This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Outage Probability Expressions for an IRS-Assisted System with and without Source-Destination Link for the Case of Quantized Phase Shifts in κμ\kappa-\mu Fading

Mavilla Charishma Athira Subhash Shashank Shekhar and Sheetal Kalyani 111Mavilla Charishma, Athira Subhash, Shashank Shekhar and Sheetal Kalyani are with the Department of Electrical Engineering, Indian Institute of Technology Madras. (email:{ee19m020@smail,ee16d027@smail,ee17d022@smail,skalyani@ee}.iitm.ac.in).
Mavilla Charishma, Athira Subhash and Shashank Shekhar are co-first authors.
Index Terms:
Intelligent reflecting surface, phase error, outage probability, multivariate integration, Kullback–Leibler divergence, uni-variate dimension reduction.

Abstract

\cbstart

In this work, we study the outage probability (OP) at the destination of an intelligent reflecting surface (IRS) assisted communication system in a κμ\kappa-\mu fading environment. A practical system model that takes into account the presence of phase error due to quantization at the IRS when a) source-destination (SD) link is present and b) SD link is absent is considered. \cbendFirst, an exact expression is derived, and then we derive three simple approximations for the OP using the following approaches: (i) uni-variate dimension reduction, (ii) moment matching and, (iii) Kullback–Leibler divergence minimization. The resulting expressions for OP are simple to evaluate and quite tight even in the tail region. The validity of these approximations is demonstrated using extensive Monte Carlo simulations. \cbstartWe also study the impact of the number of bits available for quantization, the position of IRS with respect to the source and destination and the number of IRS elements on the OP for systems with and without an SD link. \cbend

I Introduction

Intelligent reflecting surface (IRS) assisted communication has gained much research momentum recently [1]. Reconfigurable IRS realized using arrays of passive antenna elements or scattering elements made from metamaterials can introduce specific phase shifts on the incident electromagnetic signal without any decoding, encoding, or radiofrequency processing operations [2, 3]. \cbstartAppropriate phase shifts introduced on a large number of reflector elements can create a coherent combination of their individually scattered signals, which is narrow and focused at the user [3]. This strategy is known as energy focusing [3, 4]. \cbendTraditionally, reliable communication links were achieved by implementing intelligent transmitter and receiver designs that combat signal deterioration’s introduced by the propagation environment. However, in the past few years, there has been a shift in this paradigm towards the idea of smart radio environments (SRE) where the performance gains achievable via ‘smartly’ modifying the wireless propagation channel are explored [1].

Several works in literature study the performance of SRE realized using IRS and compare them with the performance achievable using techniques like cooperative relaying, massive multiple-input multiple-output (M-MIMO), distributed antennas, backscatter communication, millimetre (mm)-wave communication, and network densification [5, 6, 7, 8, 9]. The authors of [6] show that an IRS-assisted M-MIMO system can use the same channel estimation overhead as an M-MIMO system with no IRS to achieve a higher user signal to interference and noise ratio (SINR). The authors of [10] study the performance gains achieved by an IRS-assisted M-MIMO system integrated with a non-orthogonal multiple access (NOMA) network. They also discuss the critical challenges in realizing an IRS-aided NOMA network. The key differences and similarities between an IRS-aided network and a relay network are studied by the authors of [5]. Using mathematical analysis and numerical simulations, they demonstrate that a sufficiently large IRS can outperform relay-aided systems in terms of data rate while reducing the implementation complexity. The number of reflector elements required to outperform the performance of the decode and forward (DF) relay system is studied by the authors of [11]. IRS-aided bistatic backscatter communication (BackCom) system is studied in [7]. Notably, the joint optimization of the phase shifts at the IRS and the transmit beamforming vector of the carrier emitter that minimizes the transmit power consumption is studied. Another exciting venue where IRS has useful applications are the mm-wave communication systems [8, 12, 9]. Authors of [8] proposed three different low-cost architectures based on IRS for beam index modulation schemes in mm-wave communication systems. These schemes are capable of eliminating the line-of-sight blockage of millimetre wave frequencies. \cbstart The authors of [12] modeled the small scale fading in an mm-wave communication system using the fluctuating two-ray (FTR) distribution and studied the outage probability (OP) and average bit error rate performance of both an IRS aided system and an amplify and forward (AF) relay-based system. They demonstrate the superiority of the IRS aided systems over AF systems in the mm-wave regime even with a small number of reflecting elements. \cbendThe authors of [9] also study the prospects of combating issues in mm-wave systems like severe path loss and blockage using an IRS to provide effective reflected paths and hence enhance the coverage.

Most of the works discussed above consider performance metrics such as OP, rate and spectral efficiency to evaluate the performance of the IRS-aided communication network. Several works in the literature propose different approximations for the OP of an IRS aided system involving one source and one destination node. The authors of [13] assume the availability of a large number of reflector elements and hence use the central limiting theorem (CLT) to derive an approximate expression for the OP. Similarly, the authors of [14] also derive an approximation for the OP using CLT. Unlike the system model in [13], they assume that the direct link between the source and the destination is in a permanent outage. Such Gaussian approximations are also used to characterize metrics like ergodic capacity, secrecy outage probability in many other works, including [15, 16, 17, 18]. Similarly, Gamma approximations (using moment matching) are used for deriving approximate OP by the authors of [19, 20, 21, 22]. As mentioned by the authors of [22], the Gamma distribution is a Type-III Pearson distribution and is widely used in fitting distributions for positive random variables (RVs) [23, 24]. The authors of [15, 18, 25, 20] consider more practical IRS models, where due to hardware constraints, the possible phase shifts at the IRS elements are restricted to a finite set of discrete values. \cbstartMost of the above works consider Rayleigh fading channels for analytical tractability. However, the IRS can be deployed at a height such that a LOS link may be available with the source or the destination or both. The authors of [13] consider one such scenario where both the links with the source and the destination experience Rician fading. In this work, we consider the more general scenario where all the links experience independent κμ\kappa-\mu fading. Most of the common fading models like the Rayleigh, Rician, Nakagamim-m can be derived as special cases of the κμ\kappa-\mu fading model [26]. \cbend

Table I provides a brief summary of the critical literature on this topic222Note that the authors of [22] also use Gamma approximation. However, they consider a different path loss model for a system without an SD link and hence, neither we include [22] in Table I, nor do we compare our performance with their results.. Here, the antenna model refers to the antenna model of the source and destination pair devices. From the table, it is apparent that the study of OP considering both bb bit phase quantization at the IRS and an active source-destination (SD) link is not available in the open literature.

Reference
Exact/
approximate
Kind of
approximation
Impairment
Antenna
model
SD link
Fading
[13],[27] Approximate
CLT and hence
gaussian
approximation
No SISO
[13]:Yes
[27]: No
Rician,
Rayleigh
[19],[21] Approximate
Gamma moment
mathching
for sum of
double Rayleigh
No SISO
[21]:Yes
[19]: No
Rayleigh
[28],[20] Approximate
Gamma approximation
[28]:for double-rayleigh,
[20]: for SNR
Yes, quantisa-
tion error for
[28]: 1 bit phase
[20]: bb bit phase
SISO
[28]:Yes
[20]: No
Rayleigh
This work Approximate
(a) Approximation for
exact integral
for outage
(b) Gamma Moment
matching
(c) Gamma KL
divergence min
Yes,
quantisation
error for
bb bit phase
representation
SISO Yes κμ\kappa-\mu
Table I: Key literature studying the OP of IRS-assisted communication systems.
\cbstart

In this work, we present an exact expression and three different approximations for characterizing the OP at the destination of an IRS-assisted communication system in a κμ\kappa-\mu fading environment. \cbendHere, we consider a practical scenario where the phase shift at the IRS elements only takes a finite number of possible values owing to the quantization of the phase at the IRS. Furthermore, we evaluate the system’s performance both in the presence and absence of a direct link between the source and the destination node. Our major contributions are summarised as follows: \cbstart

  • We study the OP of an IRS assisted system in the presence of phase error due to quantization at the IRS in a κμ\kappa-\mu fading environment.

  • We derive an exact expression for the OP in terms of a multi-fold integral and approximate it using the uni-variate dimension reduction method.

  • Using the method of moment matching333The authors of [20] and [19] also uses moment matching to obtain a Gamma approximation, however in scenarios without an SD link and without quantization error, respectively. Our approximation for the received SNR is for a more general scenario, and it recovers the result in [20] as a special case., we approximate the received SNR as a Gamma RV and hence derive a simple expression for the corresponding OP.

  • We also derive the parameters of the Gamma distribution that has the least Kullback–Leibler (KL) divergence with the exact distribution of SNR444The Gamma distribution, which has minimum KL divergence with respect to the distribution of the received SNR cannot be obtained by moment matching.. We thus characterize the OP in terms of the cumulative distribution function (CDF) of the resulting Gamma RV.

  • We also observed the impact of the number of IRS elements, location of the IRS and the number of bits available for quantization on the OP for an IRS aided system with and without an SD link.

\cbend

Organization

The rest of the paper is organized as follows. The system model we consider is presented in Section II. Next, in Section III, we propose three approximations to evaluate the OP. In Section IV, we verify the utility of our expressions through simulation experiments and present insights regarding the impact of various system parameters on the OP and finally, Section V concludes the work.

Notation

Here, 𝐒\mathbf{S}, and 𝐃\mathbf{D} denotes the source, and the destination, respectively. symmetric complex Gaussian random variable with mean zero and variance σ2\sigma^{2}. diag(a1,,aN)\text{diag}(a_{1},\cdots,a_{N}) denotes a diagonal matrix with entries a1,,aNa_{1},\cdots,a_{N} and arg(z) denotes the argument (phase) of the complex number zz.

II System model

𝐡SR\mathbf{h}^{SR}𝐡RD\mathbf{h}^{RD}hSDh^{SD}𝐒\mathbf{S}𝐃\mathbf{D}IRS\put(0.2,0.5){books}
Figure 1: System Model

We consider a system consisting of one source node (𝐒\mathbf{S}) communicating with one destination node (𝐃\mathbf{D}) using an 𝐈𝐑𝐒\mathbf{IRS} with NN reflector elements as shown in Fig. 1. Here 𝐒\mathbf{S} and 𝐃\mathbf{D} are both equipped with a single antenna each. Furthermore, we assume that the distance between 𝐈𝐑𝐒\mathbf{IRS} and 𝐒/𝐃\mathbf{S/D} is large enough such that all elements of the 𝐈𝐑𝐒\mathbf{IRS} are at the same distance from 𝐒/𝐃\mathbf{S/D}. Let, 𝐡SRN×1\mathbf{h}^{SR}\in\mathbb{C}^{N\times 1}, 𝐡RDN×1\mathbf{h}^{RD}\in\mathbb{C}^{N\times 1} and hSD1{h}^{SD}\in\mathbb{C}^{1} denote the small-scale fading channel coefficients of the 𝐒\mathbf{S} to 𝐈𝐑𝐒\mathbf{IRS}, 𝐈𝐑𝐒\mathbf{IRS} to 𝐃\mathbf{D} and 𝐒\mathbf{S} to 𝐃\mathbf{D} link respectively. \cbstartIt is assumed that all the channels experience independent κμ\kappa-\mu fading, i.e [𝐡AB]n[\mathbf{h}^{AB}]_{n} follows the κμ\kappa-\mu distribution with parameters κAB\kappa_{AB} and μAB\mu_{AB} where A,B{S,R,D}A,B\in\{S,R,D\}. Also the total power of each channel, i.e., 𝔼[|𝐡AB|2]=dABβ:=t^AB2\mathbb{E}\left[|\mathbf{h}^{AB}|^{2}\right]=d_{AB}^{-\beta}:=\hat{t}^{2}_{AB} Let α\alpha and θn\theta_{n} represent amplitude coefficient and phase shift introduced by the nn-th 𝐈𝐑𝐒\mathbf{IRS} element, respectively. The signal received at node 𝐃\mathbf{D} is then given by, y=p(hSD+α(𝐡SR)T𝚯𝐡RD)s+w,y=\sqrt{p}\left({h}^{SD}+\alpha\left(\mathbf{h}^{SR}\right)^{T}\mathbf{\Theta}\mathbf{h}^{RD}\right)s+w, where 𝚯=diag(ejθ1,,ejθN)\mathbf{\Theta}=\ \text{diag}\left(e^{j\theta_{1}},...,e^{j\theta_{N}}\right), pp is the transmit power, ss is the transmitted signal with 𝔼\mathbb{E}[|s|2|s|^{2}]=1 and ww is the AWGN with noise power σ2\sigma^{2}. The SNR at the node 𝐃\mathbf{D} of the IRS-supported network is then given by γIRS=γs|hSD+α(𝐡SR)T𝚯𝐡RD|2,\gamma_{IRS}=\gamma_{s}\Big{|}{h}^{SD}+\alpha\left(\mathbf{h}^{SR}\right)^{T}\mathbf{\Theta}\mathbf{h}^{RD}\Big{|}^{2}, where γs=pσ2\gamma_{s}=\frac{p}{\sigma^{2}}. To achieve maximum SNR at 𝐃\mathbf{D}, the phase-shift of the nn-th IRS element needs to be selected as follows,

θnopt=arg(hSD)arg([𝐡SR]n[𝐡RD]n).\theta_{n}^{opt}=\text{arg}\left({h}^{SD}\right)-\text{arg}\left(\left[\mathbf{h}^{SR}\right]_{n}\left[\mathbf{h}^{RD}\right]_{n}\right). (1)

Note that such a choice of phase shifts that maximise the SNR is very common in literature and is also used by the authors of [18, 20, 11]. \cbendLet bb be the number of bits used to represent the phase. Then the set of all possible phase shifts at each of the IRS element is given by {0,2π2b,,(2b1)2π2b}\{0,\frac{2\pi}{2^{b}},\cdots,\frac{(2^{b}-1)2\pi}{2^{b}}\} [18]. Hence, θnopt\theta_{n}^{opt} may not be always available and the exact phases shift at the nn-th IRS element can be represented as θn\theta_{n} = θnopt\theta_{n}^{opt} + Φn\Phi_{n}, where Φn\Phi_{n} denotes the phase error at the nthn^{th} reflector. Note that, 2bπΦn2bπ-2^{-b}\pi\leq\Phi_{n}\leq 2^{-b}\pi and we model Φn𝒰[2bπ,2bπ]\Phi_{n}\sim\mathcal{U}[-2^{-b}\pi,2^{-b}\pi], similar to the authors of [29], [18]. Here, 𝒰[a,b]\mathcal{U}[a,b] represents the uniform distribution over the support [a,b][a,b]. Thus, the expression for SNR incorporating the phase error term is given as follows:

γIRS=γs(hSD|+αn=1N|[𝐡SR]n[𝐡RD]n|ejΦn|2).\gamma_{IRS}=\gamma_{s}\left(\Big{|}\big{|}{h}^{SD}\big{|}+\alpha\sum\limits_{n=1}^{N}\big{|}\left[\mathbf{h}^{SR}\right]_{n}\big{|}\big{|}\left[\mathbf{h}^{RD}\right]_{n}\big{|}e^{j\Phi_{n}}\Big{|}^{2}\right). (2)

In the next section, we derive an exact expression and then three simple approximations for the CDF of γIRS\gamma_{IRS} in (2) and hence the OP at 𝐃\mathbf{D}. \cbstartNote that, our system model is similar to [18], however we consider the more general case of κμ\kappa-\mu fading here. Furthermore, the focus in [18] was the ergodic capacity and hence they do not derive the CDF of γIRS\gamma_{IRS}. \cbend

III Outage probability

Outage at a node is the phenomenon of the instantaneous SNR falling below a particular threshold, say γ\gamma. The OP at node 𝐃\mathbf{D} can be evaluated as,

Poutage=[γIRS<γ].P_{outage}=\mathbb{P}\left[\gamma_{IRS}<\gamma\right]. (3)
\cbstart

Note that γIRS\gamma_{IRS} is the square of the absolute value of the sum of a κμ\kappa-\mu RV and a sum of i.i.d. double κμ\kappa-\mu RVs [30] each scaled by the exponential of a uniform RV. The PDF of a double κμ\kappa-\mu RV can be expressed in terms of a double infinite summation of terms involving the Meijer G-functions [30, (7)]. Hence the distribution of the sum of NN such scaled double κμ\kappa-\mu RVs has a very complicated expression[28, 19]. \cbendThis makes the characterization of the exact distribution of the OP a mathematically intractable task. So far, there were various kinds of approximations for OP (as shown in Table I) proposed in the open literature. \cbstartHowever, to the best of our knowledge, none of them considered the most general case, i.e., the presence of an SD link, b-bit quantization error and κμ\kappa-\mu fading channels. \cbendHence, in the subsequent subsections, we consider the most general case and present an exact expression and three different simple approximations for (3).

III-A Dimension Reduction Approximation

\cbstart

In this subsection, we first derive an exact expression for the CDF of SNR in the form of a multi-fold integration where the order of integration grows linearly with the number of elements in the IRS. Solving this multi-fold integration analytically is mathematically intractable, and we demonstrate how the method of uni-variate dimension reduction [31] can be used to circumvent this issue.

Lemma 1.

For a threshold γ\gamma, an exact expression for OP at node 𝐃\mathbf{D} is given by (4), where 𝐜=[αcos(ϕ1)αcos(ϕN)]T\mathbf{c}=\left[\alpha\cos(\phi_{1})\dots\alpha\cos(\phi_{N})\right]^{T}, 𝐬=[αsin(ϕ1)αsin(ϕN)]T\mathbf{s}=\left[\alpha\sin(\phi_{1})\dots\alpha\sin(\phi_{N})\right]^{T}, 𝐱=[x1,,xN]\mathbf{x}=\left[x_{1},\dots,x_{N}\right], ρSR=eμSRκSR,ρRD=eμRDκRD\rho_{SR}=e^{\mu_{SR}\kappa_{SR}},\rho_{RD}=e^{\mu_{RD}\kappa_{RD}} and aSR=μSR(1+κSR)t^SR2,aRD=μRD(1+κRD)t^RD2a_{SR}=\frac{\mu_{SR}\left(1+\kappa_{SR}\right)}{\hat{t}^{2}_{SR}},a_{RD}=\frac{\mu_{RD}\left(1+\kappa_{RD}\right)}{\hat{t}^{2}_{RD}}. Here, Kν()\textit{K}_{\nu}\left(\cdot\right) is modified Bessel function of the second kind of order ν\nu [32], QM(a,b)Q_{M}\left(a,b\right) is the Marcum-Q function and U()\operatorname{U}(\cdot) is the unit step function.

Poutage\displaystyle P_{outage} =(2b+1aSRaRDπγsρSRρRD)N[(1QμSD(2μSDκSD,2μSD(1+κSD)(γ(𝐬T𝐱)2𝐜T𝐱)γst^SD))\displaystyle=\left(\frac{2^{b+1}\sqrt{a_{SR}a_{RD}}}{\pi\sqrt{\gamma_{s}}\rho_{SR}\rho_{RD}}\right)^{N}\int\dots\int\left[\scriptstyle{\left(1-\text{Q}_{\mu_{SD}}\left(\sqrt{2\mu_{SD}\kappa_{SD}},\sqrt{2\mu_{SD}\left(1+\kappa_{SD}\right)}\frac{\left(\sqrt{\gamma-\left(\mathbf{s}^{T}\mathbf{x}\right)^{2}}-\mathbf{c}^{T}\mathbf{x}\right)}{\sqrt{\gamma_{s}}\hat{t}_{SD}}\right)\right)}\right.
×U(γ(𝐬T𝐱)2𝐜T𝐱)i=1N(m=0n=0(μSRκSR)m(μRDκRD)nm!Γ(μSR+m)n!Γ(μRD+n)\displaystyle\times\operatorname{U}\left(\sqrt{\gamma-\left(\mathbf{s}^{T}\mathbf{x}\right)^{2}}-\mathbf{c}^{T}\mathbf{x}\right)\prod_{i=1}^{N}\left(\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{\left(\mu_{SR}\kappa_{SR}\right)^{m}\left(\mu_{RD}\kappa_{RD}\right)^{n}}{m!\Gamma\left(\mu_{SR}+m\right)n!\Gamma\left(\mu_{RD}+n\right)}\right.
×(aSRaRDγsxi)μSR+μRD+m+n1KμSRμRD+mn(2aSRaRDγsxi))]dx1dϕ1dxNdϕN,\displaystyle\left.\left.\times\left(\sqrt{\frac{a_{SR}a_{RD}}{\gamma_{s}}}x_{i}\right)^{\mu_{SR}+\mu_{RD}+m+n-1}\textit{K}_{\mu_{SR}-\mu_{RD}+m-n}\left(2\sqrt{\frac{a_{SR}a_{RD}}{\gamma_{s}}}x_{i}\right)\right)\right]dx_{1}d\phi_{1}\dots dx_{N}d\phi_{N}, (4)
\cbend
Proof.

Please refer Appendix A for the proof. ∎

Note that (4) provides an exact expression for the OP at 𝐃\mathbf{D}, but it is a multi-fold integration of order 2N2N. It is very difficult to evaluate this expression even numerically for values of NN such as 5050 using common mathematical software such as Matlab/Mathematica. So, it is important to have an approximation that is close to (4) and is also easily computable. One such approximation for general multivariate integrals is presented in [31] in the context of stochastic mechanics. The work in [31] approximate an nn-th order integration as a sum of nn single order integrations. This approximation has also been recently used to approximate complicated multidimensional integrals for cell-free massive MIMO system[33]. In this work, we propose to approximate the integral in (4) using the uni-variate dimension reduction method. The key challenge in applying the dimension reduction method is to express the desired multi-fold integration as an expectation of some function, where the expectation is taken with respect to a random vector of length same as the order of integration. The proposed approximation and detailed proof are presented in the following theorem. \cbstart

Theorem 1.

For a threshold γ\gamma, an approximate expression of the OP at node 𝐃\mathbf{D} is given by (5), where T1=γ(N1)αμT_{1}=\sqrt{\gamma}-\left(N-1\right)\alpha\mu, μ=γs(μSR)12(μRD)12aSRaRDF11(12;μSR;κSRμSR)F11(12;μRD;κRDμRD)\mu=\frac{\sqrt{\gamma_{s}}\left(\mu_{SR}\right)_{\frac{1}{2}}\left(\mu_{RD}\right)_{\frac{1}{2}}}{\sqrt{a_{SR}a_{RD}}}{}_{1}F_{1}\left(-\frac{1}{2};\mu_{SR};-\kappa_{SR}\mu_{SR}\right){}_{1}F_{1}\left(-\frac{1}{2};\mu_{RD};-\kappa_{RD}\mu_{RD}\right), h1(x)=(1QμSD(2μSDκSD,2μSD(1+κSD)(γx(N1)αμ)γst^SD))h_{1}\left(x\right)=\left(1-\text{Q}_{\mu_{SD}}\left(\sqrt{2\mu_{SD}\kappa_{SD}},\sqrt{2\mu_{SD}\left(1+\kappa_{SD}\right)}\frac{\left(\sqrt{\gamma}-x-(N-1)\alpha\mu\right)}{\sqrt{\gamma_{s}}\hat{t}_{SD}}\right)\right) and Kν\textit{K}_{\nu} is modified Bessel function of the second kind of order ν\nu [32] QM(a,b)Q_{M}\left(a,b\right) is the Marcum-Q function and U()\operatorname{U}(\cdot) is the unit step function.

Proof.

Please refer Appendix B for the proof. ∎

PoutageN(4aSRaRDγsρSRρRD)m=0n=0(μSRκSR)mm!Γ(μSR+m)(μRDκRD)nn!Γ(μRD+n)(0T1h1(x)\displaystyle P_{outage}\approx N\left(\frac{4\sqrt{a_{SR}a_{RD}}}{\sqrt{\gamma_{s}}\rho_{SR}\rho_{RD}}\right)\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{\left(\mu_{SR}\kappa_{SR}\right)^{m}}{m!\Gamma\left(\mu_{SR}+m\right)}\frac{\left(\mu_{RD}\kappa_{RD}\right)^{n}}{n!\Gamma\left(\mu_{RD}+n\right)}\left(\int_{0}^{T_{1}}h_{1}\left(x\right)\right.
×(aSRaRDγsx)μSR+μRD+m+n1KμSRμRD+mn(2aSRaRDγsx)dx)\displaystyle\times\left(\sqrt{\frac{a_{SR}a_{RD}}{\gamma_{s}}}x\right)^{\mu_{SR}+\mu_{RD}+m+n-1}\left.K_{\mu_{SR}-\mu_{RD}+m-n}\left(2\sqrt{\frac{a_{SR}a_{RD}}{\gamma_{s}}}x\right)dx\right)
+N2b2ππ2bπ2b(1QμSD(2μSDκSD,2μSD(1+κSD)(γ(αsin(ϕi)μ)2αcos(ϕi)μ(N1)αμ)γst^SD))×U(.γ(αsin(ϕ)μ)2αcos(ϕ)μ(N1)αμ.)dϕ\displaystyle+N\frac{2^{b}}{2\pi}\int^{\frac{\pi}{2^{b}}}_{\frac{-\pi}{2^{b}}}\begin{array}[]{l}\left(1-\text{Q}_{\mu_{SD}}\left(\sqrt{2\mu_{SD}\kappa_{SD}},\sqrt{2\mu_{SD}\left(1+\kappa_{SD}\right)}\frac{\left(\sqrt{\gamma-\left(\alpha\sin{\left(\phi_{i}\right)}\mu\right)^{2}}-\alpha\cos{\left(\phi_{i}\right)}\mu-(N-1)\alpha\mu\right)}{\sqrt{\gamma_{s}}\hat{t}_{SD}}\right)\right)\\ \times\operatorname{U}\Bigg{(}\Bigg{.}\sqrt{\gamma-\left(\alpha\sin{\left(\phi\right)}\mu\right)^{2}}-\alpha\cos{\left(\phi\right)}\mu-(N-1)\alpha\mu\Bigg{.}\Bigg{)}d\phi\end{array}
(2N1)(1QμSD(2μSDκSD,2μSD(1+κSD)(γNαμ)γst^SD))U(γNαμ),\displaystyle-(2N-1)\left(1-\text{Q}_{\mu_{SD}}\left(\sqrt{2\mu_{SD}\kappa_{SD}},\sqrt{2\mu_{SD}\left(1+\kappa_{SD}\right)}\frac{\left(\sqrt{\gamma}-N\alpha\mu\right)}{\sqrt{\gamma_{s}}\hat{t}_{SD}}\right)\right)\operatorname{U}\left(\sqrt{\gamma}-N\alpha\mu\right), (5)
\cbend

The approximation proposed in (5) consists of only 22 single integrations555Note that for practical values of dsr,drdd_{sr},d_{rd} and β\beta the value of μ\mu is quite small and hence, in such regimes γ(αsin(ϕ)μ)2>0\gamma-\left(\alpha\sin{\left(\phi\right)}\mu\right)^{2}>0 for the range of thresholds typically used. Furthermore, for large bb the range of sinϕ\sin{\phi} itself is small and that too make γ(αsin(ϕ)μ)2\gamma-\left(\alpha\sin{\left(\phi\right)}\mu\right)^{2} positive. Hence γ(αsin(ϕ)μ)2{\gamma-\left(\alpha\sin{\left(\phi\right)}\mu\right)^{2}} which appears in the second integral is always non negative for all the cases of interest in this application. which are easy to solve numerically and provides a good approximation for the OP which is confirmed through extensive simulations presented in Section IV.

Next, we will discuss one case which is prevalent in literature. We consider the scenario where we have a perfect phase alignment at the IRS, i.e., there is no phase error, and the IRS has no hardware impairments. The approximation of the OP, for perfect phase alignment case, can be obtained by substituting ϕ=0\phi=0 in (5) and observing that we are approximating an NN-th order integration. The final result is presented in the following corollary. \cbstart

Corollary 1.1.

For perfect phase alignment and threshold γ\gamma, the OP at node 𝐃\mathbf{D} is approximated as

Poutage\displaystyle P_{outage} N(4aSRaRDγsρSRρRD)m=0n=0(μSRκSR)mm!Γ(μSR+m)(μRDκRD)nn!Γ(μRD+n)(0T1h1(x)\displaystyle\approx N\left(\frac{4\sqrt{a_{SR}a_{RD}}}{\sqrt{\gamma_{s}}\rho_{SR}\rho_{RD}}\right)\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{\left(\mu_{SR}\kappa_{SR}\right)^{m}}{m!\Gamma\left(\mu_{SR}+m\right)}\frac{\left(\mu_{RD}\kappa_{RD}\right)^{n}}{n!\Gamma\left(\mu_{RD}+n\right)}\left(\int_{0}^{T_{1}}h_{1}\left(x\right)\right.
×(aSRaRDγsx)μSR+μRD+m+n1KμSRμRD+mn(2aSRaRDγsx)dx)\displaystyle\times\left(\sqrt{\frac{a_{SR}a_{RD}}{\gamma_{s}}}x\right)^{\mu_{SR}+\mu_{RD}+m+n-1}\left.K_{\mu_{SR}-\mu_{RD}+m-n}\left(2\sqrt{\frac{a_{SR}a_{RD}}{\gamma_{s}}}x\right)dx\right) (6)
(N1)(1QμSD(2μSDκSD,2μSD(1+κSD)(γNαμ)γst^SD))U(γNαμ).\displaystyle-(N-1)\left(1-\text{Q}_{\mu_{SD}}\left(\sqrt{2\mu_{SD}\kappa_{SD}},\sqrt{2\mu_{SD}\left(1+\kappa_{SD}\right)}\frac{\left(\sqrt{\gamma}-N\alpha\mu\right)}{\sqrt{\gamma_{s}}\hat{t}_{SD}}\right)\right)\operatorname{U}\left(\sqrt{\gamma}-N\alpha\mu\right).
\cbend

While the uni-variate approximation is highly accurate, we could not apply it to the case of no SD link. In order to address this gap, we look at moment matching in the following subsection.

III-B Gamma approximation using Moment matching

In this sub-section, we approximate the SNR as a Gamma RV with shape parameter kmomk_{mom} and scale parameter θmom\theta_{mom} by matching their first and second moments. Using this result, the OP at node 𝐃\mathbf{D} is given by the following theorem.

Theorem 2.

The OP for a threshold γ\gamma at node 𝐃\mathbf{D} can be evaluated as

Poutage=γkmomθmomkmomΓ(kmom+1)F11(kmom,kmom+1,γθmom),P_{outage}=\frac{\gamma^{k_{mom}}}{\theta_{mom}^{k_{mom}}\Gamma\left(k_{mom}+1\right)}{}_{1}F_{1}\left(k_{mom},k_{mom}+1,\frac{-\gamma}{\theta_{mom}}\right), (7)

where the shape parameter (kmomk_{mom}) and the scale parameter (θmom\theta_{mom}) of the Gamma distribution can be evaluated using:

θmom=𝔼[γIRS2]𝔼2[γIRS]E[γIRS],\theta_{mom}=\frac{\mathbb{E}[\gamma_{IRS}^{2}]-\mathbb{E}^{2}[\gamma_{IRS}]}{E[\gamma_{IRS}]}, (8)
kmom=𝔼[γIRS]θmom.k_{mom}=\frac{\mathbb{E}[\gamma_{IRS}]}{\theta_{mom}}. (9)

Here, F11(,,){}_{1}F_{1}(\cdot,\cdot,\cdot) is the confluent hypergeometric function of the first kind [34] and 𝔼[γIRS],𝔼[γIRS2]\mathbb{E}[\gamma_{IRS}],\mathbb{E}[\gamma_{IRS}^{2}] can be evaluated using (53) and (54) respectively.

Proof.

Please refer Appendix C for the proof. ∎

Note that the expression in (7) is very easy to evaluate when compared to the OP approximations proposed in a few of the recent literature including [28, 25, 35]. Also, the proposed approximations hold well both for the cases of small and large values of NN, unlike the Gaussian approximations using CLT [17, 22, 16, 15, 27] which holds only for large NN. \cbstartFurthermore, the expressions for the first and second moments presented in (53) and (54) are general and can be used to evaluate the statistics of SNR for any fading scenario once we have the first four moments of the underlying fading distribution, which are readily available for most of the well-known fading models. \cbendAlso, the proposed CDF of γIRS\gamma_{IRS} can be easily used for deriving the expressions of other metrics of interest like the rate [36]. Since we have considered a very general scenario in Theorem 2, we present certain special cases of interest in the following corollaries. \cbstart

Corollary 2.1.

In the absence of phase errors, the OP can be approximated using (7), where (8) and (9) can be evaluated using the following expressions for the moments of SNR.

𝔼[γIRSnp]=γs(m2SD+Nα2m2SRm2RD+2Nαm1SDm1SRm1RD+N(N1)α2(m1SR)2(m1RD)2).\mathbb{E}[\gamma_{IRS}^{np}]=\gamma_{s}\left(m_{2}^{SD}+N\alpha^{2}m_{2}^{SR}m_{2}^{RD}+2N\ \alpha m_{1}^{SD}m_{1}^{SR}m_{1}^{RD}+N(N-1)\alpha^{2}(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}\right). (10)
𝔼[(γIRSnp)2]=γs2{m4SD+2α2Nm2SRm2RDm2SD+Nα4m4SRm4RD+N(N1)α4(m2SR)2(m2RD)2\displaystyle\mathbb{E}[(\gamma^{np}_{IRS})^{2}]=\gamma^{2}_{s}\left\{m_{4}^{SD}+2\alpha^{2}Nm_{2}^{SR}m_{2}^{RD}m_{2}^{SD}+N\alpha^{4}m_{4}^{SR}m_{4}^{RD}+N(N-1)\alpha^{4}(m_{2}^{SR})^{2}(m_{2}^{RD})^{2}\right.
+4α2m2SD[Nm2SRm2RD+N(N1)(m2SR)2(m2RD)2]+N(N1)α4[2(N2)(1+p)\displaystyle\left.+4\alpha^{2}m_{2}^{SD}\left[Nm_{2}^{SR}m_{2}^{RD}+N(N-1)(m_{2}^{SR})^{2}(m_{2}^{RD})^{2}\right]+N(N-1)\alpha^{4}\left[2(N-2)(1+p)\right.\right.
m2SRm2RD(m1SR)2(m1RD)2+(m2SR)2(m2RD)2(1+p2)+(N2)(N3)(m1SR)4(m1RD)4]\displaystyle\left.\left.m_{2}^{SR}m_{2}^{RD}(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}+(m_{2}^{SR})^{2}(m_{2}^{RD})^{2}(1+p^{2})+(N-2)(N-3)(m_{1}^{SR})^{4}(m_{1}^{RD})^{4}\right]\right.
+4Nα[m3SDm1SRm1RD+α2m1SDm3SRm3RD+(N1)α2m1SDm1SRm1RDm2SRm2RD]\displaystyle\left.+4N\alpha\left[m_{3}^{SD}m_{1}^{SR}m_{1}^{RD}+\alpha^{2}m_{1}^{SD}m_{3}^{SR}m_{3}^{RD}+(N-1)\alpha^{2}m_{1}^{SD}m_{1}^{SR}m_{1}^{RD}m_{2}^{SR}m_{2}^{RD}\right]\right.
+4N(N1)α3[m1SD(m1SR)3(m1RD)3(N2)+(1+p)m1SDm2SRm2RDm1SRm1RD]\displaystyle\left.+4N(N-1)\alpha^{3}\left[m_{1}^{SD}\left(m_{1}^{SR}\right)^{3}\left(m_{1}^{RD}\right)^{3}(N-2)+(1+p)m_{1}^{SD}m_{2}^{SR}m_{2}^{RD}m_{1}^{SR}m_{1}^{RD}\right]\right.
+2α2N(N1)m1SRm1RD[m2SDm1SRm1RD+α2(2m3SRm3RD+m1SRm1RDm2SRm2RD(N2))]},\displaystyle\left.+2\alpha^{2}N(N-1)m_{1}^{SR}m_{1}^{RD}\left[m_{2}^{SD}m_{1}^{SR}m_{1}^{RD}+\alpha^{2}\left(2m_{3}^{SR}m_{3}^{RD}+m_{1}^{SR}m_{1}^{RD}m_{2}^{SR}m_{2}^{RD}(N-2)\right)\right]\right\}, (11)

where mpAB:=𝔼[|[𝐡AB]n|p]m_{p}^{AB}:=\mathbb{E}\left[|[\mathbf{h}^{AB}]_{n}|^{p}\right] for p{1,2,3,4}p\in\{1,2,3,4\} and A,B{S,R,D}A,B\in\{S,R,D\}.

Proof.

Equations (10) and (2.1) are obtained from (53) and (54) by substituting bb\rightarrow\infty. ∎

Corollary 2.2.

When the SD link is in a permanent outage, the OP can be approximated using (7) where equations (8) and (9) can be evaluated using the following expressions:

𝔼[γIRSndl]=γsNα2(m2SRm2RD+(N1)(m1SR)2(m1RD)2s2).\mathbb{E}[\gamma_{IRS}^{ndl}]=\gamma_{s}N\alpha^{2}\left(m_{2}^{SR}m_{2}^{RD}+(N-1)(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}s^{2}\right). (12)
𝔼[(γIRSndl)2]=Nα4{m4SRm4RD+(N1)(m2SR)2(m2RD)2+(N1)[2(N2)m2SRm2RD\displaystyle\mathbb{E}[\left(\gamma_{IRS}^{ndl}\right)^{2}]=N\alpha^{4}\left\{m_{4}^{SR}m_{4}^{RD}+(N-1)(m_{2}^{SR})^{2}(m_{2}^{RD})^{2}+(N-1)\left[2(N-2)m_{2}^{SR}m_{2}^{RD}\right.\right. (13)
s2(1+p)(m1SR)2(m1RD)2+(m2SR)2(m2RD)2(1+p2)+s4(N2)(N3)(m1SR)4(m1RD)4]+\displaystyle\left.\left.s^{2}\left(1+p\right)(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}+(m_{2}^{SR})^{2}(m_{2}^{RD})^{2}(1+p^{2})+s^{4}(N-2)(N-3)(m_{1}^{SR})^{4}(m_{1}^{RD})^{4}\right]+\right.
4(N1)m3SRm3RDm1SRm1RDs2+2(N1)(N2)(m1SR)2(m1RD)2m2SRm2RDs2}.\displaystyle\left.4(N-1)m_{3}^{SR}m_{3}^{RD}m_{1}^{SR}m_{1}^{RD}s^{2}+2(N-1)(N-2)(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}m_{2}^{SR}m_{2}^{RD}s^{2}\right\}.

where s=2bπsin(π2b),p=2b2πsin(2π2b)s=\frac{2^{b}}{\pi}\sin\left(\frac{\pi}{2^{b}}\right),p=\frac{2^{b}}{2\pi}\sin\left(\frac{2\pi}{2^{b}}\right).

\cbend
Proof.

When the SD link is in a permanent outage, the phase error at the nn-th reflector element is given by Φn:=θnθopt\Phi_{n}:=\theta_{n}-\theta_{opt} where θopt=arg([𝐡SR]n[𝐡RD]n)\theta_{opt}=-\text{arg}\left(\left[\mathbf{h}^{SR}\right]_{n}\left[\mathbf{h}^{RD}\right]_{n}\right). Here also, we model the phase error as a uniform RV, i.e., Φn𝒰[2bπ,2bπ]\Phi_{n}\sim\mathcal{U}\left[-2^{-b}\pi,2^{-b}\pi\right]. In this case, the SNR expression given in equation (2) can be modified as follows:

γIRSndl=γs|αn=1N|[𝐡SR]n||[𝐡RD]n|ejΦn|2.\gamma_{IRS}^{ndl}=\gamma_{s}\Big{|}\alpha\sum\limits_{n=1}^{N}\big{|}\left[\mathbf{h}^{SR}\right]_{n}\big{|}\big{|}\left[\mathbf{h}^{RD}\right]_{n}\big{|}e^{j\Phi_{n}}\Big{|}^{2}. (14)

Next, we follow the steps similar to Appendix C and arrive at (12) and (13). ∎

Note that Corollary 2.2 recover existing results presented in [20, (9)] and [20, (10)] for the values of κSD=κSR=κRD=0\kappa_{SD}=\kappa_{SR}=\kappa_{RD}=0 and μSD=μSR=μRD=1\mu_{SD}=\mu_{SR}=\mu_{RD}=1, (i.e all links are Rayleigh channels). \cbstart

Corollary 2.3.

In the absence of phase errors and when the SD link is in a permanent outage, the OP can be approximated using (7) where equations (8) and (9) can be evaluated using the following expressions:

𝔼[γIRSnpdl]=γsNα2(m2SRm2RD+(N1)(m1SR)2(m1RD)2).\mathbb{E}[\gamma_{IRS}^{npdl}]=\gamma_{s}N\alpha^{2}\left(m_{2}^{SR}m_{2}^{RD}+(N-1)(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}\right). (15)
𝔼[(γIRSnpdl)2]=Nα4{m4SRm4RD+(N1)(m2SR)2(m2RD)2+(N1)[4(N2)m2SRm2RD\displaystyle\mathbb{E}[(\gamma^{npdl}_{IRS})^{2}]=N\alpha^{4}\left\{m_{4}^{SR}m_{4}^{RD}+(N-1)(m_{2}^{SR})^{2}(m_{2}^{RD})^{2}+(N-1)\left[4(N-2)m_{2}^{SR}m_{2}^{RD}\right.\right.
(m1SR)2(m1RD)2+2(m2SR)2(m2RD)2+(N2)(N3)(m1SR)4(m1RD)4]+4(N1)m3SRm3RD\displaystyle\left.\left.(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}+2(m_{2}^{SR})^{2}(m_{2}^{RD})^{2}+(N-2)(N-3)(m_{1}^{SR})^{4}(m_{1}^{RD})^{4}\right]+4(N-1)m_{3}^{SR}m_{3}^{RD}\right.
m1SRm1RD+2(N1)(N2)(m1SR)2(m1RD)2m2SRm2RD}.\displaystyle\left.m_{1}^{SR}m_{1}^{RD}+2(N-1)(N-2)(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}m_{2}^{SR}m_{2}^{RD}\right\}. (16)
\cbend
Proof.

Equations (15) and (16) are obtained from (12) and (13) by substituting s,p1s,p\rightarrow 1. ∎

Note that for the values of κSD=κSR=κRD=0\kappa_{SD}=\kappa_{SR}=\kappa_{RD}=0 and μSD=μSR=μRD=1\mu_{SD}=\mu_{SR}=\mu_{RD}=1, (i.e all links are Rayleigh channels), Corollary 2.3 recover existing results presented in [20, (14)] and [20, (15)], respectively. \cbend

Although the uni-variate approximation is close to the simulated OP, but it’s not possible for us to derive it for all possible cases considered in this paper. The gamma approximation based on moment matching is simple and could be applied to all considered scenarios but was not as tight as the uni-variate approximation. In the next sub-section, we look at another gamma approximation which has the minimum KL divergence with respect to the exact distribution of SNR.

III-C KL divergence minimization

In this section, we identify the parameters of a Gamma distribution such that the KL divergence between the resulting RV and the exact SNR is the least among all possible Gamma distributions. Using this result, the OP at 𝐃\mathbf{D} is given by the following theorem:

Theorem 3.

The OP for a threshold γ\gamma at the node 𝐃\mathbf{D} is given by

Poutage=γkklθklkklΓ(kkl+1)F11(kkl,kkl+1,γθkl),P_{outage}=\frac{\gamma^{k_{kl}}}{\theta_{kl}^{k_{kl}}\Gamma\left(k_{kl}+1\right)}{}_{1}F_{1}\left(k_{kl},k_{kl}+1,\frac{-\gamma}{\theta_{kl}}\right), (17)

where kklk_{kl} and θkl\theta_{kl} are obtained by solving the following two equations:

𝔼[log(γIRS)]\displaystyle\mathbb{E}[\log(\gamma_{IRS})] =log(θkl)+ψ(kkl),\displaystyle=\log(\theta_{kl})+\psi(k_{kl}), (18)
𝔼[γIRS]\displaystyle\mathbb{E}[\gamma_{IRS}] =kkl×θkl.\displaystyle=k_{kl}\times\theta_{kl}. (19)

Here, F11(.,.,){}_{1}F_{1}(.,.,) is the confluent hypergeometric function of the first kind [34] and ψ(.)\psi(.) is the digamma function [37].

Proof.

Please refer Appendix D for the proof. ∎

The derivation of the exact expression for evaluating 𝔼[log(γIRS)]\mathbb{E}[\log(\gamma_{IRS})] is complicated and hence we proceed with the following approximation for the same [36, (11)]:

𝔼[logγIRS]log(𝔼[γIRS])12𝔼[γIRS2]𝔼2[γIRS]𝔼2[γIRS].\mathbb{E}[\log\gamma_{IRS}]\approx\log\left(\mathbb{E}[\gamma_{IRS}]\right)-\frac{1}{2}\frac{\mathbb{E}[\gamma_{IRS}^{2}]-\mathbb{E}^{2}[\gamma_{IRS}]}{\mathbb{E}^{2}[\gamma_{IRS}]}. (20)

Given that we can compute the first and second moments of γIRS\gamma_{IRS} using (53) and (54), we can easily evaluate (20). Then we can solve for the parameters kklk_{kl} and θkl\theta_{kl} using the solvers available in any mathematical software such as Matlab, Mathematica, or Octave. Thus, the method of KL divergence minimization also provides us with a simple expression for the OP that is very amenable for computation and further analysis.

Corollary 3.1.

For the special cases without SD link or phase error or both, the OP for a threshold γ\gamma is given by (17). Corresponding values of scale and shape parameters can be solved using equations (18) and (19), and the corresponding moments can be evaluated using 10-16.

Note that the approximation for the expectation of the logarithm of SNR provided in (20) makes use of only the first and second moment of γIRS\gamma_{IRS} and this approximation does not hold equally well throughout the support of γIRS\gamma_{IRS}. This was particularly observed in the simulations of certain special cases like scenarios without the SD link. Hence, we propose the following method to circumvent this issue for scenarios without an SD link and no phase error. In such a case we have,

γIRSnpdl=γs(αn=1N|[𝐡SR]n||[𝐡RD]n|)2.\gamma_{IRS}^{npdl}=\gamma_{s}\left(\alpha\sum\limits_{n=1}^{N}\big{|}\left[\mathbf{h}^{SR}\right]_{n}\big{|}\big{|}\left[\mathbf{h}^{RD}\right]_{n}\big{|}\right)^{2}. (21)
\cbstart

Now, we can approximate the double κμ\kappa-\mu RV [γdr]n:=|[𝐡SR]n||[𝐡RD]n|\left[\gamma_{dr}\right]_{n}:=\big{|}\left[\mathbf{h}^{SR}\right]_{n}\big{|}\big{|}\left[\mathbf{h}^{RD}\right]_{n}\big{|} as a Gamma RV with shape parameter and scale parameter kkl,drk_{kl,dr} and θkl,dr\theta_{kl,dr} respectively using the method of KL divergence minimisation666The authors of [28] also approximates double Rayleigh RVs as a Gamma RV, but using the method of moment matching.. In this case, the expectation of the logarithm of the RV [γdr]n\left[\gamma_{dr}\right]_{n} has a closed-form expression (as given in 22) and hence we can avoid the approximation used in (20). \cbend

𝔼[log([γdr]n)]=κSR12μSR22(1+κSR)1+μSR2μSR((1+κSR)μSRΩsr)μSR((κSR2+κSR)μSR2Ωsr)1+μSR2\displaystyle\mathbb{E}\left[\log\left(\left[\gamma_{dr}\right]_{n}\right)\right]=\frac{-\kappa_{SR}^{\frac{1}{2}-\frac{\mu_{SR}}{2}}}{2}(1+\kappa_{SR})^{\frac{1+\mu_{SR}}{2}}\mu_{SR}\left(\frac{(1+\kappa_{SR})\mu_{SR}}{\Omega_{sr}}\right)^{-\mu_{SR}}\left(\frac{(\kappa_{SR}^{2}+\kappa_{SR})\mu_{SR}^{2}}{\Omega_{sr}}\right)^{\frac{-1+\mu_{SR}}{2}} (22)
Ωsr1μSR2(log((1+κSR)μSRΩsr)ψ(μSR)+F1(1,0,0)1(0,μSR,κSRμSR))κRD1μRD22(1+κRD)1+μRD2\displaystyle\Omega_{sr}^{\frac{-1-\mu_{SR}}{2}}\left(\log\left(\frac{(1+\kappa_{SR})\mu_{SR}}{\Omega_{sr}}\right)-\psi(\mu_{SR})+{}_{1}F_{1}^{(1,0,0)}(0,\mu_{SR},-\kappa_{SR}\mu_{SR})\right)-\frac{\kappa_{RD}^{\frac{1-\mu_{RD}}{2}}}{2}(1+\kappa_{RD})^{\frac{1+\mu_{RD}}{2}}
μRD((1+κRD)μRDΩrd)μRD(κRD(1+κRD)μRD2Ωrd)1+μRD2Ωrd1μRD2(log((1+κRD)μRDΩrd)\displaystyle\mu_{RD}\left(\frac{(1+\kappa_{RD})\mu_{RD}}{\Omega_{rd}}\right)^{-\mu_{RD}}\left(\frac{\kappa_{RD}(1+\kappa_{RD})\mu_{RD}^{2}}{\Omega_{rd}}\right)^{\frac{-1+\mu_{RD}}{2}}\Omega_{rd}^{\frac{-1-\mu_{RD}}{2}}\left(\log\left(\frac{(1+\kappa_{RD})\mu_{RD}}{\Omega_{rd}}\right)\right.
ψ(μRD)+F1(1,0,0)1(0,μRD,κRDμRD)),n,\displaystyle\left.-\psi(\mu_{RD})+{}_{1}F_{1}^{(1,0,0)}(0,\mu_{RD},-\kappa_{RD}\mu_{RD})\right),\ \forall\ n,

where ψ(.)\psi(.) is the digamma function [38] and F1(1,0,0)1(a,b,z){}_{1}F_{1}^{(1,0,0)}(a,b,z) is the derivative of the confluent hypergeometric function with respect to the parameter aa and can be evaluated using [39]. For the cases with SD link, or b>1b>1, we could not arrive at simple expressions for the distribution of γIRS\gamma_{IRS} even after approximating the double κμ\kappa-\mu RV as a gamma RV [28].

III-D Which approximation should one finally use?

The major difference between the approximation proposed in section III-A and the approximations proposed in Section III-B and III-C lies in the fact that the later two approximations are obtained by matching certain moments/statistics of γIRS\gamma_{IRS} with the moments/statistics of a specific distribution (Gamma distribution in this case). However, in Section III-A we directly approximate the exact integral expression for the OP using the uni-variate dimension reduction method (except for the scenarios without an SD link). While the moment matching based approximation may fail to follow the tail of the SNR accurately (this failure to accurately model the tail of the SNR is observed in the next section), the approximation using the uni-variate dimension reduction method is an approximation of the exact CDF and hence, is better at approximating the tail. Moment matching also has its own advantages in terms of having a simple expression. \cbstartThis simple expression is very amenable for further analysis and for the derivation of the statistics of functions of the SNR like the rate, secrecy capacity etc. Furthermore, the closed form expression for OP is highly useful for formulating resource allocation problems where we need certain performance guarantees in terms of the OP. Similarly, the gamma approximation using the KL divergence minimization also results in a simple expression for OP, however the approximation for the expectation of logarithm of the SNR makes this approximation less accurate in certain regimes. However, for the cases without an SD link, we can circumvent this issue as discussed in the last section. Hence, depending upon the specific application, one can choose among the proposed approximations and also the existing approximations. For example, if one’s focus is on the tail behavior of OP then one may choose to use the uni-variate approximation. \cbend

IV simulation Results

In this section, we present the observations of simulation experiments to verify the results presented in Section III. The simulation setting used in this paper is similar to [18] (shown in Fig 2). Here, nodes 𝐒\mathbf{S} and 𝐃\mathbf{D} are located at the points (0,0)(0,0) and (90,0)(90,0) respectively and the 𝐈𝐑𝐒\mathbf{IRS} is located at the point (d,h)(d,h). Throughout the simulations, we have taken the value of amplitude coefficient α\alpha to be 1 (similar to [18]), β\beta is chosen as 4, bb is chosen as 5, and γs\gamma_{s} to be 7373 dB, unless mentioned otherwise. Here, we have chosen, κSD=0.5\kappa_{SD}=0.5, μSD=0.8\mu_{SD}=0.8, κSR=1.41\kappa_{SR}=1.41, μSR=2\mu_{SR}=2, κRD=1.52\kappa_{RD}=1.52, and μRD=\mu_{RD}=2.5 and hh is chosen to be 1010 metres whereas dd is varied across simulations777We have verified the simulations for different values of κ\kappa and μ\mu and observed a good match between the simulated values of OP and the proposed approximations. Due to spave constraints, the results for special cases like the Rayleigh, Rician and Nakagami-m are included in the supplementary document.. In the subsequent subsections, we compare the performance of the different approximations proposed for the cases with and without SD link. \cbstart

Method N=5N=5 N=100N=100
Uni-variate 6.5536×1046.5536\times 10^{-4} 7.0463×1047.0463\times 10^{-4}
Moment matching 0.0140 0.0170
KL divergence 0.0431 0.0295
Table II: Table of KS statistic for d=30d=30 and b=5b=5
𝐡\mathbf{h}dd90 - dddsrd_{sr}drdd_{rd}(0,00,0)𝐒\mathbf{S}(90,090,0)𝐃\mathbf{D}(d,hd,h)IRS
Figure 2: Simulation set up

IV-A Results with SD link

NN Method Threshold(γ\gamma) -12 dB -7 dB -5 dB -2 dB 0 dB 2 dB 5 dB
N=5N=5 Simulated 0.2161 0.4899 0.6417 0.8620 0.9556 0.9931 1.0000
Uni-variate Approx. 0.2164 0.4898 0.6417 0.8618 0.9558 0.9931 1.0000
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.2037 0.4884 0.6454 0.8655 0.9561 0.9925 0.9999
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.1739 0.4677 0.6371 0.8724 0.9629 0.9948 1.0000
N=50N=50 Simulated 0.1530 0.4185 0.5784 0.8253 0.9399 0.9898 0.9999
Uni-variate Approx. 0.1530 0.4189 0.5782 0.8251 0.9399 0.9897 0.9999
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.1475 0.4137 0.5779 0.8284 0.9410 0.9892 0.9999
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.1237 0.3923 0.5668 0.8338 0.9479 0.9920 1.0000
N=100N=100 Simulated 0.0909 0.3390 0.5031 0.7772 0.9174 0.9843 0.9999
Uni-variate Approx. 0.0908 0.3394 0.5030 0.7771 0.9174 0.9843 0.9999
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0972 0.3321 0.4979 0.7789 0.9190 0.9842 0.9998
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0800 0.3112 0.4845 0.7821 0.9259 0.9874 0.9999
Table III: Comparison of OP with SD link with varying N when d=30d=30, b=5b=5
Refer to caption
Figure 3: Impact of dd on the OP with SD link when N=100N=100 and b=5
Refer to caption
Figure 4: Impact of NN on the OP with SD link when b=5b=5

In this sub-section, we examine the closeness between the simulated values of OP and the approximations proposed in Section III-A-III-C. Table III compares the OP obtained using (5), (7), and (17) with the simulated values of OP for various values of NN888We could observe numerical issues in the OP evaluated using (7) for very large values of κAB\kappa_{AB} and μAB\mu_{AB}. But in a practical scenario, the values of κAB\kappa_{AB} and μAB\mu_{AB} is rarely larger than 55. Thus, the proposed results are useful in all scenarios of practical interest.. Table III corroborates the fact that an increase in NN improves the performance of an IRS system. One can also observe that the OP evaluated using all the three approximations are close to the simulated values and the uni-variate approximation demonstrates the best performance amongst the three.

bb Method Threshold(γ\gamma) -12 dB -7 dB -5 dB -2 dB 0 dB 2 dB 5 dB
b=1b=1 Simulated 0.1348 0.3964 0.5578 0.8127 0.9342 0.9885 0.9999
Uni-variate Approx. 0.1319 0.3968 0.5588 0.8146 0.9358 0.9889 0.9999
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.1322 0.3908 0.5562 0.8156 0.9355 0.9880 0.9999
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.1103 0.3694 0.5444 0.8204 0.9424 0.9909 0.9999
b=2b=2 Simulated 0.1021 0.3545 0.5181 0.7872 0.9223 0.9856 0.9999
Uni-variate Approx. 0.1019 0.3550 0.5181 0.7873 0.9224 0.9855 0.9999
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.1060 0.3478 0.5139 0.7893 0.9238 0.9853 0.9998
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0876 0.3267 0.5008 0.7930 0.9307 0.9885 0.9999
b=10b=10 Simulated 0.0907 0.3388 0.5028 0.7770 0.9174 0.9843 0.9999
Uni-variate Approx. 0.0906 0.3392 0.5027 0.7770 0.9174 0.9843 0.9999
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0970 0.3318 0.4977 0.7787 0.9189 0.9842 0.9998
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0799 0.3110 0.4842 0.7819 0.9258 0.9874 0.9999
b=b=\infty Simulated 0.0907 0.3388 0.5028 0.7770 0.9174 0.9843 0.9999
Uni-variate Approx. 0.0906 0.3392 0.5027 0.7770 0.9174 0.9843 0.9999
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0970 0.3318 0.4977 0.7787 0.9189 0.9842 0.9998
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0799 0.3110 0.4842 0.7819 0.9258 0.9874 0.9999
Table IV: Comparison of OP with SD link with varying bb when d=30d=30, N=100N=100

Table IV demonstrates the effect of the number of quantization bits bb on the OP. Here, one can observe that with a small number of bits itself one can achieve the performance of b=b=\infty (i.e. the no phase error scenario). Furthermore, the improvement in performance with increasing bb is not very large for b>2b>2. Next, Fig. 4 demonstrates the impact of the position of the 𝐈𝐑𝐒\mathbf{IRS} with respect to the positions of 𝐒\mathbf{S} and 𝐃\mathbf{D}. Here one can observe the symmetry of the OP values for different IRS locations about the midpoint of the nodes 𝐒\mathbf{S} and 𝐃\mathbf{D}. We can also observe that farther the IRS from either of the nodes 𝐒/𝐃\mathbf{S/D}, larger is the OP. Fig. 4 demonstrates the number of IRS elements required to match the performance of a system with N=32N=32 and d=0/90d=0/90 when the IRSIRS is located at d=45d=45. From Fig. 4 it is clear that additional 144144 reflector elements are needed when the 𝐈𝐑𝐒\mathbf{IRS} is placed mid-way between the nodes 𝐒\mathbf{S} and 𝐃\mathbf{D}, compared to a system with an IRS located above either of the nodes 𝐒\mathbf{S} or 𝐃\mathbf{D}. The authors of [13, 21, 28] also consider the presence of SD link in their analysis but do not take into account the phase error due to bb bit phase representation.

The Kolmogorov-Smirnov (KS) test using the KS statistic is one common test used to decide if a sample comes from a population with a specific distribution [40]. The KS statistic is given by Dks:=maxx|F(x)Fobs (x)|D_{ks}:=\max_{x}\left|F(x)-F_{\text{obs }}(x)\right|, where F(x)F(x) is the proposed approximate CDF and Fobs (x)F_{\text{obs }}(x) is the empirical distribution generated using the observations. Let the hypothesis 𝐇0\mathbf{H}_{0} denote that the SNR follows the distribution F(x)F(x). Then the hypothesis is accepted when Dks<DmaxD_{ks}<D_{max} and Dmax(1/2ν)ln(τ/2)D_{\max}\approx\sqrt{-(1/2\nu)\ln(\tau/2)}, where τ\tau is the significance level, and ν\nu is the number of random samples used for generating the empirical distribution [40]. We have tabulated the KS statistic for two different values of NN in Table II. Here, we have taken ν=106\nu=10^{6} and hence for τ=0.05\tau=0.05, we have Dmax=0.0014D_{max}=0.0014. From the results in Table II, we can see that for the method of uni-variate dimension reduction the value of DksD_{ks} is less than DmaxD_{max} for all values of NN considered. However, the values of DksD_{ks} evaluated for the gamma approximations are always larger than the value of DmaxD_{max}. This is because in both of these approximations, only certain moments of the Gamma distribution are matched with the moments of the exact SNR distribution and hence the approximation of the CDF is not equally tight throughout the support of the SNR. Since the KS test takes into consideration the worst deviation throughout the support, this shows that both the gamma approximations are not as good as the approximation using the uni-variate approximation at all points in the support. This further reinforces the utility of the uni-variate approximation whenever possible. Note that the uni-variate approximation cannot be used in scenarios without an SD link and the gamma approximations will be useful in this regime. The results in the next sub-section shows that the Gamma approximations are fairly close to the empirical CDF for most of the points in the support of interest in the cases without SD link also.

IV-B Results without SD link

In this sub-section, we study the performance of an IRS-assisted system without an SD link. Table V demonstrates the variation in the OP for different values of bb. Note that for the particular simulation setting considered we need 3838 extra elements to achieve the performance comparable to a system without phase error when only one bit is used to represent the phase. Hence, one can either increase the number of elements or increase bb to achieve better performance. Similarly, Fig. 5 elucidates the variation in the OP with respect to dd. Here also we can observe that the farther the IRS from either of the nodes 𝐒/𝐃\mathbf{S/D}, the larger is the OP. Furthermore, when the IRS was shifted by 4545 meters i.e., from d=0d=0 to d=45d=45, three extra bits were required to get similar performance in terms of OP.

Note that the authors of [19, 20, 27] also considers scenarios without SD link. In this context, we would like to point out that the work in [19] which approximates the square root of SNR as a Gamma RV gives OP expressions which are as tight as ours (in a Rayleigh fading scenario), however, extending their result to scenarios with SD link is not trivial. We had recovered the expressions given by [20] as special cases (presented in corollaries 2.2 and 2.3).

N,bN,\ b Method Threshold(γ\gamma) -25 dB -24 dB -23 dB -22 dB -21 dB -20 dB
N=99N=99, b=1b=1 Simulated 0.0005 0.0425 0.4830 0.9612 0.9999 1
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0005 0.0430 0.4830 0.9611 0.9999 1
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0005 0.0428 0.4829 0.9614 0.9999 1
N=61,b=N=61,\ b=\infty Simulated 0.0002 0.0695 0.7647 0.9988 1 1
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0002 0.0704 0.7634 0.9990 1 1
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0002 0.0702 0.7636 0.9990 1 1
N=61,b=5N=61,\ b=5 Simulated 0.0002 0.0733 0.7742 0.9989 1 1
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0003 0.0744 0.7729 0.9991 1 1
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0002 0.0742 0.7731 0.9991 1 1
N=61,b=2N=61,\ b=2 Simulated 0.0493 0.6801 0.9964 1 1 1
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0504 0.6777 0.9969 1 1 1
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0503 0.6778 0.9969 1 1 1
Table V: Comparison of OP without SD link with varying bb when d=30d=30
NN dd bb Method Threshold(γ\gamma) -15 dB -10 dB -5 dB -2 dB 0 dB 2 dB 5 dB
5 0 1 Simulated 0.1143 0.2899 0.6288 0.8547 0.9527 0.9925 1.0000
Uni-variate Approx. 0.1141 0.2903 0.6288 0.8547 0.9528 0.9925 1.0000
5 0 5 Simulated 0.1045 0.2774 0.6177 0.8484 0.9499 0.9919 0.9999
Uni-variate Approx. 0.1045 0.2778 0.6175 0.8482 0.9500 0.9919 0.9999
5 45 1 Simulated 0.1293 0.3085 0.6449 0.8637 0.9564 0.9933 1.0000
Uni-variate Approx. 0.1291 0.3089 0.6449 0.8636 0.9565 0.9932 1.0000
5 45 5 Simulated 0.1274 0.3062 0.6429 0.8626 0.9559 0.9932 1.0000
Uni-variate Approx. 0.1272 0.3066 0.6429 0.8625 0.9560 0.9931 1.0000
150 0 1 Simulated 0 0 0.0383 0.3062 0.5905 0.8532 0.9951
Uni-variate Approx. 0 0 0 0.1468 0.5729 0.9312 1.0000
150 0 5 Simulated 0 0 0 0.0141 0.2144 0.5722 0.9630
Uni-variate Approx. 0 0 0 0.0139 0.2145 0.5727 0.9624
150 45 1 Simulated 0.0458 0.1949 0.5354 0.7998 0.9282 0.9869 0.9999
Uni-variate Approx. 0.0378 0.1909 0.5371 0.8018 0.9303 0.9878 0.9999
150 45 5 Simulated 0.0129 0.1337 0.4666 0.754 0.9055 0.9814 0.9998
Uni-variate Approx. 0.0129 0.1337 0.4673 0.7526 0.9052 0.9811 0.9998
Table VI: OP with SD link
NN dd bb Method Threshold(γ\gamma) -49 dB -38 dB -36 dB -34 dB -32 dB -30 dB
5 0 1 Simulated 0.0365 0.1224 0.3301 0.6541 0.9149 0.9939
Gamma Moment matching 0.0367 0.1234 0.3311 0.6540 0.9147 0.9942
5 0 5 Simulated 0.0000 0.0006 0.0117 0.1193 0.5104 0.9137
Gamma Moment matching 0.0001 0.0012 0.0155 0.1253 0.5047 0.9136
NN dd bb Method Threshold(γ\gamma) -55 dB -53 dB -51 dB -49 dB -47 dB -45 dB
5 45 1 Simulated 0.0322 0.1097 0.3041 0.6234 0.8992 0.9917
Gamma Moment matching 0.0326 0.1115 0.3062 0.6236 0.8988 0.9920
5 45 5 Simulated 0.0000 0.0004 0.0090 0.0999 0.4648 0.8918
Gamma Moment matching 0.0000 0.0009 0.0125 0.1063 0.4597 0.8909
NN dd bb Method Threshold(γ\gamma) -11 dB -10 dB -9 dB -7 dB -6 dB -5 dB
100 0 1 Simulated 0.0221 0.3655 0.9258 0.9996 1 1
Gamma Moment matching 0.0224 0.3648 0.9259 0.9996 1 1
100 0 5 Simulated 0 0 0 0.0019 0.4460 0.9973
Gamma Moment matching 0 0 0 0.0021 0.4438 0.9975
NN dd bb Method Threshold(γ\gamma) -25 dB -24 dB -23 dB -22 dB -21 dB -20 dB
100 45 1 Simulated 0.2554 0.8665 0.9987 1 1 1
Gamma Moment matching 0.2556 0.8664 0.9987 1 1 1
100 45 5 Simulated 0 0 0 0.0003 0.2577 0.9875
Gamma Moment matching 0 0 0 0.0004 0.2569 0.9878
Table VII: OP without SD link
Parameter Impact of NN Impact of bb Impact of dd
NN is small NA less less
NN is large NA more more
bb is small less NA less
bb is large more NA more
dd close to 𝐒/𝐃\mathbf{S/D} more more NA
dd away from 𝐒/𝐃\mathbf{S/D} less less NA
Table VIII: Summary of impact of NN, bb and dd on OP of
Refer to caption
Figure 5: Impact of dd on the OP without SD link for 𝒮2\mathcal{S}_{2}, N=100N=100.

IV-C Key Inferences

In this sub-section, we discuss the key inferences drawn from the results presented in Section IV-A and IV-B. Table VI and VII compares the values of OP for different values of NN, dd, and bb for the scenarios with and without SD link, respectively. Since the uni-variate approximation provides the best performance among the three approximations proposed (for scenarios with SD link), we have included only uni-variate approximation in Table VI. Similarly, we have only included the moment matching results for the scenarios without SD link. From Table VI we can observe that the reduction in OP as bb increases from 11 to 55 is larger at N=100N=100 than at N=5N=5. Similar observations can also be made for the cases without SD link from Table VII. Thus, we conclude that an IRS with a small number of reflector elements is less sensitive to the number of bits used for representing the phase. Similarly, the values of OP in Tables VI and VII show that the impact of dd on the OP is also larger for large values of NN. Here, we can also observe that the impact of bb and NN on the OP increases as the IRS moves closer to either of the nodes SS or DD. Furthermore, we can observe from Tables VI and VII that the impact of phase errors is larger in a system without an SD link. We can observe that the path loss from the SD link (dSDβd_{SD}^{-\beta}) is lower than the path loss in the link via the IRS (dSRβdRDβd_{SR}^{-\beta}d_{RD}^{-\beta})999In a triangle, sum of any two sides (dSR+dRDd_{SR}+d_{RD}) is greater than the third side (dSDd_{SD}) and (dSR×dRDdSR+dRDd_{SR}\times d_{RD}\geq d_{SR}+d_{RD}) whenever dSR>1d_{SR}>1 and dRD>1d_{RD}>1. Hence, dSR×dRDd_{SR}\times d_{RD} is greater than (dSDd_{SD}) when dSR>1d_{SR}>1 and dRD>1d_{RD}>1.. Thus, the contribution of the SD link signal to the SNR is larger when compared to the links via the IRS and hence the effect of the SD link can be dominant, especially in the small NN regime. We can also observe that the outage performance is more sensitive to the variations in parameters like bb and dd in the no SD link scenarios when compared to the performance in scenarios with an SD link. This is because whenever the SD link is not in the outage and dSDd_{SD} is fixed, the SD link is the dominant term in the SNR expression, and a small decrease in the terms contributed by the links via the IRS will not degrade the SNR drastically. This, in turn, ensures that the outage does not increase drastically. We have summarised the above observations in Table VIII..

Next, in tables IX and X we compare the OP of the IRS aided system with the performance of a system with a decode and forward (DF) relay and one with multi-antenna source node respectively. Here, we assume that the total transmit power available at the source and relay nodes together and the power available at the multi antenna source node is same as the power available at the source node of the IRS aided system. The OP at the destination of a DF relay (RLRL) assisted system for an threshold γ{\gamma} is given by [41, eqn (16)]

PoutageDF=[min{|hSR|2,|hSD|2+|hRD|2}<γγs].P_{outage}^{DF}=\mathbb{P}\left[\min\{|h^{SR}|^{2},|{h}^{SD}|^{2}+|{h}^{RD}|^{2}\}<\frac{\gamma}{\gamma_{s}}\right]. (23)

where hSDh^{SD}, hSRh^{SR}, hRDh^{RD} denote the channel coefficients between the nodes SS and DD, SS and RLRL and RLRL and DD respectively. Here, we assume, hSD{h}^{SD} \sim κ\kappa-μ\mu (κSD,μSD)\left(\kappa_{SD},\mu_{SD}\right), hSR{h}^{SR} \sim κ\kappa-μ\mu (κSR,μSR)\left(\kappa_{SR},\mu_{SR}\right) and hRD{h}^{RD} \sim κ\kappa-μ\mu (κRD,μRD)\left(\kappa_{RD},\mu_{RD}\right). Table IX shows the corresponding values of OP when the relay is present at (d,h)(d,h) in a system similar to the one shown in Fig 2. From this table, we can see that the performance of the DF relay system depends upon the relay location and with a considerable number of IRS elements, we can always achieve better performance using an IRS aided communication system. Furthermore, the IRS aided system circumvents the need for computational capability and power availability for signal decoding at the IRS unlike the DF relay system. Next, table X compares the OP of an IRS aided system with an MISO system with M=4M=4 antennas at the source node using maximal ratio transmission (MRT) for beamforming. Let 𝐡SDM\mathbf{h}^{SD}\in\mathbb{C}^{M} represent the channel between the nodes SS and DD and [𝐡SD]m\left[\mathbf{h}^{SD}\right]_{m} \sim κ\kappa-μ\mu (κsd,μsd)\left(\kappa_{sd},\mu_{sd}\right) m{1,,M}\forall m\in\{1,\cdots,M\}. With MRT at S, the received SNR is given by 𝐡SD2||\mathbf{h}^{SD}||^{2}. Hence, the OP of the MISO system at a threshold γ\gamma can be evaluated as

PoutageMISO=[𝐡SD2<γγs].P_{outage}^{MISO}=\mathbb{P}\left[||\mathbf{h}^{SD}||^{2}<\frac{\gamma}{\gamma_{s}}\right]. (24)

Unlike the case of relays, here we need an even larger number of IRS elements to beat the performance of the MRT MISO system. However, note that the computational and power requirements at the multi antenna system will be considerably more than the IRS aided system.

Method Threshold(γ\gamma) -15 dB -10 dB -7 dB -5 dB -2 dB 0 dB 2 dB 5 dB
Relay at d=0 0.0015 0.0683 0.3826 0.7268 0.9846 0.9998 1 1
Relay at d=45 0 0.0018 0.0083 0.0261 0.1609 0.4901 0.9211 1.0000
IRS with NN =25 at d=0d=0, b=5b=5 0.0192 0.1472 0.3188 0.4831 0.7634 0.9106 0.9826 0.9998
IRS with NN =50 at d=0d=0, b=5b=5 0 0.0271 0.1524 0.3042 0.6237 0.8323 0.9588 0.9994
IRS with NN =100 at d=0d=0, b=5b=5 0 0 0 0.0239 0.2765 0.5639 0.8372 0.9941
Table IX: Comparison of DF Relay and IRS assisted systems
Method Threshold(γ\gamma) -5 dB -2 dB 0 dB 2 dB 3 dB 4 dB 5 dB
MISO with M=4M=4 0.0323 0.1772 0.4260 0.7544 0.8821 0.9583 0.9902
IRS with NN =120, d=0d=0, b=5b=5 0.0230 0.1548 0.4030 0.7412 0.8747 0.9549 0.9889
IRS with NN =270, d=15d=15, b=5b=5 0.0241 0.1593 0.4100 0.7470 0.8784 0.9566 0.9894
IRS with NN =520, d=30d=30, b=5b=5 0.0291 0.1778 0.4369 0.7669 0.8903 0.9617 0.9909
Table X: Comparison of MISO and IRS assisted systems
\cbend

V Conclusion and Future Work

This paper studied the OP of an IRS-assisted communication system in the presence of phase errors due to quantization in a κμ\kappa-\mu fading environment. We proposed three different approximations using 1) uni-variate dimension reduction, 2) moment matching and, 3) KL divergence minimization. Our simulation results showed that the derived expressions are tight and can be reliably used for further analysis. We also observed that the uni-variate dimension reduction method provides an accurate approximation for the OP in terms of an integral expression whereas the moment matching and KL divergence minimization results in simple closed-form expressions for the OP. Furthermore, the proposed approximations are highly useful in evaluating the effects of various system parameters on the OP. In this work, we also studied the impact of the parameters like the number of bits available for quantization, the position of IRS w.r.t. source and destination and, the number of elements present at IRS. Since we have provided a tight approximation to the CDF, we believe that this can be used to study all other performance metrics which are functions of the CDF of SNR. \cbstartNote that the system model considered can be more generalised and it would be an interesting future work to study systems where the source and/or the destination is equipped with multiple antennas. \cbend \cbstart

Appendix A Proof for lemma 1

Using (2) and (3), the OP for threshold γ\gamma can be evaluated as

Poutage\displaystyle P_{outage} =(γs|(|hSD|+αi=1N|[𝐡SR]i||[𝐡RD]i|ejΦi)|2γ).\displaystyle=\mathbb{P}\left(\gamma_{s}|(|{h}^{SD}|+\alpha\sum\limits_{i=1}^{N}|[\mathbf{h}^{SR}]_{i}||[\mathbf{h}^{RD}]_{i}|e^{j\Phi_{i}})|^{2}\leq\gamma\right). (25)

Let |hSD|,|[𝐡SR]i||{h}^{SD}|,|[\mathbf{h}^{SR}]_{i}| and |[𝐡RD]i||[\mathbf{h}^{RD}]_{i}| be denoted by gSD,[𝐠SR]ig_{SD},[\mathbf{g}_{SR}]_{i} and [𝐠RD]i[\mathbf{g}_{RD}]_{i} respectively. After some algebraic manipulations, we can re-write (25) as

Poutage\displaystyle P_{outage} =(γs(gSD+αi=1N[𝐠SR]i[𝐠RD]icos(Φi))2+γs(αi=1N[𝐠SR]i[𝐠RD]isin(Φi))2γ)\displaystyle=\mathbb{P}\left(\gamma_{s}\left(g_{SD}+\alpha\sum\limits_{i=1}^{N}[\mathbf{g}_{SR}]_{i}[\mathbf{g}_{RD}]_{i}\cos(\Phi_{i})\right)^{2}+\gamma_{s}\left(\alpha\sum\limits_{i=1}^{N}[\mathbf{g}_{SR}]_{i}[\mathbf{g}_{RD}]_{i}\sin(\Phi_{i})\right)^{2}\leq\gamma\right) (26)
=((γsgSD+𝐂T𝐗)2+(𝐒T𝐗)2γ)\displaystyle=\mathbb{P}\left(\left(\sqrt{\gamma_{s}}g_{SD}+\mathbf{C}^{T}\mathbf{X}\right)^{2}+\left(\mathbf{S}^{T}\mathbf{X}\right)^{2}\leq\gamma\right)

where 𝐗=[γs[𝐠SR]1[𝐠RD]1γs[𝐠SR]N[𝐠RD]N]\mathbf{X}=\left[\sqrt{\gamma_{s}}[\mathbf{g}_{SR}]_{1}[\mathbf{g}_{RD}]_{1}\dots\sqrt{\gamma_{s}}[\mathbf{g}_{SR}]_{N}[\mathbf{g}_{RD}]_{N}\right], 𝐂=[αcos(Φ1),,αcos(ΦN)]T\mathbf{C}=\left[\alpha\cos(\Phi_{1}),\dots,\alpha\cos(\Phi_{N})\right]^{T} and 𝐒=[αsin(Φ1)αsin(ΦN)]T\mathbf{S}=\left[\alpha\sin(\Phi_{1})\dots\alpha\sin(\Phi_{N})\right]^{T}. Now, the RV of interest is Y=(γsgSD+𝐂T𝐗)2+(𝐒T𝐗)2Y=\left(\sqrt{\gamma_{s}}g_{SD}+\mathbf{C}^{T}\mathbf{X}\right)^{2}+\left(\mathbf{S}^{T}\mathbf{X}\right)^{2}. Note that YY is the sum of the square of two RVs, one of which is again a sum of NN random variables (𝐒T𝐗\mathbf{S}^{T}\mathbf{X}, where each XiX_{i} is a double κμ\kappa-\mu RV and Φi\Phi_{i} is a uniformly distributed RV over the interval [2bπ,2bπ][-2^{-b}\pi,2^{-b}\pi]). To the best of our knowledge, characterising the p.d.f. of this sum is not straight forward and is not available in the open literature. Similarly, characterising the distribution of the other term i.e.γsgSD+𝐂T𝐗\textit{i.e.}\sqrt{\gamma_{s}}g_{SD}+\mathbf{C}^{T}\mathbf{X} is also difficult. To proceed further, we first derive the conditional CDF of γIRS\gamma_{IRS} for a particular value of 𝚽=ϕ\mathbf{\Phi}=\boldsymbol{\phi} and 𝐗=𝐱\mathbf{X}=\mathbf{x} and is given below

Poutage|(𝚽=ϕ,𝐗=𝐱)=(γsgSDγ(𝐬T𝐱)2𝐜T𝐱)\displaystyle P_{outage}|\left(\mathbf{\Phi}=\boldsymbol{\phi},\mathbf{X}=\mathbf{x}\right)=\mathbb{P}\left(\sqrt{\gamma_{s}}g_{SD}\leq\sqrt{\gamma-\left(\mathbf{s}^{T}\mathbf{x}\right)^{2}}-\mathbf{c}^{T}\mathbf{x}\right) (27)
=(1QμSD(2μSDκSD,2μSD(1+κSD)(γ(𝐬T𝐱)2𝐜T𝐱)γst^SD))U(γ(𝐬T𝐱)2𝐜T𝐱)\displaystyle=\left(1-\text{Q}_{\mu_{SD}}\left(\sqrt{2\mu_{SD}\kappa_{SD}},\sqrt{2\mu_{SD}\left(1+\kappa_{SD}\right)}\frac{\left(\sqrt{\gamma-\left(\mathbf{s}^{T}\mathbf{x}\right)^{2}}-\mathbf{c}^{T}\mathbf{x}\right)}{\sqrt{\gamma_{s}}\hat{t}_{SD}}\right)\right)\operatorname{U}\left(\sqrt{\gamma-\left(\mathbf{s}^{T}\mathbf{x}\right)^{2}}-\mathbf{c}^{T}\mathbf{x}\right)

Now to evaluate the CDF of γIRS\gamma_{IRS}, we just need to evaluate the expectation of the R.H.S. of (27) with respect to the RVs 𝚽=[Φ1,,ΦN]T\mathbf{\Phi}=\left[\Phi_{1},\dots,\Phi_{N}\right]^{T} and 𝐗=[X1,,XN]T\mathbf{X}=\left[X_{1},\dots,X_{N}\right]^{T}, both of which are multivariate vectors with i.i.d. entries. The p.d.f. of Φi\Phi_{i}’s are fΦi(ϕi)=2b2π,π2bϕiπ2bf_{\Phi_{i}}(\phi_{i})=\frac{2^{b}}{2\pi},\ \frac{-\pi}{2^{b}}\leq\phi_{i}\leq\frac{\pi}{2^{b}}. The p.d.f. of double κμ\kappa-\mu RV XiX_{i} is given as[30, (9)]

fXi(xi)\displaystyle f_{X_{i}}\left(x_{i}\right) =2aSRaRDγsρSRρRDm=0n=0(μSRκSR)mm!Γ(μSR+m)(μRDκRD)nn!Γ(μRD+n)G0,22,0[aSRaRDxi2γs|(μSR+m12),(μRD+n12)]\displaystyle=\frac{2\sqrt{a_{SR}a_{RD}}}{\sqrt{\gamma_{s}}\rho_{SR}\rho_{RD}}\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\begin{array}[]{l}\frac{\left(\mu_{SR}\kappa_{SR}\right)^{m}}{m!\Gamma\left(\mu_{SR}+m\right)}\frac{\left(\mu_{RD}\kappa_{RD}\right)^{n}}{n!\Gamma\left(\mu_{RD}+n\right)}G_{0,2}^{2,0}\left[\left.a_{SR}a_{RD}\frac{x_{i}^{2}}{\gamma_{s}}\right|_{\left(\mu_{SR}+m-\frac{1}{2}\right),\left(\mu_{RD}+n-\frac{1}{2}\right)}\right]\end{array} (28)

where ρSR=eμSRκSR,ρRD=eμRDκRD\rho_{SR}=e^{\mu_{SR}\kappa_{SR}},\rho_{RD}=e^{\mu_{RD}\kappa_{RD}} and aSR=μSR(1+κSR)t^SR2,aRD=μRD(1+κRD)t^RD2a_{SR}=\frac{\mu_{SR}\left(1+\kappa_{SR}\right)}{\hat{t}^{2}_{SR}},a_{RD}=\frac{\mu_{RD}\left(1+\kappa_{RD}\right)}{\hat{t}^{2}_{RD}}. Using the identity G0,22,0[z|b,c]=2zb+c2Kbc(2z)G_{0,2}^{2,0}\left[\left.z\right|_{b,c}\right]=2z^{\frac{b+c}{2}}K_{b-c}\left(2\sqrt{z}\right),we have

fXi(xi)\displaystyle f_{X_{i}}\left(x_{i}\right) =4aSRaRDγsρSRρRDm=0n=0(μSRκSR)mm!Γ(μSR+m)(μRDκRD)nn!Γ(μRD+n)(aSRaRDγsxi)μSR+μRD+m+n1×KμSRμRD+mn(2aSRaRDγsxi)\displaystyle=\frac{4\sqrt{a_{SR}a_{RD}}}{\sqrt{\gamma_{s}}\rho_{SR}\rho_{RD}}\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\begin{array}[]{l}\frac{\left(\mu_{SR}\kappa_{SR}\right)^{m}}{m!\Gamma\left(\mu_{SR}+m\right)}\frac{\left(\mu_{RD}\kappa_{RD}\right)^{n}}{n!\Gamma\left(\mu_{RD}+n\right)}\left(\sqrt{\frac{a_{SR}a_{RD}}{\gamma_{s}}}x_{i}\right)^{\mu_{SR}+\mu_{RD}+m+n-1}\\ \times K_{\mu_{SR}-\mu_{RD}+m-n}\left(2\sqrt{\frac{a_{SR}a_{RD}}{\gamma_{s}}}x_{i}\right)\end{array} (29)

Thus, the CDF of γIRS\gamma_{IRS} is given by

Poutage\displaystyle P_{outage} =(1QμSD(2μSDκSD,2μSD(1+κSD)(γ(𝐬T𝐱)2𝐜T𝐱)γst^SD))\displaystyle=\int\dots\int\left(1-\text{Q}_{\mu_{SD}}\left(\sqrt{2\mu_{SD}\kappa_{SD}},\sqrt{2\mu_{SD}\left(1+\kappa_{SD}\right)}\frac{\left(\sqrt{\gamma-\left(\mathbf{s}^{T}\mathbf{x}\right)^{2}}-\mathbf{c}^{T}\mathbf{x}\right)}{\sqrt{\gamma_{s}}\hat{t}_{SD}}\right)\right) (30)
×U(γ(𝐬T𝐱)2𝐜T𝐱)i=1NfXi(xi)fΦi(ϕi)dx1dϕ1dxNdϕN\displaystyle\hskip 71.13188pt\times\operatorname{U}\left(\sqrt{\gamma-\left(\mathbf{s}^{T}\mathbf{x}\right)^{2}}-\mathbf{c}^{T}\mathbf{x}\right)\prod_{i=1}^{N}f_{X_{i}}\left(x_{i}\right)f_{\Phi_{i}}\left(\phi_{i}\right)dx_{1}d\phi_{1}\dots dx_{N}d\phi_{N}

The result in (4) follows by substituting the p.d.f. expressions of Φi\Phi_{i} and XiX_{i} in (30), and this completes the proof.

Appendix B Proof for Theorem 1

Consider a random vector 𝐘=[𝐗𝚽]T\mathbf{Y}=\left[\mathbf{X}\ \mathbf{\Phi}\right]^{T} then (30) can be interpreted as

Poutage\displaystyle P_{outage} =𝔼[(1QμSD(2μSDκSD,2μSD(1+κSD)(γ(𝐬T𝐱)2𝐜T𝐱)γst^SD))\displaystyle=\mathbb{E}\left[\left(1-\text{Q}_{\mu_{SD}}\left(\sqrt{2\mu_{SD}\kappa_{SD}},\sqrt{2\mu_{SD}\left(1+\kappa_{SD}\right)}\frac{\left(\sqrt{\gamma-\left(\mathbf{s}^{T}\mathbf{x}\right)^{2}}-\mathbf{c}^{T}\mathbf{x}\right)}{\sqrt{\gamma_{s}}\hat{t}_{SD}}\right)\right)\right. (31)
U(γ(𝐬T𝐱)2𝐜T𝐱)],\displaystyle\hskip 56.9055pt\left.\operatorname{U}\left(\sqrt{\gamma-\left(\mathbf{s}^{T}\mathbf{x}\right)^{2}}-\mathbf{c}^{T}\mathbf{x}\right)\right],
=2Ng(𝐲)f𝐘(𝐲)𝑑𝐲.\displaystyle=\int_{\mathbb{R}^{2N}}g\left(\mathbf{y}\right)f_{\mathbf{Y}}\left(\mathbf{y}\right)d\mathbf{y}.

Now, using [31, eq. 20] we approximate (31) as follows

Poutage\displaystyle P_{outage} i=12N𝔼[g(μ1μi1,yi,μi+1,,μ2N)](2N1)g(μ1,,μ2N)\displaystyle\approx\sum_{i=1}^{2N}\mathbb{E}\left[g\left(\mu_{1}\dots\mu_{i-1},y_{i},\mu_{i+1},\dots,\mu_{2N}\right)\right]-\left(2N-1\right)g\left(\mu_{1},\dots,\mu_{2N}\right) (32)

where

μi=𝔼[Yi]={(μSR)12(μRD)12aSRaRDF11(12;μSR;κSRμSR)×F11(12;μRD;κRDμRD)μ1iN0N+1i2N.\displaystyle\mu_{i}=\mathbb{E}\left[Y_{i}\right]=\begin{cases}\begin{array}[]{l}\frac{\left(\mu_{SR}\right)_{\frac{1}{2}}\left(\mu_{RD}\right)_{\frac{1}{2}}}{\sqrt{a_{SR}a_{RD}}}{}_{1}F_{1}\left(-\frac{1}{2};\mu_{SR};-\kappa_{SR}\mu_{SR}\right)\\ \times{}_{1}F_{1}\left(-\frac{1}{2};\mu_{RD};-\kappa_{RD}\mu_{RD}\right)\end{array}\triangleq\mu&\quad 1\leq i\leq N\\ 0&\quad N+1\leq i\leq 2N.\end{cases} (33)

Now, g(μ1μi1,yi,μi+1,,μ2N)g\left(\mu_{1}\dots\mu_{i-1},y_{i},\mu_{i+1},\dots,\mu_{2N}\right) can be calculated using (33) as follows

g(μ1μi1,yi,μi+1,,μ2N)\displaystyle g\left(\mu_{1}\dots\mu_{i-1},y_{i},\mu_{i+1},\dots,\mu_{2N}\right) (34)
={[(1QμSD(2μSDκSD,2μSD(1+κSD)(γxi(N1)αμ)γst^SD))U(γxi(N1)αμ)]1iN[(1QμSD(2μSDκSD,2μSD(1+κSD)(γ(αsin(ϕi)μ)2αcos(ϕi)μ(N1)αμ)γst^SD))U(.γ(αsin(ϕi)μ)2αcos(ϕi)μ(N1)αμ.)]N+1i2N,\displaystyle=\begin{cases}\begin{array}[]{l}\left[\left(1-\text{Q}_{\mu_{SD}}\left(\sqrt{2\mu_{SD}\kappa_{SD}},\sqrt{2\mu_{SD}\left(1+\kappa_{SD}\right)}\frac{\left(\sqrt{\gamma}-x_{i}-(N-1)\alpha\mu\right)}{\sqrt{\gamma_{s}}\hat{t}_{SD}}\right)\right)\right.\\ \left.\operatorname{U}\left(\sqrt{\gamma}-x_{i}-(N-1)\alpha\mu\right)\right]\quad 1\leq i\leq N\end{array}\vspace{0.5cm}\\ \begin{array}[]{l}\left[\left(1-\text{Q}_{\mu_{SD}}\left(\sqrt{2\mu_{SD}\kappa_{SD}},\sqrt{2\mu_{SD}\left(1+\kappa_{SD}\right)}\frac{\left(\sqrt{\gamma-\left(\alpha\sin{\left(\phi_{i}\right)}\mu\right)^{2}}-\alpha\cos{\left(\phi_{i}\right)}\mu-(N-1)\alpha\mu\right)}{\sqrt{\gamma_{s}}\hat{t}_{SD}}\right)\right)\right.\\ \left.\operatorname{U}\Bigg{(}\Bigg{.}\sqrt{\gamma-\left(\alpha\sin{\left(\phi_{i}\right)}\mu\right)^{2}}-\alpha\cos{\left(\phi_{i}\right)}\mu-(N-1)\alpha\mu\Bigg{.}\Bigg{)}\right]\quad N+1\leq i\leq 2N,\end{array}\end{cases}

and

g(μ1,,μ2N)=(1QμSD(2μSDκSD,2μSD(1+κSD)(γNαμ)γst^SD))U(γNαμ).\displaystyle g\left(\mu_{1},\dots,\mu_{2N}\right)=\left(1-\text{Q}_{\mu_{SD}}\left(\sqrt{2\mu_{SD}\kappa_{SD}},\sqrt{2\mu_{SD}\left(1+\kappa_{SD}\right)}\frac{\left(\sqrt{\gamma}-N\alpha\mu\right)}{\sqrt{\gamma_{s}}\hat{t}_{SD}}\right)\right)\operatorname{U}\left(\sqrt{\gamma}-N\alpha\mu\right). (35)

Finally, the approximation in (5) is deduced after substituting values from (34) , (35) into (32), and the proof is complete.

Appendix C proof for Theorem 2

Here, we derive the first and second moments of the RV γIRS\gamma_{IRS}. Note that γIRS\gamma_{IRS} can be expanded as follows:

γIRSγs=\displaystyle\frac{\gamma_{IRS}}{\gamma_{s}}= |hSD|2+α2i=1N|[𝐡SR]i|2|[𝐡RD]i|2A+2α|hSD|i=1N|[𝐡SR]i||[𝐡RD]i|cos(Φi)B+\displaystyle\underbrace{|{h}^{SD}|^{2}+\alpha^{2}\sum_{i=1}^{N}|[\mathbf{h}^{SR}]_{i}|^{2}|[\mathbf{h}^{RD}]_{i}|^{2}}_{A}+\underbrace{2\alpha|{h}^{SD}|\sum_{i=1}^{N}|[\mathbf{h}^{SR}]_{i}||[\mathbf{h}^{RD}]_{i}|\cos(\Phi_{i})}_{B}+
2α2i=1N1k=i+1N|[𝐡SR]i||[𝐡RD]i||[𝐡SR]k||[𝐡RD]k|cos(ΦiΦk)C.\displaystyle\underbrace{2\alpha^{2}\sum_{i=1}^{N-1}\sum_{k=i+1}^{N}|[\mathbf{h}^{SR}]_{i}||[\mathbf{h}^{RD}]_{i}||[\mathbf{h}^{SR}]_{k}||[\mathbf{h}^{RD}]_{k}|\cos(\Phi_{i}-\Phi_{k})}_{C}. (36)

Hence, the first two moments of γIRS\gamma_{IRS} can be evaluated as 𝔼[γIRS]=γs(𝔼[A]+𝔼[B]+𝔼[C])\mathbb{E}\left[\gamma_{IRS}\right]=\gamma_{s}\left(\mathbb{E}[A]+\mathbb{E}[B]+\mathbb{E}[C]\right) and 𝔼[γIRS2]=γs2(𝔼[A2]+𝔼[B2]+𝔼[C2]+2𝔼[AB]+2𝔼[BC]+2𝔼[AC])\mathbb{E}\left[\gamma_{IRS}^{2}\right]=\gamma^{2}_{s}\left(\mathbb{E}\left[A^{2}\right]+\mathbb{E}\left[B^{2}\right]+\mathbb{E}\left[C^{2}\right]+2\mathbb{E}\left[AB\right]+2\mathbb{E}\left[BC\right]+2\mathbb{E}\left[AC\right]\right). Next, in order to evaluate the above moments, we substitute AA, BB, CC and derive individual expectations using the fact that the RVs {hSD,[𝐡SR]i,[𝐡RD]i;i=1,,N}\{h^{SD},\left[\mathbf{h}^{SR}\right]_{i},\left[\mathbf{h}^{RD}\right]_{i};i=1,\cdots,N\} are independent. In the subsequent paragraphs, we assume s:=2bπsin(π2b)s:=\frac{2^{b}}{\pi}{\sin\left(\frac{\pi}{2^{b}}\right)}, p:=2b2πsin(2π2b)p:=\frac{2^{b}}{2\pi}{\sin\left(\frac{2\pi}{2^{b}}\right)}, m1AB:=𝔼[|[𝐡AB]i|]m_{1}^{AB}:=\mathbb{E}\left[|[\mathbf{h}^{AB}]_{i}|\right], m2AB:=𝔼[|[𝐡AB]i|2]m_{2}^{AB}:=\mathbb{E}\left[|[\mathbf{h}^{AB}]_{i}|^{2}\right], m3AB:=𝔼[|[𝐡AB]i|3]m_{3}^{AB}:=\mathbb{E}\left[|[\mathbf{h}^{AB}]_{i}|^{3}\right] and m4AB:=𝔼[|[𝐡AB]i|4]m_{4}^{AB}:=\mathbb{E}\left[|[\mathbf{h}^{AB}]_{i}|^{4}\right] for A,BA,B \in {𝐒\mathbf{S}𝐑\mathbf{R}𝐃\mathbf{D}}. Let us first evaluate the first moments of RV’s AA, BB, and CC. Here, we have,

𝔼[A]\displaystyle\mathbb{E}\left[A\right] =𝔼[|hSD|2+α2i=1N|[𝐡SR]i|2|[𝐡RD]i|2]=m2SD+Nα2m2SRm2RD.\displaystyle=\mathbb{E}\left[|{h}^{SD}|^{2}+\alpha^{2}\sum_{i=1}^{N}|[\mathbf{h}^{SR}]_{i}|^{2}|[\mathbf{h}^{RD}]_{i}|^{2}\right]=m_{2}^{SD}+N\alpha^{2}m_{2}^{SR}m_{2}^{RD}. (37)

Similarly, we have,

𝔼[B]\displaystyle\mathbb{E}\left[B\right] =𝔼[2α|hSD|i=1N|[𝐡SR]i||[𝐡RD]i|cos(Φi)]=2Nαsm1SDm1SRm1RD,\displaystyle=\mathbb{E}\left[2\alpha|{h}^{SD}|\sum_{i=1}^{N}|[\mathbf{h}^{SR}]_{i}||[\mathbf{h}^{RD}]_{i}|\cos\left(\Phi_{i}\right)\right]=2N\ \alpha sm_{1}^{SD}m_{1}^{SR}m_{1}^{RD}, (38)

where s=𝔼[cos(Φi)]s=\mathbb{E}\left[\cos(\Phi_{i})\right].

𝔼[C]\displaystyle\mathbb{E}[C] =𝔼[2α2i=1N1k=i+1N|[𝐡SR]i||[𝐡RD]i||[𝐡SR]k||[𝐡RD]k|cos(ΦiΦk)]\displaystyle=\mathbb{E}\left[2\alpha^{2}\sum_{i=1}^{N-1}\sum_{k=i+1}^{N}|[\mathbf{h}^{SR}]_{i}||[\mathbf{h}^{RD}]_{i}||[\mathbf{h}^{SR}]_{k}||[\mathbf{h}^{RD}]_{k}|\cos\left(\Phi_{i}-\Phi_{k}\right)\right] (39)
=N(N1)α2s2(m1SR)2(m1RD)2,\displaystyle=N(N-1)\alpha^{2}s^{2}(m_{1}^{SR})^{2}(m_{1}^{RD})^{2},

where 𝔼[cos(ΦiΦk)]=(2bπsin(π2b))2=s2\mathbb{E}\left[\cos\left(\Phi_{i}-\Phi_{k}\right)\right]=\left(\frac{2^{b}}{{\pi}}\sin\left(\frac{\pi}{2^{b}}\right)\right)^{2}=s^{2}. Similarly, the second moments of the RV AA, BB, and CC are derived as follows,

𝔼[A2]\displaystyle\mathbb{E}\left[A^{2}\right] =𝔼[(|hSD|2+α2i=1N|[𝐡SR]i|2|[𝐡RD]i|2)2]\displaystyle=\mathbb{E}\left[\left(|{h}^{SD}|^{2}+\alpha^{2}\sum_{i=1}^{N}|[\mathbf{h}^{SR}]_{i}|^{2}|[\mathbf{h}^{RD}]_{i}|^{2}\right)^{2}\right] (40)
=m4SD+2α2Nm2SRm2RDm2SD+Nα4m4SRm4RD+N(N1)α4(m2SR)2(m2RD)2,\displaystyle=m_{4}^{SD}+2\alpha^{2}Nm_{2}^{SR}m_{2}^{RD}m_{2}^{SD}+N\alpha^{4}m_{4}^{SR}m_{4}^{RD}+N(N-1)\alpha^{4}(m_{2}^{SR})^{2}(m_{2}^{RD})^{2},
𝔼[B2]=\displaystyle\mathbb{E}[B^{2}]= 𝔼[(2α|hSD|i=1N|[𝐡SR]i||[𝐡RD]i|cos(Φi))2]\displaystyle\mathbb{E}\left[\left(2\alpha|{h}^{SD}|\sum_{i=1}^{N}|[\mathbf{h}^{SR}]_{i}||[\mathbf{h}^{RD}]_{i}|\cos(\Phi_{i})\right)^{2}\right] (41)
=4α2m2SD[Nm2SRm2RD1+p2+N(N1)s2(m1SR)2(m1RD)2],\displaystyle=4\alpha^{2}m_{2}^{SD}\left[Nm_{2}^{SR}m_{2}^{RD}\frac{1+p}{2}+N(N-1)s^{2}(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}\right],

where 𝔼[cos2(Φi)]=12+2b2πsin(π2b)cos(π2b)=1+p2\mathbb{E}\left[\cos^{2}(\Phi_{i})\right]=\frac{1}{2}+\frac{2^{b}}{2\pi}\sin(\frac{\pi}{2^{b}})\cos(\frac{\pi}{2^{b}})=\frac{1+p}{2}. Next, we have

𝔼[C2]\displaystyle\mathbb{E}[C^{2}] =𝔼[(2α2i=1N1k=i+1N|[𝐡SR]i||[𝐡RD]i||[𝐡SR]k||[𝐡RD]k|cos(ΦiΦk))2]\displaystyle=\mathbb{E}\left[\left(2\alpha^{2}\sum_{i=1}^{N-1}\sum_{k=i+1}^{N}|[\mathbf{h}^{SR}]_{i}||[\mathbf{h}^{RD}]_{i}||[\mathbf{h}^{SR}]_{k}||[\mathbf{h}^{RD}]_{k}|\cos(\Phi_{i}-\Phi_{k})\right)^{2}\right]
=4α4i=1N1k=i+1N(𝔼[|[𝐡SR]i|2])2(𝔼[|[𝐡RD]i|2])2𝔼[cos2(ΦiΦk))]\displaystyle=4\alpha^{4}\sum_{i=1}^{N-1}\sum_{k=i+1}^{N}\left(\mathbb{E}\left[|[\mathbf{h}^{SR}]_{i}|^{2}\right]\right)^{2}\left(\mathbb{E}\left[|[\mathbf{h}^{RD}]_{i}|^{2}\right]\right)^{2}\mathbb{E}\left[\cos^{2}(\Phi_{i}-\Phi_{k}))\right]
+4α4j=1Ni=1ijklN1k=i+1Nl=j+1N(𝔼[|[𝐡SR]i|])4(𝔼[|[𝐡RD]i|])4𝔼2[cos(ΦiΦk)]\displaystyle+4\alpha^{4}\sum_{j=1}^{N}\sum_{\begin{subarray}{c}i=1\\ i\neq j\neq k\neq l\end{subarray}}^{N-1}\sum_{k=i+1}^{N}\sum_{l=j+1}^{N}\left(\mathbb{E}\left[|\left[\mathbf{h}^{SR}\right]_{i}|\right]\right)^{4}\left(\mathbb{E}\left[|\left[\mathbf{h}^{RD}\right]_{i}|\right]\right)^{4}\mathbb{E}^{2}\left[\cos\left(\Phi_{i}-\Phi_{k}\right)\right] (42)
+8α4j=1Ni=1j=iklN1k=i+1Nl=j+1N[𝔼[|[𝐡SR]k|]𝔼[|[𝐡RD]k|]𝔼[|[𝐡SR]l|]𝔼[|[𝐡RD]l|].\displaystyle+8\alpha^{4}\sum_{j=1}^{N}\sum_{\begin{subarray}{c}i=1\\ j=i\neq k\neq l\end{subarray}}^{N-1}\sum_{k=i+1}^{N}\sum_{l=j+1}^{N}\Big{[}\mathbb{E}\left[|[\mathbf{h}^{SR}]_{k}|\right]\mathbb{E}\left[|[\mathbf{h}^{RD}]_{k}|\right]\mathbb{E}\left[|[\mathbf{h}^{SR}]_{l}|\right]\mathbb{E}\left[|[\mathbf{h}^{RD}]_{l}|\right]\Big{.}
.𝔼[|[𝐡SR]i|2]𝔼[|[𝐡RD]i|2]𝔼[cos(ΦiΦk)cos(ΦiΦl)]].\displaystyle\hskip 113.81102pt\Big{.}\mathbb{E}\left[|[\mathbf{h}^{SR}]_{i}|^{2}\right]\mathbb{E}\left[|[\mathbf{h}^{RD}]_{i}|^{2}\right]\mathbb{E}\left[\cos(\Phi_{i}-\Phi_{k})\cos(\Phi_{i}-\Phi_{l})\right]\Big{]}.

Using 𝔼[cos2(ΦiΦk)]=12+12(2b2π2bsin(2π2b))2=1+p22\mathbb{E}\left[\cos^{2}(\Phi_{i}-\Phi_{k})\right]=\frac{1}{2}+\frac{1}{2}\left(\frac{2^{b}}{2\frac{\pi}{2^{b}}}\sin\left(2\frac{\pi}{2^{b}}\right)\right)^{2}=\frac{1+p^{2}}{2} and 𝔼[cos(ΦiΦk)cos(ΦiΦl)]=12s2+12ps2\mathbb{E}\left[\cos\left(\Phi_{i}-\Phi_{k}\right)\cos(\Phi_{i}-\Phi_{l})\right]=\frac{1}{2}s^{2}+\frac{1}{2}ps^{2}, (42) can be re-written as,

𝔼[C2]\displaystyle\mathbb{E}\left[C^{2}\right] =N(N1)α4[2(N2)m2SRm2RDs2(1+p)(m1SR)2(m1RD)2+(m2SR)2(m2RD)2(1+p2)\displaystyle=N(N-1)\alpha^{4}\left[2(N-2)m_{2}^{SR}m_{2}^{RD}s^{2}\left(1+p\right)(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}+(m_{2}^{SR})^{2}(m_{2}^{RD})^{2}(1+p^{2})\right. (43)
+s4(N2)(N3)(m1SR)4(m1RD)4].\displaystyle\left.+s^{4}(N-2)(N-3)(m_{1}^{SR})^{4}(m_{1}^{RD})^{4}\right].

Next, we derive the expectation of RV’s ABAB, BCBC, and ACAC,

𝔼[AB]=𝔼[(|hSD|2+α2i=1N|[𝐡SR]i|2|[𝐡RD]i|2)×(2α|hSD|i=1N|[𝐡SR]i||[𝐡RD]i|cos(Φi))].\displaystyle\mathbb{E}[AB]=\mathbb{E}\left[\left(|{h}^{SD}|^{2}+\alpha^{2}\sum_{i=1}^{N}|[\mathbf{h}^{SR}]_{i}|^{2}|[\mathbf{h}^{RD}]_{i}|^{2}\right)\times\left(2\alpha|{h}^{SD}|\sum_{i=1}^{N}|[\mathbf{h}^{SR}]_{i}||[\mathbf{h}^{RD}]_{i}|\cos(\Phi_{i})\right)\right]. (44)

We can rewrite the above equation as (45).

𝔼[AB]=\displaystyle\mathbb{E}\left[AB\right]= 2α𝔼[|hSD|3]i=1N𝔼[|[𝐡SR]i|]𝔼[|[𝐡RD]i|]𝔼[cos(Φi)]\displaystyle 2\alpha\mathbb{E}\left[|{h}^{SD}|^{3}\right]\sum_{i=1}^{N}\mathbb{E}\left[|[\mathbf{h}^{SR}]_{i}|\right]\mathbb{E}\left[|[\mathbf{h}^{RD}]_{i}|\right]\mathbb{E}\left[\cos(\Phi_{i})\right]
+4α3𝔼[|hSD|]j=1N1i=j+1N𝔼[|[𝐡SR]i|2]𝔼[|[𝐡RD]i|2]𝔼[|[𝐡SR]i|]𝔼[|[𝐡RD]i|]𝔼[cos(Φi)]\displaystyle+4\alpha^{3}\mathbb{E}\left[|{h}^{SD}|\right]\sum_{j=1}^{N-1}\sum_{i=j+1}^{N}\mathbb{E}\left[|[\mathbf{h}^{SR}]_{i}|^{2}\right]\mathbb{E}\left[|[\mathbf{h}^{RD}]_{i}|^{2}\right]\mathbb{E}\left[|[\mathbf{h}^{SR}]_{i}|\right]\mathbb{E}\left[|[\mathbf{h}^{RD}]_{i}|\right]\mathbb{E}\left[\cos(\Phi_{i})\right]
+2α3𝔼[|hSD|]i=1N𝔼[|[𝐡SR]i|3]𝔼[|[𝐡RD]i|3]𝔼[cos(Φi)]).\displaystyle+2\alpha^{3}\mathbb{E}\left[|{h}^{SD}|\right]\sum_{i=1}^{N}\mathbb{E}\left[|[\mathbf{h}^{SR}]_{i}|^{3}\right]\mathbb{E}\left[|[\mathbf{h}^{RD}]_{i}|^{3}\right]\mathbb{E}\left[\cos(\Phi_{i})\right]). (45)

The above expression can be evaluated as,

𝔼[AB]=\displaystyle\mathbb{E}[AB]= 2Nαm3SDm1SRm1RDs+2α3Nm1SDm3SRm3RDs+4α3m1SDm1SRm1RDm2SRm2RDN(N1)2s.\displaystyle 2N\alpha m_{3}^{SD}m_{1}^{SR}m_{1}^{RD}s+2\alpha^{3}Nm_{1}^{SD}m_{3}^{SR}m_{3}^{RD}s+4\alpha^{3}m_{1}^{SD}m_{1}^{SR}m_{1}^{RD}m_{2}^{SR}m_{2}^{RD}\frac{N(N-1)}{2}s. (46)

Next, we consider the expectation of the term BCBC,

𝔼[BC]=\displaystyle\mathbb{E}[BC]= 𝔼[2α|hSD|i=1N|[𝐡SR]i||[𝐡RD]i|cos(Φi)×\displaystyle\mathbb{E}\left[2\alpha|{h}_{SD}|\sum_{i=1}^{N}|[\mathbf{h}_{SR}]_{i}||[\mathbf{h}_{RD}]_{i}|\cos(\Phi_{i})\times\right.
2α2i=1N1k=i+1N|[𝐡SR]i||[𝐡RD]i||[𝐡SR]k||[𝐡RD]k|(cos(ΦiΦk))].\displaystyle\left.2\alpha^{2}\sum_{i=1}^{N-1}\sum_{k=i+1}^{N}|[\mathbf{h}_{SR}]_{i}||[\mathbf{h}_{RD}]_{i}||[\mathbf{h}_{SR}]_{k}||[\mathbf{h}_{RD}]_{k}|(\cos(\Phi_{i}-\Phi_{k}))\right]. (47)

We can write the above equation as

𝔼[BC]=2α3m1SD[m1SR]3[m1RD]3N(N1)(N2)s3+2α3sm1SDm2SRm2RDm1SRm1RDN(N1)(1+p).\displaystyle\mathbb{E}[BC]=2\alpha^{3}m_{1}^{SD}\left[m_{1}^{SR}\right]^{3}\left[m_{1}^{RD}\right]^{3}N(N-1)(N-2)s^{3}+2\alpha^{3}sm_{1}^{SD}m_{2}^{SR}m_{2}^{RD}m_{1}^{SR}m_{1}^{RD}N(N-1)(1+p). (48)

Finally, we evaluate the expectation of the last term ACAC,

𝔼[AC]=\displaystyle\mathbb{E}[AC]= 𝔼[(|hSD|2+α2i=1N|[𝐡SR]i|2|[𝐡RD]i|2)×\displaystyle\mathbb{E}\left[\left(|{h}^{SD}|^{2}+\alpha^{2}\sum_{i=1}^{N}|[\mathbf{h}^{SR}]_{i}|^{2}|[\mathbf{h}^{RD}]_{i}|^{2}\right)\right.\times
(2α2i=1N1k=i+1N|[𝐡SR]i||[𝐡RD]i||[𝐡SR]k||[𝐡RD]k|cos(ΦiΦk))].\displaystyle\left.\left(2\alpha^{2}\sum_{i=1}^{N-1}\sum_{k=i+1}^{N}|[\mathbf{h}^{SR}]_{i}||[\mathbf{h}^{RD}]_{i}||[\mathbf{h}^{SR}]_{k}||[\mathbf{h}^{RD}]_{k}|\cos(\Phi_{i}-\Phi_{k})\right)\right]. (49)

Again, we can rewrite the above equation as

𝔼[AC]=\displaystyle\mathbb{E}[AC]= 𝔼[|hSD|2]𝔼[C]+4α4i=1N1k=i+1N𝔼[|[𝐡SR]j|3]𝔼[|[𝐡RD]j|3]𝔼[|[𝐡SR]j|]𝔼[|[𝐡RD]j|]𝔼[cos(ΦiΦk)]\displaystyle\mathbb{E}[|{h}^{SD}|^{2}]\mathbb{E}[C]+4\alpha^{4}\sum_{i=1}^{N-1}\sum_{k=i+1}^{N}\mathbb{E}[|[\mathbf{h}^{SR}]_{j}|^{3}]\mathbb{E}[|[\mathbf{h}^{RD}]_{j}|^{3}]\mathbb{E}[|[\mathbf{h}^{SR}]_{j}|]\mathbb{E}[|[\mathbf{h}^{RD}]_{j}|]\mathbb{E}[\cos(\Phi_{i}-\Phi_{k})]
+2α4j=1Ni=1ijkN1k=i+1N𝔼[|[𝐡SR]j|2]𝔼[|[𝐡RD]j|2]𝔼[|[𝐡SR]j|]2𝔼[|[𝐡RD]j|]2𝔼[cos(ΦiΦk)].\displaystyle+2\alpha^{4}\sum_{j=1}^{N}\sum_{\begin{subarray}{c}i=1\\ i\neq j\neq k\end{subarray}}^{N-1}\sum_{k=i+1}^{N}\mathbb{E}[|[\mathbf{h}^{SR}]_{j}|^{2}]\mathbb{E}[|[\mathbf{h}^{RD}]_{j}|^{2}]\mathbb{E}[|[\mathbf{h}^{SR}]_{j}|]^{2}\mathbb{E}[|[\mathbf{h}^{RD}]_{j}|]^{2}\mathbb{E}[\cos(\Phi_{i}-\Phi_{k})]. (50)

Substituting for the expectations, we get

𝔼[AC]=\displaystyle\mathbb{E}[AC]= m2SD(2α2(m1SR)2(m1RD)2N(N1)2s2)+4α4m3SRm3RDm1SRm1RDN(N1)2s2\displaystyle m_{2}^{SD}\left(2\alpha^{2}(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}\frac{N(N-1)}{2}s^{2}\right)+4\alpha^{4}m_{3}^{SR}m_{3}^{RD}m_{1}^{SR}m_{1}^{RD}\frac{N(N-1)}{2}s^{2} (51)
+2α4(m1SR)2(m1RD)2m2SRm2RDN(N1)(N2)2s2.\displaystyle+2\alpha^{4}(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}m_{2}^{SR}m_{2}^{RD}\frac{N(N-1)(N-2)}{2}s^{2}. (52)

Thus, the first and second moments are given by

𝔼[γIRS]=γs(m2SD+Nα2m2SRm2RD+2Nsαm1SDm1SRm1RD+N(N1)α2(m1SR)2(m1RD)2s2).\mathbb{E}\left[{\gamma_{IRS}}\right]=\gamma_{s}\left(m_{2}^{SD}+N\alpha^{2}m_{2}^{SR}m_{2}^{RD}+2Ns\ \alpha m_{1}^{SD}m_{1}^{SR}m_{1}^{RD}+N(N-1)\alpha^{2}(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}s^{2}\right). (53)
𝔼[γIRS2]=γs2{m4SD+2α2Nm2SRm2RDm2SD+Nα4m4SRm4RD+N(N1)α4(m2SR)2(m2RD)2\displaystyle\mathbb{E}\left[{\gamma_{IRS}}^{2}\right]=\gamma^{2}_{s}\left\{m_{4}^{SD}+2\alpha^{2}Nm_{2}^{SR}m_{2}^{RD}m_{2}^{SD}+N\alpha^{4}m_{4}^{SR}m_{4}^{RD}+N(N-1)\alpha^{4}(m_{2}^{SR})^{2}(m_{2}^{RD})^{2}\right. (54)
+4α2m2SD[Nm2SRm2RD1+p2+N(N1)s2(m2SR)2(m2RD)2]+N(N1)α4[2(N2)s2(1+p)\displaystyle\left.+4\alpha^{2}m_{2}^{SD}\left[Nm_{2}^{SR}m_{2}^{RD}\frac{1+p}{2}+N(N-1)s^{2}(m_{2}^{SR})^{2}(m_{2}^{RD})^{2}\right]+N(N-1)\alpha^{4}\left[2(N-2)s^{2}(1+p)\right.\right.
m2SRm2RD(m1SR)2(m1RD)2+(m2SR)2(m2RD)2(1+p2)+s4(N2)(N3)(m1SR)4(m1RD)4]\displaystyle\left.\left.m_{2}^{SR}m_{2}^{RD}(m_{1}^{SR})^{2}(m_{1}^{RD})^{2}+(m_{2}^{SR})^{2}(m_{2}^{RD})^{2}(1+p^{2})+s^{4}(N-2)(N-3)(m_{1}^{SR})^{4}(m_{1}^{RD})^{4}\right]\right.
+4Nαs[m3SDm1SRm1RD+α2m1SDm3SRm3RD+(N1)α2m1SDm1SRm1RDm2SRm2RD]\displaystyle\left.+4N\alpha s\left[m_{3}^{SD}m_{1}^{SR}m_{1}^{RD}+\alpha^{2}m_{1}^{SD}m_{3}^{SR}m_{3}^{RD}+(N-1)\alpha^{2}m_{1}^{SD}m_{1}^{SR}m_{1}^{RD}m_{2}^{SR}m_{2}^{RD}\right]\right.
+4N(N1)α3s[m1SD(m1SR)3(m1RD)3(N2)s2+(1+p)m1SDm2SRm2RDm1SRm1RD]\displaystyle\left.+4N(N-1)\alpha^{3}s\left[m_{1}^{SD}\left(m_{1}^{SR}\right)^{3}\left(m_{1}^{RD}\right)^{3}(N-2)s^{2}+(1+p)m_{1}^{SD}m_{2}^{SR}m_{2}^{RD}m_{1}^{SR}m_{1}^{RD}\right]\right.
+2α2N(N1)s2m1SRm1RD[m2SDm1SRm1RD+α2(2m3SRm3RD+m1SRm1RDm2SRm2RD(N2))]}.\displaystyle\left.+2\alpha^{2}N(N-1)s^{2}m_{1}^{SR}m_{1}^{RD}\left[m_{2}^{SD}m_{1}^{SR}m_{1}^{RD}+\alpha^{2}\left(2m_{3}^{SR}m_{3}^{RD}+m_{1}^{SR}m_{1}^{RD}m_{2}^{SR}m_{2}^{RD}(N-2)\right)\right]\right\}.

Note that the values of m1AB,m2AB,m3ABm_{1}^{AB},m_{2}^{AB},m_{3}^{AB} and m4ABm_{4}^{AB} depend upon the channel fading statistics and for the case of κμ\kappa-\mu fading these moments can be evaluated using [30, (3)]

\cbend

Appendix D Proof for Theorem 3

Here, we proceed with steps similar to the KL divergence minimization used by the authors of [36]. Let p(γ)p(\gamma) and q(γ)q(\gamma) respectively represent the pdf of the SNR and the Gamma distribution that minimizes the KL divergence between p(γ)p(\gamma) and all the Gamma distributions i.e.,

q(γ)=argminq(γ)KL(p(γ)q(γ))\displaystyle q(\gamma)=\underset{q(\gamma)}{\operatorname{argmin}}\ \text{KL}(p(\gamma)\|q(\gamma)) =argmaxq(γ)p(γ)[ln(q(γ))ln(p(γ))]𝑑γ,\displaystyle=\underset{q(\gamma)}{\operatorname{argmax}}\int p(\gamma)[\ln(q(\gamma))-\ln(p(\gamma))]d\gamma,
=argmaxq(γ)p(γ)ln(q(γ))𝑑γ.\displaystyle=\underset{q(\gamma)}{\operatorname{argmax}}\int p(\gamma)\ln(q(\gamma))d\gamma. (55)

Here we have, q(γ)=θklkklΓ[kkl]γkkl1exp(γθkl)q(\gamma)=\frac{\theta_{kl}^{-k_{kl}}}{\Gamma[k_{kl}]}\gamma^{k_{kl}-1}\exp\left(\frac{-\gamma}{\theta_{kl}}\right), where kklk_{kl}, θkl\theta_{kl} are respectively the shape and scale parameter of the Gamma distribution. Thus,

q(γ)\displaystyle q(\gamma) =argmaxq(γ)p(γ)(kkllog(θkl)log(Γ[kkl])+(kkl1)log(γ)γθkl)𝑑γ\displaystyle=\underset{q(\gamma)}{\operatorname{argmax}}\int p(\gamma)\left(-k_{kl}\log(\theta_{kl})-\log(\Gamma[k_{kl}])+(k_{kl}-1)\log(\gamma)-\frac{\gamma}{\theta_{kl}}\right)\ d\gamma (56)
=argmaxq(γ)kkllog(θkl)log(Γ[kkl])+(kkl1)𝔼[log(γ)]𝔼[γ]θkl.\displaystyle=\underset{q(\gamma)}{\operatorname{argmax}}-k_{kl}\log(\theta_{kl})-\log(\Gamma[k_{kl}])+(k_{kl}-1)\mathbb{E}[\log(\gamma)]-\frac{\mathbb{E}[\gamma]}{\theta_{kl}}. (57)

Now, the parameters kklk_{kl} and θkl\theta_{kl} can be identified by differentiating (57) with respect to kklk_{kl} and θkl\theta_{kl} and then equating each of the expression to zero. Thus, we have

𝔼[log(γIRS)]\displaystyle\mathbb{E}[\log(\gamma_{IRS})] =log(θkl)+ψ(kkl),\displaystyle=\log(\theta_{kl})+\psi(k_{kl}), (58)
𝔼[γIRS]\displaystyle\mathbb{E}[\gamma_{IRS}] =kkl×θkl.\displaystyle=k_{kl}\times\theta_{kl}. (59)

One can observe that (58) and (59) are equivalent to matching the first moment of γIRS\gamma_{IRS} and the first moment of log(γIRS)\log(\gamma_{IRS}) to the corresponding moments of a gamma RV. Thus, the probability of outage for a threshold γ\gamma is obtained by evaluating the CDF of the Gamma RV with parameters kklk_{kl} and θkl\theta_{kl} at γ\gamma. The corresponding expression is given in (17).

Supplementary material for: Outage Probability Expressions for an IRS-Assisted System with and without Source-Destination Link for the Case of Quantized Phase Shifts in κμ\kappa-\mu Fading In this document, we present the simulation results for various special cases of the κμ\kappa-\mu fading.

D-A Results for Rayleigh channel

First, we consider the case where all the links experience independent Rayleigh fading. Hence we have, κSD=0\kappa_{SD}=0, μSD=1\mu_{SD}=1, κSR=0\kappa_{SR}=0, μSR=1\mu_{SR}=1, κRD=0\kappa_{RD}=0 and μRD=1\mu_{RD}=1. In this case, the uni-variate approximation can be simplified as

Poutage\displaystyle P_{outage} 4Ndsrβdrdβγs0(1e(γx(N1)αμ)2dsdβγs)U(γx(N1)αμ)xK0[2xγsdsrβ/2drdβ/2]𝑑x\displaystyle\approx\frac{4Nd_{sr}^{\beta}d_{rd}^{\beta}}{\gamma_{s}}\int_{0}^{\infty}\left(1-e^{\frac{-(\sqrt{\gamma}-x-(N-1)\alpha\mu)^{2}d_{sd}^{\beta}}{\gamma_{s}}}\right)\operatorname{U}\left(\sqrt{\gamma}-x-(N-1)\alpha\mu\right)x\textit{K}_{0}\left[\frac{2x}{\sqrt{\gamma_{s}}d_{sr}^{-\beta/2}d_{rd}^{-\beta/2}}\right]dx (60)
+N2b2ππ2bπ2b(1e(γ(αsin(ϕ)μ)2αcos(ϕ)μ(N1)αμ)2dsdβγs)U(.γ(αsin(ϕ)μ)2\displaystyle+N\frac{2^{b}}{2\pi}\int_{\frac{-\pi}{2^{b}}}^{\frac{\pi}{2^{b}}}\left(1-e^{\frac{-\left(\sqrt{\gamma-\left(\alpha\sin{\left(\phi\right)}\mu\right)^{2}}-\alpha\cos{\left(\phi\right)}\mu-(N-1)\alpha\mu\right)^{2}d_{sd}^{\beta}}{\gamma_{s}}}\right)\operatorname{U}\Bigg{(}\Bigg{.}\sqrt{\gamma-\left(\alpha\sin{\left(\phi\right)}\mu\right)^{2}}-
αcos(ϕ)μ(N1)αμ.)dϕ(2N1)(1e(γNαμ)2dsdβγs)U(γNαμ),\displaystyle\alpha\cos{\left(\phi\right)}\mu-(N-1)\alpha\mu\Bigg{.}\Bigg{)}d\phi-(2N-1)\left(1-e^{\frac{-(\sqrt{\gamma}-N\alpha\mu)^{2}d_{sd}^{\beta}}{\gamma_{s}}}\right)\operatorname{U}\left(\sqrt{\gamma}-N\alpha\mu\right),

where μ=πγsdsrβ/2drdβ/24\mu=\frac{\pi\sqrt{\gamma_{s}}d_{sr}^{-\beta/2}d_{rd}^{-\beta/2}}{4}.

N=5N=5 Method Threshold(γ\gamma) -15 dB -10 dB -5 dB -2 dB 0 dB 2 dB 5 dB
Simulated 0.0937 0.2728 0.6405 0.8714 0.9615 0.9943 1.0000
Uni-variate Approx. 0.0938 0.2732 0.6403 0.8713 0.9615 0.9943 1.0000
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0947 0.2734 0.6400 0.8712 0.9615 0.9943 1.0000
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0744 0.2460 0.6328 0.8782 0.9676 0.9961 1.0000
N=50N=50 Method Threshold(γ\gamma) -15 dB -10 dB -5 dB -2 dB 0 dB 2 dB 5 dB
Simulated 0.0543 0.2115 0.5816 0.8402 0.9493 0.9921 1.0000
Uni-variate Approx. 0.0545 0.2116 0.5819 0.8403 0.9494 0.9920 0.9999
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0635 0.2148 0.5794 0.8394 0.9496 0.9922 1.0000
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0490 0.1909 0.5697 0.8452 0.9559 0.9943 1.0000
Table XI: Comparison of OP with SD link for 𝒮1\mathcal{S}_{1} with varying N for d=30d=30 and b=5b=5

D-B Results for Nakagami channel

Next, we consider the case of Nakagami-m fading which is a special case of the κμ\kappa-\mu channel for κ=0\kappa=0 and μ=m\mu=m. In this case, the uni-variate approximation can be simplified as

Poutage\displaystyle P_{outage} 4N(aSRaRDγs)mSR+mRDΓ(mSR)Γ(mRD)0T1h1(x)xmSR+mRD1KmSRmRD(2aSRaRDγsx)𝑑x\displaystyle\approx\frac{4N\left(\sqrt{\frac{a_{SR}a_{RD}}{\gamma_{s}}}\right)^{m_{SR}+m_{RD}}}{\Gamma\left(m_{SR}\right)\Gamma\left(m_{RD}\right)}\int_{0}^{T_{1}}h_{1}\left(x\right)x^{m_{SR}+m_{RD}-1}K_{m_{SR}-m_{RD}}\left(2\sqrt{\frac{a_{SR}a_{RD}}{\gamma_{s}}}x\right)dx (61)
+N2b2ππ2bπ2bP(mSD,mSD(γ(αsin(ϕi)μ)2αcos(ϕi)μ(N1)αμ)2γst^SD2)×U(.γ(αsin(ϕ)μ)2αcos(ϕ)μ(N1)αμ.)dϕ\displaystyle+N\frac{2^{b}}{2\pi}\int_{\frac{-\pi}{2^{b}}}^{\frac{\pi}{2^{b}}}\begin{array}[]{l}P\left(m_{SD},\frac{m_{SD}\left(\sqrt{\gamma-\left(\alpha\sin{\left(\phi_{i}\right)}\mu\right)^{2}}-\alpha\cos{\left(\phi_{i}\right)}\mu-(N-1)\alpha\mu\right)^{2}}{\gamma_{s}\hat{t}^{2}_{SD}}\right)\\ \times\operatorname{U}\Bigg{(}\Bigg{.}\sqrt{\gamma-\left(\alpha\sin{\left(\phi\right)}\mu\right)^{2}}-\alpha\cos{\left(\phi\right)}\mu-(N-1)\alpha\mu\Bigg{.}\Bigg{)}d\phi\end{array}
(2N1)P(mSD,mSD(γNαμ)2γst^SD2)U(γNαμ),\displaystyle-(2N-1)P\left(m_{SD},\frac{m_{SD}\left(\sqrt{\gamma}-N\alpha\mu\right)^{2}}{\gamma_{s}\hat{t}^{2}_{SD}}\right)\operatorname{U}\left(\sqrt{\gamma}-N\alpha\mu\right),

where

aSR\displaystyle a_{SR} =mSRt^SR2,aRD=mRDt^RD2,T1=γ(N1)αμ,\displaystyle=\frac{m_{SR}}{\hat{t}^{2}_{SR}},a_{RD}=\frac{m_{RD}}{\hat{t}^{2}_{RD}},\quad T_{1}=\sqrt{\gamma}-\left(N-1\right)\alpha\mu, (62)
μ\displaystyle\mu =γs(mSR)12(mRD)12aSRaRD,h1(x)=P(mSD,mSD(γx(N1)αμ)2γst^SD2).\displaystyle=\frac{\sqrt{\gamma_{s}}\left(m_{SR}\right)_{\frac{1}{2}}\left(m_{RD}\right)_{\frac{1}{2}}}{\sqrt{a_{SR}a_{RD}}},\quad h_{1}\left(x\right)=P\left(m_{SD},\frac{m_{SD}\left(\sqrt{\gamma}-x-(N-1)\alpha\mu\right)^{2}}{\gamma_{s}\hat{t}^{2}_{SD}}\right).

and Kν\textit{K}_{\nu} is modified Bessel function of the second kind of order ν\nu [32], P(a,z)P\left(a,z\right) is the Regularized Gamma function [42] and U()\operatorname{U}(\cdot) is the unit step function.

Here, the results in Table XII are generated using the following parameters: κSD=0\kappa_{SD}=0, μSD=1\mu_{SD}=1, κSR=0\kappa_{SR}=0, μSR=2\mu_{SR}=2, κRD=0\kappa_{RD}=0 and μRD=1.2\mu_{RD}=1.2. Note that this simulation setting is similar to the scenario considered in Table XI except that the values of μSR\mu_{SR} and μRD\mu_{RD} are larger. We can observe that the OP decreases with the increase in the number of multipath clusters in the SRSR and RDRD link. This decrease in OP is more significant for large values of NN.

N=5N=5 Method Threshold(γ\gamma) -15 dB -10 dB -5 dB -2 dB 0 dB 2 dB 5 dB
Simulated 0.0936 0.2721 0.6401 0.8711 0.9614 0.9944 1
Uni-variate Approx. 0.0934 0.2726 0.871 0.9244 0.9614 0.9943 1
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0944 0.2728 0.6395 0.8709 0.9614 0.9943 1
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0741 0.2455 0.6323 0.8779 0.9675 0.9961 1
N=50N=50 Method Threshold(γ\gamma) -15 dB -10 dB -5 dB -2 dB 0 dB 2 dB 5 dB
Simulated 0.0511 0.2064 0.5755 0.8376 0.9483 0.9919 1
Uni-variate Approx. 0.0514 0.2063 0.5765 0.8373 0.9482 0.9917 0.9999
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0611 0.2098 0.5737 0.8363 0.9483 0.9919 1
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.047 0.1862 0.5639 0.8419 0.9547 0.9941 1
Table XII: Comparison of OP with SD link for 𝒮1\mathcal{S}_{1} with varying N for d=30d=30 and b=5b=5

D-C Results for Rician channel

Here, we consider the case of Rician fading with parameter KK, which is a special case of the κμ\kappa-\mu channel for κ=K\kappa=K and μ=1\mu=1. The results in Table XIII are generated using the following parameters: we have κSD=0\kappa_{SD}=0, μSD=1\mu_{SD}=1,κSR=2\kappa_{SR}=2, μSR=1\mu_{SR}=1, κRD=2.5\kappa_{RD}=2.5 and μRD=1\mu_{RD}=1. This setting is similar to the scenario considered in Table XI except that the values of κSR\kappa_{SR} and κRD\kappa_{RD} are larger. Note that the parameter κ\kappa represents the ratio between the total power of the dominant components and the total power of the scattered waves. Thus, larger values of κSR\kappa_{SR} and κRD\kappa_{RD} means that the dominant components of the SRSR and RDRD links are stronger and hence the OP decreases. This can be observed from the results in Table XIII.

NN Method Threshold(γ\gamma) -15 dB -10 dB -5 dB -2 dB 0 dB 2 dB 5 dB
N=5N=5 Simulated 0.09320.0932 0.27200.2720 0.63860.6386 0.87070.8707 0.96100.9610 0.99420.9942 1.00001.0000
Uni-variate Approx. 0.0933\mathbf{0.0933} 0.27240.2724 0.63960.6396 0.87090.8709 0.96130.9613 0.99430.9943 1.00001.0000
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.09430.0943 0.27260.2726 0.63930.6393 0.87090.8709 0.96140.9614 0.99430.9943 1.00001.0000
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.07400.0740 0.24530.2453 0.63210.6321 0.87790.8779 0.96750.9675 0.99610.9961 1.00001.0000
N=50N=50 Simulated 0.05000.0500 0.20440.2044 0.57570.5757 0.83680.8368 0.94790.9479 0.99170.9917 1.00001.0000
Uni-variate Approx. 0.05050.0505 0.20470.2047 0.57480.5748 0.83640.8364 0.94780.9478 0.99160.9916 0.99990.9999
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.06040.0604 0.20840.2084 0.57200.5720 0.83530.8353 0.94800.9480 0.99190.9919 0.99990.9999
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.04650.0465 0.18490.1849 0.56220.5622 0.84100.8410 0.95430.9543 0.99400.9940 1.00001.0000
Table XIII: Comparison of OP with SD link for 𝒮1\mathcal{S}_{1} with varying N for d=30d=30 and b=5b=5

D-D Results for κμ\kappa-\mu channel

Here, we present the results for the most general case of κμ\kappa-\mu fading scenario with the following parameters: κSD=0.7\kappa_{SD}=0.7, μSD=1\mu_{SD}=1, κSR=2.4\kappa_{SR}=2.4, μSR=5\mu_{SR}=5, κRD=1.8\kappa_{RD}=1.8 and μRD=3\mu_{RD}=3. From the results in SectionD-A to SectionD-C, we know that the increase in κSR,κRD\kappa_{SR},\kappa_{RD}, μSR\mu_{SR} and μRD\mu_{RD} decreases OP. Here, the value of κSD\kappa_{SD} is also larger than the value of κSD\kappa_{SD} used in Section D-A. From the results in Table XIV, we can see that the OP is lesser than the values of OP observed in Table XI.

NN Method Threshold(γ\gamma) -15 dB -10 dB -5 dB -2 dB 0 dB 2 dB 5 dB
N=5N=5 Simulated 0.0797 0.2440 0.6222 0.8772 0.9705 0.9973 1.0000
Uni-variate Approx. 0.0795 0.2437 0.6213 0.8766 0.9699 0.9967 0.9993
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0653 0.2322 0.6280 0.8808 0.9700 0.9968 1.0000
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0512 0.2094 0.6222 0.8876 0.9748 0.9978 1.0000
N=50N=50 Simulated 0.0389 0.1736 0.5441 0.8350 0.9560 0.9954 1.0000
Uni-variate Approx. 0.0388 0.1737 0.5432 0.8344 0.9556 0.9950 0.9996
Gamma(kmom,θmomk_{mom},\theta_{mom}) 0.0364 0.1637 0.5460 0.8390 0.9561 0.9948 1.0000
Gamma(kkl,θklk_{kl},\theta_{kl}) 0.0279 0.1453 0.5374 0.8446 0.9613 0.9962 1.0000
Table XIV: Comparison of OP with SD link for 𝒮1\mathcal{S}_{1} with varying N for d=30d=30 and b=5b=5

References

  • [1] M. Di Renzo, A. Zappone, M. Debbah, M. S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 11, pp. 2450–2525, 2020.
  • [2] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019.
  • [3] Zhang, Jiayi and Björnson, Emil and Matthaiou, Michail and Ng, Derrick Wing Kwan and Yang, Hong and Love, David J., “Prospective Multiple Antenna Technologies for Beyond 5G,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1637–1660, 2020.
  • [4] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Communications Magazine, vol. 58, no. 1, pp. 106–112, 2019.
  • [5] M. Di Renzo, K. Ntontin, J. Song, F. H. Danufane, X. Qian, F. Lazarakis, J. De Rosny, D. Phan-Huy, O. Simeone, R. Zhang, M. Debbah, G. Lerosey, M. Fink, S. Tretyakov, and S. Shamai, “Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison,” IEEE Open Journal of the Communications Society, vol. 1, pp. 798–807, 2020.
  • [6] Z. Wang, L. Liu, and S. Cui, “Intelligent reflecting surface assisted massive MIMO communications,” in 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2020, pp. 1–5.
  • [7] X. Jia, J. Zhao, X. Zhou, and D. Niyato, “Intelligent reflecting surface-aided backscatter communications,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.
  • [8] S. Gopi, S. Kalyani, and L. Hanzo, “Intelligent reflecting surface assisted beam index-modulation for millimeter wave communication,” IEEE Transactions on Wireless Communications, 2020.
  • [9] P. Wang, J. Fang, X. Yuan, Z. Chen, and H. Li, “Intelligent reflecting surface-assisted millimeter wave communications: Joint active and passive precoding design,” IEEE Transactions on Vehicular Technology, 2020.
  • [10] A. S. d. Sena, D. Carrillo, F. Fang, P. H. J. Nardelli, D. B. d. Costa, U. S. Dias, Z. Ding, C. B. Papadias, and W. Saad, “What role do intelligent reflecting surfaces play in multi-antenna non-orthogonal multiple access?” IEEE Wireless Communications, vol. 27, no. 5, pp. 24–31, 2020.
  • [11] E. Björnson, Ö. Özdogan, and E. G. Larsson, “Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying?” IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 244–248, 2019.
  • [12] Du, Hongyang and Zhang, Jiayi and Cheng, Julian and Ai, Bo, “Millimeter Wave Communications With Reconfigurable Intelligent Surfaces: Performance Analysis and Optimization,” IEEE Transactions on Communications, vol. 69, no. 4, pp. 2752–2768, 2021.
  • [13] Q. Tao, J. Wang, and C. Zhong, “Performance analysis of intelligent reflecting surface aided communication systems,” IEEE Communications Letters, 2020.
  • [14] D. Kudathanthirige, D. Gunasinghe, and G. Amarasuriya, “Performance analysis of intelligent reflective surfaces for wireless communication,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–6.
  • [15] P. Xu, G. Chen, G. Pan, and M. Di Renzo, “Ergodic secrecy rate of ris-assisted communication systems in the presence of discrete phase shifts and multiple eavesdroppers,” IEEE Wireless Communications Letters, 2020.
  • [16] L. Yang and Y. Yuan, “Secrecy outage probability analysis for RIS-assisted NOMA systems,” Electronics Letters, vol. 56, no. 23, pp. 1254–1256, 2020.
  • [17] Z. Tang, T. Hou, Y. Liu, J. Zhang, and L. Hanzo, “Physical layer security of intelligent reflective surface aided NOMA networks,” arXiv preprint arXiv:2011.03417, 2020.
  • [18] D. Li, “Ergodic Capacity of Intelligent Reflecting Surface-Assisted Communication Systems with Phase Errors,” IEEE Communications Letters, 2020.
  • [19] S. Atapattu, R. Fan, P. Dharmawansa, G. Wang, J. Evans, and T. A. Tsiftsis, “Reconfigurable intelligent surface assisted two–way communications: Performance analysis and optimization,” IEEE Transactions on Communications, vol. 68, no. 10, pp. 6552–6567, 2020.
  • [20] F. A. De Figueiredo, M. S. Facina, R. C. Ferreira, Y. Ai, R. Ruby, Q.-V. Pham, and G. Fraidenraich, “Large intelligent surfaces with discrete set of phase-shifts communicating through double-Rayleigh fading channels,” IEEE Access, vol. 9, pp. 20 768–20 787, 2021.
  • [21] T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, and L. Hanzo, “MIMO assisted networks relying on large intelligent surfaces: A stochastic geometry model,” arXiv preprint arXiv:1910.00959, 2019.
  • [22] Z. Cui, K. Guan, J. Zhang, and Z. Zhong, “SNR Coverage probability analysis of RIS-Aided Communication systems,” IEEE Transactions on Vehicular Technology, pp. 1–1, 2021.
  • [23] S. Al-Ahmadi and H. Yanikomeroglu, “On the approximation of the generalized-k distribution by a gamma distribution for modeling composite fading channels,” IEEE Transactions on Wireless Communications, vol. 9, no. 2, pp. 706–713, 2010.
  • [24] M. Srinivasan and S. Kalyani, “Secrecy capacity of κμ\kappa-\mu shadowed fading channels,” IEEE Communications Letters, vol. 22, no. 8, pp. 1728–1731, 2018.
  • [25] T. Wang, G. Chen, J. P. Coon, and M.-A. Badiu, “Chernoff bounds and saddlepoint approximations for the outage probability in intelligent reflecting surface assisted communication systems,” arXiv preprint arXiv:2008.05447, 2020.
  • [26] M. D. Yacoub, “The κ\kappa-μ\mu distribution and the η\eta-μ\mu distribution,” IEEE Antennas and Propagation Magazine, vol. 49, no. 1, pp. 68–81, 2007.
  • [27] D. Kudathanthirige, D. Gunasinghe, and G. Amarasuriya, “Performance analysis of intelligent reflective surfaces for wireless communication,” in ICC 2020-2020 IEEE International Conference on Communications (ICC).   IEEE, 2020, pp. 1–6.
  • [28] T. Wang, G. Chen, J. P. Coon, and M.-A. Badiu, “Study of intelligent reflective surface assisted communications with one-bit phase adjustments,” arXiv preprint arXiv:2008.09770, Aug 2020.
  • [29] M.-A. Badiu and J. P. Coon, “Communication through a large reflecting surface with phase errors,” IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 184–188, 2019.
  • [30] N. Bhargav, C. R. N. da Silva, Y. J. Chun, E. J. Leonardo, S. L. Cotton, and M. D. Yacoub, “On the product of two κ\kappa-μ\mu random variables and its application to double and composite fading channels,” IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2457–2470, 2018.
  • [31] S. Rahman and H. Xu, “A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics,” Probabilistic Engineering Mechanics, vol. 19, no. 4, pp. 393–408, 2004.
  • [32] E. W. Weisstein, Modified Bessel Function of the Second Kind From MathWorld-A Wolfram Web Resource, (accessed Januray 6, 2021). [Online]. Available: https://mathworld.wolfram.com/ModifiedBesselFunctionoftheSecondKind.html
  • [33] S. Shekhar, M. Srinivasan, and S. Kalyani, “Outage probability of uplink cell-free massive MIMO network with imperfect CSI using dimension-reduction method,” arXiv preprint arXiv:2101.07737, 2021.
  • [34] E. W. Weisstein, Confluent Hypergeometric Function of the First Kind-A Wolfram Web Resource, (accessed Januray 6, 2021). [Online]. Available: https://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html
  • [35] Z. Zhang, Y. Cui, F. Yang, and L. Ding, “Analysis and optimization of outage probability in multi-intelligent reflecting surface-assisted systems,” arXiv preprint arXiv:1909.02193, 2019.
  • [36] M. Srinivasan and S. Kalyani, “Approximate random matrix models for generalized fading MIMO channels,” arXiv preprint arXiv:1707.09734, 2017.
  • [37] E. W. Weisstein, Digamma Function From MathWorld-A Wolfram Web Resource, (accessed Januray 6, 2021). [Online]. Available: https://mathworld.wolfram.com/DigammaFunction.html
  • [38] E. W. Weisstein, Polygamma Function From MathWorld-A Wolfram Web Resource, (accessed July 10, 2021). [Online]. Available: https://mathworld.wolfram.com/PolygammaFunction.html
  • [39] E. W. Weisstein, Kummer Confluent Hypergeometric Function, (accessed July 10, 2021). [Online]. Available: https://functions.wolfram.com/07.20.20.0002.01
  • [40] L. Kong, J. He, Y. Ai, S. Chatzinotas, and B. Ottersten, “Channel modeling and analysis of reconfigurable intelligent surfaces assisted vehicular networks,” in 2021 IEEE International Conference on Communications Workshops (ICC Workshops).   IEEE, 2021, pp. 1–6.
  • [41] Laneman, J Nicholas and Tse, David NC and Wornell, Gregory W, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Transactions on Information theory, vol. 50, no. 12, pp. 3062–3080, 2004.
  • [42] E. W. Weisstein, Regularized Gamma Function From MathWorld-A Wolfram Web Resource, (accessed July 10, 2021). [Online]. Available: https://mathworld.wolfram.com/RegularizedGammaFunction.html