This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimization Tools for Computing Colorings of [1,,n][1,\dots,n] with
Few Monochromatic Solutions on 33-variable Linear Equations

Jesús A. De Loera University of California, Davis Denae Ventura University of California, Davis Liuyue Wang University of California, Davis William J. Wesley University of California, San Diego
Abstract

A famous result in arithmetic Ramsey theory says that for many linear homogeneous equations \mathcal{E} there is a threshold value Rk()R_{k}(\mathcal{E}) (the Rado number of \mathcal{E}) such that for any kk-coloring of the integers in the interval [1,n][1,n], with nRk()n\geq R_{k}(\mathcal{E}), there exists at least one monochromatic solution. But one can further ask, how many monochromatic solutions is the minimum possible in terms of nn? Several authors have estimated this function before, here we offer new tools from integer and semidefinite optimization that help find either optimal or near optimal 2-colorings minimizing the number of monochromatic solutions of several families of 3-variable non-regular homogeneous linear equations. In the last part of the paper we further extend to three and more colors for the Schur equation, improving earlier work.

1 Introduction

An equation \mathcal{E} is regular if for all positive integers rr, every rr-coloring of \mathbb{N} contains at least one monochromatic solution to \mathcal{E}. Richard Rado [11] proved that a linear homogeneous equation is regular if and only if a nonempty subset of its coefficients sums to zero. But in fact more is known, and a bound to the minimum number of monochromatic solutions can always be found. More precisely, a famous result of Frankl, Graham, and Rödl [6] states that for any regular homogeneous linear equation {\cal E} in kk variables, no matter what rr-coloring is given to the integers from 1 to nn, there will always be at least order nk1n^{k-1} monochromatic solutions of the equation \cal E. The goal of this paper is to investigate the same enumerative problem but for certain classes of homogeneous linear equations that are not necessarily regular.

Let aba\leq b be positive integers and let [a,b][a,b] denote the set of integers a,a+1,,ba,a+1,\cdots,b. If a=1a=1 we may use [b]\left[b\right] or [1,b][1,b] depending on the context. Note that throughout the paper we often abbreviate [n]=[1,,n][n]=[1,...,n]. Let 𝒞k\mathcal{C}_{k} be the set of all kk-colorings of [n][n]. Given a kk-coloring χ\chi of [n][n], the function μχ(,n,k)\mu_{\chi}({\cal E},n,k) denotes the number of monochromatic solutions to the equation \cal E found using the coloring χ\chi. It is important to note that if (x,y,z)(x,y,z) and (y,x,z)(y,x,z) are integer solutions to {\cal E} with xyx\neq y, we consider them to be different and count them as two solutions. Let Rk()R_{k}({\cal E}) denote the Rado number of {\cal E}, which is the minimum integer NN such that any kk-coloring of [N][N] contains at least one monochromatic solution to {\cal E}. Let T(n)T_{\cal E}(n) be the number of all integer solutions to the equation {\cal E} in [n][n]. We denote by M(n,k)M_{\cal E}(n,k) the function given by the minimum number of monochromatic solutions of equation \cal E over all kk-colorings of [n][n]. When k=2k=2, we simply write M(n)M_{\cal E}(n). Namely

M(n,k)=minχ𝒞kμχ(,n,k).M_{\cal E}(n,k)=\min_{\chi\in\mathcal{C}_{k}}\mu_{\chi}({\cal E},n,k).

Now, despite the theorem of Frankl, Graham and Rödl, the situation is more complicated for general equations, namely those that are not regular or not even homogeneous. For instance, there is a 44-coloring of \mathbb{N} that entirely avoids monochromatic solutions to the (nonregular) equation x+y=3zx+y=3z. Thus the key question remains, what to do for non-regular equations? In this regard, Costello and Elvin [4] made recent progress by showing that M(n)=Ω(n2)M_{\mathcal{E}}(n)=\Omega(n^{2}) for equations \mathcal{E} of the form ax+ay=czax+ay=cz, a,ca,c\in\mathbb{N}, and the same authors conjectured that if \mathcal{E} is a 3-variable equation of the form ax+by=czax+by=cz with a,b,ca,b,c\in\mathbb{N}, then M(n)=Ω(n2)M_{{\cal E}}(n)=\Omega(n^{2}).

Our Contributions

The main goal of our paper is to compute μχ(,n,2)\mu_{\chi}({\cal E},n,2) for certain 22-colorings χ\chi of [n][n] and bound the function M(n,2)M_{\cal E}(n,2) when \cal E is a 3-variable, not necessarily regular, homogeneous linear equation. We also contribute some improved bounds for Schur’s equation when using more than two colors. More precisely here are our results:

In Section 2, we use integer programming to provide optimal 2-colorings and M(n,2)M_{\cal E}(n,2) for fixed small values of nn and fixed equation \mathcal{E}. Some colorings had very clear patterns which we were able to extend theoretically for larger values of nn and give upper bounds for M(n,2)M_{\cal E}(n,2). Nevertheless, some of the computer generated colorings were not as predictable, and the optimal colorings are in fact not necessarily unique, thus we sometimes designed the new coloring based on theoretical observations. We prove the following theorems (see Section 2).

We start by giving bounds for the families of equations of the form ax+ay=zax+ay=z and axay=zax-ay=z.

Theorem 1.

Let aa be a positive integer and {\cal E} be the equation ax+ay=zax+ay=z. The following holds

M(n)n22a4+n2a2,M_{\cal E}(n)\leq\left\lfloor\frac{n^{2}}{2a^{4}}+\frac{n}{2a^{2}}\right\rfloor,

but the bound is not tight.

Next we sharpen the results of [4] for the family of equations axay=zax-ay=z.

Theorem 2.

Let aa be a positive integer and {\cal E} be the equation axay=zax-ay=z. The following holds

M(n)n2a3n22a4n2a2,M_{\cal E}(n)\leq\left\lfloor\frac{n^{2}}{a^{3}}-\frac{n^{2}}{2a^{4}}-\frac{n}{2a^{2}}\right\rfloor,

but the bound is not tight.

We studied equations of the form x+y=azx+y=az when a>2a>2 for which we provide different colorings. We show one general coloring and a different coloring when aa is odd, which improves the number of monochromatic solutions for a=3,5a=3,5.

Theorem 3.

Let {\cal E} be the equation x+y=azx+y=az. The following holds

M(n){n24a2+O(n),a=3,5,8(2a1)n2a4(4+a)+O(n),a=4,a6,M_{\cal E}(n)\leq\begin{cases}\dfrac{n^{2}}{4a^{2}}+O(n),&a=3,5,\\ \\ \dfrac{8(2a-1)n^{2}}{a^{4}(4+a)}+O(n),&a=4,a\geq 6,\\ \end{cases}

but this bound is not tight.

We also explore the more general equation ax+by=zax+by=z when gcd(a,b)=1gcd(a,b)=1 and give a general upper bound for M(n)M_{\cal E}(n).

Theorem 4.

Let aa and bb be positive integers with a<ba<b and gcd(a,b)=1gcd(a,b)=1. Let {\cal E} be an equation of the form ax+by=zax+by=z and let nR2()n\geq R_{2}({\cal E}). The following holds

M(n)z=a+bna(a+b)(zab{b1za}{a1zb}+1),M_{\cal E}(n)\leq\sum_{z=a+b}^{\left\lfloor\frac{n}{a(a+b)}\right\rfloor}\left(\frac{z}{ab}-\left\{\frac{b^{-1}z}{a}\right\}-\left\{\frac{a^{-1}z}{b}\right\}+1\right),

where {x}=xx\{x\}=x-\lfloor x\rfloor, b1b^{-1} is any integer such that b1b1(moda)b^{-1}b\equiv 1\pmod{a} and a1a^{-1} is any integer such that a1a1(modb)a^{-1}a\equiv 1\pmod{b}. This bound is not tight.

Section 3 contains an explanation of the ways we find optimal colorings for fixed values of [1,,n][1,\dots,n] using integer programming techniques. Theorems 2, 3, and 4 were inspired by these optimal colorings from small values of nn. We show some of these colorings in Appendix B.

Of course, instead of solving an integer program, we could solve a semidefinite program (SDP), but that often does not give a very good coloring. In Section 4 we use a semidefinite programming method, previously used by Parrilo, Robertson, and Saracino for the equation x+y=2zx+y=2z in [10] and more recently by Roberston in [12]. This allows us to give lower bounds on M(n,2)M_{\cal E}(n,2) in the following situation:

Theorem 5.

Let :axay=z{\cal E}:ax-ay=z and nR2()n\geq R_{2}({\cal E}). For 3a73\leq a\leq 7, the following holds

M(n)(2a1)n22a4.M_{\cal E}(n)\geq\frac{(2a-1)n^{2}}{2a^{4}}.

Combined with Theorem 2, we have that M(n)=2a12a4n2(1+o(1))M_{\cal E}(n)=\frac{2a-1}{2a^{4}}n^{2}(1+o(1)) for :axay=z{\cal E}:ax-ay=z and 3a73\leq a\leq 7. In these special cases our bound coincides with the conjectured optimal bounds for the more general equation axay=bzax-ay=bz from [3] and [17]. Moreover, we obtain a nontrivial, but not tight, bound for M(n)M_{\mathcal{E}}(n) for the non-regular equation x+y=3zx+y=3z.

Theorem 6.

Let :x+y=3z{\cal E}:x+y=3z and nR2()n\geq R_{2}({\cal E}). The following bound holds

M(n)167n228800.M_{\cal E}(n)\geq\frac{167n^{2}}{28800}.

We conclude the paper in Section 5 with improvements to one of the most important equations in the history of the subject, the Schur equation x+y=zx+y=z for more than 2 colors.

We will denote the number Mx+y=z(n,k)M_{x+y=z}(n,k) by MSchur(n,k)M_{\text{Schur}}(n,k). For the case k=2k=2, the exact value is known, and three independent proofs that MSchur(n,2)=n211+O(n)M_{\text{Schur}}(n,2)=\frac{n^{2}}{11}+O(n) were given by Robertson and Zeilberger [13], Schoen [14], and Datskovsky [5]. Note that some authors count solutions differently, i.e., only solutions where xyx\leq y, which leads to the apparent discrepancy of a factor of 2 in the calculation of MSchur(n,k)M_{\text{Schur}}(n,k). In this work we do not require xyx\leq y, and thus the highest order term in MSchur(n,k)M_{\text{Schur}}(n,k) is n211\frac{n^{2}}{11} rather than n222\frac{n^{2}}{22}.

A natural next step is to determine values of MSchur(n,k)M_{\text{Schur}}(n,k) for k>2k>2. This question, along with generalizations of the problem for the equation x+ay=zx+ay=z, was explored by Thanatipanonda [16], who used a greedy algorithm to find kk-colorings giving few monochromatic Schur triples for k=3,4,5k=3,4,5. The colorings gave the following upper bounds for MSchur(n,k)M_{\text{Schur}}(n,k):

MSchur(n,3)\displaystyle M_{\text{Schur}}(n,3) 47n23119+O(n)\displaystyle\leq\frac{47n^{2}}{3119}+O(n)
MSchur(n,4)\displaystyle M_{\text{Schur}}(n,4) 69631222699293042329481527n233538492045698352404702657699+O(n),\displaystyle\leq\frac{69631222699293042329481527n^{2}}{33538492045698352404702657699}+O(n),
MSchur(n,5)\displaystyle M_{\text{Schur}}(n,5) 2n27610.0730+O(n)\displaystyle\leq\frac{2n^{2}}{7610.0730}+O(n)

The algorithm given in [16] becomes slow for k6k\geq 6 and gives rational numbers of large height (that are suppressed in the bound for MSchur(n,5)M_{\text{Schur}}(n,5)). Our final contribution is new bounds for small values of kk.

Theorem 7.

The following improved bounds on MSchur(n,k)M_{\text{Schur}}(n,k) hold:

MSchur(n,3)n267+O(n),MSchur(n,4)n2496+O(n).M_{\emph{Schur}}(n,3)\leq\frac{n^{2}}{67}+O(n),\hskip 20.0ptM_{\emph{Schur}}(n,4)\leq\frac{n^{2}}{496}+O(n).

2 Upper Bounds on M(n)M_{\cal E}(n) for 3-term linear equations

In this section, we show upper bounds of M(n)M_{\cal E}(n) for equations {\cal E} of the forms ax+ay=zax+ay=z, axay=zax-ay=z, x+y=azx+y=az, and ax+by=zax+by=z when gcd(a,b)=1gcd(a,b)=1. We used integer programming to obtain the best colorings for fixed values of nn. This helped us, in some cases, give a general coloring for all nn. In the cases where our experiments did not show any predictable patterns in the colorings, we proceeded to design an appropriate coloring using theoretical observations.

In our arguments we had three main types of colorings. One of them is the block coloring where intervals of at least three integers receive the same color (Figure 3). We also used a coloring where all integers that are multiples of a certain number aa receive the same color and the rest of the integers receive a different color (Figure 1). Finally, we used a coloring that assigns a certain color based on the congruence class(moda)\pmod{a} of each integer. For example, coloring χ1\chi_{1} in Figure 2 assigns red to all integers i0,2,5(mod6)i\equiv 0,2,5\pmod{6} in [n][n] and the rest of the integers are blue. Some of our experiments show a mix of these types of colorings. We will write kk-colorings with colors 0,1,,k10,1,\dots,k-1 and use imi^{m} to denote a string of mm consecutive integers of color ii.

In some parts we will abbreviate by G(n,a)G_{\cal E}(n,a) the value of an upper bound of M(n)M_{\cal E}(n). Similarly, we will use G(n,a,b)G_{\cal E}(n,a,b) to abbreviate the value of an upper bound of M(n)M_{\cal E}(n) when {\cal E} is a three-term linear equation that depends on positive integers aa and bb.

Theorem 1.

Let aa be a positive integer and {\cal E} be the equation ax+ay=zax+ay=z. The following holds

M(n)n22a4+n2a2,M_{\cal E}(n)\leq\left\lfloor\frac{n^{2}}{2a^{4}}+\frac{n}{2a^{2}}\right\rfloor,

but the bound is not tight.

Proof of Theorem 1.

Let :ax+ay=z{\cal E}:ax+ay=z and a2a\geq 2. We prove that μχ(,n,2)=n22a4\mu_{\chi}({\cal E},n,2)=\frac{n^{2}}{2a^{4}} where χ\chi is the 22-coloring of [n][n] that assigns integers i0(moda)i\equiv 0\pmod{a} the color red and everything else the color blue. See Figure 1. We count the monochromatic solutions by looking at each integer zz^{*} in [n][n] that can take the value of zz in ax+ay=zax+ay=z and according to its color we count the pairs of integers (x,y)(x^{*},y^{*}) of the same color that satisfy ax+ay=zax^{*}+ay^{*}=z^{*}.

Note that any such zz^{*} must be a multiple of aa. Therefore, there cannot be any blue solutions as there are no multiples of aa in blue. It suffices to look only at all integer multiples of aa. Given a red zz^{*}, and a pair x=ak1x^{*}=ak_{1} and y=ak2y^{*}=ak_{2} that satisfy ax+ay=zax^{*}+ay^{*}=z^{*}, notice that zz^{*} will be forced to be a multiple of a2a^{2}, namely

ax+ay=a(ak1)+a(ak2)=a2(k1+k2)=z,ax^{*}+ay^{*}=a(ak_{1})+a(ak_{2})=a^{2}(k_{1}+k_{2})=z^{*},

which in turn implies that za\frac{z^{*}}{a} is a multiple of aa,

x+y=za.x^{*}+y^{*}=\frac{z^{*}}{a}.

Therefore it is equivalent to find pairs (x,y)(x^{*},y^{*}) which are multiples of aa that sum to za\frac{z^{*}}{a}, which is also a multiple of aa. Note that zana\frac{z^{*}}{a}\leq\frac{n}{a}, which implies that x,ynax^{*},y^{*}\leq\frac{n}{a}. We can now take each multiple of aa, za\frac{z^{*}}{a}, and count all pairs of multiples of aa that sum to it, which is simply za2\frac{z^{*}}{a^{2}}.

z=a2k,1knaza2=i=1na2in22a4+n2a2.\sum_{z^{*}=a^{2}k,\hskip 2.0pt1\leq k\leq\frac{n}{a}}\frac{z^{*}}{a^{2}}=\sum_{i=1}^{\lfloor\frac{n}{a^{2}}\rfloor}i\leq\left\lfloor\frac{n^{2}}{2a^{4}}+\frac{n}{2a^{2}}\right\rfloor.

Hence, M(n)n22a4+n2a2M_{\cal E}(n)\leq\left\lfloor\frac{n^{2}}{2a^{4}}+\frac{n}{2a^{2}}\right\rfloor.

0aa2a2a3a3aakaknaa\lfloor\frac{n}{a}\rfloor a
Figure 1: Coloring χ\chi used in Theorems 1 and 2 where all multiples of aa are red and the rest is blue.

To prove that this bound is not tight, we conducted experiments using integer programming where we can appreciate a few discrepancies when a=2,3,4a=2,3,4. We used values of nn greater than the corresponding Rado number, which is R2(ax+ay=z)=4a3+aR_{2}(ax+ay=z)=4a^{3}+a, [9]. In Table 1, we list the results for a=4a=4 and leave the rest in Appendix B. Let :ax+ay=z{\cal E}:ax+ay=z and G(n,a)=n22a4n2a2G_{\cal E}(n,a)=\left\lfloor\frac{n^{2}}{2a^{4}}-\frac{n}{2a^{2}}\right\rfloor.

nn 260 300 350 400
M(n)M_{\cal E}(n) 11 11 11 22
G(n,4)G_{\cal E}(n,4) 132132 175175 239239 312312
T(n)T_{\cal E}(n) 10561056 14061406 18921892 25002500
Optimal Coloring 0815601960^{8}1^{56}0^{196} 01016401030^{10}1^{64}010^{3} 1022010^{220} 111084(1000)631021^{11}0^{84}(1000)^{63}10^{2} 114098(1000)7211^{14}0^{98}(1000)^{72}1
Table 1: Results using integer programmingfor equation :4x+4y=z{\cal E}:4x+4y=z.

This concludes the proof. ∎

Theorem 2.

Let aa be a positive integer and {\cal E} be the equation axay=zax-ay=z. The following holds

M(n)n2a3n22a4n2a2,M_{\cal E}(n)\leq\left\lfloor\frac{n^{2}}{a^{3}}-\frac{n^{2}}{2a^{4}}-\frac{n}{2a^{2}}\right\rfloor,

but the bound is not tight.

Proof of Theorem 2.

Let :axay=z{\cal E}:ax-ay=z and a2a\geq 2. We prove that μχ(,n,2)=n2a3n22a4n2a2\mu_{\chi}({\cal E},n,2)=\frac{n^{2}}{a^{3}}-\frac{n^{2}}{2a^{4}}-\frac{n}{2a^{2}} where χ\chi is the 22-coloring of [n][n] that assigns integers i0(moda)i\equiv 0\pmod{a} the color red and everything else the color blue. See Figure 1. We count the monochromatic solutions by looking at each integer zz^{*} in [n][n] that can take the value of zz in axay=zax-ay=z and according to its color we count the pairs of integers (x,y)(x^{*},y^{*}) of the same color that satisfy axay=zax^{*}-ay^{*}=z^{*}. Note that any such zz^{*} must be a multiple of aa. Therefore, there cannot be any blue solutions as there are no multiples of aa in blue. It suffices to look only at all integers multiples of aa.

Given a value of zz^{*}, and a pair x=ak1x^{*}=ak_{1} and y=ak2y^{*}=ak_{2} that satisfy axay=zax^{*}-ay^{*}=z^{*}, notice that zz^{*} will be forced to be a multiple of a2a^{2}, namely

axay=a(ak1)a(ak2)=a2(k1k2)=z,ax^{*}-ay^{*}=a(ak_{1})-a(ak_{2})=a^{2}(k_{1}-k_{2})=z^{*},

which in turn implies that za\frac{z^{*}}{a} is a multiple of aa,

xy=za.x^{*}-y^{*}=\frac{z^{*}}{a}.

We take each value zz^{*} and count all pairs (x,y)(x^{*},y^{*}) which are multiples of aa whose difference is za\frac{z^{*}}{a}. All possible values of za\frac{z^{*}}{a} lie in the set {a,2a,,ana2}\{a,2a,\cdots,a\cdot\frac{n}{a^{2}}\} because zana\frac{z^{*}}{a}\leq\frac{n}{a}.

Note that there are a(na)aa\frac{a(\frac{n}{a})-a}{a} ways to pick two multiples of aa whose difference is aa. There are a(na)2aa\frac{a(\frac{n}{a})-2a}{a} ways to pick two multiples of aa whose difference is 2a2a. Continuing this way, we finish by counting a(na)naa\frac{a(\frac{n}{a})-\frac{n}{a}}{a} ways to pick two multiples of aa whose difference is na\frac{n}{a}. Putting together these values we get

i=1na2(nai)n2a3n22a4n2a2.\sum_{i=1}^{\frac{n}{a^{2}}}\left(\frac{n}{a}-i\right)\leq\left\lfloor\frac{n^{2}}{a^{3}}-\frac{n^{2}}{2a^{4}}-\frac{n}{2a^{2}}\right\rfloor.

Hence, M(n)n2a3n22a4n2a2M_{\cal E}(n)\leq\left\lfloor\frac{n^{2}}{a^{3}}-\frac{n^{2}}{2a^{4}}-\frac{n}{2a^{2}}\right\rfloor holds.

To prove that this bound is not tight, we carried out experiments using integer programming where we noticed discrepancies when a=3,4a=3,4. We used values of nn greater than the corresponding Rado number, which is R2(axay=z)=a2R_{2}(ax-ay=z)=a^{2} (see [9]). See Table 2 for a full comparison. Experiments for the case a=4a=4 can be found in Table 9 in Appendix B. Let G(n,a)=n2a3n22a4n2a2G_{\cal E}(n,a)=\left\lfloor\frac{n^{2}}{a^{3}}-\frac{n^{2}}{2a^{4}}-\frac{n}{2a^{2}}\right\rfloor.

nn 25 50 75 100
M(n)M_{\cal E}(n) 1313 6565 164164 297297
G(n,3)G_{\cal E}(n,3) 1717 7474 169169 303303
T(n)T_{\cal E}(n) 164164 664664 15501550 27392739
Optimal Coloring: for integers ini\leq n, color 0 if i0(mod3)i\equiv 0\pmod{3}, and 11 otherwise.
Table 2: Results for :3x3y=z{\cal E}:3x-3y=z.

The same experiments when :5x5y=z{\cal E}:5x-5y=z show no discrepancies with the corresponding values given by the upper bound in Theorem 2 when n=25,50,75n=25,50,75 and 100100. See Table 3 for full comparison. In Section 4, we determine the exact value for M(n)M_{\cal E}(n) when 3a73\leq a\leq 7 and verify our results.

nn 2525 5050 7575 100100
M(n)M_{\cal E}(n) 44 1717 3939 7070
G(n,5)G_{\cal E}(n,5) 44 1717 3939 7070
T(n)T_{\cal E}(n) 110110 445445 10051005 17901790
Optimal Coloring: for integers ini\leq n, color 0 if i0(mod5)i\equiv 0\pmod{5}, and 11 otherwise.
Table 3: Results for :5x5y=z{\cal E}:5x-5y=z.
0nn112233aa2a2a
Figure 2: Coloring χ0\chi_{0}, where aa is odd, and integers that are 1,3,5,,a2(moda)1,3,5,\dots,a-2\pmod{a} or a(mod2a)a\pmod{2a} are red, and integers that are 2,4,6,a1(moda)2,4,6\dots,a-1\pmod{a} or 0(mod2a)0\pmod{2a} are blue.

To prove Theorem 3 we use Lemma 8. Given a kk-coloring χ\chi of [n][n], we denote by νχ(,n,k)\nu_{\chi}(\mathcal{E},n,k) the number of non-monochromatic solutions to \mathcal{E}. Note that μχ(,n,k)+νχ(,n,k)=T(n)\mu_{\chi}(\mathcal{E},n,k)+\nu_{\chi}(\mathcal{E},n,k)=T_{\mathcal{E}}(n).

Lemma 8.

Let \mathcal{E} be an equation of the form ax+by=czax+by=cz. For any 22-coloring χ\chi of [n][n], the number νχ(,n,2)\nu_{\chi}(\mathcal{E},n,2) of non-monochromatic solutions to \mathcal{E} over [n][n] is precisely νχ(,n,2)=12(𝒟xy+𝒟xz+𝒟yz)\nu_{\chi}(\mathcal{E},n,2)=\frac{1}{2}(\mathcal{D}_{xy}+\mathcal{D}_{xz}+\mathcal{D}_{yz}), where

𝒟vv=|{(i,j):χ(i)χ(j), and there is a solution to  with v=i,v=j}|.\mathcal{D}_{vv^{\prime}}=|\{(i,j):\chi(i)\neq\chi(j),\text{ and there is a solution to }\mathcal{E}\text{ with }v=i,v^{\prime}=j\}|.
Proof.

For any non-monochromatic solution (x,y,z)(x,y,z) to \mathcal{E}, precisely two of the pairs (x,y),(x,z)(x,y),(x,z), and (y,z)(y,z) are non-monochromatic. ∎

Theorem 3.

Let {\cal E} be the equation x+y=azx+y=az. The following holds.

M(n){n24a2+O(n)a=3,5,8(2a1)n2a4(4+a)+O(n)a=4,a6,M_{\cal E}(n)\leq\begin{cases}\dfrac{n^{2}}{4a^{2}}+O(n)&a=3,5,\\ \\ \dfrac{8(2a-1)n^{2}}{a^{4}(4+a)}+O(n)&a=4,a\geq 6,\\ \end{cases}

but this bound is not tight.

Proof of Theorem 3.
0ssttnn
Figure 3: Coloring χ\chi, where the interval [1,s][t,n][1,s]\cup[t,n] is red and (s,t)(s,t) blue, where s=4n(a+1)a2(4+a),t=2na.s=\frac{4n(a+1)}{a^{2}(4+a)},\quad t=\frac{2n}{a}.

Let aa be odd and consider the coloring χ0\chi_{0} that colors integers that are 1,3,5,,a2(moda)1,3,5,\dots,a-2\pmod{a} or a(mod2a)a\pmod{2a} red, and integers that are 2,4,6,a1(moda)2,4,6\dots,a-1\pmod{a} or 0(mod2a)0\pmod{2a} blue. Observe that if (x,y,z)(x,y,z) is a monochromatic solution to \mathcal{E}, then we must have x,y0(moda)x,y\equiv 0\pmod{a}. Then zz is even, so z2,4,2a(mod2a)z\equiv 2,4\dots,2a\pmod{2a}. Since a3a\geq 3, we have 1z=(x+y)/an1\leq z=(x+y)/a\leq n for all x,y0(moda)x,y\equiv 0\pmod{a}. So for a fixed x00(moda)x_{0}\equiv 0\pmod{a}, there is a solution (x0,y,(x0+y)/a)(x_{0},y,(x_{0}+y)/a) for all y[n]y\in[n] with y0(moda)y\equiv 0\pmod{a}, and the values z=(x0+y)/az=(x_{0}+y)/a are equidistributed (up to a constant difference) (mod2a)\pmod{2a}.

Therefore if xa(mod2a)x\equiv a\pmod{2a} is red, there are a12an2a+O(1)\frac{a-1}{2a}\frac{n}{2a}+O(1) values yy that yield a monochromatic solution. Since there are n2a+O(1)\frac{n}{2a}+O(1) such values xx, we have (a1)n28a3+O(n)\frac{(a-1)n^{2}}{8a^{3}}+O(n) red monochromatic solutions. Similarly, if xa(mod2a)x\equiv a\pmod{2a} is blue, there are a+12an2a+O(1)\frac{a+1}{2a}\frac{n}{2a}+O(1) values yy that yield a monochromatic solution and we obtain (a+1)n28a3+O(n)\frac{(a+1)n^{2}}{8a^{3}}+O(n) blue monochromatic solutions. Then there are n24a2+O(n)\frac{n^{2}}{4a^{2}}+O(n) monochromatic solutions in total. Next consider the following coloring χ\chi, where we color the interval [1,s][t,n][1,s]\cup[t,n] red and (s,t)(s,t) blue, where

s=4n(a+1)a2(4+a),t=2na.s=\frac{4n(a+1)}{a^{2}(4+a)},\quad t=\frac{2n}{a}.

To count the number of monochromatic solutions, we will use Lemma 8. Since a3a\geq 3, we have that (x,y)(x,y) is a solution to \mathcal{E} if and only if x+y0(moda)x+y\equiv 0\pmod{a}. For 0ia10\leq i\leq a-1, let rir_{i} and bib_{i} denote the number of red and blue integers in [n][n] congruent to i(moda)i\pmod{a}, respectively, and set ra=r0r_{a}=r_{0} and ba=b0b_{a}=b_{0}. Let RR and BB denote the total number of red and blue integers, respectively. Then we obtain

𝒟xy=2i=0a1ribai2RBaO(n)=2(nt+s)(ts)aO(n)\mathcal{D}_{xy}=2\sum_{i=0}^{a-1}r_{i}b_{a-i}\geq\frac{2RB}{a}-O(n)=\frac{2(n-t+s)(t-s)}{a}-O(n)

since riR/aO(1)r_{i}\geq R/a-O(1) and biB/aO(1)b_{i}\geq B/a-O(1) for all ii. Now to find 𝒟xz=𝒟yz\mathcal{D}_{xz}=\mathcal{D}_{yz}, observe that all such pairs (x,z)(x,z) that appear in a solution to \mathcal{E} lie in the following region:

xxzznnssssnnna\frac{n}{a}t=2nat=\frac{2n}{a}ttA12A_{12}A21A_{21}A32A_{32}

Let I1=[0,s],I2=[s,t],I3=[t,n]I_{1}=[0,s],I_{2}=[s,t],I_{3}=[t,n], and let AijA_{ij} denote the area of Ii×IjI_{i}\times I_{j} that lies in the shaded paralellogram above (note that the scale is not accurate, but we do have astas\geq t). Then the number of non-monochromatic pairs 𝒟xz\mathcal{D}_{xz} is A12+A21+A23+A32O(n)A_{12}+A_{21}+A_{23}+A_{32}-O(n), the linear term accounting for the boundaries of the rectangles. A straightforward calculation gives

A12\displaystyle A_{12} =12s(nas+na+sas),\displaystyle=\frac{1}{2}s\left(\frac{n}{a}-s+\frac{n}{a}+\frac{s}{a}-s\right),
A21\displaystyle A_{21} =12(ssa+sta)(ts),\displaystyle=\frac{1}{2}\left(s-\frac{s}{a}+s-\frac{t}{a}\right)(t-s),
A23\displaystyle A_{23} =0,\displaystyle=0,
A32\displaystyle A_{32} =12(ast)(na+tas+na)+(nas)na.\displaystyle=\frac{1}{2}(as-t)\left(\frac{n}{a}+\frac{t}{a}-s+\frac{n}{a}\right)+(n-as)\frac{n}{a}.

Then we have

μχ(,n,2)=n2a12(𝒟xy+2𝒟xz)8(2a1)n2a4(4+a)+O(n).\mu_{\chi}(\mathcal{E},n,2)=\frac{n^{2}}{a}-\frac{1}{2}(\mathcal{D}_{xy}+2\mathcal{D}_{xz})\leq\frac{8(2a-1)n^{2}}{a^{4}(4+a)}+O(n).

For equation x+y=azx+y=az, we conducted experiments for n=25,50,75,100n=25,50,75,100 when 3a73\leq a\leq 7. Let :x+y=az{\cal E}:x+y=az and let G(n,a)=8(2a1)n2a4(4+a)G_{\cal E}(n,a)=\lfloor\frac{8(2a-1)n^{2}}{a^{4}(4+a)}\rfloor. See Table 4 for a full comparison when a=6a=6 and see Appendix B for results when a=3a=3. Notice there are a few differences that show that Theorem 3 is not tight.

nn 2525 5050 7575 100100
M(n)M_{\cal E}(n) 33 1111 2727 4949
G(n,6)G_{\cal E}(n,6) 44 1616 3838 6767
T(n)T_{\cal E}(n) 104104 416416 937937 16671667
Optimal Coloring 021304120^{2}1^{3}0^{4}1^{2} 0413021400^{4}1^{3}0^{2}1^{4}0 10311202410^{3}1^{12}0^{24} 02140181510^{2}1^{4}0^{18}1^{51} 12061240681^{2}0^{6}1^{24}0^{68}
Table 4: Results for :x+y=6z{\cal E}:x+y=6z.

For equation the x+y=2zx+y=2z, better known as van der Waerden’s equation, we conducted experiments when a=15,20,26,30a=15,20,26,30 and obtained the best colorings using integer programming. These colorings seem to follow a very particular block pattern that is not easily predictable. Note that these optimal colorings for small nn are close to the upper bounds given in [10].

nn 1515 2020 2626 3030
M(n)M_{\cal E}(n) 2525 4444 7474 9898
T(n)T_{\cal E}(n) 113113 200200 338338 450450
Optimal Coloring 01012030101^{2}0^{3} 1301021^{3}010^{2} 120212041^{2}0^{2}1^{2}0^{4} 140212021^{4}0^{2}1^{2}0^{2} 120213051^{2}0^{2}1^{3}0^{5} 160312031^{6}0^{3}1^{2}0^{3} 041203160^{4}1^{2}0^{3}1^{6} 06130210120^{6}1^{3}0^{2}101^{2}
Table 5: Results for :x+y=2z{\cal E}:x+y=2z.

We explore the more general equation ax+by=zax+by=z and give some general upper bounds.

Theorem 4.

Let aa and bb be positive integers with a<ba<b and gcd(a,b)=1gcd(a,b)=1. Let {\cal E} be an equation of the form ax+by=zax+by=z and let nR2()n\geq R_{2}({\cal E}). The following holds

M(n)z=a+bna(a+b)(zab{b1za}{a1zb}+1),M_{\cal E}(n)\leq\sum_{z=a+b}^{\left\lfloor\frac{n}{a(a+b)}\right\rfloor}\left(\frac{z}{ab}-\left\{\frac{b^{-1}z}{a}\right\}-\left\{\frac{a^{-1}z}{b}\right\}+1\right),

where {x}=xx\{x\}=x-\lfloor x\rfloor, b1b^{-1} is any integer such that b1b1(moda)b^{-1}b\equiv 1\pmod{a} and a1a^{-1} is any integer such that a1a1(modb)a^{-1}a\equiv 1\pmod{b}. This bound is not tight.

Proof of Theorem 4.

Let :ax+by=z{\cal E}:ax+by=z where gcd(a,b)=1gcd(a,b)=1 and a,b2a,b\geq 2 are distinct integers. Let χ\chi be a coloring of [n][n] such that χ(i)\chi(i) is red if i[1,na(a+b)][na+1,n]i\in[1,\lfloor\frac{n}{a(a+b)}\rfloor]\cup[\lfloor\frac{n}{a}\rfloor+1,n] and χ(i)\chi(i) is blue otherwise. See Figure 4.

We prove that

μχ(,n,2)=z=a+bna(a+b)(zab{b1za}{a1zb}+1),\mu_{\chi}({\cal E},n,2)=\sum_{z=a+b}^{\lfloor\frac{n}{a(a+b)}\rfloor}\left(\frac{z}{ab}-\left\{\frac{b^{-1}z}{a}\right\}-\left\{\frac{a^{-1}z}{b}\right\}+1\right),

where {x}=xx\{x\}=x-\lfloor x\rfloor, b1b^{-1} is an integer such that b1b1(moda)b^{-1}b\equiv 1\pmod{a} and a1a^{-1} is an integer such that a1a1(modb)a^{-1}a\equiv 1\pmod{b}.

Note that any blue choice of xx^{*} or yy^{*} must satisfy

na(a+b)+1x,yna.\left\lfloor\frac{n}{a(a+b)}\right\rfloor+1\leq x^{*},y^{*}\leq\left\lfloor\frac{n}{a}\right\rfloor.

Therefore any blue pair (x,y)(x^{*},y^{*}) must satisfy that

(a+b)(na(a+b)+1)ax+by(a+b)na,\left(a+b\right)\left(\left\lfloor\frac{n}{a(a+b)}\right\rfloor+1\right)\leq ax^{*}+by^{*}\leq\left(a+b\right)\left\lfloor\frac{n}{a}\right\rfloor,

which implies that all corresponding values zz^{*}, such that ax+by=zax^{*}+by^{*}=z^{*}, must be red since all integers greater than na\left\lfloor\frac{n}{a}\right\rfloor are red. Hence,

na<(a+b)(na(a+b)+1)z.\left\lfloor\frac{n}{a}\right\rfloor<\left(a+b\right)\left(\left\lfloor\frac{n}{a(a+b)}\right\rfloor+1\right)\leq z^{*}.

Therefore, there can only be red solutions in this coloring.

Observation 9.

There cannot be any red solutions where xx^{*} or yy^{*} belong to [na+1,n][\lfloor\frac{n}{a}\rfloor+1,n] because any red value of xx^{*} and yy^{*} is at most na\lfloor\frac{n}{a}\rfloor.

Hence, if (x,y,z)(x^{*},y^{*},z^{*}) is a red triple such that z[na+1,n]z^{*}\in[\lfloor\frac{n}{a}\rfloor+1,n], then x,yx^{*},y^{*} must belong to [1,na(a+b)][1,\lfloor\frac{n}{a(a+b)}\rfloor]. However, if x,y[1,na(a+b)]x^{*},y^{*}\in[1,\lfloor\frac{n}{a(a+b)}\rfloor] are red, then ax+by=z(a+b)na(a+b)<na+1ax^{*}+by^{*}=z^{*}\leq(a+b)\lfloor\frac{n}{a(a+b)}\rfloor<\lfloor\frac{n}{a}\rfloor+1.

Therefore,

Observation 10.

Red triples (x,y,z)(x^{*},y^{*},z^{*}) such that z[na+1,n]z^{*}\in[\lfloor\frac{n}{a}\rfloor+1,n] cannot exist, and any monochromatic solution (x,y,z)(x^{*},y^{*},z^{*}) must lie in [1,na(a+b)][1,\lfloor\frac{n}{a(a+b)}\rfloor].

It is sufficient to count the number of integer points in the region of 2\mathbb{Z}^{2} surrounded by

0<xna(a+b),0<yna(a+b),0<x\leq\left\lfloor\frac{n}{a(a+b)}\right\rfloor,\hskip 3.0pt0<y\leq\left\lfloor\frac{n}{a(a+b)}\right\rfloor,

and

ax+by=na(a+b).ax+by=\left\lfloor\frac{n}{a(a+b)}\right\rfloor.

We can do this by counting the number of integer points in each segment ax+by=zax+by=z contained in this region. As we noted before, any red value of zz^{*} can be found in [1,na(a+b)][1,\lfloor\frac{n}{a(a+b)}\rfloor], therefore we proceed to count the number of integer points in each segment ax+by=zax+by=z for 0<xna(a+b)0<x\leq\lfloor\frac{n}{a(a+b)}\rfloor, 0<yna(a+b)0<y\leq\lfloor\frac{n}{a(a+b)}\rfloor, and a+bzna(a+b)a+b\leq z\leq\lfloor\frac{n}{a(a+b)}\rfloor. We use a classic result from Ehrhart theory called Popoviciu’s theorem [1] to count these points,

z=a+bna(a+b)Pa,b(z)=z=a+bna(a+b)#{(k,l)2k,l0,ak+bl=z}=z=a+bna(a+b)(zab{b1za}{a1zb}+1),\sum_{z=a+b}^{\lfloor\frac{n}{a(a+b)}\rfloor}P_{a,b}(z)=\sum_{z=a+b}^{\lfloor\frac{n}{a(a+b)}\rfloor}\#\left\{(k,l)\in\mathbb{Z}^{2}\mid k,l\geq 0,ak+bl=z\right\}=\sum_{z=a+b}^{\lfloor\frac{n}{a(a+b)}\rfloor}\left(\frac{z}{ab}-\left\{\frac{b^{-1}z}{a}\right\}-\left\{\frac{a^{-1}z}{b}\right\}+1\right),

which gives us the desired result.

To prove that this bound is not tight in general, we conducted experiments using integer programming for various values of aa, bb and nR2(ax+by=z)n\geq R_{2}(ax+by=z) (see [18]). Let :ax+by=z{\cal E}:ax+by=z and let G(n,a,b)G_{\cal E}(n,a,b) be the upper bound given in Theorem 4. See Table 6 for a full comparison of our results and the values given by the upper bound when a=2a=2 and b=3b=3. See Appendix B for the remaining experiments.

nn 75 100 150 200
M(n)M_{\cal E}(n) 2 4 12 24
G(n,2,3)G_{\cal E}(n,2,3) 44 99 2323 4040
T(n)T_{\cal E}(n) 444 800 1825 3867
Optimal Coloring 0712901200^{7}1^{29}01^{2}0 103410^{34} 091400510^{9}1^{40}0^{51} 0141590210740^{14}1^{59}0^{2}10^{74} 01918001010^{19}1^{80}0^{101}
Table 6: Results for :2x+3y=z{\cal E}:2x+3y=z.

0na(a+b)\frac{n}{a(a+b)}na+1\frac{n}{a}+1nn
Figure 4: Coloring χ\chi used in Theorem 4 where [1,na(a+b)][1,\lfloor\frac{n}{a(a+b)}\rfloor] and [na+1,n][\lfloor\frac{n}{a}\rfloor+1,n] are red blocks and the rest is blue.

3 Max-Cut and Best Colorings via Integer Optimization

In this section we describe two approaches that allow us to compute optimal or quasi-optimal colorings. We deal mostly with the case of 2 colors, but the theory can be naturally extended to more colors. The key idea is to model this problem as a Max-Cut problem in a graph that one reads from the solutions. Recall that for a weighted graph G=(V,E,w)G=(V,E,w), a maximum cut of GG is

MAXCUT(G):=maxSViS,jVSwij.\displaystyle MAXCUT(G):=\max_{S\subseteq V}\sum_{i\in S,j\in V\setminus S}w_{ij}.

A well-known integer programming formulation of the Max-Cut problem is

MAXCUT(G)=ZIP:=max12i<jwij(1xixj),xi{1,1}iV.MAXCUT(G)=Z_{IP}:=\max\frac{1}{2}\sum_{i<j}w_{ij}(1-x_{i}x_{j}),\\ \quad x_{i}\in\{-1,1\}\quad\forall i\in V. (1)

The graphs we use are based on the linear equation of study. For a linear equation \mathcal{E}, let G,nG_{\mathcal{E},n} be the weighted graph with vertex set [n][n] and edge weights wijw_{ij} for iji\neq j. Each weight wijw_{ij} is the number of times {i,j}\{i,j\} appear together in a solution to the equation \mathcal{E}. In general we will denote the adjacency matrix of G,nG_{\mathcal{E},n} by C,nC_{\mathcal{E},n}. For example, the equation x+y=zx+y=z when n=5n=5 is associated to the graph Gx+y=z,5G_{x+y=z,5} which has five vertices. There is an edge from ii to jj when they appear together as either {x,y},{x,z}\{x,y\},\{x,z\}, or {y,z}\{y,z\} in a solution (x,y,z)(x,y,z) to ax+by=czax+by=cz (see Figure 5). Note that the solution (1,1,2)(1,1,2) contributes 22 to the weight w1,2w_{1,2}. Thus Gx+y=z,5G_{x+y=z,5} has the following adjacency matrix.

Cx+y=z,5=(0444240422440224220222220).C_{x+y=z,5}=\begin{pmatrix}0&4&4&4&2\\ 4&0&4&2&2\\ 4&4&0&2&2\\ 4&2&2&0&2\\ 2&2&2&2&0\\ \end{pmatrix}.
Refer to caption
Figure 5: The weighted graph Gx+y=z,5G_{x+y=z,5}.

For a given kk-coloring χ\chi of [n][n], we denote by νχ(,n,k)\nu_{\chi}(\mathcal{E},n,k) the number of non-monochromatic solutions to \mathcal{E}. The key idea is that we can bound the number of non-monochromatic solutions in terms of the max-cut of the graph G,nG_{\mathcal{E},n}. We can clearly extend this further.

Lemma 11.

Let \mathcal{E} be an equation of the form ax+by=czax+by=cz. The number of non-monochromatic solutions to \mathcal{E} in a 22-coloring of [n][n] is at most MAXCUT(G,n)MAXCUT(G_{\mathcal{E},n}).

Proof.

For an arbitrary coloring of [n][n], if ii and jj receive different colors, then xix_{i} and xjx_{j} have opposite signs in (1). If a solution to ax+by=czax+by=cz is non-monochromatic, then exactly two of {x,y}\{x,y\}, {x,z}\{x,z\}, and {y,z}\{y,z\} are non-monochromatic. Therefore if ii and jj have different colors, this contributes exactly wijw_{ij} to the cut, and

νχ(,n,2)=12i<j,χ(i)χ(j)wij12MAXCUT(G,n).\nu_{\chi}(\mathcal{E},n,2)=\frac{1}{2}\sum_{i<j,\chi(i)\neq\chi(j)}w_{ij}\leq\frac{1}{2}MAXCUT(G_{\mathcal{E},n}).

The integer program in (1) can be solved using standard tools from optimization such as branch-and-bound and cutting planes as implemented in GUROBI [8].

In our research, instead of using the quadratic model (1), we use an alternative linear model to compute optimal colorings given the graph G,nG_{\mathcal{E},n}. Concretely, the model we use is as follows:

maximize (i,j)Ewijeij\displaystyle\sum_{(i,j)\in E}w_{ij}e_{ij}
subject toeij\displaystyle\text{subject\ to}\ e_{ij} xi+xj\displaystyle\leq x_{i}+x_{j}\ (i,j)E\displaystyle\forall(i,j)\in E
eij\displaystyle e_{ij} 2(xi+xj)\displaystyle\leq 2-(x_{i}+x_{j})\ (i,j)E\displaystyle\forall(i,j)\in E
xi,xj\displaystyle x_{i},x_{j} {0,1}\displaystyle\in\{0,1\}\ (i,j)E\displaystyle\forall(i,j)\in E
eij\displaystyle e_{ij} {0,1}\displaystyle\in\{0,1\}\ (i,j)E\displaystyle\forall(i,j)\in E

The computation we did using integer programs provided optimal 2-colorings for all equations in Section 2 and several values of nn. These optimal values helped us to predict upper bounds and show that the theorems in Section 2 are not tight in general.

As an alternative, we turn to the following semidefinite relaxation of (1).

ZSDP=max12i<jwij(1Xij),Xii=1iV,X=(Xij),X0.Z_{SDP}=\max\frac{1}{2}\sum_{i<j}w_{ij}(1-X_{ij}),\\ \quad X_{ii}=1\quad\forall i\in V,X=(X_{ij}),X\succeq 0. (2)

This relaxation was studied in [7] and can be used to give a good approximation algorithm for the Max-Cut problem. We have that ZSDPZIPZ_{SDP}\geq Z_{IP}, but in general this inequality is strict. The semidefinite program above can be solved for a fixed nn, but does not immediately yield any asymptotics for the number of monochromatic solutions. In the next section we solve a different semidefinite program model, to reach exact bounds.

4 Optimal Colorings with a Semidefinite Program Trace Bound Method

The authors in [10] used the following lemma to give lower bounds on the number of monochromatic arithmetic progressions in a 2-coloring of [n][n].

Lemma 12.

If AA is an n×nn\times n matrix and x[1,1]nx\in[-1,1]^{n}, then if D=diag(d1,d2,,dn)D=diag(d_{1},d_{2},\dots,d_{n}) is such that A+DA+D is positive semidefinite, then xTAxi=1ndix^{T}Ax\geq-\sum_{i=1}^{n}d_{i}.

This matrix A+DA+D can be found using semidefinite programming. To illustrate the method, we first give an example that is another proof that MSchur(n)n211M_{\text{Schur}}(n)\geq\frac{n^{2}}{11}. Our initial analysis is essentially the same as in [16], but we arrive at the conclusion by counting monochromatic solutions indirectly with the use of Lemma 8.

Example 13.

Let χ\chi be an arbitrary 2-coloring of [n][n], and let \mathcal{E} be the Schur equation x+y=zx+y=z. Observe that μχ(,n,2)=T(n)νχ(,n,2)\mu_{\chi}(\mathcal{E},n,2)=T_{\mathcal{E}}(n)-\nu_{\chi}(\mathcal{E},n,2). For x+y=zx+y=z, we have 𝒮=n2/2O(n)\mathcal{S}=n^{2}/2-O(n). From Lemma 8, write νχ(,n,k)=12(𝒟xy+𝒟xz+𝒟yz)\nu_{\chi}(\mathcal{E},n,k)=\frac{1}{2}(\mathcal{D}_{xy}+\mathcal{D}_{xz}+\mathcal{D}_{yz}), where

𝒟xy=|{(i,j):i=x,j=y for some solution to (x,y,z) and i,j have different colors}|.\mathcal{D}_{xy}=|\{(i,j):i=x,j=y\text{ for some solution to }(x,y,z)\text{ and }i,j\text{ have different colors}\}|.

We have that (x,z)=(i,j)(x,z)=(i,j) is part of a solution to x+y=zx+y=z if and only if i<ji<j. For each red-blue pair, exactly one integer is larger, so we have 𝒟xz=𝒟yz=|R||B|\mathcal{D}_{xz}=\mathcal{D}_{yz}=|R||B|, where RR is the set of red integers and BB is the set of blue integers. We have that (x,y)=(i,j)(x,y)=(i,j) is part of a solution to x+y=zx+y=z if and only if i+jni+j\leq n.

Now subdivide [n][n] into kk intervals, and let ri,bir_{i},b_{i} denote the number of red and blue integers, respectively, in interval ii. Following [16], let Sij=ribj+rjbiS_{ij}=r_{i}b_{j}+r_{j}b_{i} be the number of dichromatic pairs in the square Ii×IjI_{i}\times I_{j}. Then, we have that 𝒟xyi+jk+1Sij\mathcal{D}_{xy}\leq\sum_{i+j\leq k+1}S_{ij} and 𝒟xz=𝒟yz=(i=1kri)(i=1kbi)\mathcal{D}_{xz}=\mathcal{D}_{yz}=(\sum_{i=1}^{k}r_{i})(\sum_{i=1}^{k}b_{i}).

We need to make one additional refinement. For i+j=k+1i+j=k+1, we are overcounting. For ii and jj where we expect ri=rj=n/kr_{i}=r_{j}=n/k and bi=bj=0b_{i}=b_{j}=0, this does not matter, but if ri=bj=n/kr_{i}=b_{j}=n/k, this is a problem. We instead bound the number by half the area of the square Ii×IjI_{i}\times I_{j}, which is n22k2\frac{n^{2}}{2k^{2}} (we can do this since half the pairs (x,y)(x,y) in that square do not form solutions because x+y>n)x+y>n).

Since we know a priori that we should have ri=n/kr_{i}=n/k for i{1,2,3,4,11}i\in\{1,2,3,4,11\} and ri=0r_{i}=0 otherwise, we bound SijS_{ij} by n2/242n^{2}/242 for (i,j)X:=(2,10),(3,9),(4,8),(8,4),(9,3),(10,2)(i,j)\in X:=(2,10),(3,9),(4,8),(8,4),(9,3),(10,2).

Putting it all together gives

νχ(,n,k)12(2(i=1kri)(i=1kbi)+i+jk+1,(i,j)XSij+6n2/242).\mathcal{\nu}_{\chi}(\mathcal{E},n,k)\leq\frac{1}{2}\left(2(\sum_{i=1}^{k}r_{i})(\sum_{i=1}^{k}b_{i})+\sum_{i+j\leq k+1,(i,j)\not\in X}S_{ij}+6n^{2}/242\right).

Now we make the change of variable ri=(1+xi)2n11r_{i}=\frac{(1+x_{i})}{2}\frac{n}{11}, bi=(1xi)2n11b_{i}=\frac{(1-x_{i})}{2}\frac{n}{11}.

This gives νχ(,n,k)17n244+n2121Q\nu_{\chi}(\mathcal{E},n,k)\leq\frac{17n^{2}}{44}+\frac{n^{2}}{121}Q, where QQ is a quadratic form. We can then bound QQ using Lemma 12.

Write Q=xTAxQ=x^{T}Ax. Then we have

μχ(,n,k)n2217n244+(xT(A)x)n2121O(n).\mu_{\chi}(\mathcal{E},n,k)\geq\frac{n^{2}}{2}-\frac{17n^{2}}{44}+(x^{T}(-A)x)\frac{n^{2}}{121}-O(n).

We can check that A+diag(d)-A+diag(d) is positive semidefinite where d=(12,12,14,0,0,14,12,12,14,0,0)d=(\frac{1}{2},\frac{1}{2},\frac{1}{4},0,0,\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{1}{4},0,0). Then

μχ(,n,k)n2217n244114n2121=n211O(n)\mu_{\chi}(\mathcal{E},n,k)\geq\frac{n^{2}}{2}-\frac{17n^{2}}{44}-\frac{11}{4}\frac{n^{2}}{121}=\frac{n^{2}}{11}-O(n)

as desired.

The general method is as follows: partition the interval [n][n] into blocks P1,,PkP_{1},\dots,P_{k}. Note that in Example 13 the blocks were subintervals, but this need not be the case in general. Each block PiP_{i} contains some number of red integers rir_{i} and blue integers bib_{i}. For a sensible partition, the number of non-monochromatic pairs can be bounded by a quadratic form in rir_{i} and bib_{i}. Then under the change of variable

ri=(1+xi)|Pi|2,bi=(1xi)|Pi|2,r_{i}=\frac{(1+x_{i})|P_{i}|}{2},b_{i}=\frac{(1-x_{i})|P_{i}|}{2},

the number of nonmonochromatic solutions is a quadratic form in xix_{i}, where xi[1,1]x_{i}\in[-1,1]. The following lemma allows us to bound this quadratic form (see [10]).

We can apply this method to any equation, though its usefulness varies. There are three possibilities: tight bounds, nontrivial bounds, and trivial bounds. The best case is that we obtain a tight lower bound that matches the upper bound from a given coloring. Example 13 shows that we get a tight lower bound for the Schur equation. We will show that we obtain tight bounds for other equations as well. In [10], the bound for the equation x+y=2zx+y=2z obtained by this method is close, but not equal to, the best known upper bound (which is conjectured to be optimal). They remark that in general there is a gap between the SDP relaxation and the original problem. In this particular instance, they partitioned [n][n] into 128 subintervals to bound their quadratic form. This overcounts the number of non-monochromatic solutions, and more intervals will give better bounds. However, the bounds given by this method may not converge to the optimum. In this case we obtain a nontrivial (and still useful), but not tight bound. Unfortunately, for some equations \mathcal{E}, we get the useless bound M(n)f(n)M_{\mathcal{E}}(n)\geq f(n) for some f(n)0f(n)\leq 0. This appears to occur for equation 4x+4y=z4x+4y=z, for example.

Given an equation, it is not immediately clear which type of bounds this method gives, nor is it clear how many intervals or how fine a partition is necessary to obtain tight bounds. It would be interesting to investigate this phenomenon further in future work and determine which equations give tight or nontrivial bounds.

Remark 14.

Although this technique does not work for the equation 4x+4y=z4x+4y=z, it does work for the equation 4x4y=z4x-4y=z. For the second equation, coloring multiples of 4 red and all other integers blue is optimal. This same coloring is conjectured to be optimal for the first equation as well, but the trace method appears to give trivial bounds. However, if we consider both equations together, that is, if we minimize the total number of monochromatic triples (x,y,z)(x,y,z) that are solutions to either equation, we do obtain a tight bound.

We can now apply this technique to equations of the form axay=zax-ay=z to prove Theorem 5 and obtain tight lower bounds for small values of aa.

Theorem 5.

Let :axay=z{\cal E}:ax-ay=z and nR2()n\geq R_{2}({\cal E}). For 3a73\leq a\leq 7, the following holds

M(n)(2a1)n22a4,M_{\cal E}(n)\geq\frac{(2a-1)n^{2}}{2a^{4}},

where an optimal coloring is given by coloring all multiples of aa red and every other integer blue.

Proof of Theorem 5.

For this lower bound, we carry out similar analysis as we did for the Schur equation x+y=zx+y=z. Here we let \mathcal{E} be the equation a(xy)=za(x-y)=z. We again subdivide [n][n] into kk equally sized intervals I1,,InI_{1},\dots,I_{n}. Let χ\chi be an arbitrary 2-coloring of [n][n]. Let rir^{*}_{i} denote the number of integers in IiI_{i} that are colored red and are not multiples of aa. Let riar^{a}_{i} denote the number of integers in IiI_{i} that are colored red and are multiples of aa. Define bib^{*}_{i} and biab^{a}_{i} similarly for blue integers. Clearly we have

ri+bi\displaystyle r^{*}_{i}+b^{*}_{i} =(11a)nk,\displaystyle=\left(1-\frac{1}{a}\right)\frac{n}{k},
ria+bia\displaystyle r^{a}_{i}+b^{a}_{i} =nak,\displaystyle=\frac{n}{ak},

for all ii.

The next step is to find expressions for 𝒟xy,𝒟xz\mathcal{D}_{xy},\mathcal{D}_{xz}, and 𝒟yz\mathcal{D}_{yz} in terms of ri,ria,bir^{*}_{i},r^{a}_{i},b^{*}_{i}, and biab^{a}_{i}.

For 𝒟xy\mathcal{D}_{xy}, we have already seen that (x,y)(x,y) appears in a solution (x,y,z)(x,y,z) if and only if 1xyn/a1\leq x-y\leq n/a. Therefore all such pairs (x,y)(x,y) solutions to \mathcal{E} lie in the shaded region below.

xxyynnnnna\frac{n}{a}

For each square Ii×IjI_{i}\times I_{j}, we bound the number of nonmonochromatic pairs (x,y)(x,y) in the square by

Sijxy:={0 if Ii×Ij does not intersect the region,(ri+ria)(bj+bja)+(bi+bia)(rj+rja) if Ii×Ij is completely in the interior of the region,ribj+riabja+birj+biarja+1a(11a)n2k2otherwise.S^{xy}_{ij}:=\begin{cases}0&\text{ if }I_{i}\times I_{j}\text{ does not intersect the region},\\ (r^{*}_{i}+r^{a}_{i})(b^{*}_{j}+b^{a}_{j})+(b^{*}_{i}+b^{a}_{i})(r^{*}_{j}+r^{a}_{j})&\text{ if $I_{i}\times I_{j}$ is completely in the interior of the region},\\ r^{*}_{i}b^{*}_{j}+r^{a}_{i}b^{a}_{j}+b^{*}_{i}r^{*}_{j}+b^{a}_{i}r^{a}_{j}+\frac{1}{a}\left(1-\frac{1}{a}\right)\frac{n^{2}}{k^{2}}&\text{otherwise.}\end{cases}

In the last case observe that exactly half the area of the square is contained in the region. Then the total number of pairs (x,y)(x,y) in the square where one of xx and yy is a multiple of aa and the other is not is 2a(11a)n2k2\frac{2}{a}\left(1-\frac{1}{a}\right)\frac{n^{2}}{k^{2}}, and half of these are inside the region. (Note also that if we knew, a priori, that the multiples of aa coloring is optimal, then the remaining terms in the bound are all 0.)

We proceed with similar analyses for 𝒟xz\mathcal{D}_{xz} and 𝒟yz\mathcal{D}_{yz}. Observe that (x,z)(x,z) appears in a solution (x,y,z)(x,y,z) to \mathcal{E} if and only if zz is a multiple of aa and zaxz\leq ax. Then, all such pairs (x,z)(x,z) lie in the shaded region below.

xxzznnnnna\frac{n}{a}

We again bound the number of nonmonochromatic pairs (x,z)(x,z) in the square Ii×IjI_{i}\times I_{j} by

Sijxz:={0 if Ii×Ij does not intersect the region,(ri+ria)bja+(bi+bia)rja if Ii×Ij is completely in the interior of the region,riabja+biarja+Aijxza(11a)n2k2otherwise,S^{xz}_{ij}:=\begin{cases}0&\text{ if }I_{i}\times I_{j}\text{ does not intersect the region},\\ (r^{*}_{i}+r^{a}_{i})b^{a}_{j}+(b^{*}_{i}+b^{a}_{i})r^{a}_{j}&\text{ if $I_{i}\times I_{j}$ is completely in the interior of the region},\\ r^{a}_{i}b^{a}_{j}+b^{a}_{i}r^{a}_{j}+\frac{A^{xz}_{ij}}{a}\left(1-\frac{1}{a}\right)\frac{n^{2}}{k^{2}}&\text{otherwise},\end{cases}

where AijxzA^{xz}_{ij} is the fraction of the area of the square Ii×IjI_{i}\times I_{j} contained in the region.

For 𝒟yz\mathcal{D}_{yz}, observe that (y,z)(y,z) is a solution to \mathcal{E} if and only if zz is a multiple of aa and ay+znaay+z\leq na. So the solutions are in the shaded region below.

yyzznnnnna\frac{n}{a}

The bounds are similar to the xzxz-case: we bound the number of non-monochromatic (y,z)(y,z) in the square Ii×IjI_{i}\times I_{j} by

Sijyz:={0 if Ii×Ij does not intersect the region,(ri+ria)bja+(bi+bia)rja if Ii×Ij is completely in the interior of the region,riabja+biarja+Aijxza(11a)n2k2otherwise,S^{yz}_{ij}:=\begin{cases}0&\text{ if }I_{i}\times I_{j}\text{ does not intersect the region},\\ (r^{*}_{i}+r^{a}_{i})b^{a}_{j}+(b^{*}_{i}+b^{a}_{i})r^{a}_{j}&\text{ if $I_{i}\times I_{j}$ is completely in the interior of the region},\\ r^{a}_{i}b^{a}_{j}+b^{a}_{i}r^{a}_{j}+\frac{A^{xz}_{ij}}{a}\left(1-\frac{1}{a}\right)\frac{n^{2}}{k^{2}}&\text{otherwise,}\end{cases}

where AijyzA^{yz}_{ij} is the fraction of the area of the square Ii×IjI_{i}\times I_{j} contained in the region.

Putting it all together, by Lemma 8 we have

μχ(,n,k)\displaystyle\mu_{\chi}(\mathcal{E},n,k) =T(n)νχ(,n,k)\displaystyle=T_{\mathcal{E}}(n)-\nu_{\chi}(\mathcal{E},n,k)
2a12a2n212(1jkSijxy+Sijxz+Sijyz).\displaystyle\geq\frac{2a-1}{2a^{2}}n^{2}-\frac{1}{2}\left(\sum_{1\leq j\leq k}S^{xy}_{ij}+S^{xz}_{ij}+S^{yz}_{ij}\right).

Next, we make the following variable substitutions:

ri\displaystyle r^{*}_{i} =1+xi2(11a)nk,\displaystyle=\frac{1+x_{i}}{2}\left(1-\frac{1}{a}\right)\frac{n}{k}, ra=(1+yi2)nak,\displaystyle r^{*}_{a}=\left(\frac{1+y_{i}}{2}\right)\frac{n}{ak},
bi\displaystyle b^{*}_{i} =1xi2(11a)nk,\displaystyle=\frac{1-x_{i}}{2}\left(1-\frac{1}{a}\right)\frac{n}{k}, ba=(1yi2)nak.\displaystyle b^{*}_{a}=\left(\frac{1-y_{i}}{2}\right)\frac{n}{ak}.

Observe that 1xi,yi1-1\leq x_{i},y_{i}\leq 1 for all ii. After this substitution we obtain the following:

μχ(,n,k)(2a12a2αa,k)n2+xTAx,\mu_{\chi}(\mathcal{E},n,k)\geq\left(\frac{2a-1}{2a^{2}}-\alpha_{a,k}\right)n^{2}+\textbf{x}^{T}A\textbf{x},

where αa,k\alpha_{a,k} is a constant depending only on aa and kk and x is the vector (x1,,xk,y1,,yk)(x_{1},\dots,x_{k},y_{1},\dots,y_{k}).

To obtain a bound on xTAx\textbf{x}^{T}A\textbf{x}, we used Lemma 12 and found vectors dd such that A+diag(d)A+diag(d) is positive semidefinite using the SDP solver SeDuMi [15]. For 4a74\leq a\leq 7, we used a2a^{2} subintervals. For a=3a=3 this was insufficient and we used k=54k=54 subintervals. We obtained α3,54=2771296,α4,16=93512,α5,25=73500,α6,36=2111728,\alpha_{3,54}=\frac{277}{1296},\alpha_{4,16}=\frac{93}{512},\alpha_{5,25}=\frac{73}{500},\alpha_{6,36}=\frac{211}{1728}, and α7,49=36343\alpha_{7,49}=\frac{36}{343}. The precise values for dd are given in the Appendix A. In each case, the given lower bound matches the upper bound μχ(,n,k)2a12a4\mu_{\chi}(\mathcal{E},n,k)\leq\frac{2a-1}{2a^{4}}. ∎

We now perform similar analysis for the equation x+y=3zx+y=3z.

Theorem 6.

Let :x+y=3z{\cal E}:x+y=3z and nR2()n\geq R_{2}({\cal E}). The following bound holds

M(n)167n228800.M_{\cal E}(n)\geq\frac{167n^{2}}{28800}.
Proof of Theorem 6.

Let \mathcal{E} be the equation x+y=3zx+y=3z, and let χ\chi be a 2-coloring of [n][n]. To count the total number of solutions to \mathcal{E}, observe that for all x,y[n]x,y\in[n], we have x+y3[n]\frac{x+y}{3}\in[n] if and only if x+y0(mod3)x+y\equiv 0\pmod{3}. Now for a given xx, there are n3O(1)\frac{n}{3}-O(1) possible values for y[n]y\in[n] such that x+y0(mod3)x+y\equiv 0\pmod{3}. Then there are n(n3O(1))=n23O(n)n\left(\frac{n}{3}-O(1)\right)=\frac{n^{2}}{3}-O(n) solutions to \mathcal{E}.

Next we count non-monochromatic solutions to \mathcal{E} as in Lemma 8. As above, we see that (x,y)(x,y) appears in a solution (x,y,z)(x,y,z) if and only if x+y0(mod3)x+y\equiv 0\pmod{3}. We have that (x,z)(x,z) appears in a solution (x,y,z)(x,y,z) if and only if x3zx3+n3\frac{x}{3}\leq z\leq\frac{x}{3}+\frac{n}{3}, that is, (x,z)(x,z) lies in the shaded region below.

xxzznnnnn3\frac{n}{3}2n3\frac{2n}{3}

For this equation we partition the interval [n][n] into kk subintervals of length nk\frac{n}{k}. For 1ik1\leq i\leq k and 0j50\leq j\leq 5, let rijr_{i}^{j} and bijb_{i}^{j} denote the number of integers in subinterval ii congruent to j(mod3)j\pmod{3} that are colored red and blue, respectively. The number of non-monochromatic pairs (x,y)(x,y) is

𝒟xy=2i=1k[ri0bj0+ri1bj2+ri2bj1]=2(R0B0+R1B2+R2B1),\mathcal{D}_{xy}=2\sum_{i=1}^{k}[r_{i}^{0}b_{j}^{0}+r_{i}^{1}b_{j}^{2}+r_{i}^{2}b_{j}^{1}]=2(R^{0}B^{0}+R^{1}B^{2}+R^{2}B^{1}),

where Ri=j=1krjiR^{i}=\sum_{j=1}^{k}r_{j}^{i} and Bi=j=1kbjiB^{i}=\sum_{j=1}^{k}b_{j}^{i}. Note that Bi=n3RiB^{i}=\frac{n}{3}-R^{i} and 0Rin30\leq R^{i}\leq\frac{n}{3} for all ii. It is not difficult to show via calculus that

𝒟xy5n218\mathcal{D}_{xy}\leq\frac{5n^{2}}{18} (3)

and a global maximum occurs at (R0,R1,R2)=(n6,0,n3).(R^{0},R^{1},R^{2})=(\frac{n}{6},0,\frac{n}{3}).

We then approximate the number of non-monochromatic pairs (x,z)(x,z) by 𝒟xz1i<jkSijxz\mathcal{D}_{xz}\leq\sum_{1\leq i<j\leq k}S_{ij}^{xz}, where

Sijxz={0 if Ii×Ij does not intersect the region,(l=02ril)(l=02bjl) otherwise.S_{ij}^{xz}=\begin{cases}0&\text{ if }I_{i}\times I_{j}\text{ does not intersect the region},\\ (\sum_{l=0}^{2}r_{i}^{l})(\sum_{l=0}^{2}b_{j}^{l})&\text{ otherwise}.\\ \end{cases}

From the symmetry of xx and yy in \mathcal{E}, we have 𝒟xz=𝒟yz\mathcal{D}_{xz}=\mathcal{D}_{yz} Then, making the substitutions

rij=1+xij2n3k,bij=1xij2n3k,r_{i}^{j}=\frac{1+x_{i}^{j}}{2}\frac{n}{3k},\hskip 10.0ptb_{i}^{j}=\frac{1-x_{i}^{j}}{2}\frac{n}{3k},

setting k=30k=30 and using the bound (3), we obtain

μχ(,n,k)\displaystyle\mu_{\chi}(\mathcal{E},n,k) n2312(𝒟xy+2𝒟xz)\displaystyle\geq\frac{n^{2}}{3}-\frac{1}{2}(\mathcal{D}_{xy}+2\mathcal{D}_{xz})
(135361160)n2+xTAx,\displaystyle\geq\left(\frac{1}{3}-\frac{5}{36}-\frac{11}{60}\right)n^{2}+\textbf{x}^{T}A\textbf{x},

where x is the vector

(x10,,xk0,x11,,xk1,x12,,xk2).(x_{1}^{0},\dots,x_{k}^{0},x_{1}^{1},\dots,x_{k}^{1},x_{1}^{2},\dots,x_{k}^{2}).

We then bound the quadratic form using Lemma 12. We obtained a dd such that A+diag(d)A+diag(d) is positive semidefinite such that i=190di1377259200\sum_{i=1}^{90}d_{i}\leq\frac{1377}{259200}. We give the precise value of this dd in Appendix A.

The lower bound in Theorem 6 is far from the best known upper bound. It is computationally feasible to use more intervals to obtain a tighter bound, and different partition choices may yield better results as well.

5 More than two colors in Schur’s equation

Here we discuss briefly minimizing the number of monochromatic solutions to Schur’s equation, x+y=zx+y=z, for more than two colors. First, we give the colorings used to prove Theorem 7.

Theorem 7.

The following improved bounds on MSchur(n,k)M_{\emph{Schur}}(n,k) hold:

MSchur(n,3)n267+O(n),MSchur(n,4)n2496+O(n).M_{\emph{Schur}}(n,3)\leq\frac{n^{2}}{67}+O(n),\hskip 20.0ptM_{\emph{Schur}}(n,4)\leq\frac{n^{2}}{496}+O(n).
Proof of Theorem 7.

A 3-coloring with n267\frac{n^{2}}{67} monochromatic solutions to x+y=zx+y=z is

010n67114n6702n67228n670n67111n670n670^{\frac{10n}{67}}1^{\frac{14n}{67}}0^{\frac{2n}{67}}2^{\frac{28n}{67}}0^{\frac{n}{67}}1^{\frac{11n}{67}}0^{\frac{n}{67}}
010n67\frac{10n}{67}24n67\frac{24n}{67}26n67\frac{26n}{67}55n67\frac{55n}{67}54n67\frac{54n}{67}66n67\frac{66n}{67}nn

A 4-coloring with n2496\frac{n^{2}}{496} monochromatic solutions to x+y=zx+y=z is

028496138496054962754960249613049602496318249601496129496014962724960149612949601496014960^{\frac{28}{496}}1^{\frac{38}{496}}0^{\frac{5}{496}}2^{\frac{75}{496}}0^{\frac{2}{496}}1^{\frac{30}{496}}0^{\frac{2}{496}}3^{\frac{182}{496}}0^{\frac{1}{496}}1^{\frac{29}{496}}0^{\frac{1}{496}}2^{\frac{72}{496}}0^{\frac{1}{496}}1^{\frac{29}{496}}0^{\frac{1}{496}}0^{\frac{1}{496}}
028n496\frac{28n}{496}495n496\frac{495n}{496}nn 465n496\frac{465n}{496}466n496\frac{466n}{496}392n496\frac{392n}{496}393n496\frac{393n}{496} 362n496\frac{362n}{496}363n496\frac{363n}{496}178n496\frac{178n}{496}180n496\frac{180n}{496} 146n496\frac{146n}{496}148n496\frac{148n}{496}66n496\frac{66n}{496}71n496\frac{71n}{496}

Recall that an optimal coloring χ2\chi_{2} for k=2k=2 colors is the optimal coloring where the first 4n11\frac{4n}{11} integers are the first color, the next 6n11\frac{6n}{11} the second, and the last n11\frac{n}{11} the third. We represent this optimal coloring as χ2:=04n/1116n/1101/11\chi_{2}:=0^{4n/11}1^{6n/11}0^{1/11}. For a given kk-coloring χ=a1e1a2e2ajej\chi=a_{1}^{e_{1}}a_{2}^{e_{2}}\cdots a_{j}^{e_{j}}, (where ai[k]a_{i}\in[k] and ei+e_{i}\in\mathbb{Z}^{+}) define its block pattern to be the word a1a2aja_{1}a_{2}\cdots a_{j}. We say that a block pattern for a kk-coloring is greedy-palindromic if it is of the form PkP_{k}, where P1=0P_{1}=0, Pk=Pk1(k1)Pk1P_{k}=P_{k-1}(k-1)P_{k-1} for k2k\geq 2. Observe that Pk=a1a2k1P_{k}=a_{1}\cdots a_{2^{k}-1} has length 2k12^{k}-1 and that aj=ν2(j)a_{j}=\nu_{2}(j), where ν2(j)\nu_{2}(j) denotes the 2-adic valuation of jj, the highest power of 22 that divides jj.

Greedy palindromic colorings are not new to the study of Schur numbers. they can be used to give the lower bound S(k)3S(k1)1S(k)\geq 3S(k-1)-1 (see [2]). Though this is not tight for k>3k>3. Our method for finding these new colorings was to optimize, for each kk, a certain polynomial pkp_{k} whose variables are the lengths of the intervals in a greedy palindromic coloring. The optimal solutions minimize the total number of monochromatic solutions where, for each monochromatic solution (x,y,z)(x,y,z) in color cc, at least one of x,yx,y, or zz comes from the first block of color cc. The polynomial pkp_{k} is defined as follows.

pk=i=12k1Ci(xisai)2,p_{k}=\sum_{i=1}^{2^{k}-1}C_{i}(x_{i}-s_{a_{i}})^{2},

where

Ci={12if i=2j for some j01otherwise.,sai=j=12ai1xj.C_{i}=\begin{cases}\frac{1}{2}&\text{if }i=2^{j}\text{ for some }j\geq 0\\ 1&\text{otherwise.}\end{cases},\qquad s_{a_{i}}=\sum_{j=1}^{2^{a_{i}}-1}x_{j}.

The optimization problem is then

minimize pk\displaystyle\text{minimize }p_{k} (4)
subject to i=12k1xi=n.\displaystyle\text{subject to }\sum_{i=1}^{2^{k}-1}x_{i}=n.

For k=2k=2, the optimal solution to (4) gives the optimal coloring. For k=3,4k=3,4 we obtain the colorings used in Theorem 7, and pkp_{k} here counts the total number of monochromatic solutions.

When k5k\geq 5, we can of course still optimize pkp_{k}. However, pkp_{k} no longer counts the total number of monochromatic solutions, because there are solutions that do not use integers from the first block in that color.

Given a (2k1)(2^{k}-1)-tuple (e1,,e2k1)(e_{1},\dots,e_{2^{k}-1}) and integer nn, let M=i=12k1eiM=\sum_{i=1}^{2^{k}-1}e_{i}, and let CPk(e1,,e2k1)C_{P_{k}}(e_{1},\dots,e_{2^{k}-1}) denote the coloring a1e1n/Ma2k1e2k1n/Ma_{1}^{e_{1}n/M}\cdots a_{2^{k}-1}^{e_{2^{k}-1}n/M}, where Pk=a1a2k1P_{k}=a_{1}\cdots a_{2^{k}-1} as above. In this notation, we have χ2=CP2(4,6,1)\chi_{2}=C_{P_{2}}(4,6,1). For 3k83\leq k\leq 8, the optimal solutions to are the following:

χ3\displaystyle\chi_{3} =CP3(10,14,2,28,1,11,1),\displaystyle=C_{P_{3}}(10,14,2,28,1,11,1),
χ4\displaystyle\chi_{4} =CP4(28,38,5,75,2,30,2,182,1,29,1,72,1,29,1),\displaystyle=C_{P_{4}}(28,38,5,75,2,30,2,182,1,29,1,72,1,29,1),
χ5\displaystyle\chi_{5} =CP5(82,110,14,216,5,87,5,523,2,84,2,208,2,84,2,1428,1,83,1,207,1,83,1,520,1,83,1,207,1,83,1),\displaystyle=C_{P_{5}}(82,110,14,216,5,87,5,523,2,84,2,208,2,84,2,1428,1,83,1,207,1,83,1,520,1,83,1,207,1,83,1),
χ6\displaystyle\chi_{6} =CP6(244,326,41,639,14,258,14,1546,5,249,5,616,5,249,5,4220,2,246,2,613,2,246,2,1538,2,246,2,\displaystyle=C_{P_{6}}(244,326,41,639,14,258,14,1546,5,249,5,616,5,249,5,4220,2,246,2,613,2,246,2,1538,2,246,2,
613,2,246,2,12202,1,245,1,612,1,245,1,1537,1,245,1,612,1,245,1,4217,1,245,1,612,1,245,1,\displaystyle\hskip 35.0pt613,2,246,2,12202,1,245,1,612,1,245,1,1537,1,245,1,612,1,245,1,4217,1,245,1,612,1,245,1,
1537,1,245,1,612,1,245,1)\displaystyle\hskip 35.0pt1537,1,245,1,612,1,245,1)
χ7\displaystyle\chi_{7} =CP7(730,974,122,1908,41,771,41,4615,14,744,14,1840,14,744,14,12596,5,735,5,1831,5,735,5,\displaystyle=C_{P_{7}}(730,974,122,1908,41,771,41,4615,14,744,14,1840,14,744,14,12596,5,735,5,1831,5,735,5,
4592,5,735,5,1831,5,735,5,36420,2,732,2,1828,2,732,2,4589,2,732,2,1828,2,732,2,12588,2,\displaystyle\hskip 35.0pt4592,5,735,5,1831,5,735,5,36420,2,732,2,1828,2,732,2,4589,2,732,2,1828,2,732,2,12588,2,
732,2,1828,2,732,2,4589,2,732,2,1828,2,732,2,107804,1,731,1,1827,1,731,1,4588,1,731,1,\displaystyle\hskip 35.0pt732,2,1828,2,732,2,4589,2,732,2,1828,2,732,2,107804,1,731,1,1827,1,731,1,4588,1,731,1,
1827,1,731,1,12587,1,731,1,1827,1,731,1,4588,1,731,1,1827,1,731,1,36417,1,731,1,1827,1,\displaystyle\hskip 35.0pt1827,1,731,1,12587,1,731,1,1827,1,731,1,4588,1,731,1,1827,1,731,1,36417,1,731,1,1827,1,
731,1,4588,1,731,1,1827,1,731,1,12587,1,731,1,1827,1,731,1,4588,1,731,1,1827,1,731,1)\displaystyle\hskip 35.0pt731,1,4588,1,731,1,1827,1,731,1,12587,1,731,1,1827,1,731,1,4588,1,731,1,1827,1,731,1)
χ8\displaystyle\chi_{8} =CP8(2188,2918,365,5715,122,2310,122,13822,41,2229,41,5512,41,2229,41,37724,14,2202,14,5485,\displaystyle=C_{P_{8}}(2188,2918,365,5715,122,2310,122,13822,41,2229,41,5512,41,2229,41,37724,14,2202,14,5485,
14,2202,14,13754,14,2202,14,5485,14,2202,14,109074,5,2193,5,5476,5,2193,5,13745,5,2193,\displaystyle\hskip 35.0pt14,2202,14,13754,14,2202,14,5485,14,2202,14,109074,5,2193,5,5476,5,2193,5,13745,5,2193,
5,5476,5,2193,5,37701,5,2193,5,5476,5,2193,5,13745,5,2193,5,5476,5,2193,5,322861,2,2190,\displaystyle\hskip 35.0pt5,5476,5,2193,5,37701,5,2193,5,5476,5,2193,5,13745,5,2193,5,5476,5,2193,5,322861,2,2190,
2,5473,2,2190,2,13742,2,2190,2,5473,2,2190,2,37698,2,2190,2,5473,2,2190,2,13742,2,2190,\displaystyle\hskip 35.0pt2,5473,2,2190,2,13742,2,2190,2,5473,2,2190,2,37698,2,2190,2,5473,2,2190,2,13742,2,2190,
2,5473,2,2190,2,109066,2,2190,2,5473,2,2190,2,13742,2,2190,2,5473,2,2190,2,37698,2,2190,\displaystyle\hskip 35.0pt2,5473,2,2190,2,109066,2,2190,2,5473,2,2190,2,13742,2,2190,2,5473,2,2190,2,37698,2,2190,
2,5473,2,2190,2,13742,2,2190,2,5473,2,2190,2,964038,1,2189,1,5472,1,2189,1,\displaystyle\hskip 35.0pt2,5473,2,2190,2,13742,2,2190,2,5473,2,2190,2,964038,1,2189,1,5472,1,2189,1,
13741,1,2189,1,5472,1,2189,1,37697,1,2189,1,5472,1,2189,1,13741,1,2189,1,5472,1,2189,1,\displaystyle\hskip 35.0pt13741,1,2189,1,5472,1,2189,1,37697,1,2189,1,5472,1,2189,1,13741,1,2189,1,5472,1,2189,1,
109065,1,2189,1,5472,1,2189,1,13741,1,2189,1,5472,1,2189,1,37697,1,2189,1,5472,1,2189,1,\displaystyle\hskip 35.0pt109065,1,2189,1,5472,1,2189,1,13741,1,2189,1,5472,1,2189,1,37697,1,2189,1,5472,1,2189,1,
13741,1,2189,1,5472,1,2189,1,322858,1,2189,1,5472,1,2189,1,13741,1,2189,1,5472,1,2189,1,\displaystyle\hskip 35.0pt13741,1,2189,1,5472,1,2189,1,322858,1,2189,1,5472,1,2189,1,13741,1,2189,1,5472,1,2189,1,
37697,1,2189,1,5472,1,2189,1,13741,1,2189,1,5472,1,2189,1,109065,1,2189,1,5472,1,2189,1,\displaystyle\hskip 35.0pt37697,1,2189,1,5472,1,2189,1,13741,1,2189,1,5472,1,2189,1,109065,1,2189,1,5472,1,2189,1,
13741,1,2189,1,5472,1,2189,1,37697,1,2189,1,5472,1,2189,1,13741,1,2189,1,5472,1,2189,1)\displaystyle\hskip 35.0pt13741,1,2189,1,5472,1,2189,1,37697,1,2189,1,5472,1,2189,1,13741,1,2189,1,5472,1,2189,1)

These colorings appear to follow a predictable pattern, which we conjecture holds for all kk. For a given color c[k]c\in[k], let Sc:=i=12c11eiS_{c}:=\sum_{i=1}^{2^{c-1}-1}e_{i}, that is the sum of the eie_{i} before color cc appears. Let cmax(j)=log2(j)+1=maxi<jaic_{max}(j)=\lfloor{\log_{2}(j)}\rfloor+1=\max_{i<j}a_{i} denote the largest color that has appeared before the jj-th interval.

ej(k):={Si+3ki+1 if j=2i1,Sc+3kcmax(j)+12 if aj=c and j2i1..e_{j}(k):=\begin{cases}S_{i}+3^{k-i}+1&\text{ if }j=2^{i-1},\\ S_{c}+\frac{3^{k-c_{max}(j)}+1}{2}&\text{ if $a_{j}=c$ and $j\neq 2^{i-1}$.}\end{cases}.

For k=5k=5, the coloring χ5\chi_{5} has 4128+22241282n2=11534260096n2\frac{4128+22^{2}}{4128^{2}}n^{2}=\frac{1153}{4260096}n^{2} solutions, which is more than the number from the 5-coloring obtained by Thanatipanonda [16]. It is unclear whether the colorings χk\chi_{k} are optimal for k3k\geq 3. Although for k=3k=3, there is some experimental evidence for optimality. Colorings found by local search methods similar to those done in [3] are similar to χ3\chi_{3}. We leave further analysis of χk\chi_{k} for k3k\geq 3 and determining whether these colorings are optimal as an open question.


Acknowledgements

The research of the first three authors was partially supported by the NSF grant DMS-2348578. The authors thank Adriana Hansberg and Amanda Montejano for suggestions and ideas at the beginning of this project. The second author is grateful for the financial support received from the UC Davis Chancellor’s Postdoctoral Fellowship Program. She is also grateful to Adriana Hansberg and Amanda Montejano for their mentoring during her doctoral and master’s studies.

References

  • [1] M. Beck and S. Robins. Computing the continuous discretely: Integer-point enumeration in polyhedra, volume 2. Springer, 2007.
  • [2] A. Beutelspacher and W. Brestovansky. Generalized Schur numbers. In Combinatorial theory (Schloss Rauischholzhausen, 1982), volume 969 of Lecture Notes in Math., pages 30–38. Springer, Berlin-New York, 1982.
  • [3] S. Butler, K. P. Costello, and R. L. Graham. Finding Patterns Avoiding Many Monochromatic Constellations. Experimental Mathematics, 19(4):399 – 411, 2010.
  • [4] K. P. Costello and G. Elvin. Avoiding monochromatic solutions to 3-term equations. J. Comb., 14(3):281–304, 2023.
  • [5] B. A. Datskovsky. On the number of monochromatic Schur triples. Adv. in Appl. Math., 31(1):193–198, 2003.
  • [6] P. Frankl, R. L. Graham, and V. Rödl. On the distribution of monochromatic configurations. In Irregularities of partitions (Fertőd, 1986), volume 8 of Algorithms Combin. Study Res. Texts, pages 71–87. Springer, Berlin, 1989.
  • [7] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, Nov. 1995.
  • [8] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024.
  • [9] H. Harborth and S. Maasberg. All two-color Rado numbers for a(x+y)=bza(x+y)=bz. volume 197/198, pages 397–407, 1999. 16th British Combinatorial Conference (London, 1997).
  • [10] P. A. Parrilo, A. Robertson, and D. Saracino. On the asymptotic minimum number of monochromatic 3-term arithmetic progressions. J. Combin. Theory Ser. A, 115(1):185–192, 2008.
  • [11] R. Rado. Studien zur Kombinatorik. Math. Z., 36(1):424–470, 1933.
  • [12] A. Robertson. On the minimum number of monochromatic 2-dimensional Schur triples. Integers, 24A:Paper No. A16, 10, 2024.
  • [13] A. Robertson and D. Zeilberger. A 22-coloring of [1,n][1,n] can have (1/22)n2+O(n)(1/22)n^{2}+O(n) monochromatic Schur triples, but not less! Electron. J. Combin., 5:Research Paper 19, 4, 1998.
  • [14] T. Schoen. The number of monochromatic Schur triples. European J. Combin., 20(8):855–866, 1999.
  • [15] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11(1-4):625–653, 1999.
  • [16] T. Thanatipanonda. On the monochromatic Schur triples type problem. Electron. J. Combin., 16(1):Research Paper 14, 12, 2009.
  • [17] T. Thanatipanonda and E. Wong. On the minimum number of monochromatic generalized Schur triples. The Electronic Journal of Combinatorics, pages P2–20, 2017.
  • [18] W. J. Wesley. Algebraic and Boolean Methods for Computation and Certification of Ramsey-type Numbers. PhD thesis, 2023.

Appendix A Data for SDP lower bounds

In this appendix, we explicitly show the values for dd using Lemma 12 for the equation axay=zax-ay=z.

a=3:d=n2209952(62,66,70,74,78,82,86,90,94,98,102,106,110,114,118,122,126,130,132,132,132,132,132,132,132,132,132,132,132,132,132,132,132,132,132,132,130,126,122,118,114,110,106,102,98,94,90,86,82,78,74,70,66,62,61,59,57,53,51,49,45,43,41,37,35,33,29,27,25,21,19,17,14,14,14,12,12,12,10,10,10,8,8,8,6,6,6,4,4,4,3,5,7,7,9,11,11,13,15,15,17,19,19,21,23,23,25,27)a=3:d=\frac{n^{2}}{209952}(62,66,70,74,78,82,86,90,94,98,102,106,110,114,118,122,126,130,132,132,132,\\ 132,132,132,132,132,132,132,132,132,132,132,132,132,132,132,130,126,122,118,114,110,106,102,\\ 98,94,90,86,82,78,74,70,66,62,61,59,57,53,51,49,45,43,41,37,35,33,29,27,25,21,19,17,14,14,14,\\ 12,12,12,10,10,10,8,8,8,6,6,6,4,4,4,3,5,7,7,9,11,11,13,15,15,17,19,19,21,23,23,25,27)

a=4:d=n232768(3,9,15,21,24,24,24,24,24,24,24,24,21,15,9,3,41,39,37,35,30,30,30,30,26,26,26,26,23,25,27,29)a=4:d=\frac{n^{2}}{32768}(3,9,15,21,24,24,24,24,24,24,24,24,21,15,9,3,41,39,37,35,30,30,30,30,\\ 26,26,26,26,23,25,27,29)

a=5:d=n2125000(4,12,20,28,36,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,36,28,20,12,4,121,119,117,115,113,106,106,106,106,106,100,100,100,100,100,94,94,94,94,94,89,91,93,95,97)a=5:d=\frac{n^{2}}{125000}(4,12,20,28,36,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,36,28,20,12,4,\\ 121,119,117,115,113,106,106,106,106,106,100,100,100,100,100,94,94,94,94,94,89,91,93,95,97)

a=6:d=n2373248(5,15,25,35,45,55,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,55,45,35,25,15,5,253,251,249,247,245,243,234,234,234,234,234,234,226,226,226,226,226,226,218,218,218,218,218,218,210,210,210,210,210,210,203,205,207,209,211,213)a=6:d=\frac{n^{2}}{373248}(5,15,25,35,45,55,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,60,\\ 60,60,60,60,60,55,45,35,25,15,5,253,251,249,247,245,243,234,234,234,234,234,234,226,226,226,\\ 226,226,226,218,218,218,218,218,218,210,210,210,210,210,210,203,205,207,209,211,213)

a=7:d=n2941192(6,18,30,42,54,66,78,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,78,66,54,42,30,18,6,449,447,445,443,441,439,437,426,426,426,426,426,426,426,416,416,416,416,416,416,416,406,406,406,406,406,406,406,396,396,396,396,396,396,396,386,386,386,386,386,386,386,377,379,381,383,385,387,389)a=7:d=\frac{n^{2}}{941192}(6,18,30,42,54,66,78,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,\\ 84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84,78,66,54,42,30,18,6,449,447,445,443,441,439,437,\\ 426,426,426,426,426,426,426,416,416,416,416,416,416,416,406,406,406,406,406,406,406,396,396,396,\\ 396,396,396,396,386,386,386,386,386,386,386,377,379,381,383,385,387,389)

The following is the value of dd for x+y=3z:x+y=3z:

d\displaystyle d =n2259200(1.52625029424193,7.13472273267136,9.82265291183994,7.83419180674646,13.2109296915416,\displaystyle=\frac{n^{2}}{259200}(1.52625029424193,7.13472273267136,9.82265291183994,7.83419180674646,13.2109296915416,
20.8751792783345,15.3089585102576,9.25870080147831,8.19058277713545,13.1809852450228,\displaystyle 20.8751792783345,15.3089585102576,9.25870080147831,8.19058277713545,13.1809852450228,
13.1809852450181,16.0328894562698,6.91545792002705,0.599907563422803,9.50693006172301,\displaystyle 13.1809852450181,16.0328894562698,6.91545792002705,0.599907563422803,9.50693006172301,
10.5063647943975,19.1826045564940,15.8643109427448,9.77858541708185,13.6613915855486,\displaystyle 10.5063647943975,19.1826045564940,15.8643109427448,9.77858541708185,13.6613915855486,
19.9455937540945,24.4274671277702,24.4274671277680,24.4274671277802,25.4460632299112,\displaystyle 19.9455937540945,24.4274671277702,24.4274671277680,24.4274671277802,25.4460632299112,
25.4460632299175,25.4460632299234,22.6076114659320,22.6076114659365,22.6076114659281,\displaystyle 25.4460632299175,25.4460632299234,22.6076114659320,22.6076114659365,22.6076114659281,
1.52625029424280,7.13472273266820,9.82265291183396,7.83419180674915,13.2109296915387,\displaystyle 1.52625029424280,7.13472273266820,9.82265291183396,7.83419180674915,13.2109296915387,
20.8751792783391,15.3089585102469,9.25870080147229,8.19058277713694,13.1809852450137,\displaystyle 20.8751792783391,15.3089585102469,9.25870080147229,8.19058277713694,13.1809852450137,
13.1809852450188,16.0328894562674,6.91545792001992,0.599907563423494,9.50693006171557,\displaystyle 13.1809852450188,16.0328894562674,6.91545792001992,0.599907563423494,9.50693006171557,
10.5063647944014,19.1826045564880,15.8643109427641,9.77858541708290,13.6613915855242,\displaystyle 10.5063647944014,19.1826045564880,15.8643109427641,9.77858541708290,13.6613915855242,
19.9455937540848,24.4274671277696,24.4274671277692,24.4274671277664,25.4460632299061,\displaystyle 19.9455937540848,24.4274671277696,24.4274671277692,24.4274671277664,25.4460632299061,
25.4460632299254,25.4460632299143,22.6076114659347,22.6076114659356,22.6076114659403,\displaystyle 25.4460632299254,25.4460632299143,22.6076114659347,22.6076114659356,22.6076114659403,
1.52625029424287,7.13472273266038,9.82265291183561,7.83419180674793,13.2109296915385,\displaystyle 1.52625029424287,7.13472273266038,9.82265291183561,7.83419180674793,13.2109296915385,
20.8751792783367,15.3089585102529,9.25870080147053,8.19058277713283,13.1809852450232,\displaystyle 20.8751792783367,15.3089585102529,9.25870080147053,8.19058277713283,13.1809852450232,
13.1809852450176,16.0328894562679,6.91545792003126,0.599907563422704,9.50693006172368,\displaystyle 13.1809852450176,16.0328894562679,6.91545792003126,0.599907563422704,9.50693006172368,
10.5063647944013,19.1826045564943,15.8643109427621,9.77858541707903,13.6613915855242,\displaystyle 10.5063647944013,19.1826045564943,15.8643109427621,9.77858541707903,13.6613915855242,
19.9455937540863,24.4274671277702,24.4274671277736,24.4274671277731,25.4460632299182,\displaystyle 19.9455937540863,24.4274671277702,24.4274671277736,24.4274671277731,25.4460632299182,
25.4460632299198,25.4460632299157,22.6076114659358,22.6076114659345,22.6076114659353)\displaystyle 25.4460632299198,25.4460632299157,22.6076114659358,22.6076114659345,22.6076114659353)

Appendix B Integer Programming Results

In this appendix, we provide additional results for equations ax+ay=zax+ay=z, axay=zax-ay=z, x+y=azx+y=az, and ax+by=zax+by=z that are not listed in the main content of the paper. To show a 22-coloring of [n][n], we use 0 and 11 to represent each color in the order they appear in the coloring. The upper index represents the number of times the values within the parenthesis are being colored with those colors and their order. For example, 03(10)21200^{3}(10)^{2}1^{2}0 represents a 22-coloring of [10][10] where the integers are colored in the following order: 00010101100001010110.

In the following tables, we show results for a particular equation {\cal E}. We abbreviate by G(n,a)G_{\cal E}(n,a) the value of the upper bound of M(n)M_{\cal E}(n) obtained in this work. Similarly, we will use G(n,a,b)G_{\cal E}(n,a,b) to abbreviate the value of the upper bound of M(n)M_{\cal E}(n), given here, when {\cal E} is a three-term linear equation that depends on positive integers aa and bb.

Experimental Results for 2-colorings for ax+ay=zax+ay=z

nn 3434 5050 7575 100100
M(n)M_{\cal E}(n) 11 22 44 77
G(n,2)G_{\cal E}(n,2) 3131 7171 166166 300300
T(n)T_{\cal E}(n) 7272 156156 342342 625625
Optimal Coloring 13014(10)811^{3}0^{14}(10){8}1 17024(10)911^{7}0^{24}(10)^{9}1 1701028(10)191^{7}010^{28}(10)^{19} 111038(10)2511^{11}0^{38}(10)^{25}1
Table 7: Results for :2x+2y=z{\cal E}:2x+2y=z.
nn 111111 150150 200200 250250
M(n)M_{\cal E}(n) 11 11 22 44
G(n,3)G_{\cal E}(n,3) 6969 130130 235235 371371
T(n)T_{\cal E}(n) 342342 625625 10891089 17221722
Optimal Coloring 16032(100)2411^{6}0^{32}(100)^{24}1 08141010990^{8}1^{41}010^{99} 01115502101310^{11}1^{55}0^{2}10^{131} 01316901680^{13}1^{69}0^{168}
Table 8: Results for :3x+3y=z{\cal E}:3x+3y=z.

Experimental Results of 2-colorings for axay=zax-ay=z

nn 2525 5050 7575 100100
M(n)M_{\cal E}(n) 55 3030 6262 129129
G(n,4)G_{\cal E}(n,4) 77 3232 7474 133133
T(n)T_{\cal E}(n) 129129 522522 11791179 21752175
Optimal Coloring: integers vnv\leq n, get 0 if v0(moda)v\equiv 0\pmod{a}, and 11 otherwise.
Table 9: Results for :4x4y=z{\cal E}:4x-4y=z.

Experimental Results of 2-colorings for x+y=azx+y=az

nn 2525 5050 7575 100100
M(n)M_{\cal E}(n) 1212 5454 132132 231231
G(n,3)G_{\cal E}(n,3) 1717 6969 156156 277277
T(n)T_{\cal E}(n) 208208 834834 18751875 33333333
Optimal Coloring (010)(011)(010)3(010)(011)(010)^{3} (011)30(011)^{3}0 (101)2(100)3(101)^{2}(100)^{3} (101)5(100)610(101)^{5}(100)^{6}10 (011)3(010)4(011)^{3}(010)^{4} (011)9(010)9(011)^{9}(010)^{9} (010)(011)(010)3(010)(011)(010)^{3} (011)5(010)11(011)^{5}(010)^{11} (011)120(011)^{12}0
Table 10: Results for :x+y=3z{\cal E}:x+y=3z.

Experimental Results of 2-colorings for ax+by=zax+by=z

Tables 11, 12, and 13 show results when gcd(a,b)=1gcd(a,b)=1.

2x+5y=z,R2(2x+5y=z)=1032x+5y=z,\hskip 2.0pt\ R_{2}(2x+5y=z)=103
nn 200200 250250 300300 400400
M(n)M_{\cal E}(n) 55 1010 1515 3030
T(n)T_{\cal E}(n) 19401940 30503050 44104410 78807880
Optimal Coloring 013184(01)20^{13}1^{84}(01)^{2} 0990^{99} 016101104(01)20^{16}101^{104}(01)^{2} 03103101140^{3}10^{3}10^{114} 120012811521^{20}0^{128}1^{152} 127017012031^{27}0^{170}1^{203}
Table 11: Results for :2x+5y=z{\cal E}:2x+5y=z.
2x+7y=z,R2(2x+7y=z)=1692x+7y=z,\hskip 2.0pt\ R_{2}(2x+7y=z)=169
nn 200200 250250 300300 400400
M(n)M_{\cal E}(n) 11 33 55 1010
T(n)T_{\cal E}(n) 13721372 21612161 31293129 56005600
Optimal Coloring 11008610131^{10}0^{86}101^{3} 0101960101^{96} 0131112(01)301190^{13}1^{112}(01)^{3}0^{119} 116013112011501^{16}0^{131}1^{2}01^{150} 1210176(10)311971^{21}0^{176}(10)^{3}1^{197}
Table 12: Results for :2x+7y=z{\cal E}:2x+7y=z.
3x+5y=z,R2(3x+5y=z)=1973x+5y=z,\hskip 2.0pt\ R_{2}(3x+5y=z)=197
nn 200200 250250 300300 400400
M(n)M_{\cal E}(n) 11 11 22 55
T(n)T_{\cal E}(n) 12871287 20252025 29302930 52405240
Optimal Coloring 01010175(011)30^{10}101^{75}(011)^{3} 0510210510890^{5}10^{2}10^{5}10^{89} 010101201720130^{10}101^{2}01^{72}01^{3} (01)210214(001)2(01)^{2}10^{2}1^{4}(001)^{2} 01(100)40301(100)^{4}0^{3} 1081011510^{8}10^{115} 01212018501020^{12}1^{2}01^{85}010^{2} 120101202121^{2}0101^{2}0^{2}1^{2} 010210510174010^{2}10^{5}10^{174} 116011910211^{16}0^{119}10^{2}1 0120125701^{2}01^{257}
Table 13: Results for :3x+5y=z{\cal E}:3x+5y=z.

Tables 14 - 17 are results for gcd(a,b)>1gcd(a,b)>1. We currently do not have a general upper bound for equations of this sort. This is a problem left for future studies.

2x+4y=z,R2(2x+4y=z)=762x+4y=z,\hskip 2.0pt\ R_{2}(2x+4y=z)=76
nn 100100 150150 200200 400400
M(n)M_{\cal E}(n) 22 55 1111 5252
T(n)T_{\cal E}(n) 600600 13691369 24502450 90009000
Optimal Coloring 18041(10)5011^{8}0^{41}(10)^{50}1 011160010770^{11}1^{60}010^{77} 0151018101020^{15}101^{81}0^{102} 131010166(10)10011^{31}010^{166}(10)^{100}1
Table 14: Results for :2x+4y=z{\cal E}:2x+4y=z.
2x+6y=z,R2(2x+6y=z)=1342x+6y=z,\hskip 2.0pt\ R_{2}(2x+6y=z)=134
nn 200200 250250 300300 400400
M(n)M_{\cal E}(n) 33 55 99 1818
T(n)T_{\cal E}(n) 16171617 25422542 36753675 65676567
Optimal Coloring 013185(01)30^{13}1^{85}(01)^{3} 031010900^{3}1010^{90} 1150108(10)6311^{15}0^{108}(10)^{63}1 1170130(10)7611^{17}0^{130}(10)^{76}1 1250178103(10)9611^{25}0^{178}10^{3}(10)^{96}1
Table 15: Results for :2x+6y=z{\cal E}:2x+6y=z.
2x+8y=z,R2(2x+8y=z)=2082x+8y=z,\hskip 2.0pt\ R_{2}(2x+8y=z)=208
nn 250250 300300 350350 400400
M(n)M_{\cal E}(n) 22 33 44 66
T(n)T_{\cal E}(n) 18911891 27382738 37413741 49004900
Optimal Coloring 1130118(1000)21^{13}0^{118}(1000)^{2} (10)551(10)^{55}1 0151131(01)20^{15}1^{131}(01)^{2} 05(10)201410^{5}(10)^{2}0^{141} 1170162(10)8511^{17}0^{162}(10)^{85}1 1190180(10)10011^{19}0^{180}(10)^{100}1
Table 16: Results for :2x+8y=z{\cal E}:2x+8y=z.
3x+6y=z,R2(3x+6y=z)=2493x+6y=z,\hskip 2.0pt\ R_{2}(3x+6y=z)=249
nn 250250 300300 350350 400400
M(n)M_{\cal E}(n) 11 11 22 22
T(n)T_{\cal E}(n) 16811681 24502450 33063306 45364536
Optimal Coloring 0917202102101630^{9}1^{72}0^{2}10^{2}10^{163} 110088(100)6711^{10}0^{88}(100)^{67}1 013110102102330^{13}1^{101}0^{2}10^{233} 1140117(100)89101^{14}0^{117}(100)^{89}10
Table 17: Results for :3x+6y=z{\cal E}:3x+6y=z.