This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimality of Curtiss Bound on
Poincaré Multiplier for
Positive Univariate Polynomials

Hoon Hong 111 Department of Mathematics, North Carolina State University, Raleigh NC 27695 USA, [email protected] and Brittany Riggs 222 Corresponding author. Department of Mathematics, Elon University, Elon NC 27244 USA, [email protected]
Abstract

Let ff be a monic univariate polynomial with non-zero constant term. We say that ff is positive if f(x)f(x) is positive over all x0x\geq 0. If all the coefficients of ff are non-negative, then ff is trivially positive. In  1883, Poincaré proved thatff is positive if and only if there exists a monic polynomial gg such that all the coefficients of gfgf are non-negative. Such polynomial gg is called a Poincaré multiplier for the positive polynomial ff. Of course one hopes to find a multiplier with smallest degree. This naturally raised a challenge: find an upper bound on the smallest degree of multipliers. In 1918, Curtiss provided such a bound. Curtiss also showed that the bound is optimal (smallest) when degree of ff is 1 or 2. It is easy to show that the bound is not optimal when degree of ff is higher. The Curtiss bound is a simple expression that depends only on the angle (argument) of non-real roots of ff. In this paper, we show that the Curtiss bound is optimal among all the bounds that depends only on the angles.

1 Introduction

Let ff be a monic univariate polynomial with non-zero constant term. We say that ff is positive if f(x)f(x) is positive over all x0x\geq 0333 It is equivalent to the condition that ff has no positive real root. In fact, most of the discussion in the paper has a counter-part in a real root counting problem, namely checking whether ff has exactly kk positive real roots for a given kk. There have been many works on the topic and on its extensions, just to list a few: [7, 4, 9, 10, 21, 22, 5, 8]. If all the coefficients of ff are non-negative, then obviously ff is positive, but the converse is not true. Consider the following small (toy) examples:

f1\displaystyle f_{1} =x4+x3+10x2+2x+10\displaystyle=x^{4}+x^{3}+10x^{2}+2x+10
f2\displaystyle f_{2} =x4x310x22x+10\displaystyle=x^{4}-x^{3}-10x^{2}-2x+10
f3\displaystyle f_{3} =x4x3+10x22x+10\displaystyle=x^{4}-x^{3}+10x^{2}-2x+10

Note that all the  coefficients of f1f_{1} are non-negative. Thus it is trivial to see that f1f_{1} is positive. However f2f_{2} and f3f_{3} have negative coefficients, and thus it is not obvious whether they are positive or not. It turns out that f2f_{2} is not positive and f3f_{3} is positive.

In 1883, Poincaré [15] proposed and proved a modification of the converse: if ff is positive, then there exists a monic polynomial gg such that all the coefficients of gfgf are non-negative. Such polynomial gg is called a Poincaré multiplier for the positive polynomial ff. For the above examples, we have

  • Since f2f_{2} is not positive, there is no Poincaré multiplier for f2f_{2}.

  • Since f3f_{3} is positive, there is a Poincaré multiplier for f3f_{3}. For instance, let g=x+1g=x+1. Then

    gf3=(x+1)(x4x3+10x22x+10)=x5+9x73+8x2+8x+10gf_{3}=\left(x+1\right)\left(x^{4}-x^{3}+10x^{2}-2x+10\right)=x^{5}+9x^{73}+8x^{2}+8x+10

    Note that all the coefficients of gf3gf_{3} are non-negative.

In 1928, Pólya provided a shape for the Poincaré multiplier [16], namely (x+1)k(x+1)^{k}444 Pólya used the multivariate version of the shape while trying to find a certificate for a variant of Hilbert’s 17th problem [11]. For similar efforts on different variants of Hilbert’s 17th problem, see [1, 12, 19, 20, 18, 14]. In fact, in the above example, we used a multiplier of the Pólya shape with k=1k=1. However, there are other multipliers for f3f_{3} that do not have the Pólya shape. For instance, let g=x2+x+1g=x^{2}+x+1. Note that it does not have the Pólya shape, but it is a Poincaré multiplier since all the coefficients of gf3gf_{3} are again non-negative:

gf3=(x2+x+1)(x4x3+10x22x+10)=x6+10x4+7x3+18x2+8x+10.gf_{3}=\left(x^{2}+x+1\right)\left(x^{4}-x^{3}+10x^{2}-2x+10\right)=x^{6}+10x^{4}+7x^{3}+18x^{2}+8x+10.

In fact, there are infinitely many multipliers of diverse shapes. Hence a challenge naturally arises: Find an upper bound on the smallest degree of multipliers.

In 1918, Curtiss found an upper bound [6]. However, it seems to have been forgotten until the paper was digitized. Separately, in 2001 Powers and Reznick gave another bound based on the Pólya shape in the multivariate homogeneous case [17]. Avendaño (page 2885 of [2]) specialized this bound to the univariate case.

It is easy to show that the Powers-Reznick bound is not optimal. Curtiss showed that his bound is optimal when degree of ff is 11 or 22. It is, however, easy to show that the bound is not optimal when degree of ff is higher. For example, the Curtiss bound for f3f_{3} is 22, which is bigger than the optimal degree which is 11. Hence another challenge naturally arises: Find the optimal (smallest) bound.

This can be done, in principle, by the following process: for each degree dd, starting with 0, we check whether there exists a Poincaré multiplier of degree dd. If not, we continue with next degree. If yes, we report dd to be the optimal bound. The process is guaranteed to terminate due to Poincaré’s theorem. Checking the existence of a Poincaré multiplier of a given degree dd can be carried out by any algorithm (such as simplex phase I) for deciding the existence of a solution for a system of linear inequalities in the coefficients of the multiplier polynomial.

However, it has two major difficulties. (1) It requires that we run the software on each dd from scratch. (2) Each run on degree dd quickly becomes very time-consuming as dd grows, making this approach practically infeasible, especially when the optimal bound is very large.

Fortunately, there is a related challenge which might be feasible to tackle. For this, we note the Curtiss bound (Theorem 1) depends only on the angles (arguments) of the non-real roots of ff. Thus, we formulate the following alternative challenge: Find an optimal bound among the family of bounds that depend only on the angles of the non-real roots.

Note that Curtiss already showed that his bound is optimal among the family of those bounds for degrees 1 and 2. One wonders whether the Curtiss bound is optimal among this family of bounds for higher degrees. The main contribution of this paper is to prove that it is so (Theorem 2).

2 Main Result

Let f[x]f\in\mathbb{R}\left[x\right] be monic such that x0f(x)>0\underset{x\geq 0}{\forall}f\left(x\right)>0, that is, ff does not have any non-negative real root. We first define a notation for the optimal degree of the Poincaré multiplier as it will be used throughout this work.

Definition 1 (Optimal Bound)

The optimal degree of the Poincaré multiplier for ff, written as opt(f)\operatorname*{opt}\left(f\right), is defined by

opt(f)=ming[x]\0coeff(gf)0deg(g).\operatorname*{opt}\left(f\right)=\min_{\begin{subarray}{c}g\in\mathbb{R}\left[x\right]\backslash 0\\ \operatorname*{coeff}\left(gf\right)\geq 0\end{subarray}}\deg(g).
Example 2

Consider the polynomial

f=(i=14(x22(1)cos(θi)x+12))(x+1)f=\left(\prod_{i=1}^{4}\left(x^{2}-2(1)\cos(\theta_{i})\,x+1^{2}\right)\right)(x+1)

where θ={7π24,10π24,11π24,14π24}\theta=\left\{\dfrac{7\pi}{24},\dfrac{10\pi}{24},\dfrac{11\pi}{24},\dfrac{14\pi}{24}\right\}. First, note that opt(f)0\operatorname*{opt}\left(f\right)\neq 0, as ff has mixed sign coefficients. If we let the Poincaré multiplier be g=x+1g=x+1, we see we have opt(f)=1\operatorname*{opt}\left(f\right)=1, since coeff(gf)0\operatorname*{coeff}\left(gf\right)\geq 0.

Theorem 1 (Curtiss Bound 1918 [6])

Let r1e±iθ1,,rσe±iθσr_{1}e^{\pm i\theta_{1}},\ldots,r_{\sigma}e^{\pm i\theta_{\sigma}} be the roots of ff where multiple roots are repeated. Let

b(f)=1iσθiπ(πθi2).b\left(f\right)=\underset{\theta_{i}\neq\pi}{\sum_{1\leq i\leq\sigma}}\left(\left\lceil\frac{\pi}{\theta_{i}}\right\rceil-2\right).

Then opt(f)b(f)opt\left(f\right)\leq b\left(f\right) and the equality holds if degf2\deg f\leq 2.

Example 3

Consider the same polynomial from Example 2,

f=(i=14(x22(1)cos(θi)x+12))(x+1)f=\left(\prod_{i=1}^{4}\left(x^{2}-2(1)\cos(\theta_{i})\,x+1^{2}\right)\right)(x+1)

where θ={7π24,10π24,11π24,14π24}\theta=\left\{\dfrac{7\pi}{24},\dfrac{10\pi}{24},\dfrac{11\pi}{24},\dfrac{14\pi}{24}\right\}.The Curtiss bound for this polynomial is

b(f)\displaystyle b(f) =(π7π242)+(π10π242)+(π11π242)+(π14π242)\displaystyle=\left(\left\lceil\frac{\pi}{\frac{7\pi}{24}}\right\rceil-2\right)+\left(\left\lceil\frac{\pi}{\frac{10\pi}{24}}\right\rceil-2\right)+\left(\left\lceil\frac{\pi}{\frac{11\pi}{24}}\right\rceil-2\right)+\left(\left\lceil\frac{\pi}{\frac{14\pi}{24}}\right\rceil-2\right)
=2+1+1+0\displaystyle=2+1+1+0
=4.\displaystyle=4.

Here we can see by comparing to Example 2 that the Curtiss bound is not always optimal.

Theorem 2 (Main Result: Angle-Based Optimality of Curtiss’s Bound)

We have

θ1,,θσ(0,π]r1,,rσ>0opt(f)=b(f).\underset{\theta_{1},\ldots,\theta_{\sigma}\in(0,\pi]}{\forall}\ \ \ \underset{r_{1},\ldots,r_{\sigma}>0}{\exists}\ \operatorname*{opt}\left(f\right)=b\left(f\right).
Example 4

Consider the following polynomial with the same angles as that from Example 3 but different radii,

f=(i=14(x22(10i1)cos(θi)x+(10i1)2))(x+104)f=\left(\prod_{i=1}^{4}\left(x^{2}-2(10^{i-1})\cos(\theta_{i})\,x+(10^{i-1})^{2}\right)\right)(x+10^{4})

where θ={7π24,10π24,11π24,14π24}\theta=\left\{\dfrac{7\pi}{24},\dfrac{10\pi}{24},\dfrac{11\pi}{24},\dfrac{14\pi}{24}\right\}. The Curtiss bound for this polynomial is still b(f)=4b(f)=4. However, in this case we have opt(f)=b(f)=4\operatorname*{opt}(f)=b(f)=4.

3 Proof of Angle-Based Optimality (Theorem 2)

3.1 Overview

As the proof is rather lengthy, we will include an overview of the structure of the proof. First, we provide a diagram of the various components of the proof. As shown in the diagram, the main claim is split into two sub-claims, which are then proven via several smaller claims. Below, we explain the diagram from a big picture standpoint. In the sections referenced in the diagram, we provide the proofs for each claim.

Optimality of Curtiss’s Bound Section 3.2, Theorem 2 All Angles in Quadrant 1 Section 3.4, Lemma 4 One Less Degree Lemma 5 3 Coefficients Lemma 6 Existence of Radii Lemma 10 Partial Witness Lemma 9 Some Angles in Quadrant 2 Section 3.5, Lemma 11 One New Quadrant 2 Factor Lemma 13 Separation of Sets Lemma 12

Our goal is to prove the angle-based optimality of Curtiss’s bound on the degree of the Poincaré multiplier for a positive polynomial.

Symbolically, we have

θΘrRopt(f)=b(f).\underset{\theta\in\Theta}{\forall}\ \ \underset{r\in R}{\exists}\ \ \operatorname*{opt}\left(f\right)=b\left(f\right).

After extensive exploration, we identified a natural split in strategies between collections of angles 0<θ<π20<\theta<\dfrac{\pi}{2} and those with additional angles π2θπ\dfrac{\pi}{2}\leq\theta\leq\pi. We now have

θΘ1Θ2rRopt(f)=b(f).\underset{\theta\in\Theta_{1}\cup\Theta_{2}}{\forall}\ \ \underset{r\in R}{\exists}\ \ \operatorname*{opt}\left(f\right)=b\left(f\right).

We first focus on the claim for θΘ1\theta\in\Theta_{1}, polynomials with complex root arguments 0<θ<π20<\theta<\dfrac{\pi}{2}. That is, for any collection of angles in this subset, there exists a corresponding collection of radii such that Curtiss’s bound is the minimum possible degree for the Poincaré multiplier to achieve a product with all non-negative coefficients. One way to show this is to prove that there exist radii such that any multiplier of smaller degree will produce a product with a negative coefficient. We can then rewrite the claim as

θΘ1rRgGkKcoeff(gf,k)<0.\underset{\theta\in\Theta_{1}}{\forall}\ \ \underset{r\in R}{\exists}\ \ \underset{g\in G}{\forall}\ \ \underset{k\in K}{\exists}\ \ \operatorname*{coeff}(gf,k)<0.

Note, with this rewrite we consider a problem with three quantifier alternations. As this is a very complex problem, we seek to reduce the search space for the negative coefficient. It is straightforward to prove that, rather than consider the entire set of multipliers of smaller degree, it is sufficient to focus on the set of multipliers with degree one less than Curtiss’s bound to show that any such multiplier will produce a product with a negative coefficient. We now have

θΘ1rRgGkKcoeff(gf,k)<0\underset{\theta\in\Theta_{1}}{\forall}\ \ \underset{r\in R}{\exists}\ \ \underset{g\in G^{\prime}}{\forall}\ \ \underset{k\in K}{\exists}\ \ \operatorname*{coeff}(gf,k)<0

for a subset GG^{\prime} of the original multiplier search space GG that is determined by the Curtiss bound (hence, by θ\theta). After detailed analysis of examples, we surprisingly discovered that we can also narrow down the potential locations of the negative coefficient. In fact, although the collection of product coefficients grows in size with Curtiss’s bound, we can identify a negative coefficient from a subset of just 3 possibilities. Hence

θΘ1rRgGkKcoeff(gf,k)<0\underset{\theta\in\Theta_{1}}{\forall}\ \ \underset{r\in R}{\exists}\ \ \underset{g\in G^{\prime}}{\forall}\ \ \underset{k\in K^{\prime}}{\exists}\ \ \operatorname*{coeff}(gf,k)<0

for a subset KK^{\prime} of the original coefficient search space KK that is determined by the number of angles in θ\theta and the Curtiss bound (hence, by θ\theta). Finally, with more difficulty, we determined how to reduce the search space for the desired radii. By identifying a witness, in terms of cos(θ)\cos\left(\theta\right), for all but one of the radii, we reduced the radii search space to just a one-dimensional space for the final radius. We have

θΘ1rRgGkKcoeff(gf,k)<0\underset{\theta\in\Theta_{1}}{\forall}\ \ \underset{r\in R^{\prime}}{\exists}\ \ \underset{g\in G^{\prime}}{\forall}\ \ \underset{k\in K^{\prime}}{\exists}\ \ \operatorname*{coeff}(gf,k)<0

for a subset RR^{\prime} of the original radii search space RR. Proving this final version of the claim was still a significant challenge. We examined the geometry of the product coefficients as a function of this final unknown radius in order to verify the claim. Expressing the coefficients of the original polynomial ff in terms of the elementary symmetric polynomials in the roots of ff proved essential to our progress, enabling us to make claims about the sign of the coefficients that were otherwise quite challenging.

Having proved the claim in the case where all angles fall in Θ1\Theta_{1}, we move on to the case where we have mixed angles from Θ1\Theta_{1} or Θ2\Theta_{2}. The crux of this claim is that any polynomial in which Curtiss’s bound is optimal can be multiplied by a quadratic with angle π2θ<π\dfrac{\pi}{2}\leq\theta<\pi and a radius that preserves the optimality of Curtiss’s bound or a linear factor with an appropriate radius that preserves the optimality of Curtiss’s bound. Thus, for any collection of additional angles in quadrant 2, we can inductively prove the existence of the necessary radii to ensure the optimality of Curtiss’s bound.

θΘ2rRopt(fθ,rf)=opt(f)=b(f)\underset{\theta\in\Theta_{2}}{\forall}\ \ \underset{r\in R}{\exists}\ \ \operatorname*{opt}\left(f_{\theta,r}\,f\right)=\operatorname*{opt}\left(f\right)=b(f)

Note that, in this case, the additional factors in the polynomial do not increase the Curtiss bound. For this sub-claim we utilize a different strategy, relying on linear algebra to rewrite the optimality claim as a separation between two sets.

3.2 Proof of Angle-Based Optimality (Theorem 2)

Since we must treat angles separately according to their measure, we split the collection of angles θ1,,θσ\theta_{1},\ldots,\theta_{\sigma} into three sets as detailed below. Let

f\displaystyle f =fθ,rθfϕ,rϕfπ,p\displaystyle=f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,f_{\pi,p}
fθ,rθ\displaystyle f_{\theta,r_{\theta}} =1i0<θi<π2(x22rθicosθix+rθi2)where rθi>0and 0<θ1θ<π2\displaystyle=\prod\limits_{\begin{subarray}{c}1\leq i\leq\ell\\ 0<\theta_{i}<\frac{\pi}{2}\end{subarray}}\left(x^{2}-2r_{\theta_{i}}\cos\theta_{i}\,x+r_{\theta_{i}}^{2}\right)\ \ \ \text{where }r_{\theta_{i}}>0\ \text{and }0<\theta_{1}\leq\cdots\leq\theta_{\ell}<\dfrac{\pi}{2}
fϕ,rϕ\displaystyle f_{\phi,r_{\phi}} =1ikπ2ϕi<π(x22rϕicosϕix+rϕi2)where rϕi>0and π2ϕ1ϕk<π\displaystyle=\prod\limits_{\begin{subarray}{c}1\leq i\leq k\\ \frac{\pi}{2}\leq\phi_{i}<\pi\end{subarray}}\left(x^{2}-2r_{\phi_{i}}\cos\phi_{i}\,x+r_{\phi_{i}}^{2}\right)\ \text{where }r_{\phi_{i}}>0\leavevmode\nobreak\ \text{and }\ \dfrac{\pi}{2}\leq\phi_{1}\leq\cdots\leq\phi_{k}<\pi
fπ,p\displaystyle f_{\pi,p} =1it(x+pi)where pi>0\displaystyle=\prod\limits_{1\leq i\leq t}\left(x+p_{i}\right)\ \,\text{where }p_{i}>0

where k++t=σk+\ell+t=\sigma and 2(k+)+t=n=deg(f)2(k+\ell)+t=n=\deg(f).

Proof: [Proof of Theorem 2] We need to show

π2ϕ1ϕk<π0<θ1θ<π2p1,,pt>0rϕ1,,rϕk>0rθ1,,rθ>0opt(f)=b(f).\underset{\frac{\pi}{2}\leq\phi_{1}\leq\cdots\leq\phi_{k}<\pi}{\forall}\ \ \underset{0<\theta_{1}\leq\cdots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{p_{1},\ldots,p_{t}>0}{\exists}\ \ \underset{r_{\phi_{1}},\ldots,r_{\phi_{k}}>0}{\exists}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \operatorname*{opt}\left(f\right)=b\left(f\right).

Let π2ϕ1ϕk<π\dfrac{\pi}{2}\leq\phi_{1}\leq\cdots\leq\phi_{k}<\pi\ \,and 0<θ1θ<π20<\theta_{1}\leq\cdots\leq\theta_{\ell}<\dfrac{\pi}{2} be arbitrary but fixed. We need to show

p1,,pt>0rϕ1,,rϕk>0rθ1,,rθ>0opt(f)=b(f).\underset{p_{1},\ldots,p_{t}>0}{\exists}\ \ \underset{r_{\phi_{1}},\ldots,r_{\phi_{k}}>0}{\exists}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \operatorname*{opt}\left(f\right)=b\left(f\right).

We need to find a witness for p,rϕ,rθp,r_{\phi},r_{\theta} such that opt(f)=b(f)\operatorname*{opt}\left(f\right)=b\left(f\right). We propose a witness candidate as follows. From the All Angles in Quadrant 1 Lemma (Lemma 4), for the fixed θ\theta, we have

rθ1,,rθ>0opt(fθ,rθ)=b(fθ,rθ).\underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \ \operatorname*{opt}\left(f_{\theta,r_{\theta}}\right)=b\left(f_{\theta,r_{\theta}}\right). (1)

From the Some Angles in Quadrant 2 Lemma (Lemma 11), for the fixed ϕ\phi and θ\theta, we have

p1,,pt>0rϕ1,,rϕk>0rθ1,,rθ>0opt(fθ,rθfϕ,rϕfπ,p)=opt(fθ,rθ).\underset{p_{1},\ldots,p_{t}>0}{\exists}\ \ \ \underset{r_{\phi_{1}},\ldots,r_{\phi_{k}}>0}{\exists}\ \ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\forall}\ \ \ \operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,f_{\pi,p}\right)=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\right). (2)

We propose p,rϕ,rθp,r_{\phi},r_{\theta} appearing in the above two facts as a witness candidate.


We verify that the proposed candidate is indeed a witness, that is, opt(f)=b(f)\operatorname*{opt}\left(f\right)=b\left(f\right). Note

opt(f)\displaystyle\operatorname*{opt}\left(f\right) =opt(fθ,rθfϕ,rϕfπ,p)\displaystyle=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,f_{\pi,p}\right)
=opt(fθ,rθ)by (2)\displaystyle=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\right)\ \ \text{by (\ref{l:reduce})}
=b(fθ,rθ)by (1)\displaystyle=b\left(f_{\theta,r_{\theta}}\right)\ \text{by (\ref{l:core})}
=b(fθ,rθ)+b(fϕ,rϕ)+b(fπ,p)since b(fϕ,rϕ)=b(fπ,p)=0\displaystyle=b\left(f_{\theta,r_{\theta}}\right)+b\left(f_{\phi,r_{\phi}}\right)+b\left(f_{\pi,p}\right)\ \text{since }b\left(f_{\phi,r_{\phi}}\right)=b\left(f_{\pi,p}\right)=0\
=b(fθ,rθfϕ,rϕfπ,p)\displaystyle=b\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,f_{\pi,p}\right)
=b(f).\displaystyle=b\left(f\right).

Hence the theorem is proved. \Box 

3.3 Common Notations

The following notation and lemma will be used in both the subsequent subsections. Let

f\displaystyle f =anxn++a0x0\displaystyle=a_{n}x^{n}+\cdots+a_{0}x^{0}
g\displaystyle g =bsxs++b0x0\displaystyle=b_{s}x^{s}+\cdots+b_{0}x^{0}

where an=1a_{n}=1 and bs=1b_{s}=1. We first rewrite them using vectors. Let

a=[a0an]b=[b0bs]a=\left[\begin{array}[c]{ccc}a_{0}&\cdots&a_{n}\end{array}\right]\ \ \ \ \ \ \ b=\left[\begin{array}[c]{ccc}b_{0}&\cdots&b_{s}\end{array}\right]

and let

xk=[x0xk].x_{k}=\left[\begin{array}[c]{c}x^{0}\\ \vdots\\ x^{k}\end{array}\right].

Then we can write ff and gg compactly as

f=axnandg=bxs.f=ax_{n}\ \ \ \ \text{and}\ \ \ \ g=bx_{s}.

Let

As=[a0ana0an](s+1)×(s+n+1).A_{s}=\left[\begin{array}[c]{cccccc}a_{0}&\cdots&\cdots&a_{n}&&\\ &\ddots&&&\ddots&\\ &&a_{0}&\cdots&\cdots&a_{n}\end{array}\right]\in\mathbb{R}^{\left(s+1\right)\times(s+n+1)}.
Lemma 3 (Coefficients)

coeffs(gf)=bAs\operatorname*{coeffs}\left(gf\right)=bA_{s}

Proof: Note

gf\displaystyle gf =(bxs)(axn)\displaystyle=\left(bx_{s}\right)\left(ax_{n}\right)
=b(xsaxn)\displaystyle=b\left(x_{s}ax_{n}\right)
=b[x0xs][a0an][x0xn]\displaystyle=b\left[\begin{array}[c]{c}x^{0}\\ \vdots\\ x^{s}\end{array}\right]\left[\begin{array}[c]{ccc}a_{0}&\cdots&a_{n}\end{array}\right]\left[\begin{array}[c]{c}x^{0}\\ \vdots\\ x^{n}\end{array}\right]
=b[a0ana0an][x0xs+n]\displaystyle=b\left[\begin{array}[c]{cccccc}a_{0}&\cdots&\cdots&a_{n}&&\\ &\ddots&&&\ddots&\\ &&a_{0}&\cdots&\cdots&a_{n}\end{array}\right]\left[\begin{array}[c]{c}x^{0}\\ \vdots\\ x^{s+n}\end{array}\right]
=bAsxs+n\displaystyle=bA_{s}x_{s+n}

Hence coeffs(gf)=bAs\operatorname*{coeffs}\left(gf\right)=bA_{s}. \Box 

3.4 Concerning Angles in Quadrant 1, 0<θ<π20<\theta<\dfrac{\pi}{2}

First, we present the overarching argument for the claim that, given a collection of angles in quadrant 1 (excluding the axes), there exist radii such that the Curtiss bound is optimal. There are a number of claims required for this proof.

All Angles in Quadrant 1 Lemma 4 One Less Degree Lemma 5 3 Coefficients Lemma 6 Existence of Radii Lemma 10 Partial Witness Lemma 9

We will utilize the following notations throughout this subsection. For 2\ell\geq 2, let

αi\displaystyle\alpha_{i} =rieiθifor 1i\displaystyle=r_{i}e^{i\theta_{i}}\ \ \ \text{for }1\leq i\leq\ell
α+i\displaystyle\alpha_{\ell+i} =rieiθifor 1i\displaystyle=r_{i}e^{-i\theta_{i}}\ \ \ \text{for }1\leq i\leq\ell
ti\displaystyle t_{i} =cos(θi)\displaystyle=\cos\left(\theta_{i}\right)
fθ,rθ\displaystyle f_{\theta,r_{\theta}} =i=1(x22ritix+ri2)=i=1(xαi)(xα+i)=i=02aixi\displaystyle=\prod_{i=1}^{\ell}\left(x^{2}-2r_{i}t_{i}x+r_{i}^{2}\right)=\prod_{i=1}^{\ell}(x-\alpha_{i})(x-\alpha_{\ell+i})=\sum_{i=0}^{2\ell}a_{i}x^{i}
s\displaystyle s =b(fθ,rθ)\displaystyle=b(f_{\theta,r_{\theta}})
g\displaystyle g =xs1+bs2xs2++b1x+b0\displaystyle=x^{s-1}+b_{s-2}x^{s-2}+\cdots+b_{1}x+b_{0}
ck\displaystyle c_{k} =coeff(gfθ,rθ,xk).\displaystyle=\operatorname*{coeff}(g\,f_{\theta,r_{\theta}},x^{k}).

Note that ai=(1)2ie2i(α1,,α2)a_{i}=(-1)^{2\ell-i}e_{2\ell-i}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right) where ek(α1,,α2)e_{k}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right) is the elementary symmetric polynomial of degree kk in the roots α1,,α2\alpha_{1},\ldots,\alpha_{2\ell}. When =0\ell=0, we define e0=1e_{0}=1. Second, ti>0t_{i}>0 since 0<θi<π20<\theta_{i}<\dfrac{\pi}{2}.

Lemma 4 (All Angles in Quadrant 1)
00<θ1θ<π2rθ1,,rθ>0opt(fθ,rθ)=b(fθ,rθ)\underset{\ell\geq 0}{\forall}\ \ \underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \operatorname*{opt}\left(f_{\theta,r_{\theta}}\right)=b\left(f_{\theta,r_{\theta}}\right)

Proof: We need to prove the following claim for every 0\ell\geq 0.

0<θ1θ<π2rθ1,,rθ>0opt(fθ,rθ)=s\underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \operatorname*{opt}\left(f_{\theta,r_{\theta}}\right)=s

where s=b(fθ,rθ)s=b(f_{\theta,r_{\theta}}). By the One Less Degree Lemma (Lemma 5), it suffices to show

0<θ1θ<π2rθ1,,rθ>0g[x]deg(g)=s10k2+s1ck<0.\begin{array}[c]{cl}&\underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \underset{\deg(g)=s-1}{\underset{g\in\mathbb{R}[x]}{\forall}}\ \ \underset{0\leq k\leq 2\ell+s-1}{\exists}\ \ c_{k}<0.\end{array}

We will show it in three cases depending on the values of \ell.

Case:

=0\ell=0.

Here, f=1f=1. The claim is trivially true since opt(fθ,rθ)=b(fθ,rθ)=0\operatorname*{opt}\left(f_{\theta,r_{\theta}}\right)=b\left(f_{\theta,r_{\theta}}\right)=0.

Case:

=1\ell=1.

Immediate from the Curtiss Bound (Theorem 1).

Case:

2\ell\geq 2.

Note

0<θ1θ<π2rθ1,,rθ>0opt(fθ,rθ)=b(fθ,rθ)\displaystyle\ \underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \operatorname*{opt}\left(f_{\theta,r_{\theta}}\right)=b\left(f_{\theta,r_{\theta}}\right)
\displaystyle\iff 0<θ1θ<π2rθ1,,rθ>0g[x]deg(g)<s𝑘ck<0\displaystyle\ \underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \underset{\deg(g)<s}{\underset{g\in\mathbb{R}[x]}{\forall}}\ \ \underset{k}{\exists}\ \ c_{k}<0
\displaystyle\Longleftarrow\ 0<θ1θ<π2rθ1,,rθ>0g[x]deg(g)=s1𝑘ck<0by Lemma 5\displaystyle\ \underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \underset{\deg(g)=s-1}{\underset{g\in\mathbb{R}[x]}{\forall}}\ \ \underset{k}{\exists}\ \ c_{k}<0\ \ \ \ \text{by Lemma }\ref{lem:deg}
\displaystyle\Longleftarrow\ 0<θ1θ<π2rθ1,,rθ>0g[x]deg(g)=s1k{s2, 2+s5, 2+s2}ck<0by Lemma 6.\displaystyle\ \underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \underset{\deg(g)=s-1}{\underset{g\in\mathbb{R}[x]}{\forall}}\ \ \underset{k\in\{s-2,\,2\ell+s-5,\,2\ell+s-2\}}{\exists}\ \ c_{k}<0\ \ \ \ \text{by Lemma }\ref{lem:subset}.

We prove this final claim to be true in the Existence of Radii Lemma, Lemma 10.

\Box 

Now we prove Lemmas 5 and 6, cited above, and also several other lemmas required for the main claim, the Existence of Radii Lemma (Lemma 10).

First, we prove the small but essential claim that if there is no Poincaré multiplier, gg, of a certain degree, then there is also no Poincaré multiplier with smaller degree.

Lemma 5 (One Less Degree)

g,deg(g)=s𝑘ck0g,deg(g)<s𝑘ck0\underset{g,\,\deg(g)=s}{\nexists}\ \ \underset{k}{\forall}\ \ c_{k}\geq 0\ \ \ \ \Longrightarrow\ \ \ \ \underset{g,\,\deg(g)<s}{\nexists}\ \ \underset{k}{\forall}\ \ c_{k}\geq 0

Proof: We will prove via the contrapositive:

g,deg(g)<s𝑘ck0g,deg(g)=s𝑘ck0.\underset{g,\,\deg(g)<s}{\exists}\ \ \underset{k}{\forall}\ \ c_{k}\geq 0\ \ \ \ \Longrightarrow\ \ \ \ \underset{g,\,\deg(g)=s}{\exists}\ \ \underset{k}{\forall}\ \ c_{k}\geq 0.

Assume g,deg(g)<s𝑘ck0\underset{g,\,\deg(g)<s}{\exists}\ \ \underset{k}{\forall}\ \ c_{k}\geq 0. Then there exists a gg with deg(g)=t<s\deg(g)=t<s such that gfθ,rθg\,f_{\theta,r_{\theta}} has all non-negative coefficients. Let u=stu=s-t.

Consider the multiplier xugx^{u}\,g. Note that (xug)fθ,rθ=xu(gfθ,rθ)(x^{u}\,g)\,f_{\theta,r_{\theta}}=x^{u}(g\,f_{\theta,r_{\theta}}) must have all non-negative coefficients and deg(xug)=u+t=s\deg(x^{u}\,g)=u+t=s. Then there exists a multiplier, xugx^{u}\,g with degree equal to ss such that the product has all non-negative coefficients.

Hence we have

g,deg(g)<s𝑘ck0g,deg(g)=s𝑘ck0.\underset{g,\,\deg(g)<s}{\exists}\ \ \underset{k}{\forall}\ \ c_{k}\geq 0\ \ \ \ \Longrightarrow\ \ \ \ \underset{g,\,\deg(g)=s}{\exists}\ \ \underset{k}{\forall}\ \ c_{k}\geq 0.

\Box 

Our ultimate goal for this section is to prove that there exist radii such that there is no multiplier with degree less than b(fθ,rθ)b(f_{\theta,r_{\theta}}). The One Less Degree Lemma (Lemma 5) states that it suffices to show there is no multiplier with degree b(fθ,rθ)1b(f_{\theta,r_{\theta}})-1. Next, we show that if we consider a multiplier of degree one less, it suffices to examine a specific subset of the coefficients in the product rather than all coefficients to prove the claim. Note that the surprisingly small subset of coefficients was selected by examining the geometry of the coefficients and determining a minimally sufficient set. This is the proof that a subset will suffice. The proof that this particular subset satisfies the claim is given in Lemma 10.

Lemma 6 (3 Coefficients)
0<θ1θ<π2rθ1,,rθ>0g[x]deg(g)=s1k{s2, 2+s5, 2+s2}ck<0\displaystyle\underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \underset{\deg(g)=s-1}{\underset{g\in\mathbb{R}[x]}{\forall}}\ \ \underset{k\in\{s-2,\,2\ell+s-5,\,2\ell+s-2\}}{\exists}\ \ c_{k}<0
\displaystyle\Longrightarrow\ \ \ \ 0<θ1θ<π2rθ1,,rθ>0g[x]deg(g)=s1𝑘ck<0\displaystyle\underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \underset{\deg(g)=s-1}{\underset{g\in\mathbb{R}[x]}{\forall}}\ \ \underset{k}{\exists}\ \ c_{k}<0

Proof: Recall that

s\displaystyle s =b(fθ,rθ)\displaystyle=b\left(f_{\theta,r_{\theta}}\right)
g\displaystyle g =xs1+bs2xs2++b1x+b0\displaystyle=x^{s-1}+b_{s-2}x^{s-2}+\cdots+b_{1}x+b_{0}
ti\displaystyle t_{i} =cos(θi).\displaystyle=\cos(\theta_{i}).

Note that if deg(f)=2\deg(f)=2\ell and deg(g)=s1\deg(g)=s-1, then deg(gf)=2+s1\deg(g\,f)=2\ell+s-1.

0<θ1θ<π2rθ1,,rθ>0g[x]deg(g)=s1𝑘ck<0\displaystyle\ \underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \underset{\deg(g)=s-1}{\underset{g\in\mathbb{R}[x]}{\forall}}\ \ \underset{k}{\exists}\ \ c_{k}<0
\displaystyle\iff 0<θ1θ<π2rθ1,,rθ>0g[x]deg(g)=s10k2+s1ck<0\displaystyle\ \underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \underset{\deg(g)=s-1}{\underset{g\in\mathbb{R}[x]}{\forall}}\ \ \underset{0\leq k\leq 2\ell+s-1}{\exists}\ \ c_{k}<0
\displaystyle\Longleftarrow\ \, 0<θ1θ<π2rθ1,,rθ>0g[x]deg(g)=s1k{s2, 2+s5, 2+s2}ck<0.\displaystyle\ \underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \underset{\deg(g)=s-1}{\underset{g\in\mathbb{R}[x]}{\forall}}\ \ \underset{k\in\{s-2,\,2\ell+s-5,\,2\ell+s-2\}}{\exists}\ \ c_{k}<0.

\Box 

The next two lemmas are helpful in the proof of Lemma 10 and are listed separately here to streamline the proof of Lemma 10.

Lemma 7 (Coefficient Expressions)

We have

cs2\displaystyle c_{s-2} =a0bs2+a1bs3+i=2s2aib(s2)i\displaystyle=a_{0}b_{s-2}+a_{1}b_{s-3}+\sum_{i=2}^{s-2}a_{i}b_{(s-2)-i}
c2+s5\displaystyle c_{2\ell+s-5} =a24+a23bs2+a22bs3+a21bs4+bs5\displaystyle=a_{2\ell-4}+a_{2\ell-3}b_{s-2}+a_{2\ell-2}b_{s-3}+a_{2\ell-1}b_{s-4}+b_{s-5}
c2+s2\displaystyle c_{2\ell+s-2} =a21+bs2\displaystyle=a_{2\ell-1}+b_{s-2}

where

\displaystyle\ell 2\displaystyle\geq 2
fθ,rθ\displaystyle f_{\theta,r_{\theta}} =i=1(x22ritix+ri2)=i=1(xαi)(xα+i)=i=02aixi\displaystyle=\prod_{i=1}^{\ell}\left(x^{2}-2r_{i}t_{i}x+r_{i}^{2}\right)=\prod_{i=1}^{\ell}(x-\alpha_{i})(x-\alpha_{\ell+i})=\sum_{i=0}^{2\ell}a_{i}x^{i}
s\displaystyle s =b(fθ,rθ)\displaystyle=b(f_{\theta,r_{\theta}})
g\displaystyle g =xs1+bs2xs2++b1x+b0\displaystyle=x^{s-1}+b_{s-2}x^{s-2}+\cdots+b_{1}x+b_{0}
ck\displaystyle c_{k} =coeff(gfθ,rθ,xk).\displaystyle=\operatorname*{coeff}(g\,f_{\theta,r_{\theta}},x^{k}).

Proof: Recall from the Coefficients Lemma (Lemma 3) for 0i20\leq i\leq 2\ell and 0js10\leq j\leq s-1,

coeffs(gf)\displaystyle\operatorname*{coeffs}(gf) =[b0bs1][a0a2a0a2]\displaystyle=\left[\begin{array}[c]{ccc}b_{0}&\cdots&b_{s-1}\end{array}\right]\left[\begin{array}[c]{cccccc}a_{0}&\cdots&\cdots&a_{2\ell}&&\\ &\ddots&&&\ddots&\\ &&a_{0}&\cdots&\cdots&a_{2\ell}\end{array}\right]

Then

coeff(gf,xk)\displaystyle\operatorname*{coeff}(gf,x^{k}) =i+j=kaibj\displaystyle=\sum_{i+j=k}a_{i}b_{j}
=i=0kaibki.\displaystyle=\sum_{i=0}^{k}a_{i}b_{k-i}.

Hence,

coeff(gf,xk)=i+j=kaibj=i=0kaibkifor  0k2+s1.\operatorname*{coeff}(gf,x^{k})=\displaystyle\sum_{i+j=k}a_{i}b_{j}=\displaystyle\sum_{i=0}^{k}a_{i}b_{k-i}\;\;\text{for}\;\;0\leq k\leq 2\ell+s-1.

Then we have

cs2\displaystyle c_{s-2} =i=0s2aib(s2)i\displaystyle=\sum_{i=0}^{s-2}a_{i}b_{(s-2)-i}
=a0bs2+a1bs3+i=2s2aib(s2)i\displaystyle=a_{0}b_{s-2}+a_{1}b_{s-3}+\sum_{i=2}^{s-2}a_{i}b_{(s-2)-i}
c2+s5\displaystyle c_{2\ell+s-5} =i+j=2+s5aibj\displaystyle=\sum_{i+j=2\ell+s-5}a_{i}b_{j}
=a24bs1+a23bs2+a22bs3+a21bs4+a2bs5\displaystyle=a_{2\ell-4}b_{s-1}+a_{2\ell-3}b_{s-2}+a_{2\ell-2}b_{s-3}+a_{2\ell-1}b_{s-4}+a_{2\ell}b_{s-5}
=a24+a23bs2+a22bs3+a21bs4+bs5since a2=bs1=1\displaystyle=a_{2\ell-4}+a_{2\ell-3}b_{s-2}+a_{2\ell-2}b_{s-3}+a_{2\ell-1}b_{s-4}+b_{s-5}\ \ \ \ \text{since }a_{2\ell}=b_{s-1}=1
c2+s2\displaystyle c_{2\ell+s-2} =i+j=2+s2aibj\displaystyle=\sum_{i+j=2\ell+s-2}a_{i}b_{j}
=a21bs1+a2bs2\displaystyle=a_{2\ell-1}b_{s-1}+a_{2\ell}b_{s-2}
=a21+bs2since a2=bs1=1.\displaystyle\ =a_{2\ell-1}+b_{s-2}\ \ \ \ \text{since }a_{2\ell}=b_{s-1}=1.

\Box 

The following lemma verifies a property of elementary symmetric polynomials in the roots α1,,α2\alpha_{1},\ldots,\alpha_{2\ell} that is required for the proof of the Existence of Radii Lemma (Lemma 10).

Lemma 8 (Symmetric Polynomials)

If 0<θi<π20<\theta_{i}<\dfrac{\pi}{2}, then ek(α1,,α2)>0e_{k}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)>0 for k=0,,2k=0,\ldots,2\ell.

Proof: We will induct on \ell, the number of quadratic factors of ff with non-real roots.

Base Case:

=0\ell=0.

Note that e0=1>0e_{0}=1>0.

Hypothesis:

1\ell\geq 1.

Assume ek(α1,,α2)>0e_{k}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)>0 for 1\ell\geq 1 and 0k20\leq k\leq 2\ell.

Induction Step:

Prove ek(α1,,α2(+1))>0e_{k}\left(\alpha_{1},\ldots,\alpha_{2(\ell+1)}\right)>0 for 0k2(+1)0\leq k\leq 2(\ell+1).

Let f=i=1(x22ritix+ri2)f_{\ell}=\displaystyle\prod_{i=1}^{\ell}\left(x^{2}-2r_{i}t_{i}x+r_{i}^{2}\right) and a,k=coeff(f,xk)a_{\ell,k}=\operatorname*{coeff}(f_{\ell},x^{k}). Note that

f+1\displaystyle f_{\ell+1}\ =(x22r+1t+1x+r+12)f\displaystyle\ =\left(x^{2}-2r_{\ell+1}t_{\ell+1}x+r_{\ell+1}^{2}\right)f_{\ell}
a+1,k\displaystyle a_{\ell+1,k}\ =a,k22r+1,t+1a,k1+r+12a,k.\displaystyle\ =a_{\ell,k-2}-2r_{\ell+1,t+1}a_{\ell,k-1}+r_{\ell+1}^{2}a_{\ell,k}.

Then

a+1,k\displaystyle a_{\ell+1,k} =(1)2(+1)ke2(+1)k(α1,,α2(+1))\displaystyle=(-1)^{2(\ell+1)-k}e_{2(\ell+1)-k}\left(\alpha_{1},\ldots,\alpha_{2(\ell+1)}\right)
=(1)2(k2)e2(k2)(α1,,α2)\displaystyle=(-1)^{2\ell-(k-2)}e_{2\ell-(k-2)}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)
2r+1t+1(1)2(k1)e2(k1)(α1,,α2)\displaystyle\ \ \ \ -2r_{\ell+1}t_{\ell+1}(-1)^{2\ell-(k-1)}e_{2\ell-(k-1)}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)
+r+12(1)2ke2k(α1,,α2).\displaystyle\ \ \ \ +r_{\ell+1}^{2}(-1)^{2\ell-k}e_{2\ell-k}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right).

Hence, by dividing the above by (1)2(+1)k\left(-1\right)^{2(\ell+1)-k}, we have

e2(+1)k(α1,,α2(+1))\displaystyle e_{2(\ell+1)-k}\left(\alpha_{1},\ldots,\alpha_{2(\ell+1)}\right) =e2(k2)(α1,,α2)\displaystyle=e_{2\ell-(k-2)}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)
2r+1t+1(1)1e2(k1)(α1,,α2)\displaystyle\ \ \ \ -2r_{\ell+1}t_{\ell+1}(-1)^{-1}e_{2\ell-(k-1)}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)
+r+12(1)2e2k(α1,,α2)\displaystyle\ \ \ \ +r_{\ell+1}^{2}(-1)^{-2}e_{2\ell-k}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)
=e2(k2)(α1,,α2)\displaystyle=e_{2\ell-(k-2)}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)
+2r+1t+1e2(k1)(α1,,α2)\displaystyle\ \ \ \ +2r_{\ell+1}t_{\ell+1}e_{2\ell-(k-1)}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)
+r+12e2k(α1,,α2)\displaystyle\ \ \ \ +r_{\ell+1}^{2}e_{2\ell-k}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)
>0\displaystyle>0

by the inductive hypothesis and the fact that r+1,t+1>0r_{\ell+1},t_{\ell+1}>0.

\Box 

The next lemma provides witnesses for a claim that is utilized in the proof of the Existence of Radii Lemma (Lemma 10). It is stated separately to preserve the intuitive flow of the proof of the Existence of Radii Lemma.

Lemma 9 (Partial Witness)

31>t1t>0r1,,r>0C(r)<1\underset{\ell\geq 3}{\forall}\ \ \underset{1>t_{1}\geq\cdots\geq t_{\ell}>0}{\forall}\ \ \underset{r_{1},\ldots,r_{\ell}>0}{\exists}\ \ C(r)<1 where

C(r)=e0(α1,,α1,α+1,,α21)e22(α1,,α1,α+1,,α21)e1(α1,,α1,α+1,,α21)e23(α1,,α1,α+1,,α21).C(r)=\dfrac{e_{0}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)\,e_{2\ell-2}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}{e_{1}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)\,e_{2\ell-3}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}.

Proof: Note

e0(α1,,α1,α+1,,α21)\displaystyle e_{0}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right) =1\displaystyle=1
e1(α1,,α1,α+1,,α21)\displaystyle e_{1}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right) =α1++α1+α+1++α21\displaystyle=\alpha_{1}+\cdots+\alpha_{\ell-1}+\alpha_{\ell+1}+\cdots+\alpha_{2\ell-1}
=(α1+α+1)++(α1+α21)\displaystyle=\left(\alpha_{1}+\alpha_{\ell+1}\right)+\cdots+\left(\alpha_{\ell-1}+\alpha_{2\ell-1}\right)
=2r1t1++2r1t1\displaystyle=2r_{1}t_{1}+\cdots+2r_{\ell-1}t_{\ell-1}
e23(α1,,α1,α+1,,α21)\displaystyle e_{2\ell-3}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right) =i{1,,1,+1,,21}(jiαj)\displaystyle=\sum_{i\in\{1,\ldots,\ell-1,\ell+1,\ldots,2\ell-1\}}\left(\prod_{j\neq i}\alpha_{j}\right)
=1i1(jiαj+j+iαj)\displaystyle=\sum_{1\leq i\leq\ell-1}\left(\prod_{j\neq i}\alpha_{j}+\prod_{j\neq\ell+i}\alpha_{j}\right)
=1i1((α+i+αi)ji,+iαj)\displaystyle=\sum_{1\leq i\leq\ell-1}\left(\left(\alpha_{\ell+i}+\alpha_{i}\right)\prod_{j\neq i,\ell+i}\alpha_{j}\right)
=1i1((2riti)jirj2)\displaystyle=\sum_{1\leq i\leq\ell-1}\left(\left(2r_{i}t_{i}\right)\prod_{j\neq i}r_{j}^{2}\right)
e22(α1,,α1,α+1,,α21)\displaystyle e_{2\ell-2}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right) =α1α1α+1α21\displaystyle=\alpha_{1}\cdots\alpha_{\ell-1}\alpha_{\ell+1}\cdots\alpha_{2\ell-1}
=α1α+1α1α21\displaystyle=\alpha_{1}\alpha_{\ell+1}\cdots\alpha_{\ell-1}\alpha_{2\ell-1}
=r12r12.\displaystyle=r_{1}^{2}\cdots r_{\ell-1}^{2}.

Then

C(r)\displaystyle C(r) =e0(α1,,α1,α+1,,α21)e22(α1,,α1,α+1,,α21)e1(α1,,α1,α+1,,α21)e23(α1,,α1,α+1,,α21)\displaystyle=\dfrac{e_{0}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)\,e_{2\ell-2}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}{e_{1}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)\,e_{2\ell-3}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}
=r12r12(2r1t1++2r1t1)(1i1((2riti)jirj2))\displaystyle=\dfrac{r_{1}^{2}\cdots r_{\ell-1}^{2}}{\left(2r_{1}t_{1}+\cdots+2r_{\ell-1}t_{\ell-1}\right)\left(\sum_{1\leq i\leq\ell-1}\left(\left(2r_{i}t_{i}\right)\prod_{j\neq i}r_{j}^{2}\right)\right)}
=r1r1(2r1t1++2r1t1)(1i1((2ti)jirj))\displaystyle=\dfrac{r_{1}\cdots r_{\ell-1}}{\left(2r_{1}t_{1}+\cdots+2r_{\ell-1}t_{\ell-1}\right)\left(\sum_{1\leq i\leq\ell-1}\left(\left(2t_{i}\right)\prod_{j\neq i}r_{j}\right)\right)}
=1(2r1t1++2r1t1)(2t1r1++2t1r1).\displaystyle=\dfrac{1}{\left(2r_{1}t_{1}+\cdots+2r_{\ell-1}t_{\ell-1}\right)\left(\dfrac{2t_{1}}{r_{1}}+\cdots+\dfrac{2t_{\ell-1}}{r_{\ell-1}}\right)}.

Consider the following witness candidates for the existentially quantified variables r1,,r1r_{1},\ldots,r_{\ell-1}:

r1=2t1,ri=12tifor 2i1.r_{1}=2t_{1},\ \ \ r_{i}=\dfrac{1}{2t_{i}}\ \ \ \text{for }2\leq i\leq\ell-1.

Obviously, r1,,r1>0r_{1},\ldots,r_{\ell-1}>0. Note

C(r)=\displaystyle C(r)=\ 1(2r1t1+2r2t2++2r1t1)(2t1r1+2t2r2++2t1r1)\displaystyle\dfrac{1}{\left(2r_{1}t_{1}+2r_{2}t_{2}+\cdots+2r_{\ell-1}t_{\ell-1}\right)\left(\dfrac{2t_{1}}{r_{1}}+\dfrac{2t_{2}}{r_{2}}+\cdots+\dfrac{2t_{\ell-1}}{r_{\ell-1}}\right)}
=\displaystyle=\ 1(2(2t1)t1+2(12t2)t2++2(12t1)t1)(2t12t1+2t212t2++2t112t1)\displaystyle\dfrac{1}{\left(2\left(2t_{1}\right)t_{1}+2\left(\dfrac{1}{2t_{2}}\right)t_{2}+\cdots+2\left(\dfrac{1}{2t_{\ell-1}}\right)t_{\ell-1}\right)\left(\dfrac{2t_{1}}{2t_{1}}+\dfrac{2t_{2}}{\frac{1}{2t_{2}}}+\cdots+\dfrac{2t_{\ell-1}}{\frac{1}{2t_{\ell-1}}}\right)}
=\displaystyle=\ 1(4t12+1++1)(1+4t22++4t12)\displaystyle\dfrac{1}{\left(4t_{1}^{2}+1+\cdots+1\right)\left(1+4t_{2}^{2}+\cdots+4t_{\ell-1}^{2}\right)}
<\displaystyle<\ 1.\displaystyle 1.

Hence the candidates are witnesses. \Box 

Note that the candidates provided above were discovered via guess-and-check in an attempt to manipulate the expression C(r)C(r) into a fraction of the form 11+positive terms\dfrac{1}{1+\text{positive terms}} where the stated property would be clear.

Finally, we provide the Existence of Radii Lemma, the core argument supporting the All Angles in Quadrant 1 Lemma (Lemma 4). One of the biggest obstacles was in determining which coefficients to examine to prove the claim. You will notice that different coefficients are required based on the number of angles in this quadrant and where they lie. For example, the coefficients needed to prove the claim when there are two angles π3θ1θ2<π2\dfrac{\pi}{3}\leq\theta_{1}\leq\theta_{2}<\dfrac{\pi}{2} are different from the coefficients needed when 0<θ1<π30<\theta_{1}<\dfrac{\pi}{3} and π3θ2<π2\dfrac{\pi}{3}\leq\theta_{2}<\dfrac{\pi}{2}.

Lemma 10 (Existence of Radii)

20<θ1θ<π2rθ1,,rθ>0g[x]deg(g)=s1k{s2, 2+s5, 2+s2}ck<0\underset{\ell\geq 2}{\forall}\ \ \underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \underset{\deg(g)=s-1}{\underset{g\in\mathbb{R}[x]}{\forall}}\ \ \underset{k\in\{s-2,\,2\ell+s-5,\,2\ell+s-2\}}{\exists}\ \ c_{k}<0

Proof: Note

20<θ1θ<π2rθ1,,rθ>0g[x]deg(g)=s1k{s2, 2+s5, 2+s2}ck<0\displaystyle\ \underset{\ell\geq 2}{\forall}\ \ \underset{0<\theta_{1}\leq\ldots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \underset{\deg(g)=s-1}{\underset{g\in\mathbb{R}[x]}{\forall}}\ \ \underset{k\in\{s-2,\,2\ell+s-5,\,2\ell+s-2\}}{\exists}\ \ c_{k}<0
\displaystyle\iff 21>t1t>0rθ1,,rθ>0{b0,,bs2}k{s2, 2+s5, 2+s2}ck<0\displaystyle\ \underset{\ell\geq 2}{\forall}\ \ \underset{1>t_{1}\geq\ldots\geq t_{\ell}>0}{\forall}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\exists}\ \ \underset{\{b_{0},\ldots,b_{s-2}\}\in\mathbb{R}}{\forall}\ \ \underset{k\in\{s-2,\,2\ell+s-5,\,2\ell+s-2\}}{\exists}\ \ c_{k}<0

since the leading coefficient of gg is assumed to be 1.

Let 2\ell\geq 2 and t1,,tt_{1},\ldots,t_{\ell}\ be such that 1>t1t>01>t_{1}\geq\cdots\geq t_{\ell}>0. Let r1>0r_{1}>0.

Claim 1:

When s=2s=2, r(1)>0rr(1)b0c2+s5<0c2+s2<0\underset{r_{\ell}^{\left(1\right)}>0}{\exists}\ \ \underset{r_{\ell}\geq r_{\ell}^{\left(1\right)}}{\forall}\ \ \underset{b_{0}}{\forall}\ \ c_{2\ell+s-5}<0\ \vee\ c_{2\ell+s-2}<0.

Note that s=2s=2 only when =2\ell=2 and π3θ1θ2<π2\dfrac{\pi}{3}\leq\theta_{1}\leq\theta_{2}<\dfrac{\pi}{2}. Note

c2+s5\displaystyle c_{2\ell+s-5} =a0+a1b0\displaystyle=a_{0}+a_{1}b_{0}
c2+s2\displaystyle c_{2\ell+s-2} =a3+b0.\displaystyle=a_{3}+b_{0}.

We have

c2+s5<0b0>a0a1b0>e4(α1,α2,α3,α4)e3(α1,α2,α3,α4)b0>r1r22r2t1+2r1t2c2+s2<0b0<a3b0<e1(α1,α2,α3,α4)b0<2r1t1+2r2t2.\begin{array}[c]{lclclcl}c_{2\ell+s-5}<0&\iff&b_{0}>-\dfrac{a_{0}}{a_{1}}&\iff&b_{0}>\dfrac{e_{4}(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4})}{e_{3}(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4})}&\iff&b_{0}>\dfrac{r_{1}r_{2}}{2r_{2}t_{1}+2r_{1}t_{2}}\\ c_{2\ell+s-2}<0&\iff&b_{0}<-a_{3}&\iff&b_{0}<e_{1}(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4})&\iff&b_{0}<2r_{1}t_{1}+2r_{2}t_{2}.\end{array}

Note r2>0b0c2+s5<0c2+s2<0\underset{r_{2}>0}{\exists}\ \underset{b_{0}}{\forall}\ c_{2\ell+s-5}<0\ \vee\ c_{2\ell+s-2}<0. Note

b0c2+s5<0c2+s2<0r1r22r2t1+2r1t2<2r1t1+2r2t2r1r2(2r2t1+2r1t2)(2r1t1+2r2t2)<1.\begin{array}[c]{crl}&\underset{b_{0}}{\forall}\ c_{2\ell+s-5}<0\ \vee\ c_{2\ell+s-2}<0&\\ \Longleftarrow&\dfrac{r_{1}r_{2}}{2r_{2}t_{1}+2r_{1}t_{2}}&<2r_{1}t_{1}+2r_{2}t_{2}\\ \iff&\dfrac{r_{1}r_{2}}{(2r_{2}t_{1}+2r_{1}t_{2})(2r_{1}t_{1}+2r_{2}t_{2})}&<1.\end{array}

Note

b0limr2r1r2(2r2t1+2r1t2)(2r1t1+2r2t2)=0\ \underset{b_{0}}{\forall}\ \lim_{r_{2}\rightarrow\infty}\dfrac{r_{1}r_{2}}{(2r_{2}t_{1}+2r_{1}t_{2})(2r_{1}t_{1}+2r_{2}t_{2})}=0

since

degr2(r1r2)\displaystyle\deg_{r_{2}}\left(r_{1}r_{2}\right) =1\displaystyle=1
degr2((2r2t1+2r1t2)(2r1t1+2r2t2))\displaystyle\deg_{r_{2}}\left((2r_{2}t_{1}+2r_{1}t_{2})(2r_{1}t_{1}+2r_{2}t_{2})\right) =2.\displaystyle=2.

Hence r2(1)>0r2r2(1)b0c2+s5<0c2+s2<0\underset{r_{2}^{\left(1\right)}>0}{\exists}\ \ \underset{r_{2}\geq r_{2}^{\left(1\right)}}{\forall}\ \ \underset{b_{0}}{\forall}\ \ c_{2\ell+s-5}<0\ \vee\ c_{2\ell+s-2}<0. The claim has been proved.


Example for Claim 1: The following two graphs demonstrate Claim 1 for the degree 4 polynomial

f=(x22(1)cos(10π24)x+(1)2)(x22r2cos(11π24)x+r22)f=\left(x^{2}-2(1)\cos\left(\dfrac{10\pi}{24}\right)x+(1)^{2}\right)\left(x^{2}-2r_{2}\cos\left(\dfrac{11\pi}{24}\right)x+r_{2}^{2}\right)

where π3<10π24<11π24<π2\dfrac{\pi}{3}<\dfrac{10\pi}{24}<\dfrac{11\pi}{24}<\dfrac{\pi}{2}. Note that r1=1r_{1}=1 and g=x+b0g=x+b_{0}, as s=2s=2.

[Uncaptioned image][Uncaptioned image]

When both radii are equal to 1, there are potential values of b0b_{0} that do not produce a negative coefficient. When r2r_{2} is increased to 10, at least one coefficient is negative for any b0b_{0}.

For the remainder of the proof, let s3s\geq 3. Let r1,,r1>0r_{1},\ldots,r_{\ell-1}>0 be such that C(r)<1C(r)<1 is true, where

C(r)=e0(α1,,α1,α+1,,α21)e22(α1,,α1,α+1,,α21)e1(α1,,α1,α+1,,α21)e23(α1,,α1,α+1,,α21).C(r)=\dfrac{e_{0}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)\,e_{2\ell-2}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}{e_{1}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)\,e_{2\ell-3}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}.

The existence of such radii is justified based on the value of \ell.

  1. 1.

    In the case where =2\ell=2 and s3s\geq 3,

    C(r)\displaystyle C(r) =e0(α1,α3)e2(α1,α3)e1(α1,α3)e1(α1,α3)\displaystyle=\dfrac{e_{0}\left(\alpha_{1},\alpha_{3}\right)\,e_{2}\left(\alpha_{1},\alpha_{3}\right)}{e_{1}\left(\alpha_{1},\alpha_{3}\right)\,e_{1}\left(\alpha_{1},\alpha_{3}\right)}
    =1α1α3(α1+α3)(α1+α3)\displaystyle=\dfrac{1\cdot\alpha_{1}\alpha_{3}}{(\alpha_{1}+\alpha_{3})(\alpha_{1}+\alpha_{3})}
    =r124r12t12\displaystyle=\dfrac{r_{1}^{2}}{4r_{1}^{2}t_{1}^{2}}
    =14t12\displaystyle=\dfrac{1}{4t_{1}^{2}}

    Since s3s\geq 3, we must have 0<θ1<π30<\theta_{1}<\dfrac{\pi}{3} and t1>12t_{1}>\dfrac{1}{2}. Hence, C(r)<1C(r)<1.

  2. 2.

    In the case where 3\ell\geq 3, we know such radii exist from Lemma 9.

Using the coefficient expressions from Lemma 7, note

cs2\displaystyle c_{s-2} =0bs3=a0a1bs2i=2s2aia1b(s2)i\displaystyle=0\iff b_{s-3}=-\dfrac{a_{0}}{a_{1}}b_{s-2}-\sum_{i=2}^{s-2}\dfrac{a_{i}}{a_{1}}b_{(s-2)-i}
c2+s5\displaystyle c_{2\ell+s-5} =0bs3=a23a22bs2a21bs4+bs5+a24a22.\displaystyle=0\iff b_{s-3}=-\dfrac{a_{2\ell-3}}{a_{2\ell-2}}b_{s-2}-\dfrac{a_{2\ell-1}b_{s-4}+b_{s-5}+a_{2\ell-4}}{a_{2\ell-2}}.

Let b0,,bs4b_{0},\ldots,b_{s-4} be arbitrary but fixed.

Let LkL_{k} be the line given by ck=0c_{k}=0 in (bs2,bs3)\left(b_{s-2},b_{s-3}\right) space. Let μk\mu_{k} be the slope of LkL_{k}. Then

μs2\displaystyle\mu_{s-2} =a0a1\displaystyle=-\dfrac{a_{0}}{a_{1}}
μ2+s5\displaystyle\mu_{2\ell+s-5} =a23a22.\displaystyle=-\dfrac{a_{2\ell-3}}{a_{2\ell-2}}.

Since ai=(1)2ie2i(α1,,α2)a_{i}=(-1)^{2\ell-i}e_{2\ell-i}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right), we have

a0\displaystyle a_{0} =e2(α1,,α2)\displaystyle=e_{2\ell}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)
a1\displaystyle a_{1} =e21(α1,,α2)\displaystyle=-e_{2\ell-1}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)
a23\displaystyle a_{2\ell-3} =e3(α1,,α2)\displaystyle=-e_{3}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)
a22\displaystyle a_{2\ell-2} =e2(α1,,α2).\displaystyle=e_{2}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right).

Then

μs2\displaystyle\mu_{s-2} =e2(α1,,α2)e21(α1,,α2)\displaystyle=\dfrac{e_{2\ell}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)}{e_{2\ell-1}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)}
μ2+s5\displaystyle\mu_{2\ell+s-5} =e3(α1,,α2)e2(α1,,α2).\displaystyle=\dfrac{e_{3}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)}{e_{2}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)}.
Claim 2:

r(2)>0rr(2)μ2+s5>μs2\underset{r_{\ell}^{\left(2\right)}>0}{\exists}\ \underset{r_{\ell}\geq r_{\ell}^{\left(2\right)}}{\forall}\ \mu_{2\ell+s-5}>\mu_{s-2}.

Note as rr_{\ell}\rightarrow\infty

e2(α1,,α2)\displaystyle e_{2\ell}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right) αα2e22(α1,,α1,α+1,,α21)\displaystyle\rightarrow\alpha_{\ell}\alpha_{2\ell}\ e_{2\ell-2}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)
e21(α1,,α2)\displaystyle e_{2\ell-1}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right) αα2e23(α1,,α1,α+1,,α21)\displaystyle\rightarrow\alpha_{\ell}\alpha_{2\ell}\ e_{2\ell-3}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)
e3(α1,,α2)\displaystyle e_{3}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right) αα2e1(α1,,α1,α+1,,α21)\displaystyle\rightarrow\alpha_{\ell}\alpha_{2\ell}\ e_{1}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)
e2(α1,,α2)\displaystyle e_{2}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right) αα2e0(α1,,α1,α+1,,α21).\displaystyle\rightarrow\alpha_{\ell}\alpha_{2\ell}\ e_{0}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right).

Then

μs2\displaystyle\mu_{s-2} e22(α1,,α1,α+1,,α21)e23(α1,,α1,α+1,,α21)\displaystyle\rightarrow\dfrac{e_{2\ell-2}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}{e_{2\ell-3}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}
μ2+s5\displaystyle\mu_{2\ell+s-5} e1(α1,,α1,α+1,,α21)e0(α1,,α1,α+1,,α21).\displaystyle\rightarrow\dfrac{e_{1}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}{e_{0}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}.

Then for sufficiently large rr_{\ell},

μ2+s5>μs2e1(α1,,α1,α+1,,α21)e0(α1,,α1,α+1,,α21)>e22(α1,,α1,α+1,,α21)e23(α1,,α1,α+1,,α21)1>C(r)\begin{array}[c]{crl}&\mu_{2\ell+s-5}&>\mu_{s-2}\\ \iff&\dfrac{e_{1}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}{e_{0}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}&>\dfrac{e_{2\ell-2}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}{e_{2\ell-3}\left(\alpha_{1},\ldots,\alpha_{\ell-1},\alpha_{\ell+1},\ldots,\alpha_{2\ell-1}\right)}\\ \iff&1&>C(r)\end{array}

which is true for the r1,,r1r_{1},\ldots,r_{\ell-1} we have previously chosen based on the claim from Lemma 9. Recall that the elementary symmetric polynomials in these roots are always positive by Lemma 8. The claim has been proved.

Continuing with the proof of the lemma, let r(2)r_{\ell}^{\left(2\right)} be such that rr(2)μ2+s5>μs2\underset{r_{\ell}\geq r_{\ell}^{\left(2\right)}}{\forall}\ \mu_{2\ell+s-5}>\mu_{s-2}. Such r(2)r_{\ell}^{\left(2\right)}\ exists due to the previous claim. Let rr_{\ell}\ be arbitrary but fixed such that rr(2)r_{\ell}\ \geq r_{\ell}^{\left(2\right)}. Then over the space (bs2,bs3)\left(b_{s-2},b_{s-3}\right), there exists a unique intersection point of Ls2L_{s-2}\ and L2+s5L_{2\ell+s-5}. Let (p,q)\left(p,q\right) be the intersection point.


Example of (p,q)(p,q): In this example, f=(x22(1)cos(7π24)x+(1)2)(x22r2cos(10π24)x+r22)f=\left(x^{2}-2(1)\cos\left(\dfrac{7\pi}{24}\right)x+(1)^{2}\right)\left(x^{2}-2r_{2}\cos\left(\dfrac{10\pi}{24}\right)x+r_{2}^{2}\right), so s=3s=3, g=x2+b1x+b0g=x^{2}+b_{1}x+b_{0}, and (p,q)(p,q) is the intersection point of L1L_{1} with L2L_{2}.

[Uncaptioned image][Uncaptioned image]

We will continue using this example to illustrate the remainder of the proof.

Continuing with the proof of the lemma, as shown below, we have p=a22d0a1d1a0a22a1a23p=\dfrac{a_{2\ell-2}d_{0}-a_{1}d_{1}}{a_{0}a_{2\ell-2}-a_{1}a_{2\ell-3}} and
q=a0d1a23d0a0a22a1a23q=\dfrac{a_{0}d_{1}-a_{2\ell-3}d_{0}}{a_{0}a_{2\ell-2}-a_{1}a_{2\ell-3}} where d0=i=2s2aib(s2)id_{0}=-\displaystyle\sum_{i=2}^{s-2}a_{i}b_{(s-2)-i} and d1=a21bs4bs5a24d_{1}=-a_{2\ell-1}b_{s-4}-b_{s-5}-a_{2\ell-4}. Note

cs2=0c2+s5=0a0bs2+a1bs3+i=2s2aib(s2)i=0a24+a23bs2+a22bs3+a21bs4+bs5=0a0bs2+a1bs3=i=2s2aib(s2)ia23bs2+a22bs3=a21bs4bs5a24a0bs2+a1bs3=d0where d0=i=2s2aib(s2)ia23bs2+a22bs3=d1where d1=a21bs4bs5a24[a0a1a23a22][bs2bs3]=[d0d1]bs2=|d0a1d1a22||a0a1a23a22|bs3=|a0d0a23d1||a0a1a23a22|bs2=a22d0a1d1a0a22a1a23bs3=a0d1a23d0a0a22a1a23.\begin{array}[c]{clc}&c_{s-2}=0\ \ \ \wedge\ \ \ c_{2\ell+s-5}=0&\\ \Longleftrightarrow&a_{0}b_{s-2}+a_{1}b_{s-3}+\sum_{i=2}^{s-2}a_{i}b_{(s-2)-i}=0&\wedge\\ &a_{2\ell-4}+a_{2\ell-3}b_{s-2}+a_{2\ell-2}b_{s-3}+a_{2\ell-1}b_{s-4}+b_{s-5}=0&\\ \Longleftrightarrow&a_{0}b_{s-2}+a_{1}b_{s-3}=-\sum_{i=2}^{s-2}a_{i}b_{(s-2)-i}&\wedge\\ &a_{2\ell-3}b_{s-2}+a_{2\ell-2}b_{s-3}=-a_{2\ell-1}b_{s-4}-b_{s-5}-a_{2\ell-4}&\\ \iff&a_{0}b_{s-2}+a_{1}b_{s-3}=d_{0}\ \ \ \ \text{where }d_{0}=-\sum_{i=2}^{s-2}a_{i}b_{(s-2)-i}&\wedge\\ &a_{2\ell-3}b_{s-2}+a_{2\ell-2}b_{s-3}=d_{1}\ \ \ \ \text{where }d_{1}=-a_{2\ell-1}b_{s-4}-b_{s-5}-a_{2\ell-4}&\\ &&\\ \Longleftrightarrow&\left[\begin{array}[c]{cc}a_{0}&a_{1}\\ a_{2\ell-3}&a_{2\ell-2}\end{array}\right]\left[\begin{array}[c]{c}b_{s-2}\\ b_{s-3}\end{array}\right]=\left[\begin{array}[c]{c}d_{0}\\ d_{1}\end{array}\right]&\\ &&\\ \Longleftrightarrow&b_{s-2}=\frac{\left|\begin{array}[c]{cc}d_{0}&a_{1}\\ d_{1}&a_{2\ell-2}\end{array}\right|}{\left|\begin{array}[c]{cc}a_{0}&a_{1}\\ a_{2\ell-3}&a_{2\ell-2}\end{array}\right|}\ \ \ \wedge\ \ \ b_{s-3}=\frac{\left|\begin{array}[c]{cc}a_{0}&d_{0}\\ a_{2\ell-3}&d_{1}\end{array}\right|}{\left|\begin{array}[c]{cc}a_{0}&a_{1}\\ a_{2\ell-3}&a_{2\ell-2}\end{array}\right|}&\\ &&\\ \Longleftrightarrow&b_{s-2}=\dfrac{a_{2\ell-2}d_{0}-a_{1}d_{1}}{a_{0}a_{2\ell-2}-a_{1}a_{2\ell-3}}\ \ \ \wedge\ \ \ b_{s-3}=\dfrac{a_{0}d_{1}-a_{2\ell-3}d_{0}}{a_{0}a_{2\ell-2}-a_{1}a_{2\ell-3}}.&\end{array}
Claim 3:

rr(2)b0,,bs2bs2>pcs2<0c2+s5<0\underset{r_{\ell}\geq r_{\ell}^{\left(2\right)}}{\forall}\ \underset{b_{s-2}>p}{\underset{b_{0},\ldots,b_{s-2}}{\forall}}\ c_{s-2}<0\ \vee\ c_{2\ell+s-5}<0.

Let r(2)r_{\ell}^{\left(2\right)} be such that rr(2)μ2+s5>μs2\underset{r_{\ell}\geq r_{\ell}^{\left(2\right)}}{\forall}\ \mu_{2\ell+s-5}>\mu_{s-2}. In Claim 2, we showed that such r(2)r_{\ell}^{\left(2\right)} exists. Let rr(2)r_{\ell}\geq r_{\ell}^{\left(2\right)}\ be arbitrary but fixed.

Let b0,,bs4b_{0},\ldots,b_{s-4} be arbitrary but fixed. We need to show bs2,bs3bs2>pcs2<0c2+s5<0\underset{b_{s-2}>p}{\underset{b_{s-2},b_{s-3}}{\forall}}\ c_{s-2}<0\ \vee\ c_{2\ell+s-5}<0.

Over the space (bs2,bs3)\left(b_{s-2},b_{s-3}\right) where bs2>pb_{s-2}>p, we have

  1. 1.

    c2+s5=0c_{2\ell+s-5}=0 line and cs2=0c_{s-2}=0 line do not intersect

  2. 2.

    c2+s5=0c_{2\ell+s-5}=0 line is above cs2=0c_{s-2}=0 line.

Let (bs2,bs3)\left(b_{s-2},b_{s-3}\right) be an arbitrary but fixed point such that bs2>pb_{s-2}>p. Then (bs2,bs3)\left(b_{s-2},b_{s-3}\right)\ \,is above Ls2L_{s-2} or below L2+s5L_{2\ell+s-5}. Note

(bs2,bs3)is above Ls2bs3>a0a1bs2+d0a1cs2<0(bs2,bs3)is below L2+s5bs3<a23a22bs2+d1a22c2+s5<0\begin{array}[c]{lllll}\left(b_{s-2},b_{s-3}\right)\ \text{is above }L_{s-2}&\Longleftrightarrow&b_{s-3}>-\frac{a_{0}}{a_{1}}b_{s-2}+\frac{d_{0}}{a_{1}}&\Longleftrightarrow&c_{s-2}<0\\ \left(b_{s-2},b_{s-3}\right)\ \text{is below }L_{2\ell+s-5}&\Longleftrightarrow&b_{s-3}<-\frac{a_{2\ell-3}}{a_{2\ell-2}}b_{s-2}+\frac{d_{1}}{a_{2\ell-2}}&\Longleftrightarrow&c_{2\ell+s-5}<0\end{array}

since a1=(1)21e21(α1,,α2)<0a_{1}=(-1)^{2\ell-1}e_{2\ell-1}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)<0 and a22=(1)2e2(α1,,α2)>0a_{2\ell-2}=(-1)^{2}e_{2}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)>0.

Thus cs2<0c_{s-2}<0 or c2+s5<0c_{2\ell+s-5}<0. The claim has been proved.


Example of Claim 3: Again, f=(x22(1)cos(7π24)x+(1)2)(x22r2cos(10π24)x+r22)f=\left(x^{2}-2(1)\cos\left(\dfrac{7\pi}{24}\right)x+(1)^{2}\right)\left(x^{2}-2r_{2}\cos\left(\dfrac{10\pi}{24}\right)x+r_{2}^{2}\right), so s=3s=3,
g=x2+b1x+b0g=x^{2}+b_{1}x+b_{0}, and (p,q)(p,q) is the intersection point of L1L_{1} with L2L_{2}.

[Uncaptioned image][Uncaptioned image]

For any point with bs2=b1>pb_{s-2}=b_{1}>p, we can see that either c1<0c_{1}<0 or c2<0c_{2}<0.

Claim 4:

r(3)>0rr(3)b0,,bs2bs2pc2+s2<0\underset{r_{\ell}^{\left(3\right)}>0}{\exists}\ \underset{r_{\ell}\geq r_{\ell}^{\left(3\right)}}{\forall}\ \underset{b_{s-2}\leq p}{\underset{b_{0},\ldots,b_{s-2}}{\forall}}\ c_{2\ell+s-2}<0.

Note

r>0b0,,bs2bs2pa22d0a1d1e1(α1,,α2)(a0a22a1a23)<1c2+s2<0\underset{r_{\ell}>0}{\forall}\ \underset{b_{s-2}\leq p}{\underset{b_{0},\ldots,b_{s-2}}{\forall}}\ \ \dfrac{a_{2\ell-2}d_{0}-a_{1}d_{1}}{e_{1}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)\left(a_{0}a_{2\ell-2}-a_{1}a_{2\ell-3}\right)}<1\ \ \Longrightarrow\ \ c_{2+s-2}<0

since

c2+s2<0bs2<a21p<a21since bs2pa22d0a1d1a0a22a1a23<e1(α1,,α2)a22d0a1d1e1(α1,,α2)(a0a22a1a23)<1.\begin{array}[c]{crl}&c_{2\ell+s-2}&<0\\ \iff&b_{s-2}&<-a_{2\ell-1}\\ \Longleftarrow&p&<-a_{2\ell-1}\ \ \ \,\text{since }b_{s-2}\leq p\\ \iff&\dfrac{a_{2\ell-2}d_{0}-a_{1}d_{1}}{a_{0}a_{2\ell-2}-a_{1}a_{2\ell-3}}&<e_{1}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)\\ \iff&\dfrac{a_{2\ell-2}d_{0}-a_{1}d_{1}}{e_{1}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)\left(a_{0}a_{2\ell-2}-a_{1}a_{2\ell-3}\right)}&<1.\end{array}

Once more, e1(α1,,α2)>0e_{1}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)>0 from Lemma 8.

Let ek=ek(α1,,α2)e_{k}=e_{k}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right). Note

a22d0a1d1e1(α1,,α2)(a0a22a1a23)\displaystyle\dfrac{a_{2\ell-2}d_{0}-a_{1}d_{1}}{e_{1}\left(\alpha_{1},\ldots,\alpha_{2\ell}\right)\left(a_{0}a_{2\ell-2}-a_{1}a_{2\ell-3}\right)}
=\displaystyle=\ e2i=2s2(1)2ie2ib(s2)i+e21(e1bs4bs5e4)e1(e2e2e21e3).\displaystyle\dfrac{-e_{2}\sum_{i=2}^{s-2}(-1)^{2\ell-i}e_{2\ell-i}b_{(s-2)-i}+e_{2\ell-1}\left(e_{1}b_{s-4}-b_{s-5}-e_{4}\right)}{e_{1}\left(e_{2\ell}e_{2}-e_{2\ell-1}e_{3}\right)}.

Note

b0,,bs2limre2i=2s2(1)2ie2ib(s2)i+e21(e1bs4bs5e4)e1(e2e2e21e3)=0\ \underset{b_{0},\ldots,b_{s-2}}{\forall}\ \lim_{r_{\ell}\rightarrow\infty}\dfrac{-e_{2}\sum_{i=2}^{s-2}(-1)^{2\ell-i}e_{2\ell-i}b_{(s-2)-i}+e_{2\ell-1}\left(e_{1}b_{s-4}-b_{s-5}-e_{4}\right)}{e_{1}\left(e_{2\ell}e_{2}-e_{2\ell-1}e_{3}\right)}=0

since

degr(e2i=2s2(1)2ie2ib(s2)i+e21(e1bs4bs5e4))\displaystyle\deg_{r_{\ell}}\left(-e_{2}\sum_{i=2}^{s-2}(-1)^{2\ell-i}e_{2\ell-i}b_{(s-2)-i}+e_{2\ell-1}\left(e_{1}b_{s-4}-b_{s-5}-e_{4}\right)\right) 4\displaystyle\leq 4
degr(e1(e2e2e21e3))\displaystyle\deg_{r_{\ell}}\left(e_{1}\left(e_{2\ell}e_{2}-e_{2\ell-1}e_{3}\right)\right) =5.\displaystyle=5.

The claim has been proved.


Example of Claim 4: Once more, f=(x22(1)cos(7π24)x+(1)2)(x22r2cos(10π24)x+r22)f=\left(x^{2}-2(1)\cos\left(\dfrac{7\pi}{24}\right)x+(1)^{2}\right)\left(x^{2}-2r_{2}\cos\left(\dfrac{10\pi}{24}\right)x+r_{2}^{2}\right), so s=3s=3, g=x2+b1x+b0g=x^{2}+b_{1}x+b_{0}, and (p,q)(p,q) is the intersection point of L1L_{1} with L2L_{2}.

[Uncaptioned image][Uncaptioned image]

Notice that when r2=1r_{2}=1, there is a region of points with bs2=b1pb_{s-2}=b_{1}\leq p where c2+s2=c5c_{2\ell+s-2}=c_{5} is not negative. However, when r2=10r_{2}=10, c5<0c_{5}<0 for all points where b1pb_{1}\leq p.

We continue with the proof of the lemma.

From Claim 1, when =s=2\ell=s=2, for some r(1)>0r_{\ell}^{\left(1\right)}>0 we have r>r(1)b0c2+s5<0c2+s2<0\underset{r_{\ell}>r_{\ell}^{(1)}}{\forall}\ \ \underset{b_{0}}{\forall}\ \ c_{2\ell+s-5}<0\ \vee\ c_{2\ell+s-2}<0.

From Claim 3, when s3s\geq 3, for some r(2)>0r_{\ell}^{\left(2\right)}>0 we have

r>r(2)b0,,bs2bs2>pcs2<0c2+s5<0.\underset{r_{\ell}>r_{\ell}^{\left(2\right)}}{\forall}\ \ \underset{b_{s-2}>p}{\underset{b_{0},\ldots,b_{s-2}}{\forall}}\ \ c_{s-2}<0\ \vee\ c_{2\ell+s-5}<0.

From Claim 4, when s3s\geq 3, for some r(3)>0r_{\ell}^{\left(3\right)}>0 we have rr(3)b0,,bs2bs2pc2+s2<0\underset{r_{\ell}\geq r_{\ell}^{\left(3\right)}}{\forall}\ \ \underset{b_{s-2}\leq p}{\underset{b_{0},\ldots,b_{s-2}}{\forall}}\ \ c_{2\ell+s-2}<0.

Then for r=max{r(1),r(2),r(3)}r_{\ell}^{*}=\max\{r_{\ell}^{(1)},r_{\ell}^{(2)},r_{\ell}^{(3)}\}, we have

rr[[b0,,bs2bs2>pcs2<0c2+s5<0][b0,,bs2bs2pc2+s5<0c2+s2<0]].\underset{r_{\ell}\geq r_{\ell}^{*}}{\forall}\ \left[\left[\underset{b_{s-2}>p}{\underset{b_{0},\ldots,b_{s-2}}{\forall}}\ c_{s-2}<0\ \vee\ c_{2\ell+s-5}<0\right]\ \ \wedge\ \ \left[\underset{b_{s-2}\leq p}{\underset{b_{0},\ldots,b_{s-2}}{\forall}}\ c_{2\ell+s-5}<0\ \vee\ c_{2\ell+s-2}<0\right]\right].

Hence

r>0b0,,bs2k{s2, 2+s5, 2+s2}ck<0.\underset{r_{\ell}>0}{\exists}\ \ \underset{b_{0},\ldots,b_{s-2}}{\forall}\ \ \underset{k\in\left\{s-2,\ 2\ell+s-5,\ 2\ell+s-2\right\}}{\bigvee}\ \ c_{k}<0.

The lemma has finally been proved. \Box 

3.5 Concerning Angles in Quadrant 2, π2ϕπ\dfrac{\pi}{2}\leq\phi\leq\pi

Finally, we present the proof for the case when some angles fall in quadrant 2, including the axes. We convert the optimality claim into a statement on the separation of two sets in Lemma 12. Then we prove that for any polynomial for which Curtiss’ bound is optimal, there is a radius such that we can multiply by a linear or quadratic factor with angle π2ϕπ\dfrac{\pi}{2}\leq\phi\leq\pi and this radius while maintaining the optimality of the bound. Inductively, we can extend this argument to any collection of angles in quadrant 2.

Some Angles in Quadrant 2One New Quadrant 2 FactorSeparation of Sets

The main challenge of this section was in the One New Quadrant 2 Factor Lemma (Lemma 13). To prove a separation between the two necessary sets, we examined the Euclidean distance between them and proved it must be greater than zero, a surprisingly non-trivial task.

Lemma 11 (Some Angles in Quadrant 2)

We have

π2ϕ1ϕk<π0<θ1θ<π2p1,,pt>0rϕ1,,rϕk>0rθ1,,θ>0opt(fθ,rθfϕ,rϕfπ,p)=opt(fθ,rθ).\underset{\frac{\pi}{2}\leq\phi_{1}\leq\cdots\leq\phi_{k}<\pi}{\forall}\ \ \underset{0<\theta_{1}\leq\cdots\leq\theta_{\ell}<\frac{\pi}{2}}{\forall}\ \ \underset{p_{1},\ldots,p_{t}>0}{\exists}\ \ \underset{r_{\phi_{1}},\ldots,r_{\phi_{k}}>0}{\exists}\ \ \underset{r_{\theta_{1}},\ldots,_{\theta_{\ell}}>0}{\forall}\ \ \operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,f_{\pi,p}\right)=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\right).

Proof: We will first induct on kk, the number of quadratic factors with π2ϕi<π\dfrac{\pi}{2}\leq\phi_{i}<\pi in fϕ,rϕf_{\phi,r_{\phi}}, to show that opt(fθ,rθfϕ,rϕ)=opt(fθ,rθ)\operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\right)=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\right).

Base Case:

The claim holds for k=0k=0.

It is trivially true.

Hypothesis:

Assume the claim holds for kk quadratic factors with π2ϕi<π\dfrac{\pi}{2}\leq\phi_{i}<\pi.

rϕ1,,rϕk>0rθ1,,rθ>0opt(fθ,rθfϕ,rϕ)=opt(fθ,rθ)\underset{r_{\phi_{1}},\ldots,r_{\phi_{k}}>0}{\exists}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\forall}\ \ \operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\right)=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\right)
Induction Step:

Consider k+1k+1 quadratic factors with π2ϕi<π\dfrac{\pi}{2}\leq\phi_{i}<\pi.

Assume rϕ1,,rϕk>0r_{\phi_{1}},\ldots,r_{\phi_{k}}>0 are such that the induction hypothesis holds. By the One More Quadrant 2 Factor Lemma (Lemma 13),

rϕk+1>0rθ1,,θ>0\displaystyle\underset{r_{\phi_{k+1}}>0}{\exists}\ \ \underset{r_{\theta_{1}},\ldots,_{\theta_{\ell}}>0}{\forall} opt(fθ,rθfϕ,rϕ(x22rϕk+1cosϕk+1x+rϕk+12))\displaystyle\operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,\left(x^{2}-2r_{\phi_{k+1}}\cos\phi_{k+1}\,x+r_{\phi_{k+1}}^{2}\right)\right)
=opt(fθ,rθfϕ,rϕ)+opt(x22rϕk+1cosϕk+1x+rϕk+12).\displaystyle=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\right)+\operatorname*{opt}\left(x^{2}-2r_{\phi_{k+1}}\cos\phi_{k+1}\,x+r_{\phi_{k+1}}^{2}\right).

By the Curtiss Bound, (Theorem 1), opt(x22rϕk+1cosϕk+1x+rϕk+12)=0\operatorname*{opt}\left(x^{2}-2r_{\phi_{k+1}}\cos\phi_{k+1}\,x+r_{\phi_{k+1}}^{2}\right)=0, so we have

opt(fθ,rθfϕ,rϕ(x22rϕk+1cosϕk+1x+rϕk+12))\displaystyle\operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,\left(x^{2}-2r_{\phi_{k+1}}\cos\phi_{k+1}\,x+r_{\phi_{k+1}}^{2}\right)\right) =opt(fθ,rθfϕ,rϕ)\displaystyle=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\right)
=opt(fθ,rθ).\displaystyle=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\right).

Hence, we have rϕ1,,rϕk>0rθ1,,rθ>0opt(fθ,rθfϕ,rϕ)=opt(fθ,rθ)\underset{r_{\phi_{1}},\ldots,r_{\phi_{k}}>0}{\exists}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\forall}\ \ \operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\right)=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\right).

Now we will induct on tt, the number of linear factors in fπ,pf_{\pi,p}, to show that

p1,,pt>0rϕ1,,rϕk>0rθ1,,rθ>0opt(fθ,rθfϕ,rϕfπ,p)=opt(fθ,rθ).\underset{p_{1},\ldots,p_{t}>0}{\exists}\ \ \underset{r_{\phi_{1}},\ldots,r_{\phi_{k}}>0}{\exists}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\forall}\ \ \operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,f_{\pi,p}\right)=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\right).
Base Case:

The claim holds for t=0t=0.

Trivially true.

Hypothesis:

Assume the claim holds for tt linear factors.

p1,,pt>0rϕ1,,rϕk>0rθ1,,rθ>0opt(fθ,rθfϕ,rϕfπ,p)=opt(fθ,rθ)\underset{p_{1},\ldots,p_{t}>0}{\exists}\ \ \underset{r_{\phi_{1}},\ldots,r_{\phi_{k}}>0}{\exists}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\forall}\ \ \operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,f_{\pi,p}\right)=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\right)
Induction Step:

Consider t+1t+1 linear factors.

Assume p1,,pt,rϕ1,,rϕk>0p_{1},\ldots,p_{t},r_{\phi_{1}},\ldots,r_{\phi_{k}}>0 are such that the induction hypothesis holds. By the One More Quadrant 2 Factor Lemma (Lemma 13),

pt+1>0rθ1,,rθ>0opt(fθ,rθfϕ,rϕfπ,p(x+pt+1))=opt(fθ,rθfϕ,rϕfπ,p)+opt(x+pt+1).\underset{p_{t+1}>0}{\exists}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\forall}\ \ \operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,f_{\pi,p}\,\left(x+p_{t+1}\right)\right)=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,f_{\pi,p}\right)+\operatorname*{opt}\left(x+p_{t+1}\right).

By the Curtiss Bound (Theorem 1), opt(x+pt+1)=0\operatorname*{opt}\left(x+p_{t+1}\right)=0, so we have

opt(fθ,rθfϕ,rϕfπ,p(x+pt+1))\displaystyle\operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,f_{\pi,p}\,\left(x+p_{t+1}\right)\right) =opt(fθ,rθfϕ,rϕfπ,p)\displaystyle=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,f_{\pi,p}\right)
=opt(fθ,rθ).\displaystyle=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\right).

Hence, we have p1,,pt>0rϕ1,,rϕk>0rθ1,,rθ>0opt(fθ,rθfϕ,rϕfπ,p)=opt(fθ,rθ)\underset{p_{1},\ldots,p_{t}>0}{\exists}\ \ \underset{r_{\phi_{1}},\ldots,r_{\phi_{k}}>0}{\exists}\ \ \underset{r_{\theta_{1}},\ldots,r_{\theta_{\ell}}>0}{\forall}\ \ \operatorname*{opt}\left(f_{\theta,r_{\theta}}\,f_{\phi,r_{\phi}}\,f_{\pi,p}\right)=\operatorname*{opt}\left(f_{\theta,r_{\theta}}\right).

\Box 

The above proof relies on the One More Quadrant 2 Factor Lemma (Lemma 13). To prove this lemma, we will build additional notation and convert the optimality claim to a claim about separation of sets. Recall that

As=[a0ana0an](s+1)×(s+n+1)A_{s}=\left[\begin{array}[c]{cccccc}a_{0}&\cdots&\cdots&a_{n}&&\\ &\ddots&&&\ddots&\\ &&a_{0}&\cdots&\cdots&a_{n}\end{array}\right]\in\mathbb{R}^{\left(s+1\right)\times(s+n+1)}

and, from the Coefficients Lemma (Lemma 3), coeffs(gf)=bAs\operatorname*{coeffs}\left(gf\right)=bA_{s}. We partition AsA_{s} into two sub-matrices as As=[Ls|Rs]A_{s}=\left[L_{s}|R_{s}\right] where

Ls=[a0an1a0](s+1)×nand Rs=[ana0a0an](s+1)×(s+1).L_{s}=\left[\begin{array}[c]{ccc}a_{0}&\cdots&a_{n-1}\\ &\ddots&\vdots\\ &&a_{0}\\ &&\\ &&\\ &&\end{array}\right]\in\mathbb{R}^{\left(s+1\right)\times n}\ \ \ \text{and }R_{s}=\left[\begin{array}[c]{cccccc}a_{n}&&&&&\\ \vdots&\ddots&&&&\\ \vdots&&\ddots&&&\\ a_{0}&&&\ddots&&\\ &\ddots&&&\ddots&\\ &&a_{0}&\cdots&\cdots&a_{n}\end{array}\right]\in\mathbb{R}^{\left(s+1\right)\times\left(s+1\right)}.

Let

c\displaystyle c =bRs1×(s+1)\displaystyle=bR_{s}\ \ \in\mathbb{R}^{1\times\left(s+1\right)}
Ts\displaystyle T_{s} =Rs1Ls(s+1)×n.\displaystyle=R_{s}^{-1}L_{s}\ \ \in\mathbb{R}^{\left(s+1\right)\times n}.
Lemma 12 (Separation of Sets)

We have

g0,deg(g)scoeffs(gf)0ConvexHull(Ts)0n\underset{g\neq 0,\ \deg\left(g\right)\leq s}{\exists}\ \operatorname*{coeffs}\left(gf\right)\geq 0\ \ \ \ \Longleftrightarrow\ \ \ \ \operatorname*{ConvexHull}\left(T_{s}\right)\cap\mathbb{R}_{\geq 0}^{n}\neq\emptyset

where TsT_{s} is viewed as a set of row vectors.

Proof: Note that

coeffs(gf)\displaystyle\operatorname*{coeffs}\left(gf\right) =bAs(from Lemma 3)\displaystyle=bA_{s}\ \ \ \ \ \text{(from Lemma \ref{lem:bA})}
=b(RsRs1)As\displaystyle=b\left(R_{s}R_{s}^{-1}\right)A_{s}
=(bRs)(Rs1As)\displaystyle=\left(bR_{s}\right)\left(R_{s}^{-1}A_{s}\right)
=(bRs)(Rs1[Ls|Rs])\displaystyle=\left(bR_{s}\right)\left(R_{s}^{-1}\left[L_{s}|R_{s}\right]\right)
=(bRs)[Rs1Ls|Rs1Rs]\displaystyle=\left(bR_{s}\right)\left[R_{s}^{-1}L_{s}|R_{s}^{-1}R_{s}\right]
=(bRs)[Rs1Ls|I]\displaystyle=\left(bR_{s}\right)\left[R_{s}^{-1}L_{s}|I\right]
=c[Ts|I]where c=bRsand Ts=Rs1Ls.\displaystyle=c\left[T_{s}|I\right]\ \ \ \ \ \ \ \ \text{where\ }c=bR_{s}\ \ \,\text{and\ }T_{s}=R_{s}^{-1}L_{s}.

Thus we have

g0,deg(g)scoeffs(gf)0\displaystyle\ \ \underset{g\neq 0,\ \deg\left(g\right)\leq s}{\exists}\ \operatorname*{coeffs}\left(gf\right)\geq 0
\displaystyle\Longleftrightarrow c0c[Ts|I]0\displaystyle\ \ \underset{c\neq 0}{\exists}\ c\left[T_{s}|I\right]\geq 0
\displaystyle\Longleftrightarrow c0cTs0and c0\displaystyle\ \ \underset{c\neq 0}{\exists}\ cT_{s}\geq 0\ \ \text{and }c\geq 0
\displaystyle\Longleftrightarrow c0,c0cTs0\displaystyle\ \ \underset{c\geq 0,\ c\neq 0}{\exists}\ cT_{s}\geq 0
\displaystyle\Longleftrightarrow c0,c0++cs=1cTs0\displaystyle\ \ \underset{c\geq 0,\ c_{0}+\cdots+c_{s}=1}{\exists}\ cT_{s}\geq 0
\displaystyle\Longleftrightarrow ConvexHull(Ts)0n.\displaystyle\ \ \operatorname*{ConvexHull}\left(T_{s}\right)\cap\mathbb{R}_{\geq 0}^{n}\neq\emptyset.

\Box 

Notation 5

Note

  • hϕ,r=x+rh_{\phi,r}=x+r when ϕ=π\phi=\pi

  • hϕ,r=x22rcosϕx+r2h_{\phi,r}=x^{2}-2r\cos\phi\,x+r^{2} when π2ϕ<π\dfrac{\pi}{2}\leq\phi<\pi

  • P={f[x]:f(x)>0forx0}P=\left\{f\in\mathbb{R}[x]:f(x)>0\ \ \text{for}\ \ x\geq 0\right\}

Lemma 13 (One New Quadrant 2 Factor)

fP,deg(f)1π2ϕπ\underset{f\in P,\ \deg(f)\geq 1}{\forall}\ \ \underset{\frac{\pi}{2}\leq\phi\leq\pi}{\forall} r>0opt(fhϕ,r)=opt(f)+opt(hϕ,r)\ \ \underset{r>0}{\exists}\ \ \operatorname*{opt}\left(f\,h_{\phi,r}\right)=\operatorname*{opt}\left(f\right)+\operatorname*{opt}\left(h_{\phi,r}\right)

Proof: Let fPf\in P and h=fhϕ,rh=f\,h_{\phi,r}. We need to show r>0opt(h)=opt(f)\underset{r>0}{\exists}\ \operatorname*{opt}(h)=\operatorname*{opt}(f) since opt(hϕ,r)=0\operatorname*{opt}(h_{\phi,r})=0. We will divide the proof into several claims.

Claim 1:

r>0opt(h)=opt(f)\underset{r>0}{\exists}\ \operatorname*{opt}(h)=\operatorname*{opt}(f) r>0CH(Th,0,,Th,s1)0n=\ \ \ \ \Longleftarrow\ \ \ \ \underset{r>0}{\exists}\ \operatorname*{CH}(T_{h,0}^{\ast},\ldots,T_{h,s-1}^{\ast})\cap\mathbb{R}_{\geq 0}^{n}=\emptyset

where

  • n=deg(f)n=\deg\left(f\right)

  • s=opt(f)s=\operatorname*{opt}(f)

  • d=deg(h)d=\deg(h)

  • The Th,iT_{h,i} are the rows of Ts1T_{s-1} for hh.

  • Th,iT_{h,i}^{\ast} is obtained from Th,iT_{h,i} by deleting the first dd elements.

Note

opt(h)=opt(f)opt(h)ssinceopt(h)opt(f)+opt(hϕ,r)=opt(f)=s¬g0,deg(g)<scoeffs(gh)0¬(CH(Th,0,,Th,s1)0n+d)from Lemma 12CH(Th,0,,Th,s1)0n+d=CH(Th,0,,Th,s1)0n=.\begin{array}[c]{cl}&\ \operatorname*{opt}(h)=\operatorname*{opt}(f)\\ \iff&\ \operatorname*{opt}(h)\geq s\ \ \ \ \ \text{since}\ \ \operatorname*{opt}(h)\leq\operatorname*{opt}(f)+\operatorname*{opt}(h_{\phi,r})=\operatorname*{opt}(f)=s\\ \iff&\ \lnot\underset{g\neq 0,\ \deg(g)<s}{\exists}\operatorname*{coeffs}(g\,h)\geq 0\\ \iff&\ \lnot\left(\operatorname*{CH}(T_{h,0},\ldots,T_{h,s-1})\cap\mathbb{R}_{\geq 0}^{n+d}\neq\emptyset\right)\ \ \ \ \text{from Lemma }\ref{lem:ch}\\ \iff&\ \operatorname*{CH}(T_{h,0},\ldots,T_{h,s-1})\cap\mathbb{R}_{\geq 0}^{n+d}=\emptyset\\ \Longleftarrow&\ \operatorname*{CH}(T_{h,0}^{\ast},\ldots,T_{h,s-1}^{\ast})\cap\mathbb{R}_{\geq 0}^{n}=\emptyset.\end{array}
Claim 2:

r>0opt(h)=opt(f)\underset{r>0}{\exists}\ \operatorname*{opt}(h)=\operatorname*{opt}(f) r>0εh(r)>0\ \ \ \ \Longleftarrow\ \ \ \ \underset{r>0}{\exists}\varepsilon_{h}\left(r\right)>0

where εh(r)\varepsilon_{h}\left(r\right) stands for the minimum Euclidean distance betweenCH(Th,0,,Th,s1)\ \operatorname*{CH}(T_{h,0}^{\ast},\ldots,T_{h,s-1}^{\ast})\ and 0n\mathbb{R}_{\geq 0}^{n},  that is,

εh(r):=minxCH(Th,0,,Th,s1)y0nxy.\varepsilon_{h}(r)\ :=\ \min_{\begin{subarray}{c}x\in\operatorname*{CH}(T_{h,0}^{\ast},\ldots,T_{h,s-1}^{\ast})\\ y\in\mathbb{R}_{\geq 0}^{n}\end{subarray}}\|x-y\|\ .

Immediate from the above claim.

Claim 3:

εh(r)\varepsilon_{h}\left(r\right) is continuous at r=0r=0.

Note

εh(r)\displaystyle\varepsilon_{h}(r) =minc0sc0++cs1=1y0ni=0s1ciTh,iy\displaystyle=\ \min_{\begin{subarray}{c}c\in\mathbb{R}_{\geq 0}^{s}\\ c_{0}+\cdots+c_{s-1}=1\\ y\in\mathbb{R}_{\geq 0}^{n}\end{subarray}}\ \left\|\sum_{i=0}^{s-1}c_{i}T_{h,i}^{\ast}\ -\ y\right\|
=minc0sc0++cs1=1y0n[i=0s1ciTh,i,1y1,,i=0s1ciTh,i,nyn]\displaystyle=\ \min_{\begin{subarray}{c}c\in\mathbb{R}_{\geq 0}^{s}\\ c_{0}+\cdots+c_{s-1}=1\\ y\in\mathbb{R}_{\geq 0}^{n}\end{subarray}}\ \left\|\left[\sum_{i=0}^{s-1}c_{i}T_{h,i,1}^{\ast}\ -\ y_{1}\ \ ,\ldots,\ \ \sum_{i=0}^{s-1}c_{i}T_{h,i,n}^{\ast}\ -\ y_{n}\right]\right\|
=minz0s+nz0++zs1=1[i=0s1ziTh,i,1zs,,i=0s1ziTh,i,nzs+n1]where z=(c,y)\displaystyle=\ \underset{z_{0}+\cdots+z_{s-1}=1}{\underset{z\in\mathbb{R}_{\geq 0}^{s+n}}{\min}}\ \left\|\left[\sum_{i=0}^{s-1}z_{i}T_{h,i,1}^{\ast}\ -\ z_{s}\ \ ,\ldots,\ \ \sum_{i=0}^{s-1}z_{i}T_{h,i,n}^{\ast}\ -\ z_{s+n-1}\right]\right\|\ \ \ \ \text{where }z=(c,y)
=minzCp(z,r)\displaystyle=\ \underset{z\in C}{\min}\ p\left(z,r\right)

where p(z,r)p(z,r) is Euclidean distance and

C\displaystyle C ={z0s+n:z1++zs=1}.\displaystyle=\left\{z\in\mathbb{R}_{\geq 0}^{s+n}:z_{1}+\cdots+z_{s}=1\right\}.

Note, since p(z,r)p(z,r) is the distance between two closed sets, the minimum distance is realized by a point in each set. Hence,

εh(r)=minzCp(z,r)=infzCp(z,r).\varepsilon_{h}(r)=\underset{z\in C}{\min}\ p\left(z,r\right)=\underset{z\in C}{\inf}\ p\left(z,r\right).

Note the following:

  1. 1.

    By Section 3.1.5 of [3], p(z,r)p(z,r) is a convex function since p(z,r)p(z,r) is a norm.

  2. 2.

    By Section 3.2.5 of [3], εh(r)=infzCp(z,r)\varepsilon_{h}(r)=\underset{z\in C}{\inf}\ p\left(z,r\right) is a convex function, since CC is convex and p(z,r)p(z,r) is bounded below.

  3. 3.

    By Corollary 3.5.3 in [13], since εh(r)\varepsilon_{h}(r) is a convex function defined on a convex set \mathbb{R}, εh(r)\varepsilon_{h}(r) is continuous on the relative interior of \mathbb{R}, ri()=\operatorname*{ri}\left(\mathbb{R}\right)=\mathbb{R}.

  4. 4.

    Hence, εh(r)\varepsilon_{h}(r) is continuous at r=0r=0.

Claim 4:

εh(0)>0\varepsilon_{h}\left(0\right)>0.

The claim follows immediately from the following subclaims. Let r=0r=0. Then h=xdfh=x^{d}\cdot f.

Subclaim 1

: Th,i,j=Tf,i,jT_{h,i,j}^{\ast}=T_{f,i,j}. Note that these are the entries of Th,s1T_{h,s-1}^{*} and Tf,s1T_{f,s-1}. We will prove the claim using the fact that Ts1=Rs11Ls1T_{s-1}=R_{s-1}^{-1}L_{s-1} for any ff.

Note Rf,s1=Rh,s1R_{f,s-1}=R_{h,s-1}. This is clear from the definition of Rs1R_{s-1}. Hence Rf,s11=Rh,s11R_{f,s-1}^{-1}=R_{h,s-1}^{-1}.

Note that Lf,i,j=Lh,i,j+dL_{f,i,j}=L_{h,i,j+d}. This is clear from the definition of Ls1L_{s-1}, since Lh,s1L_{h,s-1} is composed of Lf,s1L_{f,s-1} with dd columns of zeroes added on the left.

Note that for i=0,,s1i=0,\ldots,s-1 and j=0,,n1j=0,\ldots,n-1,

Th,i,j\displaystyle T_{h,i,j}^{*} =Th,i,j+d\displaystyle=T_{h,i,j+d}
=k=0s1Rh,i,k1Lh,k,j+d\displaystyle=\sum_{k=0}^{s-1}R_{h,i,k}^{-1}L_{h,k,j+d}
=k=0s1Rf,i,k1Lf,k,j\displaystyle=\sum_{k=0}^{s-1}R_{f,i,k}^{-1}L_{f,k,j}
=Tf,i,j.\displaystyle=T_{f,i,j}.

Hence Th,i,j=Tf,i,jT_{h,i,j}^{\ast}=T_{f,i,j}.

Subclaim 2:

εh(0)=εf\varepsilon_{h}(0)=\varepsilon_{f} where εf\varepsilon_{f} stands for the minimum Euclidean distance betweenCH(Tf,0,,Tf,s1)\ \operatorname*{CH}(T_{f,0},\ldots,T_{f,s-1})\ and 0n\mathbb{R}_{\geq 0}^{n},  that is,

εf:=minxCH(Tf,0,,Tf,s1)y0nxy.\varepsilon_{f}:=\ \min_{\begin{subarray}{c}x\in\operatorname*{CH}(T_{f,0},\ldots,T_{f,s-1})\\ y\in\mathbb{R}_{\geq 0}^{n}\end{subarray}}\|x-y\|.

To see this, note

εh(0)\displaystyle\varepsilon_{h}(0) =minc0sc0++cs1=1y0ni=0s1ciTh,iy\displaystyle=\min_{\begin{subarray}{c}c\in\mathbb{R}_{\geq 0}^{s}\\ c_{0}+\cdots+c_{s-1}=1\\ y\in\mathbb{R}_{\geq 0}^{n}\end{subarray}}\ \left\|\sum_{i=0}^{s-1}c_{i}T_{h,i}^{\ast}\ -\ y\right\|
=minc0sc0++cs1=1y0ni=0s1ciTf,iy\displaystyle=\min_{\begin{subarray}{c}c\in\mathbb{R}_{\geq 0}^{s}\\ c_{0}+\cdots+c_{s-1}=1\\ y\in\mathbb{R}_{\geq 0}^{n}\end{subarray}}\ \left\|\sum_{i=0}^{s-1}c_{i}T_{f,i}\ -\ y\right\|
=minxCH(Tf,0,,Tf,s1)y0nxy\displaystyle=\min_{\begin{subarray}{c}x\in\operatorname*{CH}(T_{f,0},\ldots,T_{f,s-1})\\ y\in\mathbb{R}_{\geq 0}^{n}\end{subarray}}\|x-y\|
=εf.\displaystyle=\varepsilon_{f}.
Subclaim 3:

εf>0\varepsilon_{f}>0.

Note since opt(f)=s\operatorname*{opt}\left(f\right)=s, we have CH(Tf,0,,Tf,s1)0n=\operatorname*{CH}(T_{f,0},\ldots,T_{f,s-1})\cap\mathbb{R}_{\geq 0}^{n}=\emptyset. Thus εf>0\varepsilon_{f}>0.

From the above four claims, we immediately have

r>0opt(h)=opt(f).\underset{r>0}{\exists}\ \operatorname*{opt}(h)=\operatorname*{opt}(f).

Thus we have proved the lemma. \Box 

Example 6

Consider the following function, for which b(f)=4b(f)=4:

f=i=13(x22(10i1)cos(θi)x+(10i1)2)whereθ={7π24,10π24,11π24}.f=\prod_{i=1}^{3}\left(x^{2}-2(10^{i-1})\cos(\theta_{i})\,x+(10^{i-1})^{2}\right)\;\;\text{where}\;\;\theta=\left\{\dfrac{7\pi}{24},\dfrac{10\pi}{24},\dfrac{11\pi}{24}\right\}.

When hϕ,r=x22(100)cos(14π24)x+(100)2h_{\phi,r}=x^{2}-2(10^{0})\cos\left(\dfrac{14\pi}{24}\right)x+(10^{0})^{2}, we have opt(fhϕ,r)=3\operatorname*{opt}(f\,h_{\phi,r})=3.

When hϕ,r=x22(103)cos(14π24)x+(103)2h_{\phi,r}=x^{2}-2(10^{3})\cos\left(\dfrac{14\pi}{24}\right)x+(10^{3})^{2}, we have opt(fhϕ,r)=b(f)=4\operatorname*{opt}(f\,h_{\phi,r})=b(f)=4.

Example 7

Consider the following function, for which b(f)=4b(f)=4:

f=i=14(x22(10i1)cos(θi)x+(10i1)2)whereθ={7π24,10π24,11π24,14π24}.f=\prod_{i=1}^{4}\left(x^{2}-2(10^{i-1})\cos(\theta_{i})\,x+(10^{i-1})^{2}\right)\;\;\text{where}\;\;\theta=\left\{\dfrac{7\pi}{24},\dfrac{10\pi}{24},\dfrac{11\pi}{24},\dfrac{14\pi}{24}\right\}.

When hϕ,r=x+100h_{\phi,r}=x+10^{0}, we have opt(fhϕ,r)=3\operatorname*{opt}(f\,h_{\phi,r})=3.

When hϕ,r=x+104h_{\phi,r}=x+10^{4}, we have opt(fhϕ,r)=4\operatorname*{opt}(f\,h_{\phi,r})=4.

Acknowledgements. Hoon Hong’s work was supported by National Science Foundation (CCF: 2212461 and 1813340).

References

  • [1] E. Artin. Über die zerlegung definiter funktionen in quadrate. Abhandlungen aus dem
    Mathematischen Seminar der Universität Hamburg
    , 5:100–115, 12 1927.
  • [2] M. Avendaño. Descartes’ rule of signs is exact! Journal of Algebra - J ALGEBRA, 324:2884–2892, 11 2010.
  • [3] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.
  • [4] F. Budan. Nouvelle méthode pour la résolution des équations numériques d’un degré quelconque : d’après laquelle toute le calcul exigé pour cette résolution se réduit à l’emploi des deux premières règles de l’arithmétique. Courcier, 1807.
  • [5] T. Cameron and P. Psarrakos. On descartes’ rule of signs for matrix polynomials. Operators and Matrices, pages 643–652, 01 2019.
  • [6] D. R. Curtiss. Recent extensions of Descartes’ rule of signs. Ann. of Math. (2), 19(4):251–278, 1918.
  • [7] R. Descartes. The Geometry of Rene Descartes: With a facsimile of the first edition. Courier Corporation, 2012.
  • [8] E. Feliu and M. L. Telek. On generalizing descartes’ rule of signs to hypersurfaces. Advances in Mathematics, 408:108582, 10 2022.
  • [9] J. B. J. Fourier. Oeuvres de Fourier: Publiées par les soins de Gaston Darboux, volume 2 of Cambridge Library Collection - Mathematics. Cambridge University Press, 2013.
  • [10] C. Hermite. Remarques sur le théorème de m. sturm. C. R. Acad. Sci. Paris, 36:294–297, 1853.
  • [11] D. Hilbert. Mathematical problems. Bulletin of the American Mathematical Society, 8(10):437 – 479, 1902.
  • [12] J.-L. Krivine. Anneaux préordonnés. Journal d’analyse mathématique, 12:p. 307–326, 1964.
  • [13] C. Niculescu and L. Persson. Convex functions and their applications. Springer Verlag New York, 2006.
  • [14] J. Nie and M. Schweighofer. On the complexity of putinar’s positivstellensatz. Journal of Complexity, 23:135–150, 02 2007.
  • [15] H. Poincaré. Sur les équations algébriques. CR Acad. Sci. Paris, 93:1418–1414, 1883.
  • [16] G. Pólya. Über positive Darstellung von Polynomen Vierteljschr. Naturforsch. Ges. Zurich, (73), 1928.
  • [17] V. Powers and B. Reznick. A new bound for pólya’s theorem with applications to polynomials positive on polyhedra. Journal of Pure and Applied Algebra, 164(1-2):221–229, 10 2001.
  • [18] M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University
    Mathematics Journal
    , 42(3):969–984, 1993.
  • [19] K. Schmüdgen. The k-moment problem for compact semi-algebraic sets. Mathematische Annalen, 289(2):203–206, 1991.
  • [20] M. Schweighofer. On the complexity of schmüdgen’s positivstellensatz. J. Complexity, 20:529–543, 08 2004.
  • [21] P. Sturm. Mémoire sur la résolution des équations numériques, volume 6, pages 345–390. Birkhäuser Basel, 01 2009.
  • [22] D. Tokarev. A generalisation of descartes’ rule of signs. Journal of the Australian Mathematical Society, 91, 12 2011.