This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Orthonormal rational functions on a semi-infinite interval

Jianqiang Liu 111School of Mathematics and Statistics, Ningxia University, Yinchuan, 750021, China. Email: [email protected]
Abstract

In this paper we propose a novel family of weighted orthonormal rational functions on a semi-infinite interval. We write a sequence of integer-coefficient polynomials in several forms and derive their corresponding differential equations. These equations do not form Sturm-Liouville problems. We overcome this disadvantage by multiplying some factors, resulting to a sequence of irrational functions. We deduce various generating functions of this sequence of irrational functions and find its associated Sturm-Liouville problems, which brings orthogonality. Then we study a Hilbert space of functions defined on a semi-infinite interval with its inner product induced by a weight function determined by the Sturm-Liouville problems mentioned above. We list two bases, one is the even subsequence of the irrational function sequence above and another one is the non-positive integer power functions. We raise one example of Fourier series expansion and one example of interpolation as applications.

Keywords: Chebyshev polynomial \cdot rational function \cdot orthonormal basis \cdot semi-infinite interval \cdot Hilbert space

2020 AMS Subject Classifications: MSC 33D45, 41A20, 41A30, 46E30, 12D99

1 Introduction

Fibonacci sequence is familiar to mathematical researchers (see [1], [2], [3]). Kilmer et. al. studied a kind of generalized Fibonacci sequence with a parameter, namely GG-polynomials, through a three-term recurrence relation(see [4]).

In Combinatorics (see [5]), recurrence relation is an essential tool for generating sequences, for example, Fibonacci sequence and Chebyshev polynomial sequences(see [6]). We are motivated to put forward the study GG-polynomials from three-term recurrence relation, aiming at finding properties similar (or related) to that of Fibonacci sequence’s and Chebyshev polynomial sequences’. We start from writing GG-polynomials in different forms and finding their corresponding differential equations.

The wide-speediness of Chebyshev Polynomials in various practical engineering circumstances relies a lot on the extensive results of its basic mathematical analysis properties. Orthogonality is their key character. Do GG-polynomials have orthogonality? We are interested in this question. Since the orthogonality of Chebyshev polynomials is embodied in a Sturm-Liouville problem(see [7]), we investigate the differential equations that GG-polynomials solve. The result has two sides. The up side is, there exist second order differential equations that GG-polynomials solve. The down side is, in a standard form, the coefficient of first derivative of the unknown in each of these equations is a parameterized number, rather than a free one. This fact prevents GG-polynomials from being an orthogonal sets according to Sturm-Liouville theory.

Hence the family of GG-polynomials is not the desired answer for the orthogonality. For the second best, we seek for a modification to take its place. This is accomplished by multiplying a factor to each GG-polynomial, and the result is a sequence of irrational functions. Some properties of this sequence are derived, including generating functions and associated Sturm-Liouville problems.

Sturm-Liouville form brings orthogonality. By composing a Lebesgue measure and the weight function defined in Sturm-Liouville problems above, we establish a Hilbert space of functions on a semi-infinite interval. We find two of its bases, both are rational function sequences. One of them two is an orthonormal basis, it is the even subsequence of the irrational sequence mentioned above. Another one is not orthogonal, it is the function sequence of non-positive powers, which, after the Gram-Schmidt process, becomes the first basis. Some functions are raised as examples in this space. As applications of this Hilbert space and the orthonormal basis, one example of Fourier series expansion and one example of interpolation are given.

The rest of the article is arranged as follows. In Section 2, we list several forms of GG-polynomials, some identities and related differential equations, and induce an irrational function sequence. In Section 3, we deduce three types of generating functions of this irrational sequence, and the associated Sturm-Liouville problems. As a highlight, in Section 4, we establish a function Hilbert space and propose two bases, and give two examples as applications.

2 Polynomial sequence {Gn:n+}\{G_{n}\colon n\in\mathbb{Z}_{+}\}

We first give some notations. Let \mathbb{Z} be the set of all integers, +\mathbb{Z}_{+} be the set of all nonnegative integers, \mathbb{N} be the set of all positive numbers. \mathbb{C} be the set of all complex numbers, \mathbb{R} be the set of all real numbers. Kilmer et.al. defined a sequence of polynomials, namely GG-Polynomials, on complex domain in the following recursive way(see [4]). We follow the notations there. Let both G0(z)G_{0}(z) and G1(z)G_{1}(z) be the constant 11 and for each n2n\geq 2, let

Gn(z)=Gn1(z)zGn2(z),z.\quad G_{n}(z)=G_{n-1}(z)-zG_{n-2}(z),\quad z\in\mathbb{C}. (1)

It can be written in closed form as

Gn(z)=k=0n2(1)k(nkk)zk,z,n+.G_{n}(z)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k}z^{k},\quad z\in\mathbb{C},n\in\mathbb{Z}_{+}. (2)

In the following, we give several expressions of GG-polynomials and the differential equations they correspond to. We also introduce an irrational function sequence from GG-polynomials.

2.1 Expressions

We first give a relation among GG-polynomials and Chebyshev polynomials of the second and the fourth kinds, Un(x)U_{n}(x) and Sn(x)S_{n}(x). UnU_{n} are defined originally on [1,1][-1,1] by

Un(x)=sin(n+1)arccosxsinarccosx,n+,x(1,1),U_{n}(x)=\frac{\sin(n+1)\arccos x}{\sin{\arccos x}},\quad n\in\mathbb{Z}_{+},\quad x\in(-1,1), (3)

and then extended (via analytic extension) to be polynomials on \mathbb{C}. SnS_{n} is derived from UnU_{n} by

Sn(x)=Un(x2),x,n+.S_{n}(x)=U_{n}\left(\frac{x}{2}\right),\quad x\in\mathbb{C},n\in\mathbb{Z}_{+}.

The first ten of GnG_{n}’s and SnS_{n}’s are given below. Terms are arranged in reverse order.

G0(z)=1,G1(z)=1,G2(z)=1z,G3(z)=12z,G4(z)=13z+z2,G5(z)=14z+3z2,G6(z)=15z+6z2z3,G7(z)=16z+10z24z3,G8(z)=17z+15z210z3+z4,G9(z)=18z+21z220z3+5z4,S0(z)=1,S1(z)=z,S2(z)=z21,S3(z)=z32z,S4(z)=z43z2+1,S5(z)=z54z3+3z,S6(z)=z65z4+6z21,S7(z)=z76z5+10z34z,S8(z)=z87z6+15z410z2+1,S9(z)=z98z7+21z520z3+5z.\begin{array}[]{ll}\begin{array}[]{l}G_{0}(z)=1,\cr G_{1}(z)=1,\cr G_{2}(z)=1-z,\cr G_{3}(z)=1-2z,\cr G_{4}(z)=1-3z+z^{2},\cr G_{5}(z)=1-4z+3z^{2},\cr G_{6}(z)=1-5z+6z^{2}-z^{3},\cr G_{7}(z)=1-6z+10z^{2}-4z^{3},\cr G_{8}(z)=1-7z+15z^{2}-10z^{3}+z^{4},\cr G_{9}(z)=1-8z+21z^{2}-20z^{3}+5z^{4},\end{array}&\begin{array}[]{l}S_{0}(z)=1,\cr S_{1}(z)=z,\cr S_{2}(z)=z^{2}-1,\cr S_{3}(z)=z^{3}-2z,\cr S_{4}(z)=z^{4}-3z^{2}+1,\cr S_{5}(z)=z^{5}-4z^{3}+3z,\cr S_{6}(z)=z^{6}-5z^{4}+6z^{2}-1,\cr S_{7}(z)=z^{7}-6z^{5}+10z^{3}-4z,\cr S_{8}(z)=z^{8}-7z^{6}+15z^{4}-10z^{2}+1,\cr S_{9}(z)=z^{9}-8z^{7}+21z^{5}-20z^{3}+5z.\end{array}\end{array}

By comparison of the coefficients, we find for all 0kn0\leq k\leq n and arbitrary n+n\in\mathbb{Z}_{+}, each coefficient of zkz^{k} term in GnG_{n} is the same as the coefficient of znkz^{n-k} term in SnS_{n}. We prove this rule in the following theorem.

Theorem 1.

Suppose zz belongs to \mathbb{C}^{*}. Then for each n+n\in\mathbb{Z}_{+}, the following identity holds true:

Gn(z)=zn2Sn(1z)=zn2Un(12z).G_{n}(z)=z^{\frac{n}{2}}S_{n}\left(\frac{1}{\sqrt{z}}\right)=z^{\frac{n}{2}}U_{n}\left(\frac{1}{2\sqrt{z}}\right). (4)
Proof.

It suffices to prove the first equality. This clearly holds when n=0n=0 and 11. By induction, for all zz\in\mathbb{C}^{*} and n2n\geq 2, we have

Gn(z)\displaystyle G_{n}(z) =\displaystyle= Gn1(z)zGn2(z)\displaystyle G_{n-1}(z)-zG_{n-2}(z)
=\displaystyle= zn12Sn1(1z)zzn22Sn2(1z)\displaystyle z^{\frac{n-1}{2}}S_{n-1}\left(\frac{1}{\sqrt{z}}\right)-zz^{\frac{n-2}{2}}S_{n-2}\left(\frac{1}{\sqrt{z}}\right)
=\displaystyle= zn2[1zSn1(1z)Sn2(1z)]\displaystyle z^{\frac{n}{2}}\left[\frac{1}{\sqrt{z}}S_{n-1}\left(\frac{1}{\sqrt{z}}\right)-S_{n-2}\left(\frac{1}{\sqrt{z}}\right)\right]
=\displaystyle= zn2Sn(1z).\displaystyle z^{\frac{n}{2}}S_{n}\left(\frac{1}{\sqrt{z}}\right).

For each n+n\in\mathbb{Z}_{+}, consider the two-variable function Fn(z,x)F_{n}(z,x) defined by

Fn(z,x)=zn2Un(x2z),x[1,1],z.F_{n}(z,x)=z^{\frac{n}{2}}U_{n}\left(\frac{x}{2\sqrt{z}}\right),\quad x\in[-1,1],z\in\mathbb{C}.

We see that Gn(z)=Fn(z,1)G_{n}(z)=F_{n}(z,1) for all zz\in\mathbb{C}, i.e., GnG_{n} is a special case of Fn(z,x)F_{n}(z,x) with the second variable xx fixed at 11. Kiepiela and Klimek [8] studied the case of the same function family Fn(z,x)F_{n}(z,x) when the first variable zz is fixed.

If z=0z=0, we observe that

Gn(0)=1for all n+.G_{n}(0)=1\quad\textrm{for all }n\in\mathbb{Z}_{+}. (5)

At z=14z=\frac{1}{4}, the analyticity of GnG_{n} enables us to establish the following combinatorial formula.

Corollary 2.

For each n+n\in\mathbb{Z}_{+},

Gn(14)=k=0n2(1)k(nkk)14k=n+12n.G_{n}\left(\frac{1}{4}\right)=\sum_{k=0}^{\lfloor\frac{n}{2}\rfloor}(-1)^{k}\binom{n-k}{k}\frac{1}{4^{k}}=\frac{n+1}{2^{n}}. (6)
Proof.

If z=14z=\frac{1}{4}, we may write G0G_{0} and G1G_{1} in the following form:

G0(14)=1=0+120,G1(14)=1=1+121.G_{0}\left(\frac{1}{4}\right)=1=\frac{0+1}{2^{0}},\quad G_{1}\left(\frac{1}{4}\right)=1=\frac{1+1}{2^{1}}.

By induction, let’s suppose

Gk(14)=k+12k for 0k<n.G_{k}\left(\frac{1}{4}\right)=\frac{k+1}{2^{k}}\quad\textrm{ for }0\leq k<n.

Then we have

Gn(14)=n2n114n12n2=n+12n,n+.G_{n}\left(\frac{1}{4}\right)=\frac{n}{2^{n-1}}-\frac{1}{4}\frac{n-1}{2^{n-2}}=\frac{n+1}{2^{n}},\quad n\in\mathbb{Z}_{+}.

The proof completes since each GnG_{n} is analytic on \mathbb{C}. ∎

Theorem 1 allows us to rewrite GnG_{n} in terms of trigonometric functions.

Corollary 3.

Suppose zz belongs to {14}\mathbb{C}^{*}\setminus\{\frac{1}{4}\}. For each n+n\in\mathbb{Z}_{+}, there holds

Gn(z)=2zn+124z1sin(n+1)arccos12z.G_{n}(z)=\frac{2z^{\frac{n+1}{2}}}{\sqrt{4z-1}}\sin(n+1)\arccos\frac{1}{2\sqrt{z}}. (7)
Proof.

It can be shown by substitution z=14cos2θz=\frac{1}{4\cos^{2}\theta} in Theorem 1 in Reference [4]. We also give a proof using Lemma 1 in this paper. When z0z\neq 0 and z14z\neq\frac{1}{4},

Gn(z)\displaystyle G_{n}(z) =\displaystyle= zn2Un(12z)\displaystyle z^{\frac{n}{2}}U_{n}\left(\frac{1}{2\sqrt{z}}\right)
=\displaystyle= zn2sin(n+1)arccos(12z)sinarccos(12z)\displaystyle\frac{z^{\frac{n}{2}}\sin(n+1)\arccos\left(\frac{1}{2\sqrt{z}}\right)}{\sin\arccos\left(\frac{1}{2\sqrt{z}}\right)}
=\displaystyle= 2zn+124z1sin(n+1)arccos(12z).\displaystyle\frac{2z^{\frac{n+1}{2}}}{\sqrt{4z-1}}\sin(n+1)\arccos\left(\frac{1}{2\sqrt{z}}\right).

Hence GnG_{n} is the analytical extension of the right hand side of (7) in Corollary 3 to entire complex plane after adding Gn(0)G_{n}(0) and Gn(14)G_{n}\left(\frac{1}{4}\right) as defined in (5) and (6) respectively. Now we give another expression of GnG_{n}. In Combinatorics, a three term recurrence relation such as (1) corresponds to a characteristic equation (see [5]). By definition, the characteristic equation of (1) is

s2s+z=0,s^{2}-s+z=0, (8)

which is a quadratic equation with parameter zz. It’s two solutions are respectively

s1(z)=114z2ands2(z)=1+14z2.s_{1}(z)=\frac{1-\sqrt{1-4z}}{2}\quad\textrm{and}\quad s_{2}(z)=\frac{1+\sqrt{1-4z}}{2}. (9)

In terms of s1(z)s_{1}(z) and s2(z)s_{2}(z), we can rewrite GnG_{n} as the following form.

Corollary 4.

For each n+n\in\mathbb{Z}_{+} and z{14}z\in\mathbb{C}\setminus\{\frac{1}{4}\},

Gn(z)=s2n+1(z)s1n+1(z)s2(z)s1(z).G_{n}(z)=\frac{s_{2}^{n+1}(z)-s_{1}^{n+1}(z)}{s_{2}(z)-s_{1}(z)}. (10)
Proof.

Suppose z14z\neq\frac{1}{4}. Clearly (10) holds true for n=0n=0 and n=1n=1. Now let n2n\geq 2. Suppose

Gk(z)=s2k+1(z)s1k+1(z)s2(z)s1(z)for0k<n.G_{k}(z)=\frac{s_{2}^{k+1}(z)-s_{1}^{k+1}(z)}{s_{2}(z)-s_{1}(z)}\quad\textrm{for}\quad 0\leq k<n.

Then by (1),

Gn(z)\displaystyle G_{n}(z) =\displaystyle= s2n(z)s1n(z)s2(z)s1(z)zs2n1(z)s1n1(z)s2(z)s1(z)\displaystyle\frac{s_{2}^{n}(z)-s_{1}^{n}(z)}{s_{2}(z)-s_{1}(z)}-z\frac{s_{2}^{n-1}(z)-s_{1}^{n-1}(z)}{s_{2}(z)-s_{1}(z)} (11)
=\displaystyle= s2n1(z)(s2(z)z)s1n1(z)(s1(z)z)s2(z)s1(z).\displaystyle\frac{s_{2}^{n-1}(z)(s_{2}(z)-z)-s_{1}^{n-1}(z)(s_{1}(z)-z)}{s_{2}(z)-s_{1}(z)}.

Since both s1(z)s_{1}(z) and s2(z)s_{2}(z) are roots of equation (8), we obtain

sj(z)z=sj2(z),j=1,2.s_{j}(z)-z=s_{j}^{2}(z),\quad j=1,2.

This enables us to rewrite GnG_{n} from (11) to

Gn(z)=s2n1(z)s22(z)s1n1(z)s12(z)s2(z)s1(z)=s2n+1(z)s1n+1(z)s2(z)s1(z).G_{n}(z)=\frac{s_{2}^{n-1}(z)s_{2}^{2}(z)-s_{1}^{n-1}(z)s_{1}^{2}(z)}{s_{2}(z)-s_{1}(z)}=\frac{s_{2}^{n+1}(z)-s_{1}^{n+1}(z)}{s_{2}(z)-s_{1}(z)}.

Then we ends our proof by induction. ∎

Note that if z=1z=-1, we have

s1(1)=152,s2(1)=1+52.s_{1}(-1)=\frac{1-\sqrt{5}}{2},\quad s_{2}(-1)=\frac{1+\sqrt{5}}{2}.

Hence we can write Gn(1)G_{n}(-1) in the form of (10) as

Gn(1)=15[(1+52)n+1(152)n+1].G_{n}(-1)=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right]. (12)

Recall that Fibonacci sequence is defined by F0=F1=1,Fn=Fn1+Fn2F_{0}=F_{1}=1,F_{n}=F_{n-1}+F_{n-2} for n2n\geq 2, possessing a formula of general term of equation (12). Hence we have

Corollary 5.

For all n+n\in\mathbb{Z}_{+}, Fn=Gn(1)F_{n}=G_{n}(-1).

2.2 Differential Equations

It is known that the second kind of Chebyshev polynomials UnU_{n} solves equation

(1x2)d2vdx23xdvdx+n(n+2)v=0,(1-x^{2})\frac{d^{2}v}{dx^{2}}-3x\frac{dv}{dx}+n(n+2)v=0, (13)

This motivates us to find the differential equation related to each polynomial GnG_{n}. It is shown in the following theorem.

Theorem 6.

For each n+n\in\mathbb{Z}_{+}, v=Gn(z)v=G_{n}(z) is the solution to the following equation:

(4z2z)v′′+[n(4n6)z]v+n(n1)v=0.(4z^{2}-z)v^{\prime\prime}+[n-(4n-6)z]v^{\prime}+n(n-1)v=0. (14)
Proof.

If x0x\neq 0, by substitution x=12zx=\frac{1}{2\sqrt{z}} in equation (4), we have z=14x2z=\frac{1}{4x^{2}} and

Un(x)=(2x)nGn(14x2).U_{n}(x)=(2x)^{n}G_{n}\Big{(}\frac{1}{4x^{2}}\Big{)}.

Then we derive from (13) that

(14x414x2)Gn′′(14x2)+[n(2n32)1x2]Gn(14x2)+n(n1)Gn(14x2)=0.\Big{(}\frac{1}{4x^{4}}-\frac{1}{4x^{2}}\Big{)}G^{\prime\prime}_{n}\Big{(}\frac{1}{4x^{2}}\Big{)}+\left[n-\Big{(}\frac{2n-3}{2}\Big{)}\frac{1}{x^{2}}\right]G^{\prime}_{n}\Big{(}\frac{1}{4x^{2}}\Big{)}+n(n-1)G_{n}\Big{(}\frac{1}{4x^{2}}\Big{)}=0. (15)

Now we write the left hand side of (15) in terms of zz again. This gives

(4z2z)Gn′′(z)+[n(4n6)z]Gn(z)+n(n1)Gn(z)=0.(4z^{2}-z)G^{\prime\prime}_{n}(z)+[n-(4n-6)z]G^{\prime}_{n}(z)+n(n-1)G_{n}(z)=0.

It can be seen from equation (14) that the coefficient of vv^{\prime} term is relative to nn, which prevent GnG_{n} from being a solution to a Sturm-Liouville problem. For the second best, we try to find a certain function related GnG_{n}, namely Φn\Phi_{n}, coming to stage as a solution to a related Sturm-Liouville problem. In specific operation, we seek for some factor function ϕn(z)\phi_{n}(z), such that Φn\Phi_{n}, defined by Φn(z):=ϕn(z)Gn(z)\Phi_{n}(z):=\phi_{n}(z)G_{n}(z), is a solution of second order ordinary equation in which the coefficient of Φn\Phi^{\prime}_{n} terms, denoted by α(n,z)\alpha(n,z), is unrelated to nn provided the the coefficient of Φn′′\Phi^{\prime\prime}_{n} term is 11. To achieve this, we substitute v=Φn(z)ϕn1(z)v=\Phi_{n}(z)\phi_{n}^{-1}(z) into (14), and obtain that

(4z2z)(Φn(z)ϕn(z))′′+[n(4n6)z](Φn(z)ϕn(z))+n(n1)(Φn(z)ϕn(z))=0.(4z^{2}-z)\left(\frac{\Phi_{n}(z)}{\phi_{n}(z)}\right)^{\prime\prime}+[n-(4n-6)z]\left(\frac{\Phi_{n}(z)}{\phi_{n}(z)}\right)^{\prime}+n(n-1)\left(\frac{\Phi_{n}(z)}{\phi_{n}(z)}\right)=0. (16)

Equation (16) may then be transformed to the following form

4z2zϕn3[ϕn2Φn′′2ϕnϕnΦn+(2ϕn2ϕnϕn)Φn]\displaystyle\frac{4z^{2}-z}{\phi_{n}^{3}}[\phi_{n}^{2}\Phi^{\prime\prime}_{n}-2\phi_{n}\phi^{\prime}_{n}\Phi^{\prime}_{n}+(2\phi^{\prime 2}_{n}-\phi_{n}\phi^{\prime}_{n})\Phi_{n}]
+n(4n6)zϕn2(ϕnΦnϕnΦn)+n(n1)ϕnΦn=0.\displaystyle\quad\quad\quad+\frac{n-(4n-6)z}{\phi_{n}^{2}}(\phi_{n}\Phi^{\prime}_{n}-\phi^{\prime}_{n}\Phi_{n})+\frac{n(n-1)}{\phi_{n}}\Phi_{n}=0. (17)

By rearranging terms in equation (17), we obtain

4z2zϕnΦn′′+[n(4n6)zϕn2(4z2z)ϕn2ϕn]Φn+1ϕn3{(4z2z)\displaystyle\frac{4z^{2}-z}{\phi_{n}}\Phi^{\prime\prime}_{n}+\left[\frac{n-(4n-6)z}{\phi_{n}}-\frac{2(4z^{2}-z)}{\phi_{n}^{2}}\phi^{\prime}_{n}\right]\Phi^{\prime}_{n}+\frac{1}{\phi_{n}^{3}}\{(4z^{2}-z)
(2ϕn2ϕnϕn)+[n(4n6)z]ϕn+n(n1)ϕn2}Φn=0.\displaystyle\quad\quad\quad(2\phi^{\prime 2}_{n}-\phi_{n}\phi^{\prime}_{n})+[n-(4n-6)z]\phi_{n}+n(n-1)\phi_{n}^{2}\}\Phi_{n}=0. (18)

When z0z\neq 0 and z14z\neq\frac{1}{4}, let us divide equation (18) by 4z2zϕn\frac{4z^{2}-z}{\phi_{n}}, we get

Φn′′+[n(4n6)z4z2z2ϕnϕn]Φn\displaystyle\Phi^{\prime\prime}_{n}+\left[\frac{n-(4n-6)z}{4z^{2}-z}-\frac{2\phi^{\prime}_{n}}{\phi_{n}}\right]\Phi^{\prime}_{n}
+\displaystyle+ (4z2z)(2ϕn2ϕnϕn)+[n(4n6)z]ϕn+n(n1)ϕn2ϕn2(4z2z)Φn=0.\displaystyle\frac{(4z^{2}-z)(2\phi^{\prime 2}_{n}-\phi_{n}\phi^{\prime}_{n})+[n-(4n-6)z]\phi_{n}+n(n-1)\phi_{n}^{2}}{\phi_{n}^{2}(4z^{2}-z)}\Phi_{n}=0.

We deduce from (2.2) that

α(n,z)=n(4n6)z4z2z2ϕnϕn=64z1nz2ϕnϕn.\alpha(n,z)=\frac{n-(4n-6)z}{4z^{2}-z}-2\frac{\phi^{\prime}_{n}}{\phi_{n}}=\frac{6}{4z-1}-\frac{n}{z}-2\frac{\phi^{\prime}_{n}}{\phi_{n}}. (20)

To eliminate nn in α(n,z)\alpha(n,z) in (20), a simple choice is to let

nz2ϕnϕn=0.-\frac{n}{z}-2\frac{\phi^{\prime}_{n}}{\phi_{n}}=0. (21)

Equation (21) is a first order ordinary differential equation. Its general solution is

ϕn(z)=Czn2,C is a constant.\phi_{n}(z)=\frac{C}{z^{\frac{n}{2}}},\quad C\textrm{ is a constant.}

That is to say, to make the coefficient of each Φn\Phi_{n}’s unrelated with nn, we can choose Φn\Phi_{n} as

Φn(z)=CGn(z)zn2.\Phi_{n}(z)=\frac{CG_{n}(z)}{z^{\frac{n}{2}}}.

By letting C=1C=1, we obtain a particular solution and denote it by gng_{n}. See the definition below.

Definition 7.

For each n+n\in\mathbb{Z}_{+} and zz\in\mathbb{C}^{*}, define function gng_{n} as follows:

gn(z)=k=0n2(1)k(nkk)zkn2.g_{n}(z)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k}z^{k-\frac{n}{2}}. (22)

From Definition 7 we see that each gng_{n} is an irrational function, and each g2ng_{2n} is a rational function. In the next section we will focus on {gn:nZ+}\{g_{n}\colon n\in Z_{+}\}. We will call {g2n:nZ+}\{g_{2n}\colon n\in Z_{+}\} the set of gg-rational functions. We will give more about its properties in the Section 4.

3 Irrational function sequence {gn:nZ+}\{g_{n}\colon n\in Z_{+}\}

In this section, we characterize irrational function sequence {gn:nZ+}\{g_{n}\colon n\in Z_{+}\}, from its basic properties, generating functions and corresponding differential equations.

3.1 Generating functions

In this part we give three kinds of generating functions. We begin with the following lemma, which reveals the relation among Gn,UnG_{n},U_{n} and gng_{n}, and gives two types of recurrence relations.

Lemma 1.

For each n+n\in\mathbb{Z}_{+}, let gng_{n} be defined as in (22), then each gn(z)g_{n}(z) is analytic for all zz\in\mathbb{C}^{*}, and the following identities hold true:

gn(z)\displaystyle g_{n}(z) =\displaystyle= Gn(z)zn2,\displaystyle\frac{G_{n}(z)}{z^{\frac{n}{2}}}, (23)
gn(z)\displaystyle g_{n}(z) =\displaystyle= Un(12z),\displaystyle U_{n}\left(\frac{1}{2\sqrt{z}}\right), (24)
gn+2(z)\displaystyle g_{n+2}(z) =\displaystyle= 1zgn+1(z)gn(z),\displaystyle\frac{1}{\sqrt{z}}g_{n+1}(z)-g_{n}(z), (25)
gn+4(z)\displaystyle g_{n+4}(z) =\displaystyle= (1z2)gn+2(z)gn(z).\displaystyle\left(\frac{1}{z}-2\right)g_{n+2}(z)-g_{n}(z). (26)
Proof.

Analyticity follows from gng_{n}’s definition. Identity (23) follows from equation (2), Identity (24) follows from equation (4). Identity (25) follows from (23) and equation (1). Now we prove Identity (26). For each n+n\in\mathbb{Z}_{+} and zz\in\mathbb{C}^{*}, making use of Identity (25), we can deduce that

gn+4(z)\displaystyle g_{n+4}(z) =\displaystyle= 1zgn+3(z)gn+2(z)\displaystyle\frac{1}{\sqrt{z}}g_{n+3}(z)-g_{n+2}(z)
=\displaystyle= 1z(1zgn+2(z)gn+1(z))gn+2(z)\displaystyle\frac{1}{\sqrt{z}}\left(\frac{1}{\sqrt{z}}g_{n+2}(z)-g_{n+1}(z)\right)-g_{n+2}(z)
=\displaystyle= 1zgn+2(z)1zgn+1(z)gn+2(z)\displaystyle\frac{1}{z}g_{n+2}(z)-\frac{1}{\sqrt{z}}g_{n+1}(z)-g_{n+2}(z)
=\displaystyle= 1zgn+2(z)(gn+2(z)+gn(z))gn+2(z)\displaystyle\frac{1}{z}g_{n+2}(z)-\left(g_{n+2}(z)+g_{n}(z)\right)-g_{n+2}(z)
=\displaystyle= (1z2)gn+2(z)gn(z).\displaystyle\left(\frac{1}{z}-2\right)g_{n+2}(z)-g_{n}(z).

In the following lemma, we evaluate gng_{n} at z=14z=\frac{1}{4} and z=z=\infty.

Lemma 2.

For each n+n\in\mathbb{Z}_{+}, let gng_{n} be defined as in (22), then the following two identities hold true:

gn(14)\displaystyle g_{n}\left(\frac{1}{4}\right) =\displaystyle= n+1,\displaystyle n+1, (27)
gn()\displaystyle g_{n}(\infty) =\displaystyle= {(1)n2,if n even,0,if n odd.\displaystyle\left\{\begin{array}[]{ll}(-1)^{\frac{n}{2}},&\textrm{if $n$ even,}\cr 0,&\textrm{if $n$ odd.}\end{array}\right. (30)
Proof.

Both identities can be derived from the property of UnU_{n} and Identity (24). Here we present a proof using definition of gng_{n} directly.

  1. (i).

    By equation (6) in Corollary 2, if z=14z=\frac{1}{4}, we have

    gn(14)=2nGn(14)=2nn+12n=n+1.g_{n}\left(\frac{1}{4}\right)=2^{n}G_{n}\left(\frac{1}{4}\right)=2^{n}\cdot\frac{n+1}{2^{n}}=n+1.
  2. (ii).

    When z=z=\infty, by equation (2),

    gn()=limzk=0n2(1)k(nkk)zkn2=k=0n2(1)k(nkk)limzzkn2.g_{n}(\infty)=\lim_{z\to\infty}\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k}z^{k-\frac{n}{2}}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n-k}{k}\lim_{z\to\infty}z^{k-\frac{n}{2}}.

    Recall that limzzj=0\lim_{z\to\infty}z^{j}=0 if j<0j<0. If nn is odd, then

    n2>kwhen 0kn2\frac{n}{2}>k\quad\textrm{when }0\leq k\leq\left\lfloor\frac{n}{2}\right\rfloor

    and gn()=0g_{n}(\infty)=0. On the other hand, if nn is even, then we have

    gn()=(1)n2(n2n2)limzz0=(1)n2.g_{n}(\infty)=(-1)^{\frac{n}{2}}\binom{\frac{n}{2}}{\frac{n}{2}}\lim_{z\to\infty}z^{0}=(-1)^{\frac{n}{2}}.

Now we define a semi-infinite interval as follows:

𝒵=[14,+),\mathcal{Z}=\left[\frac{1}{4},+\infty\right),

Boyd established an orthogonal rational basis on a semi-infinite interval (0,+)(0,+\infty) in [9]. Now we give three kinds of generating functions of {gn,n+}\{g_{n},n\in\mathbb{Z}_{+}\}.

Proposition 8.

For z𝒵z\in\mathcal{Z} and |t|<1|t|<1, the following identity hold true:

n=0gn(z)tn=11z12t+t2.\sum_{n=0}^{\infty}g_{n}(z)t^{n}=\frac{1}{1-z^{-\frac{1}{2}}t+t^{2}}.
Proof.

We start with the well-known identity for Chebyshev polynomials of the second kind.

n=0Un(x)tn=112xt+t2,t(1,1),x[1,1].\sum_{n=0}^{\infty}U_{n}(x)t^{n}=\frac{1}{1-2xt+t^{2}},\quad t\in(-1,1),\quad x\in[-1,1].

For z𝒵z\in\mathcal{Z}, let x=12zx=\frac{1}{2\sqrt{z}}, then x(0,1]x\in(0,1]. Hence for z𝒵z\in\mathcal{Z}, |t|<1|t|<1, we have

n=0gn(z)tn=n=0Un(12z)tn=112(12z)t+t2=11z12t+t2.\sum_{n=0}^{\infty}g_{n}(z)t^{n}=\sum_{n=0}^{\infty}U_{n}\left(\frac{1}{2\sqrt{z}}\right)t^{n}=\frac{1}{1-2\left(\frac{1}{2\sqrt{z}}\right)t+t^{2}}=\frac{1}{1-z^{-\frac{1}{2}}t+t^{2}}.

Proposition 9.

For z𝒵z\in\mathcal{Z}, tt\in\mathbb{R}, the following identity holds true:

n=0gn(z)tnn!={et2z(cost4z12z+14z1sint4z12z),if z>14,(t+1)e2t,if z=14.\sum_{n=0}^{\infty}g_{n}(z)\frac{t^{n}}{n!}=\left\{\begin{array}[]{ll}e^{\frac{t}{2\sqrt{z}}}\left(\cos\frac{t\sqrt{4z-1}}{2\sqrt{z}}+\frac{1}{\sqrt{4z-1}}\sin\frac{t\sqrt{4z-1}}{2\sqrt{z}}\right),&\textrm{if }z>\frac{1}{4},\vspace{2mm}\cr\displaystyle(t+1)e^{2t},&\textrm{if }z=\frac{1}{4}.\end{array}\right.
Proof.

Let S(z,t)S(z,t) be defined as

S(z,t)=n=0gn(z)tnn!,z>14,t.S(z,t)=\sum_{n=0}^{\infty}g_{n}(z)\frac{t^{n}}{n!},\quad z>\frac{1}{4},t\in\mathbb{R}. (31)

Then

St=n=1gn(z)tn1(n1)!=n=0gn+1(z)tnn!,\frac{\partial S}{\partial t}=\sum_{n=1}^{\infty}g_{n}(z)\frac{t^{n-1}}{(n-1)!}=\sum_{n=0}^{\infty}g_{n+1}(z)\frac{t^{n}}{n!}, (32)

and

2St2=n=0gn+2(z)tnn!.\frac{\partial^{2}S}{\partial t^{2}}=\sum_{n=0}^{\infty}g_{n+2}(z)\frac{t^{n}}{n!}. (33)

Applying (31), (32) and Identity (25), we can rewrite gn+2g_{n+2} in (33) to obtain

2St21zSt+S=0.\frac{\partial^{2}S}{\partial t^{2}}-\frac{1}{\sqrt{z}}\frac{\partial S}{\partial t}+S=0. (34)

Now consider the following algebraic equation with a parameter zz:

x2xz+1=0.x^{2}-\frac{x}{\sqrt{z}}+1=0.

Its solutions are respectively

x1=s1(z)z,x2=s2(z)z,x_{1}=\frac{s_{1}(z)}{\sqrt{z}},\quad x_{2}=\frac{s_{2}(z)}{\sqrt{z}},

where s1(z)s_{1}(z), s2(z)s_{2}(z) are defined as in equation (9). Hence the general solution to equation (34) is

S(z,t)=C1(z)es1(z)tz+C2(z)es2(z)tz,S(z,t)=C_{1}(z)e^{\frac{s_{1}(z)t}{\sqrt{z}}}+C_{2}(z)e^{\frac{s_{2}(z)t}{\sqrt{z}}},

where C1(z)C_{1}(z) and C2(z)C_{2}(z) are undetermined functions of zz. Since

S(z,0)=1,St(z,0)=1z,S(z,0)=1,\quad\frac{\partial S}{\partial t}(z,0)=\frac{1}{\sqrt{z}},

we have the following linear system:

{C1(z)+C2(z)1,s1(z)C1(z)+s2(z)C2(z)1.\left\{\begin{array}[]{rcrcc}C_{1}(z)&+&C_{2}(z)&\equiv&1,\\ s_{1}(z)C_{1}(z)&+&s_{2}(z)C_{2}(z)&\equiv&1.\end{array}\right. (35)

The solutions of (35) are

C1(z)=is1(z)4z1,C2(z)=is2(z)4z1.C_{1}(z)=\frac{is_{1}(z)}{\sqrt{4z-1}},\quad C_{2}(z)=-\frac{is_{2}(z)}{\sqrt{4z-1}}.

Hence we have

S(z,t)\displaystyle S(z,t) =\displaystyle= i4z1[s1(z)es1(z)tzs2(z)es2(z)tz]\displaystyle\frac{i}{\sqrt{4z-1}}\left[s_{1}(z)e^{\frac{s_{1}(z)t}{\sqrt{z}}}-s_{2}(z)e^{\frac{s_{2}(z)t}{\sqrt{z}}}\right]
=\displaystyle= iet2z24z1[(1i4z1)(cost4z12zisint4z12z)\displaystyle\frac{ie^{\frac{t}{2\sqrt{z}}}}{2\sqrt{4z-1}}\left[(1-i\sqrt{4z-1})\left(\cos\frac{t\sqrt{4z-1}}{2\sqrt{z}}-i\sin\frac{t\sqrt{4z-1}}{2\sqrt{z}}\right)\right.
(1+i4z1)(cost4z12z+isint4z12z)]\displaystyle\quad\quad\left.-(1+i\sqrt{4z-1})\left(\cos\frac{t\sqrt{4z-1}}{2\sqrt{z}}+i\sin\frac{t\sqrt{4z-1}}{2\sqrt{z}}\right)\right]
=\displaystyle= et2z(cost4z12z+14z1sint4z12z).\displaystyle e^{\frac{t}{2\sqrt{z}}}\left(\cos\frac{t\sqrt{4z-1}}{2\sqrt{z}}+\frac{1}{\sqrt{4z-1}}\sin\frac{t\sqrt{4z-1}}{2\sqrt{z}}\right).

If z=14z=\frac{1}{4}, (27) imples

n=0gn(14)tnn!=n=0(n+1)tnn!=(t+1)et.\sum_{n=0}^{\infty}\frac{g_{n}\left(\frac{1}{4}\right)t^{n}}{n!}=\sum_{n=0}^{\infty}\frac{(n+1)t^{n}}{n!}=(t+1)e^{t}.

Proposition 10.

For z𝒵z\in\mathcal{Z} and |t|<1|t|<1, the following identity holds true:

n=1gn(z)tnn={14z1arctan2zt14z112ln|1z12t+t2|,if z>14,11tln(1t),if z=14.\sum_{n=1}^{\infty}g_{n}(z)\frac{t^{n}}{n}=\left\{\displaystyle\begin{array}[]{ll}\displaystyle\frac{1}{\sqrt{4z-1}}\arctan\frac{2\sqrt{z}t-1}{\sqrt{4z-1}}-\frac{1}{2}\ln|1-z^{-\frac{1}{2}}t+t^{2}|,&\textrm{if }z>\frac{1}{4},\vspace{2mm}\cr\displaystyle\frac{1}{1-t}-\ln(1-t),&\textrm{if }z=\frac{1}{4}.\end{array}\right.
Proof.

Since

t(n=1gn(z)tnn)=1t(n=0gn(z)tng0(z)),\frac{\partial}{\partial t}\left(\sum_{n=1}^{\infty}g_{n}(z)\frac{t^{n}}{n}\right)=\frac{1}{t}\left(\sum_{n=0}^{\infty}g_{n}(z)t^{n}-g_{0}(z)\right),

we deduce that

n=1gn(z)tnn\displaystyle\sum_{n=1}^{\infty}g_{n}(z)\frac{t^{n}}{n} =\displaystyle= 0t1τ(11z12τ+τ21)𝑑τ\displaystyle\int_{0}^{t}\frac{1}{\tau}\left(\frac{1}{1-z^{-\frac{1}{2}}\tau+\tau^{2}}-1\right)\,d\tau (36)
=\displaystyle= 0tz12τ1z12τ+τ2𝑑τ\displaystyle\int_{0}^{t}\frac{z^{-\frac{1}{2}}-\tau}{1-z^{-\frac{1}{2}}\tau+\tau^{2}}\,d\tau
=\displaystyle= 120t(z122τ1z12τ+τ2+z121z12τ+τ2)𝑑τ.\displaystyle\frac{1}{2}\int_{0}^{t}\left(\frac{z^{-\frac{1}{2}}-2\tau}{1-z^{-\frac{1}{2}}\tau+\tau^{2}}+\frac{z^{-\frac{1}{2}}}{1-z^{-\frac{1}{2}}\tau+\tau^{2}}\right)\,d\tau.

If z>14z>\frac{1}{4}, (36) gives

n=1gn(z)tnn=14z1arctan2zt14z112ln|1z12t+t2|.\sum_{n=1}^{\infty}g_{n}(z)\frac{t^{n}}{n}=\frac{1}{\sqrt{4z-1}}\arctan\frac{2\sqrt{z}t-1}{\sqrt{4z-1}}-\frac{1}{2}\ln|1-z^{-\frac{1}{2}}t+t^{2}|.

If z=14z=\frac{1}{4}, (36) implies

n=1gn(14)tnn=11tln(1t).\sum_{n=1}^{\infty}g_{n}\left(\frac{1}{4}\right)\frac{t^{n}}{n}=\frac{1}{1-t}-\ln(1-t).

3.2 Sturm-Liouville problems

For each z𝒵z\in\mathcal{Z}, let

θ=arctan4z1,θ[0,π2).\theta=\arctan\sqrt{4z-1},\quad\theta\in\left[0,\frac{\pi}{2}\right). (37)

Then this identity is a bijection between 𝒵\mathcal{Z} and [0,π2)\left[0,\frac{\pi}{2}\right). In the following lemma we connect gng_{n} with θ\theta and the well-known DirichletDirichlet kernels(see [10]). We recall that for each n+n\in\mathbb{Z}_{+}, the nn-th Dirichlet kernel, denoted by DnD_{n}, is defined as follows

Dn(θ)=sin(n+12)θsinθ2,θ[π,π].D_{n}(\theta)=\frac{\sin\left(n+\frac{1}{2}\right)\theta}{\sin\frac{\theta}{2}},\quad\theta\in[-\pi,\pi].
Lemma 3.

Let θ(0,π2)\theta\in\left(0,\frac{\pi}{2}\right) be defined as in (37). For each n+n\in\mathbb{Z}_{+}, let gng_{n} be defined as in (22). Then for all z>14z>\frac{1}{4}, the following two identities hold true:

gn(z)\displaystyle g_{n}(z) =\displaystyle= sin(n+1)θsinθ,\displaystyle\displaystyle\frac{\sin(n+1)\theta}{\sin\theta}, (38)
g2n(z)\displaystyle g_{2n}(z) =\displaystyle= Dn(2θ).\displaystyle D_{n}(2\theta).
Proof.
  1. (i)

    Since tanθ=4z1\tan\theta=\sqrt{4z-1}, we have cosθ=12z\cos\theta=\frac{1}{2\sqrt{z}}. By Corollary 3 and Lemma 1,

    gn(z)=sin(n+1)arccos12zsinarccos12z=sin(n+1)arctan4z1sinarctan4z1=sin(n+1)θsinθ.g_{n}(z)=\frac{\sin(n+1)\arccos\frac{1}{2\sqrt{z}}}{\sin\arccos\frac{1}{2\sqrt{z}}}=\frac{\sin(n+1)\arctan\sqrt{4z-1}}{\sin\arctan\sqrt{4z-1}}=\frac{\sin(n+1)\theta}{\sin\theta}.
  2. (ii)

    By equation (38) we have

    g2n(z)=sin(2n+1)θsinθ=sin[(n+12)2θ]sin2θ2=Dn(2θ).g_{2n}(z)=\frac{\sin(2n+1)\theta}{\sin\theta}=\frac{\sin\left[\left(n+\frac{1}{2}\right)\cdot 2\theta\right]}{\sin\frac{2\theta}{2}}=D_{n}(2\theta).

Now we calculate the derivative of gng_{n} at 14\frac{1}{4} for each n+n\in\mathbb{Z}_{+}.

Lemma 4.

For each n+n\in\mathbb{Z}_{+}, let gng_{n} be defined as in (22), then there holds

gn(14)=23n(n+1)(n+2).g^{\prime}_{n}\left(\frac{1}{4}\right)=-\frac{2}{3}n(n+1)(n+2). (39)
Proof.

Since for all z𝒵z\in\mathcal{Z},

g0(z)1,g1(z)=1z,g_{0}(z)\equiv 1,\quad g_{1}(z)=\frac{1}{\sqrt{z}},

we have

g0(z)0,g1(z)=12z32.g^{\prime}_{0}(z)\equiv 0,\quad g^{\prime}_{1}(z)=-\frac{1}{2z^{\frac{3}{2}}}.

Let z=14z=\frac{1}{4}, we obtain

g0(14)=0,g1(14)=4.g^{\prime}_{0}\left(\frac{1}{4}\right)=0,\quad g^{\prime}_{1}\left(\frac{1}{4}\right)=-4.

Now suppose (39) holds for all m<nm<n. From identities (23) and (25) in Lemma 1, we have for all n>1n>1 and z𝒵z\in\mathcal{Z},

gn(z)=1zgn1(z)gn2(z)12z32gn1(z),g^{\prime}_{n}(z)=\frac{1}{\sqrt{z}}g^{\prime}_{n-1}(z)-g^{\prime}_{n-2}(z)-\frac{1}{2z^{\frac{3}{2}}}g_{n-1}(z), (40)

hence

gn(14)\displaystyle g^{\prime}_{n}\left(\frac{1}{4}\right) =\displaystyle= 2gn1(14)gn2(14)4gn1(14)\displaystyle 2g^{\prime}_{n-1}\left(\frac{1}{4}\right)-g^{\prime}_{n-2}\left(\frac{1}{4}\right)-4g_{n-1}\left(\frac{1}{4}\right)
=\displaystyle= 43n(n1)(n+1)+23n(n1)(n2)4n\displaystyle-\frac{4}{3}n(n-1)(n+1)+\frac{2}{3}n(n-1)(n-2)-4n
=\displaystyle= 23n(n1)(n+1)\displaystyle-\frac{2}{3}n(n-1)(n+1)
+[23n(n1)(n+1)+23n(n1)(n2)4n]\displaystyle+\left[-\frac{2}{3}n(n-1)(n+1)+\frac{2}{3}n(n-1)(n-2)-4n\right]
=\displaystyle= 23n(n1)(n+1)2n(n+1)\displaystyle-\frac{2}{3}n(n-1)(n+1)-2n(n+1)
=\displaystyle= 23n(n+1)(n+2).\displaystyle-\frac{2}{3}n(n+1)(n+2).

By induction, (39) holds for all n+n\in\mathbb{Z}_{+}. ∎

Lemma 5.

For each n+n\in\mathbb{Z}_{+}, let gng_{n} be defined as in (22). Then gn(+)=0g^{\prime}_{n}(+\infty)=0.

Proof.

It is clear that

g0(+)=0g^{\prime}_{0}(+\infty)=0

and

g1(+):=limz+12z32=0.g^{\prime}_{1}(+\infty):=\lim_{z\to+\infty}-\frac{1}{2z^{\frac{3}{2}}}=0.

Now fix n>1n>1 and suppose

gn1(+)=0andgn2(+)=0.g^{\prime}_{n-1}(+\infty)=0\quad\textrm{and}\quad g^{\prime}_{n-2}(+\infty)=0.

By Lemma 2, each gng_{n} is bounded at ++\infty. Hence

gn(+)=limz+1zgn1(z)limz+gn2(z)limz+12z32gn1(z)=0.g^{\prime}_{n}(+\infty)=\lim_{z\to+\infty}\frac{1}{\sqrt{z}}g^{\prime}_{n-1}(z)-\lim_{z\to+\infty}g^{\prime}_{n-2}(z)-\lim_{z\to+\infty}\frac{1}{2z^{\frac{3}{2}}}g_{n-1}(z)=0.

Hence gn(+)=0g^{\prime}_{n}(+\infty)=0 for each n+n\in\mathbb{Z}_{+}. ∎

The construction of gng_{n} enables us to establish the following theorem about a singular Sturm-Liouville problem on 𝒵\mathcal{Z}(see [7]).

Theorem 11.

Suppose that for each n+,z𝒵n\in\mathbb{Z}_{+},z\in\mathcal{Z}, gn(z)g_{n}(z) is defined as in equation (22). Set

p(z)=(4z1)32,q(z)=0,r(z)=4z14z2,λ=n(n+2).p(z)=(4z-1)^{\frac{3}{2}},\quad q(z)=0,\quad r(z)=\frac{\sqrt{4z-1}}{4z^{2}},\quad\lambda=n(n+2).

Then gng_{n} is a solution to the following singular Sturm-Liouville problem

[p(z)v]+[q(z)+λr(z)]v=0,z(14,+),\displaystyle[p(z)v^{\prime}]^{\prime}+[q(z)+\lambda r(z)]v=0,\quad z\in\left(\frac{1}{4},+\infty\right), (41)
{v(14)=n+1,v(+)={(1)n2,if n even,0,if n odd.\displaystyle\left\{\begin{array}[]{lcl}v\left(\frac{1}{4}\right)&=&n+1,\cr v(+\infty)&=&\left\{\begin{array}[]{ll}(-1)^{\frac{n}{2}},&\textrm{if $n$ even,}\cr 0,&\textrm{if $n$ odd.}\end{array}\right.\end{array}\right. (46)
Proof.

For z𝒵z\in\mathcal{Z}, we substitute v=gn(z)v=g_{n}(z) into the left hand side of equation (41), and deduce that

[p(z)gn]+[q(z)+λr(z)]gn\displaystyle[p(z)g_{n}^{\prime}]^{\prime}+[q(z)+\lambda r(z)]g_{n}
=\displaystyle= [(4z1)32(Gnzn2)]+n(n+2)4z1Gn4zn2+2\displaystyle\left[(4z-1)^{\frac{3}{2}}\left(\frac{G_{n}}{z^{\frac{n}{2}}}\right)^{\prime}\right]^{\prime}+\frac{n(n+2)\sqrt{4z-1}G_{n}}{4z^{\frac{n}{2}+2}}
=\displaystyle= [2z(4z1)32Gnn(4z1)32Gn2zn2+1]+n(n+2)4z1Gn4zn2+2\displaystyle\left[\frac{2z(4z-1)^{\frac{3}{2}}G_{n}^{\prime}-n(4z-1)^{\frac{3}{2}}G_{n}}{2z^{\frac{n}{2}+1}}\right]^{\prime}+\frac{n(n+2)\sqrt{4z-1}G_{n}}{4z^{\frac{n}{2}+2}}
=\displaystyle= 4z2(4z1)32Gn′′+4z[n(4n6)z]4z1Gn4zn2+2\displaystyle\frac{4z^{2}(4z-1)^{\frac{3}{2}}G^{\prime\prime}_{n}+4z[n-(4n-6)z]\sqrt{4z-1}G^{\prime}_{n}}{4z^{\frac{n}{2}+2}}
+[4n(n1)zn(n+2)]4z1Gn4zn2+2+n(n+2)4z1Gn4zn2+2\displaystyle+\frac{[4n(n-1)z-n(n+2)]\sqrt{4z-1}G_{n}}{4z^{\frac{n}{2}+2}}+\frac{n(n+2)\sqrt{4z-1}G_{n}}{4z^{\frac{n}{2}+2}}
=\displaystyle= 4z1zn2+1{(4z2z)Gn′′+[n(4n6)z]Gn+n(n1)4z1Gn}\displaystyle\frac{\sqrt{4z-1}}{z^{\frac{n}{2}+1}}\{(4z^{2}-z)G^{\prime\prime}_{n}+[n-(4n-6)z]G^{\prime}_{n}+n(n-1)\sqrt{4z-1}G_{n}\}
=\displaystyle= 0.\displaystyle 0.

Note that the last step applies equation (14) in Theorem 6. The conditions of determining solution follows immediately from Lemma 2. ∎

By Lemmas 4 and 5, the conditions of determining solution in (41) can be replaced by the derivatives at z=14z=\frac{1}{4} and z=+z=+\infty, which is shown in the following lemma

Corollary 12.

For each n+n\in\mathbb{Z}_{+}, gng_{n} solves the following equation:

(16z34z2)v′′+24z2v+n(n+2)v=0,z(14,+),\displaystyle(16z^{3}-4z^{2})v^{\prime\prime}+24z^{2}v^{\prime}+n(n+2)v=0,\quad z\in\left(\frac{1}{4},+\infty\right),
{v(14)=23n(n+1)(n+2),v(+)=0.\displaystyle\left\{\begin{array}[]{lcl}v^{\prime}\left(\frac{1}{4}\right)&=&-\frac{2}{3}n(n+1)(n+2),\cr v^{\prime}(+\infty)&=&0.\end{array}\right.

Now both the coefficients of v′′v^{\prime\prime} and vv^{\prime} are unrelated to parameter nn. With Sturm-Liouville theory, we can discuss the orthogonality of function sequence {g2n:n+}\{g_{2n}\colon n\in\mathbb{Z}_{+}\} on 𝒵\mathcal{Z} in the coming section.

4 L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu) space

In this section we discuss the orthogonality related to {gn:n+}\{g_{n}\colon n\in\mathbb{Z}_{+}\} in a Hilbert space. In the first part we give some basic definitions of this space, and in the second part we give the orthonormal basis for it.

4.1 Basic settings

In this part we sequentially give several definitions including a measure, spaces, norms, an inner product and generalized Fourier series. Now let \mathcal{M} be the σ\sigma-field consisting of all Lebesgue measurable subsets of 𝒵\mathcal{Z}. Then (𝒵,)(\mathcal{Z},\mathcal{M}) is a measurable space. Let μ\mu be a set function defined by

μ(E):=E4z12πz2𝑑z,E.\mu(E):=\int_{E}\frac{\sqrt{4z-1}}{2\pi z^{2}}\,dz,\quad E\in\mathcal{M}.

For more about measure theory, please refer to textbooks of real analysis, such as [11]. We have the following lemma.

Lemma 6.

μ\mu is a probability measure on (𝒵,)(\mathcal{Z},\mathcal{M}).

Proof.

Clearly μ(E)\mu(E) belongs to [0,+][0,+\infty] for all EE\in\mathcal{M}. For empty set Φ\Phi,

Φ4z12πz2𝑑z=0.\int_{\Phi}\frac{\sqrt{4z-1}}{2\pi z^{2}}\,dz=0.

Now let {Ek:k1}\{E_{k}\colon k\geq 1\}\subset\mathcal{M}. We have

μ(k1Ek)=k1Ek4z12πz2𝑑z=k=1Ek4z12πz2𝑑z=k=1μ(Ek),\displaystyle\mu(\bigcup_{k\geq 1}E_{k})=\int_{\bigcup_{k\geq 1}E_{k}}\frac{\sqrt{4z-1}}{2\pi z^{2}}\,dz=\sum_{k=1}^{\infty}\int_{E_{k}}\frac{\sqrt{4z-1}}{2\pi z^{2}}\,dz=\sum_{k=1}^{\infty}\mu(E_{k}),

hence μ\mu is a measure on measure space (𝒵,)(\mathcal{Z},\mathcal{M}). (37) implies

dμ=4z12πz2dz=tanθ2π16cos4θ12sec2θtanθdθ=4πsin2θdθ.d\mu=\frac{\sqrt{4z-1}}{2\pi z^{2}}\,dz=\frac{\tan\theta}{2\pi}16\cos^{4}\theta\cdot\frac{1}{2}\sec^{2}\theta\tan\theta\,d\theta=\frac{4}{\pi}\sin^{2}\theta\,d\theta. (48)

Since θ(0,π2]\theta\in(0,\frac{\pi}{2}] when z𝒵z\in\mathcal{Z}, we have

μ(𝒵)=𝒵𝑑μ=0π24πsin2θdθ=1,\mu(\mathcal{Z})=\int_{\mathcal{Z}}\,d\mu=\int_{0}^{\frac{\pi}{2}}\frac{4}{\pi}\sin^{2}\theta\,d\theta=1,

hence μ\mu is a probability measure on (𝒵,)(\mathcal{Z},\mathcal{M}). ∎

A set EE is said to be μ\mu-measurable if EE\in\mathcal{M}. The readers can check that μ\mu is absolutely continuous with respect to Lebesgue measure on 𝒵\mathcal{Z} and is a complete measure. A function ff on 𝒵\mathcal{Z} is said to be μ\mu-measurable if for each cc\in\mathbb{R}, {x:f(x)>c}\{x\colon f(x)>c\} is μ\mu-measurable. For more details, please refer to Royden and Fitzpatrick, [11].

For all p[1,+]p\in[1,+\infty], we regard two functions ff and gg as one if they are equal on 𝒵E\mathcal{Z}\setminus E with μ(E)=0\mu(E)=0. For each μ\mu-measurable function ff, define the pp-norm of ff, denoted by fp\|f\|_{p}, as follows:

fp={(𝒵|f|p𝑑μ)1p, if p[1,+),esssupz𝒵|f(z)|, if p=+,\|f\|_{p}=\left\{\begin{array}[]{ll}\left(\int_{\mathcal{Z}}|f|^{p}\,d\mu\right)^{\frac{1}{p}},&\textrm{ if }p\in[1,+\infty),\\ \mathrm{ess}\,\sup_{z\in\mathcal{Z}}|f(z)|,&\textrm{ if }p=+\infty,\end{array}\right.

where esssup|f|\mathrm{ess}\,\sup|f| is the essential supremum of ff. Let Lp(𝒵,,μ)L^{p}(\mathcal{Z},\mathcal{M},\mu) be the collection of real-valued μ\mu-measurable functions on 𝒵\mathcal{Z} for which 𝒵|f|p𝑑μ<\int_{\mathcal{Z}}|f|^{p}\,d\mu<\infty. Readers who are interested in more properties, such as Hölder inequality and Minkowski inequality, can refer to the textbooks of functional analysis(see [12],[13]).

If p=2p=2, the inner product of f,gL2(𝒵,,μ)f,g\in L^{2}(\mathcal{Z},\mathcal{M},\mu) is defined by

(f,g)=𝒵fg𝑑μ,(f,g)=\int_{\mathcal{Z}}fg\,d\mu,

then L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu) forms a Hilbert space. For each fL2(𝒵,,μ)f\in L^{2}(\mathcal{Z},\mathcal{M},\mu), the norm f2\|f\|_{2} can be written as

f2=(f,f)12.\|f\|_{2}=(f,f)^{\frac{1}{2}}.

Let \mathcal{I} be an index set and fjLp(𝒵,,μ)f_{j}\in L^{p}(\mathcal{Z},\mathcal{M},\mu) for each jj\in\mathcal{I}. A collection ={fj:j}\mathcal{F}=\{f_{j}\colon j\in\mathcal{I}\} is said to be a (Schauder) basis for Lp(𝒵,,μ)L^{p}(\mathcal{Z},\mathcal{M},\mu), if for each fLp(𝒵,,μ)f\in L^{p}(\mathcal{Z},\mathcal{M},\mu), and ϵ>0\epsilon>0, there exists an integer nn and real numbers ckc_{k} and functions fjkLp(𝒵,,μ),jkf_{j_{k}}\in L^{p}(\mathcal{Z},\mathcal{M},\mu),j_{k}\in\mathcal{I} for which fk=0nckfjkp<ϵ\|f-\sum_{k=0}^{n}c_{k}f_{j_{k}}\|_{p}<\epsilon. If p=2p=2, \mathcal{F} is said to be an orthonormal set, if for each k,lk,l\in\mathcal{I}, there holds

(fk,fl)=δk,l,(f_{k},f_{l})=\delta_{k,l},

where δkl\delta_{kl} is the Kronecker delta defined by

δjk={1,if k=l;0,otherwise.\displaystyle\delta_{jk}=\left\{\begin{array}[]{lc}1,&\textrm{if }k=l;\cr 0,&\textrm{otherwise.}\end{array}\right.

\mathcal{F} is said to be an orthonormal basis for L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu) if it is a maximal orthonormal set in L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu). For each fL2(𝒵,,μ)f\in L^{2}(\mathcal{Z},\mathcal{M},\mu) and fjf_{j}\in\mathcal{F}, (f,fj)(f,f_{j}) is called a (generalized) Fourier coefficient, j(f,fj)fj\sum_{j\in\mathcal{I}}(f,f_{j})f_{j} is called the (generalized) Fourier series of ff with respect to \mathcal{F} if there exists a function sequence {fn:n+}\{f_{n}\colon n\in\mathbb{Z}_{+}\}\subset\mathcal{F} and a unique real sequence {cn:n+}\{c_{n}\colon n\in\mathbb{Z}_{+}\} for which limnfk=0nckfk2=0\lim_{n\to\infty}\|f-\sum_{k=0}^{n}c_{k}f_{k}\|_{2}=0. Then we may write f=j(f,fj)fjf=\sum_{j\in\mathcal{I}}(f,f_{j})f_{j}, and j(f,fj)fj\sum_{j\in\mathcal{I}}(f,f_{j})f_{j} is called the Fourier expansion of ff with respect to basis \mathcal{F}. We have the following example.

Example 13.
  1. (i)

    Let z0>14z_{0}>\frac{1}{4}. Then (zz0)γL2(𝒵,,μ)(z-z_{0})^{\gamma}\in L^{2}(\mathcal{Z},\mathcal{M},\mu) if and only if γ(12,14)\gamma\in(-\frac{1}{2},\frac{1}{4}).

  2. (ii)

    (z14)γL2(𝒵,,μ)(z-\frac{1}{4})^{\gamma}\in L^{2}(\mathcal{Z},\mathcal{M},\mu) if and only if γ(34,14)\gamma\in(-\frac{3}{4},\frac{1}{4}).

Proof.

We prove Case (i). The proof of Case (ii) is similar. Suppose 14<z0<z1\frac{1}{4}<z_{0}<z_{1}. Then

𝒵(zz0)2γ𝑑μ=14+(zz0)2γ4z1z2𝑑z=I1+I2,\int_{\mathcal{Z}}(z-z_{0})^{2\gamma}\,d\mu=\int_{\frac{1}{4}}^{+\infty}(z-z_{0})^{2\gamma}\frac{\sqrt{4z-1}}{z^{2}}\,dz=I_{1}+I_{2},

where

I1=14z1(zz0)2γ4z1z2𝑑z,I2=z1+(zz0)2γ4z1z2𝑑z.I_{1}=\int_{\frac{1}{4}}^{z_{1}}(z-z_{0})^{2\gamma}\frac{\sqrt{4z-1}}{z^{2}}\,dz,\quad I_{2}=\int_{z_{1}}^{+\infty}(z-z_{0})^{2\gamma}\frac{\sqrt{4z-1}}{z^{2}}\,dz.

Improper integral I1I_{1} converges if and only if 2γ>12\gamma>-1, i.e. γ>12\gamma>-\frac{1}{2}, and I2I_{2} converges if and only if 2γ+12+1<22\gamma+\frac{1}{2}+1<2, i.e. γ<14\gamma<\frac{1}{4}. The range of γ\gamma is then obtained by taking intersection. ∎

4.2 An orthonormal basis

The following theorem is our main theorem in this section.

Theorem 14.

{g2n:nZ+}\{g_{2n}\colon n\in Z_{+}\} forms an orthonormal basis for L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu).

To prove this theorem, we need several lemmas.

Lemma 7.

{g2n:nZ+}\{g_{2n}\colon n\in Z_{+}\} forms an orthonormal set in L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu).

Proof.

For m,n+m,n\in\mathbb{Z}_{+}, we have

(g2m,g2n)\displaystyle(g_{2m},g_{2n}) =\displaystyle= 14+g2n(z)g2m(z)4z12πz2𝑑z\displaystyle\int_{\frac{1}{4}}^{+\infty}g_{2n}(z)g_{2m}(z)\frac{\sqrt{4z-1}}{2\pi z^{2}}\,dz
=\displaystyle= 4π+14g2n(z)g2m(z)114z(dz4z32).\displaystyle\frac{4}{\pi}\int_{+\infty}^{\frac{1}{4}}g_{2n}(z)g_{2m}(z)\sqrt{1-\frac{1}{4z}}\cdot\left(-\frac{dz}{4z^{\frac{3}{2}}}\right).

Let z=14x2,x(0,1]z=\frac{1}{4x^{2}},x\in(0,1]. Using Lemma 1, we obtain

(g2m,g2n)=4π01U2n(x)U2m(x)1x2𝑑x.(g_{2m},g_{2n})=\frac{4}{\pi}\int_{0}^{1}U_{2n}(x)U_{2m}(x)\sqrt{1-x^{2}}\,dx. (49)

Since U2nU_{2n} is even for each nn, equation (49) implies

(g2m,g2n)=2π11U2n(x)U2m(x)1x2𝑑x=δ2m,2n=δm,n.(g_{2m},g_{2n})=\frac{2}{\pi}\int_{-1}^{1}U_{2n}(x)U_{2m}(x)\sqrt{1-x^{2}}\,dx=\delta_{2m,2n}=\delta_{m,n}.

This proof also shows, for each pair of m,n+m,n\in\mathbb{Z}_{+}, an inner product of g2m(z)g_{2m}(z) and g2n(z)g_{2n}(z) in L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu) can be transformed directly to be an inner product of U2m(x)U_{2m}(x) and U2n(x)U_{2n}(x) with respect to the weight function 1x2\sqrt{1-x^{2}} through substitution z=14x2z=\frac{1}{4x^{2}} for x[1,1]x\in[-1,1].

Now we define

=span¯{g2n:n+}.\mathcal{H}=\overline{\mathrm{span}}\{g_{2n}\colon n\in\mathbb{Z}_{+}\}.

Then \mathcal{H} is a closed subspace of L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu), and {g2n:n+}\{g_{2n}\colon n\in\mathbb{Z}_{+}\} is an orthonormal basis for \mathcal{H} by a theorem about orthogonal basis(see [12]). In the following we will prove that =L2(𝒵,,μ)\mathcal{H}=L^{2}(\mathcal{Z},\mathcal{M},\mu). Now set

C1(𝒵)={f:f is continuous on 𝒵 and limz+f(z) exists}.C_{1}(\mathcal{Z})=\{f\colon f\textrm{ is continuous on }\mathcal{Z}\textrm{ and }\lim_{z\to+\infty}f(z)\textrm{ exists}\}.

Then we have the following lemma.

Lemma 8.

C1(𝒵)C_{1}(\mathcal{Z})\in\mathcal{H}.

Proof.

Suppose limz+f(z)=a\lim_{z\to+\infty}f(z)=a. Let z=14x2z=\frac{1}{4x^{2}}, then z+z\to+\infty whenever x0+x\to 0^{+}. This fact enables us to extend f(14x2)f(\frac{1}{4x^{2}}) to an even continuous function on [1,1][-1,1], namely F(x)F(x), written as

F(x)={f(14x2),if x[1,0)(0,1)], and a,if x=0.F(x)=\left\{\begin{array}[]{ll}f(\frac{1}{4x^{2}}),&\hbox{if $x\in[-1,0)\bigcup(0,1)]$, and }\cr a,&\hbox{if $x=0$}.\end{array}\right.

For any n+n\in\mathbb{Z}_{+} and ckc_{k}\in\mathbb{R}, 0kn0\leq k\leq n, by applying the symmetry of even order U2kU_{2k}, we deduce that

fk=0nckg2k22\displaystyle\Big{\|}f-\sum_{k=0}^{n}c_{k}g_{2k}\Big{\|}_{2}^{2} =\displaystyle= 14+(f(z)k=0nckg2k(z))24z12πz2𝑑z\displaystyle\int_{\frac{1}{4}}^{+\infty}\big{(}f(z)-\sum_{k=0}^{n}c_{k}g_{2k}(z)\big{)}^{2}\frac{\sqrt{4z-1}}{2\pi z^{2}}\,dz (50)
=\displaystyle= 4π011x2(f(14x2)k=0nckU2k(x))2𝑑x\displaystyle\frac{4}{\pi}\int_{0}^{1}\sqrt{1-x^{2}}\Big{(}f(\frac{1}{4x^{2}})-\sum_{k=0}^{n}c_{k}U_{2k}(x)\Big{)}^{2}\,dx
=\displaystyle= 2π111x2(F(x)k=0nckU2k(x))2𝑑x\displaystyle\frac{2}{\pi}\int_{-1}^{1}\sqrt{1-x^{2}}\Big{(}F(x)-\sum_{k=0}^{n}c_{k}U_{2k}(x)\Big{)}^{2}\,dx
=\displaystyle= Fk=0nckU2k2,\displaystyle\Big{\|}F-\sum_{k=0}^{n}c_{k}U_{2k}\Big{\|}^{2},

where \|\cdot\| denote the Euclidean norm with respect to the weight function 1x2\sqrt{1-x^{2}} defined on [1,1][-1,1]. By a corollary of Weierstrass’s theorem(a version with respect to Chebyshev polynomials and L2L^{2} norm on the interval [1,1][-1,1], see Corollary 3.2A in [14]), for given ϵ>0\epsilon>0, there exists m+m\in\mathbb{Z}_{+} and {ak:0km}\{a_{k}\colon 0\leq k\leq m\}\subset\mathbb{R} such that

Fk=0makUk<ϵ2.\Big{\|}F-\sum_{k=0}^{m}a_{k}U_{k}\Big{\|}<\frac{\epsilon}{2}. (51)

Since FF is even, by the substitution t=xt=-x, we have

ϵ2\displaystyle\frac{\epsilon}{2} >\displaystyle> Fk=0makUk\displaystyle\Big{\|}F-\sum_{k=0}^{m}a_{k}U_{k}\Big{\|} (52)
=\displaystyle= (2π111x2(F(x)k=0makUk(x))2𝑑x)12\displaystyle\Big{(}\frac{2}{\pi}\int_{-1}^{1}\sqrt{1-x^{2}}\Big{(}F(x)-\sum_{k=0}^{m}a_{k}U_{k}(x)\Big{)}^{2}\,dx\Big{)}^{\frac{1}{2}}
=\displaystyle= (2π111t2(F(t)k=0m(1)kakUk(t))2𝑑t)12\displaystyle\Big{(}\frac{2}{\pi}\int_{-1}^{1}\sqrt{1-t^{2}}\Big{(}F(t)-\sum_{k=0}^{m}(-1)^{k}a_{k}U_{k}(t)\Big{)}^{2}\,dt\Big{)}^{\frac{1}{2}}
=\displaystyle= Fk=0m(1)kakUk.\displaystyle\Big{\|}F-\sum_{k=0}^{m}(-1)^{k}a_{k}U_{k}\Big{\|}.

Now we choose n=m2n=\lfloor\frac{m}{2}\rfloor and ck=a2k,0knc_{k}=a_{2k},0\leq k\leq n. Then similar to (52) we deduce that

fk=0nckg2k2\displaystyle\Big{\|}f-\sum_{k=0}^{n}c_{k}g_{2k}\Big{\|}_{2} =\displaystyle= Fk=0nckU2k\displaystyle\Big{\|}F-\sum_{k=0}^{n}c_{k}U_{2k}\Big{\|} (53)
=\displaystyle= 12(Fk=0makUk)+12(Fk=0m(1)kakUk).\displaystyle\Big{\|}\frac{1}{2}\Big{(}F-\sum_{k=0}^{m}a_{k}U_{k}\Big{)}+\frac{1}{2}\Big{(}F-\sum_{k=0}^{m}(-1)^{k}a_{k}U_{k}\Big{)}\Big{\|}.

By applying Minkowski inequality we deduce from (51)-(53) that

fk=0nckg2k222Fk=0makUk+22(Fk=0m(1)kakUk)<ϵ.\Big{\|}f-\sum_{k=0}^{n}c_{k}g_{2k}\Big{\|}_{2}\leq\frac{\sqrt{2}}{2}\Big{\|}F-\sum_{k=0}^{m}a_{k}U_{k}\Big{\|}+\frac{\sqrt{2}}{2}\Big{\|}\Big{(}F-\sum_{k=0}^{m}(-1)^{k}a_{k}U_{k}\Big{)}\Big{\|}<\epsilon.

By the arbitrariness of ϵ\epsilon and the completion of \mathcal{H}, we have ff\in\mathcal{H}. ∎

We have the following examples.

Example 15.

For each n+n\in\mathbb{Z}_{+}, each gng_{n} is continuous on 𝒵\mathcal{Z}. By Lemma 2,

gn(+)={(1)n2, if n even,0, if n odd.g_{n}(+\infty)=\left\{\begin{array}[]{ll}(-1)^{\frac{n}{2}},&\textrm{ if $n$ even,}\\ 0,&\textrm{ if $n$ odd.}\end{array}\right.

Hence gnC1(𝒵)g_{n}\in C_{1}(\mathcal{Z})\subset\mathcal{H} for n+n\in\mathbb{Z}_{+}.

Example 16.

Let β,m\beta,m\in\mathbb{R} and fβ,m(z)=eβzm,z𝒵f_{\beta,m}(z)=e^{\beta z^{m}},z\in\mathcal{Z}. Then

limz+eβzm={0, if m>0,β<0eβ, if m=01, if β=0 or m<0,\lim_{z\to+\infty}e^{\beta z^{m}}=\left\{\begin{array}[]{ll}0,&\textrm{ if $m>0,\beta<0$, }\\ e^{\beta},&\textrm{ if $m=0$, }\\ 1,&\textrm{ if $\beta=0$ or $m<0$,}\end{array}\right.

and limz+eβzm=+\lim_{z\to+\infty}e^{\beta z^{m}}=+\infty if β>0\beta>0 and m>0m>0. So we conclude that fβ,mf_{\beta,m}\in\mathcal{H} iff βm0\beta m\leq 0(we follow the convention that z0=1z^{0}=1 at z=0z=0. Otherwise, the condition ”βm0\beta m\leq 0” should be replaced by ”βm0\beta m\leq 0 and at least one of β\beta and mm is nonzero”).

Example 17.

Let deg(P)\deg(P) denote the degree of polynomial PP. Let f=PQf=\frac{P}{Q}, where PP and QQ are relatively prime polynomials with deg(P)deg(Q)\deg(P)\leq\deg(Q), and QQ has no zeros in 𝒵\mathcal{Z}. Then ff is continuous on 𝒵\mathcal{Z}, and

limz+f(z)={αPαQ, if deg(P)=deg(Q),0, if deg(P)<deg(Q),\lim_{z\to+\infty}f(z)=\left\{\begin{array}[]{ll}\displaystyle\frac{\alpha_{P}}{\alpha_{Q}},&\textrm{ if $\deg(P)=\deg(Q)$,}\\ 0,&\textrm{ if $\deg(P)<\deg(Q)$,}\end{array}\right.

where αP\alpha_{P} and αQ\alpha_{Q} are the leading coefficients of PP and QQ respectively. Hence ff\in\mathcal{H}.

We continue searching for functions in \mathcal{H}.

Lemma 9.

Let EE be one of the following three cases:

  1. (i)

    E=[14,a)E=[\frac{1}{4},a), a𝒵a\in\mathcal{Z};

  2. (ii)

    EE is an open interval on 𝒵\mathcal{Z};

  3. (iii)

    EE\in\mathcal{M}.

Let 𝟏E\mathbf{1}_{E} be the indicator function of EE for EE\in\mathcal{M}, i.e.,

𝟏E(z)={1,if zE;0,otherwise.\mathbf{1}_{E}(z)=\left\{\begin{array}[]{lc}1,&\textrm{if }z\in E;\cr 0,&\textrm{otherwise.}\end{array}\right.

Then 𝟏E\mathbf{1}_{E}\in\mathcal{H}.

Proof.
  1. (i)

    Without loss of generality, we suppose a>2a>2. For each n1n\geq 1 we define

    fn,a(z)={1,if z[14,a1n],12(1+nanz),if z(a1n,a+1n),0,otherwise.f_{n,a}(z)=\left\{\begin{array}[]{ll}1,&\displaystyle\textrm{if }z\in[\frac{1}{4},a-\frac{1}{n}],\cr\displaystyle\frac{1}{2}(1+na-nz),&\displaystyle\textrm{if }z\in(a-\frac{1}{n},a+\frac{1}{n}),\cr 0,&\textrm{otherwise.}\end{array}\right.

    That is, each fn,af_{n,a} is identical with 𝟏E\mathbf{1}_{E} in both [14,a1n][\frac{1}{4},a-\frac{1}{n}] and [a+1n,+)[a+\frac{1}{n},+\infty), meanwhile draws a straight line segment connecting (a1n,1)(a-\frac{1}{n},1) and (a+1n,0)(a+\frac{1}{n},0) for z(a1n,a+1n)z\in(a-\frac{1}{n},a+\frac{1}{n}). Then fn,af_{n,a} is continuous on 𝒵\mathcal{Z} and limz+fn,a(z)=0\lim_{z\to+\infty}f_{n,a}(z)=0. By Lemma 8, we have fn,af_{n,a}\in\mathcal{H}. Furthermore,

    𝟏Efn,a22\displaystyle\|\mathbf{1}_{E}-f_{n,a}\|^{2}_{2} =\displaystyle= a1na+1n(1fn,a(z))24z12πz2𝑑z\displaystyle\int_{a-\frac{1}{n}}^{a+\frac{1}{n}}(1-f_{n,a}(z))^{2}\frac{\sqrt{4z-1}}{2\pi z^{2}}\,dz
    \displaystyle\leq 2nmaxz(a1n,a+1n)4z12πz22πn0,n.\displaystyle\frac{2}{n}\max_{z\in(a-\frac{1}{n},a+\frac{1}{n})}\frac{\sqrt{4z-1}}{2\pi z^{2}}\leq\frac{2}{\pi n}\to 0,\quad n\to\infty.

    Hence 𝟏E\mathbf{1}_{E}\in\mathcal{H} for E=[14,a)E=[\frac{1}{4},a).

  2. (ii)

    Suppose E=(b,c),c>b14E=(b,c),c>b\geq\frac{1}{4}. We have 𝟏{z=b}\mathbf{1}_{\{z=b\}}\in\mathcal{H} since 𝟏{z=b}=0\mathbf{1}_{\{z=b\}}=0 μ\mu-a.e. on 𝒵\mathcal{Z}. Now applying the result of Case (i), we get

    𝟏E=𝟏[14,c)𝟏[14,b)𝟏{z=b}.\mathbf{1}_{E}=\mathbf{1}_{[\frac{1}{4},c)}-\mathbf{1}_{[\frac{1}{4},b)}-\mathbf{1}_{\{z=b\}}\in\mathcal{H}.

    Hence 𝟏E\mathbf{1}_{E}\in\mathcal{H} for each open interval E𝒵E\subset\mathcal{Z}.

  3. (iii)

    Now given ϵ>0\epsilon>0 and EE\in\mathcal{M}, there exist z1>14z_{1}>\frac{1}{4} such that

    μ([z1,+))<ϵ22.\mu([z_{1},+\infty))<\frac{\epsilon^{2}}{2}.

    Let E0=E[14,z1]E_{0}=E\bigcap[\frac{1}{4},z_{1}]. Using a theorem of measure(Theorem 12 in [11], page 42), we can find disjoint open intervals Ek[14,z1],0knE_{k}\subset[\frac{1}{4},z_{1}],0\leq k\leq n such that

    μ(k=1nEkE0)+μ(E0k=1nEk)<ϵ22.\mu(\bigcup_{k=1}^{n}E_{k}\setminus E_{0})+\mu(E_{0}\setminus\bigcup_{k=1}^{n}E_{k})<\frac{\epsilon^{2}}{2}.

    By the result of Case (ii), we have

    𝟏k=1nEk=k=1n𝟏Ek,\mathbf{1}_{\bigcup_{k=1}^{n}E_{k}}=\sum_{k=1}^{n}\mathbf{1}_{E_{k}}\in\mathcal{H},

    this implies

    𝟏k=1nEk𝟏E22\displaystyle\|\mathbf{1}_{\bigcup_{k=1}^{n}E_{k}}-\mathbf{1}_{E}\|_{2}^{2}
    =\displaystyle= (E0k=1nEk)(k=1nEkE0)(𝟏k=1nEk𝟏E0)2𝑑μ\displaystyle\int_{(E_{0}\setminus\bigcup_{k=1}^{n}E_{k})\bigcup(\bigcup_{k=1}^{n}E_{k}\setminus E_{0})}(\mathbf{1}_{\bigcup_{k=1}^{n}E_{k}}-\mathbf{1}_{E_{0}})^{2}\,d\mu
    +[z1,+)(𝟏k=1nEk𝟏E)2𝑑μ\displaystyle\quad\quad\quad+\int_{[z_{1},+\infty)}(\mathbf{1}_{\bigcup_{k=1}^{n}E_{k}}-\mathbf{1}_{E})^{2}\,d\mu
    =\displaystyle= μ(k=1nEkE0)+μ(E0k=1nEk)+μ([z1,+))\displaystyle\mu(\bigcup_{k=1}^{n}E_{k}\setminus E_{0})+\mu(E_{0}\setminus\bigcup_{k=1}^{n}E_{k})+\mu([z_{1},+\infty))
    <\displaystyle< ϵ22+ϵ22=ϵ2,\displaystyle\frac{\epsilon^{2}}{2}+\frac{\epsilon^{2}}{2}=\epsilon^{2},

    hence 𝟏k=1nEk𝟏E02<ϵ\|\mathbf{1}_{\bigcup_{k=1}^{n}E_{k}}-\mathbf{1}_{E_{0}}\|_{2}<\epsilon, which shows 𝟏E\mathbf{1}_{E}\in\mathcal{H} for EE\in\mathcal{M}.

The proof of Theorem 14. It suffices to show L2(𝒵,,μ)=L^{2}(\mathcal{Z},\mathcal{M},\mu)=\mathcal{H}. Let ϵ\epsilon be arbitrary in (0,1)(0,1) and ff be arbitrary in L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu).

Firstly, there exists z2>14z_{2}>\frac{1}{4} such that

[z2,+)f2𝑑μ<ϵ24.\int_{[z_{2},+\infty)}f^{2}\,d\mu<\frac{\epsilon^{2}}{4}. (54)

Secondly, for fixed ff and n1n\geq 1, let

Anf={z[14,z2]:|f(z)|2n},A_{n}^{f}=\left\{z\in\left[\frac{1}{4},z_{2}\right]\colon|f(z)|\geq 2^{n}\right\},

then AnfA_{n}^{f}\in\mathcal{M} and is decreasing as nn\to\infty . We claim that there exists N1N\geq 1 depending on ϵ\epsilon and z2z_{2}, such that for all n>Nn>N, there holds

Anff2𝑑μ<ϵ24.\int_{A_{n}^{f}}f^{2}\,d\mu<\frac{\epsilon^{2}}{4}. (55)

We argue it by contradiction. Suppose the claim does not hold. Then there exists some ϵ0>0\epsilon_{0}>0 and a subsequence of positive integers {nk:k1}\{n_{k}\colon k\geq 1\} such that

Ankff2𝑑μϵ024.\int_{A_{n_{k}}^{f}}f^{2}\,d\mu\geq\frac{\epsilon_{0}^{2}}{4}.

We denote

Af={z[14,z2]:f(z)=±},A_{\infty}^{f}=\{z\in\left[\frac{1}{4},z_{2}\right]\colon f(z)=\pm\infty\},

then

limkAnkf=k=1Ankf=Af\lim_{k\to\infty}A_{n_{k}}^{f}=\bigcap_{k=1}^{\infty}A_{n_{k}}^{f}=A_{\infty}^{f}

and

Aff2𝑑μϵ024.\int_{A_{\infty}^{f}}f^{2}\,d\mu\geq\frac{\epsilon_{0}^{2}}{4}.

This shows

μ(Af)>0.\mu(A_{\infty}^{f})>0.

Then we can deduce that

𝒵f2𝑑μAff2𝑑μ=+,\int_{\mathcal{Z}}f^{2}\,d\mu\geq\int_{A_{\infty}^{f}}f^{2}\,d\mu=+\infty,

we have a contradiction since fL2(𝒵,,μ)f\in L^{2}(\mathcal{Z},\mathcal{M},\mu). Therefore the claim holds true.

Thirdly, let

n0=max{N+1,log224z21πϵ+1}n_{0}=\max\left\{N+1,\left\lfloor\log_{2}\frac{2\sqrt{4z_{2}-1}}{\sqrt{\pi}\epsilon}\right\rfloor+1\right\}

and

f1(z)={2n0f(z)2n0,if z[14,z2]An0f,0,otherwise.f_{1}(z)=\left\{\begin{array}[]{ll}\displaystyle 2^{-n_{0}}\lfloor f(z)2^{n_{0}}\rfloor,&\displaystyle\textrm{if }z\in\left[\frac{1}{4},z_{2}\right]\setminus A_{n_{0}}^{f},\vspace{2mm}\cr 0,&\textrm{otherwise.}\end{array}\right.

Then f1f_{1} is a simple function, i.e. the linear combination of indicators. By employing Lemma 9, we have f1f_{1}\in\mathcal{H}. In addition,

[14,z2]An0f(ff1)2𝑑μ\displaystyle\int_{[\frac{1}{4},z_{2}]\setminus A_{n_{0}}^{f}}(f-f_{1})^{2}\,d\mu =\displaystyle= [14,z2]An0f(ff1)2(z)4z12πz2𝑑z\displaystyle\int_{[\frac{1}{4},z_{2}]\setminus A_{n_{0}}^{f}}(f-f_{1})^{2}(z)\frac{\sqrt{4z-1}}{2\pi z^{2}}\,dz (56)
<\displaystyle< [14,z2]An0f(ff1)2(z)1πz32𝑑z\displaystyle\int_{[\frac{1}{4},z_{2}]\setminus A_{n_{0}}^{f}}(f-f_{1})^{2}(z)\frac{1}{\pi z^{\frac{3}{2}}}\,dz
\displaystyle\leq [14,z2]An0f4n08π𝑑z\displaystyle\int_{[\frac{1}{4},z_{2}]\setminus A_{n_{0}}^{f}}4^{-n_{0}}\frac{8}{\pi}\,dz
\displaystyle\leq [14,z2]4n08π𝑑z\displaystyle\int_{[\frac{1}{4},z_{2}]}4^{-n_{0}}\frac{8}{\pi}\,dz
\displaystyle\leq 8(z214)π4n0\displaystyle\frac{8(z_{2}-\frac{1}{4})}{\pi}4^{-n_{0}}
<\displaystyle< 8(z214)ππϵ216(z214)=ϵ22\displaystyle\frac{8(z_{2}-\frac{1}{4})}{\pi}\frac{\pi\epsilon^{2}}{16(z_{2}-\frac{1}{4})}=\frac{\epsilon^{2}}{2}

Now by employing (54)-(56), we have

𝒵(ff1)2𝑑μ\displaystyle\int_{\mathcal{Z}}(f-f_{1})^{2}\,d\mu =\displaystyle= [14,z2]An0f(ff1)2𝑑μ+An0ff2𝑑μ+[z2,+)f2𝑑μ\displaystyle\int_{[\frac{1}{4},z_{2}]\setminus A_{n_{0}}^{f}}(f-f_{1})^{2}\,d\mu+\int_{A_{n_{0}}^{f}}f^{2}\,d\mu+\int_{[z_{2},+\infty)}f^{2}\,d\mu\vspace{2mm}
<\displaystyle< ϵ22+ϵ24+ϵ24=ϵ2,\displaystyle\frac{\epsilon^{2}}{2}+\frac{\epsilon^{2}}{4}+\frac{\epsilon^{2}}{4}=\epsilon^{2},

hence

ff12<ϵ,\|f-f_{1}\|_{2}<\epsilon,

which implies

ff1,f-f_{1}\in\mathcal{H},

and f=f1+(ff1)f=f_{1}+(f-f_{1})\in\mathcal{H}. Since ff is arbitrary in L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu), we have

L2(𝒵,,μ).L^{2}(\mathcal{Z},\mathcal{M},\mu)\subset\mathcal{H}.

On the other hand, we have also L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu)\supset\mathcal{H} by the definition of \mathcal{H}. Thus L2(𝒵,,μ)=L^{2}(\mathcal{Z},\mathcal{M},\mu)=\mathcal{H}. ∎

Theorem 14 means that {g2n:nZ+}\{g_{2n}\colon n\in Z_{+}\} is an orthonormal basis on semi-infinite interval 𝒵\mathcal{Z} with respect to the weight function

w(z)=2πr(z)=4z12πz2,w(z)=\frac{2}{\pi}r(z)=\frac{\sqrt{4z-1}}{2\pi z^{2}},

where r(z)r(z) is defined as in Theorem 11. Other Hilbert spaces and related orthonormal bases with respect to weight functions, say, four kinds of Chebyshev polynomials, Legendre polynomials, Laguerre polynomials, have shown very powerful influences in orthogonal approximations, scientific computations and vast range of real-world applications(see [15],[16],[17], [18],[19],[20]). In Table 1 we compare {g2n:nZ+}\{g_{2n}\colon n\in Z_{+}\} with some classical orthonormal systems.

Table 1: Some orthonormal systems
Name basis(n+)\begin{array}[]{c}\textrm{basis}\\ (n\in\mathbb{Z}_{+})\end{array} domain weightfunction\begin{array}[]{c}\textrm{weight}\\ \textrm{function}\end{array}
Chebyshev polynomialsof the first kind\begin{array}[]{c}\textrm{Chebyshev polynomials}\\ \textrm{of the first kind}\end{array} {Tn}\{T_{n}\} [1,1][-1,1] 11x2\frac{1}{\sqrt{1-x^{2}}}
Chebyshev polynomialsof the second kind\begin{array}[]{c}\textrm{Chebyshev polynomials}\\ \textrm{of the second kind}\end{array} {Un}\{U_{n}\} [1,1][-1,1] 1x2\sqrt{1-x^{2}}
normalized Legendre polynomials {Pn}\{P_{n}\} [1,1][-1,1] 1
Laguerre polynomials {Ln}\{L_{n}\} [0,+)[0,+\infty) exe^{-x}
Hermite polynomials {Hn}\{H_{n}\} (,+)(-\infty,+\infty) ex2e^{-x^{2}}
gg-rational functions {g2n}\{g_{2n}\} [14,+)[\frac{1}{4},+\infty) 4x12πx2\frac{\sqrt{4x-1}}{2\pi x^{2}}

where for n+n\in\mathbb{Z}_{+}, g2ng_{2n} and UnU_{n} are defined as in (22) and (3), and

Tn(x)\displaystyle T_{n}(x) =\displaystyle= cosnarccosx,\displaystyle\cos n\arccos x,
Pn(x)\displaystyle P_{n}(x) =\displaystyle= 2n+121n!m=0n2(1)m(2n2m)!m!(nm)!(n2m)!xn2m,\displaystyle\sqrt{\frac{2n+1}{2}}\frac{1}{n!}\sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{m}\frac{(2n-2m)!}{m!(n-m)!(n-2m)!}x^{n-2m},
Ln(x)\displaystyle L_{n}(x) =\displaystyle= m=0n(1)mn!(nm)!(m!)2xm,\displaystyle\sum_{m=0}^{n}(-1)^{m}\frac{n!}{(n-m)!(m!)^{2}}x^{m},
Hn(x)\displaystyle H_{n}(x) =\displaystyle= n!m=0n2(1)m(2x)n2mm!(n2m)!.\displaystyle n!\sum_{m=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{m}\frac{(2x)^{n-2m}}{m!(n-2m)!}.

We see that the sequence of gg-rational functions differs from other basis from domain and weight function. Both gg-rational function sequence and Laguerre polynomials sequence are defined on semi-infinite intervals, Hermite polynomials are defined on the entire real line, and the other three kinds are defined on a finite interval [1,1][-1,1]. Correspondingly, three weight functions defined on infinite intervals decay when tending to ++\infty, among which the weight of gg-rational functions decays ”slowest”. We wish gg-rational functions could apply to weighted rational approximation examples in future works. For more about rational approximations, please refer to [21].

A collection \mathcal{F} of normed linear space XX is said to be dense in XX if for each fXf\in X and ϵ>0\epsilon>0, there exists gg\in\mathcal{F} such that fgp<ϵ\|f-g\|_{p}<\epsilon. A normed linear space XX is said to be separable if there is a countable set dense in XX. Since the linear combinations of finite number of g2ng_{2n}’s with rational coefficients are dense in L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu), we obtain

Corollary 18.

L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu) is a separable space.

4.3 A non-orthogonal basis

In this part we give a non-orthogonal basis, and prove that it leads to {g2n:nZ+}\{g_{2n}\colon n\in Z_{+}\} after the Gram-Schmidt orthogonalization process. This process is a main approach to obtain an orthonormal basis from a non-orthogonal one. Now we do some preparations on combinatorial numbers.

Lemma 10.

Suppose nm3n\geq m\geq 3. here holds

(nm)+(nm1)(nm2)(nm3)=(n+2m)(n+2m1).\binom{n}{m}+\binom{n}{m-1}-\binom{n}{m-2}-\binom{n}{m-3}=\binom{n+2}{m}-\binom{n+2}{m-1}. (57)
Proof.

Recall that for nm1n\geq m\geq 1, there holds

(nm)+(nm1)=(n+1m),\binom{n}{m}+\binom{n}{m-1}=\binom{n+1}{m},

Now let nm3n\geq m\geq 3. We have

(nm)+(nm1)(nm2)(nm3)\displaystyle\binom{n}{m}+\binom{n}{m-1}-\binom{n}{m-2}-\binom{n}{m-3}
=\displaystyle= (n+1m)(n+1m2)\displaystyle\binom{n+1}{m}-\binom{n+1}{m-2}
=\displaystyle= (n+1m)+(n+1m1)(n+1m1)(n+1m2)\displaystyle\binom{n+1}{m}+\binom{n+1}{m-1}-\binom{n+1}{m-1}-\binom{n+1}{m-2}
=\displaystyle= (n+2m)(n+2m1).\displaystyle\binom{n+2}{m}-\binom{n+2}{m-1}.

In the following proposition, we represent znz^{-n} in terms of {g2n:n+}\{g_{2n}\colon n\in\mathbb{Z}_{+}\}.

Proposition 19.

For all n+n\in\mathbb{Z}_{+}, zz\in\mathbb{C}^{*}, the following identities hold true:

zn=g2n(z)+l=0n1[(2nnl)(2nnl1)]g2l(z).z^{-n}=g_{2n}(z)+\sum_{l=0}^{n-1}\left[\binom{2n}{n-l}-\binom{2n}{n-l-1}\right]g_{2l}(z). (58)
Proof.

Since for each zz\in\mathbb{C}^{*},

{g0(z)1,g2(z)=z11,g4(z)=z23z1+1,g6(z)=z35z2+6z11,\left\{\begin{array}[]{lcl}g_{0}(z)&\equiv&1,\\ \displaystyle g_{2}(z)&=&z^{-1}-1,\\ g_{4}(z)&=&z^{-2}-3z^{-1}+1,\\ g_{6}(z)&=&z^{-3}-5z^{-2}+6z^{-1}-1,\end{array}\right.

Solving this linear system, we obtain

{z0=g0(z),z1=g0(z)+g2(z)z2=g4(z)+3g2(z)+2g0z3=g6(z)+5g4(z)+9g2(z)+5g0.\left\{\begin{array}[]{lcl}z^{0}&=&g_{0}(z),\\ z^{-1}&=&g_{0}(z)+g_{2}(z)\\ z^{-2}&=&g_{4}(z)+3g_{2}(z)+2g_{0}\\ z^{-3}&=&g_{6}(z)+5g_{4}(z)+9g_{2}(z)+5g_{0}.\end{array}\right.

That is,

{z0=g0(z),z1=g2(z)+[(21)(20)]g0(z),z2=g4(z)+[(41)(40)]g2(z)+[(42)(41)]g0(z)z3=g6(z)+[(61)(60)]g4(z)+[(62)(61)]g2(z)+[(63)(62)]g0(z).\left\{\begin{array}[]{lcl}z^{0}&=&g_{0}(z),\vspace{2mm}\\ z^{-1}&=&g_{2}(z)+\left[\binom{2}{1}-\binom{2}{0}\right]g_{0}(z),\vspace{2mm}\\ z^{-2}&=&\vspace{2mm}g_{4}(z)+\left[\binom{4}{1}-\binom{4}{0}\right]g_{2}(z)+\left[\binom{4}{2}-\binom{4}{1}\right]g_{0}(z)\\ z^{-3}&=&g_{6}(z)+\left[\binom{6}{1}-\binom{6}{0}\right]g_{4}(z)+\left[\binom{6}{2}-\binom{6}{1}\right]g_{2}(z)+\left[\binom{6}{3}-\binom{6}{2}\right]g_{0}(z).\end{array}\right.

Hence (58) holds for n3n\leq 3. Now let n4n\geq 4 and suppose (58) holds for n1n-1. That is, for zz\in\mathbb{C}^{*},

zn+1\displaystyle z^{-n+1} =\displaystyle= g2n2(z)+l=0n2[(2n2nl1)(2n2nl2)]g2l(z).\displaystyle g_{2n-2}(z)+\sum_{l=0}^{n-2}\left[\binom{2n-2}{n-l-1}-\binom{2n-2}{n-l-2}\right]g_{2l}(z). (59)

By Lemma 1, Identity (26), we have for n+,zn\in\mathbb{Z}_{+},z\in\mathbb{C}^{*},

g2n+4(z)=(1z2)g2n+2(z)g2n(z),g_{2n+4}(z)=\left(\frac{1}{z}-2\right)g_{2n+2}(z)-g_{2n}(z),

This implies

1zg2n+2(z)=g2n+4(z)+2g2n+2(z)+g2n(z).\frac{1}{z}g_{2n+2}(z)=g_{2n+4}(z)+2g_{2n+2}(z)+g_{2n}(z). (60)

Using equation (59), we may write

zn=1zg2n2(z)+l=0n2[(2n2nl1)(2n2nl2)]1zg2l(z).z^{-n}=\frac{1}{z}g_{2n-2}(z)+\sum_{l=0}^{n-2}\left[\binom{2n-2}{n-l-1}-\binom{2n-2}{n-l-2}\right]\frac{1}{z}g_{2l}(z). (61)

By employing (60) and (61), we have

zn\displaystyle z^{-n}
=\displaystyle= z1zn+1\displaystyle z^{-1}z^{-n+1}
=\displaystyle= [g2n(z)+2g2n2(z)+g2n4(z)]+l=1n2[(2n2nl1)(2n2nl2)]\displaystyle[g_{2n}(z)+2g_{2n-2}(z)+g_{2n-4}(z)]+\sum_{l=1}^{n-2}\left[\binom{2n-2}{n-l-1}-\binom{2n-2}{n-l-2}\right]
[g2l+2(z)+2g2l(z)+g2l2(z)]+[(2n2n1)(2n2n2)][g0(z)+g2(z)]\displaystyle[g_{2l+2}(z)+2g_{2l}(z)+g_{2l-2}(z)]+\left[\binom{2n-2}{n-1}-\binom{2n-2}{n-2}\right][g_{0}(z)+g_{2}(z)]
=\displaystyle= [g2n(z)+2g2n2(z)+g2n4(z)]+l=1n2[(2n2nl1)(2n2nl2)]\displaystyle[g_{2n}(z)+2g_{2n-2}(z)+g_{2n-4}(z)]+\sum_{l=1}^{n-2}\left[\binom{2n-2}{n-l-1}-\binom{2n-2}{n-l-2}\right]
g2l+2(z)+l=1n22[(2n2nl1)(2n2nl2)]g2l(z)\displaystyle g_{2l+2}(z)+\sum_{l=1}^{n-2}2\left[\binom{2n-2}{n-l-1}-\binom{2n-2}{n-l-2}\right]g_{2l}(z)
+l=1n2[(2n2nl1)(2n2nl2)]g2l2(z)\displaystyle+\sum_{l=1}^{n-2}\left[\binom{2n-2}{n-l-1}-\binom{2n-2}{n-l-2}\right]g_{2l-2}(z)
+[(2n2n1)(2n2n2)][g0(z)+g2(z)].\displaystyle+\left[\binom{2n-2}{n-1}-\binom{2n-2}{n-2}\right][g_{0}(z)+g_{2}(z)].

Changing the index, we obtain

zn\displaystyle z^{-n} =\displaystyle= [g2n(z)+2g2n2(z)+g2n4(z)]\displaystyle[g_{2n}(z)+2g_{2n-2}(z)+g_{2n-4}(z)]
+l=2n1[(2n2nl)(2n2nl1)]g2l(z)\displaystyle+\sum_{l^{\prime}=2}^{n-1}\left[\binom{2n-2}{n-l^{\prime}}-\binom{2n-2}{n-l^{\prime}-1}\right]g_{2l^{\prime}}(z)
+l=1n2[2(2n2nl1)2(2n2nl2)]g2l(z)\displaystyle+\sum_{l=1}^{n-2}\left[2\binom{2n-2}{n-l-1}-2\binom{2n-2}{n-l-2}\right]g_{2l}(z)
+l′′=0n3[(2n2nl′′2)(2n2nl′′3)]g2l′′(z)\displaystyle+\sum_{l^{\prime\prime}=0}^{n-3}\left[\binom{2n-2}{n-l^{\prime\prime}-2}-\binom{2n-2}{n-l^{\prime\prime}-3}\right]g_{2l^{\prime\prime}}(z)
+[(2n2n1)(2n2n2)][g0(z)+g2(z)]\displaystyle+\left[\binom{2n-2}{n-1}-\binom{2n-2}{n-2}\right][g_{0}(z)+g_{2}(z)]

Separating g2n,g2n2,g2n4,g2g_{2n},g_{2n-2},g_{2n-4},g_{2} and g0g_{0} terms and rearrange the rest terms, we get

zn\displaystyle z^{-n} =\displaystyle= [g2n(z)+(2n1)g2n2(z)+(2n23n)g2n4(z)]\displaystyle[g_{2n}(z)+(2n-1)g_{2n-2}(z)+(2n^{2}-3n)g_{2n-4}(z)] (62)
+l=2n3[(2n2nl)+(2n2nl1)(2n2nl2)(2n2nl3)]g2l(z)\displaystyle+\sum_{l=2}^{n-3}\left[\binom{2n-2}{n-l}+\binom{2n-2}{n-l-1}-\binom{2n-2}{n-l-2}-\binom{2n-2}{n-l-3}\right]g_{2l}(z)
+[(2n2n1)+(2n2n2)(2n2n3)(2n2n4)]g2(z)\displaystyle+\left[\binom{2n-2}{n-1}+\binom{2n-2}{n-2}-\binom{2n-2}{n-3}-\binom{2n-2}{n-4}\right]g_{2}(z)
+[(2n2n1)(2n2n3)]g0(z).\displaystyle+\left[\binom{2n-2}{n-1}-\binom{2n-2}{n-3}\right]g_{0}(z).

Since (2n1n)=(2n1n1)\displaystyle\binom{2n-1}{n}=\binom{2n-1}{n-1}, we have

(2n2n1)(2n2n3)\displaystyle\binom{2n-2}{n-1}-\binom{2n-2}{n-3} =\displaystyle= (2n2n1)+(2n2n2)(2n2n2)(2n2n3)\displaystyle\binom{2n-2}{n-1}+\binom{2n-2}{n-2}-\binom{2n-2}{n-2}-\binom{2n-2}{n-3} (63)
=\displaystyle= (2n1n1)(2n1n2)\displaystyle\binom{2n-1}{n-1}-\binom{2n-1}{n-2}
=\displaystyle= (2n1n1)+(2n1n)(2n1n1)(2n1n2)\displaystyle\binom{2n-1}{n-1}+\binom{2n-1}{n}-\binom{2n-1}{n-1}-\binom{2n-1}{n-2}
=\displaystyle= (2nn)(2nn1).\displaystyle\binom{2n}{n}-\binom{2n}{n-1}.

Applying (57) and (63) in the right hand side of (62), we obtain

zn=g2n(z)+l=0n1[(2nnl)(2nnl1)]g2l(z).z^{-n}=g_{2n}(z)+\sum_{l=0}^{n-1}\left[\binom{2n}{n-l}-\binom{2n}{n-l-1}\right]g_{2l}(z).

By induction, equation (58) holds for all n+n\in\mathbb{Z}_{+}. ∎

We have the following theorem

Theorem 20.
  1. (i)

    {zn:n+}\{z^{-n}\colon n\in\mathbb{Z}_{+}\} forms a basis for L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu).

  2. (ii)

    The Gram-Schmidt process of {zn:n+}\{z^{-n}\colon n\in\mathbb{Z}_{+}\} in L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu) obtains {g2n:nZ+}\{g_{2n}\colon n\in Z_{+}\}.

  3. (iii)

    For each n+n\in\mathbb{Z}_{+}, span{zk:0kn}=span{g2k:0kn}\mathrm{span}\{z^{-k}\colon 0\leq k\leq n\}=\mathrm{span}\{g_{2k}\colon 0\leq k\leq n\}.

Proof.
  1. (i)

    For all n+n\in\mathbb{Z}_{+}, Proposition 19 implies znL2(𝒵,,μ)z^{-n}\in L^{2}(\mathcal{Z},\mathcal{M},\mu). Now suppose fL2(𝒵,,μ)f\in L^{2}(\mathcal{Z},\mathcal{M},\mu). Given ϵ>0\epsilon>0, by Theorem 14 there exists some nn and {ck:0kn}\{c_{k}\colon 0\leq k\leq n\} such that

    fk=1ncmg2m2=fm=1nckl=0m(1)l(mll)z(ml)2<ϵ.\|f-\sum_{k=1}^{n}c_{m}g_{2m}\|_{2}=\|f-\sum_{m=1}^{n}c_{k}\sum_{l=0}^{m}(-1)^{l}\binom{m-l}{l}z^{-(m-l)}\|_{2}<\epsilon.

    This shows

    fspan¯{zn:n+}.f\in\overline{\mathrm{span}}\{z^{-n}\colon n\in\mathbb{Z}_{+}\}.

    Hence {zn:n+}\{z^{-n}\colon n\in\mathbb{Z}_{+}\} is a basis for L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu).

  2. (ii)

    We use the symbol vnv_{n} to denote the (n+1)(n+1)-th orthogonal function obtained by applying the Gram-Schmidt process to {zj:+}\{z^{-j}\colon\in\mathbb{Z}_{+}\}. Then v0=z0=g0v_{0}=z^{0}=g_{0}. For each nn\in\mathbb{N}, suppose that vk=g2k,k<nv_{k}=g_{2k},k<n. Then by (58), we can derive

    vn\displaystyle v_{n} =\displaystyle= znk=0n1(zn,vk)vk(vk,vk)\displaystyle z^{-n}-\sum_{k=0}^{n-1}\frac{(z^{-n},v_{k})v_{k}}{(v_{k},v_{k})}
    =\displaystyle= znk=0n1(zn,g2k)g2k\displaystyle z^{-n}-\sum_{k=0}^{n-1}(z^{-n},g_{2k})g_{2k}
    =\displaystyle= znk=0n1(g2n(z)+l=0n1[(2nnl)(2nnl1)]g2l(z),g2k)g2k\displaystyle z^{-n}-\sum_{k=0}^{n-1}\left(g_{2n}(z)+\sum_{l=0}^{n-1}\left[\binom{2n}{n-l}-\binom{2n}{n-l-1}\right]g_{2l}(z),g_{2k}\right)g_{2k}
    =\displaystyle= znk=0n1[(2nnl)(2nnl1)]g2k=g2n.\displaystyle z^{-n}-\sum_{k=0}^{n-1}\left[\binom{2n}{n-l}-\binom{2n}{n-l-1}\right]g_{2k}=g_{2n}.
  3. (iii)

    It is clear by applying (22) and (58).

The following corollary is about the transition matrices of the two bases.

Corollary 21.

For all nn\in\mathbb{N}, the following identity holds true:

AnBn=In,A_{n}B_{n}=I_{n},

where InI_{n} is the order nn identify matrix, AnA_{n} and BnB_{n} are both order nn lower triangular matrices, An=(ai,j)1i,jn,Bn=(bi,j)1i,jn\displaystyle A_{n}=(a_{i,j})_{1\leq i,j\leq n},B_{n}=(b_{i,j})_{1\leq i,j\leq n}, and for 1i,jn1\leq i,j\leq n,

aij\displaystyle a_{ij} =\displaystyle= {(1)ij(i+j2ij),if ij;0,otherwise,\displaystyle\left\{\begin{array}[]{ll}\displaystyle(-1)^{i-j}\binom{i+j-2}{i-j},&\textrm{if }i\geq j;\\ 0,&\textrm{otherwise}\end{array}\right.,
bij\displaystyle b_{ij} =\displaystyle= {(2i2ij)(2i2ij1),if i>j;1,if i=j;0,otherwise.\displaystyle\left\{\begin{array}[]{ll}\displaystyle\binom{2i-2}{i-j}-\binom{2i-2}{i-j-1},&\textrm{if }i>j;\\ 1,&\textrm{if }i=j;\\ 0,&\textrm{otherwise}.\end{array}\right.
Proof.

AnA_{n} is the transition matrix from {zk:0kn1}\{z^{-k}\colon 0\leq k\leq n-1\} to {g2k:0kn1}\{g_{2k}\colon 0\leq k\leq n-1\} and BnB_{n} is the one from {g2k:0kn1}\{g_{2k}\colon 0\leq k\leq n-1\} to {zk:0kn1}\{z^{-k}\colon 0\leq k\leq n-1\}, hence BnB_{n} is the inverse of AnA_{n}. ∎

For example, when n=5n=5,

A5=[11113116511101571],B5=[111231595114282071],A_{5}=\begin{bmatrix}1&&&&\\ -1&1&&&\\ 1&-3&1&&\\ -1&6&-5&1&\\ 1&-10&15&-7&1\end{bmatrix},\quad B_{5}=\begin{bmatrix}1&&&&\\ 1&1&&&\\ 2&3&1&&\\ 5&9&5&1&\\ 14&28&20&7&1\end{bmatrix},

Thus we have A5B5=I5A_{5}B_{5}=I_{5}.

4.4 Examples

For convenience, In the sequel we will call a Fourier expansion of function ff in with respect to {g2n:nZ+}\{g_{2n}\colon n\in Z_{+}\} in L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu) a Fourier expansion of function ff for short. In this part we give two examples as applications, including one for Fourier series and one for interpolation. First we expand function g2m+1(z)=1zg_{2m+1}(z)=\frac{1}{\sqrt{z}} on 𝒵\mathcal{Z} using basis {g2n:n+}\{g_{2n}\colon n\in\mathbb{Z}_{+}\} for all m+m\in\mathbb{Z}_{+} in the following example.

Example 22.

For all m+m\in\mathbb{Z}_{+},

  1. (i)

    g2m+1=1\|g_{2m+1}\|=1.

  2. (ii)

    The Fourier series expansion of g2m+1g_{2m+1} is

    g2m+1=n=08(m+1)(1)n+m+1g2nπ(2n2m1)(2n+2m+3).g_{2m+1}=\sum_{n=0}^{\infty}\frac{8(m+1)(-1)^{n+m+1}g_{2n}}{\pi(2n-2m-1)(2n+2m+3)}. (66)
Proof.

For each m+m\in\mathbb{Z}_{+}, by applying (38) and (48), we have

g2m+12=𝒵g2m+12𝑑μ=4π0π2sin2(2m+2)θ𝑑θ=1.\|g_{2m+1}\|^{2}=\int_{\mathcal{Z}}g_{2m+1}^{2}\,d\mu=\frac{4}{\pi}\int_{0}^{\frac{\pi}{2}}\sin^{2}(2m+2)\theta\,d\theta=1.

Hence g2m+1=1\|g_{2m+1}\|=1. For each m,n+m,n\in\mathbb{Z}_{+}, by applying Lemma 3 and (48), we deduce that

(g2m+1,g2n)\displaystyle(g_{2m+1},g_{2n}) =\displaystyle= 𝒵g2m+1g2n𝑑μ\displaystyle\int_{\mathcal{Z}}g_{2m+1}g_{2n}\,d\mu
=\displaystyle= 4π0π2sin(2m+2)θsinθsin(2n+1)θsinθsin2θdθ\displaystyle\frac{4}{\pi}\int_{0}^{\frac{\pi}{2}}\frac{\sin(2m+2)\theta}{\sin\theta}\frac{\sin(2n+1)\theta}{\sin\theta}\sin^{2}\theta\,d\theta
=\displaystyle= 2π[sin(2n2m1)θ2n2m1sin(2n+2m+3)θ2n+2m+3]0π2\displaystyle\frac{2}{\pi}\left[\frac{\sin(2n-2m-1)\theta}{2n-2m-1}-\frac{\sin(2n+2m+3)\theta}{2n+2m+3}\right]_{0}^{\frac{\pi}{2}}
=\displaystyle= 8(m+1)(1)n+m+1π(2n2m1)(2n+2m+3).\displaystyle\frac{8(m+1)(-1)^{n+m+1}}{\pi(2n-2m-1)(2n+2m+3)}.

Hence in the closed form, The Fourier series of g2m+1g_{2m+1} is

g2m+1=n=08(m+1)(1)n+m+1g2nπ(2n2m1)(2n+2m+3).g_{2m+1}=\sum_{n=0}^{\infty}\frac{8(m+1)(-1)^{n+m+1}g_{2n}}{\pi(2n-2m-1)(2n+2m+3)}.

We have the following identity.

Proposition 23.

Let ={0}\mathbb{Z}^{*}=\mathbb{Z}\setminus\{0\}. For each mm\in\mathbb{Z}^{*}, the following identity holds true:

π264=n=0m2(2n2m+1)2(2n+2m+1)2.\frac{\pi^{2}}{64}=\sum_{n=0}^{\infty}\frac{m^{2}}{(2n-2m+1)^{2}(2n+2m+1)^{2}}. (67)
Proof.

For m+m\in\mathbb{Z}_{+}, since g2m+1=1\|g_{2m+1}\|=1, by the Parseval’s identity of g2m+1g_{2m+1}’s and equation (66), we have

1=n=064(m+1)2π2(2n2m1)2(2n+2m+3)2.1=\sum_{n=0}^{\infty}\frac{64(m+1)^{2}}{\pi^{2}(2n-2m-1)^{2}(2n+2m+3)^{2}}.

Multiply both sides of equation above by π264\frac{\pi^{2}}{64} and let m=m+1m^{\prime}=m+1, we have for m1m\geq 1, (67) holds true. Meanwhile, it is true as the same if we replace mm by m-m. Thus, it holds true for all mm\in\mathbb{Z}^{*}. ∎

For example, the Fourier expansion of g1g_{1} is as follows.

g1\displaystyle g_{1} =\displaystyle= n=08(1)n+1g2nπ(2n1)(2n+3)\displaystyle\sum_{n=0}^{\infty}\frac{8(-1)^{n+1}g_{2n}}{\pi(2n-1)(2n+3)}
=\displaystyle= 8π[1(1)3g0+115g2137g4+159g6+].\displaystyle\frac{8}{\pi}\left[-\frac{1}{(-1)\cdot 3}g_{0}+\frac{1}{1\cdot 5}g_{2}-\frac{1}{3\cdot 7}g_{4}+\frac{1}{5\cdot 9}g_{6}+\cdots\right].

The order nn best approximation of 1z\frac{1}{\sqrt{z}} in the sense of L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu), denoted by Pn(1z)P_{n}\left(\frac{1}{\sqrt{z}}\right) is

Pn(1z)=8π[13g0+115g2137g4+159g6++(1)n+1g2n(2n1)(2n+3)].P_{n}\left(\frac{1}{\sqrt{z}}\right)=\frac{8}{\pi}\left[\frac{1}{3}g_{0}+\frac{1}{1\cdot 5}g_{2}-\frac{1}{3\cdot 7}g_{4}+\frac{1}{5\cdot 9}g_{6}+\cdots+\frac{(-1)^{n+1}g_{2n}}{(2n-1)(2n+3)}\right].
Refer to caption
Refer to caption
Figure 1: Approximation and error curves of partial sums of g0.g2,,g22g_{0}.g_{2},\dots,g_{22} in approximating 1z\frac{1}{\sqrt{z}}

The best approximation curves and corresponding error curves for cases n=8n=8 to n=11n=11 on the interval [14,25][\frac{1}{4},\frac{2}{5}] are shown in Figure 1. The left sub-figure shows the approximation curves, the right sub-figure shows the error curves. The corresponding L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu) errors are

e8\displaystyle e_{8} =\displaystyle= 0.013671986780782784,\displaystyle 0.013671986780782784,
e9\displaystyle e_{9} =\displaystyle= 0.011663773398010387,\displaystyle 0.011663773398010387,
e10\displaystyle e_{10} =\displaystyle= 0.010103838132371137,\displaystyle 0.010103838132371137,
e11\displaystyle e_{11} =\displaystyle= 0.00886345373508862.\displaystyle 0.00886345373508862.

In the following we give a simple interpolation example.

Example 24.

Suppose

f(1)=2,f(2)=1,f(3)=1.5,f(4)=1.f(1)=2,f(2)=1,f(3)=1.5,f(4)=1.

Now we determine a function in span¯{g0,g2,g4,g6}\overline{\textrm{span}}\{g_{0},g_{2},g_{4},g_{6}\} that interpolates these four points. Let the interpolant

Pf=c1g0+c2g2+c3g4+c4g6,Pf=c_{1}g_{0}+c_{2}g_{2}+c_{3}g_{4}+c_{4}g_{6},

then in matrix form we have

[g0(1)g2(1)g4(1)g6(1)g0(2)g2(2)g4(2)g6(2)g0(3)g2(3)g4(3)g6(3)g0(4)g2(4)g4(4)g6(4)][c1c2c3c4]=[y1y2y3y4],\begin{bmatrix}g_{0}(1)&g_{2}(1)&g_{4}(1)&g_{6}(1)\\ g_{0}(2)&g_{2}(2)&g_{4}(2)&g_{6}(2)\\ g_{0}(3)&g_{2}(3)&g_{4}(3)&g_{6}(3)\\ g_{0}(4)&g_{2}(4)&g_{4}(4)&g_{6}(4)\end{bmatrix}\begin{bmatrix}c_{1}\\ c_{2}\\ c_{3}\\ c_{4}\end{bmatrix}=\begin{bmatrix}y_{1}\\ y_{2}\\ y_{3}\\ y_{4}\end{bmatrix},

Substituting the values g2n(j)g_{2n}(j) into the system above, n=0,,3,j=1,,4n=0,\dots,3,j=1,\dots,4, we obtain

[101111214781231913271345161364][c1c2c3c4]=[21321],\begin{bmatrix}1&0&-1&1\vspace{2mm}\\ 1&\frac{1}{2}&-\frac{1}{4}&\frac{7}{8}\vspace{2mm}\\ 1&\frac{2}{3}&\frac{1}{9}&\frac{13}{27}\vspace{2mm}\\ 1&\frac{3}{4}&\frac{5}{16}&\frac{13}{64}\end{bmatrix}\begin{bmatrix}c_{1}\vspace{2mm}\\ \vspace{2mm}c_{2}\\ \vspace{2mm}c_{3}\\ c_{4}\end{bmatrix}=\begin{bmatrix}2\vspace{2mm}\\ 1\vspace{2mm}\\ \vspace{2mm}\frac{3}{2}\\ 1\end{bmatrix},

By solving this linear system, we get

[c1c2c3c4]=[8116109741147670113][14.07227138643067818.82522123893805211.1578171091445420.6194690265486725].\begin{bmatrix}\vspace{2mm}c_{1}\\ \vspace{2mm}c_{2}\\ \vspace{2mm}c_{3}\\ c_{4}\end{bmatrix}=\begin{bmatrix}\frac{811}{6}\vspace{2mm}\\ \frac{1097}{4}\vspace{2mm}\\ \frac{1147}{6}\vspace{2mm}\\ \frac{70}{113}\end{bmatrix}\approx\begin{bmatrix}\vspace{2mm}14.072271386430678\\ \vspace{2mm}-18.825221238938052\\ \vspace{2mm}11.157817109144542\\ \vspace{2mm}-0.6194690265486725\end{bmatrix}.

Hence, the interpolant PfPf is

Pf(z)=8116g0(z)+10974g2z+11476g4(z)+70113g6(z),z.Pf(z)=\frac{811}{6}g_{0}(z)+\frac{1097}{4}g_{2}{z}+\frac{1147}{6}g_{4}(z)+\frac{70}{113}g_{6}(z),\quad z\in\mathbb{C}^{*}.

5 Conclusion

In this article , Through investigating four sequences, including a polynomial sequence {Gn:n+}\{G_{n}\colon n\in\mathbb{Z}_{+}\}, an irrational function sequence {gn:n+}\{g_{n}\colon n\in\mathbb{Z}_{+}\}, two rational function sequences {g2n:n+}\{g_{2n}\colon n\in\mathbb{Z}_{+}\} and {zn:n+}\{z^{-n}\colon n\in\mathbb{Z}_{+}\}, we established a Hilbert space L2(𝒵,,μ)L^{2}(\mathcal{Z},\mathcal{M},\mu). We are intended to reveal more properties of this space in the future work.

Acknowledgments

The author extends his gratitude to Xingping Sun from Missouri State University for his insightful guidance and earnest help. The author would like to thank the anonymous referees for their valuable suggestions.

References

  • [1] R. Frontczak and K. Prasad. Balancing polynomials, fibonacci numbers and some series for π\pi, Mediterranean Journal of Mathematics, 20(4), 1–18(2023).
  • [2] D. Marques and P. Trojovskỳ. The proof of a formula concerning the asymptotic behavior of the reciprocal sum of the square of multiple-angle fibonacci numbers, Journal of inequalities and Applications, 2022(1), 21(2022).
  • [3] A. Suvarnamani and M. Tatong. Some properties of (p,q)(p,q)-fibonacci numbers, Progress in Applied Science and Technology, 5(2), 17–21(2015).
  • [4] S. Kilmer, J. Liu, X. Sun and M. Wright. Constructing positive definite polynomials, Proceedings of the American Mathematical Society, 151(10), 4307–4316(2023).
  • [5] R. A. Brualdi. Introductory Combinatorics, 4th edition, (2004).
  • [6] G. Szegö. Orthogonal Polynomials, Vol. 23, in: American Mathematical Society Colloquium Publications, 1975.
  • [7] N. H. Asmar. Partial differential equations with Fourier series and boundary value problems, Courier Dover Publications (2016).
  • [8] K. Kiepiela and D. Klimek. An extension of the chebyshev polynomials, Journal of Computational and Applied Mathematics, 178(1-2), 305–312 (2005).
  • [9] J. P. Boyd. Orthogonal rational functions on a semi-infinite interval, Journal of Computational Physics, 70(1), 63–88(1987).
  • [10] W. Rudin. Principles of mathematical analysis, 3rd edition, (1976).
  • [11] H. L. Royden and P. M. Fitzpatrick. Real Analysis, 4th edition, Printice-Hall Inc, Boston (2010).
  • [12] J. B. Conway. A course in functional analysis, Vol 96, Springer, (2019).
  • [13] E. M. Stein and R. Shakarchi. Functional analysis: introduction to further topics in analysis, Vol 4, Princeton University Press, (2011).
  • [14] J. C. Mason and D.C. Handscomb. Chebyshev Polynomials. CRC Press, (2002).
  • [15] K. Jangrid and S. Mukhopadhyay. Applications of legendre wavelet collocation method to the analysis of poro-thermoelastic coupling with variable thermal conductivity, Computers & Mathematics with Applications, 146, 1–11 (2023).
  • [16] P. Junghanns, G. Mastroianni and I. Notarangelo. Weighted polynomial approximation and numerical methods for integral equations, (2021).
  • [17] Z. Pucanović and M. Pešović. Chebyshev polynomials and rr-circulant matrices, Applied Mathematics and Computation, 437, 127521, (2023).
  • [18] J. Ye, L. Xie, L. Ma, Y. Bian and X. Xu. A novel hybrid model based on Laguerre polynomial and multi-objective Runge–Kutta algorithm for wind power forecasting, International Journal of Electrical Power & Energy Systems, 146, 108726, (2023).
  • [19] J. Yang, W. Yu, W. Chen, B. Liao and H. Zhu. Chebyshev-Series Solutions for Nonlinear Systems with Hypersonic Gliding Trajectory Example, Aerospace Science and Technology, 108424, (2023).
  • [20] S. Zhang and Y. Nie. Localized Chebyshev and MLS collocation methods for solving 2D steady state nonlocal diffusion and peridynamic equations, Mathematics and Computers in Simulation, 206, 264–285, (2023).
  • [21] P. R. Graves-Morris, E. B. Saff and R. S. Varga. Rational Approximation and Interpolation: Proceedings of the United Kingdom-United States Conference, Held at Tampa, Florida, December 12-16, 1983, Vol 1105, (2006).