This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Order Relations of the Wasserstein mean and the spectral geometric mean

Luyining Gan School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China [email protected]  and  Huajun Huang Department of Mathematics and Statistics, Auburn University, Auburn, AL, 36849, USA [email protected]
Abstract.

On the space of positive definite matrices, several operator means are popular and have been studied extensively. In this paper, we investigate the near order and the Löwner order relations on the curves defined by the Wasserstein mean and the spectral geometric mean. We show that the near order \preceq is stronger than the eigenvalue entrywise order, and that AtBAtBA\natural_{t}B\preceq A\diamond_{t}B for t[0,1]t\in[0,1]. We prove the monotonicity properties of the curves originated from the Wasserstein mean and the spectral geometric mean in terms of the near order. The Löwner order properties of the Wasserstein mean and the spectral geometric mean are also explored.

Key words and phrases:
Wasserstein mean, spectral geometric mean, near order, Löwner order, eigenvalue entrywise order
2020 Mathematics Subject Classification:
15A42, 15A45, 15B48.

1. Introduction

The primary objective of this manuscript is to investigate the near order and the Löwner order relations concerning the Wasserstein mean and the spectral geometric mean, as well as the curves induced by these two means.

Let n×n{\mathbb{C}}_{n\times n} be the space of all n×nn\times n complex matrices. In n×n{\mathbb{C}}_{n\times n}, let n\mathbb{H}_{n} (resp. n\mathbb{P}_{n}, ¯n\overline{\mathbb{P}}_{n}) be the set of n×nn\times n Hermitian (resp. positive definite, positive semidefinite) matrices, and U(n)\mathrm{U}(n) the group of n×nn\times n unitary matrices. Given An×nA\in{\mathbb{C}}_{n\times n}, we denote |A|=(AA)1/2|A|=(A^{*}A)^{1/2}. For AnA\in\mathbb{P}_{n}, let λ(A)\lambda(A) denote the nn-tuple of eigenvalues of AA with nonincreasing order, that is, λ(A)=(λ1(A),λ2(A),,λn(A))\lambda(A)=(\lambda_{1}(A),\lambda_{2}(A),\dots,\lambda_{n}(A)) and λ1(A)λ2(A)λn(A)\lambda_{1}(A)\geq\lambda_{2}(A)\geq\cdots\geq\lambda_{n}(A).

On the space of positive definite matrices, several operator means are popular and have been studied extensively. Given A,BnA,B\in\mathbb{P}_{n}, the arithmetic mean, the Wasserstein mean, the metric geometric mean, and the spectral geometric mean are defined for t[0,1]t\in[0,1]:

AtB\displaystyle A\nabla_{t}B =\displaystyle= (1t)A+tB,\displaystyle(1-t)A+tB, (1.1)
AtB\displaystyle A\diamond_{t}B =\displaystyle= (1t)2A+t2B+t(1t)[(AB)1/2+(BA)1/2],\displaystyle(1-t)^{2}A+t^{2}B+t(1-t)[(AB)^{1/2}+(BA)^{1/2}], (1.2)
AtB\displaystyle A\sharp_{t}B =\displaystyle= A1/2(A1/2BA1/2)tA1/2,\displaystyle A^{1/2}(A^{-1/2}BA^{-1/2})^{t}A^{1/2}, (1.3)
AtB\displaystyle A\natural_{t}B =\displaystyle= (A1B)tA(A1B)t,\displaystyle(A^{-1}\sharp B)^{t}A(A^{-1}\sharp B)^{t}, (1.4)

where AB=A1/2BA\sharp B=A\sharp_{1/2}B. Many discovered relations between these means are related to their spectra.

The metric geometric mean was first introduced by Pusz and Woronowicz [24] for t=1/2t=1/2 and extended to t[0,1]t\in[0,1] by Kubo and Ando [20]. The mean was extended to multiple variables by Ando, Li and Mathias [5]. The properties of this mean were studied extensively by Lim [23]. The spectral geometric mean was introduced by Fiedler and Pták [10] for t=1/2t=1/2 and extended to t[0,1]t\in[0,1] by Lee and Lim [22]. Properties of spectral geometric mean can be found in [2, 11, 13, 17, 18] and the references therein. The Wasserstein mean is linked to the barycenter in the Wasserstein space of Gaussian distributions, which is one of the popular topics in matrix analysis and probability theory [1, 3]. Many interesting inequalities and properties of the Wasserstein mean has been given in [8, 11, 14, 15]. Hwang and Kim in [16, Lemma 2.4] gave another form of the Wasserstein mean (1.2) in terms of the metric geometric mean and arithmetic mean as

AtB=[It(A1B)]A[It(A1B)].A\diamond_{t}B=[I\nabla_{t}(A^{-1}\sharp B)]A[I\nabla_{t}(A^{-1}\sharp B)]. (1.5)

This form is analogous to the form of the spectral geometric mean (1.4). In consequence, many properties of these two means are similar.

The following interesting relations between positive definite matrices will be discussed.

  1. (1)

    We use A0A\geq 0 to denote that AA is positive semidefinite. Two matrices A,BnA,B\in\mathbb{P}_{n} satisfy the Löwner order ABA\leq B if BA0B-A\geq 0.

  2. (2)

    Define the near order on n\mathbb{P}_{n}: ABA\preceq B if A1BIA^{-1}\sharp B\geq I. The relation is introduced by Dumitru and Franco [9].

  3. (3)

    Given A,BnA,B\in\mathbb{P}_{n}, we define the eigenvalue entrywise order relation: AλBA\leq_{\lambda}B if λi(A)λi(B)\lambda_{i}(A)\leq\lambda_{i}(B) for 1in1\leq i\leq n. We say that A=λBA=_{\lambda}B if λ(A)=λ(B)\lambda(A)=\lambda(B).

  4. (4)

    Given A,BnA,B\in\mathbb{P}_{n}, we write AwlogBA\prec_{w\log}B if λ(A)\lambda(A) is weakly log-majorized by λ(B)\lambda(B), that is,

    i=1kλi(A)i=1kλi(B),k=1,2,,m.\prod_{i=1}^{k}\lambda_{i}(A)\leq\prod_{i=1}^{k}\lambda_{i}(B),\quad k=1,2,\dots,m. (1.6)

    In particular, we say that λ(A)\lambda(A) is log-majorized by λ(B)\lambda(B), denoted by AlogBA\prec_{\log}B, if (1.6) is true for k=1,2,,n1k=1,2,\dots,n-1 and equality holds for k=mk=m.

The above relations satisfy the transitive property except for the near order. The Löwner order is the strongest condition among these relations. The near order is weaker than the Löwner order but stronger than the eigenvalue entrywise order, which we will prove in Theorem 2.4. It is straightforward that AλBA\leq_{\lambda}B implies AwlogBA\prec_{w\log}B. So for A,BnA,B\in\mathbb{P}_{n}, we have the following relationships:

ABABAλBAwlogB.A\leq B\Longrightarrow A\preceq B\Longrightarrow A\leq_{\lambda}B\Longrightarrow A\prec_{w\log}B. (1.7)

In Theorem 3.1, we show that AtBAtBA\natural_{t}B\preceq A\diamond_{t}B for t(0,1)t\in(0,1), which completes a chain of order relations among means in (2.3). Consequently, there is the eigenvalue entrywise relation AtBλAtBA\natural_{t}B\leq_{\lambda}A\diamond_{t}B for t(0,1)t\in(0,1).

The metric geometric mean satisfies that if ABA\leq B, then the induced geodesic curve {AtBt0}\{A\sharp_{t}B\mid t\geq 0\} is monotonically increasing in terms of the Löwner order \leq with respect to tt. Similar properties hold for the curves induced by the Euclidean mean AtBA\nabla_{t}B and the log-Euclidean mean exp((1t)logA+tlogB)\exp({(1-t)\log A+t\log B}), but not for the curves induced by the Wasserstein mean and the spectral geometric mean. We show in Theorems 3.6 that if AB,A\preceq B, then {AtBt0}\{A\diamond_{t}B\mid t\geq 0\} and {AtBt}\{A\natural_{t}B\mid t\in\mathbb{R}\} are monotonically increasing in terms of the near order \preceq with respect to tt. In Theorem 3.7, the near order relations between AtBA\diamond_{t}B and AsBA\diamond_{s}B, between AtBA\natural_{t}B and AsBA\natural_{s}B, and between AtBA\natural_{t}B and AsBA\diamond_{s}B, are compared, respectively. For certain real powers pp, the near order on the curves {AptBpt0}\{A^{p}\diamond_{t}B^{p}\mid t\geq 0\} and {BptApt0}\{B^{-p}\diamond_{t}A^{-p}\mid t\geq 0\} are also discussed. The results disclose the existence of abundant near order relations and the corresponding eigenvalue entrywise order relations in the Wasserstein mean, the spectral geometric mean, and the curves induced by two means.

In Section 4, we study the Löwner order properties of Wasserstein mean and spectral geometric mean, both of which are connected to the metric geometric mean. In particular, Theorem 4.2 shows that if AtBAtCA\diamond_{t}B\leq A\diamond_{t}C or AtBAtCA\natural_{t}B\leq A\natural_{t}C for one t(0,1]t\in(0,1], then A1sBA1sCA^{-1}\sharp_{s}B\leq A^{-1}\sharp_{s}C for all s[0,1/2]s\in[0,1/2].

Some preliminary results of the metric geometric mean, the Wasserstein mean, the spectral geometric mean, and their relations are explored in Section 2.

2. Preliminaries

Extensive investigations have been done on the properties of matrix means. Here we list some basic properties of the metric geometric mean [7, 20, 22], the spectral geometric mean [22, 23] and the Wasserstein mean [14, 16, 19]. They display different characteristics of these three means.

Theorem 2.1.

Let A,B,C,DnA,B,C,D\in\mathbb{P}_{n} and let s,u,t[0,1]s,u,t\in[0,1]. The following are satisfied.

  1. (1)

    AtB=B1tAA\sharp_{t}B=B\sharp_{1-t}A.

  2. (2)

    (AtB)1=A1tB1(A\sharp_{t}B)^{-1}=A^{-1}\sharp_{t}B^{-1}.

  3. (3)

    (aA)t(bB)=a1tbt(AtB)(aA)\sharp_{t}(bB)=a^{1-t}b^{t}(A\sharp_{t}B) for any a,b>0a,b>0.

  4. (4)

    det(AtB)=(detA)1t(detB)t\det(A\sharp_{t}B)=(\det A)^{1-t}(\det B)^{t}.

  5. (5)

    M(AtB)M=(MAM)t(MBM)M(A\sharp_{t}B)M^{*}=(MAM^{*})\sharp_{t}(MBM^{*}) for non-singular MM.

  6. (6)

    (A1tB1)1AtBAtB(A^{-1}\nabla_{t}B^{-1})^{-1}\leq A\sharp_{t}B\leq A\nabla_{t}B, where AtB=(1t)A+tBA\nabla_{t}B=(1-t)A+tB.

  7. (7)

    (AsB)t(AuB)=A(1t)s+tuB(A\sharp_{s}B)\sharp_{t}(A\sharp_{u}B)=A\sharp_{(1-t)s+tu}B.

  8. (8)

    If ACA\leq C and BDB\leq D, then AtBCtD.A\sharp_{t}B\leq C\sharp_{t}D.

  9. (9)

    A1(BAB)=B.A^{-1}\sharp(BAB)=B.

Theorem 2.2.

Let A,BnA,B\in\mathbb{P}_{n} and let s,u,t[0,1]s,u,t\in[0,1]. The following are satisfied.

  1. (1)

    AtB=B1tAA\natural_{t}B=B\natural_{1-t}A.

  2. (2)

    (AtB)1=A1tB1(A\natural_{t}B)^{-1}=A^{-1}\natural_{t}B^{-1}.

  3. (3)

    (aA)t(bB)=a1tbt(AtB)(aA)\natural_{t}(bB)=a^{1-t}b^{t}(A\natural_{t}B) for any a,b>0a,b>0.

  4. (4)

    (AsB)t(AuB)=A(1t)s+tuB(A\natural_{s}B)\natural_{t}(A\natural_{u}B)=A\natural_{(1-t)s+tu}B.

  5. (5)

    det(AtB)=(detA)1t(detB)t\det(A\natural_{t}B)=(\det A)^{1-t}(\det B)^{t}.

Theorem 2.3.

Let A,BnA,B\in\mathbb{P}_{n} and let s,t,u[0,1]s,t,u\in[0,1]. The following are satisfied.

  1. (1)

    AtB=B1tAA\diamond_{t}B=B\diamond_{1-t}A.

  2. (2)

    (AtB)1=A1tB1(A\diamond_{t}B)^{-1}=A^{-1}\diamond_{t}B^{-1} if and only if A=BA=B.

  3. (3)

    (aA)t(aB)=a(AtB)(aA)\diamond_{t}(aB)=a(A\diamond_{t}B) for any a>0a>0.

  4. (4)

    (AsB)t(AuB)=A(1t)s+tuB(A\diamond_{s}B)\diamond_{t}(A\diamond_{u}B)=A\diamond_{(1-t)s+tu}B.

  5. (5)

    det(AtB)(detA)1t(detB)t\det(A\diamond_{t}B)\geq(\det A)^{1-t}(\det B)^{t}.

  6. (6)

    AtBAtBA\diamond_{t}B\leq A\nabla_{t}B.

Besides the individual properties of matrix means, many relations among these means have been discovered. The near order relation \preceq on n\mathbb{P}_{n} is recently introduced by Dumitru and Franco [9]:

ABA\preceq B if and only if A1BIA^{-1}\sharp B\geq I.

It is natural that ABA\preceq B if and only if B1A1B^{-1}\preceq A^{-1}. However, the relation “\preceq” does not satisfy transitive property [9], that is, ABA\preceq B and BCB\preceq C do not necessarily imply that ACA\preceq C. So the relation “\preceq” is called a near order.

On one hand, the near order relation is weaker than the Löwner order, since ABA\leq B implies that A1BA1A=IA^{-1}\sharp B\geq A^{-1}\sharp A=I so that ABA\preceq B. On the other hand, we show below that the near order is stronger than the eigenvalue entrywise relation.

Theorem 2.4.

Let A,BnA,B\in\mathbb{P}_{n}. If ABA\preceq B, then AλBA\leq_{\lambda}B.

Proof.

Assume ABA\preceq B, we have B1AIB^{-1}\sharp A\leq I. Then it is straightforward to have

A\displaystyle A =λ\displaystyle=_{\lambda} B1/2B1/2(B1/2AB1/2)1/2B1(B1/2AB1/2)1/2B1/2B1/2\displaystyle B^{1/2}B^{-1/2}(B^{1/2}AB^{1/2})^{1/2}B^{-1}(B^{1/2}AB^{1/2})^{1/2}B^{-1/2}B^{1/2}
=\displaystyle= B1/2(B1A)2B1/2\displaystyle B^{1/2}(B^{-1}\sharp A)^{2}B^{1/2}
\displaystyle\leq B1/2IB1/2=B.\displaystyle B^{1/2}IB^{1/2}=B.

Thus AλBA\leq_{\lambda}B. ∎

From [4, 6, 12], we have the log-majorization relations between the metric geometric mean, the log-Euclidean mean, the Fidelity mean and the spectral geometric mean as

AtBlogexp((1t)logA+tlogB)logBt/2A1tBt/2logAtB.A\sharp_{t}B\prec_{\log}\exp({(1-t)\log A+t\log B})\prec_{\log}B^{t/2}A^{1-t}B^{t/2}\prec_{\log}A\natural_{t}B. (2.1)

It is well-known (e.g. [21, 8] ) that there are Löwner orders:

(A1tB1)1AtBAtBandAtBAtB.(A^{-1}\nabla_{t}B^{-1})^{-1}\leq A\sharp_{t}B\leq A\nabla_{t}B\quad\text{and}\quad A\diamond_{t}B\leq A\nabla_{t}B. (2.2)

Our new result in Theorem 3.1 shows that AtBAtBA\natural_{t}B\preceq A\diamond_{t}B for all t(0,1)t\in(0,1). It completes a chain of order relations among means as

(A1tB1)1AtB\displaystyle(A^{-1}\nabla_{t}B^{-1})^{-1}\leq A\sharp_{t}B log\displaystyle\prec_{\log} exp((1t)logA+tlogB)\displaystyle\exp({(1-t)\log A+t\log B}) (2.3)
log\displaystyle\prec_{\log} Bt/2A1tBt/2logAtBAtBAtB.\displaystyle B^{t/2}A^{1-t}B^{t/2}\prec_{\log}A\natural_{t}B\preceq A\diamond_{t}B\leq A\nabla_{t}B.\qquad

The relation between any two of the above means can be derived from (2.3) and the transitive properties. Here are some relations:

  1. (1)

    (2.3) and [9, Theorem 2] imply that

    AtBAtB.A\natural_{t}B\preceq A\nabla_{t}B. (2.4)
  2. (2)

    From (2.3), we get

    AtBwlogAtB.A\sharp_{t}B\prec_{w\log}A\diamond_{t}B. (2.5)

    It is the known strongest relation. The following counterexample shows that AtBA\sharp_{t}B and AtBA\diamond_{t}B do not have eigenvalue entrywise relation, near order relation, or Löwner order relation. Let

    A=[39.119542.111642.111661.1568]andB=[26.327913.348513.348512.2727].A=\begin{bmatrix}39.1195&42.1116\\ 42.1116&61.1568\end{bmatrix}\quad\text{and}\quad B=\begin{bmatrix}26.3279&13.3485\\ 13.3485&12.2727\end{bmatrix}.

    Then we have

    AtB=[32.244629.249729.249739.8872]andAtB=[35.633933.911133.911145.3815].A\sharp_{t}B=\begin{bmatrix}32.2446&29.2497\\ 29.2497&39.8872\end{bmatrix}\quad\text{and}\quad A\diamond_{t}B=\begin{bmatrix}35.6339&33.9111\\ 33.9111&45.3815\end{bmatrix}.

    The spectra of AtBA\sharp_{t}B is {65.5641,6.5677}\{65.5641,6.5677\} and that of AtBA\diamond_{t}B is {74.7672,6.2481}\{74.7672,6.2481\}. Thus AtBA\sharp_{t}B and AtBA\diamond_{t}B do not have eigenvalue entrywise relation. (1.7) implies that AtBA\sharp_{t}B and AtBA\diamond_{t}B do not have either near order relation or Löwner order relation.

  3. (3)

    (2.3) may not always provide the strongest relation between means. For example, (2.3) implies that (A1tB1)1wlogAtB(A^{-1}\nabla_{t}B^{-1})^{-1}\prec_{w\log}A\diamond_{t}B. However, Theorem 2.3(6) and Theorem 3.9 show that

    (A1tB1)1(A1tB1)1AtBAtB,(A^{-1}\nabla_{t}B^{-1})^{-1}\leq(A^{-1}\diamond_{t}B^{-1})^{-1}\preceq A\diamond_{t}B\leq A\nabla_{t}B, (2.6)

    hence by [9, Theorem 2], a stronger relation exists:

    (A1tB1)1AtB.(A^{-1}\nabla_{t}B^{-1})^{-1}\preceq A\diamond_{t}B. (2.7)

A relation between the near order and the Löwner order is given as follows, which strengthen a result in [16, Hwang and Kim, 2022].

Theorem 2.5.

Let AnA\in\mathbb{P}_{n}. Let P,QnP,Q\in\mathbb{H}_{n} be nonsingular and PQ=QPPQ=QP. Then IP1QI\leq P^{-1}Q if and only if PAPQAQ.PAP\preceq QAQ.

Proof.

Since PP and QQ commute, P1Q=QP1n.P^{-1}Q=QP^{-1}\in\mathbb{H}_{n}. By Theorem 2.1 (9), IP1QI\leq P^{-1}Q if and only if

IP1Q=(PAP)1[(P1Q)(PAP)(P1Q)]=(PAP)1(QAQ),I\leq P^{-1}Q=(PAP)^{-1}\sharp[(P^{-1}Q)(PAP)(P^{-1}Q)]=(PAP)^{-1}\sharp(QAQ),

if and only if PAPQAQ.PAP\preceq QAQ.

Corollary 2.6.

Let A,P,QnA,P,Q\in\mathbb{P}_{n} and PQ=QPPQ=QP, then PQP\leq Q if and only if PAPQAQ.PAP\preceq QAQ.

By [26, Theorem II.1], on the manifold Pn¯\overline{P_{n}} of n×nn\times n positive semidefinite matrices, the formula (1.2) of AtBA\diamond_{t}B can be extended to all tt\in\mathbb{R}, and

AtB=B1tA=|(1t)A1/2+tUB1/2|2=|A1/2t(UB1/2)|2A\diamond_{t}B=B\diamond_{1-t}A=|(1-t)A^{1/2}+tU^{*}B^{1/2}|^{2}=|A^{1/2}\nabla_{t}(U^{*}B^{1/2})|^{2} (2.8)

in which UU is a unitary matrix in the polar decomposition B1/2A1/2=U|B1/2A1/2|B^{1/2}A^{1/2}=U|B^{1/2}A^{1/2}|, and t\nabla_{t} in (1.1) is extended to all t.t\in\mathbb{R}. When An,A\in\mathbb{P}_{n}, (2.8) is equivalent to that for tt\in\mathbb{R}:

AtB=[It(A1B)]A[It(A1B)].A\diamond_{t}B=[I\nabla_{t}(A^{-1}\sharp B)]A[I\nabla_{t}(A^{-1}\sharp B)]. (2.9)

Likewise, the formula (1.4) of AtBA\natural_{t}B can be extended to all tt\in\mathbb{R} such that

AtB=(A1B)tA(A1B)t.A\natural_{t}B=(A^{-1}\sharp B)^{t}A(A^{-1}\sharp B)^{t}. (2.10)

(2.9) and (2.10) immediately imply the following result.

Proposition 2.7.

Let A,BnA,B\in\mathbb{P}_{n}. Let μ1,,μn\mu_{1},\ldots,\mu_{n} be the eigenvalues of A1BA^{-1}\sharp B. Then for tt\in\mathbb{R},

det(AtB)\displaystyle\det(A\diamond_{t}B) =\displaystyle= det(A)i=1n(1t+tμi)2,\displaystyle\det(A)\prod_{i=1}^{n}(1-t+t\mu_{i})^{2},
det(AtB)\displaystyle\det(A\natural_{t}B) =\displaystyle= det(A)1tdet(B)t=det(A)i=1nμi2t.\displaystyle\det(A)^{1-t}\det(B)^{t}=\det(A)\prod_{i=1}^{n}\mu_{i}^{2t}.

All properties of the spectral geometric mean in Theorem 2.2 still hold for s,u,ts,u,t\in\mathbb{R}, and they can be proved by (2.10). The extension of Theorem 2.2(4) to s,u,ts,u,t\in\mathbb{R} is proved below.

Proposition 2.8.

Let A,BnA,B\in\mathbb{P}_{n}. Then for s,u,ts,u,t\in\mathbb{R},

(AsB)t(AuB)=A(1t)s+tuB.(A\natural_{s}B)\natural_{t}(A\natural_{u}B)=A\natural_{(1-t)s+tu}B.
Proof.

(2.10) and Theorem 2.1(9) imply that for A,BnA,B\in\mathbb{P}_{n} and ss\in\mathbb{R},

A1(AsB)=A1[(A1B)sA(A1B)s]=(A1B)s,A^{-1}\sharp(A\natural_{s}B)=A^{-1}\sharp[(A^{-1}\sharp B)^{s}A(A^{-1}\sharp B)^{s}]=(A^{-1}\sharp B)^{s},

so that for t,s,t,s\in\mathbb{R},

At(AsB)=[(A1B)s]tA[(A1B)s]t=AtsB.A\natural_{t}(A\natural_{s}B)=[(A^{-1}\sharp B)^{s}]^{t}A[(A^{-1}\sharp B)^{s}]^{t}=A\natural_{ts}B.

Therefore,

(AsB)tB=B1t(B1sA)=B(1t)(1s)A=A(1t)s+tB,(A\natural_{s}B)\natural_{t}B=B\natural_{1-t}(B\natural_{1-s}A)=B\natural_{(1-t)(1-s)}A=A\natural_{(1-t)s+t}B,

so that

(AsB)t(AuB)=[Asu(AuB)]t(AuB)=A(1t)su+t(AuB)=A(1t)s+tuB.(A\natural_{s}B)\natural_{t}(A\natural_{u}B)=[A\natural_{\frac{s}{u}}(A\natural_{u}B)]\natural_{t}(A\natural_{u}B)=A\natural_{(1-t)\frac{s}{u}+t}(A\natural_{u}B)=A\natural_{(1-t)s+tu}B.\qed

However, the counterpart of Proposition 2.8 for AtBA\diamond_{t}B is not true, since the Wasserstein curve {AtBt}\{A\diamond_{t}B\mid t\in\mathbb{R}\} given by (1.2), (2.8), or (2.9) consists of several geodesic curves joint at some boundary points of Pn¯.\overline{P_{n}}. A difference between t\natural_{t} and t\diamond_{t} lies in the fact that: in (2.10), (A1B)t(A^{-1}\sharp B)^{t} for tt\in\mathbb{R} is always positive definite, but in (2.9), It(A1B)I\nabla_{t}(A^{-1}\sharp B) is not.

Example 2.9.

If A,BnA,B\in\mathbb{P}_{n} are commuting, then (2.8) shows that

AtB=(A1/2tB1/2)2=|A1/2tB1/2|2.A\diamond_{t}B=(A^{1/2}\nabla_{t}B^{1/2})^{2}=|A^{1/2}\nabla_{t}B^{1/2}|^{2}.

Let A=diag(4,1)A=\operatorname{diag}(4,1) and B=diag(1,4)B=\operatorname{diag}(1,4). Then for t,st,s\in\mathbb{R},

AtsB\displaystyle A\diamond_{ts}B =\displaystyle= diag((2ts)2,(1+ts)2)\displaystyle\operatorname{diag}((2-ts)^{2},(1+ts)^{2})
At(AsB)\displaystyle A\diamond_{t}(A\diamond_{s}B) =\displaystyle= diag([2(1t)+|2s|t]2,(1t+|1+s|t)2).\displaystyle\operatorname{diag}([2(1-t)+|2-s|t]^{2},(1-t+|1+s|t)^{2}).

When t0,1t\neq 0,1 and s>2s>2, the (1,1)(1,1) entries of AtsBA\diamond_{ts}B and At(AsB)A\diamond_{t}(A\diamond_{s}B) are different.

When AA and BB has near order relation, the following properties hold for Wasserstein curve.

Proposition 2.10.

Suppose that A,BnA,B\in\mathbb{P}_{n}.

  1. (1)

    If ABA\preceq B. Then for t,s[0,)t,s\in[0,\infty),

    At(AsB)=AtsB.A\diamond_{t}(A\diamond_{s}B)=A\diamond_{ts}B.
  2. (2)

    If ABA\succeq B. Then for t,s(,1]t,s\in(-\infty,1],

    (AsB)tB=A(1t)s+tB.(A\diamond_{s}B)\diamond_{t}B=A\diamond_{(1-t)s+t}B.
Proof.
  1. (1)

    ABA\preceq B implies that A1BI.A^{-1}\sharp B\geq I. For s0s\geq 0 we have Is(A1B)II\nabla_{s}(A^{-1}\sharp B)\geq I. By Theorem 2.1(9), A1(AsB)=Is(A1B)A^{-1}\sharp(A\diamond_{s}B)=I\nabla_{s}(A^{-1}\sharp B), and for t0t\geq 0,

    A1[At(AsB)]\displaystyle A^{-1}\sharp[A\diamond_{t}(A\diamond_{s}B)] =\displaystyle= It[A1(AsB)]=It[Is(A1B)]\displaystyle I\nabla_{t}[A^{-1}\sharp(A\diamond_{s}B)]=I\nabla_{t}[I\nabla_{s}(A^{-1}\sharp B)]
    =\displaystyle= Its(A1B)=A1(AtsB).\displaystyle I\nabla_{ts}(A^{-1}\sharp B)=A^{-1}\sharp(A\diamond_{ts}B).

    Therefore, when t,s0t,s\geq 0, we have At(AsB)=AtsB.A\diamond_{t}(A\diamond_{s}B)=A\diamond_{ts}B.

  2. (2)

    It can be proved by using AtB=B1tAA\diamond_{t}B=B\diamond_{1-t}A and the preceding result. ∎

In the coming sections, we will focus on exploring the near order relation and the Löwner order relations between the spectral geometric mean and the Wasserstein mean, and these relations on the curves defined by two means.

3. The near orders on Wasserstein curves and spectral geometric curves

There are abundant near order relations on the curves originated from the Wasserstein mean and the spectral geometric mean. We will explore these relations here.

AtBA\diamond_{t}B and AtBA\natural_{t}B have the following near order relations.

Theorem 3.1.

Suppose A,BnA,B\in\mathbb{P}_{n}.

  1. (1)

    For t(0,1)t\in(0,1), the spectral geometric mean and the Wasserstein mean satisfy that

    AtBAtB.A\natural_{t}B\preceq A\diamond_{t}B. (3.1)
  2. (2)

    If ABA\preceq B, then for t(1,)t\in(1,\infty),

    AtBAtB.A\natural_{t}B\succeq A\diamond_{t}B. (3.2)
  3. (3)

    If ABA\succeq B, then for t(,0)t\in(-\infty,0),

    AtBAtB.A\natural_{t}B\succeq A\diamond_{t}B. (3.3)

Moreover, any equality in (3.1), (3.2), or (3.3) holds if and only if A=BA=B.

Proof.

Given a>0a>0, define the function fa(t)=at1+tatf_{a}(t)=a^{t}-1+t-at. If a=1a=1 then f1(t)=0f_{1}(t)=0 for all tt\in\mathbb{R}. Otherwise, we have fa(0)=fa(1)=0f_{a}(0)=f_{a}(1)=0 and fa′′(t)=(lna)2at>0f_{a}^{\prime\prime}(t)=(\ln a)^{2}a^{t}>0 for all tt\in\mathbb{R}. Hence fa(t)<0f_{a}(t)<0 for t(0,1)t\in(0,1) and fa(t)>0f_{a}(t)>0 for t(,0)(1,).t\in(-\infty,0)\cup(1,\infty).

Let X=A1BX=A^{-1}\sharp B. Let μ1μn\mu_{1}\geq\cdots\geq\mu_{n} be the eigenvalues of XX. Then X>0X>0 and XtX^{t} commutes with ItXI\nabla_{t}X for t.t\in\mathbb{R}. Therefore, XtX^{t} and ItXI\nabla_{t}X are simultaneously unitarily diagonlizable and the eigenvalues of XtItXX^{t}-I\nabla_{t}X are fμi(t)f_{\mu_{i}}(t) for i=1,2,,n.i=1,2,\ldots,n. The preceding argument shows that:

  1. (1)

    For t(0,1)t\in(0,1), we have the Löwner order 0<XtItX0<X^{t}\leq I\nabla_{t}X. By Corollary 2.6,

    AtB=XtAXt(ItX)A(ItX)=AtB.A\natural_{t}B=X^{t}AX^{t}\preceq(I\nabla_{t}X)A(I\nabla_{t}X)=A\diamond_{t}B.
  2. (2)

    Suppose that ABA\preceq B. Then all μi1\mu_{i}\geq 1. So for t(1,),t\in(1,\infty), we have 0<ItXXt.0<I\nabla_{t}X\leq X^{t}. By Corollary 2.6, we get AtBAtB.A\natural_{t}B\succeq A\diamond_{t}B.

  3. (3)

    Suppose that ABA\succeq B. Then all μi(0,1]\mu_{i}\in(0,1]. For t(,0),t\in(-\infty,0), we have 0<ItXXt.0<I\nabla_{t}X\leq X^{t}. Corollary 2.6 implies that AtBAtB.A\natural_{t}B\succeq A\diamond_{t}B.

The values of fμi(t)f_{\mu_{i}}(t) show that the equality in (3.1), (3.2), or (3.3) holds if and only if all μi=1\mu_{i}=1, that is, A=B.A=B.

Example 3.2.

For t(0,1)t\in(0,1), we have the near order AtBAtBA\natural_{t}B\preceq A\diamond_{t}B. However, they don’t satisfy the stronger Löwner order. Here is an counterexample:

A=[500010] and B=[57.890619.888519.888562.1094]A=\begin{bmatrix}50&0\\ 0&10\end{bmatrix}\quad\text{ and }\quad B=\begin{bmatrix}57.8906&19.8885\\ 19.8885&62.1094\end{bmatrix}

when t=1/2t=1/2, the spectrum of AtBAtBA\diamond_{t}B-A\natural_{t}B is {0.21,6.3338}\{-0.21,6.3338\}.

Theorem 2.4 shows that the near order is stronger than the eigenvalue entrywise relation. So (3.1) implies the following result.

Corollary 3.3.

If A,BnA,B\in\mathbb{P}_{n}, then for t(0,1)t\in(0,1),

AtBλAtB,A\natural_{t}B\leq_{\lambda}A\diamond_{t}B, (3.4)

where the equality holds if and only if A=BA=B.

Corollary 3.3 strengthens the weak log-majorization result in [11]: for t(0,1)t\in(0,1), AtBwlogAtBA\natural_{t}B\prec_{w\log}A\diamond_{t}B.

Corollary 3.4.

For t(0,1),t\in(0,1), we have AtBAtB.A\natural_{t}B\preceq A\nabla_{t}B.

Proof.

It is known [21, 8] that AtBAtBA\diamond_{t}B\leq A\nabla_{t}B for t(0,1)t\in(0,1), and (3.1) shows that AtBAtBA\natural_{t}B\preceq A\diamond_{t}B. By  [9], we get AtBAtB.A\natural_{t}B\preceq A\nabla_{t}B.

Theorem 2.3(5) shows that for t(0,1),t\in(0,1), we have det(AtB)(detA)1t(detB)t=det(AtB)\det(A\diamond_{t}B)\geq(\det A)^{1-t}(\det B)^{t}=\det(A\natural_{t}B). The following is a direct consequence of Theorem 3.1.

Corollary 3.5.

If ABA\preceq B and t(1,)t\in(1,\infty), or ABA\succeq B and t(,0)t\in(-\infty,0), then

det(AtB)(detA)1t(detB)t.\det(A\diamond_{t}B)\leq(\det A)^{1-t}(\det B)^{t}.

Next, we study the monotonicity of near order on the curves defined by \diamond and \natural.

Theorem 3.6.

The following are equivalent for A,BnA,B\in\mathbb{P}_{n} and t,st,s\in\mathbb{R}:

  1. (1)

    ABA\preceq B;

  2. (2)

    AtBAsBA\diamond_{t}B\preceq A\diamond_{s}B for certain 0t<s10\leq t<s\leq 1;

  3. (3)

    AtBAsBA\natural_{t}B\preceq A\natural_{s}B for certain t<st<s.

Moreover, when ABA\preceq B, the parametric curves {AtBt0}\{A\diamond_{t}B\mid t\geq 0\} and {AtBt}\{A\natural_{t}B\mid t\in\mathbb{R}\} are monotonically increasing with respect to the near order, that is,

0t<s\displaystyle 0\leq t<s \displaystyle\Longrightarrow AtBAsB,\displaystyle A\diamond_{t}B\preceq A\diamond_{s}B,
t<s\displaystyle t<s \displaystyle\Longrightarrow AtBAsB.\displaystyle A\natural_{t}B\preceq A\natural_{s}B.
Proof.

Obviously (1) implies (2) and (3).

Suppose that (2) holds, namely, there are t,s[0,1]t,s\in[0,1] with t<st<s such that AtBAsBA\diamond_{t}B\preceq A\diamond_{s}B. By (1.5),

[It(A1B)]A[It(A1B)][Is(A1B)]A[Is(A1B)].[I\nabla_{t}(A^{-1}\sharp B)]A[I\nabla_{t}(A^{-1}\sharp B)]\preceq[I\nabla_{s}(A^{-1}\sharp B)]A[I\nabla_{s}(A^{-1}\sharp B)].

Note that It(A1B)I\nabla_{t}(A^{-1}\sharp B) and Is(A1B)I\nabla_{s}(A^{-1}\sharp B) are in n\mathbb{P}_{n} and they commute. By Corollary 2.6,

It(A1B)Is(A1B).I\nabla_{t}(A^{-1}\sharp B)\leq I\nabla_{s}(A^{-1}\sharp B).

So IA1BI\leq A^{-1}\sharp B, and thus AB.A\preceq B. We get (1).

A similar argument shows that (3) implies (1).

Now suppose that AB.A\preceq B. Then A1BIA^{-1}\sharp B\geq I. For any 0t<s0\leq t<s, we have

0<IIt(A1B)Is(A1B),0<I\leq I\nabla_{t}(A^{-1}\sharp B)\leq I\nabla_{s}(A^{-1}\sharp B),

so that by (2.9) and Corollary 2.6,

AtB=[It(A1B)]A[It(A1B)][Is(A1B)]A[Is(A1B)]=AsB.A\diamond_{t}B=[I\nabla_{t}(A^{-1}\sharp B)]A[I\nabla_{t}(A^{-1}\sharp B)]\preceq[I\nabla_{s}(A^{-1}\sharp B)]A[I\nabla_{s}(A^{-1}\sharp B)]=A\diamond_{s}B.

Similary, for any t<st<s, we have 0(A1B)t(A1B)s0\leq(A^{-1}\sharp B)^{t}\leq(A^{-1}\sharp B)^{s}, so that by (2.10) and Corollary 2.6,

AtB=(A1B)tA(A1B)t(A1B)sA(A1B)s=AsB.A\natural_{t}B=(A^{-1}\sharp B)^{t}A(A^{-1}\sharp B)^{t}\preceq(A^{-1}\sharp B)^{s}A(A^{-1}\sharp B)^{s}=A\natural_{s}B.\qed

Likewise, Theorem 3.6 has a counterpart theorem for ABA\succeq B and the proof can be obtained by using AtB=B1tAA\diamond_{t}B=B\diamond_{1-t}A and AtB=B1tA.A\natural_{t}B=B\natural_{1-t}A. Indeed, more precise comparisons can be done by Theorem 2.5 together with (2.9) and (2.10) as follows.

Theorem 3.7.

Suppose that A,BnA,B\in\mathbb{P}_{n} are distinct. Let μ1μn\mu_{1}\geq\cdots\geq\mu_{n} be the eigenvalues of A1BA^{-1}\sharp B.

  1. (1)

    For real numbers t<st<s,

    μn2s2t(AtB)AsBμ12s2t(AtB).\mu_{n}^{2s-2t}(A\natural_{t}B)\preceq A\natural_{s}B\preceq\mu_{1}^{2s-2t}(A\natural_{t}B). (3.5)
  2. (2)

    For real numbers t<st<s, if one of the following cases occurs:

    1. (a)

      t,s[0,1]t,s\in[0,1], or

    2. (b)

      ABA\preceq B or ABA\succeq B, μ11\mu_{1}\neq 1, and t,s(11μ1,)t,s\in(\frac{1}{1-\mu_{1}},\infty), or

    3. (c)

      ABA\preceq B or ABA\succeq B, μn1\mu_{n}\neq 1, and t,s(,11μn)t,s\in(-\infty,\frac{1}{1-\mu_{n}}),

    then

    (1s+sμn1t+tμn)2(AtB)AsB(1s+sμ11t+tμ1)2(AtB).\left(\frac{1-s+s\mu_{n}}{1-t+t\mu_{n}}\right)^{2}(A\diamond_{t}B)\preceq A\diamond_{s}B\preceq\left(\frac{1-s+s\mu_{1}}{1-t+t\mu_{1}}\right)^{2}(A\diamond_{t}B). (3.6)
  3. (3)

    For t,st,s\in\mathbb{R} such that 1s+sμ1>01-s+s\mu_{1}>0 and 1s+sμn>01-s+s\mu_{n}>0, let

    ms,t=min{1s+sμiμiti[n]},Ms,t=max{1s+sμiμiti[n]},m_{s,t}=\min\left\{\frac{1-s+s\mu_{i}}{\mu_{i}^{t}}\mid i\in[n]\right\},\quad M_{s,t}=\max\left\{\frac{1-s+s\mu_{i}}{\mu_{i}^{t}}\mid i\in[n]\right\},

    then

    ms,t2(AtB)AsBMs,t2(AtB).m_{s,t}^{2}(A\natural_{t}B)\preceq A\diamond_{s}B\preceq M_{s,t}^{2}(A\natural_{t}B). (3.7)
Proof.
  1. (1)

    For t<st<s,

    AsB=(A1B)sA(A1B)s=(A1B)st(AtB)(A1B)st.A\natural_{s}B=(A^{-1}\sharp B)^{s}A(A^{-1}\sharp B)^{s}=(A^{-1}\sharp B)^{s-t}(A\natural_{t}B)(A^{-1}\sharp B)^{s-t}.

    Since μnstI(A1B)stμ1stI\mu_{n}^{s-t}I\leq(A^{-1}\sharp B)^{s-t}\leq\mu_{1}^{s-t}I, Corollary 2.6 implies (3.5).

  2. (2)

    Given t<st<s, we define the function

    fs,t(μ)=1s+sμ1t+tμ={1s+sμ,t=0ststt2(μ1+1/t),t0,μ11tf_{s,t}(\mu)=\frac{1-s+s\mu}{1-t+t\mu}=\begin{cases}1-s+s\mu,&t=0\\ \frac{s}{t}-\frac{s-t}{t^{2}(\mu-1+1/t)},&t\neq 0,\ \mu\neq 1-\frac{1}{t}\end{cases} (3.8)

    Denote

    ls,t=min{fs,t(μi)i[n]},Ls,t=max{fs,t(μi)i[n]}.\displaystyle l_{s,t}=\min\left\{f_{s,t}(\mu_{i})\mid i\in[n]\right\},\qquad L_{s,t}=\max\left\{f_{s,t}(\mu_{i})\mid i\in[n]\right\}.

    When ls,t>0l_{s,t}>0, we get

    0<ls,tI[Is(A1B)][It(A1B)]1Ls,tI.0<l_{s,t}I\leq[I\nabla_{s}(A^{-1}\sharp B)][I\nabla_{t}(A^{-1}\sharp B)]^{-1}\leq L_{s,t}I.

    Note that Is(A1B)I\nabla_{s}(A^{-1}\sharp B) and [It(A1B)]1[I\nabla_{t}(A^{-1}\sharp B)]^{-1} are commuting, and (2.9) implies that

    AsB=[Is(A1B)][It(A1B)]1(AtB)[Is(A1B)][It(A1B)]1.\displaystyle A\diamond_{s}B=[I\nabla_{s}(A^{-1}\sharp B)][I\nabla_{t}(A^{-1}\sharp B)]^{-1}(A\diamond_{t}B)[I\nabla_{s}(A^{-1}\sharp B)][I\nabla_{t}(A^{-1}\sharp B)]^{-1}.

    Applying Theorem 2.5, we get

    ls,t2(AtB)AsBLs,t2(AtB).l_{s,t}^{2}(A\diamond_{t}B)\preceq A\diamond_{s}B\preceq L_{s,t}^{2}(A\diamond_{t}B). (3.9)

    Obviously, ABA\preceq B implies that μn1\mu_{n}\geq 1, and ABA\succeq B implies that μ11\mu_{1}\leq 1. Using the expression (3.8), it is straightforward to verify that

    0<ls,t=fs,t(μn)fs,t(μ1)=Ls,t0<l_{s,t}=f_{s,t}(\mu_{n})\leq\cdots\leq f_{s,t}(\mu_{1})=L_{s,t}

    for the three cases given in Theorem 3.7, so that (3.6) holds.

  3. (3)

    For t,st,s\in\mathbb{R}, (A1B)t(A^{-1}\sharp B)^{t} and [Is(A1B)][I\nabla_{s}(A^{-1}\sharp B)] commute. Moreover, when μ>1\mu>1 and s(11μ,)s\in(\frac{1}{1-\mu},\infty), or 0<μ<10<\mu<1 and s(,11μ)s\in(-\infty,\frac{1}{1-\mu}), we have 1s+sμμt>0\frac{1-s+s\mu}{\mu^{t}}>0. Now

    AsB=[Is(A1B)](A1B)t(AtB)[Is(A1B)](A1B)tA\diamond_{s}B=[I\nabla_{s}(A^{-1}\sharp B)](A^{-1}\sharp B)^{-t}(A\natural_{t}B)[I\nabla_{s}(A^{-1}\sharp B)](A^{-1}\sharp B)^{-t}

    in which ms,tI[Is(A1B)](A1B)tMs,tI.m_{s,t}I\leq[I\nabla_{s}(A^{-1}\sharp B)](A^{-1}\sharp B)^{-t}\leq M_{s,t}I. Applying Theorem 2.5, we get (3.7). ∎

Corollary 3.8.

Let A,BnA,B\in\mathbb{P}_{n}. Let μ1μn\mu_{1}\geq\cdots\geq\mu_{n} be the eigenvalues of A1BA^{-1}\sharp B. The following statements hold:

  1. (1)

    For μ(0,μn]\mu\in(0,\mu_{n}], the parametric curves {(μ2A)tBt}\{(\mu^{2}A)\natural_{t}B\mid t\in\mathbb{R}\} and {(μ2A)tBt0}\{(\mu^{2}A)\diamond_{t}B\mid t\geq 0\} are monotonically increasing with respect to the near order.

  2. (2)

    For μ[μ1,)\mu\in[\mu_{1},\infty), the parametric curves {(μ2A)tBt}\{(\mu^{2}A)\natural_{t}B\mid t\in\mathbb{R}\} and {(μ2A)tBt1}\{(\mu^{2}A)\diamond_{t}B\mid t\leq 1\} are monotonically decreasing with respect to the near order.

Proof.

Let t<st<s. (3.5) shows that for μ(0,μn]\mu\in(0,\mu_{n}],

μ2s2t(AtB)μn2s2t(AtB)AsB,\mu^{2s-2t}(A\natural_{t}B)\leq\mu_{n}^{2s-2t}(A\natural_{t}B)\preceq A\natural_{s}B,

so that

(μ2A)tB=μ22t(AtB)μ22s(AsB)=(μ2A)sB.\displaystyle(\mu^{2}A)\natural_{t}B=\mu^{2-2t}(A\natural_{t}B)\preceq\mu^{2-2s}(A\natural_{s}B)=(\mu^{2}A)\natural_{s}B.

Hence {(μ2A)tBt}\{(\mu^{2}A)\natural_{t}B\mid t\in\mathbb{R}\} is monotonically increasing with respect to the near order. By Theorem 3.6, {(μ2A)tBt0}\{(\mu^{2}A)\diamond_{t}B\mid t\geq 0\} is monotonically increasing with respect to the near order. The proof of second statement is analogous. ∎

By Theorem 2.3 (2), when t(0,1)t\in(0,1), (AtB)1=A1tB1(A\diamond_{t}B)^{-1}=A^{-1}\diamond_{t}B^{-1} if and only if A=BA=B. In general, they satisfy the following near order relation.

Theorem 3.9.

Let A,BnA,B\in\mathbb{P}_{n}. Then for t(0,1)t\in(0,1),

(A1tB1)1\displaystyle(A^{-1}\diamond_{t}B^{-1})^{-1} \displaystyle\preceq AtB,\displaystyle A\natural_{t}B, (3.10)
(A1tB1)1\displaystyle(A^{-1}\diamond_{t}B^{-1})^{-1} \displaystyle\preceq AtB,\displaystyle A\diamond_{t}B, (3.11)

and either of the equalities holds if and only if A=BA=B.

Proof.

According to (2.9),

(A1tB1)1\displaystyle(A^{-1}\diamond_{t}B^{-1})^{-1} =\displaystyle= [It(AB1)]1A[It(AB1)]1\displaystyle[I\nabla_{t}(A\sharp B^{-1})]^{-1}A[I\nabla_{t}(A\sharp B^{-1})]^{-1}
=\displaystyle= [It(A1B)1]1A[It(A1B)1]1.\displaystyle[I\nabla_{t}(A^{-1}\sharp B)^{-1}]^{-1}A[I\nabla_{t}(A^{-1}\sharp B)^{-1}]^{-1}.

The following Löwner order relations exist for t(0,1)t\in(0,1):

[It(A1B)1]1(A1B)tIt(A1B).[I\nabla_{t}(A^{-1}\sharp B)^{-1}]^{-1}\leq(A^{-1}\sharp B)^{t}\leq I\nabla_{t}(A^{-1}\sharp B).

By Corollary 2.6, we get (A1tB1)1AtB(A^{-1}\diamond_{t}B^{-1})^{-1}\preceq A\natural_{t}B and (A1tB1)1AtB(A^{-1}\diamond_{t}B^{-1})^{-1}\preceq A\diamond_{t}B. Moreover, either of the equalities holds if and only if A1B=IA^{-1}\sharp B=I, that is, A=BA=B. ∎

Remark 3.10.

Theorem 2.3 (6) shows that for A,BnA,B\in\mathbb{P}_{n} and t[0,1]t\in[0,1],

(A1tB1)1(A1tB1)1.(A^{-1}\diamond_{t}B^{-1})^{-1}\geq(A^{-1}\nabla_{t}B^{-1})^{-1}.

By Theorems 3.1 and 3.9, the Wasserstein mean, the spectral geometric mean, the harmonic mean, and the arithmetic mean have the following relations:

(A1tB1)1(A1tB1)1(A1tB1)1=AtBAtBAtB.(A^{-1}\nabla_{t}B^{-1})^{-1}\leq(A^{-1}\diamond_{t}B^{-1})^{-1}\preceq(A^{-1}\natural_{t}B^{-1})^{-1}=A\natural_{t}B\preceq A\diamond_{t}B\leq A\nabla_{t}B. (3.12)

Equivalently,

(AtB)1(AtB)1(AtB)1=A1tB1A1tB1A1tB1.(A\nabla_{t}B)^{-1}\leq(A\diamond_{t}B)^{-1}\preceq(A\natural_{t}B)^{-1}=A^{-1}\natural_{t}B^{-1}\preceq A^{-1}\diamond_{t}B^{-1}\leq A^{-1}\nabla_{t}B^{-1}. (3.13)

By [9, Theorem 2], we conclude that any two means in the sequence (3.12) or (3.13) have at least the near order relation.

By [9, Proposition 4, Remark 5], or by an analogous result of [16, Theorem 3.6], if A,BnA,B\in\mathbb{P}_{n} and ABA\preceq B, then ApBpA^{p}\preceq B^{p} for p1p\geq 1; if ABA\leq B or logAlogB\log A\leq\log B, then ApBpA^{p}\preceq B^{p} for p0p\geq 0. Note that ABA\preceq B if and only if B1A1B^{-1}\preceq A^{-1}. We summarize the results as follows and skip their proofs.

Theorem 3.11.

Let A,BnA,B\in\mathbb{P}_{n}. Suppose that one of the following holds:

  1. (1)

    ABA\preceq B and p1p\geq 1, or

  2. (2)

    ABA\leq B and p0p\geq 0, or

  3. (3)

    logAlogB\log A\leq\log B and p0p\geq 0.

Then ApBpA^{p}\preceq B^{p} and BpApB^{-p}\preceq A^{-p}. Moreover,

  1. (1)

    the parametric curves {AptBpt0}\{A^{p}\diamond_{t}B^{p}\mid t\geq 0\} and {BptApt0}\{B^{-p}\diamond_{t}A^{-p}\mid t\geq 0\} are geodesics monotonically increasing with respect to the near order;

  2. (2)

    the parametric curve {AptBpt}\{A^{p}\natural_{t}B^{p}\mid t\in\mathbb{R}\} is monotonically increasing with respect to the near order.

Remark 3.12.

The statement “ABA\preceq B and p1p\geq 1 imply that ApBpA^{p}\preceq B^{p}” can be viewed as a special case of [9, Theorem 6], which can be applied to obtain other monotonic curves with respect to \preceq.

Because the Löwner order is stronger than the near order and the near order is stronger than the eigenvalue entrywise order, it is straightforward to have the following corollary.

Corollary 3.13.

Let A,BnA,B\in\mathbb{P}_{n} and p1p\geq 1. If AtBAsBA\diamond_{t}B\preceq A\diamond_{s}B for some 0t<s10\leq t<s\leq 1, or AtBAsBA\natural_{t}B\preceq A\natural_{s}B for some t<st<s, then the matrices on the curves {AptBpt[0,)}\{A^{p}\diamond_{t}B^{p}\mid t\in[0,\infty)\} and {AptBpt}\{A^{p}\natural_{t}B^{p}\mid t\in\mathbb{R}\} have entrywise monotonically increasing eigenvalues. In particular,

  1. (1)

    ApλAptBpλBpA^{p}\leq_{\lambda}A^{p}\diamond_{t}B^{p}\leq_{\lambda}B^{p} for all t(0,1)t\in(0,1),

  2. (2)

    ApλAptBpλBpA^{p}\leq_{\lambda}A^{p}\natural_{t}B^{p}\leq_{\lambda}B^{p} for all t(0,1)t\in(0,1).

Corollary 3.13 can be applied to the following two cases.

Corollary 3.14.

Let A,BnA,B\in\mathbb{P}_{n}. If AIA\geq I and AtBIA\diamond_{t}B\leq I for some t(0,1)t\in(0,1), then

ApsBp(11t+tλn(A1B))2pIA^{p}\diamond_{s}B^{p}\leq\left(\frac{1}{1-t+t\lambda_{n}(A^{-1}\sharp B)}\right)^{2p}I

for all p1p\geq 1 and all s[0,1]s\in[0,1].

Proof.

Since AtBIA\diamond_{t}B\leq I, according to (1.5),

A[It(A1B)]2(1t+tλn(A1B))2I.A\leq[I\nabla_{t}(A^{-1}\sharp B)]^{-2}\leq(1-t+t\lambda_{n}(A^{-1}\sharp B))^{-2}I.

Since AtBIAA\diamond_{t}B\leq I\leq A, by Corollary 3.13, for all p1p\geq 1 and all s[0,1]s\in[0,1],

λ1(ApsBp)λ1(Ap)(11t+tλn(A1B))2p,\lambda_{1}(A^{p}\diamond_{s}B^{p})\leq\lambda_{1}(A^{p})\leq\left(\frac{1}{1-t+t\lambda_{n}(A^{-1}\sharp B)}\right)^{2p},

which means that ApsBp(11t+tλn(A1B))2pIA^{p}\diamond_{s}B^{p}\leq\left(\frac{1}{1-t+t\lambda_{n}(A^{-1}\sharp B)}\right)^{2p}I. ∎

A similar argument on ApsBpA^{p}\natural_{s}B^{p} leads to the following result. We skip its proof here.

Corollary 3.15.

Let A,BnA,B\in\mathbb{P}_{n}. If AIA\geq I and AtBIA\natural_{t}B\leq I for some t(0,1)t\in(0,1), then

ApsBp(1λn(A1B))2ptIA^{p}\natural_{s}B^{p}\leq\left(\frac{1}{\lambda_{n}(A^{-1}\sharp B)}\right)^{2pt}I

for all p1p\geq 1 and all s[0,1]s\in[0,1].

Using AtB=B1tAA\diamond_{t}B=B\diamond_{1-t}A and AtB=B1tAA\natural_{t}B=B\natural_{1-t}A, Theorem 3.11 can be changed to an equivalent theorem for curves monotonically decreasing with respect to the near order.

Theorem 3.16.

Let A,BnA,B\in\mathbb{P}_{n}. Suppose that one of the following holds:

  1. (1)

    ABA\succeq B and p1p\geq 1, or

  2. (2)

    ABA\geq B and p0p\geq 0, or

  3. (3)

    logAlogB\log A\geq\log B and p0p\geq 0.

Then ApBpA^{p}\succeq B^{p} and BpApB^{-p}\succeq A^{-p}. Moreover,

  1. (1)

    the parametric curves {AptBpt1}\{A^{p}\diamond_{t}B^{p}\mid t\leq 1\} and {BptApt1}\{B^{-p}\diamond_{t}A^{-p}\mid t\leq 1\} are geodesics monotonically decreasing with respect to the near order;

  2. (2)

    the parametric curve {AptBpt}\{A^{p}\natural_{t}B^{p}\mid t\in\mathbb{R}\} is monotonically decreasing with respect to the near order.

4. The Löwner orders on two means

We explore the Löwner order properties of Wasserstein mean and spectral geometric mean in this section. These properties further display the interesting similarities between the two means. Some of them can be extended to the curves induced by the two means.

(2.9), (2.10), and Theorem 2.1(9) imply that for A,BnA,B\in\mathbb{P}_{n} and t[0,1]t\in[0,1]:

A1(AtB)=B(B1tA1)\displaystyle A^{-1}\sharp(A\diamond_{t}B)=B\sharp(B^{-1}\diamond_{t}A^{-1}) =\displaystyle= It(A1B),\displaystyle I\nabla_{t}(A^{-1}\sharp B), (4.1)
A1(AtB)=B(B1tA1)\displaystyle A^{-1}\sharp(A\natural_{t}B)=B\sharp(B^{-1}\natural_{t}A^{-1}) =\displaystyle= (A1B)t.\displaystyle(A^{-1}\sharp B)^{t}. (4.2)

They can be used to derive identities like:

[A(AtB)1]t[B(AtB)1]\displaystyle[A\sharp(A\diamond_{t}B)^{-1}]\nabla_{t}[B\sharp(A\diamond_{t}B)^{-1}] =\displaystyle= I,\displaystyle I, (4.3)
[A(AtB)1]1t[B(AtB)1]t\displaystyle\ [A\sharp(A\natural_{t}B)^{-1}]^{1-t}[B\sharp(A\natural_{t}B)^{-1}]^{t} =\displaystyle= I.\displaystyle I. (4.4)

(4.1) and (4.2) also imply the following Löwner order relations.

Theorem 4.1.

For A,BnA,B\in\mathbb{P}_{n} and t[0,1]t\in[0,1],

A1(AtB)\displaystyle A^{-1}\sharp(A\natural_{t}B) \displaystyle\leq A1(AtB),\displaystyle A^{-1}\sharp(A\diamond_{t}B), (4.5)
B1(AtB)\displaystyle B^{-1}\sharp(A\natural_{t}B) \displaystyle\leq B1(AtB),\displaystyle B^{-1}\sharp(A\diamond_{t}B), (4.6)

(4.5) and (4.6) can be rephrased as follows:

|(AtB)1/2A1/2||(AtB)1/2A1/2|,|(AtB)1/2B1/2||(AtB)1/2B1/2|.|(A\natural_{t}B)^{1/2}A^{1/2}|\leq|(A\diamond_{t}B)^{1/2}A^{1/2}|,\qquad|(A\natural_{t}B)^{1/2}B^{1/2}|\leq|(A\diamond_{t}B)^{1/2}B^{1/2}|.

The above inequlities lead to the following results.

Theorem 4.2.

Let A,B,CnA,B,C\in\mathbb{P}_{n}.

  1. (1)

    If AtBAtCA\diamond_{t}B\leq A\diamond_{t}C or AtBAtCA\natural_{t}B\leq A\natural_{t}C for one t(0,1]t\in(0,1], then A1sBA1sCA^{-1}\sharp_{s}B\leq A^{-1}\sharp_{s}C for all s[0,1/2]s\in[0,1/2].

  2. (2)

    If AtB=AtCA\diamond_{t}B=A\diamond_{t}C or AtB=AtCA\natural_{t}B=A\natural_{t}C for one t(0,1]t\in(0,1], then B=CB=C.

Proof.

We prove the statements related to \diamond, and the proofs for statements related to \natural are analogous.

  1. (1)

    By (4.1) and the assumption AtBAtCA\diamond_{t}B\leq A\diamond_{t}C,

    A1/2[It(A1B)]A1/2\displaystyle A^{1/2}[I\nabla_{t}(A^{-1}\sharp B)]A^{1/2} =\displaystyle= (A1/2(AtB)A1/2)1/2\displaystyle(A^{1/2}(A\diamond_{t}B)A^{1/2})^{1/2}
    \displaystyle\leq (A1/2(AtC)A1/2)1/2\displaystyle(A^{1/2}(A\diamond_{t}C)A^{1/2})^{1/2}
    =\displaystyle= A1/2[It(A1C)]A1/2,\displaystyle A^{1/2}[I\nabla_{t}(A^{-1}\sharp C)]A^{1/2},

    which gives A1BA1CA^{-1}\sharp B\leq A^{-1}\sharp C. In other words,

    (A1/2BA1/2)1/2(A1/2CA1/2)1/2.(A^{1/2}BA^{1/2})^{1/2}\leq(A^{1/2}CA^{1/2})^{1/2}.

    Therefore, for any s[0,1/2],s\in[0,1/2], we have 2s[0,1]2s\in[0,1] so that by Löwner–Heinz inequality (see [25])

    (A1/2BA1/2)s(A1/2CA1/2)s.(A^{1/2}BA^{1/2})^{s}\leq(A^{1/2}CA^{1/2})^{s}.

    In other words, A1sBA1sCA^{-1}\sharp_{s}B\leq A^{-1}\sharp_{s}C.

  2. (2)

    Similar to the above analysis, AtB=AtCA\diamond_{t}B=A\diamond_{t}C leads to A1B=A1CA^{-1}\sharp B=A^{-1}\sharp C, which gives B=CB=C. ∎

Theorem 4.2 implies the following result, in which A1tA=(A1/2tA1/2)2A^{-1}\diamond_{t}A=(A^{-1/2}\nabla_{t}A^{1/2})^{2} for AnA\in\mathbb{P}_{n}.

Theorem 4.3.

Let A,BnA,B\in\mathbb{P}_{n}. Then ABA\leq B if one of the following holds for any t(0,1)t\in(0,1):

  1. (1)

    A1tAA1tBA^{-1}\diamond_{t}A\leq A^{-1}\diamond_{t}B,

  2. (2)

    B1tBA1tBB^{-1}\diamond_{t}B\leq A^{-1}\diamond_{t}B,

  3. (3)

    B1tAA1tAB^{-1}\diamond_{t}A\leq A^{-1}\diamond_{t}A,

  4. (4)

    B1tAB1tBB^{-1}\diamond_{t}A\leq B^{-1}\diamond_{t}B.

Proof.

We prove the first statement and the others can be done similarly.

If A1tAA1tBA^{-1}\diamond_{t}A\leq A^{-1}\diamond_{t}B for any t(0,1)t\in(0,1), then by Theorem 4.2, A=AAAB,A=A\sharp A\leq A\sharp B, so that I|B1/2A1/2|I\leq|B^{1/2}A^{-1/2}| and thus ABA\leq B. ∎

The analogous results for the spectral geometric mean are given as follows and we omit the proofs here. Note that A1tA=A2t1A^{-1}\natural_{t}A=A^{2t-1} for AnA\in\mathbb{P}_{n}.

Theorem 4.4.

Let A,BnA,B\in\mathbb{P}_{n}. Then ABA\leq B if one of the following holds for t(0,1)t\in(0,1):

  1. (1)

    A1tAA1tBA^{-1}\natural_{t}A\leq A^{-1}\natural_{t}B,

  2. (2)

    B1tBA1tBB^{-1}\natural_{t}B\leq A^{-1}\natural_{t}B,

  3. (3)

    B1tAA1tAB^{-1}\natural_{t}A\leq A^{-1}\natural_{t}A,

  4. (4)

    B1tAB1tBB^{-1}\natural_{t}A\leq B^{-1}\natural_{t}B.

The identity matrix II commutes with any matrix XnX\in\mathbb{P}_{n}, so that for t(0,1)t\in(0,1):

ItXItX=(ItX1/2)2Xt=ItXI\nabla_{t}X\geq I\diamond_{t}X=(I\nabla_{t}X^{1/2})^{2}\geq X^{t}=I\natural_{t}X (4.7)

and either equality holds if and only if X=I.X=I.

The following result is only for the Wasserstein mean.

Theorem 4.5.

If A,Bn¯A,B\in\overline{\mathbb{P}_{n}}, then for t(0,1)t\in(0,1),

|(AtB)1/2A1/2|At|B1/2A1/2|.|(A\diamond_{t}B)^{1/2}A^{1/2}|\geq A\diamond_{t}|B^{1/2}A^{1/2}|.
Proof.

By (2.8), we have

|(AtB)1/2A1/2|=(1t)A+t|B1/2A1/2|=At|B1/2A1/2|At|B1/2A1/2|.|(A\diamond_{t}B)^{1/2}A^{1/2}|=(1-t)A+t|B^{1/2}A^{1/2}|=A\nabla_{t}|B^{1/2}A^{1/2}|\geq A\diamond_{t}|B^{1/2}A^{1/2}|.\qed

References

  • [1] M. Agueh and G. Carlier. Barycenters in the wasserstein space. SIAM Journal on Mathematical Analysis, 43(2):904–924, 2011.
  • [2] E. Ahn, S. Kim, and Y. Lim. An extended Lie-Trotter formula and its applications. Linear Algebra Appl., 427(2-3):190–196, 2007.
  • [3] P. C. Álvarez-Esteban, E. del Barrio, J. Cuesta-Albertos, and C. Matrán. A fixed-point approach to barycenters in wasserstein space. Journal of Mathematical Analysis and Applications, 441(2):744–762, 2016.
  • [4] T. Ando and F. Hiai. Log majorization and complementary Golden-Thompson type inequalities. Linear Algebra Appl., 197/198:113–131, 1994. Second Conference of the International Linear Algebra Society (ILAS) (Lisbon, 1992).
  • [5] T. Ando, C.-K. Li, and R. Mathias. Geometric means. Linear Algebra Appl., 385:305–334, 2004.
  • [6] H. Araki. On an inequality of Lieb and Thirring. Lett. Math. Phys., 19(2):167–170, 1990.
  • [7] R. Bhatia. Positive definite matrices. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2007.
  • [8] R. Bhatia, T. Jain, and Y. Lim. Inequalities for the wasserstein mean of positive definite matrices. Linear Algebra and its Applications, 576:108–123, 2019. Proceedings of the ILAS 2017 Conference in Ames, Iowa.
  • [9] R. Dumitru and J. A. Franco. Near order and metric-like functions on the cone of positive definite matrices. Positivity, 28(1):2, 2023.
  • [10] M. Fiedler and V. Pták. A new positive definite geometric mean of two positive definite matrices. Linear Algebra Appl., 251:1–20, 1997.
  • [11] L. Gan and S. Kim. Weak log-majorization between the geometric and wasserstein means. Journal of Mathematical Analysis and Applications, 530(2):127711, 2024.
  • [12] L. Gan, X. Liu, and T.-Y. Tam. On two geometric means and sum of adjoint orbits. Linear Algebra Appl., 631:156–173, 2021.
  • [13] L. Gan and T.-Y. Tam. Inequalities and limits of weighted spectral geometric mean. Linear Multilinear Algebra, 72(2):261–282, 2024.
  • [14] J. Hwang and S. Kim. Bounds for the Wasserstein mean with applications to the Lie-Trotter mean. J. Math. Anal. Appl., 475(2):1744–1753, 2019.
  • [15] J. Hwang and S. Kim. Tensor product and hadamard product for the wasserstein means. Linear Algebra and its Applications, 603:496–507, 2020.
  • [16] J. Hwang and S. Kim. Two-variable Wasserstein means of positive definite operators. Mediterr. J. Math., 19(3):Paper No. 110, 16, 2022.
  • [17] H. Kim and Y. Lim. An extended matrix exponential formula. J. Math. Inequal., 1(3):443–447, 2007.
  • [18] S. Kim. Operator inequalities and gyrolines of the weighted geometric means. Math. Inequal. Appl., 24(2):491–514, 2021.
  • [19] S. Kim and H. Lee. Inequalities of the Wasserstein mean with other matrix means. Ann. Funct. Anal., 11(1):194–207, 2020.
  • [20] F. Kubo and T. Ando. Means of positive linear operators. Math. Ann., 246(3):205–224, 1979/80.
  • [21] J. Lawson and Y. Lim. Monotonic properties of the least squares mean. Mathematische Annalen, 351(2):267–279, 2011.
  • [22] H. Lee and Y. Lim. Metric and spectral geometric means on symmetric cones. Kyungpook Math. J., 47(1):133–150, 2007.
  • [23] Y. Lim. Factorizations and geometric means of positive definite matrices. Linear Algebra Appl., 437(9):2159–2172, 2012.
  • [24] W. Pusz and S. L. Woronowicz. Functional calculus for sesquilinear forms and the purification map. Rep. Mathematical Phys., 8(2):159–170, 1975.
  • [25] X. Zhan. Matrix inequalities, volume 1790 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.
  • [26] J. Zheng, H. Huang, Y. Yi, Y. Li, and S.-C. Lin. Barycenter estimation of positive semi-definite matrices with bures-wasserstein distance. arXiv 2302.14618, 2023.