This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\newsiamremark

remarkRemark \newsiamremarkhypothesisHypothesis \newsiamthmclaimClaim \headersOptimization of MFPT in Near-Disk and Elliptical Domains S. Iyaniwura, T. Wong, C. B. Macdonald, M. J. Ward

Optimization of the Mean First Passage Time in Near-Disk and Elliptical Domains in 2-D with Small Absorbing Traps

Sarafa Iyaniwura Dept. of Mathematics, Univ. of British Columbia, Vancouver, B.C., Canada.    Tony Wong11footnotemark: 1    Colin B. Macdonald11footnotemark: 1    Michael J. Ward11footnotemark: 1 corresponding author, [email protected]
Abstract

The determination of the mean first passage time (MFPT) for a Brownian particle in a bounded 2-D domain containing small absorbing traps is a fundamental problem with biophysical applications. The average MFPT is the expected capture time assuming a uniform distribution of starting points for the random walk. We develop a hybrid asymptotic-numerical approach to predict optimal configurations of mm small stationary circular absorbing traps that minimize the average MFPT in near-disk and elliptical domains. For a general class of near-disk domains, we illustrate through several specific examples how simple, but yet highly accurate, numerical methods can be used to implement the asymptotic theory. From the derivation of a new explicit formula for the Neumann Green’s function and its regular part for the ellipse, a numerical approach based on our asymptotic theory is used to investigate how the spatial distribution of the optimal trap locations changes as the aspect ratio of an ellipse of fixed area is varied. The results from the hybrid theory for the ellipse are compared with full PDE numerical results computed from the closest point method [10]. For long and thin ellipses, it is shown that the optimal trap pattern for m=2,,5m=2,\ldots,5 identical traps is collinear along the semi-major axis of the ellipse. For such essentially 1-D patterns, a thin-domain asymptotic analysis is formulated and implemented to accurately predict the optimal locations of collinear trap patterns and the corresponding optimal average MFPT.

1 Introduction

The concept of first passage time arises in various applications in biology, biochemistry, ecology, physics, and biophysics (see [6], [7], [20], [15] [23], [21], and the references therein). Narrow escape or capture problems are first passage time problems that characterize the expected time it takes for a Brownian “particle” to reach some absorbing set of small measure. These problems are of singular perturbation type as they involve two spatial scales: the 𝒪(1){\mathcal{O}}(1) spatial scale of the confining domain and the 𝒪(ε){\mathcal{O}}(\varepsilon) asymptotically small scale of the absorbing set. Narrow escape and capture problems arise in various applications, including estimating the time it takes for a receptor to hit a certain target binding site, the time it takes for a diffusing surface-bound molecules to reach a localized signaling region on the cell membrane, or the time it takes for a predator to locate its prey, among others (cf. [1], [2], [4], [3], [9], [16], [24], [19], [15]). A comprehensive overview of the applications of narrow escape and capture problems in cellular biology is given in [8].

In this paper, we consider a narrow capture problem that involves determining the MFPT for a Brownian particle, confined in a bounded two-dimensional domain, to reach one of mm small stationary circular absorbing traps located inside the domain. The average MFPT for this diffusion process is the expected time for capture given a uniform distribution of starting points for the random walk. In the limit of small trap radius, this narrow capture problem can be analyzed by techniques in strong localized perturbation theory (cf. [26], [27]). For a disk-shaped domain spatial configurations of small absorbing traps that minimize the average MFPT domain were identified in [12]. However, the problem of identifying optimal trap configurations in other geometries is largely open. In this direction, the specific goal of this paper is to develop and implement a hybrid asymptotic-numerical theory to identify optimal trap configurations in near-disk domains and in the ellipse.

In § 2, we use a perturbation approach to derive a two-term approximation for the average MFPT in a class of near-disk domains in terms of a boundary deformation parameter σ1\sigma\ll 1. In our analysis, we allow for a smooth, but otherwise arbitrary, star-shaped perturbation of the unit disk that preserves the domain area. At each order in σ\sigma, an approximate solution is derived for the MFPT that is accurate to all orders in ν1/logε\nu\equiv{-1/\log\varepsilon}, where ε1\varepsilon\ll 1 is the common radius of the mm circular absorbing traps contained in the domain. To leading-order in σ\sigma, this small-trap singular perturbation analysis is formulated in the unit disk and leads to a linear algebraic system for the leading-order average MFPT involving the Neumann Green’s matrix. At order 𝒪(σ){\mathcal{O}}(\sigma), a further linear algebraic system that sums all logarithmic terms in ν\nu is derived that involves the Neumann Green’s matrix and certain weighted integrals of the boundary profile characterizing the domain perturbation. In § 3, we show how to numerically implement this asymptotic theory by using the analytical expression for the Neumann Green’s function for the unit disk together with the trapezoidal rule to compute certain weighted integrals of the boundary profile with high precision. From this numerical implementation of our asymptotic theory, and combined with either a simple gradient descent procedure or a particle swarming approach [11], we can numerically identify optimal trap configurations that minimize the average MFPT in near-disk domains. In § 3.1, we illustrate our hybrid asymptotic-numerical framework by determining some optimal trap configurations in various specific near-disk domains.

For a general 2-D domain containing small absorbing traps, a singular perturbation analysis in the limit of small trap radii, related to that in [15], [4], [12], and [26], shows that the average MFPT is closely approximated by the solution to a linear algebraic system involving the Neumann Green’s matrix. The challenge in implementing this analytical theory is that, for an arbitrary 2-D domain, a full PDE numerical solution of the Neumann Green’s function and its regular part is typically required to calculate this matrix. However, for an elliptical domain, in (4.36) and (4.37) below, we provide a new explicit representation of this Neumann Green’s function and its regular part. These explicit formulae allow for a rapid numerical evaluation of the Neumann Green’s interaction matrix for a given spatial distribution of the centers of the circular traps in the ellipse. The linear algebraic system determining the average MFPT is then coupled to a gradient descent numerical procedure in order to readily identify optimal trap configurations that minimize the average MFPT in an ellipse. Although, a similar formula for the Neumann Green’s function has been derived previously for a rectangular domain (cf. [17], [18], [14]), and an explicit and simple formula exists for the disk [12], to our knowledge there has been no prior derivation of a rapidly converging infinite series representation for the Neumann Green’s function in an ellipse. The derivation of this Neumann Green’s function using elliptic cylindrical coordinates is deferred until § 5.

With this explicit approach to determine the Neumann Green’s matrix, in § 4 we develop a hybrid asymptotic-numerical framework to approximate optimal trap configurations that minimize the average MFPT in an ellipse of a fixed area. In § 4.1 we implement our hybrid method to investigate how the optimal trap patterns change as the aspect ratio of the ellipse is varied. The results from the hybrid theory for the ellipse are favorably compared with full PDE numerical results computed from a computationally intensive numerical procedure of using the closest point method [10] to compute the average MFPT and a particle swarming approach [11] to numerically identify the optimum trap configuration. As the ellipse becomes thinner, our hybrid theory shows that the optimal trap pattern for m=2,,5m=2,\ldots,5 identical traps becomes collinear along the semi-major axis of the ellipse. In the limit of a long and thin ellipse, in § 4.2 a thin-domain asymptotic analysis is formulated and implemented to accurately predict the optimal locations of collinear trap configurations and the corresponding optimal average MFPT.

In § 6, we show that the optimal trap configurations that minimize the average MFPT also correspond to trap patterns that maximize the coefficient of order 𝒪(ν2){\mathcal{O}}(\nu^{2}) in the asymptotic expansion of the fundamental Neumann eigenvalue of the Laplacian in the perforated domain. This fundamental eigenvalue characterizes the rate of capture of the Brownian particle by the traps. Eigenvalue optimization problems for the fundamental Neumann eigenvalue in a domain with small absorbing traps have been studied in [12] for the unit disk. The results herein extend this previous analysis to the ellipse and to near-disk domains.

2 Asymptotics of the MFPT in Near-Disk Domains

We derive an asymptotic approximation for the MFPT for a class of near-disk 2-D domains that are defined in polar coordinates by

(2.1) Ωσ={(r,θ)| 0<r1+σh(θ),  0θ2π},\Omega_{\sigma}=\Big{\{}(r,\theta)\,\Big{|}\,0<r\leq 1+\sigma h(\theta)\,,\,\,0\leq\theta\leq 2\pi\Big{\}}\,,

where the boundary profile, h(θ)h(\theta), is assumed to be an 𝒪(1){\mathcal{O}}(1), CC^{\infty} smooth 2π2\pi periodic function with 02πh(θ)𝑑θ=0\int_{0}^{2\pi}h(\theta)\,d\theta=0. Observe that ΩσΩ\Omega_{\sigma}\to\Omega as σ0\sigma\to 0, where Ω\Omega is the unit disk. Since 02πh(θ)𝑑θ=0\int_{0}^{2\pi}h(\theta)\,d\theta=0, the domain area |Ωσ||\Omega_{\sigma}| for σ1\sigma\ll 1 is |Ωσ|=π+𝒪(σ2)|\Omega_{\sigma}|=\pi+{\mathcal{O}}(\sigma^{2}).

Inside the perturbed disk Ωσ\Omega_{\sigma}, we assume that there are mm circular traps of a common radius ε1\varepsilon\ll 1 that are centered at arbitrary locations 𝐱1,,𝐱m\mathbf{x}_{1},\ldots,\mathbf{x}_{m} with |𝐱i𝐱j|=𝒪(1)|\mathbf{x}_{i}-\mathbf{x}_{j}|={\mathcal{O}}(1) and dist(Ωσ,𝐱j)=𝒪(1)\mbox{dist}(\partial\Omega_{\sigma},\mathbf{x}_{j})={\mathcal{O}}(1) as ε0\varepsilon\to 0. The jj-th trap, centered at some 𝐱jΩσ\mathbf{x}_{j}\in\Omega_{\sigma}, is labelled by Ωεj={𝐱:|𝐱𝐱j|ε}\Omega_{\varepsilon j}=\{\mathbf{x}:|\mathbf{x}-\mathbf{x}_{j}|\leq\varepsilon\}. The near-disk domain with the union of the trap regions deleted is denoted by Ω¯σ\bar{\Omega}_{\sigma}. In Ω¯σ\bar{\Omega}_{\sigma}, it is well-known that the mean first passage time (MFPT) for a Brownian particle starting at a point 𝐱Ω¯σ\mathbf{x}\in\bar{\Omega}_{\sigma} to be absorbed by one of the traps satisfies (cf. [20])

(2.2) DΔu=1,𝐱Ω¯σ;Ω¯σΩσj=1mΩεj,nu=0,𝐱Ωσ;u=0,𝐱Ωεj,j=1,,m.\begin{split}D\,\Delta u=-1\,,&\quad\mathbf{x}\in\bar{\Omega}_{\sigma}\,;\qquad\bar{\Omega}_{\sigma}\equiv\Omega_{\sigma}\setminus\cup_{j=1}^{m}\Omega_{\varepsilon j}\,,\\ \partial_{n}u=0\,,\quad\mathbf{x}\in\partial\Omega_{\sigma}\,;&\qquad u=0\,,\quad\mathbf{x}\in\partial\Omega_{\varepsilon j}\,,\quad j=1,\ldots,m\,.\end{split}

In terms of polar coordinates, the Neumann boundary condition in (2.2) becomes

(2.3) urσhθ(1+σh)2uθ=0onr=1+σh(θ).\begin{split}u_{r}-&\frac{\sigma h_{\theta}}{(1+\sigma h)^{2}}u_{\theta}=0\quad\text{on}\quad r=1+\sigma h(\theta)\,.\end{split}

For an arbitrary arrangement {𝐱1,,𝐱m}\{{\mathbf{x}_{1},\ldots,\mathbf{x}_{m}\}} of the centers of the traps, and for σ0\sigma\to 0 and ε0\varepsilon\to 0, we will derive a reduced problem consisting of two linear algebraic systems that provide an asymptotic approximation to the MFPT that has an error 𝒪(σ2,ε2){\mathcal{O}}(\sigma^{2},\varepsilon^{2}). These linear algebraic systems involve the Neumann Green’s matrix and certain weighted integrals of the boundary profile h(θ)h(\theta).

To analyze (2.2), we use a regular perturbation series to approximate (2.2) for the near-disk domain to problems involving a unit disk. We expand the MFPT uu as

(2.4) u=u0+σu1+,\begin{split}u=u_{0}+\sigma u_{1}+\ldots\,,\end{split}

and substitute it into (2.2) and (2.3). This yields the leading-order problem

(2.5) DΔu0=1,𝐱Ω¯;Ω¯Ωj=1mΩεj,nu0=0,onr=1;u0=0,𝐱Ωεj,j=1,,m,\begin{split}D\,\Delta u_{0}=-1\,,&\quad\mathbf{x}\in\bar{\Omega}\,;\qquad\bar{\Omega}\equiv\Omega\setminus\cup_{j=1}^{m}\Omega_{\varepsilon j}\,,\\ \partial_{n}u_{0}=0\,,\quad\text{on}\quad r=1\,;&\qquad u_{0}=0\,,\quad\mathbf{x}\in\partial\Omega_{\varepsilon j}\,,\quad j=1,\ldots,m\,,\end{split}

together with the following problem for the next order correction u1u_{1}:

(2.6) Δu1=0,𝐱Ω¯;ru1=hu0rr+hθu0θ,onr=1;u1=0,𝐱Ωεj,j=1,,m.\begin{split}\Delta u_{1}=0\,,&\quad\mathbf{x}\in\bar{\Omega}\,;\qquad\partial_{r}u_{1}=-hu_{0rr}+h_{\theta}u_{0\theta}\,,\quad\text{on}\quad r=1\,;\\ \quad u_{1}&=0\,,\quad\mathbf{x}\in\partial\Omega_{\varepsilon j}\,,\quad j=1,\ldots,m\,.\end{split}

Observe that (2.5) and (2.6) are formulated on the unit disk and not on the perturbed disk. Assuming ε2σ\varepsilon^{2}\ll\sigma, we use (2.4) and |Ωσ|=|Ω|+𝒪(σ2)|\Omega_{\sigma}|=|\Omega|+{\mathcal{O}}(\sigma^{2}) to derive an expansion for the average MFPT, defined by u¯1|Ω¯σ|Ω¯σud𝐱\overline{u}\equiv\frac{1}{|\bar{\Omega}_{\sigma}|}\int_{\bar{\Omega}_{\sigma}}u\,\text{d}\mathbf{x}, in the form

(2.7) u¯=1|Ω|Ωu0d𝐱+σ[1|Ω|Ωu1d𝐱+1|Ω|02πh(θ)u0|r=1dθ]+𝒪(σ2,ε2),\begin{split}\overline{u}=\frac{1}{|\Omega|}\int_{\Omega}u_{0}\,\text{d}\mathbf{x}+\sigma\left[\frac{1}{|\Omega|}\int_{\Omega}u_{1}\,\text{d}\mathbf{x}+\frac{1}{|\Omega|}\int_{0}^{2\pi}h(\theta)\,u_{0}|_{r=1}\,\text{d}\theta\right]+\mathcal{O}(\sigma^{2},\varepsilon^{2})\,,\end{split}

where |Ω|=π|\Omega|=\pi and u0|r=1u_{0}|_{r=1} is the leading-order solution u0u_{0} evaluated on r=1r=1.

Since the asymptotic calculation of the leading-order solution u0u_{0} by the method of matched asymptotic expansions in the limit ε0\varepsilon\to 0 of small trap radius was done previously in [4] (see also [15] and [26]), we only briefly summarize the analysis here. In the inner region near the jj-th trap, we define the inner variables 𝐲=ε1(𝐱𝐱j)\mathbf{y}=\varepsilon^{-1}(\mathbf{x}-\mathbf{x}_{j}) and u0(𝐱)=vj(ε𝐲+𝐱j)u_{0}(\mathbf{x})=v_{j}(\varepsilon\mathbf{y}+\mathbf{x}_{j}) with ρ=|𝐲|\rho=|\mathbf{y}|, for j=1,,mj=1,\ldots,m. Upon writing (2.5) in terms of these inner variables, we have for ε0\varepsilon\to 0 and for each j=1,,mj=1,\ldots,m that

(2.8) Δρvj=0,ρ>1;vj=0,onρ=1,\begin{split}\Delta_{\rho}\,v_{j}&=0\,,\quad\rho>1\,;\qquad v_{j}=0\,,\quad\mbox{on}\,\,\,\rho=1\,,\end{split}

where Δρρρ+ρ1ρ\Delta_{\rho}\equiv\partial_{\rho\rho}+\rho^{-1}\partial_{\rho}. This admits the radially symmetric solution vj=Ajlogρv_{j}=A_{j}\log\rho, where AjA_{j} is an unknown constant. From an asymptotic matching of the inner and outer solutions we obtain the required singularity condition for the outer solution u0u_{0} as 𝐱𝐱j\mathbf{x}\to\mathbf{x}_{j} for j=1,,mj=1,\ldots,m. In this way, we obtain that u0u_{0} satisfies

(2.9a) Δu0=1/D,𝐱\displaystyle\Delta u_{0}=-{1/D}\,,\quad\mathbf{x} Ω{𝐱1,,𝐱m};ru0=0,𝐱Ω;\displaystyle\in\Omega\setminus\{{\mathbf{x}_{1},\ldots,\mathbf{x}_{m}\}}\,;\quad\partial_{r}u_{0}=0\,,\,\,\,\mathbf{x}\in\partial\Omega\,;
(2.9b) u0Ajlog|𝐱𝐱j|\displaystyle u_{0}\sim A_{j}\log|\mathbf{x}-\mathbf{x}_{j}| +Aj/νas𝐱𝐱j,j=1,,m,\displaystyle+A_{j}/\nu\quad\text{as}\quad\mathbf{x}\to\mathbf{x}_{j}\,,\qquad j=1,\ldots,m\,,

where ν1/logε\nu\equiv-1/\log\varepsilon. In terms of the Delta distribution, (2.9) implies that

(2.10) Δu0=1D+2πj=1mAjδ(𝐱𝐱j),𝐱Ω;ru0=0,𝐱Ω.\Delta u_{0}=-\frac{1}{D}+2\pi\sum_{j=1}^{m}A_{j}\delta(\mathbf{x}-\mathbf{x}_{j})\,,\quad\mathbf{x}\in\Omega\,;\qquad\partial_{r}u_{0}=0\,,\,\,\,\mathbf{x}\in\partial\Omega\,.

By applying the divergence theorem to (2.10) over the unit disk we obtain that j=1mAj=|Ω|/(2πD)\sum_{j=1}^{m}A_{j}={|\Omega|/(2\pi D)}. The solution to (2.10) is represented as

(2.11) u0=2πk=1mAkG(𝐱;𝐱k)+u¯0;u¯0=1|Ω|Ωu0d𝐱,\displaystyle u_{0}=-2\pi\sum_{k=1}^{m}A_{k}G(\mathbf{x};\mathbf{x}_{k})+\overline{u}_{0}\,;\qquad\overline{u}_{0}=\frac{1}{|\Omega|}\int_{\Omega}u_{0}\,\text{d}\mathbf{x}\,,

where G(𝐱;𝐱j)G(\mathbf{x};\mathbf{x}_{j}) is the Neumann Green’s function for the unit disk, which satisfies

(2.12a) ΔG=1|Ω|δ(𝐱𝐱j),𝐱Ω;nG=0,𝐱Ω;ΩGd𝐱=0,\displaystyle\Delta G=\frac{1}{|\Omega|}-\delta(\mathbf{x}-\mathbf{x}_{j})\,,\quad\mathbf{x}\in\Omega\,;\quad\partial_{n}G=0\,,\,\,\,\mathbf{x}\in\partial\Omega\,;\quad\int_{\Omega}G\,\text{d}\mathbf{x}=0\,,
(2.12b) G12πlog|𝐱𝐱j|+Rj+𝐱Rj(𝐱𝐱j)as𝐱𝐱j.\displaystyle G\sim-\frac{1}{2\pi}\log{|\mathbf{x}-\mathbf{x}_{j}|}+R_{j}+\nabla_{\mathbf{x}}R_{j}\cdot(\mathbf{x}-\mathbf{x}_{j})\quad\text{as}\quad\mathbf{x}\to\mathbf{x}_{j}\,.

Here, RjR(𝐱j)R_{j}\equiv R(\mathbf{x}_{j}) is the regular part of the Green’s function at 𝐱=𝐱j\mathbf{x}=\mathbf{x}_{j}. Expanding (2.11) as 𝐱𝐱j\mathbf{x}\to\mathbf{x}_{j}, and using the singularity behaviour of G(𝐱;𝐱j)G(\mathbf{x};\mathbf{x}_{j}) given in (2.12b), together with the far-field behavior (2.9b) for u0u_{0}, we obtain the matching conditon:

(2.13) 2πAjRj2πijmAiG(𝐱j;𝐱i)+u¯0Aj/ν,forj=1,,m.-2\pi A_{j}\,R_{j}-2\pi\sum_{i\neq j}^{m}A_{i}\,G(\mathbf{x}_{j};\mathbf{x}_{i})+\overline{u}_{0}\sim{A_{j}/\nu}\,,\qquad\mbox{for}\quad j=1,\ldots,m\,.

This yields a linear algebraic system for u¯0\overline{u}_{0} and 𝒜(A1,,Am)T\mathcal{A}\equiv(A_{1},\ldots,A_{m})^{T}, given by

(2.14) (I+2πν𝒢)𝒜=νu¯0𝐞,𝐞T𝒜=|Ω|2πD.\displaystyle(I+2\pi\nu\,\mathcal{G})\mathcal{A}=\nu\,\overline{u}_{0}\,\mathbf{e}\,,\qquad\mathbf{e}^{T}\mathcal{A}=\frac{|\Omega|}{2\pi D}\,.

Here, 𝐞(1,,1)T\mathbf{e}\equiv(1,\ldots,1)^{T}, ν=1/logε\nu=-1/\log\varepsilon, II is the m×mm\times m identity matrix, and 𝒢\mathcal{G} is the symmetric Green’s matrix with matrix entries given by

(2.15) (𝒢)jj=Rjfori=jand(𝒢)ij=(𝒢)ji=G(𝐱i;𝐱j)forij.\displaystyle(\mathcal{G})_{jj}=R_{j}\,\,\,\text{for}\,\,\,i=j\quad\text{and}\quad(\mathcal{G})_{ij}=(\mathcal{G})_{ji}=G(\mathbf{x}_{i};\mathbf{x}_{j})\,\,\,\text{for}\,\,\,i\neq j\,.

We left-multiply the equation for 𝒜\mathcal{A} in (2.14) by 𝐞T\mathbf{e}^{T}, which isolates u¯0\overline{u}_{0}. By using this expression in (2.14), and defining the matrix EE by E=𝐞𝐞T/mE={\mathbf{e}\mathbf{e}^{T}/m}, we get

(2.16) [I+2πν(IE)𝒢]𝒜=|Ω|2πDm𝐞,andu¯0=|Ω|2πDνm+2πm𝐞T𝒢𝒜.\Big{[}I+2\pi\nu(I-E)\mathcal{G}\Big{]}\mathcal{A}=\frac{|\Omega|}{2\pi Dm}\mathbf{e}\,,\quad\text{and}\quad\overline{u}_{0}=\frac{|\Omega|}{2\pi D\nu m}+\frac{2\pi}{m}\mathbf{e}^{T}\mathcal{G}\mathcal{A}\,.
Remark 2.1.

The result (2.16) effectively sums all the logarithmic terms in powers of ν=1/logε\nu={-1/\log\varepsilon}. To estimate the error with this approximation with regards to the leading-order in σ\sigma problem (2.5), we calculate using (2.11) the refined local behavior

(2.17) u02π(AjRj+ijmAiG(𝐱j;𝐱i))+u¯0+𝐟j(𝐱𝐱j),as𝐱𝐱j,u_{0}\sim-2\pi\left(A_{j}\,R_{j}+\sum_{i\neq j}^{m}A_{i}\,G(\mathbf{x}_{j};\mathbf{x}_{i})\right)+\overline{u}_{0}+\mathbf{f}_{j}\cdot(\mathbf{x}-\mathbf{x}_{j})\,,\quad\mbox{as}\quad\mathbf{x}\to\mathbf{x}_{j},

where 𝐟j2π(Aj𝐱Rj+ijmAi𝐱G(𝐱;𝐱i)|𝐱=𝐱j)\mathbf{f}_{j}\equiv-2\pi\left(A_{j}\nabla_{\mathbf{x}}R_{j}+\sum_{i\neq j}^{m}A_{i}\,\nabla_{\mathbf{x}}G(\mathbf{x};\mathbf{x}_{i})|_{\mathbf{x}=\mathbf{x}_{j}}\right). To account for this gradient term, near the jj-th trap we must modify the inner expansion as vjAjlogρ+εvj1v_{j}\sim A_{j}\log\rho+\varepsilon v_{j1}. Here Δ𝐲vj1=0\Delta_{\mathbf{y}}v_{j1}=0 in |𝐲|1|\mathbf{y}|\geq 1, with vj1=0v_{j1}=0 on |𝐲|=1|\mathbf{y}|=1 and vj1𝐟j𝐲v_{j1}\sim\mathbf{f}_{j}\cdot\mathbf{y} as |𝐲||\mathbf{y}|\to\infty. The solution is vj1=𝐟j(𝐲𝐲/|𝐲|2)v_{j1}=\mathbf{f}_{j}\cdot\left(\mathbf{y}-{\mathbf{y}/|\mathbf{y}|^{2}}\right). The far field behavior for vj1v_{j1} implies that in the outer region we must have that uu0+ε2w0+u\sim u_{0}+\varepsilon^{2}w_{0}+\cdots, where w0𝐟j(𝐱𝐱j)/|𝐱𝐱j|2w_{0}\sim-\mathbf{f}_{j}\cdot{(\mathbf{x}-\mathbf{x}_{j})/|\mathbf{x}-\mathbf{x}_{j}|^{2}} as 𝐱𝐱j\mathbf{x}\to\mathbf{x}_{j}. This shows that the ε\varepsilon-error estimate for u0u_{0} is 𝒪(ε2){\mathcal{O}}(\varepsilon^{2}), as claimed in (2.7).

Next, we study the 𝒪(σ)\mathcal{O}(\sigma) problem for u1u_{1} given in (2.6). We construct an inner region near each of the traps by introducing the inner variables 𝐲=ε1(𝐱𝐱j)\mathbf{y}=\varepsilon^{-1}(\mathbf{x}-\mathbf{x}_{j}) and u1(𝐱)=Vj(ε𝐲+𝐱j)u_{1}(\mathbf{x})=V_{j}(\varepsilon\mathbf{y}+\mathbf{x}_{j}) with ρ=|𝐲|\rho=|\mathbf{y}|. From (2.6), this yields the same leading-order inner problem (2.8) with vjv_{j} replaced by VjV_{j}. The radially symmetric solution is Vj=BjlogρV_{j}=B_{j}\log\rho, where BjB_{j} is a constant to be found. By matching this far-field behavior of the inner solution to the outer solution we obtain the singularity behavior for u1u_{1} as 𝐱𝐱j\mathbf{x}\to\mathbf{x}_{j} for j=1,,mj=1,\ldots,m. In this way, we find from (2.6) that u1u_{1} satisfies

(2.18a) Δu1\displaystyle\Delta u_{1} =0,𝐱Ω{𝐱1,,𝐱m};ru1=F(θ),onr=1;\displaystyle=0\,,\quad\mathbf{x}\in\Omega\setminus\{\mathbf{x}_{1},\ldots,\mathbf{x}_{m}\}\,;\quad\partial_{r}u_{1}=F(\theta)\,,\quad\text{on}\quad r=1;
(2.18b) u1\displaystyle u_{1} Bjlog|𝐱𝐱j|+Bj/νas𝐱𝐱jj=1,,m,\displaystyle\sim B_{j}\log{|\mathbf{x}-\mathbf{x}_{j}|}+B_{j}/\nu\quad\text{as}\quad\mathbf{x}\to\mathbf{x}_{j}\quad j=1,\ldots,m\,,
where ν=1/logε\nu=-1/\log\varepsilon and F(θ)F(\theta) is defined by
(2.18c) F(θ)hu0rr|r=1+hθu0θ|r=1=(hu0θ)θ+hD.F(\theta)\equiv-hu_{0rr}|_{r=1}+h_{\theta}u_{0\theta}|_{r=1}=\left(hu_{0\theta}\right)_{\theta}+\frac{h}{D}\,.
In deriving (2.18c) we used u0rr=u0θθ+1/Du_{0rr}=-u_{0\theta\theta}+{1/D} at r=1r=1, as obtained from (2.5).

Next, we introduce the Dirac distribution and write the problem (2.18) for u1u_{1} as

(2.19) Δu1=2πi=1mBiδ(𝐱𝐱i),𝐱Ω;u1r=F(θ),onr=1.\displaystyle\Delta u_{1}=2\pi\sum_{i=1}^{m}B_{i}\,\,\delta(\mathbf{x}-\mathbf{x}_{i})\,,\quad\mathbf{x}\in\Omega\,;\qquad u_{1r}=F(\theta)\,,\quad\text{on}\quad r=1\,.

Since 02πF(θ)dθ=0\int_{0}^{2\pi}F(\theta)\,\text{d}\theta=0, the divergence theorem yields j=1mBj=0\sum_{j=1}^{m}B_{j}=0. We decompose

(2.20) u1=2πi=1mBiG(𝐱;𝐱i)+u1p+u¯1,u_{1}=-2\pi\sum_{i=1}^{m}B_{i}G(\mathbf{x};\mathbf{x}_{i})+u_{1p}+\overline{u}_{1}\,,

where u¯1\overline{u}_{1} is the unknown average of u1u_{1} over the unit disk, and G(𝐱;𝐱i)G(\mathbf{x};\mathbf{x}_{i}) is the Neumann Green’s function satisfying (2.12). Here, u1pu_{1p} is taken to be the unique solution to

(2.21) Δu1p\displaystyle\Delta u_{1p} =0,𝐱Ω;ru1p=F(θ)onr=1;Ωu1pd𝐱=0.\displaystyle=0,\quad\mathbf{x}\in\Omega;\quad\partial_{r}u_{1p}=F(\theta)\,\quad\text{on}\quad r=1;\quad\int_{\Omega}u_{1p}\,\text{d}\mathbf{x}=0\,.

Next, by expanding (2.20) as 𝐱𝐱j\mathbf{x}\to\mathbf{x}_{j}, we use the singularity behaviour of G(𝐱;𝐱j)G(\mathbf{x};\mathbf{x}_{j}) as given in (2.12b) to obtain the local behavior of u1u_{1} as 𝐱𝐱j\mathbf{x}\to\mathbf{x}_{j}, for each j=1,,mj=1,\ldots,m. The asymptotic matching condition is that this behavior must agree with that given in (2.18b). In this way, we obtain a linear algebraic system for the constant u¯1\overline{u}_{1} and the vector 𝐁=(B1,,Bm)T\mathbf{B}=(B_{1},\ldots,B_{m})^{T}, which is given in matrix form by

(2.22) (I+2πν𝒢)𝐁=νu¯1𝐞+ν𝐮1p,𝐞T𝐁=0.(I+2\pi\nu\mathcal{G})\mathbf{B}=\nu\overline{u}_{1}\mathbf{e}+\nu\mathbf{u}_{1p}\,,\qquad\mathbf{e}^{T}\mathbf{B}=0\,.

Here, II is the identity, 𝐞=(1,,1)T\mathbf{e}=(1,\ldots,1)^{T}, and 𝐮1p=(u1p(𝐱1),,u1p(𝐱m))T\mathbf{u}_{1p}=(u_{1p}(\mathbf{x}_{1}),\ldots,u_{1p}(\mathbf{x}_{m}))^{T}. Next, we left multiply the equation for 𝐁\mathbf{B} by 𝐞T\mathbf{e}^{T}. This determines u¯1\overline{u}_{1}, which is then re-substituted into (2.22) to obtain the uncoupled problem

(2.23) [I+2πν(IE)𝒢]𝐁=ν(IE)𝐮1p,andu¯1=1m𝐞T𝐮1p+2πm𝐞T𝒢𝐁,\Big{[}I+2\pi\nu(I-E)\mathcal{G}\Big{]}\mathbf{B}=\nu(I-E)\mathbf{u}_{1p}\,,\quad\text{and}\quad\overline{u}_{1}=-\frac{1}{m}\mathbf{e}^{T}\mathbf{u}_{1p}+\frac{2\pi}{m}\mathbf{e}^{T}\mathcal{G}\mathbf{B}\,,

where E𝐞𝐞T/mE\equiv{\mathbf{e}\mathbf{e}^{T}/m}. Since 𝐞T(IE)=0\mathbf{e}^{T}(I-E)=0, we observe from (2.23) that 𝐞T𝐁=0\mathbf{e}^{T}\mathbf{B}=0, as required. Equation (2.23) gives a linear system for the 𝒪(σ)\mathcal{O}(\sigma) average MFPT u¯1\overline{u}_{1} in terms of the Neumann Green’s matrix 𝒢\mathcal{G}, and the vector 𝐮1p\mathbf{u}_{1p}.

To determine u1p(𝐱j)u_{1p}(\mathbf{x}_{j}), we use Green’s second identity on (2.21) and (2.12) to obtain a line integral over the boundary 𝐱Ω\mathbf{x}\in\partial\Omega of the unit disk. Then, by using (2.18c) for F(θ)F(\theta), integrating by parts and using 2π2\pi periodicity we get

(2.24) u1p(𝐱j)=02πG(𝐱;𝐱j)F(θ)𝑑θ=02πG(𝐱;𝐱j)h(θ)D𝑑θ02πh(θ)u0θθG(𝐱;𝐱j)dθ.u_{1p}(\mathbf{x}_{j})=\int_{0}^{2\pi}G(\mathbf{x};\mathbf{x}_{j})F(\theta)\,d\theta=\int_{0}^{2\pi}G(\mathbf{x};\mathbf{x}_{j})\frac{h(\theta)}{D}\,d\theta-\int_{0}^{2\pi}h(\theta)u_{0\theta}\partial_{\theta}G(\mathbf{x};\mathbf{x}_{j})\,d\theta\,.

Then, by setting (2.11) for u0u_{0} into (2.24), we obtain in terms of the AkA_{k} of (2.16) that

(2.25a) u1p(𝐱j)=1D02πG(𝐱;𝐱j)h(θ)𝑑θ+2πk=1mAkJjk.u_{1p}(\mathbf{x}_{j})=\frac{1}{D}\int_{0}^{2\pi}G(\mathbf{x};\mathbf{x}_{j})h(\theta)\,d\theta+2\pi\sum_{k=1}^{m}A_{k}J_{jk}\,.
Here, JjkJ_{jk} is defined by the following boundary integral with 𝐱=(cos(θ),sin(θ))T\mathbf{x}=(\cos(\theta),\sin(\theta))^{T}:
(2.25b) Jjk02πh(θ)(θG(𝐱;𝐱j))(θG(𝐱;𝐱k))𝑑θ.J_{jk}\equiv\int_{0}^{2\pi}h(\theta)\left(\partial_{\theta}G(\mathbf{x};\mathbf{x}_{j})\right)\left(\partial_{\theta}G(\mathbf{x};\mathbf{x}_{k})\right)\,d\theta\,.

¿From a numerical evaluation of the boundary integrals in (2.25), we can calculate 𝐮1p=(u1p(𝐱1),,u1p(𝐱m))T\mathbf{u}_{1p}=(u_{1p}(\mathbf{x}_{1}),\ldots,u_{1p}(\mathbf{x}_{m}))^{T}, which specifies the right-hand side of the linear system (2.23) for 𝐁\mathbf{B}. After determining 𝐁\mathbf{B}, we obtain u¯1\overline{u}_{1} from the second relation in (2.23). Finally, by substituting (2.11) for u0u_{0} into (2.7), and recalling that 02πh(θ)𝑑θ=0\int_{0}^{2\pi}h(\theta)\,d\theta=0, we obtain a two-term expansion for the average MFPT given by

(2.26) u¯u¯0+σ(u¯12k=1mAk02πG(𝐱;𝐱k)h(θ)𝑑θ).\overline{u}\sim\overline{u}_{0}+\sigma\left(\overline{u}_{1}-2\sum_{k=1}^{m}A_{k}\int_{0}^{2\pi}G(\mathbf{x};\mathbf{x}_{k})h(\theta)\,d\theta\right)\,.

Here, 𝐱Ω\mathbf{x}\in\partial\Omega and u¯0\overline{u}_{0} is determined from (2.16).

3 Optimizing Trap Configurations for the MFPT in the Near-Disk

To numerically evaluate the boundary integrals in (2.25) and (2.26), we need explicit formulae for G(𝐱;𝐱j)G(\mathbf{x};\mathbf{x}_{j}) and θG(𝐱;𝐱j)\partial_{\theta}G(\mathbf{x};\mathbf{x}_{j}) on the boundary of the unit disk where 𝐱=(cosθ,sinθ)T\mathbf{x}=(\cos\theta,\sin\theta)^{T}. For the unit disk, we obtain from equation (4.3) of [12] that

(3.27a) G(𝐱;𝐱j)=12πlog|𝐱𝐱j|14πlog(|𝐱|2|𝐱j|2+12𝐱𝐱j)+(|𝐱|2+|𝐱j|2)4π38π,\displaystyle G(\mathbf{x};\mathbf{x}_{j})=-\frac{1}{2\pi}\log|\mathbf{x}-\mathbf{x}_{j}|-\frac{1}{4\pi}\log\left(|\mathbf{x}|^{2}|\mathbf{x}_{j}|^{2}+1-2\mathbf{x}\cdot\mathbf{x}_{j}\right)+\frac{(|\mathbf{x}|^{2}+|\mathbf{x}_{j}|^{2})}{4\pi}-\frac{3}{8\pi},
(3.27b) R(𝐱j;𝐱j)=12πlog(1|𝐱j|2)+|𝐱j|22π38π.\displaystyle R(\mathbf{x}_{j};\mathbf{x}_{j})=-\frac{1}{2\pi}\log\left(1-|\mathbf{x}_{j}|^{2}\right)+\frac{|\mathbf{x}_{j}|^{2}}{2\pi}-\frac{3}{8\pi}\,.

For an arbitrary configuration {𝐱1,,𝐱m}\{{\mathbf{x}_{1},\ldots,\mathbf{x}_{m}\}} of traps, these expressions can be used to evaluate the Neumann Green’s matrix 𝒢\mathcal{G} of (2.15) as needed in (2.16) and (2.23).

Next, by setting 𝐱=(cosθ,sinθ)T\mathbf{x}=(\cos\theta,\sin\theta)^{T} we can evaluate G(𝐱;𝐱j)G(\mathbf{x};\mathbf{x}_{j}) on Ω\partial\Omega, and then calculate its tangential boundary derivative θG(𝐱;𝐱j)\partial_{\theta}G(\mathbf{x};\mathbf{x}_{j}). By using (3.27a), we obtain

(3.28a) G(𝐱;𝐱j)\displaystyle G(\mathbf{x};\mathbf{x}_{j}) =12πlog(1+rj22rjcos(θθj))+14π(1+rj2)38π,\displaystyle=-\frac{1}{2\pi}\log\left(1+r_{j}^{2}-2r_{j}\cos(\theta-\theta_{j})\right)+\frac{1}{4\pi}(1+r_{j}^{2})-\frac{3}{8\pi}\,,
(3.28b) θG(𝐱;𝐱j)\displaystyle\partial_{\theta}G(\mathbf{x};\mathbf{x}_{j}) =rjπsin(θθj)[rj2+12rjcos(θθj)],\displaystyle=-\frac{r_{j}}{\pi}\frac{\sin(\theta-\theta_{j})}{\left[r_{j}^{2}+1-2r_{j}\cos(\theta-\theta_{j})\right]}\,,

where rj|𝐱j|r_{j}\equiv|\mathbf{x}_{j}| and 𝐱j=rj(cosθj,sinθj)T\mathbf{x}_{j}=r_{j}(\cos\theta_{j},\sin\theta_{j})^{T}. Then, since 02πh(θ)𝑑θ=0\int_{0}^{2\pi}h(\theta)\,d\theta=0, we can write the two boundary integrals appearing in (2.25) and (2.26) explicitly as

(3.29a) 02πG(𝐱;𝐱j)h(θ)𝑑θ=12π02πh(θ)log(1+rj22rjcos(θθj))𝑑θ,\displaystyle\int_{0}^{2\pi}G(\mathbf{x};\mathbf{x}_{j})h(\theta)\,d\theta=-\frac{1}{2\pi}\int_{0}^{2\pi}h(\theta)\log\left(1+r_{j}^{2}-2r_{j}\cos(\theta-\theta_{j})\right)\,d\theta\,,
(3.29b) Jjk=rjrkπ202πh(θ)sin(θθj)sin(θθk)[rj2+12rjcos(θθj)][rk2+12rkcos(θθk)]𝑑θ.\displaystyle J_{jk}=\frac{r_{j}r_{k}}{\pi^{2}}\int_{0}^{2\pi}\frac{h(\theta)\sin(\theta-\theta_{j})\sin(\theta-\theta_{k})}{\left[r_{j}^{2}+1-2r_{j}\cos(\theta-\theta_{j})\right]\left[r_{k}^{2}+1-2r_{k}\cos(\theta-\theta_{k})\right]}\,d\theta\,.

Although for an arbitrary h(θ)h(\theta) the integrals in (3.29) cannot be evaluated in closed form, they can be computed to a high degree of accuracy with relatively few grid points using the trapezoidal rule since this quadrature rule is exponentially convergent for CC^{\infty} smooth periodic functions [25]. When |xj|<1|x_{j}|<1, the logarithmic singularities off of the axis of integration for JjkJ_{jk} in (3.29) are mild and pose no particular problem. In this way, we can numerically calculate the two-term expansion (2.26) for the average MFPT with high precision.

Then, to determine the optimal trap configuration we can either use the particle swarming approach [11], or the ODE relaxation dynamics scheme

(3.30) d𝐳dt=𝐳u¯,where𝐳(x1,y1,,xm,ym)T,\frac{d\mathbf{z}}{dt}=-\nabla_{\mathbf{z}}\overline{u}\,,\qquad\mbox{where}\quad\mathbf{z}\equiv(x_{1},y_{1},\ldots,x_{m},y_{m})^{T}\,,

and u¯\overline{u} is given in (2.26). Starting from an admissible initial state 𝐳|t=0\mathbf{z}|_{t=0}, where 𝐱j=(xj,yj)Ω0\mathbf{x}_{j}=(x_{j},y_{j})\in\Omega_{0} at t=0t=0 for j=1,,mj=1,\ldots,m, the gradient flow dynamics (3.30) converges to a local minimum of u¯\overline{u}. Because of our high precision in calculating u¯\overline{u}, a centered difference scheme with mesh spacing 10410^{-4} was used to estimate the gradient in (3.30).

3.1 Examples of the Theory

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Optimal trap patterns for D=1D=1 in a near-disk domain with boundary r=1+σcos(4θ)r=1+\sigma\cos(4\theta), with σ=0.1\sigma=0.1, that contains mm traps of a common radius ε=0.05\varepsilon=0.05. Computed from minimizing (2.26) using the ODE relaxation scheme (3.30). Left: m=3m=3, u¯0.2962\overline{u}\approx 0.2962. Inter-trap computed distances are 0.95880.9588, 0.95880.9588, and 0.95400.9540. This result is close to the full PDE simulation results of Fig. 2. Left middle: m=4m=4, u¯0.1927\overline{u}\approx 0.1927. This is a ring pattern of traps with ring radius rc0.6215r_{c}\approx 0.6215. Right Middle: m=7m=7, u¯0.0925\overline{u}\approx 0.0925. Right: m=7m=7, u¯0.0912\overline{u}\approx 0.0912. The two patterns for m=7m=7 give nearly the same values for u¯\overline{u}, with the rightmost pattern giving a slightly lower value.

We first set σ=0.1\sigma=0.1 and consider the boundary profile h(θ)=cos(Nθ)h(\theta)=\cos(N\theta), where NN is a positive integer representing the number of boundary folds. In [10], an explicit two-term expansion for the average MFPT u¯\overline{u} was derived for the special case where mm traps are equidistantly spaced on a ring of radius rcr_{c}, concentric within the unperturbed disk. For such a ring pattern, in Proposition 1 of [10] it was proved that when N/m+{N/m}\notin\mathbb{Z}^{+}, then u¯u¯0+𝒪(σ2)\overline{u}\sim\overline{u}_{0}+{\mathcal{O}}(\sigma^{2}), as the correction at order 𝒪(σ){\mathcal{O}}(\sigma) vanishes identically. Therefore, in order to determine the optimal trap pattern when N/m+{N/m}\notin\mathbb{Z}^{+} we must consider arbitrary trap configurations, and not just ring patterns of traps. By minimizing (2.26) using the ODE relaxation scheme (3.30), in the left panel of Fig. 1 we show our asymptotic prediction for the optimal trap configuration for N=4N=4 folds and m=3m=3 traps of a common radius ε=0.05\varepsilon=0.05. The optimal pattern is not of ring-type. The corresponding results computed from the closest point method of [10], shown in Fig. 2, are very close to the asymptotic result.

In the left-middle panel of Fig. 1, we show the optimal trap pattern computed from our asymptotic theory (2.26) and (3.30) for the boundary profile h(θ)=cos(4θ)h(\theta)=\cos(4\theta) with m=4m=4 traps and σ=0.1\sigma=0.1. The optimal pattern is now a ring pattern of traps. In this case, as predicted by Proposition 1 of [10], the optimal pattern has traps on the rays through the origin that coincide with the maxima of the domain boundary. By applying Proposition 2 of [10], the optimal perturbed ring radius has the expansion rc,opt0.5985+0.1985σr_{c,opt}\sim 0.5985+0.1985\sigma. When σ=0.1\sigma=0.1, this gives rc,opt0.6184r_{c,opt}\approx 0.6184, and compares well with the value rc0.6215r_{c}\approx 0.6215 calculated from (2.26) and (3.30).

In the two rightmost panels of Fig. 1, we show for h(θ)=cos(4θ)h(\theta)=\cos(4\theta) and σ=0.1\sigma=0.1, that there are two seven-trap patterns that give local minima for the average MFPT u¯0\bar{u}_{0}. The minimum values of u¯0\bar{u}_{0} for these patterns are very similar.

Next, we construct a boundary profile with a localized protrusion, or bulge, near θ=0\theta=0. To this end, we define f(θ)1+βeχsin2(θ/2)f(\theta)\equiv-1+\beta e^{-\chi\sin^{2}\left({\theta/2}\right)}. By using the Taylor expansion of eze^{z}, combined with a simple identity for 02πsin2n(ψ)𝑑ψ\int_{0}^{2\pi}\sin^{2n}(\psi)\,d\psi, we conclude that 02πf(θ)𝑑θ=0\int_{0}^{2\pi}f(\theta)\,d\theta=0 when β\beta is related to χ\chi by

(3.31) 1β=12π02πeχsin2(θ/2)𝑑θ=n=0(1)nχn2πn!02πsin2n(θ2)𝑑θ=n=0(1)nχn(2n)!4n(n!)3.\frac{1}{\beta}=\frac{1}{2\pi}\int_{0}^{2\pi}e^{-\chi\sin^{2}\left({\theta/2}\right)}\,d\theta=\sum_{n=0}^{\infty}\frac{(-1)^{n}\chi^{n}}{2\pi n!}\int_{0}^{2\pi}\sin^{2n}\left(\frac{\theta}{2}\right)\,d\theta=\sum_{n=0}^{\infty}(-1)^{n}\frac{\chi^{n}(2n)!}{4^{n}\left(n!\right)^{3}}\,.

As χ\chi increases, the boundary deformation becomes increasingly localized near θ=0\theta=0.

Refer to caption
Refer to caption
Figure 2: Optimizing a three-trap pattern, with a common trap radius ε=0.05\varepsilon=0.05, in a four-fold star-shaped domain (4-star) with boundary profile h(θ)=cos(4θ)h(\theta)=\cos(4\theta) and σ=0.1\sigma=0.1. Left panel: contour plot of the optimal PDE solution computed with closest point method. Right panel: optimal traps locations in the 4-star domain with computed side-lengths: 𝐀𝐁0.9581\mathbf{AB}\approx 0.9581, 𝐁𝐂0.9569\mathbf{BC}\approx 0.9569, and 𝐂𝐀0.9541\mathbf{CA}\approx 0.9541. All of the computed interior angles are π/3±δ{\pi/3}\pm\delta, where |δ|0.0015|\delta|\leq 0.0015.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: Optimal trap patterns for D=1D=1 with mm traps each of radius ε=0.05\varepsilon=0.05 in a near-disk domain with boundary r=1±σf(θ)r=1\pm\sigma f(\theta), where σ=0.05\sigma=0.05 and f(θ)=1+βe10sin2(θ/2)f(\theta)=-1+\beta e^{-10\sin^{2}\left({\theta/2}\right)}, with β=5.4484\beta=5.4484. Computed from minimizing (2.26) using the ODE relaxation scheme (3.30). Left: m=3m=3 and inward domain bulge r=1σf(θ)r=1-\sigma f(\theta). Centroid of trap pattern is at (0.0886,0.0)(-0.0886,0.0) and u¯0.2842\overline{u}\approx 0.2842. Left Middle: m=3m=3 and outward bulge r=1+σf(θ)r=1+\sigma f(\theta). Centroid is at (0.1061,0.0)(0.1061,0.0), and u¯0.2825\overline{u}\approx 0.2825. Right Middle: m=4m=4 and inward bulge r=1σf(θ)r=1-\sigma f(\theta), u¯0.1918\overline{u}\approx 0.1918. Right: m=4m=4 and outward bulge r=1+σf(θ)r=1+\sigma f(\theta), u¯0.1916\overline{u}\approx 0.1916.

For χ=10\chi=10, for which β=5.4484\beta=5.4484, in Fig. 3 we show optimal trap patterns for m=3m=3 and m=4m=4 traps for both an outward domain bulge, where r=1+σf(θ)r=1+\sigma f(\theta), and an inward domain bulge, were r=1σf(θ)r=1-\sigma f(\theta), with σ=0.05\sigma=0.05. For the three-trap case, by comparing the two leftmost plots in Fig. 3, we observe that an inward domain bulge will displace the trap locations to the left, as expected intuitively. Alternatively, for an outward bulge, the location of the optimal trap on the line of symmetry becomes closer to the domain protrusion. An intuitive, but as we will see below in Fig. 4, naïve interpretation of the qualitative effect of this domain bulge is that it acts to confine or pin a Brownian particle in this region, and so in order to reduce the mean capture time of such a pinned particle, the best location for a trap is to move closer to the region of protrusion. For the case of four traps, a similar qualitative comparison of the optimal trap configuration for an inward and outward domain bulge is seen in the two rightmost plots in Fig. 3.

In Fig. 4, we show optimal trap patterns from our hybrid theory for 3m53\leq m\leq 5 circular traps of radius ε=0.05\varepsilon=0.05 in a domain with boundary profile r=1+σh(θ)r=1+\sigma h(\theta), where h(θ)=cos(3θ)cos(θ)cos(2θ)h(\theta)=\cos(3\theta)-\cos(\theta)-\cos(2\theta) and σ=0.075\sigma=0.075. This boundary profile perturbs the unit disk inwards near θ=π\theta=\pi and outwards near θ=0\theta=0. For m=3m=3, in Fig. 5 we show a favorable comparison between the full numerical PDE results and the hybrid results for the optimal average MFPT and trap locations. Moreover, from the two rightmost plots in Fig. 4, we observe that there are two five-trap patterns that give local minima for u¯0\bar{u}_{0}. The pattern that has a trap on the line of symmetry near the outward bulge at θ=0\theta=0 is, in this case, not a global minimum of the average MFPT. This indicates that hard-to-assess global effects, rather than simply the local geometry near a protrusion, play a central role for characterizing the optimal trap pattern.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Optimal trap patterns for D=1D=1 in a near-disk domain with boundary r=1+σh(θ)r=1+\sigma h(\theta), σ=0.075\sigma=0.075 and h(θ)=cos(3θ)cos(θ)cos(2θ)h(\theta)=\cos(3\theta)-\cos(\theta)-\cos(2\theta), that contains mm traps of a common radius ε=0.05\varepsilon=0.05. Computed from minimizing (2.26) using the ODE relaxation scheme (3.30). Left: m=3m=3 and u¯0.2794\overline{u}\approx 0.2794. Left-Middle: m=4m=4 and u¯0.19055\overline{u}\approx 0.19055. Right-Middle: m=5m=5 and u¯0.1418\overline{u}\approx 0.1418. Right: m=5m=5, u¯0.1383\overline{u}\approx 0.1383. The two patterns for m=5m=5 are local minimizers, with rather close values for u¯\overline{u}. The global minimum is achieved for the rightmost pattern.
Refer to caption
Figure 5: Contour plot of the PDE numerical solution for the optimal average MFPT and trap locations computed from the closest point method corresponding to the parameter values in the left panel of Fig. 4. Full PDE results for optimal locations: (0.3382,0.5512)(-0.3382,0.5512), (0.3288,0.5510)(-0.3288,-0.5510), (0.4410,0.0012)(0.4410,0.0012), and u¯=0.2996\overline{u}=0.2996. Hybrid results: (0.3316,0.5626)(-0.3316,0.5626), (0.3316,0.5626)(-0.3316,0.5626), (0.4314,0.000)(0.4314,0.000), and u¯0=0.2794\overline{u}_{0}=0.2794.

4 Optimizing Trap Configurations for the MFPT in an Ellipse

Next, we consider the trap optimization problem in an ellipse of arbitrary aspect ratio, but with fixed area π\pi. Our analysis uses a new explicit analytical formula, as derived in § 5, for the Neumann Green’s function G(𝐱;𝐱0)G(\mathbf{x};\mathbf{x}_{0}) and its regular part ReR_{e} of (5.54).

For mm circular traps each of radius ε\varepsilon, the average MFPT u¯0\overline{u}_{0} satisfies (see (2.16))

(4.32) u¯0=|Ω|2πDνm+2πm𝐞T𝒢𝒜,where[I+2πν(IE)𝒢]𝒜=|Ω|2πDm𝐞.\overline{u}_{0}=\frac{|\Omega|}{2\pi D\nu m}+\frac{2\pi}{m}\mathbf{e}^{T}\mathcal{G}\mathcal{A}\,,\quad\mbox{where}\quad\Big{[}I+2\pi\nu(I-E)\mathcal{G}\Big{]}\mathcal{A}=\frac{|\Omega|}{2\pi Dm}\mathbf{e}\,.

Here E𝐞𝐞T/mE\equiv{\mathbf{e}\mathbf{e}^{T}/m}, 𝐞=(1,,1)T\mathbf{e}=(1,\ldots,1)^{T}, ν1/logε\nu\equiv{-1/\log\varepsilon}, and the Green’s matrix 𝒢\mathcal{G} depends on the trap locations {𝐱1,,𝐱m}\{{\mathbf{x}_{1},\ldots,\mathbf{x}_{m}\}}. To determine optimal trap configurations that are minimizers of the average MFPT, given in (4.32), we use the ODE relaxation scheme

(4.33) d𝐳dt=𝐳u¯0,where𝐳(x1,y1,,xm,ym).\frac{d\mathbf{z}}{dt}=-\nabla_{\mathbf{z}}\overline{u}_{0}\,,\qquad\mbox{where}\quad\mathbf{z}\equiv(x_{1},y_{1},\ldots,x_{m},y_{m})\,.

In our implementation of (4.33), the gradient was approximated using a centered difference scheme with mesh spacing 10410^{-4}. The results shown below for the optimal trap patterns are confirmed from using a particle swarm approach [11].

The derivation of the Neumann Green’s function and its regular part in § 5 is based on mapping the elliptical domain to a rectangular domain using

(4.34a) x=fcoshξcosη,y=fsinhξsinη,f=a2b2.x=f\cosh\xi\cos\eta\,,\quad y=f\sinh\xi\sin\eta\,,\qquad f=\sqrt{a^{2}-b^{2}}\,.
With these elliptic cylindrical coordinates, the ellipse is mapped to the rectangle 0ξξb0\leq\xi\leq\xi_{b} and 0η2π0\leq\eta\leq 2\pi, where a=fcoshξba=f\cosh\xi_{b} and b=fsinhξbb=f\sinh\xi_{b}, so that
(4.34b) f=a2b2,ξb=tanh1(ba)=12logβ,β(aba+b).f=\sqrt{a^{2}-b^{2}}\,,\qquad\xi_{b}=\tanh^{-1}\left(\frac{b}{a}\right)=-\frac{1}{2}\log\beta\,,\qquad\beta\equiv\left(\frac{a-b}{a+b}\right)\,.

To determine (ξ,η)(\xi,\eta), given a pair (x,y)(x,y), we invert the transformation (4.34a) using

(4.35a) ξ=12log(12s+2s2s),sμμ2+4f2y22f2,μx2+y2f2.\xi=\frac{1}{2}\log\left(1-2s+2\sqrt{s^{2}-s}\right)\,,\quad s\equiv\frac{-\mu-\sqrt{\mu^{2}+4f^{2}y^{2}}}{2f^{2}}\,,\quad\mu\equiv x^{2}+y^{2}-f^{2}\,.
To recover η\eta, we define ηsin1(p)\eta_{\star}\equiv\sin^{-1}(\sqrt{p}) and use
(4.35b) η={η,if x0,y0πη,if x<0,y0π+η,if x0,y<02πη,if x>0,y<0,wherepμ+μ2+4f2y22f2.\eta=\begin{cases}\eta_{\star},&\text{if }x\geq 0\,,\,\,y\geq 0\\ \pi-\eta_{\star},&\text{if }x<0\,,\,\,y\geq 0\\ \pi+\eta_{\star},&\text{if }x\leq 0\,,\,\,y<0\\ 2\pi-\eta_{\star},&\text{if }x>0\,,\,\,y<0\end{cases}\,,\quad\mbox{where}\quad p\equiv\frac{-\mu+\sqrt{\mu^{2}+4f^{2}y^{2}}}{2f^{2}}\,.

As derived in § 5, the matrix entries in 𝒢\mathcal{G} are obtained from the explicit result

(4.36a) G(𝐱;𝐱0)=14|Ω|(|𝐱|2+|𝐱0|2)316|Ω|(a2+b2)14πlogβ12πξ>12πn=0log(j=18|1β2nzj|),for𝐱𝐱0,\begin{split}G(\mathbf{x};\mathbf{x}_{0})&=\frac{1}{4|\Omega|}\left(|\mathbf{x}|^{2}+|\mathbf{x}_{0}|^{2}\right)-\frac{3}{16|\Omega|}(a^{2}+b^{2})-\frac{1}{4\pi}\log\beta-\frac{1}{2\pi}\xi_{>}\\ &\qquad-\frac{1}{2\pi}\sum_{n=0}^{\infty}\log\left(\displaystyle\prod_{j=1}^{8}|1-\beta^{2n}z_{j}|\right)\,,\quad\mbox{for}\quad\mathbf{x}\neq\mathbf{x}_{0}\,,\end{split}
where |Ω|=πab|\Omega|=\pi ab, ξ>max(ξ,ξ0)\xi_{>}\equiv\max(\xi,\xi_{0}), and the complex constants z1,,z8z_{1},\ldots,z_{8} are defined in terms of (ξ,η)(\xi,\eta), (ξ0,η0)(\xi_{0},\eta_{0}) and ξb\xi_{b} by
(4.36b) z1e|ξξ0|+i(ηη0),z2e|ξξ0|4ξb+i(ηη0),z3e(ξ+ξ0)2ξb+i(ηη0),z4eξ+ξ02ξb+i(ηη0),z5eξ+ξ04ξb+i(η+η0),z6e(ξ+ξ0)+i(η+η0),z7e|ξξ0|2ξb+i(η+η0),z8e|ξξ0|2ξb+i(η+η0).\begin{split}z_{1}&\equiv e^{-|\xi-\xi_{0}|+i(\eta-\eta_{0})}\,,\quad z_{2}\equiv e^{|\xi-\xi_{0}|-4\xi_{b}+i(\eta-\eta_{0})}\,,\quad z_{3}\equiv e^{-(\xi+\xi_{0})-2\xi_{b}+i(\eta-\eta_{0})}\,,\\ z_{4}&\equiv e^{\xi+\xi_{0}-2\xi_{b}+i(\eta-\eta_{0})}\,,\quad z_{5}\equiv e^{\xi+\xi_{0}-4\xi_{b}+i(\eta+\eta_{0})}\,,\quad z_{6}\equiv e^{-(\xi+\xi_{0})+i(\eta+\eta_{0})}\,,\\ z_{7}&\equiv e^{|\xi-\xi_{0}|-2\xi_{b}+i(\eta+\eta_{0})}\,,\quad z_{8}\equiv e^{-|\xi-\xi_{0}|-2\xi_{b}+i(\eta+\eta_{0})}\,.\end{split}

Observe that the Dirac point at 𝐱0=(x0,y0)\mathbf{x}_{0}=(x_{0},y_{0}) is mapped to (ξ0,η0)(\xi_{0},\eta_{0}). The transformation (4.34) and its inverse (4.35), determines G(𝐱;𝐱0)G(\mathbf{x};\mathbf{x}_{0}) explicitly in terms of 𝐱Ω\mathbf{x}\in\Omega.

Moreover, as shown in § 5, the regular part of the Neumann Green’s function, ReR_{e}, satisfying G(𝐱;𝐱0)(2π)1log|𝐱𝐱0|+ReG(\mathbf{x};\mathbf{x}_{0})\sim-(2\pi)^{-1}\log|\mathbf{x}-\mathbf{x}_{0}|+R_{e} as 𝐱𝐱0\mathbf{x}\to\mathbf{x}_{0}, is given by

(4.37a) Re=|𝐱0|22|Ω|316|Ω|(a2+b2)+12πlog(a+b)ξ02π+14πlog(cosh2ξ0cos2η0)12πn=1log(1β2n)12πn=0log(j=28|1β2nzj0|).\begin{split}R_{e}&=\frac{|\mathbf{x}_{0}|^{2}}{2|\Omega|}-\frac{3}{16|\Omega|}(a^{2}+b^{2})+\frac{1}{2\pi}\log(a+b)-\frac{\xi_{0}}{2\pi}+\frac{1}{4\pi}\log\left(\cosh^{2}\xi_{0}-\cos^{2}\eta_{0}\right)\\ &\quad-\frac{1}{2\pi}\sum_{n=1}^{\infty}\log(1-\beta^{2n})-\frac{1}{2\pi}\sum_{n=0}^{\infty}\log\left(\displaystyle\prod_{j=2}^{8}|1-\beta^{2n}z_{j}^{0}|\right)\,.\end{split}
Here, zj0z_{j}^{0} is the limiting value of zjz_{j}, defined in (4.36b), as (ξ,η)(ξ0,η0)(\xi,\eta)\to(\xi_{0},\eta_{0}), given by
(4.37b) z20=β2,z30=βe2ξ0,z40=βe2ξ0,z50=β2e2ξ0+2iη0,z60=e2ξ0+2iη0,z70=βe2iη0,z80=βe2iη0,whereβaba+b.\begin{split}z_{2}^{0}&=\beta^{2}\,,\quad z_{3}^{0}=\beta e^{-2\xi_{0}}\,,\quad z_{4}^{0}=\beta e^{2\xi_{0}}\,,\quad z_{5}^{0}=\beta^{2}e^{2\xi_{0}+2i\eta_{0}}\,,\\ z_{6}^{0}&=e^{-2\xi_{0}+2i\eta_{0}}\,,\quad z_{7}^{0}=\beta e^{2i\eta_{0}}\,,\quad z_{8}^{0}=\beta e^{2i\eta_{0}}\,,\quad\mbox{where}\quad\beta\equiv\frac{a-b}{a+b}\,.\end{split}

4.1 Examples of the Theory

In this subsection, we will apply our hybrid analytical-numerical approach based on (4.32), (4.36), (4.37) and the ODE relaxation scheme (4.33), to compute optimal trap configurations in an elliptical domain of area π\pi with either m=2,,5m=2,\ldots,5 circular traps of a common radius ε=0.05\varepsilon=0.05. In our examples below, we set D=1D=1 and we study how the optimal pattern of traps changes as the aspect ratio of the ellipse is varied. We will compare our results from this hybrid theory with the near-disk asymptotic results of (2.26), with full PDE numerical results computed from the closest point method [10], and with the asymptotic approximations derived below in § 4.2, which are valid for a long and thin ellipse.

Refer to caption
Refer to caption
Figure 6: The optimal trap distance from the origin (left panel) and optimal average MFPT u¯0min\overline{u}_{0\mbox{min}} (right panel) versus the semi-minor axis bb of an elliptical domain of area π\pi that contains two traps of a common radius ε=0.05\varepsilon=0.05 and D=1D=1. The optimum trap locations are on the semi-major axis, equidistant from the origin. Solid curves: hybrid asymptotic theory (4.32) for the ellipse coupled to the ODE relaxation scheme (4.33) to find the minimum. Dashed line (red): near-disk asymptotics of (2.26). Discrete points: full numerical PDE results computed from the closest point method. Dashed-dotted line (blue): thin-domain asymptotics (4.45). These curves essentially overlap with those from the hybrid theory for the optimal trap distance.

For m=2m=2 traps, in the right panel of Fig. 6 we show results for the optimal average MFPT versus the semi-minor axis bb of the ellipse. The hybrid theory is seen to compare very favorably with full numerical PDE results for all b1b\leq 1. For bb near unity and for bb small, the near-disk theory of (2.26) and (3.30), and the thin-domain asymptotic result in (4.45) are seen to provide, respectively, good predictions for the optimal MFPT. Our hybrid theory shows that the optimal trap locations are on the semi-major axis for all b<1b<1. In the left panel of Fig. 6, the optimal trap locations found from the steady-state of our ODE relaxation (4.33) are seen to compare very favorably with full PDE results. Remarkably, we observe that the thin-domain asymptotics prediction in (4.45) agrees well with the optimal locations from our hybrid theory for b<0.7b<0.7.

Refer to caption
Figure 7: Area of the triangle formed by the three optimally located traps of a common radius ε=0.05\varepsilon=0.05 with D=1D=1 in a deforming ellipse of area π\pi versus versus the semi-major axis aa. The optimal traps become collinear as aa increases. Solid curve: hybrid asymptotic theory (4.32) for the ellipse coupled to the ODE relaxation scheme (4.33) to find the minimum. Dashed line: near-disk asymptotics of (2.26). Discrete points: full numerical PDE results computed from the closest point method.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 8: Optimal three-trap configurations for D=1D=1 in a deforming ellipse of area π\pi with semi-major axis aa and a common trap radius ε=0.05\varepsilon=0.05. Left: a=1a=1, b=1b=1. Middle Left: a=1.184a=1.184, b0.845b\approx 0.845. Middle Right: a=1.351a=1.351, b0.740b\approx 0.740. Right: a=1.450a=1.450, b0.690b\approx 0.690. The optimally located traps form an isosceles triangle as they deform from a ring pattern in the unit disk to a collinear pattern as aa increases.
Refer to caption
Refer to caption
Figure 9: Left panel: Optimal distance from the origin for a collinear three-trap pattern on the major-axis of an ellipse of area π\pi versus the semi-minor axis bb. When b0.71b\leq 0.71 the optimal pattern has a trap at the center and a pair of traps symmetrically located on either side of the origin. Right panel: optimal average MFPT u¯0min\overline{u}_{0\mbox{min}} versus bb. Solid curves: hybrid asymptotic theory (4.32) for the ellipse coupled to the ODE relaxation scheme (4.33) to find the minimum. Dashed line (red): near-disk asymptotics of (2.26). Discrete points: Full PDE numerical results computed using the closest point method. Dashed-dotted line (blue): thin-domain asymptotics (4.48).

Next, we consider the case m=3m=3. To clearly illustrate how the optimal trap configuration changes as the aspect ratio of the ellipse is varied, we use the hybrid theory to compute the area of the triangle formed by the three optimally located traps. The results shown in Fig. 7 are seen to compare favorably with full PDE results. These results show that that the optimal traps become colinear on the semi-major axis when a1.45a\geq 1.45. In Fig. 8 we show snapshots, at certain values of the semi-major axis, of the optimal trap locations in the ellipse. In the right panel of Fig. 9, we show that the optimal average MFPT from the hybrid theory compares very well with full numerical PDE results for all b1b\leq 1, and that the thin domain asymptotics (4.48) provides a good approximation when b0.3b\leq 0.3. In the left panel of Fig. 9 we plot the optimal trap locations on the semi-major axis when the trap pattern is collinear. We observe that results for the optimal trap locations from the hybrid theory, the thin domain asymptotics (4.48), and the full PDE simulations, essentially coincide on the full range 0.2<b<0.70.2<b<0.7.

Refer to caption
Figure 10: Area of the quadrilateral formed by the four optimally located traps of a common radius ε=0.05\varepsilon=0.05 with D=1D=1 in a deforming ellipse of area π\pi and semi-major axis aa. The optimal traps become collinear as aa increases. Solid curve: hybrid asymptotic theory (4.32) for the ellipse coupled to the ODE relaxation scheme (4.33) to find the minimum. Dashed line (red): near-disk asymptotics of (2.26). Discrete points: full numerical PDE results computed from the closest point method.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 11: Optimal four-trap configurations for D=1D=1 in a deforming ellipse of area π\pi with semi-major axis aa and a common trap radius ε=0.05\varepsilon=0.05. Left: a=1a=1, b=1b=1. Middle Left: a=1.577a=1.577, b0.634b\approx 0.634. Middle Right: a=1.675a=1.675, b0.597b\approx 0.597. Right: a=3.0a=3.0, b0.333b\approx 0.333. The optimally located traps form a rectangle, followed by a parallelogram, as they deform from a ring pattern in the unit disk to a collinear pattern as aa increases.

For the case of four traps, where m=4m=4, in Fig. 10 we use the hybrid theory to plot the area of the quadrilateral formed by the four optimally located traps versus the semi-major axis a>1a>1. The full PDE results, also shown in Fig. 10, compare well with the hybrid results. This figure shows that as the aspect ratio of the ellipse increases the traps eventually become collinear on the semi-major axis when a1.7a\geq 1.7. This feature is further illustrated by the snapshots of the optimal trap locations shown in Fig. 11 at representative values of aa. In the right panel of Fig. 12, we show that the hybrid and full numerical PDE results for the optimal average MFPT agree very closely for all b1b\leq 1, but that the thin-domain asymptotic result (4.51) agrees well only when b0.25b\leq 0.25. However, as similar to the three-trap case, on the range of bb where the trap pattern is collinear, in the left panel of Fig. 12 we show that the hybrid theory, the full PDE simulations, and the thin-domain asymptotics all provide essentially indistinguishable predictions for the optimal trap locations on the semi-major axis.

Refer to caption
Refer to caption
Figure 12: Left panel: Optimal distances from the origin for a collinear four-trap pattern on the major-axis of an ellipse of area π\pi and semi-minor axis bb. When b0.57b\leq 0.57 the optimal pattern has two pairs of traps symmetrically located on either side of the origin. Right panel: the optimal average MFPT u¯0min\overline{u}_{0\mbox{min}} versus bb. Solid curves: hybrid asymptotic theory (4.32) for the ellipse coupled to the ODE relaxation scheme (4.33) to find the minimum. Dashed line (red): near-disk asymptotics of (2.26). Discrete points: full numerical PDE results computed from the closest point method. Dashed-dotted line (blue): thin-domain asymptotics (4.51).
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 13: Optimal five-trap configurations for D=1D=1 in a deforming ellipse of area π\pi with semi-major axis aa and a common trap radius ε=0.05\varepsilon=0.05. Top left: a=1a=1, b=1b=1. Top middle: a=1.25a=1.25, b=0.8b=0.8. Top right: a=1.4a=1.4, b0.690b\approx 0.690. Bottom left: a=1.665a=1.665, b0.601b\approx 0.601. Bottom middle: a=2.22a=2.22, b0.450b\approx 0.450. Bottom right: a=2.79a=2.79, b0.358b\approx 0.358. The optimal traps become collinear as aa increases and the edge-most traps become closer to the corner of the domain as aa increases.
Refer to caption
Refer to caption
Figure 14: Left panel: Optimal distances from the origin for a collinear five-trap pattern on the major-axis of an ellipse of area π\pi and semi-minor axis bb. When b0.51b\leq 0.51 the optimal pattern has a trap at the center and two pairs of traps symmetrically located on either side of the origin. Right panel: The optimal average MFPT u¯0min\overline{u}_{0\mbox{min}} versus bb. Solid curves: hybrid asymptotic theory for the ellipse (4.32) coupled to the ODE relaxation scheme (4.33) to find the minimum. Dashed line (red): near-disk asymptotics of (2.26). Discrete points: full numerical PDE results computed from the closest point method. Dashed-dotted line (blue): thin-domain asymptotics (4.53).

Finally, we show similar results for the case of five traps. In Fig. 13, we plot the optimal trap locations in the ellipse as the semi-major axis of the ellipse is varied. This plot shows that the optimal pattern becomes collinear when (roughly) a2a\geq 2. In the right panel of Fig. 14, we show a close agreement between the hybrid and full numerical PDE results for the optimal average MFPT. However, as seen in Fig. 14, the thin-domain asymptotic result (4.53) accurately predicts the optimal MFPT only for rather small bb. As for the four-trap case, in the left panel of Fig. 14 we show that the hybrid theory, the full PDE simulations, and the thin-domain asymptotics all yield similar predictions for the optimal trap locations on the semi-major axis.

4.2 Thin-Domain Asymptotics

For a long and thin ellipse, where b=δ1b=\delta\ll 1 and a=1/δa={1/\delta} but with |Ω|=π|\Omega|=\pi, we now derive simple approximations for the optimal trap locations and the optimal average MFPT using an approach based on thin-domain asymptotics. For m=2m=2 the optimal trap locations are on the semi-major axis (cf. Fig. 6), while for 3m53\leq m\leq 5 the optimal trap locations become collinear when the semi-minor axis bb decreases below a threshold (see Fig. 8, Fig. 11, and Fig. 13).

As derived in Appendix A, the leading-order approximation for the MFPT uu satisfying (2.2) in a thin elliptical with b=δ1b=\delta\ll 1 is

(4.38) u(x,y)δ2U0(δx)+𝒪(δ1),u(x,y)\sim\delta^{-2}U_{0}(\delta x)+{\mathcal{O}}(\delta^{-1})\,,

where the one-dimensional profile U0(X)U_{0}(X), with x=X/δx={X/\delta}, satisfies the ODE

(4.39) [1X2U0]=1X2D,on|X|1,\left[\sqrt{1-X^{2}}\,U_{0}^{\prime}\right]^{\prime}=-\frac{\sqrt{1-X^{2}}}{D}\,,\quad\mbox{on}\quad|X|\leq 1\,,

with U0U_{0} and U0U_{0}^{\prime} bounded as X±1X\to\pm 1. In terms of U0(X)U_{0}(X), the average MFPT for the thin ellipse is estimated for δ1\delta\ll 1 as

(4.40) u¯01π1/δ1/δδ1δ2x2δ1δ2x2u𝑑x𝑑y4πδ2011X2U0(X)𝑑X.\overline{u}_{0}\sim\frac{1}{\pi}\int_{-1/\delta}^{1/\delta}\int_{-\delta\sqrt{1-\delta^{2}x^{2}}}^{\delta\sqrt{1-\delta^{2}x^{2}}}u\,dxdy\sim\frac{4}{\pi\delta^{2}}\int_{0}^{1}\sqrt{1-X^{2}}\,U_{0}(X)\,dX\,.

In the thin domain limit, the circular traps of a common radius ε\varepsilon centered on the semi-major axis are approximated by zero point constraints for U0U_{0} at locations on the interval |X|1|X|\leq 1. In this way, (4.39) becomes a multi-point BVP problem, whose solution depends on the locations of the zero point constraints. Optimal values for the location of these constraints are obtained by minimizing the 1-D integral in (4.40) approximating u¯0\overline{u}_{0}. We now apply this approach for m=2,,5m=2,\ldots,5 collinear traps.

For m=2m=2 traps centered at X=±dX=\pm d with 0<d<10<d<1, the multi-point BVP for U0(X)U_{0}(X) on 0<X<10<X<1 satisfies

(4.41) [1X2U0]=1X2D,0<X<1;U0(0)=0,U0(d)=0,\left[\sqrt{1-X^{2}}\,U_{0}^{\prime}\right]^{\prime}=-\frac{\sqrt{1-X^{2}}}{D}\,,\quad 0<X<1\,;\qquad U_{0}^{\prime}(0)=0\,,\quad U_{0}(d)=0\,,

with U0U_{0} and U0U_{0}^{\prime} bounded as X±1X\to\pm 1. A particular solution for (4.41) is U0p=[(sin1(X))2+X2]/(4D)U_{0p}=-{[(\sin^{-1}(X))^{2}+X^{2}]/(4D)}, while the homogeneous solution is U0H=c1sin1(X)+c2U_{0H}=c_{1}\sin^{-1}(X)+c_{2}. By combining these solutions, we readily calculate that

(4.42a) U0(X)={14D[(sin1X)2+X2πsin1X+c2],dX1,14D[(sin1X)2+X2+c1],0Xd,U_{0}(X)=\begin{cases}-\frac{1}{4D}\left[\left(\sin^{-1}{X}\right)^{2}+X^{2}-\pi\sin^{-1}X+c_{2}\right]\,,\quad d\leq X\leq 1\,,\\ -\frac{1}{4D}\left[\left(\sin^{-1}{X}\right)^{2}+X^{2}+c_{1}\right]\,,\quad 0\leq X\leq d\,,\end{cases}
where c1c_{1} and c2c_{2} are given by
(4.42b) c1=d2(sin1d)2,c2=d2+πsin1d(sin1d)2.c_{1}=-d^{2}-\left(\sin^{-1}{d}\right)^{2}\,,\qquad c_{2}=-d^{2}+\pi\sin^{-1}{d}-\left(\sin^{-1}{d}\right)^{2}\,.

Upon substituting (4.42a) into (4.40), we obtain that

(4.43a) u¯01πDδ2[J0+(d)],\overline{u}_{0}\sim-\frac{1}{\pi D\delta^{2}}\left[J_{0}+{\mathcal{H}}(d)\right]\,,
where the two integrals J0J_{0} and (d){\mathcal{H}}(d) are given by
(4.43b) J0\displaystyle J_{0} 01F(X)[(sin1X)2+X2πsin1(X)]𝑑X0.703,\displaystyle\equiv\int_{0}^{1}F(X)\left[\left(\sin^{-1}{X}\right)^{2}+X^{2}-\pi\sin^{-1}(X)\right]\,dX\approx-0.703\,,
(4.43c) (d)\displaystyle{\mathcal{H}}(d) π0dF(X)sin1(X)𝑑X+c2d1F(X)𝑑X+c10dF(X)𝑑X,\displaystyle\equiv\pi\int_{0}^{d}F(X)\sin^{-1}(X)\,dX+c_{2}\int_{d}^{1}F(X)\,dX+c_{1}\int_{0}^{d}F(X)\,dX\,,

where F(X)=1X2F(X)=\sqrt{1-X^{2}}. By performing a few quadratures, and using (4.42b) for c1c_{1} and c2c_{2}, we obtain an explicit expression for (d){\mathcal{H}}(d):

(4.44) (d)=π2[sin1(d)]2+π24sin1(d)πd22.{\mathcal{H}}(d)=-\frac{\pi}{2}\left[\sin^{-1}(d)\right]^{2}+\frac{\pi^{2}}{4}\sin^{-1}(d)-\frac{\pi d^{2}}{2}\,.

To estimate the optimal average MFPT we simply maximize (d){\mathcal{H}}(d) in (4.44) on 0<d<10<d<1. We compute that dopt0.406d_{\textrm{opt}}\approx 0.406, and correspondingly u¯0min=(πDδ2)1[J0+(dopt)]\overline{u}_{0\mbox{min}}=-\left(\pi D\delta^{2}\right)^{-1}\left[J_{0}+{\mathcal{H}}(d_{\textrm{opt}})\right]. Then, by setting δ=b\delta=b and xopt=dopt/δx_{\textrm{opt}}={d_{\textrm{opt}}/\delta}, we obtain the following estimate for the optimal trap location and minimum average MFPT for m=2m=2 traps in the thin domain limit:

(4.45) x0opt0.406/b,u¯0opt0.0652/(b2D),forb1.x_{0\textrm{opt}}\sim{0.406/b}\,,\qquad\overline{u}_{0\textrm{opt}}\sim{0.0652/(b^{2}D)}\,,\quad\mbox{for}\quad b\ll 1\,.

These estimates are favorably compared in Fig. 6 with full PDE solutions computed using the closest point method [10] and with the full asymptotic theory based on (4.32).

Next, suppose that m=3m=3. Since there is an additional trap at the origin, we simply replace the condition U0(0)=0U_{0}^{\prime}(0)=0 in (4.41) with U0(0)=0U_{0}(0)=0. In place of (4.42a),

(4.46a) U0(X)={14D[(sin1X)2+X2πsin1X+c2],dX1,14D[(sin1X)2+X2+c1sin1X],0Xd,U_{0}(X)=\begin{cases}-\frac{1}{4D}\left[\left(\sin^{-1}{X}\right)^{2}+X^{2}-\pi\sin^{-1}X+c_{2}\right]\,,\quad d\leq X\leq 1\,,\\ -\frac{1}{4D}\left[\left(\sin^{-1}{X}\right)^{2}+X^{2}+c_{1}\sin^{-1}{X}\right]\,,\quad 0\leq X\leq d\,,\end{cases}
where c1c_{1} and c2c_{2} are given by
(4.46b) c1=(d2+[sin1(d)]2)/sin1(d),c2=d2+πsin1(d)[sin1(d)]2.c_{1}=-{\left(d^{2}+\left[\sin^{-1}(d)\right]^{2}\right)/\sin^{-1}(d)}\,,\qquad c_{2}=-d^{2}+\pi\sin^{-1}(d)-\left[\sin^{-1}(d)\right]^{2}\,.

The average MFPT is given by (4.43a), where (d){\mathcal{H}}(d) is now defined by

(4.47) (d)c2d1F(X)𝑑X+(c1+π)0dF(X)sin1(X)𝑑X,{\mathcal{H}}(d)\equiv c_{2}\int_{d}^{1}F(X)\,dX+(c_{1}+\pi)\int_{0}^{d}F(X)\,\sin^{-1}(X)\,dX\,,

with F(X)=1X2F(X)=\sqrt{1-X^{2}}. By maximizing (d){\mathcal{H}}(d) on 0<d<10<d<1, we obtain dopt0.567d_{\textrm{opt}}\approx 0.567, so that u¯0min=(πDδ2)1[J0+(dopt)]\overline{u}_{0\mbox{min}}=-\left(\pi D\delta^{2}\right)^{-1}\left[J_{0}+{\mathcal{H}}(d_{\textrm{opt}})\right]. In this way, the optimal trap location and the minimum of the average MFPT satisfies

(4.48) x0opt0.567/b,u¯0opt0.0308/(b2D),forb1.x_{0\textrm{opt}}\sim{0.567/b}\,,\qquad\overline{u}_{0\textrm{opt}}\sim{0.0308/(b^{2}D)}\,,\quad\mbox{for}\quad b\ll 1\,.

In Fig. 9 these scaling laws are seen to compare well with full PDE solutions and with the full asymptotic theory of (4.32), even when bb is only moderately small.

Next, we consider the case m=4m=4, with two symmetrically placed traps on either side of the origin. Therefore, we solve (4.41) with U0(0)=0U_{0}^{\prime}(0)=0, U0(d1)=0U_{0}(d_{1})=0, and U0(d2)=0U_{0}(d_{2})=0, where 0<d1<d20<d_{1}<d_{2}. In place of (4.42a), we get

(4.49a) U0(X)={14D[(sin1X)2+X2πsin1X+c2],d2X1,14D[(sin1X)2+X2+b1sin1X+b2],d1Xd2,14D[(sin1X)2+X2+c1],0Xd1,U_{0}(X)=\begin{cases}-\frac{1}{4D}\left[\left(\sin^{-1}{X}\right)^{2}+X^{2}-\pi\sin^{-1}X+c_{2}\right]\,,\quad d_{2}\leq X\leq 1\,,\\ -\frac{1}{4D}\left[\left(\sin^{-1}{X}\right)^{2}+X^{2}+b_{1}\sin^{-1}{X}+b_{2}\right]\,,\quad d_{1}\leq X\leq d_{2}\,,\\ -\frac{1}{4D}\left[\left(\sin^{-1}{X}\right)^{2}+X^{2}+c_{1}\right]\,,\quad 0\leq X\leq d_{1}\,,\end{cases}
where c1c_{1} and c2c_{2} are given by
(4.49b) c1=d12(sin1d1)2,c2=d22+πsin1d2(sin1d2)2,b1=(sin1d1)2(sin1d2)2+d12d22sin1d2sin1d1,b2=b1sin1d1d12(sin1d1)2.\begin{split}&\qquad\qquad\qquad c_{1}=-d_{1}^{2}-\left(\sin^{-1}{d_{1}}\right)^{2}\,,\qquad c_{2}=-d_{2}^{2}+\pi\sin^{-1}{d_{2}}-\left(\sin^{-1}{d_{2}}\right)^{2}\,,\\ b_{1}&=\frac{\left(\sin^{-1}{d_{1}}\right)^{2}-\left(\sin^{-1}{d_{2}}\right)^{2}+d_{1}^{2}-d_{2}^{2}}{\sin^{-1}{d_{2}}-\sin^{-1}{d_{1}}}\,,\qquad b_{2}=-b_{1}\sin^{-1}d_{1}-d_{1}^{2}-\left(\sin^{-1}{d_{1}}\right)^{2}\,.\end{split}

The average MFPT is given by (4.43a), where =(d1,d2){\mathcal{H}}={\mathcal{H}}(d_{1},d_{2}) is now given by

(4.50) (d1,d2)c2d21F(X)𝑑X+(b1+π)d1d2F(X)sin1(X)𝑑X+b2d1d2F(X)𝑑X+π0d1F(X)sin1(X)𝑑X+c10d1F(X)𝑑X,\begin{split}{\mathcal{H}}(d_{1},d_{2})&\equiv c_{2}\int_{d_{2}}^{1}F(X)\,dX+(b_{1}+\pi)\int_{d_{1}}^{d_{2}}F(X)\,\sin^{-1}(X)\,dX+b_{2}\int_{d_{1}}^{d_{2}}F(X)\,dX\\ &\qquad+\pi\int_{0}^{d_{1}}F(X)\,\sin^{-1}(X)\,dX+c_{1}\int_{0}^{d_{1}}F(X)\,dX\,,\end{split}

where F(X)1X2F(X)\equiv\sqrt{1-X^{2}}. By using a grid search to maximize (d1,d2){\mathcal{H}}(d_{1},d_{2}) on 0<d1<d2<10<d_{1}<d_{2}<1, we obtain that d1opt0.215d_{1\textrm{opt}}\approx 0.215 and d2opt0.656d_{2\textrm{opt}}\approx 0.656. This yields that the optimal trap locations and the minimum of the average MFPT, given by u¯0min=(πDδ2)1[J0+(d1opt,d2opt)]\overline{u}_{0\mbox{min}}=-\left(\pi D\delta^{2}\right)^{-1}\left[J_{0}+{\mathcal{H}}(d_{1\textrm{opt}},d_{2\textrm{opt}})\right], have the scaling law

(4.51) x1opt0.215/b,x2opt0.656/b,u¯0opt0.0179/(b2D),forb1.x_{1\textrm{opt}}\sim{0.215/b}\,,\quad x_{2\textrm{opt}}\sim{0.656/b}\,,\quad\overline{u}_{0\textrm{opt}}\sim{0.0179/(b^{2}D)}\,,\quad\mbox{for}\quad b\ll 1\,.

These scaling laws are shown in Fig. 12 to agree well with the full PDE solutions and with the full asymptotic theory of (4.32) when bb is small.

Finally, we consider the case m=5m=5, where we need only modify the m=4m=4 analysis by adding a trap at the origin. Setting U0(0)=0U_{0}(0)=0, U0(d1)=0U_{0}(d_{1})=0, and U0(d2)=0U_{0}(d_{2})=0 we obtain that U0U_{0} is again given by (4.49a), except that now c1c_{1} in (4.49a) is replaced by c1sin1(X)c_{1}\sin^{-1}(X), with c1c_{1} as defined in (4.46b). The average MFPT satisfies (4.43a), where in place of (4.50) we obtain that (d1,d2){\mathcal{H}}(d_{1},d_{2}) is given by

(4.52) (d1,d2)c2d11F(X)𝑑X+(b1+π)d1d2F(X)sin1(X)𝑑X+b2d1d2F(X)𝑑X+(c1+π)0d1F(X)sin1XdX,\begin{split}{\mathcal{H}}(d_{1},d_{2})&\equiv c_{2}\int_{d_{1}}^{1}F(X)\,dX+(b_{1}+\pi)\int_{d_{1}}^{d_{2}}F(X)\,\sin^{-1}(X)\,dX\\ &\qquad+b_{2}\int_{d_{1}}^{d_{2}}F(X)\,dX+(c_{1}+\pi)\int_{0}^{d_{1}}F(X)\,\sin^{-1}{X}\,dX\,,\end{split}

with F(X)=1X2F(X)=\sqrt{1-X^{2}}. A grid search yields that (d1,d2){\mathcal{H}}(d_{1},d_{2}) is maximized on 0<d1<d2<10<d_{1}<d_{2}<1 when d1opt0.348d_{1\textrm{opt}}\approx 0.348 and d2opt0.714d_{2\textrm{opt}}\approx 0.714. In this way, the corresponding optimal trap locations and minimum average MFPT have the scaling law

(4.53) x1opt0.348/b,x2opt0.714/b,u¯0opt0.0117/(b2D),forb1.x_{1\textrm{opt}}\sim{0.348/b}\,,\quad x_{2\textrm{opt}}\sim{0.714/b}\,,\quad\overline{u}_{0\textrm{opt}}\sim{0.0117/(b^{2}D)}\,,\quad\mbox{for}\quad b\ll 1\,.

Fig. 14 shows that (4.53) compares well with the full PDE solutions and with the full asymptotic theory of (4.32) when bb is small.

5 An Explicit Neumann Green’s Function for the Ellipse

We derive the new explicit formula (4.36) for the Neumann Green’s function and its regular part in (4.37) in terms of rapidly converging infinite series. This Green’s function G(𝐱;𝐱0)G(\mathbf{x};\mathbf{x}_{0}) for the ellipse Ω{𝐱=(x,y)|x2/a2+y2/b21}\Omega\equiv\{{\mathbf{x}=(x,y)\,|\,{x^{2}/a^{2}}+{y^{2}/b^{2}}\leq 1\}} is the unique solution to

(5.54a) ΔG\displaystyle\Delta G =1|Ω|δ(𝐱𝐱0)𝐱Ω;nG=0,𝐱Ω;\displaystyle=\frac{1}{|\Omega|}-\delta(\mathbf{x}-\mathbf{x}_{0})\,\quad\mathbf{x}\in\Omega\,;\qquad\partial_{n}G=0\,,\,\,\,\mathbf{x}\in\partial\Omega\,;
(5.54b) G12π\displaystyle G\sim-\frac{1}{2\pi} log|𝐱𝐱0|+Re+o(1)as𝐱𝐱0;ΩGd𝐱=0,\displaystyle\log{|\mathbf{x}-\mathbf{x}_{0}|}+R_{e}+o(1)\quad\text{as}\quad\mathbf{x}\to\mathbf{x}_{0}\,;\qquad\int_{\Omega}G\,\text{d}\mathbf{x}=0\,,

where |Ω|=πab|\Omega|=\pi ab is the area of Ω\Omega and ReR_{e} is the regular part of the Green’s function. Here nG\partial_{n}G is the outward normal derivative to the boundary of the ellipse. To remove the |Ω|1|\Omega|^{-1} term in (5.54a), we introduce N(𝐱;𝐱0)N(\mathbf{x};\mathbf{x}_{0}) defined by

(5.55) G(𝐱;𝐱0)=14|Ω|(x2+y2)+N(𝐱;𝐱0).G(\mathbf{x};\mathbf{x}_{0})=\frac{1}{4|\Omega|}(x^{2}+y^{2})+N(\mathbf{x};\mathbf{x}_{0})\,.

We readily derive that N(𝐱;𝐱0)N(\mathbf{x};\mathbf{x}_{0}) satisfies

(5.56a) ΔN\displaystyle\Delta N =δ(𝐱𝐱0)𝐱Ω;nN=12|Ω|x2/a4+y2/b4,𝐱Ω;\displaystyle=-\delta(\mathbf{x}-\mathbf{x}_{0})\quad\mathbf{x}\in\Omega\,;\quad\partial_{n}N=-\frac{1}{2|\Omega|\sqrt{{x^{2}/a^{4}}+{y^{2}/b^{4}}}}\,,\,\,\,\mathbf{x}\in\partial\Omega\,;
(5.56b) ΩNd𝐱\displaystyle\int_{\Omega}N\,\text{d}\mathbf{x} =14|Ω|Ω(x2+y2)d𝐱=14|Ω|(|Ω|4(a2+b2))=116(a2+b2).\displaystyle=-\frac{1}{4|\Omega|}\int_{\Omega}(x^{2}+y^{2})\,\text{d}\mathbf{x}=-\frac{1}{4|\Omega|}\left(\frac{|\Omega|}{4}(a^{2}+b^{2})\right)=-\frac{1}{16}(a^{2}+b^{2})\,.

We assume that a>ba>b, so that the semi-major axis is on the xx-axis. To solve (5.56) we introduce the elliptic cylindrical coordinates (ξ,η)(\xi,\eta) defined by (4.34) and its inverse mapping (4.35). We set 𝒩(ξ,η)N(x(ξ,η),y(ξ,η))\mathcal{N}(\xi,\eta)\equiv N(x(\xi,\eta),y(\xi,\eta)) and seek to convert (5.56) to a problem for 𝒩\mathcal{N} defined in a rectangular domain. It is well-known that

(5.57) Nxx+Nyy=1f2(cosh2ξcos2η)(𝒩ξξ+𝒩ηη).N_{xx}+N_{yy}=\frac{1}{f^{2}(\cosh^{2}\xi-\cos^{2}\eta)}\left(\mathcal{N}_{\xi\xi}+\mathcal{N}_{\eta\eta}\right)\,.

Moreover, by computing the scale factors hξ=xξ2+yξ2h_{\xi}=\sqrt{x_{\xi}^{2}+y_{\xi}^{2}} and hη=xη2+yη2h_{\eta}=\sqrt{x_{\eta}^{2}+y_{\eta}^{2}} of the transformation, we obtain that

(5.58) δ(xx0)δ(yy0)=1hηhξδ(ξξ0)δ(ηη0)=1f2(cosh2ξcos2η)δ(ξξ0)δ(ηη0),\delta(x-x_{0})\delta(y-y_{0})=\frac{1}{h_{\eta}h_{\xi}}\delta(\xi-\xi_{0})\delta(\eta-\eta_{0})=\frac{1}{f^{2}(\cosh^{2}\xi-\cos^{2}\eta)}\delta(\xi-\xi_{0})\delta(\eta-\eta_{0})\,,

where we used hξ=hη=fcosh2ξ0cos2η0h_{\xi}=h_{\eta}=f\sqrt{\cosh^{2}\xi_{0}-\cos^{2}\eta_{0}}. By using (5.57) and (5.58), we obtain that the PDE in (5.56a) transforms to

(5.59) 𝒩ξξ+𝒩ηη=δ(ξξ0)δ(ηη0),in0η2π,  0ξub.\mathcal{N}_{\xi\xi}+\mathcal{N}_{\eta\eta}=-\delta(\xi-\xi_{0})\delta(\eta-\eta_{0})\,,\quad\mbox{in}\quad 0\leq\eta\leq 2\pi\,,\,\,0\leq\xi\leq u_{b}\,.

To determine how the normal derivative in (5.56a) transforms, we calculate

(5.60) (NxNy)=1xξyηxηyξ(yηyξxηxξ)(𝒩ξ𝒩η),\begin{pmatrix}N_{x}\\ N_{y}\end{pmatrix}=\frac{1}{x_{\xi}y_{\eta}-x_{\eta}y_{\xi}}\begin{pmatrix}y_{\eta}&-y_{\xi}\\ -x_{\eta}&x_{\xi}\end{pmatrix}\begin{pmatrix}\mathcal{N}_{\xi}\\ \mathcal{N}_{\eta}\end{pmatrix}\,,

where from (4.34a) we calculate

(5.61) xξ=fsinhξcosη=yη,xη=fcoshξsinη=yξ.x_{\xi}=f\sinh\xi\cos\eta=y_{\eta}\,,\qquad x_{\eta}=-f\cosh\xi\sin\eta=-y_{\xi}\,.

Now using x=acosηx=a\cos\eta and y=bsinηy=b\sin\eta on Ω\partial\Omega, we calculate on Ω\partial\Omega that

(5.62) nN=N(x/a2,y/b2)x2/a4+y2/b4=(1acosη,1bsinη)x2/a4+y2/b4(xξyηxηyξ)(yηyξxηxξ)(𝒩ξ𝒩η).\partial_{n}N=\nabla N\cdot\frac{(x/a^{2}\,,y/b^{2})}{\sqrt{x^{2}/a^{4}+y^{2}/b^{4}}}=\frac{\left(\frac{1}{a}\cos\eta\,\,,\frac{1}{b}\sin\eta\right)}{\sqrt{x^{2}/a^{4}+y^{2}/b^{4}}\left(x_{\xi}y_{\eta}-x_{\eta}y_{\xi}\right)}\begin{pmatrix}y_{\eta}&-y_{\xi}\\ -x_{\eta}&x_{\xi}\end{pmatrix}\begin{pmatrix}\mathcal{N}_{\xi}\\ \mathcal{N}_{\eta}\end{pmatrix}.

By using (5.61), we calculate on Ω\partial\Omega that xξyηxηyξ=b2cos2η+a2sin2ηx_{\xi}y_{\eta}-x_{\eta}y_{\xi}=b^{2}\cos^{2}\eta+a^{2}\sin^{2}\eta. With this expression, we obtain after some algebra that (5.62) becomes

(5.63) nN=1abx2/a4+y2/b4𝒩u,onξ=ξb.\partial_{n}N=\frac{1}{ab\sqrt{x^{2}/a^{4}+y^{2}/b^{4}}}\,\mathcal{N}_{u}\,,\quad\mbox{on}\quad\xi=\xi_{b}\,.

By combining (5.63) and (5.56a), we obtain 𝒩ξ=1/(2π)\mathcal{N}_{\xi}=-{1/(2\pi)} on ξ=ξb\xi=\xi_{b}.

Next, we discuss the other boundary conditions in the transformed plane. We require that 𝒩\mathcal{N} and 𝒩η\mathcal{N}_{\eta} are 2π2\pi periodic in η\eta. The boundary condition imposed on η=0\eta=0, which corresponds to the line segment y=0y=0 and |x|f=a2b2|x|\leq f=\sqrt{a^{2}-b^{2}} between the two foci, is chosen to ensure that NN and the normal derivative NyN_{y} are continuous across this segment. Recall from (4.35b) that the top of this segment y=0+y=0^{+} and |x|f|x|\leq f corresponds to 0ηπ0\leq\eta\leq\pi, while the bottom of this segment y=0y=0^{-} and |x|f|x|\leq f corresponds to πη2π\pi\leq\eta\leq 2\pi. To ensure that NN is continuous across this segment, we require that 𝒩(ξ,η)\mathcal{N}(\xi,\eta) satisfies 𝒩(0,η)=𝒩(0,2πη)\mathcal{N}(0,\eta)=\mathcal{N}(0,2\pi-\eta) for any 0ηπ0\leq\eta\leq\pi. Moreover, since 𝒩ξ=Nyfsinη\mathcal{N}_{\xi}=N_{y}f\sin\eta on ξ=0\xi=0, and sin(2πη)=sin(η)\sin(2\pi-\eta)=-\sin(\eta), we must have 𝒩ξ(0,η)=𝒩ξ(0,2πη)\mathcal{N}_{\xi}(0,\eta)=\mathcal{N}_{\xi}(0,2\pi-\eta) on 0ηπ0\leq\eta\leq\pi.

Finally, we examine the normalization condition in (5.56b) by using

(5.64) ΩN(x,y)𝑑x𝑑y=0ξb02π𝒩(ξ,η)|det(xξxηyξyη)|𝑑ξ𝑑η.\int_{\Omega}N(x,y)\,dx\,dy=\int_{0}^{\xi_{b}}\int_{0}^{2\pi}\mathcal{N}(\xi,\eta)\,\,\Big{|}\mbox{det}\begin{pmatrix}x_{\xi}&x_{\eta}\\ y_{\xi}&y_{\eta}\end{pmatrix}\Big{|}\,d\xi\,d\eta\,.

Since xξyηxηyξ=f2(cosh2ξcos2η)x_{\xi}y_{\eta}-x_{\eta}y_{\xi}=f^{2}\left(\cosh^{2}\xi-\cos^{2}\eta\right), we obtain from (5.64) that (5.56b) becomes

(5.65) 0ξb02π𝒩(ξ,η)[cosh2ξcos2η]𝑑ξ𝑑η=116f2(a2+b2)=(a2+b2)16(a2b2).\int_{0}^{\xi_{b}}\int_{0}^{2\pi}\mathcal{N}(\xi,\eta)\left[\cosh^{2}\xi-\cos^{2}\eta\right]\,d\xi\,d\eta=-\frac{1}{16f^{2}}{(a^{2}+b^{2})}=-\frac{(a^{2}+b^{2})}{16(a^{2}-b^{2})}\,.

In summary, from (5.59), (5.65), and the condition on ξ=ξb\xi=\xi_{b}, 𝒩(ξ,η)\mathcal{N}(\xi,\eta) satisfies

(5.66a) Δ𝒩=δ(ξξ0)δ(ηη0)0ξξb,  0ηπ,\displaystyle\Delta\mathcal{N}=-\delta(\xi-\xi_{0})\delta(\eta-\eta_{0})\,\quad 0\leq\xi\leq\xi_{b}\,,\,\,0\leq\eta\leq\pi\,,
(5.66b) ξ𝒩=12π,onξ=ξb;𝒩,𝒩η2πperiodic in η,\displaystyle\partial_{\xi}\mathcal{N}=-\frac{1}{2\pi}\,,\quad\mbox{on}\,\,\xi=\xi_{b}\,;\qquad\mathcal{N}\,,\,\,\mathcal{N}_{\eta}\quad 2\pi\,\,\mbox{periodic in }\eta\,,
(5.66c) 𝒩(0,η)=𝒩(0,2πη),𝒩ξ(0,η)=𝒩ξ(0,2πη),for0ηπ,\displaystyle\mathcal{N}(0,\eta)=\mathcal{N}(0,2\pi-\eta)\,,\quad\mathcal{N}_{\xi}(0,\eta)=-\mathcal{N}_{\xi}(0,2\pi-\eta)\,,\quad\mbox{for}\quad 0\leq\eta\leq\pi\,,
(5.66d) 0ξb02π𝒩(ξ,η)[cosh2ξcos2η]𝑑ξ𝑑η=(a2+b2)16(a2b2).\displaystyle\int_{0}^{\xi_{b}}\int_{0}^{2\pi}\mathcal{N}(\xi,\eta)\left[\cosh^{2}\xi-\cos^{2}\eta\right]\,d\xi\,d\eta=-\frac{(a^{2}+b^{2})}{16(a^{2}-b^{2})}\,.

The solution to (5.66) is expanded in terms of the eigenfunctions in the η\eta direction:

(5.67) 𝒩(ξ,η)=𝒜0(ξ)+k=1𝒜k(ξ)cos(kη)+k=1k(ξ)sin(kη).\mathcal{N}(\xi,\eta)=\mathcal{A}_{0}(\xi)+\sum_{k=1}^{\infty}\mathcal{A}_{k}(\xi)\cos(k\eta)+\sum_{k=1}^{\infty}\mathcal{B}_{k}(\xi)\sin(k\eta)\,.

The boundary condition (5.66b) is satisfied with 𝒜0(ξb)=1/(2π)\mathcal{A}_{0}^{\prime}(\xi_{b})=-{1/(2\pi)} and 𝒜k(ξb)=k(ξb)=0\mathcal{A}_{k}^{\prime}(\xi_{b})=\mathcal{B}_{k}^{\prime}(\xi_{b})=0, for k1k\geq 1. To satisfy 𝒩(0,η)=𝒩(0,2πη)\mathcal{N}(0,\eta)=\mathcal{N}(0,2\pi-\eta), we require k(0)=0\mathcal{B}_{k}(0)=0 for k1k\geq 1. Finally, to satisfy 𝒩ξ(0,η)=𝒩ξ(0,2πη)\mathcal{N}_{\xi}(0,\eta)=-\mathcal{N}_{\xi}(0,2\pi-\eta), we require that 𝒜0(0)=0\mathcal{A}_{0}^{\prime}(0)=0 and 𝒜k(0)=0\mathcal{A}_{k}^{\prime}(0)=0 for k1k\geq 1. In the usual way, we can derive ODE boundary value problems for 𝒜0\mathcal{A}_{0}, 𝒜k\mathcal{A}_{k}, and k\mathcal{B}_{k}. We obtain that

(5.68a) 𝒜0′′=12πδ(ξξ0),0ξξb;𝒜0(0)=0,𝒜0(ξb)=12π,\mathcal{A}_{0}^{\prime\prime}=-\frac{1}{2\pi}\delta(\xi-\xi_{0})\,,\quad 0\leq\xi\leq\xi_{b}\,;\qquad\mathcal{A}_{0}^{\prime}(0)=0\,,\,\,\,\mathcal{A}_{0}^{\prime}(\xi_{b})=-\frac{1}{2\pi}\,,
while on 0ξξb0\leq\xi\leq\xi_{b}, and for each k=1,2,k=1,2,\ldots, we have
(5.68b) 𝒜k′′k2𝒜k=1πcos(kη0)δ(ξξ0);𝒜k(0)=0,𝒜k(ξb)=0,\displaystyle\mathcal{A}_{k}^{\prime\prime}-k^{2}\mathcal{A}_{k}=-\frac{1}{\pi}\cos(k\eta_{0})\delta(\xi-\xi_{0})\,;\qquad\mathcal{A}_{k}^{\prime}(0)=0\,,\,\,\,\mathcal{A}_{k}^{\prime}(\xi_{b})=0\,,
(5.68c) k′′k2k=1πsin(kη0)δ(ξξ0);k(0)=0,k(ξb)=0.\displaystyle\mathcal{B}_{k}^{\prime\prime}-k^{2}\mathcal{B}_{k}=-\frac{1}{\pi}\sin(k\eta_{0})\delta(\xi-\xi_{0})\,;\qquad\mathcal{B}_{k}(0)=0\,,\,\,\,\mathcal{B}_{k}^{\prime}(\xi_{b})=0\,.

We observe from (5.68a) that 𝒜0\mathcal{A}_{0} is specified only up to an arbitrary constant.

We determine this constant from the normalization condition (5.66d). By substituting (5.67) into (5.66d), we readily derive the identity that

(5.69) 0ξb𝒜0(ξ)cosh(2ξ)𝑑ξ120ξb𝒜2(ξ)𝑑ξ=116π(a2+b2a2b2).\int_{0}^{\xi_{b}}\mathcal{A}_{0}(\xi)\cosh(2\xi)\,d\xi-\frac{1}{2}\int_{0}^{\xi_{b}}\mathcal{A}_{2}(\xi)\,d\xi=-\frac{1}{16\pi}\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)\,.

We will use (5.69) to derive a point constraint on 𝒜0(ξb)\mathcal{A}_{0}(\xi_{b}). To do so, we define ϕ(ξ)=cosh(2ξ)\phi(\xi)=\cosh(2\xi), which satisfies ϕ′′4ϕ=0\phi^{\prime\prime}-4\phi=0 and ϕ(0)=0\phi^{\prime}(0)=0. We integrate by parts and use 𝒜0(0)=0\mathcal{A}_{0}^{\prime}(0)=0 and 𝒜0(ξb)=1/(2π)\mathcal{A}_{0}^{\prime}(\xi_{b})=-{1/(2\pi)} to get

(5.70) 40ξb𝒜0ϕ𝑑ξ=0ξb𝒜0ϕ′′𝑑ξ=(ϕ𝒜0ϕ𝒜0)|0ξb+0ξbϕ𝒜0′′𝑑ξ,=ϕ(ξb)𝒜0(ξb)+12π[ϕ(ξb)ϕ(ξ0)].\begin{split}4\int_{0}^{\xi_{b}}\mathcal{A}_{0}\phi\,d\xi=\int_{0}^{\xi_{b}}\mathcal{A}_{0}\phi^{\prime\prime}\,d\xi&=\left(\phi^{\prime}\mathcal{A}_{0}-\phi\mathcal{A}^{\prime}_{0}\right)|_{0}^{\xi_{b}}+\int_{0}^{\xi_{b}}\phi\mathcal{A}_{0}^{\prime\prime}\,d\xi\,,\\ &=\phi^{\prime}(\xi_{b})\mathcal{A}_{0}(\xi_{b})+\frac{1}{2\pi}\left[\phi(\xi_{b})-\phi(\xi_{0})\right]\,.\end{split}

Next, set k=2k=2 in (5.68b) and integrate over 0<ξ<ξb0<\xi<\xi_{b}. Using the no-flux boundary conditions we get 0ξb𝒜2𝑑ξ=cos(2η0)/(4π)\int_{0}^{\xi_{b}}\mathcal{A}_{2}\,d\xi={\cos(2\eta_{0})/(4\pi)}. We substitute this result, together with (5.70), into (5.69) and solve the resulting equation for 𝒜0(ξb)\mathcal{A}_{0}(\xi_{b}) to get

(5.71) 𝒜0(ξb)=14πsinh(2ξb)[cosh(2ξ0)+cos(2η0)cosh(2ξb)12(a2+b2a2b2)].\mathcal{A}_{0}(\xi_{b})=\frac{1}{4\pi\sinh(2\xi_{b})}\left[\cosh(2\xi_{0})+\cos(2\eta_{0})-\cosh(2\xi_{b})-\frac{1}{2}\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right)\right]\,.

To simplify this expression we use tanhξb=b/a\tanh\xi_{b}={b/a} to calculate sinh(2ξb)=2ab/(a2b2)\sinh(2\xi_{b})={2ab/(a^{2}-b^{2})} and coth(2ξb)=(a2+b2)/(2ab)\coth(2\xi_{b})={(a^{2}+b^{2})/(2ab)}, while from (4.34a) we get

x02+y02=f2[cosh2ξ0sin2η0]=(a2b2)2[cosh(2ξ0)+cos(2η0)].x_{0}^{2}+y_{0}^{2}=f^{2}\left[\cosh^{2}\xi_{0}-\sin^{2}\eta_{0}\right]=\frac{(a^{2}-b^{2})}{2}\left[\cosh(2\xi_{0})+\cos(2\eta_{0})\right]\,.

Upon substituting these results into (5.71), we conclude that

(5.72) 𝒜0(ξb)=316|Ω|(a2+b2)+14|Ω|(x02+y02),\mathcal{A}_{0}(\xi_{b})=-\frac{3}{16|\Omega|}(a^{2}+b^{2})+\frac{1}{4|\Omega|}\left(x_{0}^{2}+y_{0}^{2}\right)\,,

where |Ω|=πab|\Omega|=\pi ab is the area of the ellipse. With this explicit value for 𝒜0(ξb)\mathcal{A}_{0}(\xi_{b}), the normalization condition (5.66d), or equivalently the constraint ΩGd𝐱=0\int_{\Omega}G\,\text{d}\mathbf{x}=0, is satisfied.

Next, we solve the ODEs (5.68) for 𝒜0\mathcal{A}_{0}, 𝒜k\mathcal{A}_{k}, and k\mathcal{B}_{k}, for k1k\geq 1, to obtain

(5.73a) 𝒜0(ξ)=12π(ξbξ>)+𝒜0(ξb),𝒜k(ξ)=cos(kη0)kπsinh(kξb)cosh(kξ<)cosh(k(ξ>ξb)),\displaystyle\mathcal{A}_{0}(\xi)=\frac{1}{2\pi}\left(\xi_{b}-\xi_{>}\right)+\mathcal{A}_{0}(\xi_{b})\,,\quad\mathcal{A}_{k}(\xi)=\frac{\cos(k\eta_{0})}{k\pi\sinh(k\xi_{b})}\cosh(k\xi_{<})\cosh\left(k(\xi_{>}-\xi_{b})\right)\,,
(5.73b) k(ξ)=sin(kη0)kπcosh(kξb)sinh(kξ<)cosh(k(ξ>ξb)),\displaystyle\mathcal{B}_{k}(\xi)=\frac{\sin(k\eta_{0})}{k\pi\cosh(k\xi_{b})}\sinh(k\xi_{<})\cosh\left(k(\xi_{>}-\xi_{b})\right)\,,

where we have defined ξ>max(ξ0,ξ)\xi_{>}\equiv\max(\xi_{0},\xi) and ξ<min(ξ0,ξ)\xi_{<}\equiv\min(\xi_{0},\xi).

To determine an explicit expression for G(𝐱;𝐱0)=|𝐱|2/(4|Ω|)+𝒩(ξ,η)G(\mathbf{x};\mathbf{x}_{0})={|\mathbf{x}|^{2}/(4|\Omega|)}+\mathcal{N}(\xi,\eta), as given in (5.55), we substitute (5.72) and (5.73) into the eigenfunction expansion (5.67) for 𝒩\mathcal{N}. In this way, we get

(5.74a) G(𝐱;𝐱0)=14|Ω|(|𝐱|2+|𝐱0|2)316|Ω|(a2+b2)+12π(ξbξ>)+𝒮,G(\mathbf{x};\mathbf{x}_{0})=\frac{1}{4|\Omega|}\left(|\mathbf{x}|^{2}+|\mathbf{x}_{0}|^{2}\right)-\frac{3}{16|\Omega|}(a^{2}+b^{2})+\frac{1}{2\pi}\left(\xi_{b}-\xi_{>}\right)+\mathcal{S}\,,
where the infinite sum 𝒮\mathcal{S} is defined by
(5.74b) 𝒮k=1cos(kη0)cos(kη)πksinh(kξb)cosh(kξ<)cosh(k(ξ>ξb))+k=1sin(kη0)sin(kη)πkcosh(kξb)sinh(kξ<)cosh(k(ξ>ξb)).\begin{split}\mathcal{S}&\equiv\sum_{k=1}^{\infty}\frac{\cos(k\eta_{0})\cos(k\eta)}{\pi k\sinh(k\xi_{b})}\cosh(k\xi_{<})\cosh\left(k(\xi_{>}-\xi_{b})\right)\\ &\qquad+\sum_{k=1}^{\infty}\frac{\sin(k\eta_{0})\sin(k\eta)}{\pi k\cosh(k\xi_{b})}\sinh(k\xi_{<})\cosh\left(k(\xi_{>}-\xi_{b})\right)\,.\end{split}

Next, from the product to sum formulas for cos(A)cos(B)\cos(A)\cos(B) and sin(A)sin(B)\sin(A)\sin(B) we get

(5.75) 𝒮=12πk=1cosh(k(ξ>ξb))k[cosh(kξ<)sinh(kξb)+sin(kξ<)cosh(kξb)]cos(k(ηη0)+12πk=1cosh(k(ξ>ξb))k[cosh(kξ<)sinh(kξb)sin(kξ<)cosh(kξb)]cos(k(η+η0).\begin{split}\mathcal{S}&=\frac{1}{2\pi}\sum_{k=1}^{\infty}\frac{\cosh\left(k(\xi_{>}-\xi_{b})\right)}{k}\left[\frac{\cosh(k\xi_{<})}{\sinh(k\xi_{b})}+\frac{\sin(k\xi_{<})}{\cosh(k\xi_{b})}\right]\cos\left(k(\eta-\eta_{0}\right)\\ &\qquad+\frac{1}{2\pi}\sum_{k=1}^{\infty}\frac{\cosh\left(k(\xi_{>}-\xi_{b})\right)}{k}\left[\frac{\cosh(k\xi_{<})}{\sinh(k\xi_{b})}-\frac{\sin(k\xi_{<})}{\cosh(k\xi_{b})}\right]\cos\left(k(\eta+\eta_{0}\right)\,.\end{split}

Then, by using product to sum formulas for cosh(A)cosh(B)\cosh(A)\cosh(B), the identity sinh(2A)=2sinh(A)cosh(A)\sinh(2A)=2\sinh(A)\cosh(A), ξ>+ξ<=ξ+ξ0\xi_{>}+\xi_{<}=\xi+\xi_{0}, and ξ>ξ<=|ξξ0|\xi_{>}-\xi_{<}=|\xi-\xi_{0}|, some algebra yields that

(5.76) 𝒮=12πRe(k=1[cosh(k(ξ+ξ0))+cosh(k(|ξξ0|2ξb))]ksinh(2kξb)eik(ηη0))+12πRe(k=1[cosh(k(ξ+ξ02ξb))+cosh(k|ξξ0|)]ksinh(2kξb)eik(η+η0)).\begin{split}\mathcal{S}&=\frac{1}{2\pi}\mbox{Re}\left(\sum_{k=1}^{\infty}\frac{\left[\cosh\left(k(\xi+\xi_{0})\right)+\cosh\left(k(|\xi-\xi_{0}|-2\xi_{b})\right)\right]}{k\sinh(2k\xi_{b})}e^{ik(\eta-\eta_{0})}\right)\\ &\quad+\frac{1}{2\pi}\mbox{Re}\left(\sum_{k=1}^{\infty}\frac{\left[\cosh\left(k(\xi+\xi_{0}-2\xi_{b})\right)+\cosh\left(k|\xi-\xi_{0}|\right)\right]}{k\sinh(2k\xi_{b})}e^{ik(\eta+\eta_{0})}\right)\,.\end{split}

The next step in the analysis is to convert the hyperbolic functions in (5.76) into pure exponentials. A simple calculation yields that

(5.77a) 𝒮=12πRe(k=11keik(ηη0)+k=12keik(η+η0)),\mathcal{S}=\frac{1}{2\pi}\mbox{Re}\left(\sum_{k=1}^{\infty}\frac{\mathcal{H}_{1}}{k}e^{ik(\eta-\eta_{0})}+\sum_{k=1}^{\infty}\frac{\mathcal{H}_{2}}{k}e^{ik(\eta+\eta_{0})}\right)\,,
where 1\mathcal{H}_{1} and 2\mathcal{H}_{2} are defined by
(5.77b) 111e4kξb[ek(ξ+ξ02ξb)+ek(ξ+ξ0+2ξb)+ek(|ξξ0|4ξb)+ek|ξξ0|],211e4kξb[ek(ξ+ξ04ξb)+ek(|ξξ0|2ξb)+ek(|ξξ0|+2ξb)+ek(ξ+ξ0)].\begin{split}\mathcal{H}_{1}&\equiv\frac{1}{1-e^{-4k\xi_{b}}}\left[e^{k(\xi+\xi_{0}-2\xi_{b})}+e^{-k(\xi+\xi_{0}+2\xi_{b})}+e^{k(|\xi-\xi_{0}|-4\xi_{b})}+e^{-k|\xi-\xi_{0}|}\right]\,,\\ \mathcal{H}_{2}&\equiv\frac{1}{1-e^{-4k\xi_{b}}}\left[e^{k(\xi+\xi_{0}-4\xi_{b})}+e^{k(|\xi-\xi_{0}|-2\xi_{b})}+e^{-k(|\xi-\xi_{0}|+2\xi_{b})}+e^{-k(\xi+\xi_{0})}\right]\,.\end{split}

Then, for any qq with 0<q<10<q<1 and integer k1k\geq 1, we use the identity n=0(qk)n=11qk\sum_{n=0}^{\infty}\left(q^{k}\right)^{n}=\frac{1}{1-q^{k}} for the choice q=e4ξbq=e^{-4\xi_{b}}, which converts 1\mathcal{H}_{1} and 2\mathcal{H}_{2} into infinite sums. This leads to a doubly-infinite sum representation for 𝒮\mathcal{S} in (5.77a) given by

(5.78) 𝒮=12πRe(k=1n=0(qn)kk(z1k+z2k+z3k+z4k+z5k+z6k+z7k+z8k)),\mathcal{S}=\frac{1}{2\pi}\mbox{Re}\left(\sum_{k=1}^{\infty}\sum_{n=0}^{\infty}\frac{\left(q^{n}\right)^{k}}{k}\left(z_{1}^{k}+z_{2}^{k}+z_{3}^{k}+z_{4}^{k}+z_{5}^{k}+z_{6}^{k}+z_{7}^{k}+z_{8}^{k}\right)\right)\,,

where the complex constants z1,,z8z_{1},\ldots,z_{8} are defined by (4.36b). From these formulae, we readily observe that |zj|<1|z_{j}|<1 on 0ξξb0\leq\xi\leq\xi_{b} for any (ξ,η)(ξ0,η0)(\xi,\eta)\neq(\xi_{0},\eta_{0}). Since 0<q<10<q<1, we can then switch the order of the sums in (5.78) when (ξ,η)(ξ0,η0)(\xi,\eta)\neq(\xi_{0},\eta_{0}) and use the identity Re(k=1k1ωk)=log|1ω|\mbox{Re}\left(\sum_{k=1}^{\infty}k^{-1}\omega^{k}\right)=-\log|1-\omega|, where |1ω||1-\omega| denotes modulus. In this way, upon setting ωj=qnzj\omega_{j}=q^{n}z_{j} for j=1,,8j=1,\ldots,8, we obtain a compact representation for 𝒮\mathcal{S}. Finally, by using this result in (5.74) we obtain for (ξ,η)(ξ0,η0)(\xi,\eta)\neq(\xi_{0},\eta_{0}), or equivalently (x,y)(x0,y0)(x,y)\neq(x_{0},y_{0}), the result given explicitly in (4.36) of § 4.

Next, to determine the regular part of the Neumann Green’s function we must identify the singular term in (4.36a) at (ξ,η)=(ξ0,η0)(\xi,\eta)=(\xi_{0},\eta_{0}). Since z1=1z_{1}=1, while |zj|<1|z_{j}|<1 for j=2,,8j=2,\ldots,8, at (ξ,η)=(ξ0,η0)(\xi,\eta)=(\xi_{0},\eta_{0}), the singular contribution arises only from the n=0n=0 term in n=0log|1β2nz1|\sum_{n=0}^{\infty}\log|1-\beta^{2n}z_{1}|. As such, we add and subtract the fundamental singularity log|𝐱𝐱0|/(2π)-{\log|\mathbf{x}-\mathbf{x}_{0}|/(2\pi)} in (4.36a) to get

(5.79a) G(𝐱;𝐱0)=12πlog|𝐱𝐱0|+R(𝐱;𝐱0),G(\mathbf{x};\mathbf{x}_{0})=-\frac{1}{2\pi}\log|\mathbf{x}-\mathbf{x}_{0}|+R(\mathbf{x};\mathbf{x}_{0})\,,
(5.79b) R(𝐱;𝐱0)=14|Ω|(|𝐱|2+|𝐱0|2)3(a2+b2)16|Ω|14πlogβ12πξ>+12πlog(|𝐱𝐱0||1z1|)12πn=1log|1β2nz1|12πn=0log(j=28|1β2nzj|).\begin{split}R(\mathbf{x};\mathbf{x}_{0})&=\frac{1}{4|\Omega|}\left(|\mathbf{x}|^{2}+|\mathbf{x}_{0}|^{2}\right)-\frac{3(a^{2}+b^{2})}{16|\Omega|}-\frac{1}{4\pi}\log\beta-\frac{1}{2\pi}\xi_{>}+\frac{1}{2\pi}\log\left(\frac{|\mathbf{x}-\mathbf{x}_{0}|}{|1-z_{1}|}\right)\\ &\qquad-\frac{1}{2\pi}\sum_{n=1}^{\infty}\log|1-\beta^{2n}z_{1}|-\frac{1}{2\pi}\sum_{n=0}^{\infty}\log\left(\displaystyle\prod_{j=2}^{8}|1-\beta^{2n}z_{j}|\right)\,.\end{split}

To identify lim𝐱𝐱0R(𝐱;𝐱0)=Re\lim_{\mathbf{x}\to\mathbf{x}_{0}}R(\mathbf{x};\mathbf{x}_{0})=R_{e}, we must find lim𝐱𝐱0log(|𝐱𝐱0|/|1z1|)\lim_{\mathbf{x}\to\mathbf{x}_{0}}\log\left({|\mathbf{x}-\mathbf{x}_{0}|/|1-z_{1}|}\right). To do so, we use a Taylor approximation on (4.34a) to derive at (ξ,η)=(ξ0,η0)(\xi,\eta)=(\xi_{0},\eta_{0}) that

(5.80) (ξξ0ηη0)=1(xξyηxηyξ)(yηxηyξxξ)(xx0yy0).\begin{pmatrix}\xi-\xi_{0}\\ \eta-\eta_{0}\end{pmatrix}=\frac{1}{(x_{\xi}y_{\eta}-x_{\eta}y_{\xi})}\begin{pmatrix}y_{\eta}&-x_{\eta}\\ -y_{\xi}&x_{\xi}\end{pmatrix}\begin{pmatrix}x-x_{0}\\ y-y_{0}\end{pmatrix}\,.

By calculating the partial derivatives in (5.80) using (5.61), and then noting from (4.36b) that |1z1|2(ξξ0)2+(ηη0)2|1-z_{1}|^{2}\sim(\xi-\xi_{0})^{2}+(\eta-\eta_{0})^{2} as (ξ,η)(ξ0,η0)(\xi,\eta)\to(\xi_{0},\eta_{0}), we readily derive that

(5.81) lim𝐱𝐱0log(|𝐱𝐱0||1z1|)=12log(a2b2)+12log(cosh2ξ0cos2η0).\lim_{\mathbf{x}\to\mathbf{x}_{0}}\log\left(\frac{|\mathbf{x}-\mathbf{x}_{0}|}{|1-z_{1}|}\right)=\frac{1}{2}\log{(a^{2}-b^{2})}+\frac{1}{2}\log\left(\cosh^{2}\xi_{0}-\cos^{2}\eta_{0}\right)\,.

Finally, we substitute (5.81) into (5.79b) and let 𝐱𝐱0\mathbf{x}\to\mathbf{x}_{0}. This yields the formula for the regular part of the Neumann Green’s function as given in (4.37) of § 4. In Appendix B we show that the Neumann Green’s function (4.36) for the ellipse reduces to the expression given in (3.27) for the unit disk when ab=1a\to b=1.

6 Discussion

Here we discuss the relationship between our problem of optimal trap patterns and a related optimization problem for the fundamental Neumann eigenvalue λ0\lambda_{0} of the Laplacian in a bounded 2-D domain Ω\Omega containing mm small circular absorbing traps of a common radius ε\varepsilon. That is, λ0\lambda_{0} is the lowest eigenvalue of

(6.82) Δu+λu=0,xΩj=1mΩεj;nu=0,xΩ,u=0,xΩεj,j=1,,m.\begin{split}\Delta u+\lambda u&=0\,,\quad x\in\Omega\setminus\cup_{j=1}^{m}\Omega_{\varepsilon j}\,;\qquad\partial_{n}u=0\,,\quad x\in\partial\Omega\,,\\ u&=0\,,\quad x\in\partial\Omega_{\varepsilon j}\,,\quad j=1,\ldots,m\,.\end{split}

Here Ωεj\Omega_{\varepsilon j} is a circular disk of radius ε1\varepsilon\ll 1 centered at 𝐱jΩ\mathbf{x}_{j}\in\Omega. In the limit ε0\varepsilon\to 0, a two-term asymptotic expansion for λ0\lambda_{0} in powers of ν1/logε\nu\equiv{-1/\log\varepsilon} is (see [12, Corollary 2.3] and Appendix C)

(6.83) λ02πmν|Ω|4π2ν2|Ω|p(𝐱1,,𝐱m)+O(ν3),withp(𝐱1,,𝐱m)𝐞T𝒢𝐞,\lambda_{0}\sim\frac{2\pi m\nu}{|\Omega|}-\frac{4\pi^{2}\nu^{2}}{|\Omega|}p(\mathbf{x}_{1},\ldots,\mathbf{x}_{m})+O(\nu^{3})\,,\quad\mbox{with}\quad p(\mathbf{x}_{1},\ldots,\mathbf{x}_{m})\equiv\mathbf{e}^{T}\mathcal{G}\mathbf{e},

where 𝐞(1,,1)T\mathbf{e}\equiv(1,\ldots,1)^{T} and 𝒢\mathcal{G} is the Neumann Green’s matrix. To relate this result for λ0\lambda_{0} with that for the average MFPT u¯0\overline{u}_{0} satisfying (4.32), we let ν1\nu\ll 1 in (4.32) and calculate that 𝒜|Ω|𝐞/(2πDm)+𝒪(ν)\mathcal{A}\sim{|\Omega|\mathbf{e}/(2\pi Dm)}+{\mathcal{O}}(\nu). ¿From (4.32), we conclude that

(6.84) u¯0=|Ω|2πDνm(1+2πνmp(𝐱1,,𝐱m)+𝒪(ν2)),\overline{u}_{0}=\frac{|\Omega|}{2\pi D\nu m}\left(1+\frac{2\pi\nu}{m}p(\mathbf{x}_{1},\ldots,\mathbf{x}_{m})+{\mathcal{O}}(\nu^{2})\right)\,,

where p(𝐱1,,xm)p(\mathbf{x}_{1},\ldots,x_{m}) is defined in (6.83). By comparing (6.84) and (6.83) we conclude, up to terms of 𝒪(ν2){\mathcal{O}}(\nu^{2}), that the trap configurations that provide local minima for the average MFPT also provide local maxima for the first Neumann eigenvalue for (6.82). Qualitatively, this implies that, up to terms of order 𝒪(ν2){\mathcal{O}}(\nu^{2}), the trap configuration that maximizes the rate at which a Brownian particle is captured also provides the best configuration to minimize the average mean first capture time of the particle. In this way, our optimal trap configurations for the average MFPT for the ellipse identified in § 4.1 also correspond to trap patterns that maximize λ0\lambda_{0} up to terms of order 𝒪(ν2){\mathcal{O}}(\nu^{2}). Moreover, we remark that for the special case of a ring-pattern of traps, the first two-terms in (6.84) provide an exact solution of (4.32). As such, for these special patterns, the trap configuration that maximizes the 𝒪(ν2){\mathcal{O}}(\nu^{2}) term in λ0\lambda_{0} provides the optimal trap locations that minimize the average MFPT to all orders in ν\nu.

Finally, we discuss two possible extensions of this study. Firstly, in near-disk domains and in the ellipse it would be worthwhile to use a more refined gradient descent procedure such as in [22] and [5] to numerically identify globally optimum trap configurations for a much larger number of identical traps than considered herein. One key challenge in upscaling the optimization procedure to a larger number of traps is that the energy landscape can be rather flat or else have many local minima, and so identifying the true optimum pattern is delicate. Locally optimum trap patterns with very similar minimum values for the average MFPT already occurs in certain near-disk domains at a rather small number of traps (see Fig. 1 and Fig. 4). One advantage of our asymptotic theory leading to (2.26) for the near-disk and (4.32) for the ellipse, is that it can be implemented numerically with very high precision. As a result, small differences in the average MFPT between two distinct locally optimal trap patterns are not due to discretization errors arising from either numerical quadratures or evaluations of the Neumann Green’s function. As such, combining our hybrid theory with a refined global optimization procedure should lead to the reliable identification of globally optimal trap configurations for these domains.

Another open direction is to investigate whether there are computationally useful analytical representations for the Neumann Green’s function in an arbitrary bounded 2-D domain. In this direction, in [13, Theorem 4.1] an explicit analytical result for the gradient of the regular part of the Neumann Green’s function was derived in terms of the mapping function for a general class of mappings of the unit disk. It is worthwhile to study whether this analysis can be extended to provide a simple and accurate approach to compute the Neumann Green’s matrix for an arbitrary domain. This matrix could then be used in the linear algebraic system (4.32) to calculate the average MFPT, and a gradient descent scheme implemented to identify optimal patterns.

7 Acknowledgements

Colin Macdonald and Michael Ward were supported by NSERC Discovery grants. Tony Wong was partially supported by a UBC Four-Year Graduate Fellowship.

Appendix A Derivation of the Thin Domain ODE

In the asymptotic limit of a long thin domain, we use a perturbation approach on the MFPT PDE (2.2) for u(x,y)u(x,y) in order to derive the limiting problem (4.39). We introduce the stretched variables XX and YY by X=δx,Y=y/δX=\delta x,Y={y/\delta} and d=x0/δd={x_{0}/\delta}, and set U(X,Y)=u(X/δ,Yδ)U(X,Y)=u({X/\delta},Y\delta). Then the PDE in (2.2) becomes δ4XXU+YYU=δ2/D\delta^{4}\partial_{XX}U+\partial_{YY}U=-{\delta^{2}/D}. By expanding U=δ2U0+U1+δ2U2+U=\delta^{-2}U_{0}+U_{1}+\delta^{2}U_{2}+\ldots in this PDE, we collect powers of δ\delta to get

(A.1) 𝒪(δ2):YYU0=0;𝒪(1):YYU1=0;𝒪(δ2):YYU2=1DXXU0.{\mathcal{O}}(\delta^{-2})\,:\,\,\partial_{YY}U_{0}=0\,;\quad{\mathcal{O}}(1)\,:\,\,\partial_{YY}U_{1}=0\,;\quad{\mathcal{O}}(\delta^{2})\,:\,\,\partial_{YY}U_{2}=-\frac{1}{D}-\partial_{XX}U_{0}\,.

On the boundary y=±δF(δx)y=\pm\delta F(\delta x), or equivalently Y=±F(X)Y=\pm F(X), where F(X)=1X2F(X)=\sqrt{1-X^{2}}, the unit outward normal is 𝐧^=𝐧/|𝐧|\hat{\mathbf{n}}={\mathbf{n}/|\mathbf{n}|}, where 𝐧(δ2F(X),±1)\mathbf{n}\equiv(-\delta^{2}F^{\prime}(X),\pm 1). The condition for the vanishing of the outward normal derivative in (2.2) becomes

nu=𝐧^(xu,yu)=1|𝐧|(δ2F,±1)(δXU,δ1YU)=0,onY=±F(X).\partial_{n}u=\hat{\mathbf{n}}\cdot(\partial_{x}u,\partial_{y}u)=\frac{1}{|\mathbf{n}|}(-\delta^{2}F^{\prime},\pm 1)\cdot(\delta\partial_{X}U,\delta^{-1}\partial_{Y}U)=0\,,\,\,\,\mbox{on}\,\,\,Y=\pm F(X)\,.

This is equivalent to the condition that YU=±δ4F(X)XU\partial_{Y}U=\pm\delta^{4}F^{\prime}(X)\partial_{X}U on Y=±F(X)Y=\pm F(X). Upon substituting U=δ2U0+U1+δ2U2+U=\delta^{-2}U_{0}+U_{1}+\delta^{2}U_{2}+\ldots into this expression, and equating powers of δ\delta, we obtain on Y=±F(X)Y=\pm F(X) that

(A.2) 𝒪(δ2):YU0=0;𝒪(1);YU1=0;𝒪(δ2);YU2=±F(X)XU0.{\mathcal{O}}(\delta^{-2})\,:\,\,\partial_{Y}U_{0}=0\,;\quad{\mathcal{O}}(1)\,;\,\,\partial_{Y}U_{1}=0\,;\quad{\mathcal{O}}(\delta^{2})\,;\,\,\quad\partial_{Y}U_{2}=\pm F^{\prime}(X)\partial_{X}U_{0}\,.

From (A.1) and (A.2) we conclude that U0=U0(X)U_{0}=U_{0}(X) and U1=U1(X)U_{1}=U_{1}(X). Assuming that the trap radius ε\varepsilon is comparable to the domain width δ\delta, we will approximate the zero Dirichlet boundary condition on the three traps as zero point constraints for U0U_{0}.

The ODE for U0(X)U_{0}(X) is derived from a solvability condition on the 𝒪(δ2){\mathcal{O}}(\delta^{2}) problem:

(A.3) YYU2=1DU0′′,inΩΩa;YU2=±F(X)U0,onY=±F(X),|X|<1.\partial_{YY}U_{2}=-\frac{1}{D}-U_{0}^{\prime\prime}\,,\,\,\,\mbox{in}\,\,\,\Omega\setminus\Omega_{a}\,;\quad\partial_{Y}U_{2}=\pm F^{\prime}(X)U_{0}^{\prime}\,,\,\,\,\mbox{on}\,\,\,Y=\pm F(X)\,,\,\,|X|<1\,.

We multiply this problem for U2U_{2} by U0U_{0} and integrate in YY over |Y|<F(X)|Y|<F(X). Upon using Lagrange’s identity and the boundary conditions in (A.3) we get

(A.4) F(X)F(X)(U0YYU2U2YYU0)𝑑Y\displaystyle\int_{-F(X)}^{F(X)}\left(U_{0}\partial_{YY}U_{2}-U_{2}\partial_{YY}U_{0}\right)\,dY =[U0YU2U2YU0]|F(X)F(X)=2U0F(X)U0,\displaystyle=\left[U_{0}\partial_{Y}U_{2}-U_{2}\partial_{Y}U_{0}\right]\Big{|}_{-F(X)}^{F(X)}=2U_{0}F^{\prime}(X)U_{0}^{\prime}\,,
F(X)F(X)U0(1DU0′′)𝑑Y\displaystyle\int_{-F(X)}^{F(X)}U_{0}\left(-\frac{1}{D}-U_{0}^{\prime\prime}\right)\,dY =2F(X)U0(1D+U0′′)=2U0F(X)U0.\displaystyle=-2F(X)U_{0}\left(\frac{1}{D}+U_{0}^{\prime\prime}\right)=2U_{0}F^{\prime}(X)U_{0}^{\prime}\,.

Thus, U0(X)U_{0}(X) satisfies the ODE [F(X)U0]=F(X)/D\left[F(X)U_{0}^{\prime}\right]^{\prime}=-{F(X)/D}, with F(X)=1X2F(X)=\sqrt{1-X^{2}}, as given in (4.39) of § 4.2. This gives the leading-order asymptotics uδ2U0(X)u\sim\delta^{-2}U_{0}(X).

Appendix B Limiting Case of the Unit Disk

We now show how to recover the well-known Neumann Green’s function and its regular part for the unit disk by letting ab=1a\to b=1 in (4.36) and (4.37), respectively. In the limit β(ab)/(a+b)0\beta\equiv{(a-b)/(a+b)}\to 0 only the n=0n=0 terms in the infinite sums in (4.36) and (4.37) are non-vanishing. In addition, as β0\beta\to 0, we obtain from (4.34) that |𝐱|2f2e2ξ/4|\mathbf{x}|^{2}\sim{f^{2}e^{2\xi}/4} and |𝐱0|2f2e2ξ0/4|\mathbf{x}_{0}|^{2}\sim{f^{2}e^{2\xi_{0}}/4}, and ξb=logf+log(a+b)logf+log2\xi_{b}=-\log{f}+\log(a+b)\to-\log{f}+\log{2}, where fa2b2f\equiv\sqrt{a^{2}-b^{2}}. This yields that

(B.5) ξ+ξ02ξblog(2|𝐱|f)+log(2|𝐱0|f)2log2+2logf=log(|𝐱||𝐱0|).\xi+\xi_{0}-2\xi_{b}\sim\log\left(\frac{2|\mathbf{x}|}{f}\right)+\log\left(\frac{2|\mathbf{x}_{0}|}{f}\right)-2\log{2}+2\log{f}=\log\left(|\mathbf{x}||\mathbf{x}_{0}|\right)\,.

As such, only the z1z_{1} and z4z_{4} terms in the infinite sums in (4.36a) with n=0n=0 persist as ab=1a\to b=1, and so (4.36a) reduces in this limit to

(B.6) G(𝐱;𝐱0)14|Ω|(|𝐱|2+|𝐱0|2)38|Ω|+12π(ξbξ>)12πlog|1z1|12πlog|1z4|,G(\mathbf{x};\mathbf{x}_{0})\sim\frac{1}{4|\Omega|}\left(|\mathbf{x}|^{2}+|\mathbf{x}_{0}|^{2}\right)-\frac{3}{8|\Omega|}+\frac{1}{2\pi}\left(\xi_{b}-\xi_{>}\right)-\frac{1}{2\pi}\log|1-z_{1}|-\frac{1}{2\pi}\log|1-z_{4}|\,,

where |Ω|=π|\Omega|=\pi and ξ>max(ξ0,ξ)\xi_{>}\equiv\max(\xi_{0},\xi). Since ηθ\eta\to\theta and η0θ0\eta_{0}\to\theta_{0}, where θ\theta and θ0\theta_{0} are the polar angles for 𝐱\mathbf{x} and 𝐱0\mathbf{x}_{0}, we get from (4.36b) that z4|𝐱||𝐱0|ei(θθ0)z_{4}\to|\mathbf{x}||\mathbf{x}_{0}|e^{i(\theta-\theta_{0})} as ab=1a\to b=1. We then calculate that

(B.7) 12πlog|1z4|=14πlog|1z4|2=14πlog(12|𝐱||𝐱0|cos(θθ0)+|𝐱|2|𝐱0|2).-\frac{1}{2\pi}\log|1-z_{4}|=-\frac{1}{4\pi}\log|1-z_{4}|^{2}=-\frac{1}{4\pi}\log\left(1-2|\mathbf{x}||\mathbf{x}_{0}|\cos(\theta-\theta_{0})+|\mathbf{x}|^{2}|\mathbf{x}_{0}|^{2}\right)\,.

Next, with regards to the z1z_{1} term we calculate for ab=1a\to b=1 that

(B.8) |ξξ0|={ξξ0log(|𝐱||𝐱0|),if  0<|𝐱0|<|𝐱|,(ξξ0)log(|𝐱0||𝐱|),if  0<|𝐱|<|𝐱0|.|\xi-\xi_{0}|=\begin{cases}\xi-\xi_{0}\sim\log\left(\frac{|\mathbf{x}|}{|\mathbf{x}_{0}|}\right)\,,&\quad\mbox{if}\,\,0<|\mathbf{x}_{0}|<|\mathbf{x}|\,,\\ -(\xi-\xi_{0})\sim\log\left(\frac{|\mathbf{x}_{0}|}{|\mathbf{x}|}\right)\,,&\quad\mbox{if}\,\,0<|\mathbf{x}|<|\mathbf{x}_{0}|\,.\end{cases}

From (4.36b) this yields for ab=1a\to b=1 that

(B.9) z1=e|ξξ0|+i(ηη0){|𝐱0||𝐱|ei(θθ0),if  0<|𝐱0|<|𝐱|,|𝐱||𝐱0|ei(θθ0),if  0<|𝐱|<|𝐱0|.z_{1}=e^{-|\xi-\xi_{0}|+i(\eta-\eta_{0})}\sim\begin{cases}\frac{|\mathbf{x}_{0}|}{|\mathbf{x}|}e^{i(\theta-\theta_{0})}\,,&\quad\mbox{if}\,\,0<|\mathbf{x}_{0}|<|\mathbf{x}|\,,\\ \frac{|\mathbf{x}|}{|\mathbf{x}_{0}|}e^{i(\theta-\theta_{0})}\,,&\quad\mbox{if}\,\,0<|\mathbf{x}|<|\mathbf{x}_{0}|\,.\end{cases}

By using (B.9), we calculate for ab=1a\to b=1 that

(B.10) 14πlog|1z1|2=12πlog|𝐱𝐱0|+{14πlog|𝐱|2,if 0<|𝐱0|<|𝐱|,14πlog|𝐱0|2,if 0<|𝐱|<|𝐱0|.-\frac{1}{4\pi}\log|1-z_{1}|^{2}=-\frac{1}{2\pi}\log|\mathbf{x}-\mathbf{x}_{0}|+\begin{cases}\frac{1}{4\pi}\log|\mathbf{x}|^{2}\,,&\,\,\mbox{if }0<|\mathbf{x}_{0}|<|\mathbf{x}|\,,\\ \frac{1}{4\pi}\log|\mathbf{x}_{0}|^{2}\,,&\,\,\mbox{if }0<|\mathbf{x}|<|\mathbf{x}_{0}|\,.\end{cases}

Next, we estimate the remaining term in (B.6) as ab=1a\to b=1 using

(B.11) 12π(ξbξ>)=12π{ξbξ12πlog|𝐱|,if |𝐱|>|𝐱0|>0,ξbξ012πlog|𝐱0|,if   0<|𝐱|<|𝐱0|.\frac{1}{2\pi}\left(\xi_{b}-\xi_{>}\right)=\frac{1}{2\pi}\begin{cases}\xi_{b}-\xi\sim-\frac{1}{2\pi}\log|\mathbf{x}|\,,&\quad\mbox{if }\,\,|\mathbf{x}|>|\mathbf{x}_{0}|>0\,,\\ \xi_{b}-\xi_{0}\sim-\frac{1}{2\pi}\log|\mathbf{x}_{0}|\,,&\quad\mbox{if }\,\,0<|\mathbf{x}|<|\mathbf{x}_{0}|\,.\end{cases}

Finally, by using (B.7), (B.10), and (B.11) into (B.6), we obtain for ab=1a\to b=1 that

(B.12) G(𝐱;𝐱0)12πlog|𝐱𝐱0|14πlog(12|𝐱||𝐱0|cos(θθ0)+|𝐱|2|𝐱0|2)+14|Ω|(|𝐱|2+|𝐱0|2)38|Ω|,\begin{split}G(\mathbf{x};\mathbf{x}_{0})&\sim-\frac{1}{2\pi}\log|\mathbf{x}-\mathbf{x}_{0}|-\frac{1}{4\pi}\log\left(1-2|\mathbf{x}||\mathbf{x}_{0}|\cos(\theta-\theta_{0})+|\mathbf{x}|^{2}|\mathbf{x}_{0}|^{2}\right)\\ &\qquad+\frac{1}{4|\Omega|}\left(|\mathbf{x}|^{2}+|\mathbf{x}_{0}|^{2}\right)-\frac{3}{8|\Omega|},\end{split}

where |Ω|=π|\Omega|=\pi. This result agrees with that in (3.27a) for the Neumann Green’s function in the unit disk. Similarly, we can show that the regular part ReR_{e} for the ellipse given in (4.37) tends as ab=1a\to b=1 to that given in (3.27b) for the unit disk.

Appendix C Asymptotics of the Fundamental Neumann Eigenvalue

For ν1\nu\ll 1, it was shown in [12], by using a matched asymptotic expansion analysis in the limit of small trap radii similar to that leading to (4.32), that the fundamental Neumann eigenvalue λ0\lambda_{0} for (6.82) is the smallest positive root of

(C.13) 𝒦(λ)det(I+2πν𝒢H)=0.{\mathcal{K}}(\lambda)\equiv\mbox{det}\left(I+2\pi\nu{\mathcal{G}}_{H}\right)=0\,.

Here ν=1/logε\nu=-{1/\log\varepsilon} and 𝒢H{\mathcal{G}}_{H} is the Helmholtz Green’s matrix with matrix entries

(C.14) (𝒢)Hjj=RHjfori=jand(𝒢)Hij=(𝒢)Hji=GH(𝐱i;𝐱j)forij,\displaystyle(\mathcal{G})_{Hjj}=R_{Hj}\,\,\,\text{for}\,\,\,i=j\quad\text{and}\quad(\mathcal{G})_{Hij}=(\mathcal{G})_{Hji}=G_{H}(\mathbf{x}_{i};\mathbf{x}_{j})\,\,\,\text{for}\,\,\,i\neq j\,,

where the Helmholtz Green’s function GH(𝐱;𝐱j)G_{H}(\mathbf{x};\mathbf{x}_{j}) and its regular part RHjR_{Hj} satisfy

(C.15a) ΔGH+λGH\displaystyle\Delta G_{H}+\lambda G_{H} =δ(𝐱𝐱j),𝐱Ω;nGH=0,𝐱Ω;\displaystyle=-\delta(\mathbf{x}-\mathbf{x}_{j})\,,\quad\mathbf{x}\in\Omega\,;\qquad\partial_{n}G_{H}=0\,,\,\,\,\mathbf{x}\in\partial\Omega\,;
(C.15b) GH12π\displaystyle G_{H}\sim-\frac{1}{2\pi} log|𝐱𝐱j|+RHj+o(1),as𝐱𝐱j.\displaystyle\log{|\mathbf{x}-\mathbf{x}_{j}|}+R_{Hj}+o(1)\,,\quad\text{as}\quad\mathbf{x}\to\mathbf{x}_{j}\,.

For 0<λ10<\lambda\ll 1, we estimate 𝒢H{\mathcal{G}}_{H} by expanding GH=A/λ+G+𝒪(λ)G_{H}={A/\lambda}+G+{\mathcal{O}}(\lambda), for some AA to be found. From (C.15), we derive in terms of the Neumann Green’s matrix 𝒢{\mathcal{G}} that

(C.16) 𝒢H=mλ|Ω|E+𝒢+𝒪(λ),withE1m𝐞𝐞T,{\mathcal{G}}_{H}=-\frac{m}{\lambda|\Omega|}E+{\mathcal{G}}+{\mathcal{O}}(\lambda)\,,\qquad\mbox{with}\quad E\equiv\frac{1}{m}\mathbf{e}\mathbf{e}^{T}\,,

for 0<λ10<\lambda\ll 1. From (C.16) and (C.13), the fundamental Neumann eigenvalue λ0\lambda_{0} is the smallest λ>0\lambda>0 for which there is a nontrivial solution 𝐜𝟎\mathbf{c}\neq\mathbf{0} to

(C.17) (I2πνmλ|Ω|E+2πν𝒢+𝒪(ν))𝐜=0.\left(I-\frac{2\pi\nu m}{\lambda|\Omega|}E+2\pi\nu{\mathcal{G}}+{\mathcal{O}}(\nu)\right)\mathbf{c}=0\,.

Since this occurs when λ=𝒪(ν)\lambda={\mathcal{O}}(\nu), we define λc>0\lambda_{c}>0 by λ=2πνmλc/|Ω|\lambda={2\pi\nu m\lambda_{c}/|\Omega|}, so that (C.17) can be written in equivalent form as

(C.18) E𝐜=λc(I+2πν𝒢+𝒪(ν2))𝐜,whereλ=2πνm|Ω|λc.E\mathbf{c}=\lambda_{c}\left(I+2\pi\nu{\mathcal{G}}+{\mathcal{O}}(\nu^{2})\right)\mathbf{c}\,,\qquad\mbox{where}\quad\lambda=\frac{2\pi\nu m}{|\Omega|}\lambda_{c}\,.

Since E𝐞=𝐞E\mathbf{e}=\mathbf{e}, while E𝐪=0E\mathbf{q}=0 for any 𝐪m1\mathbf{q}\in\mathbb{R}^{m-1} with 𝐞T𝐪=0\mathbf{e}^{T}\mathbf{q}=0, we conclude for ν1\nu\ll 1 that the only non-zero eigenvalue of (C.18) satisfies λc1\lambda_{c}\sim 1 with 𝐜𝐞\mathbf{c}\sim\mathbf{e}. To determine the correction to this leading-order result, in (C.18) we expand λc=1+νλc1+\lambda_{c}=1+\nu\lambda_{c1}+\cdots and 𝐜=𝐞+ν𝐜1+\mathbf{c}=\mathbf{e}+\nu\mathbf{c}_{1}+\cdots. From collecting 𝒪(ν){\mathcal{O}}(\nu) terms in (C.18), we get

(C.19) (IE)𝐜1=2π𝒢𝐞λc1𝐞.\left(I-E\right)\mathbf{c}_{1}=-2\pi{\mathcal{G}}\mathbf{e}-\lambda_{c1}\mathbf{e}\,.

Since IEI-E is symmetric with the 1-D nullspace 𝐞\mathbf{e}, the solvability condition for (C.19) is that 2π𝐞T𝒢𝐞λc1𝐞T𝐞=0-2\pi\mathbf{e}^{T}{\mathcal{G}}\mathbf{e}-\lambda_{c1}\mathbf{e}^{T}\mathbf{e}=0. Since 𝐞T𝐞=m\mathbf{e}^{T}\mathbf{e}=m, this yields the two-term expansion

(C.20) λc=1+νλc1+,whereλc1=2πm𝐞T𝒢𝐞.\lambda_{c}=1+\nu\lambda_{c1}+\ldots\,,\qquad\mbox{where}\quad\lambda_{c1}=-\frac{2\pi}{m}\mathbf{e}^{T}{\mathcal{G}}\mathbf{e}\,.

Finally, using λ=2πνmλc/|Ω|\lambda={2\pi\nu m\lambda_{c}/|\Omega|}, we obtain the two-term expansion as given in (6.83).

References

  • [1] O. Bénichou and R. Voituriez. From first-passage times of random walks in confinement to geometry-controlled kinetics. Physics Reports, 539(4):225–284, 2014.
  • [2] P. Bressloff and S. D. Lawley. Stochastically gated diffusion-limited reactions for a small target in a bounded domain. Phys. Rev. E., 92:062117, 2015.
  • [3] A. F Cheviakov, M. J Ward, and R. Straube. An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: The sphere. SIAM J. Multiscale Model. Simul., 8(3), 2010.
  • [4] D. Coombs, R. Straube, and M. J. Ward. Diffusion on a sphere with localized traps: Mean first passage time, eigenvalue asymptotics, and Fekete points. SIAM J. Appl. Math., 70(1), 2009.
  • [5] J. Gilbert and A. Cheviakov. Globally optimal volume-trap arrangements for the narrow-capture problem inside a unit sphere. Phys. Rev. E., 99(012109), 2019.
  • [6] I. V Grigoriev, Y. A Makhnovskii, A. M Berezhkovskii, and V. Yu Zitserman. Kinetics of escape through a small hole. J. Chem. Phys., 116(22):9574–9577, 2002.
  • [7] D. Holcman and Z. Schuss. Escape through a small opening: receptor trafficking in a synaptic membrane. J. Stat. Phys., 117(5-6):975–1014, 2004.
  • [8] D. Holcman and Z. Schuss. The narrow escape problem. SIAM Review, 56(2):213–257, 2014.
  • [9] D. Holcman and Z. Schuss. Time scale of diffusion in molecular and cellular biology. J. of Physics A: Math. and Theor., 47(17):173001, 2014.
  • [10] S. Iyaniwura, T. Wong, M. J. Ward, and C. B. Macdonald. Simulation and optimization of mean first passage time problems in 2-d using numerical embedded methods and perturbation theory. submitted, SIAM J. Multiscale Model. Simul., 2019.
  • [11] J. Kennedy. Particle swarm optimization. Encyclopedia of machine learning, pages 760–766, 2010.
  • [12] T. Kolokolnikov, M. S Titcombe, and M. J. Ward. Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps. Europ. J. Appl. Math., 16(2):161–200, 2005.
  • [13] T. Kolokolnikov and M. J. Ward. Reduced wave Green’s functions and their effect on the dynamics of a spike for the Gierer-Meinhardt model. Europ. J. Appl. Math, 14(5):513–545, 2003.
  • [14] T. Kolokolnikov, M. J. Ward, and J. Wei. Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain. J. Nonl. Science, 19(1):1–56, 2009.
  • [15] V. Kurella, J. C Tzou, D. Coombs, and M. J Ward. Asymptotic analysis of first passage time problems inspired by ecology. Bull. Math. Biol., 77(1), 2015.
  • [16] A. E. Lindsay, A. J. Bernoff, and M. J. Ward. First passage statistics for the capture of a Brownian particle by a structured spherical target with multiple surface traps. SIAM J. Multiscale Model. Simul., 15(1):74–109, 2017.
  • [17] S. L. Marshall. A rapidly convergent modified Green’s function for Laplace’s equation in a rectangular domain. Proc. Roy. Soc. London A, 455:1739–1766, 1999.
  • [18] R. C. McCann, R. D. Hazlett, and D. K. Babu. Highly accurate approximations of Green’s and Neumann functions on rectangular domains. Proc. Roy. Soc. Lond. A, 457:767–772, 2001.
  • [19] S. Pillay, M. J Ward, A. Peirce, and T. Kolokolnikov. An asymptotic analysis of the mean first passage time for narrow escape problems: Part I: Two-dimensional domains. SIAM J. Multiscale Model. Simul., 8(3), 2010.
  • [20] S. Redner. A guide to first-passage processes. Cambridge University Press, 2001.
  • [21] L. M Ricciardi. Diffusion approximations and first passage time problems in population biology and neurobiology. In Mathematics in Biology and Medicine, pages 455–468. Springer, 1985.
  • [22] W. J. M. Ridgway and A. Cheviakov. Locally and globally optimal configurations of n particles on the sphere with applications in the narrow escape and narrow capture problems. Phys. Rev. E., 100(042413), 2019.
  • [23] Z. Schuss, A. Singer, and D. Holcman. The narrow escape problem for diffusion in cellular microdomains. Proc. Natl. Acad. Sci., 104(41):16098–16103, 2007.
  • [24] A. Singer, Z. Schuss, and D. Holcman. Narrow escape, Part II: The circular disk. J. Stat. Phys., 122(3):465–489, 2006.
  • [25] L. N. Trefethen and J. A. C. Weideman. The exponentially convergent trapezoidal rule. SIAM Review, 56(3):28–51, 2014.
  • [26] M. J. Ward, W. D. Henshaw, and J. B. Keller. Summing logarithmic expansions for singularly perturbed eigenvalue problems. SIAM J. Appl. Math., 53(3):799–828, 1993.
  • [27] M. J. Ward and J. B. Keller. Strong localized perturbations of eigenvalue problems. SIAM J. App. Math., 53(3):770–798, 1993.