This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\publyear

22 \papernumber2102

Outer Independent Roman Domination Number of Cartesian Product of Paths and Cycles

Hong Gao*    Daoda Qiu    Shuyan Du    Yiyue Zhao
College of Science
Dalian Maritime University
Dalian
   China
[email protected]
   [email protected]    [email protected]    [email protected]    Yuansheng Yang
School of Computer Science and Technology
Dalian University of Technology
Dalian
   China
[email protected]
Abstract

Given a graph GG with vertex set VV, an outer independent Roman dominating function (OIRDF) is a function ff from V(G)V(G) to {0,1,2}\{0,1,2\} for which every vertex with label 0 under ff is adjacent to at least a vertex with label 22 but not adjacent to another vertex with label 0. The weight of an OIRDF ff is the sum of vertex function values all over the graph, and the minimum of an OIRDF is the outer independent Roman domination number of GG, denoted as γoiR(G)\gamma_{oiR}(G). In this paper, we focus on the outer independent Roman domination number of the Cartesian product of paths and cycles PnCmP_{n}\Box C_{m}. We determine the exact values of γoiR(PnCm)\gamma_{oiR}(P_{n}\Box C_{m}) for n=1,2,3n=1,2,3 and γoiR(PnC3)\gamma_{oiR}(P_{n}\Box C_{3}) and present an upper bound of γoiR(PnCm)\gamma_{oiR}(P_{n}\Box C_{m}) for n4,m4n\geq 4,m\geq 4.

keywords:
outer independent Roman domination, Cartesian product graphs, paths, cycles
volume: 185issue: 1

Outer Independent Roman Domination Number of Cartesian Product of Paths and Cycles

1 Introduction

In this paper, G=(V,E)G=(V,E) is a simple, undirected and connected graph with vertex set VV and edge set EE. For a vertex vVv\in V, the open neighbourhood of vv is the set N(v)={uV|uvE}N(v)=\{{u\in V|uv\in E}\} and the closed neighbourhood is the set N[v]=N(v){v}N[v]=N(v)\cup\{{v}\}.

Roman domination on graphs is originated from Roman military strategy in which it is required that every location without legions must be adjacent to at least one location with two legions. In 2004, Cockayne et al. [1] proposed Roman domination on graphs. A Roman dominating function (RDF) on graph G=(V,E)G=(V,E) is a function f:V{0,1,2}f:V\rightarrow\{0,1,2\} such that for each vertex uVu\in V with f(u)=0f(u)=0, there exists at least one vertex vN(u)v\in N(u) with f(v)=2f(v)=2. The weight of a RDF ff is w(f)=vVf(v)w(f)=\sum_{v\in V}f(v). The Roman domination number is the minimum weight of a RDF of GG, denoted as γR(G)\gamma_{R}(G). Let Vi={vV|f(v)=i}V_{i}=\{v\in V|f(v)=i\} for i{0,1,2}i\in\{0,1,2\}, then a RDF ff can be written as f=(V0,V1,V2)f=(V_{0},V_{1},V_{2}).

Roman domination is an attractive topic, and many papers have been published on it [2, 3, 4, 5]. In order to strengthen defense capability or reduce costs, scholars studied many variations of Roman domination, such as double Roman domination [6], Italian domination [7], triple Roman domination [8], perfect Roman domination [9], signed Roman domination [10], and so on.

In Roman domination, if two locations without legions are not adjacent, then the defense capability can be strengthened. In 2017, Ahangar et al. [11] introduced the outer independent Roman domination on graphs. Given a graph G=(V,E)G=(V,E), an outer independent Roman dominating function (OIRDF) f=(V0,V1,V2)f=(V_{0},V_{1},V_{2}) is a RDF and V0V_{0} is independent. The weight of an OIRDF is w(f)=vVf(v)=|V1|+|V2|w(f)=\sum_{v\in V}f(v)=|V_{1}|+|V_{2}|. The outer independent Roman domination number is the minimum weight of an OIRDF of GG, denoted as γoiR(G)\gamma_{oiR}(G). An OIRDF ff is a γoiR\gamma_{oiR}-function if w(f)=γoiR(G)w(f)=\gamma_{oiR}(G).

Scholars are very interested in this topic and have published many related research results. Martínez et al. [12] obtained some bounds on γoiR(G)\gamma_{oiR}(G) in terms of other parameters and provided closed formulas for the outer independent Roman domination number of rooted product graphs. Poureidi et al. [13] proposed an algorithm to compute γoiR(G)\gamma_{oiR}(G) in 𝒪(|V|){\mathcal{O}}(|V|) time. Nazari-Moghaddam et al. [14] provided a constructive characterization of trees TT whose outer-independent Roman domination number is equal to its Roman domination number. Dehgardi et al. [15] presented an upper bound of γoiR(T)\gamma_{oiR}(T) for a tree TT of order n3n\geq 3. Rad et al. [16] presented upper bounds on the outer-independent Roman domination number for unicyclic and bicyclic graphs.

To compute the exact value of the outer independent Roman domination number in Cartesian product graphs is as difficult as to compute its 2-domination number [17]. In this paper, we study the outer independent Roman domination number of the Cartesian product of paths and cycles PnCmP_{n}\Box C_{m}. We determine the exact values of γoiR(PnC3)\gamma_{oiR}(P_{n}\Box C_{3}) and γoiR(PnCm)\gamma_{oiR}(P_{n}\Box C_{m}) for n=1,2,3n=1,2,3. We also present an upper on γoiR(PnCm)\gamma_{oiR}(P_{n}\Box C_{m}) for m,n4m,n\geq 4.

The Cartesian product of paths and cycles is the graph G=PnCmG=P_{n}\Box C_{m} with vertex set V(G)={vi,j|0in1,0jm1}V(G)=\{v_{i,j}|0\leq i\leq n-1,0\leq j\leq m-1\}. G=PnCmG=P_{n}\Box C_{m} is a cylindrical graph and is an important network topology structure graph. Figure 1 shows graph P3C4P_{3}\Box C_{4}. Let f:V{0,1,2}f:V\rightarrow\{0,1,2\} be an OIRDF on PnCmP_{n}\Box C_{m}, then we denote ff as follows.

f=(f(v0,0)f(v0,1)f(v0,m1)f(v1,0)f(v1,1)f(v1,m1)f(vn1,0)f(vn1,1)f(vn1,m1)).\displaystyle\small{f=\left(\begin{array}[]{cccccc}f(v_{0,0})&f(v_{0,1})&\cdots&f(v_{0,m-1})\\ f(v_{1,0})&f(v_{1,1})&\cdots&f(v_{1,m-1})\\ \vdots&\vdots&\ddots&\vdots\\ f(v_{n-1,0})&f(v_{n-1,1})&\cdots&f(v_{n-1,m-1})\end{array}\right).}
Refer to caption
Figure 1: Graph P3C4P_{3}\Box C_{4}.

2 The outer independent Roman domination number of P1CmP_{1}\Box C_{m}, P2CmP_{2}\Box C_{m} and P3CmP_{3}\Box C_{m}

Theorem 2.1

For any integer m3m\geq 3, γoiR(P1Cm)=3m4+t\gamma_{oiR}(P_{1}\Box C_{m})=3\lfloor\frac{m}{4}\rfloor+t, where mt(mod 4)m\equiv t(\bmod\ 4) and t{0,1,2,3}t\in\{0,1,2,3\}.

Proof 2.2

Since P1CmP_{1}\Box C_{m} and CmC_{m} are isomorphic (written P1CmCmP_{1}\Box C_{m}\cong C_{m}), then we can achieve the outer independent Roman domination number of P1CmP_{1}\Box C_{m} by the outer independent Roman domination number of CmC_{m}[11].

Theorem 2.3

For any integer m3m\geq 3,

γoiR(P2Cm)={4m3+1,m3,5(mod 6),4m3,otherwise.\gamma_{oiR}(P_{2}\Box C_{m})=\left\{\begin{array}[]{lllllllll}\lceil\frac{4m}{3}\rceil+1,&m\equiv 3,5(\bmod\ 6),\\ \lceil\frac{4m}{3}\rceil,&otherwise.\end{array}\right.
Proof 2.4

Let G=P2CmG=P_{2}\Box C_{m}, V(G)={vi,j|0i1,0jm1}V(G)=\{v_{i,j}|0\leq i\leq 1,0\leq j\leq m-1\}.

(1) γoiR(P2Cm)4m3+1\gamma_{oiR}(P_{2}\Box C_{m})\leq\lceil\frac{4m}{3}\rceil+1 for m3,5(mod 6)m\equiv 3,5(\bmod\ 6), γoiR(P2Cm)4m3\gamma_{oiR}(P_{2}\Box C_{m})\leq\lceil\frac{4m}{3}\rceil otherwise. We first define a function hh on {vi,j|0i1,0j5}\{v_{i,j}|0\leq i\leq 1,0\leq j\leq 5\}.

h(vi,j)={2,(i=0j=0)(i=1j=3),1,(i=0j=2,4)(i=1j=1,5),0,otherwise. i.e. h=(201010010201).\displaystyle\small{h(v_{i,j})=\left\{\begin{array}[]{llllll}2,&(i=0\wedge j=0)\vee(i=1\wedge j=3),\\ 1,&(i=0\wedge j=2,4)\vee(i=1\wedge j=1,5),\\ 0,&otherwise.\end{array}\right.\text{\ \ i.e.\ \ }h=\left(\begin{array}[]{llllll}201010\\ 010201\end{array}\right).}

Then we define an OIRDF ff on P2CmP_{2}\Box C_{m} as follows,

f(vi,j)={1,m1(mod 6),i=0,j=m2,m1,3,5(mod 6),i=1,j=m1,0,m1(mod 6),i=0,j=m1,h(vi,jmod6),otherwise.\small{f(v_{i,j})=\left\{\begin{array}[]{llllll}1,&m\equiv 1(\bmod\ 6),i=0,j=m-2,\\ &m\equiv 1,3,5(\bmod\ 6),i=1,j=m-1,\\ 0,&m\equiv 1(\bmod\ 6),i=0,j=m-1,\\ h(v_{i,j\bmod 6}),&otherwise.\end{array}\right.}

That is,

m\displaystyle m 0(mod 6),\displaystyle\equiv 0\,(\bmod\,6), m\displaystyle m 1(mod 6),\displaystyle\equiv 1\,(\bmod\,6),
f\displaystyle f =(201010201010010201010201),\displaystyle=\begin{pmatrix}201010&\cdots&201010\\ 010201&\cdots&010201\end{pmatrix}, f\displaystyle f =(20101020101020101100102010102010102011)\displaystyle=\begin{pmatrix}201010&\cdots&201010&2010110\\ 010201&\cdots&010201&0102011\end{pmatrix}
m\displaystyle m 2(mod 6),\displaystyle\equiv 2\,(\bmod\,6), m\displaystyle m 3(mod 6),\displaystyle\equiv 3\,(\bmod\,6),
f\displaystyle f =(2010102010102001020101020101),\displaystyle=\begin{pmatrix}201010&\cdots&201010&20\\ 010201&\cdots&010201&01\end{pmatrix}, f\displaystyle f =(201010201010201010201010201011)\displaystyle=\begin{pmatrix}201010&\cdots&201010&201\\ 010201&\cdots&010201&011\end{pmatrix}
m\displaystyle m 4(mod 6),\displaystyle\equiv 4\,(\bmod\,6), m\displaystyle m 5(mod 6),\displaystyle\equiv 5\,(\bmod\,6),
f\displaystyle f =(20101020101020100102010102010102),\displaystyle=\begin{pmatrix}201010&\cdots&201010&2010\\ 010201&\cdots&010201&0102\end{pmatrix}, f\displaystyle f =(2010102010102010101020101020101021)\displaystyle=\begin{pmatrix}201010&\cdots&201010&20101\\ 010201&\cdots&010201&01021\end{pmatrix}

One can check that ff is an OIRDF and the weight of ff is

w(f)={m6×8=4m3,m0(mod 6),m76×8+10=4m+23,m1(mod 6),m26×8+3=4m+13,m2(mod 6),m36×8+5=4m+33,m3(mod 6),m46×8+6=4m+23,m4(mod 6),m56×8+8=4m+43,m5(mod 6).\small{w(f)=\left\{\begin{array}[]{lllllllll}\frac{m}{6}\times 8=\frac{4m}{3},&m\equiv 0(\bmod\ 6),\\ \frac{m-7}{6}\times 8+10=\frac{4m+2}{3},&m\equiv 1(\bmod\ 6),\\ \frac{m-2}{6}\times 8+3=\frac{4m+1}{3},&m\equiv 2(\bmod\ 6),\\ \frac{m-3}{6}\times 8+5=\frac{4m+3}{3},&m\equiv 3(\bmod\ 6),\\ \frac{m-4}{6}\times 8+6=\frac{4m+2}{3},&m\equiv 4(\bmod\ 6),\\ \frac{m-5}{6}\times 8+8=\frac{4m+4}{3},&m\equiv 5(\bmod\ 6).\\ \end{array}\right.}

Hence, we have

γoiR(P2Cm){4m3+1,m3,5(mod 6),4m3,otherwise.\gamma_{oiR}(P_{2}\Box C_{m})\leq\left\{\begin{array}[]{lllllllll}\lceil\frac{4m}{3}\rceil+1,&m\equiv 3,5(\bmod\ 6),\\ \lceil\frac{4m}{3}\rceil,&otherwise.\end{array}\right.

(2) γoiR(P2Cm)4m3+1\gamma_{oiR}(P_{2}\Box C_{m})\geq\lceil\frac{4m}{3}\rceil+1 for m3,5(mod 6)m\equiv 3,5(\bmod\ 6), γoiR(P2Cm)4m3\gamma_{oiR}(P_{2}\Box C_{m})\geq\lceil\frac{4m}{3}\rceil otherwise.

Let ff be a γoiR\gamma_{oiR}-function of P2CmP_{2}\Box C_{m}. Denote Vj={v0,j,v1,j}(0jm1)V^{j}=\{v_{0,j},v_{1,j}\}(0\leq j\leq m-1), fj=f(Vj)=f(v0,j)+f(v1,j)f^{j}=f(V^{j})=f(v_{0,j})+f(v_{1,j}). By the definition of OIRDF, fj1f^{j}\geq 1 and if fj=1f^{j}=1, then fj12f^{j-1}\geq 2 or fj+12f^{j+1}\geq 2. Then we use the following algorithm to group VjV^{j} (0jm10\leq j\leq m-1) into three categories.

Input: VjV^{j}
Output: t0,t1,t2,Bt00,Bt11,Bt22t_{0},t_{1},t_{2},B^{0}_{t_{0}},B^{1}_{t_{1}},B^{2}_{t_{2}}
Initialize t0=t1=t2=0t_{0}=t_{1}=t_{2}=0, Bt00=Bt11=Bt22=B^{0}_{t_{0}}=B^{1}_{t_{1}}=B^{2}_{t_{2}}=\emptyset and dj=0d^{j}=0 for j=0j=0 up to m1m-1;
for jj from 0 to m1m-1 with fj3dj=0f^{j}\geq 3\wedge d^{j}=0 do
       t2=t2+1t_{2}=t_{2}+1, dj=1d^{j}=1, Bt22={Vj}B^{2}_{t_{2}}=\{V^{j}\};
      if fj1=1dj1=0f^{j-1}=1\wedge d^{j-1}=0 then
             dj1=1d^{j-1}=1, Bt22=Bt22{Vj1}B^{2}_{t_{2}}=B^{2}_{t_{2}}\cup\{V^{j-1}\};
            
       end if
      if fj+1=1dj+1=0f^{j+1}=1\wedge d^{j+1}=0 then
             dj+1=1d^{j+1}=1, Bt22=Bt22{Vj+1}B^{2}_{t_{2}}=B^{2}_{t_{2}}\cup\{V^{j+1}\};
            
       end if
      Note:VjBt22fj>43|Bt22|+23Note:\sum_{V^{j}\in B^{2}_{t_{2}}}f^{j}>\frac{4}{3}|B^{2}_{t_{2}}|+\frac{2}{3}.
end for
for jj from 0 to m1m-1 with fj=2dj=0f^{j}=2\wedge d^{j}=0 do
       if fj1=fj+1=1dj1=dj+1=0f^{j-1}=f^{j+1}=1\wedge d^{j-1}=d^{j+1}=0 then
             t0=t0+1t_{0}=t_{0}+1, dj1=dj=dj+1=1d^{j-1}=d^{j}=d^{j+1}=1, Bt00={Vj1,Vj,Vj+1}B^{0}_{t_{0}}=\{V^{j-1},V^{j},V^{j+1}\};
             Note:VjBt00fj=4=43|Bt00|Note:\sum_{V^{j}\in B^{0}_{t_{0}}}f^{j}=4=\frac{4}{3}|B^{0}_{t_{0}}|.
       end if
      else if fj1=1dj1=0f^{j-1}=1\wedge d^{j-1}=0 then
             t1=t1+1t_{1}=t_{1}+1, dj1=dj=1d^{j-1}=d^{j}=1, Bt11={Vj1,Vj}B^{1}_{t_{1}}=\{V^{j-1},V^{j}\};
             Note:VjBt11fj=3=43|Bt11|+13Note:\sum_{V^{j}\in B^{1}_{t_{1}}}f^{j}=3=\frac{4}{3}|B^{1}_{t_{1}}|+\frac{1}{3}.
       end if
      else if fj+1=1dj+1=0f^{j+1}=1\wedge d^{j+1}=0 then
             t1=t1+1t_{1}=t_{1}+1, dj=dj+1=1d^{j}=d^{j+1}=1, Bt11={Vj,Vj+1}B^{1}_{t_{1}}=\{V^{j},V^{j+1}\};
             Note:VjBt11fj=3=43|Bt11|+13Note:\sum_{V^{j}\in B^{1}_{t_{1}}}f^{j}=3=\frac{4}{3}|B^{1}_{t_{1}}|+\frac{1}{3}.
       end if
      else
             t2=t2+1t_{2}=t_{2}+1, dj=1d^{j}=1, Bt22={Vj}B^{2}_{t_{2}}=\{V^{j}\};
             Note:VjBt22fj=2=43|Bt22|+23Note:\sum_{V^{j}\in B^{2}_{t_{2}}}f^{j}=2=\frac{4}{3}|B^{2}_{t_{2}}|+\frac{2}{3}.
       end if
      
end for
Algorithm 1 Dividing groups VjV^{j} (0jm1,jN0\leq j\leq m-1,j\in N) into three categories

By Algorithm 1,

w(f)=j=0m1fj=t=1t0VjBt0fj+t=1t1VjBt1fj+t=1t2VjBt2fjt=1t043|Bt0|+t=1t1(43|Bt1|+13)+t=1t2(43|Bt2|+23)=4m3+t13+2t23.\begin{split}w(f)&=\sum\limits_{j=0}^{m-1}f^{j}\\ &=\sum\limits_{t=1}^{t_{0}}\sum_{V^{j}\in B^{0}_{t}}f^{j}+\sum\limits_{t=1}^{t_{1}}\sum_{V^{j}\in B^{1}_{t}}f^{j}+\sum\limits_{t=1}^{t_{2}}\sum_{V^{j}\in B^{2}_{t}}f^{j}\\ &\geq\sum\limits_{t=1}^{t_{0}}\frac{4}{3}|B^{0}_{t}|+\sum\limits_{t=1}^{t_{1}}(\frac{4}{3}|B^{1}_{t}|+\frac{1}{3})+\sum\limits_{t=1}^{t_{2}}(\frac{4}{3}|B^{2}_{t}|+\frac{2}{3})\\ &=\frac{4m}{3}+\frac{t_{1}}{3}+\frac{2t_{2}}{3}.\end{split}

Hence, w(f)4m3w(f)\geq\lceil\frac{4m}{3}\rceil. Then γoiR(P2Cm)4m3\gamma_{oiR}(P_{2}\Box C_{m})\geq\lceil\frac{4m}{3}\rceil for m3,5(mod 6)m\not\equiv 3,5(\bmod\ 6). Next, we will prove γoiR(P2Cm)4m3+1\gamma_{oiR}(P_{2}\Box C_{m})\geq\lceil\frac{4m}{3}\rceil+1 for m3,5(mod 6)m\equiv 3,5(\bmod\ 6) by contradiction.

Suppose w(f)4m3w(f)\leq\lceil\frac{4m}{3}\rceil for m3,5(mod 6)m\equiv 3,5(\bmod\ 6). For m3(mod 6)m\equiv 3(\bmod\ 6), w(f)4m3=4m3w(f)\leq\lceil\frac{4m}{3}\rceil=\frac{4m}{3}, then t1=t2=0t_{1}=t_{2}=0. For m5(mod 6)m\equiv 5(\bmod\ 6), w(f)4m3=4m3+13w(f)\leq\lceil\frac{4m}{3}\rceil=\frac{4m}{3}+\frac{1}{3}, then t11t_{1}\leq 1, t2=0t_{2}=0. By Algorithm 1, we know the details on BtkB^{k}_{t} (0k10\leq k\leq 1, 0ttk0\leq t\leq t_{k}).

Bt0={Vj1,Vj,Vj+1}B^{0}_{t}=\{V^{j-1},V^{j},V^{j+1}\} (0tt00\leq t\leq t_{0}) where f(Vj)=2f(V^{j})=2 and f(Vj1)=f(Vj+1)=1f(V^{j-1})=f(V^{j+1})=1, then we denote f(Bt0)=(1,2,1)f(B^{0}_{t})=(1,2,1), and the corresponding segments of ff are as follows.

S0,1=(010111),S0,2=(111010),S0,3=(110011),S0,4=(011110),S0,5=(020101),S0,6=(101020).\small{\begin{array}[]{ccccccccccccccccc}S_{0,1}=\left(\begin{array}[]{ccccccc}010\\ 111\end{array}\right),S_{0,2}=\left(\begin{array}[]{ccccccc}111\\ 010\end{array}\right),S_{0,3}=\left(\begin{array}[]{ccccccc}110\\ 011\end{array}\right),\\ S_{0,4}=\left(\begin{array}[]{ccccccc}011\\ 110\end{array}\right),S_{0,5}=\left(\begin{array}[]{ccccccc}020\\ 101\end{array}\right),S_{0,6}=\left(\begin{array}[]{ccccccc}101\\ 020\end{array}\right).\end{array}}

Bt1={Vj1,Vj}B^{1}_{t}=\{V^{j-1},V^{j}\} or {Vj,Vj+1}\{V^{j},V^{j+1}\} (0tt10\leq t\leq t_{1}) where f(Vj)=2f(V^{j})=2 and f(Vj1)=f(Vj+1)=1f(V^{j-1})=f(V^{j+1})=1, then f(Bt1)=(1,2)f(B^{1}_{t})=(1,2) or (2,1)(2,1), and the corresponding segments of ff are as follows.

S1,1=(0111),S1,2=(1101),S1,3=(0210),S1,4=(1002),S1,5=(1011),S1,6=(1110),S1,7=(2001),S1,8=(0120).\small{\begin{array}[]{ccccccccccccccccc}S_{1,1}=\left(\begin{array}[]{ccccccc}01\\ 11\end{array}\right),S_{1,2}=\left(\begin{array}[]{ccccccc}11\\ 01\end{array}\right),S_{1,3}=\left(\begin{array}[]{ccccccc}02\\ 10\end{array}\right),S_{1,4}=\left(\begin{array}[]{ccccccc}10\\ 02\end{array}\right),\\ S_{1,5}=\left(\begin{array}[]{ccccccc}10\\ 11\end{array}\right),S_{1,6}=\left(\begin{array}[]{ccccccc}11\\ 10\end{array}\right),S_{1,7}=\left(\begin{array}[]{ccccccc}20\\ 01\end{array}\right),S_{1,8}=\left(\begin{array}[]{ccccccc}01\\ 20\end{array}\right).\end{array}}

For m3(mod 6)m\equiv 3(\bmod\ 6), t1=t2=0t_{1}=t_{2}=0. Then ff only has S0,iS_{0,i} (1i61\leq i\leq 6). In fact, ff only has S0,5S_{0,5} and S0,6S_{0,6}. If ff contains S0,1S_{0,1}, then

f(V)=(f(v)010f(u)111)\small{f(V)=\left(\begin{array}[]{ccccccc}\cdots&f(v)&010&f(u)&\cdots\\ \cdots&&111&&\cdots\end{array}\right)}

where f(v)=f(u)=2f(v)=f(u)=2. It has S0,1S_{0,1} cannot be placed before or after S0,iS_{0,i} (1i61\leq i\leq 6). Thus, ff cannot contains S0,1S_{0,1}. Similarly, ff can not contains S0,iS_{0,i} (2i42\leq i\leq 4). Since ff is an OIRDF, it cannot consist of only S0,5S_{0,5} or only S0,6S_{0,6}. Then it must be

f(V)=(020101020101020101101020101020101020).\small{f(V)=\left(\begin{array}[]{cc:c:cc:cc}020&101&\cdots&020&101&020&101\\ 101&020&\cdots&101&020&101&020\end{array}\right).}

It has m0(mod 6)m\equiv 0(\bmod\ 6) which contradicts to m3(mod 6)m\equiv 3(\bmod\ 6).

For m5(mod 6)m\equiv 5(\bmod\ 6), t11t_{1}\leq 1, t2=0t_{2}=0. If t1=0t_{1}=0, then m0(mod 6)m\equiv 0(\bmod\ 6), thus t1=1t_{1}=1 for m5(mod 6)m\equiv 5(\bmod\ 6). That is, ff contains only one S1,iS_{1,i} (1i8)(1\leq i\leq 8). Since ff is an OIRDF, it cannot contain S1,1S_{1,1}, S1,2S_{1,2}, S1,5S_{1,5} and S1,6S_{1,6}. Then it must be

f(V)=(0201010201010102010110102010102020101020) or f(V)=(0201010202010102010110102010101020101020) or f(V)=(1010201010202010102002010102010101020101) or f(V)=(1010201010102010102002010102020101020101)\begin{array}[]{lllllllllll}f(V)=\small{\left(\begin{array}[]{cc:c:ccc:c:cc}020&101&\cdots&020&10&101&\cdots&020&101\\ 101&020&\cdots&101&02&020&\cdots&101&020\end{array}\right)}\mbox{ or }\\ f(V)=\small{\left(\begin{array}[]{cc:c:ccc:c:cc}020&101&\cdots&020&20&101&\cdots&020&101\\ 101&020&\cdots&101&01&020&\cdots&101&020\end{array}\right)}\mbox{ or }\\ f(V)=\small{\left(\begin{array}[]{cc:c:ccc:c:cc}101&020&\cdots&101&02&020&\cdots&101&020\\ 020&101&\cdots&020&10&101&\cdots&020&101\end{array}\right)}\mbox{ or }\\ f(V)=\small{\left(\begin{array}[]{cc:c:ccc:c:cc}101&020&\cdots&101&01&020&\cdots&101&020\\ 020&101&\cdots&020&20&101&\cdots&020&101\end{array}\right)}\end{array}

It has m2(mod 6)m\equiv 2(\bmod\ 6) which contradicts to m5(mod 6)m\equiv 5(\bmod\ 6).

Therefore, γoiR(P2Cm)=w(f)4m3+1\gamma_{oiR}(P_{2}\Box C_{m})=w(f)\geq\lceil\frac{4m}{3}\rceil+1 for m3,5(mod 6)m\equiv 3,5(\bmod\ 6).

Theorem 2.5

For any integer m3m\geq 3,

γoiR(P3Cm)={2m,m0(mod 2),2m+1,m1(mod 2).\gamma_{oiR}(P_{3}\Box C_{m})=\left\{\begin{array}[]{lllllllll}2m,&m\equiv 0(\bmod\ 2),\\ 2m+1,&m\equiv 1(\bmod\ 2).\end{array}\right.
Proof 2.6

Let G=P3CmG=P_{3}\Box C_{m}, V(G)={vi,j|0i2,0jm1}V(G)=\{v_{i,j}|0\leq i\leq 2,0\leq j\leq m-1\}.

(1) 2m2m and 2m+12m+1 are the upper bounds of γoiR(P3Cm)\gamma_{oiR}(P_{3}\Box C_{m}) for m0(mod 2)m\equiv 0(\bmod\ 2) and m1(mod 2)m\equiv 1(\bmod\ 2) respectively. We first define a function hh on {vi,j|0i2,0j1}\{v_{i,j}|0\leq i\leq 2,0\leq j\leq 1\}.

h(vi,j)={2,i=1,j=0,1,i=0,2,j=1,0,otherwise. i.e. h=(012001).\displaystyle\small{h(v_{i,j})=\left\{\begin{array}[]{llllll}2,&i=1,j=0,\\ 1,&i=0,2,j=1,\\ 0,&otherwise.\end{array}\right.\text{\ \ i.e.\ \ }h=\left(\begin{array}[]{llllll}01\\ 20\\ 01\end{array}\right).}

Then we define an OIRDF ff on P3CmP_{3}\Box C_{m} as follows,

f(vi,j)={1,m1(mod 2),j=m1,h(vi,jmod 2),otherwise.\small{f(v_{i,j})=\left\{\begin{array}[]{llllll}1,&m\equiv 1(\bmod\ 2),j=m-1,\\ h(v_{i,j\bmod\ 2}),&otherwise.\end{array}\right.}

That is,

m0(mod 2),m1(mod 2),f=(010120200101),f=(010112020101011).\displaystyle\small{\begin{array}[]{llllllllll}m\equiv 0(\bmod\ 2),&&&&&&m\equiv 1(\bmod\ 2),\\ f=\left(\begin{array}[]{ccccccccccc}01&\cdots&01\\ 20&\cdots&20\\ 01&\cdots&01\end{array}\right),&&&&&&f=\left(\begin{array}[]{cccccc}01&\cdots&01&1\\ 20&\cdots&20&1\\ 01&\cdots&01&1\end{array}\right).\end{array}}

One can check ff is an OIRDF and the weight is w(f)=4×m2=2mw(f)=4\times\frac{m}{2}=2m for m0(mod 2)m\equiv 0(\bmod\ 2) and w(f)=4×m12+3=2m+1w(f)=4\times\frac{m-1}{2}+3=2m+1 for m1(mod 2)m\equiv 1(\bmod\ 2).

Hence, γoiR(P3Cm)2m\gamma_{oiR}(P_{3}\Box C_{m})\leq 2m for m0(mod 2)m\equiv 0(\bmod\ 2) and γoiR(P3Cm)2m+1\gamma_{oiR}(P_{3}\Box C_{m})\leq 2m+1 for m1(mod 2)m\equiv 1(\bmod\ 2).

(2) 2m2m and 2m+12m+1 are the lower bounds of γoiR(P3Cm)\gamma_{oiR}(P_{3}\Box C_{m}) for m0(mod 2)m\equiv 0(\bmod\ 2) and m1(mod 2)m\equiv 1(\bmod\ 2) respectively.

We can find a γoiR\gamma_{oiR}-function ff satisfying properties (a) and (b). Denote Vj={vi,j0i2}(0jm1)V^{j}=\{v_{i,j}\mid 0\leq i\leq 2\}(0\leq j\leq m-1), fj=f(Vj)=vi,jVjf(vi,j)f^{j}=f(V^{j})=\sum_{v_{i,j}\in V^{j}}f(v_{i,j}).

(a) For 0jm10\leq j\leq m-1, fj1f^{j}\geq 1; if fj=1f^{j}=1, then fj+12f^{j+1}\geq 2 and fj1+fj+16f^{j-1}+f^{j+1}\geq 6.

(b) If fj1=fj+1=1f^{j-1}=f^{j+1}=1, then 2fj32\leq f^{j}\leq 3.

In which superscripts are taken modulo mm.

For (a), since V0V_{0} is independent, then fj0f^{j}\neq 0, i.e. fj1f^{j}\geq 1. Furthermore, if fj=1f^{j}=1, then f(v0,j)=f(v2,j)=0f(v_{0,j})=f(v_{2,j})=0, f(v1,j)=1f(v_{1,j})=1, and f(v0,j+1)1f(v_{0,j+1})\geq 1 and f(v2,j+1)1f(v_{2,j+1})\geq 1, it follows fj+121f^{j+1}\geq 2\neq 1. Additionally, since for each uV0u\in V_{0}, there exists at least one vertex vN(u)v\in N(u) with f(v)=2f(v)=2, then f(v0,j1)+f(v0,j+1)3f(v_{0,j-1})+f(v_{0,j+1})\geq 3, f(v2,j1)+f(v2,j+1)3f(v_{2,j-1})+f(v_{2,j+1})\geq 3, it follows fj1+fj+16f^{j-1}+f^{j+1}\geq 6.

For (b), if fj1=fj+1=1f^{j-1}=f^{j+1}=1, by (a), fj1f^{j}\neq 1. Suppose fj4f^{j}\geq 4. Since V0V_{0} is independent and fj1=fj+1=1f^{j-1}=f^{j+1}=1, then f(v0,j1)=f(v2,j1)=f(v0,j+1)=f(v2,j+1)=0f(v_{0,j-1})=f(v_{2,j-1})=f(v_{0,j+1})=f(v_{2,j+1})=0, f(v1,j1)=f(v1,j+1)=1f(v_{1,j-1})=f(v_{1,j+1})=1. Define an OIRDF ff^{\prime} as: f(v0,j1)=f(v2,j1)=f(v1,j)=f(v0,j+1)=f(v2,j+1)=0f^{\prime}(v_{0,j-1})=f^{\prime}(v_{2,j-1})=f^{\prime}(v_{1,j})=f^{\prime}(v_{0,j+1})=f^{\prime}(v_{2,j+1})=0, f(v0,j)=f(v2,j)=1f^{\prime}(v_{0,j})=f^{\prime}(v_{2,j})=1, f(v1,j1)=f(v1,j+1)=2f^{\prime}(v_{1,j-1})=f^{\prime}(v_{1,j+1})=2. Then w(f)w(f)w(f^{\prime})\leq w(f). If w(f)<w(f)w(f^{\prime})<w(f), then there is contradiction to ff being a γoiR\gamma_{oiR}-function. If w(f)=w(f)w(f^{\prime})=w(f), then we find a γoiR\gamma_{oiR}-function ff^{\prime} with fj1=fj+1=1f^{\prime}_{j-1}=f^{\prime}_{j+1}=1 and 2fj32\leq f^{\prime}_{j}\leq 3.

Then we use Algorithm 2 to group VjV^{j} (0jm10\leq j\leq m-1) into two categories.

Input: VjV^{j}
Output: t0,t1,Bt00,Bt11t_{0},t_{1},B^{0}_{t_{0}},B^{1}_{t_{1}}
Initialize t0=t1=0t_{0}=t_{1}=0, Bt00=Bt11=B^{0}_{t_{0}}=B^{1}_{t_{1}}=\emptyset and dj=0d^{j}=0 for j=0j=0 up to m1m-1;
for jj from 0 to m1m-1 with fj4dj=0f^{j}\geq 4\wedge d^{j}=0 do
       t1=t1+1t_{1}=t_{1}+1, dj=1d^{j}=1, Bt11={Vj}B^{1}_{t_{1}}=\{V^{j}\};
      if fj1=1dj1=0f^{j-1}=1\wedge d^{j-1}=0 then
             dj1=1d^{j-1}=1, Bt11=Bt11{Vj1}B^{1}_{t_{1}}=B^{1}_{t_{1}}\cup\{V^{j-1}\};
            
       end if
      if fj+1=1dj+1=0f^{j+1}=1\wedge d^{j+1}=0 then
             dj+1=1d^{j+1}=1, Bt11=Bt11{Vj+1}B^{1}_{t_{1}}=B^{1}_{t_{1}}\cup\{V^{j+1}\};
            
       end if
      Note:VjBt11fj2|Bt11|+1Note:\sum_{V^{j}\in B^{1}_{t_{1}}}f^{j}\geq 2|B^{1}_{t_{1}}|+1.
end for
for jj from 0 to m1m-1 with fj=3dj=0f^{j}=3\wedge d^{j}=0 do
       if fj+1=1dj+1=0f^{j+1}=1\wedge d^{j+1}=0 then
             t0=t0+1t_{0}=t_{0}+1, dj=dj+1=1d^{j}=d^{j+1}=1, Bt00={Vj,Vj+1}B^{0}_{t_{0}}=\{V^{j},V^{j+1}\};
             Note:VjBt00fj=4=2|Bt00|Note:\sum_{V^{j}\in B^{0}_{t_{0}}}f^{j}=4=2|B^{0}_{t_{0}}|.
       end if
      else
             t1=t1+1t_{1}=t_{1}+1, dj=1d^{j}=1, Bt11={Vj}B^{1}_{t_{1}}=\{V^{j}\};
             Note:VjBt11fj=3=2|Bt11|+1Note:\sum_{V^{j}\in B^{1}_{t_{1}}}f^{j}=3=2|B^{1}_{t_{1}}|+1.
       end if
      
end for
for jj from 0 to m1m-1 with fj=2dj=0f^{j}=2\wedge d^{j}=0 do
       t0=t0+1t_{0}=t_{0}+1, dj=1d^{j}=1, Bt00={Vj}B^{0}_{t_{0}}=\{V^{j}\};
      Note:VjBt00fj=2=2|Bt00|Note:\sum_{V^{j}\in B^{0}_{t_{0}}}f^{j}=2=2|B^{0}_{t_{0}}|.
end for
Algorithm 2 Dividing groups VjV^{j} (0jm1,jN0\leq j\leq m-1,j\in N) into two categories

By Algorithm 2,

w(f)=j=0m1fj=t=1t0VjBt0fj+t=1t1VjBt1fjt=1t0(2|Bt0|)+t=1t1(2|Bt1|+1)=2m+t1.\begin{split}w(f)&=\sum\limits_{j=0}^{m-1}f^{j}=\sum\limits_{t=1}^{t_{0}}\sum_{V^{j}\in B^{0}_{t}}f^{j}+\sum\limits_{t=1}^{t_{1}}\sum_{V^{j}\in B^{1}_{t}}f^{j}\geq\sum\limits_{t=1}^{t_{0}}(2|B^{0}_{t}|)+\sum\limits_{t=1}^{t_{1}}(2|B^{1}_{t}|+1)=2m+t_{1}.\end{split}

Hence, w(f)2mw(f)\geq 2m. Then γoiR(P3Cm)2m\gamma_{oiR}(P_{3}\Box C_{m})\geq 2m for m0(mod 2)m\equiv 0(\bmod\ 2). Next, we will prove γoiR(P3Cm)2m+1\gamma_{oiR}(P_{3}\Box C_{m})\geq 2m+1 for m1(mod 2)m\equiv 1(\bmod\ 2) by contradiction.

Suppose w(f)2mw(f)\leq 2m for m1(mod 2)m\equiv 1(\bmod\ 2), then t1=0t_{1}=0. By Algorithm 2, we know the details on Bt0B^{0}_{t} (0tt00\leq t\leq t_{0}).

Bt0={Vj,Vj+1}B^{0}_{t}=\{V^{j},V^{j+1}\} where f(Vj)=3f(V^{j})=3 and f(Vj+1)=1f(V^{j+1})=1, then f(Bt0)=(3,1)f(B^{0}_{t})=(3,1). Or Bt0={Vj}B^{0}_{t}=\{V^{j}\} where f(Vj)=2f(V^{j})=2, then f(Bt0)=(2)f(B^{0}_{t})=(2). The corresponding segments of ff are as follows.

S0,1=(101110),S0,2=(100120),S0,3=(200110),S0,4=(011),S0,5=(110),S0,6=(101),S0,7=(020).\small{\begin{array}[]{lllllllllccccccccc}&S_{0,1}=\left(\begin{array}[]{ccccccc}10\\ 11\\ 10\end{array}\right),&S_{0,2}=\left(\begin{array}[]{ccccccc}10\\ 01\\ 20\end{array}\right),&S_{0,3}=\left(\begin{array}[]{ccccccc}20\\ 01\\ 10\end{array}\right),\\ &S_{0,4}=\left(\begin{array}[]{ccccccc}0\\ 1\\ 1\end{array}\right),&S_{0,5}=\left(\begin{array}[]{ccccccc}1\\ 1\\ 0\end{array}\right),&S_{0,6}=\left(\begin{array}[]{ccccccc}1\\ 0\\ 1\end{array}\right),&S_{0,7}=\left(\begin{array}[]{ccccccc}0\\ 2\\ 0\end{array}\right).\end{array}}

Since t1=0t_{1}=0, then ff only contains S0,iS_{0,i} (1i7)(1\leq i\leq 7). However, ff does not contain S0,1S_{0,1}. If not, then

f(V)=(10f(u)1110f(v))\small{f(V)=\left(\begin{array}[]{ccccccc}\cdots&10&f(u)&\cdots\\ \cdots&11&&\cdots\\ \cdots&10&f(v)&\cdots\end{array}\right)}

where f(u)=f(v)=2f(u)=f(v)=2. It has S0,1S_{0,1} cannot be placed before S0,iS_{0,i} (1i71\leq i\leq 7). Therefore, ff does not contain S0,1S_{0,1}.

ff does not contain S0,2S_{0,2} and S0,3S_{0,3}, otherwise ff must be

f(V)=(102010200101010120102010).\small{f(V)=\left(\begin{array}[]{ccccccc}10&20&\cdots&10&20\\ 01&01&\cdots&01&01\\ 20&10&\cdots&20&10\end{array}\right)}.

It has m0(mod 2)m\equiv 0(\bmod\ 2) which contradicts to m1(mod 2)m\equiv 1(\bmod\ 2).

ff does not contain S0,4S_{0,4} and S0,5S_{0,5}. If ff contains S0,4S_{0,4}, then

f(V)=(f(u)0f(v)11)\small{f(V)=\left(\begin{array}[]{ccccccc}\cdots&f(u)&0&f(v)&\cdots\\ \cdots&&1&&\cdots\\ \cdots&&1&&\cdots\end{array}\right)}

where f(u)=2f(u)=2 or f(v)=2f(v)=2. It follows S0,4S_{0,4} cannot be placed before or after S0,iS_{0,i} (4i74\leq i\leq 7). Since ff does not contain S0,iS_{0,i} (i=1,2,3i=1,2,3), then ff does not contain S0,4S_{0,4}. Similarly, ff does not contain S0,5S_{0,5}.

Then ff consists of S0,6S_{0,6} and S0,7S_{0,7}. Since ff is an OIRDF, then ff must be

f(V)=(101010100202020210101010).\small{f(V)=\left(\begin{array}[]{ccccccc}10&10&\cdots&10&10\\ 02&02&\cdots&02&02\\ 10&10&\cdots&10&10\end{array}\right)}.

It has m0(mod 2)m\equiv 0(\bmod\ 2) which contradicts to m1(mod 2)m\equiv 1(\bmod\ 2).

Therefore, γoiR(P3Cm)=w(f)2m+1\gamma_{oiR}(P_{3}\Box C_{m})=w(f)\geq 2m+1 for m1(mod 2)m\equiv 1(\bmod\ 2).

3 The outer independent Roman domination number of PnC3P_{n}\Box C_{3}

Theorem 3.1

For any integer n3n\geq 3, γoiR(PnC3)=7n3\gamma_{oiR}(P_{n}\Box C_{3})=\lceil\frac{7n}{3}\rceil.

Proof 3.2

Let G=PnC3G=P_{n}\Box C_{3}, V(G)={vi,j|0in1,0j2}V(G)=\{v_{i,j}|0\leq i\leq n-1,0\leq j\leq 2\}.

(1) 7n3\lceil\frac{7n}{3}\rceil is the upper bound of γoiR(PnC3)\gamma_{oiR}(P_{n}\Box C_{3}). We first define a function hh on P6C3P_{6}\Box C_{3}.

h(vi,j)={2,(i=1,j=0)(i=4,j=1),1,(i=3,5,j=0)(i=0,2,j=1)j=2,0,otherwise. i.e. h=(011201011101021101).\small{h(v_{i,j})=\left\{\begin{array}[]{llllll}2,&(i=1,j=0)\vee(i=4,j=1),\\ 1,&(i=3,5,j=0)\vee(i=0,2,j=1)\vee j=2,\\ 0,&otherwise.\end{array}\right.\text{\ \ i.e.\ \ }h=\left(\begin{array}[]{llllll}011\\ 201\\ 011\\ 101\\ 021\\ 101\end{array}\right).}

Then we define an OIRDF ff on P3CmP_{3}\Box C_{m} as follows.

f(vi,j)={2,n1,4(mod 6),i=n1,j=2,h(vimod6,j),otherwise.\small{f(v_{i,j})=\left\{\begin{array}[]{llllll}2,&n\equiv 1,4(\bmod\ 6),i=n-1,j=2,\\ h(v_{i\bmod 6,j}),&otherwise.\end{array}\right.}

That is,

(011201011101021101011201011101021101),(011201011101021101011201011101021101012),(011201011101021101011201011101021101011201),(011201011101021101011201011101021101011201011),(011201011101021101011201011101021101011201011102),(011201011101021101011201011101021101011201011101021).\displaystyle\small{\left(\begin{array}[]{cc}011\\ 201\\ 011\\ 101\\ 021\\ 101\\ \vdots\\ 011\\ 201\\ 011\\ 101\\ 021\\ 101\\ \end{array}\right),\left(\begin{array}[]{cc}011\\ 201\\ 011\\ 101\\ 021\\ 101\\ \vdots\\ 011\\ 201\\ 011\\ 101\\ 021\\ 101\\ \\ 012\end{array}\right),\left(\begin{array}[]{cc}011\\ 201\\ 011\\ 101\\ 021\\ 101\\ \vdots\\ 011\\ 201\\ 011\\ 101\\ 021\\ 101\\ \\ 011\\ 201\\ \end{array}\right),\left(\begin{array}[]{cc}011\\ 201\\ 011\\ 101\\ 021\\ 101\\ \vdots\\ 011\\ 201\\ 011\\ 101\\ 021\\ 101\\ \\ 011\\ 201\\ 011\\ \end{array}\right),\left(\begin{array}[]{cc}011\\ 201\\ 011\\ 101\\ 021\\ 101\\ \vdots\\ 011\\ 201\\ 011\\ 101\\ 021\\ 101\\ \\ 011\\ 201\\ 011\\ 102\\ \end{array}\right),\left(\begin{array}[]{cc}011\\ 201\\ 011\\ 101\\ 021\\ 101\\ \vdots\\ 011\\ 201\\ 011\\ 101\\ 021\\ 101\\ \\ 011\\ 201\\ 011\\ 101\\ 021\\ \end{array}\right).}

One can check that ff is an OIRDF and the weight is

w(f)={n6×14=7n3,n0(mod6),n16×14+3=7n+23,n1(mod6),n26×14+5=7n+13,n2(mod6),n36×14+7=7n3,n3(mod6),n46×14+10=7n+23,n4(mod6),n56×14+12=7n+13,n5(mod6).\small{w(f)=\left\{\begin{array}[]{lllllllll}\frac{n}{6}\times 14=\frac{7n}{3},&n\equiv 0(\bmod 6),\\ \frac{n-1}{6}\times 14+3=\frac{7n+2}{3},&n\equiv 1(\bmod 6),\\ \frac{n-2}{6}\times 14+5=\frac{7n+1}{3},&n\equiv 2(\bmod 6),\\ \frac{n-3}{6}\times 14+7=\frac{7n}{3},&n\equiv 3(\bmod 6),\\ \frac{n-4}{6}\times 14+10=\frac{7n+2}{3},&n\equiv 4(\bmod 6),\\ \frac{n-5}{6}\times 14+12=\frac{7n+1}{3},&n\equiv 5(\bmod 6).\end{array}\right.}

Hence, γoiR(PnC3)7n3\gamma_{oiR}(P_{n}\Box C_{3})\leq\lceil\frac{7n}{3}\rceil.

(2) 7n3\lceil\frac{7n}{3}\rceil is the lower bound of γoiR(PnC3)\gamma_{oiR}(P_{n}\Box C_{3}). Let ff be a γoiR\gamma_{oiR}-function of PnC3P_{n}\Box C_{3}. Denote Vi={vi,j0j2}(0in1)V^{i}=\{v_{i,j}\mid 0\leq j\leq 2\}(0\leq i\leq n-1), fi=f(Vi)=vi,jVif(vi,j)f^{i}=f(V^{i})=\sum_{v_{i,j}\in V^{i}}f(v_{i,j}). Then ff has properties (a) and (b).

(a) fi1+fi+fi+17f^{i-1}+f^{i}+f^{i+1}\geq 7 for every integer ii (1in2)(1\leq i\leq n-2) where superscripts are taken modulo nn.

Since V0V_{0} is independent, we have fi2f^{i}\geq 2 for every ii (0in1)(0\leq i\leq n-1). For some ii (1in2)(1\leq i\leq n-2), if fi3f^{i}\geq 3, then fi1+fi+fi+17f^{i-1}+f^{i}+f^{i+1}\geq 7; if fi=2f^{i}=2, without loss of generality, let f(vi,0)=0f(v_{i,0})=0, f(vi,1)=f(vi,2)=1f(v_{i,1})=f(v_{i,2})=1, then f(vi1,0)+f(vi+1,0)3f(v_{i-1,0})+f(v_{i+1,0})\geq 3, f(vi1,1)+f(vi1,2)1f(v_{i-1,1})+f(v_{i-1,2})\geq 1, f(vi+1,1)+f(vi+1,2)1f(v_{i+1,1})+f(v_{i+1,2})\geq 1, it follows fi1+fi+fi+17f^{i-1}+f^{i}+f^{i+1}\geq 7.

(b) f0+f15f^{0}+f^{1}\geq 5 and fn1+fn25f^{n-1}+f^{n-2}\geq 5.

Since fi2f^{i}\geq 2 for every ii (0in1)(0\leq i\leq n-1), if f03f^{0}\geq 3, then f0+f15f^{0}+f^{1}\geq 5; if f0=2f^{0}=2, without loss of generality, let f(v0,0)=0f(v_{0,0})=0, f(v0,1)=f(v0,2)=1f(v_{0,1})=f(v_{0,2})=1, then f(v1,0)=2f(v_{1,0})=2, f(v1,1)+f(v1,2)1f(v_{1,1})+f(v_{1,2})\geq 1, i.e. f13f^{1}\geq 3, it follows f0+f15f^{0}+f^{1}\geq 5. Similarly, fn1+fn25f^{n-1}+f^{n-2}\geq 5.

By (a) and (b), we have

3w(f)=i=0n3(fi+fi+1+fi+2)+2f0+2fn1+f1+fn2=i=0n3(fi+fi+1+fi+2)+(f0+f1)+f0+(fn2+fn1)+fn17(n2)+5+2+5+2=7n.\small{\begin{split}3w(f)&=\sum_{i=0}^{n-3}(f^{i}+f^{i+1}+f^{i+2})+2f^{0}+2f^{n-1}+f^{1}+f^{n-2}\\ &=\sum_{i=0}^{n-3}(f^{i}+f^{i+1}+f^{i+2})+(f^{0}+f^{1})+f^{0}+(f^{n-2}+f^{n-1})+f^{n-1}\\ &\geq 7(n-2)+5+2+5+2=7n.\end{split}}

Therefore, γoiR(PnC3)7n3\gamma_{oiR}(P_{n}\Box C_{3})\geq\lceil\frac{7n}{3}\rceil.

4 Upper bounds on the outer independent Roman domination number of PnCmP_{n}\Box C_{m}, n,m4n,m\geq 4

Theorem 4.1

For any integers m,n4m,n\geq 4, γoiR(PnCm)5mn+5n+2m8\gamma_{oiR}(P_{n}\Box C_{m})\leq\frac{5mn+5n+2m}{8}.

Proof 4.2

Let G=PnCmG=P_{n}\Box C_{m}, V(G)={vi,j|0in1,0jm1}V(G)=\{v_{i,j}|0\leq i\leq n-1,0\leq j\leq m-1\}. We first define a function gg on P4C4P_{4}\Box C_{4} as follows.

g(vi,j)={2,(i=0,j=2)(i=2,j=0),1,(i=0,j=0)(i=1,3,j=1,3)(i=2,j=2),0,otherwise. i.e. g=(1020010120100101).\displaystyle\small{g(v_{i,j})=\left\{\begin{array}[]{llllll}2,&(i=0,j=2)\vee(i=2,j=0),\\ 1,&(i=0,j=0)\vee(i=1,3,j=1,3)\vee(i=2,j=2),\\ 0,&otherwise.\end{array}\right.\text{\ \ i.e.\ \ }g=\left(\begin{array}[]{llllll}1020\\ 0101\\ 2010\\ 0101\end{array}\right).}

(1) For m0(mod4)m\equiv 0(\bmod 4), we define an OIRDF ff on PnCmP_{n}\Box C_{m} as the following.

f(vi,j)={2,n0,2(mod 4),i=n1,j3(mod 4),g(vimod4,jmod4),otherwise.\small{f(v_{i,j})=\left\{\begin{array}[]{llllll}2,&n\equiv 0,2(\bmod\ 4),i=n-1,j\equiv 3(\bmod\ 4),\\ g(v_{i\bmod 4,j\bmod 4}),&otherwise.\end{array}\right.}

Also, we can write ff as the following.

n1(mod 4),n2(mod 4),f=(1020102001010101201020100101010110201020010101012010201001010101\hdashline10201020),f=(1020102001010101201020100101010110201020010101012010201001010101\hdashline1020102001020102),\displaystyle\small{\begin{array}[]{llllllllllll}n\equiv 1(\bmod\ 4),&&&n\equiv 2(\bmod\ 4),\\ f=\left(\begin{array}[]{ccccccccccc}1020&\cdots&1020\\ 0101&\cdots&0101\\ 2010&\cdots&2010\\ 0101&\cdots&0101\\ \vdots&\ddots&\vdots\\ 1020&\cdots&1020\\ 0101&\cdots&0101\\ 2010&\cdots&2010\\ 0101&\cdots&0101\\ \hdashline 1020&\cdots&1020\\ \end{array}\right),&&&f=\left(\begin{array}[]{cccccc}1020&\cdots&1020\\ 0101&\cdots&0101\\ 2010&\cdots&2010\\ 0101&\cdots&0101\\ \vdots&\ddots&\vdots\\ 1020&\cdots&1020\\ 0101&\cdots&0101\\ 2010&\cdots&2010\\ 0101&\cdots&0101\\ \hdashline 1020&\cdots&1020\\ 0102&\cdots&0102\end{array}\right),\end{array}}
n3(mod 4),n0(mod 4),f=(1020102001010101201020100101010110201020010101012010201001010101\hdashline102010200101010120102010),f=(1020102001010101201020100101010110201020010101012010201001010101\hdashline10201020010101012010201001020102).\displaystyle\small{\begin{array}[]{llllllllll}n\equiv 3(\bmod\ 4),&&&n\equiv 0(\bmod\ 4),\\ f=\left(\begin{array}[]{ccccccc}1020&\cdots&1020\\ 0101&\cdots&0101\\ 2010&\cdots&2010\\ 0101&\cdots&0101\\ \vdots&\ddots&\vdots\\ 1020&\cdots&1020\\ 0101&\cdots&0101\\ 2010&\cdots&2010\\ 0101&\cdots&0101\\ \hdashline 1020&\cdots&1020\\ 0101&\cdots&0101\\ 2010&\cdots&2010\end{array}\right),&&&f=\left(\begin{array}[]{cccccc}1020&\cdots&1020\\ 0101&\cdots&0101\\ 2010&\cdots&2010\\ 0101&\cdots&0101\\ \vdots&\ddots&\vdots\\ 1020&\cdots&1020\\ 0101&\cdots&0101\\ 2010&\cdots&2010\\ 0101&\cdots&0101\\ \hdashline 1020&\cdots&1020\\ 0101&\cdots&0101\\ 2010&\cdots&2010\\ 0102&\cdots&0102\\ \end{array}\right).\end{array}}

Then the weight is

w(f)={m4×n44×10+m4×11=5mn+2m8,n0(mod 4),m4×n14×10+m4×3=5mn+m8,n1(mod 4),m4×n24×10+m4×6=5mn+2m8,n2(mod 4),m4×n34×10+m4×8=5mn+m8,n3(mod 4).\small{w(f)=\left\{\begin{array}[]{lllllllll}\frac{m}{4}\times\frac{n-4}{4}\times 10+\frac{m}{4}\times 11=\frac{5mn+2m}{8},&n\equiv 0(\bmod\ 4),\\ \frac{m}{4}\times\frac{n-1}{4}\times 10+\frac{m}{4}\times 3=\frac{5mn+m}{8},&n\equiv 1(\bmod\ 4),\\ \frac{m}{4}\times\frac{n-2}{4}\times 10+\frac{m}{4}\times 6=\frac{5mn+2m}{8},&n\equiv 2(\bmod\ 4),\\ \frac{m}{4}\times\frac{n-3}{4}\times 10+\frac{m}{4}\times 8=\frac{5mn+m}{8},&n\equiv 3(\bmod\ 4).\end{array}\right.}

Hence,

γoiR(PnCm){5mn+2m8,n0,2(mod4),5mn+m8,n1,3(mod4).\gamma_{oiR}(P_{n}\Box C_{m})\leq\left\{\begin{array}[]{lllllllll}\frac{5mn+2m}{8},&n\equiv 0,2(\bmod 4),\\ \frac{5mn+m}{8},&n\equiv 1,3(\bmod 4).\end{array}\right.

(2) For m1(mod4)m\equiv 1(\bmod 4), we define an OIRDF ff on PnCmP_{n}\Box C_{m} as the following.

f(vi,j)={2,n0(mod 4),i=n1,j3(mod 4),n2(mod 4),i=n1,j3(mod 4),0jm5,n2(mod 4),i=n1,j=m1,1,i2(mod 4),j=m2,n0,1,3(mod 4),i1,3(mod 4),j=m1,n2(mod 4),i1(mod 4),j=m1,0in3,n2(mod 4),i3(mod 4),j=m1,0,i2(mod 4),j=m1,g(vimod4,jmod4),otherwise.\small{f(v_{i,j})=\left\{\begin{array}[]{llllll}2,&n\equiv 0(\bmod\ 4),i=n-1,j\equiv 3(\bmod\ 4),\\ &n\equiv 2(\bmod\ 4),i=n-1,j\equiv 3(\bmod\ 4),0\leq j\leq m-5,\\ &n\equiv 2(\bmod\ 4),i=n-1,j=m-1,\\ 1,&i\equiv 2(\bmod\ 4),j=m-2,\\ &n\equiv 0,1,3(\bmod\ 4),i\equiv 1,3(\bmod\ 4),j=m-1,\\ &n\equiv 2(\bmod\ 4),i\equiv 1(\bmod\ 4),j=m-1,0\leq i\leq n-3,\\ &n\equiv 2(\bmod\ 4),i\equiv 3(\bmod\ 4),j=m-1,\\ 0,&i\equiv 2(\bmod\ 4),j=m-1,\\ g(v_{i\bmod 4,j\bmod 4}),&otherwise.\end{array}\right.}

Also, we can write ff as follows.

n1(mod 4),n2(mod 4),f=(10201020102010101010101011201020102011001010101010111020102010201010101010101120102010201100101010101011\hdashline1020102010201),f=(10201020102010101010101011201020102011001010101010111020102010201010101010101120102010201100101010101011\hdashline10201020102010102010201012),\displaystyle\small{\begin{array}[]{llllllllll}n\equiv 1(\bmod\ 4),&&&n\equiv 2(\bmod\ 4),\\ f=\left(\begin{array}[]{cccccccc}1020&\cdots&1020&10201\\ 0101&\cdots&0101&01011\\ 2010&\cdots&2010&20110\\ 0101&\cdots&0101&01011\\ \vdots&\ddots&\vdots&\vdots\\ 1020&\cdots&1020&10201\\ 0101&\cdots&0101&01011\\ 2010&\cdots&2010&20110\\ 0101&\cdots&0101&01011\\ \hdashline 1020&\cdots&1020&10201\\ \end{array}\right),&&&f=\left(\begin{array}[]{cccccc}1020&\cdots&1020&10201\\ 0101&\cdots&0101&01011\\ 2010&\cdots&2010&20110\\ 0101&\cdots&0101&01011\\ \vdots&\ddots&\vdots&\vdots\\ 1020&\cdots&1020&10201\\ 0101&\cdots&0101&01011\\ 2010&\cdots&2010&20110\\ 0101&\cdots&0101&01011\\ \hdashline 1020&\cdots&1020&10201\\ 0102&\cdots&0102&01012\\ \end{array}\right),\end{array}}
n3(mod 4),n0(mod 4),f=(10201020102010101010101011201020102011001010101010111020102010201010101010101120102010201100101010101011\hdashline102010201020101010101010112010201020110),f=(10201020102010101010101011201020102011001010101010111020102010201010101010101120102010201100101010101011\hdashline1020102010201010101010101120102010201100102010201021).\displaystyle\small{\begin{array}[]{lllllllllll}n\equiv 3(\bmod\ 4),&&&n\equiv 0(\bmod\ 4),\\ f=\left(\begin{array}[]{cccccccc}1020&\cdots&1020&10201\\ 0101&\cdots&0101&01011\\ 2010&\cdots&2010&20110\\ 0101&\cdots&0101&01011\\ \vdots&\ddots&\vdots&\vdots\\ 1020&\cdots&1020&10201\\ 0101&\cdots&0101&01011\\ 2010&\cdots&2010&20110\\ 0101&\cdots&0101&01011\\ \hdashline 1020&\cdots&1020&10201\\ 0101&\cdots&0101&01011\\ 2010&\cdots&2010&20110\\ \end{array}\right),&&&\ f=\left(\begin{array}[]{cccccc}1020&\cdots&1020&10201\\ 0101&\cdots&0101&01011\\ 2010&\cdots&2010&20110\\ 0101&\cdots&0101&01011\\ \vdots&\ddots&\vdots&\vdots\\ 1020&\cdots&1020&10201\\ 0101&\cdots&0101&01011\\ 2010&\cdots&2010&20110\\ 0101&\cdots&0101&01011\\ \hdashline 1020&\cdots&1020&10201\\ 0101&\cdots&0101&01011\\ 2010&\cdots&2010&20110\\ 0102&\cdots&0102&01021\\ \end{array}\right).\end{array}}

Then the weight is

w(f)={m54×n44×10+n44×14+m54×11+15=5mn+3n+2m28,n0(mod 4),m54×n14×10+n14×14+m54×3+4=5mn+3n+m18,n1(mod 4),m54×n24×10+n24×14+m54×6+8=5mn+3n+2m28,n2(mod 4),m54×n34×10+n34×14+m54×8+11=5mn+3n+m18,n3(mod 4).\small{w(f)=\left\{\begin{array}[]{lllllllll}\frac{m-5}{4}\times\frac{n-4}{4}\times 10+\frac{n-4}{4}\times 14+\frac{m-5}{4}\times 11+15=\frac{5mn+3n+2m-2}{8},&n\equiv 0(\bmod\ 4),\\ \frac{m-5}{4}\times\frac{n-1}{4}\times 10+\frac{n-1}{4}\times 14+\frac{m-5}{4}\times 3+4=\frac{5mn+3n+m-1}{8},&n\equiv 1(\bmod\ 4),\\ \frac{m-5}{4}\times\frac{n-2}{4}\times 10+\frac{n-2}{4}\times 14+\frac{m-5}{4}\times 6+8=\frac{5mn+3n+2m-2}{8},&n\equiv 2(\bmod\ 4),\\ \frac{m-5}{4}\times\frac{n-3}{4}\times 10+\frac{n-3}{4}\times 14+\frac{m-5}{4}\times 8+11=\frac{5mn+3n+m-1}{8},&n\equiv 3(\bmod\ 4).\\ \end{array}\right.}

Hence,

γoiR(PnCm){5mn+3n+2m28,n0,2(mod4),5mn+3n+m18,n1,3(mod4).\gamma_{oiR}(P_{n}\Box C_{m})\leq\left\{\begin{array}[]{lllllllll}\frac{5mn+3n+2m-2}{8},&n\equiv 0,2(\bmod 4),\\ \frac{5mn+3n+m-1}{8},&n\equiv 1,3(\bmod 4).\end{array}\right.

(3) For m2(mod4)m\equiv 2(\bmod 4), we define an OIRDF ff on PnCmP_{n}\Box C_{m} as the following.

f(vi,j)={2,i3(mod 4),j=m3,i1(mod 4),j=m1,n0(mod 4),i=n1,j3(mod 4),n2(mod 4),i=n1,j3(mod 4),0jm6,1,n0,1,2(mod 4),i2(mod 4),j=m2,n3(mod 4),i2(mod 4),j=m2,0in4,n1(mod 4),i=n1,j=m1,g(vimod4,jmod4),otherwise.\small{f(v_{i,j})=\left\{\begin{array}[]{llllll}2,&i\equiv 3(\bmod\ 4),j=m-3,\\ &i\equiv 1(\bmod\ 4),j=m-1,\\ &n\equiv 0(\bmod\ 4),i=n-1,j\equiv 3(\bmod\ 4),\\ &n\equiv 2(\bmod\ 4),i=n-1,j\equiv 3(\bmod\ 4),0\leq j\leq m-6,\\ 1,&n\equiv 0,1,2(\bmod\ 4),i\equiv 2(\bmod\ 4),j=m-2,\\ &n\equiv 3(\bmod\ 4),i\equiv 2(\bmod\ 4),j=m-2,0\leq i\leq n-4,\\ &n\equiv 1(\bmod\ 4),i=n-1,j=m-1,\\ g(v_{i\bmod 4,j\bmod 4}),&otherwise.\end{array}\right.}

Also, we can write ff as follows.

n1(mod 4),n2(mod 4),f=(1020102010201001010101010102201020102010100101010101020110201020102010010101010101022010201020101001010101010201\hdashline10201020102011),f=(1020102010201001010101010102201020102010100101010101020110201020102010010101010101022010201020101001010101010201\hdashline1020102010201001020102010102),\displaystyle\small{\begin{array}[]{llllllllll}n\equiv 1(\bmod\ 4),&&&n\equiv 2(\bmod\ 4),\\ f=\left(\begin{array}[]{cccccccc}1020&\cdots&1020&102010\\ 0101&\cdots&0101&010102\\ 2010&\cdots&2010&201010\\ 0101&\cdots&0101&010201\\ \vdots&\ddots&\vdots&\vdots\\ 1020&\cdots&1020&102010\\ 0101&\cdots&0101&010102\\ 2010&\cdots&2010&201010\\ 0101&\cdots&0101&010201\\ \hdashline 1020&\cdots&1020&102011\\ \end{array}\right),&&&f=\left(\begin{array}[]{cccccc}1020&\cdots&1020&102010\\ 0101&\cdots&0101&010102\\ 2010&\cdots&2010&201010\\ 0101&\cdots&0101&010201\\ \vdots&\ddots&\vdots&\vdots\\ 1020&\cdots&1020&102010\\ 0101&\cdots&0101&010102\\ 2010&\cdots&2010&201010\\ 0101&\cdots&0101&010201\\ \hdashline 1020&\cdots&1020&102010\\ 0102&\cdots&0102&010102\\ \end{array}\right),\end{array}}
n3(mod 4),n0(mod 4),f=(1020102010201001010101010102201020102010100101010101020110201020102010010101010101022010201020101001010101010201\hdashline102010201020100101010101010220102010201020),f=(1020102010201001010101010102201020102010100101010101020110201020102010010101010101022010201020101001010101010201\hdashline10201020102010010101010101022010201020101001020102010201).\displaystyle\small{\begin{array}[]{llllllllllll}n\equiv 3(\bmod\ 4),&&&n\equiv 0(\bmod\ 4),\\ f=\left(\begin{array}[]{cccccccc}1020&\cdots&1020&102010\\ 0101&\cdots&0101&010102\\ 2010&\cdots&2010&201010\\ 0101&\cdots&0101&010201\\ \vdots&\ddots&\vdots&\vdots\\ 1020&\cdots&1020&102010\\ 0101&\cdots&0101&010102\\ 2010&\cdots&2010&201010\\ 0101&\cdots&0101&010201\\ \hdashline 1020&\cdots&1020&102010\\ 0101&\cdots&0101&010102\\ 2010&\cdots&2010&201020\\ \end{array}\right),&&&f=\left(\begin{array}[]{cccccc}1020&\cdots&1020&102010\\ 0101&\cdots&0101&010102\\ 2010&\cdots&2010&201010\\ 0101&\cdots&0101&010201\\ \vdots&\ddots&\vdots&\vdots\\ 1020&\cdots&1020&102010\\ 0101&\cdots&0101&010102\\ 2010&\cdots&2010&201010\\ 0101&\cdots&0101&010201\\ \hdashline 1020&\cdots&1020&102010\\ 0101&\cdots&0101&010102\\ 2010&\cdots&2010&201010\\ 0102&\cdots&0102&010201\\ \end{array}\right).\end{array}}

Then the weight is

w(f)={m64×n44×10+n44×16+m64×11+16=5mn+2n+2m128,n0(mod 4),m64×n14×10+n14×16+m64×3+5=5mn+2n+m+28,n1(mod 4),m64×n24×10+n24×16+m64×6+8=5mn+2n+2m128,n2(mod 4),m64×n34×10+n34×16+m64×8+13=5mn+2n+m+28,n3(mod 4).\small{w(f)=\left\{\begin{array}[]{lllllllll}\frac{m-6}{4}\times\frac{n-4}{4}\times 10+\frac{n-4}{4}\times 16+\frac{m-6}{4}\times 11+16=\frac{5mn+2n+2m-12}{8},&n\equiv 0(\bmod\ 4),\\ \frac{m-6}{4}\times\frac{n-1}{4}\times 10+\frac{n-1}{4}\times 16+\frac{m-6}{4}\times 3+5=\frac{5mn+2n+m+2}{8},&n\equiv 1(\bmod\ 4),\\ \frac{m-6}{4}\times\frac{n-2}{4}\times 10+\frac{n-2}{4}\times 16+\frac{m-6}{4}\times 6+8=\frac{5mn+2n+2m-12}{8},&n\equiv 2(\bmod\ 4),\\ \frac{m-6}{4}\times\frac{n-3}{4}\times 10+\frac{n-3}{4}\times 16+\frac{m-6}{4}\times 8+13=\frac{5mn+2n+m+2}{8},&n\equiv 3(\bmod\ 4).\\ \end{array}\right.}

Hence,

γoiR(PnCm){5mn+2n+2m128,n0,2(mod4),5mn+2n+m+28,n1,3(mod4).\small{\gamma_{oiR}(P_{n}\Box C_{m})\leq\left\{\begin{array}[]{lllllllll}\frac{5mn+2n+2m-12}{8},&n\equiv 0,2(\bmod 4),\\ \frac{5mn+2n+m+2}{8},&n\equiv 1,3(\bmod 4).\end{array}\right.}

(4) For m3(mod4)m\equiv 3(\bmod 4), we define an OIRDF ff on PnCmP_{n}\Box C_{m} as the following.

f(vi,j)={2,i1(mod 4),j=m2,n0(mod 4),i=n1,j3(mod 4),1,i3(mod 4),j=m1,n0,3(mod 4),i0,1(mod 4),j=m1,n0(mod 4),i=n2,j=m3,n1(mod 4),i0(mod 4),j=m1,0in5,n1(mod 4),i1(mod 4),j=m1,n2(mod 4),i0(mod 4),j=m1,n2(mod 4),i1(mod 4),j=m1,0in5,n2(mod 4),i=n1,j0(mod 4),0jm7,g(vimod4,jmod4),otherwise.\small{f(v_{i,j})=\left\{\begin{array}[]{llllll}2,&i\equiv 1(\bmod\ 4),j=m-2,\\ &n\equiv 0(\bmod\ 4),i=n-1,j\equiv 3(\bmod\ 4),\\ 1,&i\equiv 3(\bmod\ 4),j=m-1,\\ &n\equiv 0,3(\bmod\ 4),i\equiv 0,1(\bmod\ 4),j=m-1,\\ &n\equiv 0(\bmod\ 4),i=n-2,j=m-3,\\ &n\equiv 1(\bmod\ 4),i\equiv 0(\bmod\ 4),j=m-1,0\leq i\leq n-5,\\ &n\equiv 1(\bmod\ 4),i\equiv 1(\bmod\ 4),j=m-1,\\ &n\equiv 2(\bmod\ 4),i\equiv 0(\bmod\ 4),j=m-1,\\ &n\equiv 2(\bmod\ 4),i\equiv 1(\bmod\ 4),j=m-1,0\leq i\leq n-5,\\ &n\equiv 2(\bmod\ 4),i=n-1,j\equiv 0(\bmod\ 4),0\leq j\leq m-7,\\ g(v_{i\bmod 4,j\bmod 4}),&otherwise.\end{array}\right.}

Also, we can write ff as follows.

n1(mod 4),n2(mod 4),f=(1020102010101010101021201020102010101010101110201020101010101010212010201020101010101011\hdashline10201020102),f=(1020102010101010101021201020102010101010101110201020101010101010212010201020101010101011\hdashline1020102010111011101020),\displaystyle\small{\begin{array}[]{lllllllll}n\equiv 1(\bmod\ 4),&&&n\equiv 2(\bmod\ 4),\\ f=\left(\begin{array}[]{cccccccc}1020&\cdots&1020&101\\ 0101&\cdots&0101&021\\ 2010&\cdots&2010&201\\ 0101&\cdots&0101&011\\ \vdots&\ddots&\vdots&\vdots\\ 1020&\cdots&1020&101\\ 0101&\cdots&0101&021\\ 2010&\cdots&2010&201\\ 0101&\cdots&0101&011\\ \hdashline 1020&\cdots&1020&102\\ \end{array}\right),&&&f=\left(\begin{array}[]{cccccc}1020&\cdots&1020&101\\ 0101&\cdots&0101&021\\ 2010&\cdots&2010&201\\ 0101&\cdots&0101&011\\ \vdots&\ddots&\vdots&\vdots\\ 1020&\cdots&1020&101\\ 0101&\cdots&0101&021\\ 2010&\cdots&2010&201\\ 0101&\cdots&0101&011\\ \hdashline 1020&\cdots&1020&101\\ 1101&\cdots&1101&020\\ \end{array}\right),\end{array}}
n3(mod 4),n0(mod 4),f=(1020102010101010101021201020102010101010101110201020101010101010212010201020101010101011\hdashline102010201010101010102120102010201),f=(1020102010101010101021201020102010101010101110201020101010101010212010201020101010101011\hdashline10201020101010101010212010201010101020102011).\displaystyle\small{\begin{array}[]{llllllllll}n\equiv 3(\bmod\ 4),&&&n\equiv 0(\bmod\ 4),\\ f=\left(\begin{array}[]{cccccccc}1020&\cdots&1020&101\\ 0101&\cdots&0101&021\\ 2010&\cdots&2010&201\\ 0101&\cdots&0101&011\\ \vdots&\ddots&\vdots&\vdots\\ 1020&\cdots&1020&101\\ 0101&\cdots&0101&021\\ 2010&\cdots&2010&201\\ 0101&\cdots&0101&011\\ \hdashline 1020&\cdots&1020&101\\ 0101&\cdots&0101&021\\ 2010&\cdots&2010&201\\ \end{array}\right),&&&f=\left(\begin{array}[]{cccccc}1020&\cdots&1020&101\\ 0101&\cdots&0101&021\\ 2010&\cdots&2010&201\\ 0101&\cdots&0101&011\\ \vdots&\ddots&\vdots&\vdots\\ 1020&\cdots&1020&101\\ 0101&\cdots&0101&021\\ 2010&\cdots&2010&201\\ 0101&\cdots&0101&011\\ \hdashline 1020&\cdots&1020&101\\ 0101&\cdots&0101&021\\ 2010&\cdots&2010&101\\ 0102&\cdots&0102&011\\ \end{array}\right).\end{array}}

Then the weight is

w(f)={m34×n44×10+n44×10+m34×11+9=5mn+5n+2m148,n0(mod 4),m34×n14×10+n14×10+m34×3+3=5mn+5n+m+18,n1(mod 4),m34×n24×10+n24×10+m34×6+4=5mn+5n+2m148,n2(mod 4),m34×n34×10+n34×10+m34×8+8=5mn+5n+m+18,n3(mod 4).\small{w(f)=\left\{\begin{array}[]{lllllllll}\frac{m-3}{4}\times\frac{n-4}{4}\times 10+\frac{n-4}{4}\times 10+\frac{m-3}{4}\times 11+9=\frac{5mn+5n+2m-14}{8},&n\equiv 0(\bmod\ 4),\\ \frac{m-3}{4}\times\frac{n-1}{4}\times 10+\frac{n-1}{4}\times 10+\frac{m-3}{4}\times 3+3=\frac{5mn+5n+m+1}{8},&n\equiv 1(\bmod\ 4),\\ \frac{m-3}{4}\times\frac{n-2}{4}\times 10+\frac{n-2}{4}\times 10+\frac{m-3}{4}\times 6+4=\frac{5mn+5n+2m-14}{8},&n\equiv 2(\bmod\ 4),\\ \frac{m-3}{4}\times\frac{n-3}{4}\times 10+\frac{n-3}{4}\times 10+\frac{m-3}{4}\times 8+8=\frac{5mn+5n+m+1}{8},&n\equiv 3(\bmod\ 4).\\ \end{array}\right.}

Hence,

γoiR(PnCm){5mn+5n+2m148,n0,2(mod4),5mn+5n+m+18,n1,3(mod4).\small{\gamma_{oiR}(P_{n}\Box C_{m})\leq\left\{\begin{array}[]{lllllllll}\frac{5mn+5n+2m-14}{8},&n\equiv 0,2(\bmod 4),\\ \frac{5mn+5n+m+1}{8},&n\equiv 1,3(\bmod 4).\\ \end{array}\right.}

Therefore, γoiR(PnCm)5mn+5n+2m8\gamma_{oiR}(P_{n}\Box C_{m})\leq\frac{5mn+5n+2m}{8}.

Acknowledgements.
The authors would like to thank the anonymous referee, whose suggestions greatly improved the exposition of this paper.

References

  • [1] Cockayne EJ, Dreyer Jr PA, Hedetniemi SM, Hedetniemi ST. Roman domination in graphs. Discrete mathematics, 2004. 278:11–22. 10.1016/j.disc.2003.06.004.
  • [2] Luiz AG. Roman domination and independent Roman domination on graphs with maximum degree three. Discrete Applied Mathematics, 2024. 348:260–278. 10.1016/j.dam.2024.02.006.
  • [3] Pavlič P, Žerovnik J. Roman domination number of the Cartesian products of paths and cycles. The Electronic Journal of Combinatorics, 2012. 19(3):P19. 10.37236/2595.
  • [4] Poureidi A, Rad NJ. Algorithmic and complexity aspects of problems related to total Roman domination for graphs. Journal of Combinatorial Optimization, 2020. 39(3):747–763. 10.1007/s10878-019-00514-x.
  • [5] Liu CA. Roman domination and double Roman domination numbers of Sierpiński graphs S(Kn,t)S(K_{n},t). Bulletin of the Malaysian Mathematical Sciences Society, 2021. 44(6):4043–4058. 10.1007/s40840-021-01136-5.
  • [6] Beeler RA, Haynes TW, Hedetniemi ST. Double Roman domination. Discrete Applied Mathematics, 2016. 211:23–29. 10.1016/j.dam.2016.03.017.
  • [7] Henning MA, Klostermeyer WF. Italian domination in trees. Discrete Applied Mathematics, 2017. 217:557–564. 10.1016/j.dam.2016.09.035.
  • [8] Abdollahzadeh Ahangar H, Álvarez MP, Chellali M, Sheikholeslami SM, Valenzuela-Tripodoro JC. Triple Roman domination in graphs. Applied Mathematics and Computation, 2021. 391:125444. 10.1016/j.amc.2020.125444.
  • [9] Yue J, Song J. Note on the perfect Roman domination number of graphs. Applied Mathematics and Computation, 2020. 364:124685. 10.1016/j.amc.2019.124685.
  • [10] Abdollahzadeh Ahangar H, Henning MA, Löwenstein C, Zhao Y, Samodivkin V. Signed Roman domination in graphs. Journal of Combinatorial Optimization, 2014. 27(2):241–255. 10.1007/s10878-012-9500-0.
  • [11] Abdollahzadeh Ahangar H, Chellali M, Samodivkin V. Outer independent Roman dominating functions in graphs. International Journal of Computer Mathematics, 2017. 94(12):2547–2557. 10.1080/00207160.2017.1301437.
  • [12] Martínez AC, García SC, García AC, Grisales del Rio AM. On the outer-independent Roman domination in graphs. Symmetry, 2020. 12(11):1846. 10.3390/sym12111846.
  • [13] Poureidi A, Ghaznavi M, Fathali J. Algorithmic complexity of outer independent Roman domination and outer independent total Roman domination. Journal of Combinatorial Optimization, 2021. 41:304–317. 10.1007/s10878-020-00682-1.
  • [14] Nazari-Moghaddam S, Sheikholeslami SM. On trees with equal Roman domination and outer-independent Roman domination number. Communications in Combinatorics and Optimization. 4(2):185–199. 10.22049/CCO.2019.26333.1097.
  • [15] Dehgardi N, Chellali M. Outer independent Roman domination number of trees. Communications in Combinatorics and Optimization, 2021. 6(2):273–286. 10.22049/CCO.2021.27072.1191.
  • [16] Rad NJ, Khodkar A, Kamarulhaili H. Bounds on the outer-independent Roman domination number of unicyclic and bicyclic graphs. Australasian Journal of Combinatorics, 2024. 88(3):385–397.
  • [17] Garzón EM, Martínez JA, Moreno JJ, Puertas ML. On the 2-domination number of cylinders with small cycles. Fundamenta Informaticae, 2022. 185(2):185–199. 10.3233/FI-222107.