transvection tP1,P2(cξζ)t_{P\cup 1,P\cup 2}(c\xi\zeta), where the height of indices equals m1m-1 and the coefficient cc equals (n2m1)\binom{n-2}{m-1}.

Let us give an example such argument for the exterior cube of the elementary group of dimension 5. Take ξA1,ζR\xi\in A_{1},\zeta\in R, 3t1,2(ξζ)=t134,234(ξζ)t135,235(ξζ)t145,245(ξζ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!3}}$}}}t_{1,2}(\xi\zeta)=t_{134,234}(\xi\zeta)t_{135,235}(\xi\zeta)t_{145,245}(\xi\zeta).
First, consider the commutator [t134,245(ξ),3t5,3(ζ)]H[t_{134,245}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!3}}$}}}t_{5,3}(\zeta)]\in H. As we mentioned above, the matrix z1:=t134,234(ξζ)t145,245(ξζ)Hz_{1}:=t_{134,234}(-\xi\zeta)t_{145,245}(\xi\zeta)\in H. Thus,

3t1,2(ξζ)z1=t135,235(ξζ)t145,245(2ξζ)H.\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!3}}$}}}t_{1,2}(\xi\zeta)\cdot z_{1}=t_{135,235}(\xi\zeta)t_{145,245}(2\xi\zeta)\in H.

To get an elementary transvection, consider one more commutator
[t135,245(ξ),3t4,3(ζ)]H[t_{135,245}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!3}}$}}}t_{4,3}(-\zeta)]\in H. Then the matrix z2:=t145,245(ξζ)t135,235(ξζ)Hz_{2}:=t_{145,245}(\xi\zeta)t_{135,235}(-\xi\zeta)\in H. It remains to multiply 3t1,2(ξζ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!3}}$}}}t_{1,2}(\xi\zeta) and z1z2z_{1}z_{2}. We get the transvection t145,245(3ξζ)Ht_{145,245}(3\xi\zeta)\in H. Therefore, 3ξζA23\xi\zeta\in A_{2}. ∎

As usual, the set A=AI,JA=A_{I,J} is called a level of an overgroup HH. For level computation we need an alternative description of the relative elementary group.

Lemma 20.

For any ideal ARA\trianglelefteqslant R, we have

EN(A)mEn(R)=EN(R,A),\operatorname{E}_{N}(A)^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)}=\operatorname{E}_{N}(R,A),

where by definition EN(R,A)=EN(A)EN(R)\operatorname{E}_{N}(R,A)=\operatorname{E}_{N}(A)^{\operatorname{E}_{N}(R)}.

Proof.

Clearly, the left-hand side is contained in the right-hand side. The proof of the inverse inclusion goes by induction on the height of (I,J)(I,J). By Vaserstein–Suslin’s lemma [38] it is sufficient to check the matrix zI,J(ξ,ζ)z_{I,J}(\xi,\zeta) to belong to F:=EN(A)mEn(R)F:=\operatorname{E}_{N}(A)^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)} for any ξA\xi\in A, ζR\zeta\in R.

In the base case |IJ|=m1|I\cap J|=m-1, the inclusion is obvious:

zI,J(ξ,ζ)tI,J(ξ)=[tJ,I(ζ),tI,J(ξ)]=[mtj1,i1(ζ),tI,J(ξ)]F.z_{I,J}(\xi,\zeta)\cdot t_{I,J}(-\xi)=[t_{J,I}(\zeta),t_{I,J}(\xi)]=\left[\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j_{1},i_{1}}(\zeta),t_{I,J}(\xi)\right]\in F.

Now, let us consider the general case |IJ|=p|I\cap J|=p, i. e., I=k1kpi1iqI=k_{1}\dots k_{p}i_{1}\dots i_{q} and J=k1kpj1jqJ=k_{1}\dots k_{p}j_{1}\dots j_{q}. For the following calculations we need two more sets V:=k1kpi1iq1jqV:=k_{1}\dots k_{p}i_{1}\dots i_{q-1}j_{q} and W:=k1kpj1jq1iqW:=k_{1}\dots k_{p}j_{1}\dots j_{q-1}i_{q}.
Firstly, we express tI,J(ξ)t_{I,J}(\xi) as a commutator of elementary transvections,

zI,J(ξ,ζ)=tJ,I(ζ)tI,J(ξ)=tJ,I(ζ)[tI,V(ξ),tV,J(1)].z_{I,J}(\xi,\zeta)=^{t_{J,I}(\zeta)}t_{I,J}(\xi)=^{t_{J,I}(\zeta)}[t_{I,V}(\xi),t_{V,J}(1)].

Conjugating the arguments of the commutator by tJ,I(ζ)t_{J,I}(\zeta), we get

[tJ,V(ζξ)tI,V(ξ),tV,I(ζ)tV,J(1)]=:[ab,cd].[t_{J,V}(\zeta\xi)t_{I,V}(\xi),t_{V,I}(-\zeta)t_{V,J}(1)]=:[ab,cd].

Next, we decompose the right-hand side with a help of the formula

[ab,cd]=[b,c]a[b,d]ac[a,c][a,d]c,[ab,cd]={}^{a}[b,c]\cdot{}^{ac}[b,d]\cdot[a,c]\cdot{}^{c}[a,d],

and observe the exponent aa to belong to EN(A)\operatorname{E}_{N}(A), so can be ignored. Now a direct calculation, based upon the Chevalley commutator formula, shows that

[b,c]\displaystyle[b,c] =[tI,V(ξ),tV,I(ζ)]F (by the induction step for the height m1);\displaystyle=[t_{I,V}(\xi),t_{V,I}(-\zeta)]\in F\textrm{ (by the induction step for the height }m-1);
[b,d]c{}^{c}[b,d] =tV,I(ζ)[tI,V(ξ),tV,J(1)]=tV,W(ξζ2)tI,W(ξζ)mtjq,iq(ζ)tI,J(ξ);\displaystyle=^{t_{V,I}(-\zeta)}[t_{I,V}(\xi),t_{V,J}(1)]=t_{V,W}(\xi\zeta^{2})t_{I,W}(-\xi\zeta)\cdot\;^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j_{q},i_{q}}(-\zeta)}t_{I,J}(\xi);
[a,c]\displaystyle[a,c] =[tJ,V(ζξ),tV,I(ζ)]=tJ,I(ζ2ξ);\displaystyle=[t_{J,V}(\zeta\xi),t_{V,I}(-\zeta)]=t_{J,I}(-\zeta^{2}\xi);
[a,d]c{}^{c}[a,d] =tV,I(ζ)[tJ,V(ζξ),tV,J(1)]=\displaystyle=^{t_{V,I}(-\zeta)}[t_{J,V}(\zeta\xi),t_{V,J}(1)]=
=tJ,W(ξζ2(1+ξζ))\displaystyle=t_{J,W}(-\xi\zeta^{2}(1+\xi\zeta)) tV,W(ξζ2)mtjq,iq(ζ)tJ,V(ξζ)mtjq,iq(ζ)zJ,V(ζξ,1)F,\displaystyle t_{V,W}(-\xi\zeta^{2})\cdot\;^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j_{q},i_{q}}(-\zeta)}t_{J,V}(\xi\zeta)\cdot\;^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{j_{q},i_{q}}(-\zeta)}z_{J,V}(-\zeta\xi,1)\in F,
 (by the induction step for the height p+1)\displaystyle\hskip 113.81102pt\textrm{ (by the induction step for the height }p+1)

where all factors on the right-hand side belong to FF. ∎

Remark.

Since we do not use the coincidental elements of II and JJ, we also can prove this Lemma by induction on |I\J|=|J\I|=1/2|IJ||I\backslash J|=|J\backslash I|=1/2\cdot|I\triangle J|. Then we can assume that mm is an arbitrarily large number (mentally, m=m=\infty).

Corollary 21.

Suppose AA be an arbitrary ideal of the ring RR; then

mEn(R)EN(R,A)=mEn(R)EN(A).\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)\cdot\operatorname{E}_{N}(R,A)=\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)\cdot\operatorname{E}_{N}(A).

Summarizing Proposition 18 and Lemma 20, we get the main result of the paper for the general case. See 2

3.5. Normalizer of EmEn(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)

In this section, we describe a normalizer of the lower bound for a group HH.

Lemma 22.

Let n3mn\geqslant 3m. The group EmEn(R,A):=mEn(R)EN(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A):=\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)\cdot\operatorname{E}_{N}(R,A) is perfect for any ideal ARA\trianglelefteqslant R.

Proof.

It is sufficient to verify all generators of the group mEn(R)EN(R,A)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)\cdot\operatorname{E}_{N}(R,A) to lie in its commutator subgroup, which will be denoted by FF. The proof goes in two steps.

  • For the transvections mti,j(ζ)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{i,j}(\zeta) this follows from the Cauchy–Binet homomorphism:

    mti,j(ζ)=m([ti,h(ζ),th,j(1)])=[mti,h(ζ),mth,j(1)].\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{i,j}(\zeta)=\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}([t_{i,h}(\zeta),t_{h,j}(1)])=\left[\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{i,h}(\zeta),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{h,j}(1)\right].
  • For elementary transvections tI,J(ξ)t_{I,J}(\xi) this can be done as follows. Suppose that IJ=K=k1kpI\cap J=K=k_{1}\dots k_{p}, where 0pm10\leqslant p\leqslant m-1, i. e., I=k1kpi1iqI=k_{1}\dots k_{p}i_{1}\dots i_{q} and J=k1kpj1jqJ=k_{1}\dots k_{p}j_{1}\dots j_{q}. As in Lemma 20, we define a set V=k1kpj1jq1iqV=k_{1}\dots k_{p}j_{1}\dots j_{q-1}i_{q}. And then

    tI,J(ξ)=[tI,V(ξ),tV,J(1)]=[tI,V(ξ),mtiq,jq(±1)],t_{I,J}(\xi)=[t_{I,V}(\xi),t_{V,J}(1)]=\left[t_{I,V}(\xi),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}t_{i_{q},j_{q}}(\pm 1)\right],

    so we get the required.

Let, as above, ARA\trianglelefteqslant R, and let R/AR/A be the factor-ring of RR modulo AA. Denote by ρA:RR/A\rho_{A}:R\longrightarrow R/A the canonical projection sending λR\lambda\in R to λ¯=λ+AR/A\bar{\lambda}=\lambda+A\in R/A. Applying the projection to all entries of a matrix, we get the reduction homomorphism

ρA:GLn(R)GLn(R/A)aa¯=(a¯i,j)\begin{array}[]{rcl}\rho_{A}:\operatorname{GL}_{n}(R)&\longrightarrow&\operatorname{GL}_{n}(R/A)\\ a&\mapsto&\overline{a}=(\overline{a}_{i,j})\end{array}

The kernel of the homomorphism ρA\rho_{A}, GLn(R,A)\operatorname{GL}_{n}(R,A), is called the principal congruence subgroup in GLn(R)\operatorname{GL}_{n}(R) of level AA. Now, let Cn(R)\operatorname{C}_{n}(R) be the center of the group GLn(R)\operatorname{GL}_{n}(R), consisting of the scalar matrices λe,λR\lambda e,\lambda\in R^{*}. The full preimage of the center of GLn(R/A)\operatorname{GL}_{n}(R/A), denoted by Cn(R,A)\operatorname{C}_{n}(R,A), is called the full congruence subgroup of level AA. The group Cn(R,A)\operatorname{C}_{n}(R,A) consists of all matrices congruent to a scalar matrix modulo AA. We further concentrate on a study of the full preimage of the group mGLn(R/A)\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R/A):

CmGLn(R,A)=ρA1(mGLn(R/A)).\operatorname{C}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R,A)=\rho_{A}^{-1}\bigl{(}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R/A)\bigr{)}.

A key point in a reduction modulo an ideal is the following standard commutator formula, proved by Leonid Vaserstein [46], Zenon Borevich, and Nikolai Vavilov [17].

[En(R),C(n,R,A)]=En(R,A) for a commutative ring R and n3.\bigl{[}\operatorname{E}_{n}(R),\operatorname{C}(n,R,A)\bigr{]}=\operatorname{E}_{n}(R,A)\textrm{ for a commutative ring }R\textrm{ and }n\geqslant 3.

Finally, we are ready to state the level reduction result. See 3

Proof.

In the proof by NN we mean NGLN(R)N_{\operatorname{GL}_{N}(R)}.

Since EN(R,A)\operatorname{E}_{N}(R,A) and GLN(R,A)\operatorname{GL}_{N}(R,A) are normal subgroups in GLN(R)\operatorname{GL}_{N}(R), we see

(1) N(EmEn(R,A)=mEn(R)EN(R,A))N(EmEn(R,A)GLN(R,A))=CmGLn(R,A).N\bigl{(}\underbrace{\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)}_{=\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)\operatorname{E}_{N}(R,A)}\bigr{)}\leqslant N\bigl{(}\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)\operatorname{GL}_{N}(R,A)\bigr{)}=\operatorname{C}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R,A).

Note that the latter equality is due to the normalizer functoriality:

N(EmEn(R,A)GLN(R,A))=N(ρA1(mEn(R/A)))=ρA1(N(mEn(R/A)))=ρA1(mGLn(R/A)).N\left(\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)\operatorname{GL}_{N}(R,A)\right)=N\left(\rho_{A}^{-1}\left(\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R/A)\right)\right)=\rho_{A}^{-1}\left(N\left(\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R/A)\right)\right)=\rho_{A}^{-1}\left(\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R/A)\right).

In particular, using (1)(1), we get

(2) [CmGLn(R,A),EmEn(R,A)]EmEn(R,A)GLN(R,A).\left[\operatorname{C}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R,A),\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)\right]\leqslant\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)\operatorname{GL}_{N}(R,A).

On the other hand, it is completely clear EmEn(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A) to be normal in the right-hand side subgroup. Indeed, it is easy to prove the following stronger inclusion:

(3) [mGLn(R)GLN(R,A),EmEn(R,A)]EmEn(R,A).\left[\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R)\operatorname{GL}_{N}(R,A),\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)\right]\leqslant\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A).

To check this, we consider a commutator of the form

[xy,hg],xmGLn(R),yGLN(R,A),hmEn(R),gEN(R,A).[xy,hg],\qquad x\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R),y\in\operatorname{GL}_{N}(R,A),h\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R),g\in\operatorname{E}_{N}(R,A).

Then [xy,hg]=[y,h]x[x,h][xy,g]h[xy,hg]={}^{x}[y,h]\cdot[x,h]\cdot{}^{h}[xy,g]. We need to prove all factors on the right-hand side to belong to EmEn(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A). Right away, the second factor lies in the group EmEn(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A). For the first commutator, we should consider the following inclusions:

[GLN(R,A),mEn(R)]mGLn(R)[GLNmGLn(R)(R,A)=GLN(R,A),mmGLn(R)En(R)=mEn(R)]EmEn(R,A).{}^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R)}\left[\operatorname{GL}_{N}(R,A),\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)\right]\leqslant\Bigl{[}\underbrace{{}^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R)}\operatorname{GL}_{N}(R,A)}_{=\operatorname{GL}_{N}(R,A)},\underbrace{{}^{\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R)}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)}_{=\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R)}\Bigr{]}\leqslant\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A).

The element hmEn(R)h\in\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R), so we ignore it in conjugation. The third commutator lies in EmEn(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A) due to the following inclusion.

[mGLn(R)GLN(R,A),EN(R,A)][GLN(R),EN(R,A)]=EN(R,A).\left[\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R)\operatorname{GL}_{N}(R,A),\operatorname{E}_{N}(R,A)\right]\leqslant\left[\operatorname{GL}_{N}(R),\operatorname{E}_{N}(R,A)\right]=\operatorname{E}_{N}(R,A).

Now if we recall (2)(2) and (3)(3), we get

(4) [CmGLn(R,A),EmEn(R,A),EmEn(R,A)]EmEn(R,A).\left[\operatorname{C}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R,A),\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A),\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)\right]\leqslant\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A).

To invoke the Hall–-Witt identity, we need a slightly more precise version of the latter inclusion:

(5) [[CmGLn(R,A),EmEn(R,A)],[CmGLn(R,A),EmEn(R,A)]]EmEn(R,A).\left[\left[\operatorname{C}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R,A),\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)\right],\left[\operatorname{C}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R,A),\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)\right]\right]\leqslant\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A).

Observe that by formula (2)(2) we have already checked the left-hand side to be generated by the commutators of the form

[uv,[z,y]], where u,yEmEn(R,A),vGLN(R,A),zCmGLn(R,A).[uv,[z,y]],\text{ where }u,y\in\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A),v\in\operatorname{GL}_{N}(R,A),z\in\operatorname{C}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R,A).

However,

[uv,[z,y]]=[v,[z,y]]u[u,[z,y]],[uv,[z,y]]={}^{u}[v,[z,y]]\cdot[u,[z,y]],

By formula (4)(4) the second commutator belongs to EmEn(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A), whereas by (5)(5) the first is an element of [GLN(R,A),EN(R)]EN(R,A)\left[\operatorname{GL}_{N}(R,A),\operatorname{E}_{N}(R)\right]\leqslant\operatorname{E}_{N}(R,A).

Now we are ready to finish the proof. By the previous lemma, the group EmEn(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A) is perfect, and thus, it suffices to show [z,[x,y]]EmEn(R,A)[z,[x,y]]\in\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A) for all x,yEmEn(R,A),zCmGLn(R,A)x,y\in\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A),z\in\operatorname{C}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{GL}_{n}(R,A). Indeed, the Hall–-Witt identity yields

[z,[x,y]]=[[z1,x1],y]xz[[y1,z],x1]xy,[z,[x,y]]={}^{xz}[[z^{-1},x^{-1}],y]\cdot{}^{xy}[[y^{-1},z],x^{-1}],

where the second commutator belongs to EmEn(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A) by (4)(4). Removing the conjugation by xEmEn(R,A)x\in\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A) in the first commutator and carrying the conjugation by zz inside the commutator, we see that it only remains to prove the relation [[x1,z],[z,y]y]EmEn(R,A)[[x^{-1},z],[z,y]y]\in\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A). Indeed,

[[x1,z],[z,y]y]=[[x1,z],[z,y]][[x1,z],y][z,y],[[x^{-1},z],[z,y]y]=[[x^{-1},z],[z,y]]\cdot{}^{[z,y]}[[x^{-1},z],y],

where both commutators on the right–hand side belong to EmEn(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A) by formulas (4)(4) and (5)(5), and moreover, the conjugating element [z,y][z,y] in the second commutator is an element of the group EmEn(R,A)GLN(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A)\operatorname{GL}_{N}(R,A), and thus by (3)(3), normalizes EmEn(R,A)\operatorname{E}\mathord{\raisebox{2.0pt}{\hbox{$\scriptstyle{\bigwedge^{\!m}}$}}}\operatorname{E}_{n}(R,A). ∎

References

  • [1] M. Aschbacher. On the maximal subgroups of the finite classical groups. Invent. Math., 76:469–514, 1984.
  • [2] Peter Kleidman and Martin Liebeck. The subgroup structure of the finite classical groups, volume 129 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1990.
  • [3] Martin W. Liebeck and Gary M. Seitz. On the subgroup structure of classical groups. Invent. Math., 134(2):427–453, 1998.
  • [4] Oliver King. Subgroups of the special linear group containing the diagonal subgroup. J. Algebra, 132(1):198–204, 1990.
  • [5] Oliver King. On subgroups of the special linear group containing the special unitary group. Geom. Dedicata, 19(3):297–310, 1985.
  • [6] Oliver King. On subgroups of the special linear group containing the special orthogonal group. J. Algebra, 96(1):178–193, 1985.
  • [7] R. H. Dye. Interrelations of symplectic and orthogonal groups in characteristic two. J. Algebra, 59(1):202–221, 1979.
  • [8] Roger H. Dye. On the maximality of the orthogonal groups in the symplectic groups in characteristic two. Math. Z., 172(3):203–212, 1980.
  • [9] R. H. Dye. Maximal subgroups of GL2n(K){\rm GL}_{2n}(K), SL2n(K){\rm SL}_{2n}(K), PGL2n(K){\rm PGL}_{2n}(K) and PSL2n(K){\rm PSL}_{2n}(K) associated with symplectic polarities. J. Algebra, 66(1):1–11, 1980.
  • [10] Shang Zhi Li. Overgroups in GL(n,F){\rm GL}(n,F) of a classical group over a subfield of FF. Algebra Colloq., 1(4):335–346, 1994.
  • [11] Shang Zhi Li. Overgroups of a unitary group in GL(2,K){\rm GL}(2,K). J. Algebra, 149(2):275–286, 1992.
  • [12] Shang Zhi Li. Overgroups of SU(n,K,f){\rm SU}(n,K,f) or Ω(n,K,Q)\Omega(n,K,Q) in GL(n,K){\rm GL}(n,K). Geom. Dedicata, 33(3):241–250, 1990.
  • [13] N. A. Vavilov. On subgroups of split classical groups. Proc. Steklov. Inst. Math., 183:27–41, 1990.
  • [14] N. A. Vavilov. Intermediate subgroups in Chevalley groups. London Math. Soc. Lecture Note Ser., 207:233–280, 1995.
  • [15] N. A. Vavilov and A. V. Stepanov. Overgroups of semisimple groups. Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., (3):51–95, 2008.
  • [16] Z. I. Borevich and N. A. Vavilov. The distribution of subgroups contaning a group of block diagonal matrices in the general linear group over a ring. Russian Math. (Iz. VUZ), 26(11):13–18, 1982.
  • [17] Z. I. Borevich and N. A. Vavilov. The distribution of subgroups in the general linear group over a commutative ring. Proc. Steklov. Inst. Math., 165:27–46, 1985.
  • [18] N. Vavilov and V. Petrov. Overgroups of EO(2l,R)\mathrm{EO}(2l,R). J. Math. Sci. (N. Y.), 116(1):2917–2925, 2003.
  • [19] N. Vavilov and V. Petrov. Overgroups of EO(n,R)\mathrm{EO}(n,R). St.Petersburg Math. J., 19(2):167–195, 2008.
  • [20] N. Vavilov and V. Petrov. Overgroups of Ep(2l,R)\mathrm{Ep}(2l,R). St.Petersburg Math. J., 15(4):515–543, 2004.
  • [21] V. A. Petrov. Overgroups of unitary groups. K-Theory, 29:77–108, 2003.
  • [22] A. V. Stepanov. Nonstandard subgroups between En(R)\mathrm{E}_{n}(R) and GLn(A)\mathrm{GL}_{n}(A). Algebra Colloq, 10(3):321–334, 2004.
  • [23] A. V. Stepanov. Free product subgroups between Chevalley groups G(Φ,F)\mathrm{G}(\Phi,F) and G(Φ,F[t])\mathrm{G}(\Phi,F[t]). J. Algebra, 324(7):1549–1557, 2010.
  • [24] A. Yu. Luzgarev. On overgroups of E(E6,R)E(E_{6},R) and E(E7,R)E(E_{7},R) in their minimal representations. J. Math. Sci. (N. Y.), 134(6):2558–2571, 2004.
  • [25] A. Yu. Luzgarev. Overgroups of F4F_{4} in E6E_{6} over commutative rings. St.Petersburg Math. J., 20:955–981, 2009.
  • [26] N. A. Vavilov and A. Yu. Luzgarev. Normalizer of the Chevalley group of type E6E_{6}. St.Petersburg Math. J., 19(5):699–718, 2008.
  • [27] N. A. Vavilov and A. Yu. Luzgarev. Normalizer of the Chevalley group of type E7E_{7}. St.Petersburg Math. J., 27(6):899–921, 2016.
  • [28] A. S. Ananevskii, N. A. Vavilov, and S. S. Sinchuk. Overgroups of E(l,R)E(m,R)\mathrm{E}(l,R)\otimes\mathrm{E}(m,R) I. Levels and normalizers. St.Petersburg Math. J., 23(5):819–849, 2012.
  • [29] R. Lubkov and A. Stepanov. Subgroups of Chevalley groups over rings. J. Math. Sci. (N. Y.), 252:829–840, 2021.
  • [30] Bruce N. Cooperstein. Nearly maximal representations for the special linear group. Michigan Math. J., 27(1):3–19, 1980.
  • [31] G. M. Seitz. The Maximal Subgroups of Classical Algebraic Groups. American Mathematical Society: Memoirs of the American Mathematical Society. American Mathematical Society, 1987.
  • [32] Skip Garibaldi and Robert M. Guralnick. Simple groups stabilizing polynomials. Forum Math. Pi, 3:e3, 41, 2015.
  • [33] Z. I. Borevich and N. A. Vavilov. Definition of a net subgroup. J. Soviet Math., 30(1):1810–1816, 1985.
  • [34] Z. I. Borevich and N. A. Vavilov. Determinants in net subgroups. J. Soviet Math., 27(4):2855–2865, 1984.
  • [35] Z. I. Borevich and L. Yu. Kolotilina. Subnormalizer of net subgroups in the general linear group over a ring. Journal of Soviet Mathematics, 26(3):1844–1848, Aug 1984.
  • [36] A. V. Stepanov and N. A. Vavilov. Decomposition of transvections: Theme with variations. K-Theory, 19(2):109–153, 2000.
  • [37] A. A. Suslin. On the structure of the special linear group over polynomial rings. Math. USSR. Izvestija, 11:221–238, 1977.
  • [38] L. N. Vaserstein and A. A. Suslin. Serre’s problem on projective modules over polynomial rings, and algebraic K-theory. Math. USSR. Izvestija, 10(5):937–1001, 1976.
  • [39] J. Tits. Systemes générateurs de groupes de congruences. C. R. Acad. Sci., Paris, Sér. A, 283:693–695, 1976.
  • [40] R. A. Lubkov and I. I. Nekrasov. Explicit equations for the exterior square of the general linear group. J. Math. Sci. (N. Y.), 243(4):583–594, 2019.
  • [41] R. Lubkov. The reverse decomposition of unipotents for bivectors. Comm. Algebra, 49(10):4546–4556, 2021.
  • [42] R. Lubkov. The reverse decomposition of unipotens in polyvector representations. Zapiski nauchnyh seminarov POMI, accepted for publication, 11 pages, 2022.
  • [43] N. A. Vavilov and E. Ya. Perelman. Polyvector representations of GLn\mathrm{GL}_{n}. J. Math. Sci. (N. Y.), 145(1):4737–4750, 2007.
  • [44] V. Petrov and A. Stavrova. Elementary subgroups in isotropic reductive groups. St.Petersburg Math. J., 20(4):625–644, 2009.
  • [45] William C. Waterhouse. Automorphisms of quotients of ΠGL(ni)\Pi{\rm GL}(n_{i}). Pacific J. Math., 102(1):221–233, 1982.
  • [46] L. N. Vaserstein. On the normal subgroups of GLn over a ring. Lecture Notes in Math., 854:456–465, 1981.