This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimal ratcheting of dividends in a Brownian risk model

Hansjörg Albrecher, Pablo Azcue and Nora Muler Department of Actuarial Science, Faculty of Business and Economics, University of Lausanne, CH-1015 Lausanne and Swiss Finance Institute. Supported by the Swiss National Science Foundation Project 200021_191984.Departamento de Matematicas, Universidad Torcuato Di Tella. Av. Figueroa Alcorta 7350 (C1428BIJ) Ciudad de Buenos Aires, Argentina.
Abstract

We study the problem of optimal dividend payout from a surplus process governed by Brownian motion with drift under the additional constraint of ratcheting, i.e. the dividend rate can never decrease. We solve the resulting two-dimensional optimal control problem, identifying the value function to be the unique viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation. For finitely many admissible dividend rates we prove that threshold strategies are optimal, and for any finite continuum of admissible dividend rates we establish the ε\varepsilon-optimality of curve strategies. This work is a counterpart of [2], where the ratcheting problem was studied for a compound Poisson surplus process with drift. In the present Brownian setup, calculus of variation techniques allow to obtain a much more explicit analysis and description of the optimal dividend strategies. We also give some numerical illustrations of the optimality results.


1 Introduction

The identification of the optimal way to pay out dividends from a surplus process to shareholders is a classical topic in actuarial science and mathematical finance. There is a natural trade-off between paying out gains as dividends to shareholders early and at the same time leaving sufficient surplus in order to safeguard future adverse developments and avoid ruin. Depending on risk preferences, the concrete situation and the simultaneous exposure to other risk factors such a problem can be formally stated in various different ways in terms of objective functions and constraints. In this paper we would like to follow the actuarial tradition of considering the surplus process as the free capital in an insurance portfolio at any point in time, and the goal is to maximize the expected sum of discounted dividend payments that can be paid until the surplus process goes below 0 (which is called the time of ruin). In such a formulation, the problem goes back to de Finetti [15] and Gerber [18], and has since then been studied in many variants concerning the nature of the underlying surplus process and constraints on the type of admissible dividend payment strategies, see e.g. Albrecher & Thonhauser [4] and Avanzi [8] for an overview. From a mathematical perspective, the problem turns out to be quite challenging, and was cast into the framework of modern stochastic control theory and the concept of viscosity solutions for corresponding Hamilton-Jacobi-Bellman equations over the last years, cf. Schmidli [25] and Azcue & Muler [10].

Among the variants of the general problem is to look for the optimal dividend payment strategy if the rate at which dividends are paid can never be reduced. This ratcheting constraint has often been brought up by practitioners and is in part motivated by the psychological effect that shareholders are likely to be unhappy about a reduction of dividend payments over time (see e.g. Avanzi et al. [9] for a discussion). One crucial question in this context is how much of the expected discounted dividends until ruin is lost if one respects such a ratcheting constraint, if that ratcheting is done in an optimal way. A first step in that direction was done in Albrecher et al. [3], where the consequences of ratcheting were studied under the simplifying assumption that a dividend rate can be fixed in the beginning and can be augmented only once during the lifetime of the process (concretely, when the surplus process hits some optimally chosen barrier for the first time). The analysis in that paper was both for a Brownian surplus process as well as for a surplus process of compound Poisson type. In our recent paper [2], we then provided the analysis and solution for the general ratcheting problem for the latter compound Poisson process, and it turned out that the optimal ratcheting dividend strategy does not lose much efficiency compared to the unconstrained optimal dividend payout performance, and also that the one-step ratcheting strategy studied earlier compares remarkably well to the overall optimal ratcheting solution. In this paper we would like to address the general ratcheting problem for the Brownian risk model. Such a model can be seen as a diffusion approximation of the compound Poisson risk model, but is also interesting in its own right. In particular, the fact that ruin with zero initial capital is immediate often leads to a more amenable analysis of stochastic control problems. In addition, the convergence of optimal strategies from a compound Poisson setting to the one for the diffusion approximation can be quite delicate, see e.g. Bäuerle [12], see also Cohen and Young [13] for a recent convergence rate analysis of simple uncontrolled ruin probabilities towards its counterparts for the diffusion limit.

On the mathematical level, the general ratcheting formulation leads to a fully two-dimensional stochastic control problem with all its related challenges, and it is only recently that in the context of insurance risk theory some first two-dimensional problems became amenable for analysis, see e.g. Albrecher et al. [1], Gu et al. [22], Grandits [21] and Azcue et al. [11]. In the present contribution we would like to exploit the more amenable nature of the ratcheting problem in the diffusion setting that push the analysis considerably further than was possible in [2]. In particular, we will use calculus of variation techniques to identify quite explicit formulas for the candidates of optimal strategies and provide various optimality results.

We would like to mention that optimal ratcheting strategies have been investigated in the framework of lifetime consumption in the mathematical finance literature, see e.g. Dybvig [16], Elie and Touzi [17], Jeon et al. [23] and more recently Angoshtari et al. [5]. However, the concrete model setup and correspondingly also the involved techniques are quite different to the one of the present paper.

The remainder of the paper is organized as follows. Section 2 introduces the model and the detailed formulation of the problem. It also provides some first basic results on properties of the value function under consideration. Section 3 derives the Hamilton-Jacobi-Bellman equations and characterization theorems for the value function for both a closed interval as well as a finite discrete set of admissible dividend payment rates. In Section 4 we prove that the optimal value function of the problem for discrete sets convergences to the one for a continuum of admissible dividend rates as the mesh size of the finite set tends to zero. In Section 5 we show that for finitely many admissible dividend rates, there exists an optimal strategy for which the change and non-change regions have only one connected component (this corresponds to the extension of one-dimensional threshold strategies to the two-dimensional case). We also provide an implicit equation defining the optimal threshold function for this case. Subsequently, we turn to the case of a continuum of admissible dividend rates and use calculus of variation techniques to identify the optimal curve splitting the state space into a change and a non-change region as the unique solution of an ordinary differential equation. We show that the corresponding dividend strategy is ε\varepsilon-optimal, in the sense that there exists a known sequence of curves such that the corresponding value functions converge uniformly to the optimal value function of the problem. Section 6 contains a numerical illustration of the optimal strategy and its performance relative to the one of for the unconstrained dividend problem and the one where the dividend rate can only be increased once. Section 7 concludes.

Some technical proofs are delegated to an appendix.

2 Model and basic results

Assume that the surplus process of a company is given by a Brownian motion with drift

Xt=x+μt+σWtX_{t}=x+\mu t+\sigma W_{t}

where WtW_{t} is a standard Brownian motion, and μ,σ>0\mu,\sigma>0 are given constants. Let (Ω,,(t)t0,𝒫)(\Omega,\mathcal{F},\left(\mathcal{F}_{t}\right)_{t\geq 0},\mathcal{P}) be the complete probability space generated by the process XtX_{t}.

The company uses part of the surplus to pay dividends to the shareholders with rates in a set S[0,c¯]S\subset[0,\overline{c}], where 0c¯S0\leq\overline{c}\in S is the maximum dividend rate possible. Let us denote by CtC_{t} the rate at which the company pays dividends at time tt. Given an initial surplus X0=xX_{0}=x and a minimum dividend rate cSc\in S at t=0t=0, a dividend ratcheting strategy is given by C=(Ct)t0C=\left(C_{t}\right)_{t\geq 0} and it is admissible if it is non-decreasing, right-continuous, adapted with respect to the filtration (t)t0\left(\mathcal{F}_{t}\right)_{t\geq 0} and it satisfies CtSC_{t}\in S for all tt. The controlled surplus process can be written as

XtC=Xt0tCs𝑑s.X_{t}^{C}=X_{t}-\int_{0}^{t}C_{s}ds. (1)

Define Πx,cS\Pi_{x,c}^{S} as the set of all admissible dividend ratcheting strategies with initial surplus x0x\geq 0 and minimum initial dividend rate cSc\in S.  Given CΠx,cSC\in\Pi_{x,c}^{S}, the value function of this strategy is given by

J(x;C)=𝔼[0τeqsCs𝑑s],J(x;C)=\mathbb{E}\left[\int_{0}^{\tau}e^{-qs}C_{s}ds\right],

where q>0q>0 and τ=inf{t0:XtC<0}\tau=\inf\left\{t\geq 0:X_{t}^{C}<0\right\} is the ruin time. Hence, for any initial surplus x0x\geq 0 and initial dividend rate cc, our aim is to maximize

VS(x,c)=supCΠx,cSJ(x;C).V^{S}(x,c)=\sup_{C\in\Pi_{x,c}^{S}}J(x;C). (2)

It is immediate to see that VS(0,c)=0V^{S}(0,c)=0 for all cS.c\in S.

Remark 2.1

The dividend optimization problem without the ratcheting constraint, that is where the dividend strategy C=(Ct)t0C=\left(C_{t}\right)_{t\geq 0} is not necessarily non-decreasing, was studied intensively in the literature (see e.g. Gerber and Shiu [19]). Unlike the ratcheting optimization problem, this non-ratcheting problem is one-dimensional. If VNR(x)V_{NR}(x) denotes its optimal value function, then clearly VS(x,c)VNR(x)V^{S}(x,c)\leq V_{NR}(x) for all x0x\geq 0 and cS[0,c¯]c\in S\subset[0,\overline{c}]. The function VNRV_{NR} is increasing, concave, twice continuously differentiable with VNR(0)=0V_{NR}(0)=0 and limxVNR(x)=c¯/q\lim_{x\rightarrow\infty}V_{NR}(x)=\overline{c}/q; so it is Lipschitz with Lipschitz constant VNR(0).V_{NR}^{\prime}(0).

The following Lemma states the dynamic programming principle, its proof is similar to the one of Lemma 1.2 in Azcue and Muler [10].

Lemma 2.1

Given any stopping time τ~\widetilde{\tau}, we can write

VS(x,c)=supCΠx,cS𝔼[0ττ~eqsCs𝑑s+eq(ττ~)VS(Xττ~C,Cττ~)].V^{S}(x,c)=\sup\limits_{C\in\Pi_{x,c}^{S}}\mathbb{E}\left[\int_{0}^{\tau\wedge\widetilde{\tau}}e^{-qs}C_{s}ds+e^{-q(\tau\wedge\widetilde{\tau})}V^{S}(X_{\tau\wedge\widetilde{\tau}}^{C},C_{\tau\wedge\widetilde{\tau}})\right]\text{.}

We now state a straightforward result regarding the boundedness and monotonicity of the optimal value function.

Proposition 2.2

The optimal value function VS(x,c)V^{S}(x,c) is bounded by c¯/q\overline{c}/q, non-decreasing in xx and non-increasing in c.c.

Proof. Since the discounted value of paying the maximum rate c¯\overline{c} up to infinity is c¯/q,\overline{c}/q, we conclude the boundedness result.

On the one hand VS(x,c)V^{S}(x,c) is non-increasing in cc because given c1<c2c_{1}<c_{2} we have Πx,c2SΠx,c1S\Pi_{x,c_{2}}^{S}\subset\Pi_{x,c_{1}}^{S} for any x0x\geq 0. On the other hand, given x1<x2x_{1}<x_{2} and an admissible ratcheting strategy C1Πx1,cSC^{1}\in\Pi_{x_{1},c}^{S} for any cSc\in S, let us define C2Πx2,cSC^{2}\in\Pi_{x_{2},c}^{S} as Ct2=Ct1C_{t}^{2}=C_{t}^{1} until the ruin time of the controlled process XtC1X_{t}^{C^{1}} with X0C1=x1X_{0}^{C^{1}}=x_{1}, and pay the maximum rate c¯\overline{c} afterwards. Thus, J(x;C1)J(x;C2)J(x;C_{1})\leq J(x;C_{2}) and we have the result. \blacksquare

The Lipschitz property of the function VNRV_{NR} introduced in Remark 2.1 can now be used to prove a first result on the regularity of the function VS.V^{S}.

Proposition 2.3

There exists a constant K>0K>0 such that

0VS(x2,c1)VS(x1,c2)K[(x2x1)+(c2c1)]0\leq V^{S}(x_{2},c_{1})-V^{S}(x_{1},c_{2})\leq K\left[\left(x_{2}-x_{1}\right)+\left(c_{2}-c_{1}\right)\right]

for all 0x1x20\leq x_{1}\leq x_{2} and c1,c2Sc_{1},c_{2}\in S with c1c2.c_{1}\leq c_{2}.

The proof is given in the appendix.

3 Hamilton-Jacobi-Bellman equations

In this section we introduce the Hamilton-Jacobi-Bellman (HJB) equation of the ratcheting problem for S[0,)S\subset[0,\infty), when SS is either a closed interval or a finite set. We show that the optimal value function VV defined in (2) is the unique viscosity solution of the corresponding HJB equation with boundary condition c¯/q\overline{c}/q when xx goes to infinity, where c¯=maxS.\overline{c}=\max S.

First, consider the case S={c}S=\left\{c\right\}. In this case, the unique admissible strategy consists of paying a constant dividend rate cc up to the ruin time. Correspondingly, the value function V{c}(x,c)V^{\left\{c\right\}}(x,c) is the unique solution of the second order differential equation

c(W):=σ22xxW+(μc)xWqW+c=0\mathcal{L}^{c}(W):=\frac{\sigma^{2}}{2}\partial_{xx}W+(\mu-c)\partial_{x}W-qW+c=0 (3)

with boundary conditions V{c}(0,c)=0V^{\left\{c\right\}}(0,c)=0 and limx\lim_{x\rightarrow\infty} V{c}(x,c)=c/q.V^{\left\{c\right\}}(x,c)=c/q. The solutions of (3) are of the form

cq+a1eθ1(c)x+a2eθ2(c)x with a1,a2,\frac{c}{q}+a_{1}e^{\theta_{1}(c)x}+a_{2}e^{\theta_{2}(c)x}\text{ with }a_{1},a_{2}\in{\mathbb{R}}, (4)

where θ1(c)>0\theta_{1}(c)>0 and θ2(c)<0\theta_{2}(c)<0 are the roots of the characteristic equation

σ22z2+(μc)zq=0\frac{\sigma^{2}}{2}z^{2}+(\mu-c)z-q=0

associated to the operator c\mathcal{L}^{c}, that is

θ1(c):=cμ+(cμ)2+2qσ2σ2,θ2(c):=cμ(cμ)2+2qσ2σ2.\theta_{1}(c):=\frac{c-\mu+\sqrt{(c-\mu)^{2}+2q\sigma^{2}}}{\sigma^{2}},\quad\theta_{2}(c):=\text{$\frac{c-\mu-\sqrt{(c-\mu)^{2}+2q\sigma^{2}}}{\sigma^{2}}$.} (5)

In the following remark, we state some basic properties of θ1\theta_{1} and θ2.\theta_{2}.

Remark 3.1

We have that

  1. 1.

    θ1(c)=θ2(c)\theta_{1}(c)=-\theta_{2}(c) if c=μc=\mu and θ12(c)θ22\theta_{1}^{2}(c)\geq\theta_{2}^{2}(c)(c) if, and only if, cμ0.c-\mu\geq 0.

  2. 2.

    θ1(c)=1σ2(1+cμ(cμ)2+2qσ2)\theta_{1}^{\prime}(c)=\frac{1}{\sigma^{2}}(1+\frac{c-\mu}{\sqrt{(c-\mu)^{2}+2q\sigma^{2}}}) and θ2(c)=1σ2(1cμ(cμ)2+2qσ2),\theta_{2}^{\prime}(c)=\frac{1}{\sigma^{2}}(1-\frac{c-\mu}{\sqrt{(c-\mu)^{2}+2q\sigma^{2}}}), so θ1(c),θ2(c)(0,2σ2).\theta_{1}^{\prime}(c),\theta_{2}^{\prime}(c)\in(0,\frac{2}{\sigma^{2}}).

The solutions of c(W)=0\mathcal{L}^{c}(W)=0 with boundary condition W(0)=0W(0)=0 are of the form

cq(1eθ2(c)x)+a(eθ1(c)xeθ2(c)x)with a.\frac{c}{q}\left(1-e^{\theta_{2}(c)x}\right)+a(e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x})\ \text{with }a\in{\mathbb{R}}. (6)

And finally, the unique solution of c(W)=0\mathcal{L}^{c}(W)=0 with boundary conditions W(0)=0W(0)=0 and limx\lim_{x\rightarrow\infty} W(x)=c/qW(x)=c/q\ corresponds to a=0,a=0, so that

V{c}(x,c)=cq(1eθ2(c)x).V^{\left\{c\right\}}(x,c)=\frac{c}{q}\left(1-e^{\theta_{2}(c)x}\right). (7)

We have that V{c}(,c)V^{\left\{c\right\}}(\cdot,c) is increasing and concave.

Remark 3.2

Given a set S[0,)S\subset[0,\infty) with c¯=maxS<,\overline{c}=\max S<\infty, we have that

VS(x,c)V{c¯}(x,c¯)=c¯q(1eθ2(c¯)x)V^{S}(x,c)\geq V^{\left\{\overline{c}\right\}}(x,\overline{c})=\frac{\overline{c}}{q}\left(1-e^{\theta_{2}(\overline{c})x}\right)

and so, by Remark 2.1, we conclude that limxVS(x,c)=c¯/q\lim_{x\rightarrow\infty}V^{S}(x,c)={\overline{c}}/{q} for any cSc\in S.

3.1 Hamilton-Jacobi-Bellman equations for closed intervals

Let us now consider the case S=[c¯,c¯]S=[\underline{c},\overline{c}] with 0c¯<c¯.0\leq\underline{c}<\overline{c}. The HJB equation associated to (2) is given by

max{c(u)(x,c),cu(x,c)}=0 for x0and c¯cc¯.\max\{\mathcal{L}^{c}(u)(x,c),\partial_{c}u(x,c)\}=0\text{ for }x\geq 0\ \text{and }\underline{c}\leq c\leq\overline{c}\text{.} (8)

We say that a function f:[0,)×[c¯,c¯)f:[0,\infty)\times[\underline{c},\overline{c})\rightarrow{\mathbb{R}} is (2,1)-differentiable if ff is continuously differentiable and xf(,c)\partial_{x}f(\cdot,c) is continuously differentiable.


Definition 3.1

(a) A locally Lipschitz function u¯:[0,)×[c¯,c¯)\overline{u}:[0,\infty)\times[\underline{c},\overline{c})\rightarrow{\mathbb{R}} where 0c¯<c¯0\leq\underline{c}<\overline{c} is a viscosity supersolution of (8) at (x,c)(0,)×[c¯,c¯)(x,c)\in(0,\infty)\times[\underline{c},\overline{c}), if any (2,1)-differentiable function φ:[0,)×[c¯,c¯)\varphi:[0,\infty)\times[\underline{c},\overline{c})\rightarrow{\mathbb{R}}\ with φ(x,c)=u¯(x,c)\varphi(x,c)=\overline{u}(x,c) such that u¯φ\overline{u}-\varphi reaches the minimum at (x,c)\left(x,c\right) satisfies

max{c(φ)(x,c),cφ(x,y)}0.\max\left\{\mathcal{L}^{c}(\varphi)(x,c),\partial_{c}\varphi(x,y)\right\}\leq 0.\

The function φ\varphi is called a test function for supersolution at (x,c)(x,c).

(b) A function u¯:\underline{u}: [0,)×[c¯,c¯)[0,\infty)\times[\underline{c},\overline{c})\rightarrow{\mathbb{R}}\  is a viscosity subsolution of (8) at (x,c)(0,)×[c¯,c¯)(x,c)\in(0,\infty)\times[\underline{c},\overline{c}), if any (2,1)-differentiable function ψ:[0,)×[c¯,c¯)\psi:[0,\infty)\times[\underline{c},\overline{c})\rightarrow{\mathbb{R}}\ with ψ(x,c)=u¯(x,c)\psi(x,c)=\underline{u}(x,c) such that u¯ψ\underline{u}-\psi reaches the maximum at (x,c)\left(x,c\right) satisfies

max{c(ψ)(x,c),cψ(x,c)}0.\max\left\{\mathcal{L}^{c}(\psi)(x,c),\partial_{c}\psi(x,c)\right\}\geq 0\text{.}

The function ψ\psi is called a test function for subsolution at (x,c)(x,c).

(c) A function u:[0,)×[c¯,c¯)u:[0,\infty)\times[\underline{c},\overline{c})\rightarrow{\mathbb{R}} which is both a supersolution and subsolution at (x,c)[0,)×[c¯,c¯)(x,c)\in[0,\infty)\times[\underline{c},\overline{c}) is called a viscosity solution of (8) at (x,c)(x,c).

Remark 3.3

Note that, by (2), V[0,c¯](x,c)=V[c¯,c¯](x,c)V^{[0,\overline{c}]}(x,c)=V^{[\underline{c},\overline{c}]}(x,c) for all 0c¯cc¯0\leq\underline{c}\leq c\leq\overline{c}, so in order to simplify the notation we define V(x,c):=V[c¯,c¯](x,c):[0,)×[c¯,c¯).V(x,c):=V^{[\underline{c},\overline{c}]}(x,c):[0,\infty)\times[\underline{c},\overline{c})\rightarrow{\mathbb{R}.}

We first prove that VV is a viscosity solution of the corresponding HJB equation.

Proposition 3.1

VV is a viscosity solution of (8) in (0,)×[c¯,c¯)(0,\infty)\times[\underline{c},\overline{c}).

The proof is given in the appendix.

Note that by definition of ratcheting V(x,c¯)V(x,\overline{c}) corresponds to the value function of the strategy that constantly pays dividends at rate c¯\overline{c}, with initial surplus xx. So, by (7),

V(x,c¯)=V{c¯}(x,c¯).V(x,\overline{c})=V^{\{\overline{c}\}}(x,\overline{c}). (9)

Let us now state the comparison result for viscosity solutions.

Lemma 3.2

Assume that (i) u¯\underline{u} is a viscosity subsolution and u¯\overline{u} is a viscosity supersolution of the HJB equation (8) for all x>0x>0 and for all c[c¯,c¯)c\in[\underline{c},\overline{c}) with 0c¯<c¯0\leq\underline{c}<\overline{c}, (ii) u¯\underline{u} and u¯\overline{u} are non-decreasing in the variable xx and Lipschitz in [0,)×[c¯,c¯)[0,\infty)\times[\underline{c},\overline{c}), and (iii) u¯(0,c)=u¯(0,c)=0\underline{u}(0,c)=\overline{u}(0,c)=0, limxu¯(x,c)c¯/qlimxu¯(x,c)\lim_{x\rightarrow\infty}\underline{u}(x,c)\leq\overline{c}/q\leq\lim_{x\rightarrow\infty}\overline{u}(x,c). Then u¯u¯\underline{u}\leq\overline{u} in [0,)×[c¯,c¯).[0,\infty)\times[\underline{c},\overline{c}).

The proof is given in the appendix.

The following characterization theorem is a direct consequence of the previous lemma, Remark 3.2 and Proposition 3.1.

Theorem 3.3

The optimal value function VV is the unique function non-decreasing in xx that is a viscosity solution of (8) in (0,)×[c¯,c¯)(0,\infty)\times[\underline{c},\overline{c}) with V(0,c)=0V(0,c)=0 and limx\lim_{x\rightarrow\infty} V(x,c)=c¯/qV(x,c)=\overline{c}/q for c[c¯,c¯).c\in[\underline{c},\overline{c}).

From Definition 2, Lemma 3.2, and Remark 3.2 together with Proposition 3.1, we also get the following verification theorem.

Theorem 3.4

Consider S=[c¯,c¯]S=[\underline{c},\overline{c}] and consider a family of strategies

{Cx,cΠx,cS:(x,c)[0,)×[c¯,c¯]}.\left\{C_{x,c}\in\Pi_{x,c}^{S}:(x,c)\in[0,\infty)\times[\underline{c},\overline{c}]\right\}.

If the function W(x,c):=J(x;Cx,c)W(x,c):=J(x;C_{x,c}) is a viscosity supersolution of the HJB equation (8) in (0,)×[c¯,c¯)(0,\infty)\times[\underline{c},\overline{c}) with W(0,c)=0W(0,c)=0 and limxW(x,c)=\lim_{x\rightarrow\infty}W(x,c)= c¯/q,\overline{c}/q, then WW is the optimal value function VV. Also, if for each k1k\geq 1 there exists a family of strategies {Cx,ckΠx,cS:(x,c)[0,)×[c¯,c¯]}\left\{C_{x,c}^{k}\in\Pi_{x,c}^{S}:(x,c)\in[0,\infty)\times[\underline{c},\overline{c}]\right\} such that W(x,c):=limkJ(x;Cx,ck)W(x,c):=\lim_{k\rightarrow\infty}J(x;C_{x,c}^{k}) is a viscosity supersolution of the HJB equation (8) in (0,)×[c¯,c¯)(0,\infty)\times[\underline{c},\overline{c}) with W(0,c)=0W(0,c)=0 and limxW(x,c)=\lim_{x\rightarrow\infty}W(x,c)= c¯/q\overline{c}/q, then WW is the optimal value function VV.

3.2 Hamilton-Jacobi-Bellman equations for finite sets

Let us now consider the case

S={c1,c2,.,cn},S=\left\{c_{1},c_{2},....,c_{n}\right\},

where 0c1<c2<.<cn=c¯0\leq c_{1}<c_{2}<....<c_{n}=\overline{c}. Note that VS(x,ci)=V{ci,ci+1,.,cn}(x,ci).V^{S}(x,c_{i})=V^{\left\{c_{i},c_{i+1},....,c_{n}\right\}}(x,c_{i}). We simplify the notation as follows:

Vci(x):=VS(x,ci).V^{c_{i}}(x):=V^{S}(x,c_{i}). (10)

So we have the inequalities

Vci(x)Vci+1(x)Vcn(x)=Vc¯(x)0,V^{c_{i}}(x)\geq V^{c_{i+1}}(x)\geq...\geq V^{c_{n}}(x)=V^{\overline{c}}(x)\geq 0,

where Vc¯(x)=V{c¯}(x,c¯)V^{\overline{c}}(x)=V^{\{\overline{c}\}}(x,\overline{c}) as defined in (7).

The Hamilton-Jacobi-Bellman equation associated to (10) is given by

max{ci(Vci(x)),Vci+1(x)Vci(x)}=0 for x0 and i=1,,n1.\max\left\{\mathcal{L}^{c_{i}}(V^{c_{i}}(x)),V^{c_{i+1}}(x)-V^{c_{i}}(x)\right\}=0\text{ for }x\geq 0\text{ and }i=1,...,n-1\text{.} (11)

As in the continuous case we have that VciV^{c_{i}} is the viscosity solution of the corresponding HJB equation. Let us introduce the definition of a viscosity solution in the one-dimensional case.

Definition 3.2

(a) A locally Lipschitz function u¯:[0,)\overline{u}:[0,\infty)\rightarrow{\mathbb{R}} is a viscosity supersolution of (11) at x(0,)x\in(0,\infty) if any twice continuously differentiable function φ:[0,)\varphi:[0,\infty)\rightarrow{\mathbb{R}}\ with φ(x)=u¯(x)\varphi(x)=\overline{u}(x) such that u¯φ\overline{u}-\varphi reaches the minimum at xx satisfies

max{ci(φ)(x),Vci+1(x)φ(x)}0.\max\left\{\mathcal{L}^{c_{i}}(\varphi)(x),V^{c_{i+1}}(x)-\varphi(x)\right\}\leq 0.\

The function φ\varphi is called a test function for supersolution at xx.

(b) A function u¯:\underline{u}: [0,)[0,\infty)\rightarrow{\mathbb{R}}\  is a viscosity subsolution of (11) at x(0,)x\in(0,\infty) if any twice continuously differentiable function ψ:[0,)\psi:[0,\infty)\rightarrow{\mathbb{R}}\ with ψ(x)=u¯(x)\psi(x)=\underline{u}(x) such that u¯ψ\underline{u}-\psi reaches the maximum at xx satisfies

max{ci(ψ)(x),Vci+1(x)ψ(x)}0.\max\left\{\mathcal{L}^{c_{i}}(\psi)(x),V^{c_{i+1}}(x)-\psi(x)\right\}\geq 0\text{.}

The function ψ\psi is called a test function for subsolution at xx.

(c) A function u:[0,)u:[0,\infty)\rightarrow{\mathbb{R}} which is both a supersolution and subsolution at x[0,)x\in[0,\infty) is called a viscosity solution of (11) at xx.

The following characterization theorem is the analogue of Theorem 3.3 for finite sets; the proof is similar and simpler than the one in the continuous case.

Theorem 3.5

The optimal value function Vci(x)V^{c_{i}}(x) for 1i<n1\leq i<n is the unique viscosity solution of the associated HJB equation (11) with boundary condition Vci(0)=0V^{c_{i}}(0)=0 and limxVci(x)=c¯/q.\lim_{x\rightarrow\infty}V^{c_{i}}(x)=\overline{c}/q.

We also have the alternative characterization theorem.

Theorem 3.6

The optimal value function Vci(x)V^{c_{i}}(x) for 1i<n1\leq i<n is the smallest viscosity supersolution of the the associated HJB equation (11) with boundary condition 0 at x=0x=0 and limit greater than or equal to c¯/q\overline{c}/q\ as xx goes to infinity.

Remark 3.4

The function VcnV^{c_{n}} has the closed formula given by (7) for c=cn.c=c_{n}. By the previous theorem, once Vci+1V^{c_{i+1}} is known, the optimal value function VciV^{c_{i}} can be obtained recursively as the solution of the obstacle problem of finding the smallest viscosity supersolution of the equation ci=0\mathcal{L}^{c_{i}}=0 above the obstacle Vci+1V^{c_{i+1}}.

4 Convergence of the optimal value functions from the discrete to the continuous case

In this section we prove that the optimal value functions of finite ratcheting strategies approximate the optimal value function of the continuous case as the mesh size of the finite sets goes to zero.

Consider for n0n\geq 0, a sequence of sets 𝒮n\mathcal{S}^{n} (with knk_{n} elements) of the form 

𝒮n={c1n=c¯<c2n<<cknn=c¯}.\mathcal{S}^{n}=\left\{c_{1}^{n}=\underline{c}<c_{2}^{n}<\cdots<c_{k_{n}}^{n}=\overline{c}\right\}.

satisfying 𝒮0={c¯,c¯}\mathcal{S}^{0}=\left\{\underline{c},\overline{c}\right\}, 𝒮n𝒮n+1\mathcal{S}^{n}\subset\mathcal{S}^{n+1} and mesh-size δ(𝒮n):=maxk=2,kn(cknck1n)0\delta(\mathcal{S}^{n}):=\max_{k=2,k_{n}}\left(c_{k}^{n}-c_{k-1}^{n}\right)\searrow 0 as nn goes to infinity.

Let us extend the definition of V𝒮nV^{\mathcal{S}^{n}} to the function Vn:[c¯,)×[0,c¯],V^{n}:[\underline{c},\infty)\times[0,\overline{c}]\rightarrow{\mathbb{R}}, as

Vn(x,c)=V𝒮n(x,c~n),V^{n}(x,c)=V^{\mathcal{S}^{n}}(x,\widetilde{c}^{n}), (12)

where

c~n=min{cin𝒮n:cinc}.\widetilde{c}^{n}=\min\{c_{i}^{n}\in\mathcal{S}^{n}:c_{i}^{n}\geq c\}. (13)

We will prove that limnVn(x,c)=V[c¯,c¯](x,c)\lim_{n\rightarrow\infty}V^{n}(x,c)=V^{[\underline{c},\overline{c}]}(x,c) for any (x,c)[0,)×[c¯,c¯](x,c)\in[0,\infty)\times[\underline{c},\overline{c}] and we will study the uniform convergence of this limit.

Since VnVn+1V[c¯,c¯]V^{n}\leq V^{n+1}\leq V^{[\underline{c},\overline{c}]}, there exists the limit function

V¯(x,c):=limnVn(x,c).\overline{V}(x,c):=\lim_{n\rightarrow\infty}V^{n}(x,c). (14)

Later on, we will show that V¯=V[c¯,c¯]\overline{V}=V^{[\underline{c},\overline{c}]}. Note that V¯(x,c)\overline{V}(x,c) is non-increasing in cc with V¯(x,c¯)=V(x,c¯)\overline{V}(x,\overline{c})=V(x,\overline{c}), and non-decreasing in xx with limx\lim_{x\rightarrow\infty} V¯(x,c)=c¯/q\overline{V}(x,c)=\overline{c}/q. With the same proof the one for Proposition 6.1 of [2], we have the following proposition:

Proposition 4.1

The sequence VnV^{n} converges uniformly to V¯.\overline{V}.

With this, we can obtain the main result of this section.

Theorem 4.2

The function V¯\overline{V} defined in (14) is the optimal value function V[c¯,c¯]V^{[\underline{c},\overline{c}]}.

Proof. Note that V¯(x,c)\overline{V}(x,c) is a limit of value functions of admissible strategies, so in order to satisfy the assumptions of Theorem 3.4, it remains to see that V¯\overline{V} is a viscosity supersolution of (8) at any point (x0,c0)(x_{0},c_{0}) with x0>0.x_{0}>0. cV¯(x0,c0)0\partial_{c}\overline{V}(x_{0},c_{0})\leq 0 in the viscosity sense because V¯\overline{V} is non-increasing in cc; so it is sufficient to show that c0(V¯)(x0,c0)0\mathcal{L}^{c_{0}}(\overline{V})(x_{0},c_{0})\leq 0 in the viscosity sense. Let φ\varphi be a test function for viscosity supersolution of (8) at (x0,c0)(x_{0},c_{0}), i.e. a (2,1)-differentiable function φ\varphi with

V¯(x,c)φ(x,c) and V¯(x0,c0)=φ(x0,c0).\overline{V}(x,c)\geq\varphi(x,c)\text{ and }\overline{V}(x_{0},c_{0})=\varphi(x_{0},c_{0})\text{.} (15)

In order to prove that c(φ)(x0,c0)0\mathcal{L}^{c}(\varphi)(x_{0},c_{0})\leq 0, consider now, for γ>0\gamma>0 small enough,

φγ(x,c)=φ(x,c)γ(xx0)4.\varphi_{\gamma}(x,c)=\varphi(x,c)-\gamma(x-x_{0})^{4}.

Given n1,n\geq 1, let us consider c~0n\widetilde{c}_{0}^{n} as defined in (13),

anγ:=min{Vn(x,c~0n)φγ(x,c~0n):x[0,x0+1]},a_{n}^{\gamma}:=\min\{V^{n}(x,\widetilde{c}_{0}^{n})-\varphi_{\gamma}(x,\widetilde{c}_{0}^{n}):x\in[0,x_{0}+1]\},
xnγ:=argmin{Vn(x,c~0n)φγ(x,c~0n):x[0,x0+1]},x_{n}^{\gamma}:=\arg\min\{V^{n}(x,\widetilde{c}_{0}^{n})-\varphi_{\gamma}(x,\widetilde{c}_{0}^{n}):x\in[0,x_{0}+1]\},

and

bnγ:=max{V¯(x,c~0n)Vn(x,c~0n):x[0,x0+1]}.b_{n}^{\gamma}:=\max\{\overline{V}(x,\widetilde{c}_{0}^{n})-V^{n}(x,\widetilde{c}_{0}^{n}):x\in[0,x_{0}+1]\}.

Since c~0nc0\widetilde{c}_{0}^{n}\searrow c_{0} and, from Proposition 4.1, limnanγ=0\lim_{n\rightarrow\infty}a_{n}^{\gamma}=0 and limnbnγ=0\lim_{n\rightarrow\infty}b_{n}^{\gamma}=0, we also have that limnxnγ=x0\lim_{n\rightarrow\infty}~{}x_{n}^{\gamma}=x_{0} because

0=Vn(xnγ,c~0n)(φγ(xnγ,c~0n)+anγ)=(Vn(xnγ,c~0n)V¯(xnγ,c~0n))+(V¯(xnγ,c~0n)φγ(xnγ,c~0n))anγbnγ+0anγ+γ(xnγx0)4\begin{array}[c]{lll}0&=&V^{n}(x_{n}^{\gamma},\widetilde{c}_{0}^{n})-\left(\varphi_{\gamma}(x_{n}^{\gamma},\widetilde{c}_{0}^{n})+a_{n}^{\gamma}\right)\\ &=&\left(V^{n}(x_{n}^{\gamma},\widetilde{c}_{0}^{n})-\overline{V}(x_{n}^{\gamma},\widetilde{c}_{0}^{n})\right)+\left(\overline{V}(x_{n}^{\gamma},\widetilde{c}_{0}^{n})-\varphi_{\gamma}(x_{n}^{\gamma},\widetilde{c}_{0}^{n})\right)-a_{n}^{\gamma}\\ &\geq&-b_{n}^{\gamma}+0-a_{n}^{\gamma}+\gamma(x_{n}^{\gamma}-x_{0})^{4}\end{array}

and then

(xnγx0)4anγ+bnγγ0as n.(x_{n}^{\gamma}-x_{0})^{4}\leq\frac{a_{n}^{\gamma}+b_{n}^{\gamma}}{\gamma}\rightarrow 0~{}\text{as }n\rightarrow\infty.

Note that φ¯n()=φγ(,c~0n)+anγ\overline{\varphi}^{n}(\cdot)=\varphi_{\gamma}(\cdot,\widetilde{c}_{0}^{n})+a_{n}^{\gamma} is a test function for viscosity supersolution of Vn(,c~0n)V^{n}(\cdot,\widetilde{c}_{0}^{n}) in Equation (11) at the point xnγx_{n}^{\gamma} because

φγ(xnγ,c~0n)+anγ=Vn(xnγ,c~0n) and φγ(x,c~0n)+anγVn(x,c~0n) for x[0,x0+1].\varphi_{\gamma}(x_{n}^{\gamma},\widetilde{c}_{0}^{n})+a_{n}^{\gamma}=V^{n}(x_{n}^{\gamma},\widetilde{c}_{0}^{n})\text{ and }\varphi_{\gamma}(x,\widetilde{c}_{0}^{n})+a_{n}^{\gamma}\leq V^{n}(x,\widetilde{c}_{0}^{n})\text{ for }x\in[0,x_{0}+1].

And so

c~0n(φγ)(xnγ,c~0n)=c~0n(φ¯n)(xnγ)+qanγqanγ.\mathcal{L}^{\widetilde{c}_{0}^{n}}(\varphi_{\gamma})(x_{n}^{\gamma},\widetilde{c}_{0}^{n})=\mathcal{L}^{\widetilde{c}_{0}^{n}}(\overline{\varphi}^{n})(x_{n}^{\gamma})+qa_{n}^{\gamma}\leq qa_{n}^{\gamma}.

Since (xnγ,cn)(x0,c0)(x_{n}^{\gamma},c_{n})\rightarrow(x_{0},c_{0}), φ¯n()=φγ(,c~0n)+anγφγ(,c0)\overline{\varphi}^{n}(\cdot)=\varphi_{\gamma}(\cdot,\widetilde{c}_{0}^{n})+a_{n}^{\gamma}\rightarrow\varphi_{\gamma}(\cdot,c_{0}) as nn\rightarrow\infty and φγ\varphi_{\gamma} is (2,1)-differentiable, one gets

c0(φγ)(x0,c0)=limnc~0n(φ¯n)(xnγ)0.\mathcal{L}^{c_{0}}(\varphi_{\gamma})(x_{0},c_{0})=\lim_{n\rightarrow\infty}\mathcal{L}^{\widetilde{c}_{0}^{n}}(\overline{\varphi}^{n})(x_{n}^{\gamma})\leq 0.

Finally, as

xφγ(x0,c0)=xφ(x0,c0)and xxφγ(x0,c0)=xxφ(x0,c0)\partial_{x}\varphi_{\gamma}(x_{0},c_{0})=\partial_{x}\varphi(x_{0},c_{0})~{}\text{and }\partial_{xx}\varphi_{\gamma}(x_{0},c_{0})=\partial_{xx}\varphi(x_{0},c_{0})

and φγφ\varphi_{\gamma}\nearrow\varphi as γ0\gamma\searrow 0, we obtain that c0(φ)(x0,c0)0\mathcal{L}^{c_{0}}(\varphi)(x_{0},c_{0})\leq 0 and the result follows. \blacksquare

5 The optimal strategies

We show first that, regardless whether SS is finite or an interval with maxS=c¯\max S=\overline{c}, the optimal strategy for sufficiently small c¯\overline{c} is to immediately start paying dividends at the maximum rate c¯\overline{c}.

Proposition 5.1

If c¯qσ2/(2μ)\overline{c}\leq q\sigma^{2}/(2\mu), then V(x,c)=V{c¯}(x,c¯)V(x,c)=V^{\{\overline{c}\}}(x,\overline{c}) for any (x,c)[0,)×S.(x,c)\in[0,\infty)\times S.

Proof. If we call W(x,c):=V{c¯}(x,c¯),W(x,c):=V^{\{\overline{c}\}}(x,\overline{c}), then we know that c¯(W)(x,c)=0\mathcal{L}^{\overline{c}}(W)(x,c)=0. Since W(0,c¯)=0,W(0,\overline{c})=0, limxW(x,c)=c¯/q\lim_{x\rightarrow\infty}W(x,c)=\overline{c}/q and cW(x,c)=0\partial_{c}W(x,c)=0, then by Theorem 3.3 and Theorem 3.5 it is enough to prove that c(W)(x,c)0\mathcal{L}^{c}(W)(x,c)\leq 0 for cS.c\in S. But, by (7) and (5)

c(W)(x,c)=c¯(W)(x,c)+(c¯c)(xW(x,c)1)=(c¯c)(c¯qθ2(c¯)eθ2(c¯)x1)(c¯c)(c¯qθ2(c¯)1)0\begin{array}[c]{lll}\mathcal{L}^{c}(W)(x,c)&=&\mathcal{L}^{\overline{c}}(W)(x,c)+(\overline{c}-c)(\partial_{x}W(x,c)-1)\\ &=&(\overline{c}-c)(-\frac{\overline{c}}{q}\theta_{2}(\overline{c})e^{\theta_{2}(\overline{c})x}-1)\\ &\leq&(\overline{c}-c)(-\frac{\overline{c}}{q}\theta_{2}(\overline{c})-1)\\ &\leq&0\end{array}

for cc¯qσ22μc\leq\overline{c}\leq\frac{q\sigma^{2}}{2\mu}. ~{}\blacksquare

Remark 5.1

The proof of the previous proposition also shows that if there exists a dd\in S{c¯}S\setminus\{\overline{c}\} and ε>0\varepsilon>0 such that V(x,d)=V{c¯}(x,c¯)V(x,d)=V^{\{\overline{c}\}}(x,\overline{c}) for x[0,ε]x\in[0,\varepsilon], then c¯qσ22μ\overline{c}\leq\frac{q\sigma^{2}}{2\mu} and so V(x,c)=V{c¯}(x,c¯)V(x,c)=V^{\{\overline{c}\}}(x,\overline{c}) for any (x,c)[0,)×S.(x,c)\in[0,\infty)\times S.

Let us first address the case of S={c1,c2,.,cn}S=\left\{c_{1},c_{2},....,c_{n}\right\} with 0c1<c2<.<cn=c¯0\leq c_{1}<c_{2}<....<c_{n}=\overline{c}. We introduce the concept of strategies with a threshold structure for each level ciSc_{i}\in S and prove that there exists an optimal dividend payment strategy and has this form. Later we extend the concept of strategies with this type of structure to the case S=[c¯,c¯]S=[\underline{c},\overline{c}] by means of a curve in the state space [0,)×[c¯,c¯][0,\infty)\times[\underline{c},\overline{c}] and look for the curve which maximizes the expected discounted cumulative dividends.

5.1 Optimal strategies for finite sets

Take S={c1,c2,.,cn}S=\left\{c_{1},c_{2},....,c_{n}\right\} with 0c1<c2<.<cn=c¯.0\leq c_{1}<c_{2}<....<c_{n}=\overline{c}. Since for in1,i\leq n-1, the optimal value function VciV^{c_{i}} is a viscosity solution of (11), there are values of xx where Vci(x)=Vci+1(x)V^{c_{i}}(x)=V^{c_{i+1}}(x) and values of xx where ci(Vci)(x)=0.\mathcal{L}^{c_{i}}(V^{c_{i}})(x)=0. We look for the simplest dividend payment strategies, those whose value functions are solutions of ci=0\mathcal{L}^{c_{i}}=0 for x[0,z(ci))x\in[0,z(c_{i})) and Vci=Vci+1V^{c_{i}}=V^{c_{i+1}} for x[z(ci),)x\in[z(c_{i}),\infty) with some z(ci)0z(c_{i})\geq 0. We will show in this subsection that the optimal value function comes from such types of strategies. More precisely, take S~=S{cn}\widetilde{S}=S\setminus\{c_{n}\} and a function z:S~[0,)z:\widetilde{S}\rightarrow[0,\infty); we define a threshold strategy by backward recursion, it is a stationary strategy (which depends on both the current surplus xx and the implemented dividend rate ciSc_{i}\in S)

πz=(Cx,ci)(x,ci)[0,)×S where Cx,ciΠx,ciS\mathbf{\pi}^{z}=(C_{x,c_{i}})_{(x,c_{i})\in[0,\infty)\times S}\text{ where }C_{x,c_{i}}\in\Pi_{x,c_{i}}^{S} (16)

as follows:

  • If i=ni=n, pay dividends with rate cn=c_{n}= c¯\overline{c} up to the time of ruin, that is (Cx,cn)t=c¯(C_{x,c_{n}})_{t}=\overline{c}.

  • If 1i<n1\leq i<n and xz(ci)x\geq z(c_{i}) follow Cx,ci+1Πx,ci+1S.C_{x,c_{i+1}}\in\Pi_{x,c_{i+1}}^{S}.

  • If 1i<n1\leq i<n and x<z(ci)x<z(c_{i}) pay dividends with rate cic_{i} as long as the surplus is less than z(ci)z(c_{i}) up to the ruin time; if the current surplus reaches z(ci)z(c_{i}) before the time of ruin, follow Cx,ci+1Πx,ci+1SC_{x,c_{i+1}}\in\Pi_{x,c_{i+1}}^{S}. More precisely

    (Cx,ci)t=ciItττ^+(CXτ^,ci+1)tIτ^t<τ,(C_{x,c_{i}})_{t}=c_{i}I_{t\leq\tau\wedge\widehat{\tau}}+(C_{X_{\widehat{\tau}},c_{i+1}})_{t~{}}I_{\widehat{\tau}\leq t<\tau},

    where τ^\widehat{\tau} is the first time at which the surplus reaches z(ci).z(c_{i}).

Let us call the value z(ci)z(c_{i}) the threshold at dividend rate level cic_{i} and z:S~[0,)z:\widetilde{S}\rightarrow[0,\infty) the threshold function. The value function of the stationary strategy πz\mathbf{\pi}^{z} is defined as

Wz(x,ci):=J(x;Cx,ci).W^{z}(x,c_{i}):=J(x;C_{x,c_{i}}). (17)

Note that Wz(x,ci)W^{z}(x,c_{i}) only depends on z(ck)z(c_{k}) for ik<ni\leq k<n, Wz(0,ci)=0W^{z}(0,c_{i})=0 and Wz(x,ci)=Vcn(x)W^{z}(x,c_{i})=V^{c_{n}}(x) for xmax{z(ck):i<k<n}.x\geq\max\{z(c_{k}):i<k<n\}.

Proposition 5.2

We have the following recursive formula for WzW^{z}:

Wz(x,cn)\displaystyle W^{z}(x,c_{n}) =cnq(1eθ2(cn)x),\displaystyle=\frac{c_{n}}{q}\left(1-e^{\theta_{2}(c_{n})x}\right),
Wz(x,ci)\displaystyle W^{z}(x,c_{i}) ={Wz(x,ci+1)ifxz(ci)ciq(1eθ2(ci)x)+az(ci)(eθ1(ci)xeθ2(ci)x)ifx<z(ci)\displaystyle=\left\{\begin{array}[c]{lll}W^{z}(x,c_{i+1})&\text{if}&x\geq z(c_{i})\\ \frac{c_{i}}{q}\left(1-e^{\theta_{2}(c_{i})x}\right)+a^{z}(c_{i})(e^{\theta_{1}(c_{i})x}-e^{\theta_{2}(c_{i})x})&\text{if}&x<z(c_{i})\end{array}\right.

for i<ni<n, where

az(ci):=Wz(z(ci),ci+1)ciq(1eθ2(ci)z(ci))eθ1(ci)z(ci)eθ2(ci)z(ci).a^{z}(c_{i}):=\frac{W^{z}(z(c_{i}),c_{i+1})-\frac{c_{i}}{q}\left(1-e^{\theta_{2}(c_{i})z(c_{i})}\right)}{e^{\theta_{1}(c_{i})z(c_{i})}-e^{\theta_{2}(c_{i})z(c_{i})}}.

Proof. We have that ci(Wz)(x,ci)=0\mathcal{L}^{c_{i}}(W^{z})(x,c_{i})=0 for x(0,z(ci))x\in(0,z(c_{i})) because the stationary strategy πz\mathbf{\pi}^{z} pays cic_{i} when the current surplus is in (0,z(ci))(0,z(c_{i})). Also Wz(0,ci)=0W^{z}(0,c_{i})=0 because ruin is immediate at x=0x=0, and by definition Wz(z(ci),ci)=Wz(z(ci),ci+1).W^{z}(z(c_{i}),c_{i})=W^{z}(z(c_{i}),c_{i+1}). From (6), we get the result. \blacksquare

Let us now look for the maximum of the value functions Wz(x,ci)W^{z}(x,c_{i}) among all the possible threshold functions z:S~[0,)z:\widetilde{S}\rightarrow[0,\infty), and denote by zz^{\ast} the optimal threshold function. From Proposition 5.1, z=0z^{\ast}=0 for c¯=cnqσ2/(2μ)\overline{c}=c_{n}\leq q\sigma^{2}/(2\mu), so that from now on we only consider the case cn>qσ2/(2μ).c_{n}>q\sigma^{2}/(2\mu).

Since the function Wz(x,cn)W^{z}(x,c_{n}) is known, there are two ways to solve this optimization problem (using a backward recursion). We will study the problem using both of them.

  1. 1.

    The first approach consists of seeing the optimization problem as a sequence of n1n-1 one-dimensional optimization problems, that is obtaining the maximum az(ci)a^{z}(c_{i}) for i=n1,,1i=n-1,\ldots,1. If Wz(x,ck)W^{z^{\ast}}(x,c_{k}) and z(ck)z^{\ast}(c_{k}) are known for k=i+1,,nk=i+1,\ldots,n, then from Proposition 5.2 we can obtain

    z(ci)=min(argmaxy[0,)Wz(y,ci+1)ciq(1eθ2(ci)y)eθ1(ci)yeθ2(ci)y).z^{\ast}(c_{i})=\min\left(\arg\max_{y\in[0,\infty)}\frac{W^{z^{\ast}}(y,c_{i+1})-\frac{c_{i}}{q}\left(1-e^{\theta_{2}(c_{i})y}\right)}{e^{\theta_{1}(c_{i})y}-e^{\theta_{2}(c_{i})y}}\right). (18)

    Note that

    limyWz(y,ci+1)ciq(1eθ2(ci)y)eθ1(ci)yeθ2(ci)y=0\lim_{y\rightarrow\infty}\frac{W^{z^{\ast}}(y,c_{i+1})-\frac{c_{i}}{q}\left(1-e^{\theta_{2}(c_{i})y}\right)}{e^{\theta_{1}(c_{i})y}-e^{\theta_{2}(c_{i})y}}=0

      because limyWz(y,ci+1)=cnq\lim_{y\rightarrow\infty}W^{z^{\ast}}(y,c_{i+1})=\frac{c_{n}}{q}, so z(ci)z^{\ast}(c_{i}) exists.

  2. 2.

    As a second approach, one can view the optimization problem as a backward recursion of obstacle problems (see Remark 3.4 ). If Wz(x,ck)W^{z^{\ast}}(x,c_{k}) and z(ck)z^{\ast}(c_{k}) are known for k=i+1,,nk=i+1,\ldots,n, we look for the smallest solution UU^{\ast} of the equation ci(U)=0\mathcal{L}^{c_{i}}(U)=0 in [0,)[0,\infty) with boundary condition U(0)=0U(0)=0 above Wz(,ci+1).W^{z^{\ast}}(\cdot,c_{i+1}). Then

    z(ci)=min{y>0:U(y)=Wz(y,ci+1)}.z^{\ast}(c_{i})=\min\{y>0:U^{\ast}(y)=W^{z^{\ast}}(y,c_{i+1})\}. (19)

    By (6), the solutions UU of the equation ci(U)=0\mathcal{L}^{c_{i}}(U)=0 in [0,)[0,\infty) with boundary condition U(0)=0U(0)=0 are of the form

    Ua(x)=ciq(1eθ2(ci)x)+a(eθ1(ci)xeθ2(ci)x).U_{a}(x)=\frac{c_{i}}{q}\left(1-e^{\theta_{2}(c_{i})x}\right)+a(e^{\theta_{1}(c_{i})x}-e^{\theta_{2}(c_{i})x}).

    Hence Ua(x)U_{a}(x) is increasing in aa and limaUa(x)=\lim_{a\rightarrow\infty}U_{a}(x)=\infty for x>0x>0, and so there exists an ai>0a_{i}^{\ast}>0 such that

    U=Uai=min{Ua:Ua(x)Wz(x,ci+1) for all x0},U^{\ast}=U_{a_{i}^{\ast}}=\min\{U_{a}:U_{a}(x)\geq W^{z^{\ast}}(x,c_{i+1})\text{ for all }x\geq 0\},

    because limxU0(x)=ciq<cnq=limxWz(x,ci+1)\lim_{x\rightarrow\infty}U_{0}(x)=\frac{c_{i}}{q}<\frac{c_{n}}{q}=\lim_{x\rightarrow\infty}W^{z^{\ast}}(x,c_{i+1}).

Remark 5.2

In the second approach, we can see z(ci)z^{\ast}(c_{i}) as the smallest x>0x>0 such that UaU_{a^{\ast}} and Wz(,ci+1)W^{z^{\ast}}(\cdot,c_{i+1}) coincide; more precisely Ua(z(ci))=Wz(z(ci),ci+1)U_{a^{\ast}}(z^{\ast}(c_{i}))=W^{z^{\ast}}(z^{\ast}(c_{i}),c_{i+1}), Ua(x)Wz(x,ci+1)U_{a^{\ast}}(x)\geq W^{z^{\ast}}(x,c_{i+1}) for x>0x>0 and Ua(x)>Wz(x,ci+1)U_{a^{\ast}}(x)>W^{z^{\ast}}(x,c_{i+1}) for x(0,z(ci))x\in(0,z^{\ast}(c_{i})). Note that Ua(z(ci))=xWz(z(ci),ci+1)U_{a^{\ast}}^{\prime}(z^{\ast}(c_{i}))=\partial_{x}W^{z^{\ast}}(z^{\ast}(c_{i}),c_{i+1}) and Ua()Wz(,ci+1)U_{a^{\ast}}(\cdot)-W^{z^{\ast}}(\cdot,c_{i+1})\ is locally convex at z(ci)z^{\ast}(c_{i}). By the recursive construction, this implies that Wz(x,ci)W^{z^{\ast}}(x,c_{i}) is infinitely continuously differentiable at all x[0,){z(ck):k=i,,n1}x\in[0,\infty)\setminus\{z^{\ast}(c_{k}):k=i,...,n-1\} and continuously differentiable at the points z(ck)z^{\ast}(c_{k})\ for k=i,,n1.k=i,...,n-1.

Lemma 5.3

U0(x)U_{0}(x) is an increasing concave function. If a>0a>0, Ua(x)U_{a}(x) is increasing, and is concave in (,y0)(-\infty,y_{0}) and convex in (y0,)(y_{0},\infty) with

y0:=log((cq+a)θ2(c)2)log(aθ1(c)2)θ1(c)θ2(c).y_{0}:=\frac{\log\left(\left(\frac{c}{q}+a\right)\theta_{2}(c)^{2}\right)-\log(a\theta_{1}(c)^{2})}{\theta_{1}(c)-\theta_{2}(c)}.

In the case cμ,c\leq\mu, we have that y0>0y_{0}>0; in the case c>μ,c>\mu, we have that y00y_{0}\leq 0 if and only if

0<a<cqθ2(c)2(θ1(c)2θ2(c)2).0<a<\frac{c}{q}\frac{\theta_{2}(c)^{2}}{\left(\theta_{1}(c)^{2}-\theta_{2}(c)^{2}\right)}\text{.}

Proof. We have that

xUa(x)=(cq+a)θ2(c)eθ2(c)x+aθ1(c)eθ1(c)x>0,\partial_{x}U_{a}(x)=-\left(\frac{c}{q}+a\right)\theta_{2}(c)e^{\theta_{2}(c)x}+a\theta_{1}(c)e^{\theta_{1}(c)x}>0,

and

xxUa(x)=(cq+a)θ2(c)2eθ2(c)x+aθ1(c)2eθ1(c)x0\partial_{xx}U_{a}(x)=-\left(\frac{c}{q}+a\right)\theta_{2}(c)^{2}e^{\theta_{2}(c)x}+a\theta_{1}(c)^{2}e^{\theta_{1}(c)x}\geq 0

if and only if xy0x\geq y_{0}. The result follows from Definition 5. \blacksquare

In the next theorem, we show that there exists an optimal strategy and it is of threshold type.

Theorem 5.4

If zz^{\ast}\ is the optimal threshold function, then Wz(x,ci)W^{z^{\ast}}(x,c_{i}) is the optimal function Vci(x)V^{c_{i}}(x) defined in (2) for i=1,,ni=1,...,n.

Proof. By definition Wz(,cn)=Vcn.W^{z^{\ast}}(\cdot,c_{n})=V^{c_{n}}. Assuming that Wz(,ci+1)=Vci+1W^{z^{\ast}}(\cdot,c_{i+1})=V^{c_{i+1}} for i=n1,,1i=n-1,...,1, by Theorem 3.5, it is enough to prove that Wz(,ci)W^{z^{\ast}}(\cdot,c_{i}) is a viscosity solution of (11). Since by construction Vci+1Wz(,ci)0V^{c_{i+1}}-W^{z^{\ast}}(\cdot,c_{i})\leq 0, it remains to be seen that ci(Wz)(x,ci)0\mathcal{L}^{c_{i}}(W^{z^{\ast}})(x,c_{i})\leq 0 for xz(ci)x\geq z^{\ast}(c_{i}). By Remark 5.2, Wz(,ci)W^{z^{\ast}}(\cdot,c_{i}) is continuously differentiable and it is piecewise infinitely differentiable in open intervals in which it solves cj(Wz)(x,ci)=0\mathcal{L}^{c_{j}}(W^{z^{\ast}})(x,c_{i})=0 for some ji.j\geq i. By the definition of a viscosity solution, it is enough to prove the result in these open intervals. For xx in these open intervals,

ci(Wz)(x,ci)=cj(Wz)(x,ci)+(cicj)(1xWz(x,ci))0\mathcal{L}^{c_{i}}(W^{z^{\ast}})(x,c_{i})=\mathcal{L}^{c_{j}}(W^{z^{\ast}})(x,c_{i})+(c_{i}-c_{j})(1-\partial_{x}W^{z^{\ast}}(x,c_{i}))\leq 0

if and only if xWz(x,ci)1.\partial_{x}W^{z^{\ast}}(x,c_{i})\leq 1. There exists δ>0\delta>0 and some j>ij>i such that cj(Wz)(x,ci)=0\mathcal{L}^{c_{j}}(W^{z^{\ast}})(x,c_{i})=0 in (z(ci),z(ci)+δ)(z^{\ast}(c_{i}),z^{\ast}(c_{i})+\delta) and then

cj(Wz)(z(ci)+,ci)=0ci(Wz)(z(ci),ci)=0,\mathcal{L}^{c_{j}}(W^{z^{\ast}})(z^{\ast}(c_{i})^{+},c_{i})=0\text{, }\mathcal{L}^{c_{i}}(W^{z^{\ast}})(z^{\ast}(c_{i})^{-},c_{i})=0,

so

0=ci(Wz)(z(ci),ci)cj(Wz)(z(ci)+,ci)=σ22(xxWz(z(ci),ci)xxWz(z(ci)+,ci))+(cicj)(1xWz(z(ci),ci)).\begin{array}[c]{lll}0&=&\mathcal{L}^{c_{i}}(W^{z^{\ast}})(z^{\ast}(c_{i})^{-},c_{i})-\mathcal{L}^{c_{j}}(W^{z^{\ast}})(z^{\ast}(c_{i})^{+},c_{i})\\ &=&\frac{\sigma^{2}}{2}(\partial_{xx}W^{z^{\ast}}(z^{\ast}(c_{i})^{-},c_{i})-\partial_{xx}W^{z^{\ast}}(z^{\ast}(c_{i})^{+-},c_{i}))\\ &&+(c_{i}-c_{j})(1-\partial_{x}W^{z^{\ast}}(z^{\ast}(c_{i}),c_{i})).\end{array}

By Remark 5.2, xxWz(z(ci),ci)xxWz(z(ci)+,ci)0\partial_{xx}W^{z^{\ast}}(z^{\ast}(c_{i})^{-},c_{i})-\partial_{xx}W^{z^{\ast}}(z^{\ast}(c_{i})^{+-},c_{i})\geq 0 and cicj<0,c_{i}-c_{j}<0, so we conclude that xWz(z(ci),ci))1\partial_{x}W^{z^{\ast}}(z^{\ast}(c_{i}),c_{i}))\leq 1.

If i=n1i=n-1, Wz(,cn1)=Wz(,cn)W^{z^{\ast}}(\cdot,c_{n-1})=W^{z^{\ast}}(\cdot,c_{n}) for xz(cn1)x\geq z^{\ast}(c_{n-1}), by Remark 5.3, Wz(,cn)W^{z^{\ast}}(\cdot,c_{n}) is concave and so Wz(x,cn)Wz(z(cn1),cn)1W^{z^{\ast}}(x,c_{n})\leq W^{z^{\ast}}(z^{\ast}(c_{n-1}),c_{n})\leq 1 and we have the result.

We need to prove that xWz(x,ci)=xWz(x,ci+1)1\partial_{x}W^{z^{\ast}}(x,c_{i})=\partial_{x}W^{z^{\ast}}(x,c_{i+1})\leq 1 for xz(ci).x\geq z^{\ast}(c_{i}). By induction hypothesis, we know that xWz(x,ci+1)=xVci+11\partial_{x}W^{z^{\ast}}(x,c_{i+1})=\partial_{x}V^{c_{i+1}}\leq 1 for xz(ci+1)x\geq z^{\ast}(c_{i+1}). In the case that z(ci)z(ci+1),z^{\ast}(c_{i})\geq z^{\ast}(c_{i+1}), it is straightforward; in the case that z(ci)<z(ci+1)z^{\ast}(c_{i})<z^{\ast}(c_{i+1}), it is enough to prove it in the interval (z(ci),z(ci+1))(z^{\ast}(c_{i}),z^{\ast}(c_{i+1})). But xWz(z(ci),ci)1\partial_{x}W^{z^{\ast}}(z^{\ast}(c_{i}),c_{i})\leq 1, xWz(z(ci+1),ci)=xWz(z(ci+1),ci+1)1,\partial_{x}W^{z^{\ast}}(z^{\ast}(c_{i+1}),c_{i})=\partial_{x}W^{z^{\ast}}(z^{\ast}(c_{i+1}),c_{i+1})\leq 1, and by Lemma 5.3  xWz(x,ci)\partial_{x}W^{z^{\ast}}(x,c_{i}) is either increasing, or decreasing, or decreasing and then increasing in the interval (z(ci),z(ci+1))(z^{\ast}(c_{i}),z^{\ast}(c_{i+1})), so that we have the result. \blacksquare

Taking the derivative in (18) with respect to yy, we get implicit equations for the optimal threshold strategy.

Proposition 5.5

z(ci)z^{\ast}(c_{i})\ satisfies the implicit equation

0=ciqθ2(ci)eθ2(ci)y(eθ1(ci)yeθ2(ci)y)ciq(1eθ2(ci)y)(θ1(ci)eθ1(ci)yθ2(ci)eθ2(ci)y)+xWz(y,ci+1)(eθ1(ci)yeθ2(ci)y)Wz(y,ci+1)(θ1(ci)eθ1(ci)yθ2(ci)eθ2(ci)y)\begin{array}[c]{c}0=\frac{c_{i}}{q}\theta_{2}(c_{i})e^{\theta_{2}(c_{i})y}(e^{\theta_{1}(c_{i})y}-e^{\theta_{2}(c_{i})y})-\frac{c_{i}}{q}\left(1-e^{\theta_{2}(c_{i})y}\right)\left(\theta_{1}(c_{i})e^{\theta_{1}(c_{i})y}-\theta_{2}(c_{i})e^{\theta_{2}(c_{i})y}\right)\\ +\partial_{x}W^{z^{\ast}}(y,c_{i+1})\left(e^{\theta_{1}(c_{i})y}-e^{\theta_{2}(c_{i})y}\right)-W^{z^{\ast}}(y,c_{i+1})\left(\theta_{1}(c_{i})e^{\theta_{1}(c_{i})y}-\theta_{2}(c_{i})e^{\theta_{2}(c_{i})y}\right)\end{array}

for i=n1,,1.i=n-1,\ldots,1.

Remark 5.3

Given z:S~[0,)z:\widetilde{S}\rightarrow[0,\infty), we have defined in (16) a threshold strategy πz=(Cx,ci)(x,ci)[0,)×S\mathbf{\pi}^{z}=(C_{x,c_{i}})_{(x,c_{i})\in[0,\infty)\times S}, where Cx,ciΠx,ciSC_{x,c_{i}}\in\Pi_{x,c_{i}}^{S} for i=1,,ni=1,\ldots,n. We can extend this threshold strategy to

π~z=(Cx,c)(x,c)[0,)×[c1,cn]where Cx,cΠx,cS\widetilde{\mathbf{\pi}}^{z}=(C_{x,c})_{(x,c)\in[0,\infty)\times[c_{1},c_{n}]}~{}\text{where~{}}C_{x,c}\in\Pi_{x,c}^{S} (20)

as follows:

  • If c(ci,ci+1)c\in(c_{i},c_{i+1}) and x<z(ci)x<z(c_{i}), pay dividends with rate cc while the current surplus is less than z(ci)z(c_{i}) up to the time of ruin. If the current surplus reaches z(ci)z(c_{i}) before the time of ruin, follow Cz(ci),ci+1Πx,ci+1SC_{z(c_{i}),c_{i+1}}\in\Pi_{x,c_{i+1}}^{S}.

  • If c(ci,ci+1)c\in(c_{i},c_{i+1}) and xz(ci)x\geq z(c_{i}) for 1i<n1\leq i<n, follow Cx,ci+1Πx,ci+1S.C_{x,c_{i+1}}\in\Pi_{x,c_{i+1}}^{S}.

The value function of the stationary strategy π~z\widetilde{\mathbf{\pi}}^{z} is defined as

Jπ~z(x,c):=J(x;Cx,c):[0,)×[c1,cn].J^{\widetilde{\mathbf{\pi}}^{z}}(x,c):=J(x;C_{x,c}):[0,\infty)\times[c_{1},c_{n}]\rightarrow{\mathbb{R}.} (21)

5.2 Curve strategies and the optimal curve strategy

As it is typical for these type of problems, the way in which the optimal value function V(x,c)V(x,c) solves the HJB equation (8) suggests that the state space [0,)×[c¯,c¯][0,\infty)\times[\underline{c},\overline{c}] is partitioned into two regions: a non-change dividend region 𝒩𝒞\mathcal{NC}^{\ast} in which the dividends are paid at constant rate and a change dividend region 𝒞\mathcal{CH}^{\ast} in which the rate of dividends increases. Roughly speaking, the region 𝒩𝒞\mathcal{NC}^{\ast} consists of the points in the state space where c(V)=0\mathcal{L}^{c}(V)=0 and cV<0\partial_{c}V<0 and 𝒞\mathcal{CH}^{\ast} consists of the points where cV=0\partial_{c}V=0. We introduce a family of stationary strategies (or limit of stationary strategies) where the change and non-change dividend payment regions are connected and split by a free boundary curve. This family of strategies is the analogue to the threshold strategies for finite SS introduced in Section 5.1.

Let us consider the set

={ζs.t. ζ:[c¯,c¯)[0,) is Riemann integrable and càdlàg with limcc¯ζ(c)<}.\mathcal{B}=\{\zeta~{}s.t.\text{~{}}\zeta:[\underline{c},\overline{c})\rightarrow[0,\infty)\text{ is Riemann integrable and c\`{a}dl\`{a}g with }\lim_{c\rightarrow\overline{c}^{-}}\zeta(c)<\infty\}. (22)

In the first part of this subsection, we define the ζ\zeta-value function WζW^{\zeta} associated to a curve

(ζ)={(ζ(c),c):c[c¯,c¯)}[0,)×[c¯,c¯)\mathcal{R}(\zeta)=\left\{(\zeta(c),c):c\in[\underline{c},\overline{c})\right\}\subset[0,\infty)\times[\underline{c},\overline{c})

for ζ\zeta\in \mathcal{B}, and we will see that, in some sense, Wζ(x,c)W^{\zeta}(x,c) is a (limit) value function of the strategy which pays dividends at constant rate in the case that x<ζ(c)x<\zeta(c) and otherwise increases the rate of dividends. So the curve (ζ)\mathcal{R}(\zeta) splits the state space [0,)×[c¯,c¯][0,\infty)\times[\underline{c},\overline{c}] into two connected regions: 𝒩𝒞(ζ)={(x,c)[0,)×[c¯,c¯]:x<ζ(c)}\mathcal{NC(\zeta)=}\{(x,c)\in[0,\infty)\times[\underline{c},\overline{c}]:x<\zeta(c)\} where dividends are paid with constant rate, and 𝒞(ζ)={(x,c)[0,)×[c¯,c¯]:xζ(c)}\mathcal{CH(\zeta)=}\{(x,c)\in[0,\infty)\times[\underline{c},\overline{c}]:x\geq\zeta(c)\} where the dividend rate increases. In the second part of the subsection we then will look for the ζ0\zeta_{0}\in \mathcal{B} that maximizes the ζ\zeta-value function WζW^{\zeta}, using calculus of variations.

Let us consider the following auxiliary functions b0b_{0}, b1:(0,)×[c¯,c¯]b_{1}:(0,\infty)\times[\underline{c},\overline{c}]\rightarrow{\mathbb{R}}

b0(x,c):=1q(1eθ2(c)x)+cqθ2(c)eθ2(c)xxeθ1(c)xeθ2(c)x,b1(x,c):=(θ1(c)eθ1(c)x+θ2(c)eθ2(c)x)xeθ1(c)xeθ2(c)x.\begin{array}[c]{ccc}b_{0}(x,c)&:=&\frac{-\frac{1}{q}\left(1-e^{\theta_{2}(c)x}\right)+\frac{c}{q}\theta_{2}^{\prime}(c)e^{\theta_{2}(c)x}x}{e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x}},\\ b_{1}(x,c)&:=&\frac{\left(-\theta_{1}^{\prime}(c)e^{\theta_{1}(c)x}+\theta_{2}^{\prime}(c)e^{\theta_{2}(c)x}\right)x}{e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x}}.\end{array} (23)

Both b0(x,c)b_{0}(x,c) and b1(x,c)b_{1}(x,c) are not defined in x=0,x=0, so we extend the definition as

b0(0,c)=limx0+b0(x,c):=cθ2(c)θ2(c)q(θ1(c)θ2(c))b_{0}(0,c)=\lim_{x\rightarrow 0^{+}}b_{0}(x,c):=\frac{c\theta_{2}^{\prime}(c)-\theta_{2}(c)}{q\left(\theta_{1}(c)-\theta_{2}(c)\right)}

and

b1(0,c)=limx0+b1(x,c):=θ2(c)θ1(c)θ1(c)θ2(c).b_{1}(0,c)=\lim_{x\rightarrow 0^{+}}b_{1}(x,c):=\frac{\theta_{2}^{\prime}(c)-\theta_{1}^{\prime}(c)}{\theta_{1}(c)-\theta_{2}(c)}.

In order to define the ζ\zeta-value function in the non-change region 𝒩𝒞(ζ)\mathcal{NC(\zeta)}, we will define and study in the next technical lemma the functions HζH^{\zeta} and AζA^{\zeta} for any ζ\zeta\in\mathcal{B}.

Lemma 5.6

Given ζ\zeta\in\mathcal{B}, the unique continuous function Hζ:{(x,c)[0,)×[c¯,c¯]:xζ(c)}[0,)H^{\zeta}:\{(x,c)\in[0,\infty)\times[\underline{c},\overline{c}]:x\leq\zeta(c)\}\rightarrow[0,\infty) which satisfies for any c[c¯,c¯)c\in[\underline{c},\overline{c}) that

c(Hζ)(x,c)=0 for 0xζ(c)\mathcal{L}^{c}(H^{\zeta})(x,c)=0\text{ for }0\leq x\leq\zeta(c)~{}

with boundary conditions Hζ(0,c)=0H^{\zeta}(0,c)=0, Hζ(x,c¯)=V{c¯}(x,c¯)H^{\zeta}(x,\overline{c})=V^{\left\{\overline{c}\right\}}(x,\overline{c}) and cHζ(ζ(c),c)=0\partial_{c}H^{\zeta}(\zeta(c),c)=0\ at the points of continuity of ζ\zeta is given by

Hζ(x,c)=cq(1eθ2(c)x)+Aζ(c)(eθ1(c)xeθ2(c)x),H^{\zeta}(x,c)=\frac{c}{q}\left(1-e^{\theta_{2}(c)x}\right)+A^{\zeta}(c)(e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x}), (24)

where

Aζ(c)=cc¯ectb1(ζ(s),s)𝑑sb0(ζ(t),t)𝑑t.A^{\zeta}(c)=-\int_{c}^{\overline{c}}e^{-\int_{c}^{t}b_{1}(\zeta(s),s)ds}b_{0}(\zeta(t),t)dt. (25)

Moreover, AζA^{\zeta} satisfies Aζ(c¯)=0A^{\zeta}(\overline{c})=0, is differentiable and satisfies

(Aζ)(c)=b0(ζ(c),c)+b1(ζ(c),c)Aζ(c),\left(A^{\zeta}\right)^{\prime}(c)=b_{0}(\zeta(c),c)+b_{1}(\zeta(c),c)A^{\zeta}(c), (26)

at the points where ζ\zeta is continuous.

Proof. Since c(Hζ(x,c))=0\mathcal{L}^{c}(H^{\zeta}(x,c))=0 and Hζ(0,c)=0H^{\zeta}(0,c)=0, we can write by (6)

Hζ(x,c)=cq(1eθ2(c)x)+Aζ(c)(eθ1(c)xeθ2(c)x),H^{\zeta}(x,c)=\frac{c}{q}\left(1-e^{\theta_{2}(c)x}\right)+A^{\zeta}(c)(e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x}),

where Aζ(c)A^{\zeta}(c) should be defined in such a way that Aζ(c¯)=0A^{\zeta}(\overline{c})=0 (because Hζ(x,c¯)=V{c¯}(x,c¯))H^{\zeta}(x,\overline{c})=V^{\left\{\overline{c}\right\}}(x,\overline{c})) and

0=cHζ(ζ(c),c)=1q(1eθ2(c)ζ(c))cqθ2(c)eθ2(c)ζ(c)ζ(c)+Aζ(c)(eθ1(c)ζ(c)eθ2(c)ζ(c))+Aζ(c)(θ1(c)eθ1(c)ζ(c)θ2(c)eθ2(c)ζ(c))ζ(c)\begin{array}[c]{lll}0=\partial_{c}H^{\zeta}(\zeta(c),c)&=&\frac{1}{q}\left(1-e^{\theta_{2}(c)\zeta(c)}\right)-\frac{c}{q}\theta_{2}^{\prime}(c)e^{\theta_{2}(c)\zeta(c)}\zeta(c)+A^{\zeta}(c)^{\prime}(e^{\theta_{1}(c)\zeta(c)}-e^{\theta_{2}(c)\zeta(c)})\\ &&+A^{\zeta}(c)(\theta_{1}^{\prime}(c)e^{\theta_{1}(c)\zeta(c)}-\theta_{2}^{\prime}(c)e^{\theta_{2}(c)\zeta(c)})\zeta(c)\end{array}

at the points of continuity of ζ\zeta. Hence,

(Aζ)(c)=1q(1eθ2(c)x)+cqθ2(c)eθ2(c)xxeθ1(c)xeθ2(c)x+Aζ(c)(θ1(c)eθ1(c)x+θ2(c)eθ2(c)x)xeθ1(c)xeθ2(c)x()=b0(ζ(c),c)+b1(ζ(c),c)Aζ(c).\begin{array}[c]{lll}\left(A^{\zeta}\right)^{\prime}(c)&=&\frac{-\frac{1}{q}\left(1-e^{\theta_{2}(c)x}\right)+\frac{c}{q}\theta_{2}^{\prime}(c)e^{\theta_{2}(c)x}x}{e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x}}+A^{\zeta}(c)\frac{\left(-\theta_{1}^{\prime}(c)e^{\theta_{1}(c)x}+\theta_{2}^{\prime}(c)e^{\theta_{2}(c)x}\right)x}{e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x}}(\ast)\\ &=&b_{0}(\zeta(c),c)+b_{1}(\zeta(c),c)A^{\zeta}(c).\end{array}

Solving this ODE with boundary condition Aζ(c¯)=0A^{\zeta}(\overline{c})=0, we get the result. \blacksquare

Given ζ\zeta\in\mathcal{B}, we define the ζ\zeta-value function

Wζ(x,c):={Hζ(x,c) if(x,c)𝒩𝒞(ζ),Hζ(x,C(x,c))if(x,c)𝒞(ζ),W^{\zeta}(x,c):=\left\{\begin{array}[c]{lll}H^{\zeta}(x,c)\text{ }&\text{if}&(x,c)\in\mathcal{NC(\zeta)},\\ H^{\zeta}(x,C(x,c))&\text{if}&(x,c)\in\mathcal{CH(\zeta)},\end{array}\right. (27)

where HζH^{\zeta} is defined in Lemma 5.6 and

C(x,c):=max{h[c,c¯]:ζ(d)xford[c,h)}C(x,c):=\max\{h\in[c,\overline{c}]:\zeta(d)\leq x{\large\ }\text{{\large for}}{\large\ }d\in[c,h)\} (28)

in the case that xζ(c)x\geq\zeta(c) and c[c¯,c¯)c\in[\underline{c},\overline{c}).

In the next propositions we will show that the ζ\zeta-value function WζW^{\zeta} is the value function of an extended threshold strategy in the case that ζ\zeta is a step function, and the limit of value functions of extended threshold strategies in the case that ζ\zeta\in\mathcal{B}.

Proposition 5.7

Given z:S~[0,)z:\widetilde{S}\rightarrow[0,\infty) and the corresponding extended threshold strategy π~z\widetilde{\mathbf{\pi}}^{z} defined in Remark 5.3, let us consider the associated step function ζ\zeta\in\mathcal{B} defined as

ζ(c):=i=1n1z(ci)I[ci,ci+1).\zeta(c):={\displaystyle\sum\limits_{i=1}^{n-1}}z(c_{i})I_{[c_{i},c_{i+1})}.

Then the stationary value function of the extended threshold strategy π~z\widetilde{\mathbf{\pi}}^{z} is given by

Jπ~z(x,c)=Wζ(x,c).J^{\widetilde{\mathbf{\pi}}^{z}}(x,c)=W^{\zeta}(x,c).

Proof. The stationary value function is continuous and satisfies c(Wζ)(x,c)=0\mathcal{L}^{c}(W^{\zeta})(x,c)=0 for 0xζ(c)0\leq x\leq\zeta(c), Wζ(0,c)=0W^{\zeta}(0,c)=0, Wζ(x,c¯)=V{c¯}(x,c¯)W^{\zeta}(x,\overline{c})=V^{\left\{\overline{c}\right\}}(x,\overline{c}) and cWζ(ζ(c),c)=0\partial_{c}W^{\zeta}(\zeta(c),c)=0 for cS~c\notin\widetilde{S}. Also the right-hand derivatives cWζ(ζ(ci),ci+)=0\partial_{c}W^{\zeta}(\zeta(c_{i}),c_{i}^{+})=0 for i=1,,n1.i=1,...,n-1. So, by Lemma 5.6, we obtain that Wζ(x,c)=Hζ(x,c)W^{\zeta}(x,c)=H^{\zeta}(x,c) if x<ζ(c).x<\zeta(c). If xζ(c),x\geq\zeta(c), the result follows from the definition of π~z\widetilde{\mathbf{\pi}}^{z}. \blacksquare

In the previous proposition we showed that in the case where ζ\zeta is the associated step function of zz, the stationary strategy π~z\widetilde{\mathbf{\pi}}^{z} consists of increasing immediately the divided rate from cc to C(x,c)C(x,c) for (x,c)𝒞(ζ)(x,c)\in\mathcal{CH(\zeta)}, paying dividends at rate cc until either reaching the curve (ζ)\mathcal{R(\zeta)} or ruin (whatever comes first) for (x,c)𝒞(ζ)(x,c)\in\mathcal{C(\zeta)}, and paying dividends at rate c¯\overline{c} until the time of ruin for c=c¯c=\overline{c}.

In the next proposition we show that for any ζ\zeta\in\mathcal{B}, the ζ\zeta-value function WζW^{\zeta} is the limit of value functions of extended threshold strategies.

Proposition 5.8

Given ζ\zeta\in\mathcal{B}, there exists a sequence of right-continuous step functions ζn:[c¯,c¯)[0,)\zeta_{n}:[\underline{c},\overline{c})\rightarrow[0,\infty) such that Wζn(x,c)W^{\zeta_{n}}(x,c) converges uniformly to Wζ(x,c)W^{\zeta}(x,c).

Proof. Since ζ\zeta is a Riemann integrable càdlàg function, we can approximate it uniformly by right-continuous step functions. Namely, take a sequence of finite sets 𝒮k={c1k,c2k,,cnkk}\mathcal{S}^{k}=\{c_{1}^{k},c_{2}^{k},\cdots,c_{n_{k}}^{k}\} with c¯=c1k<c2k<<cnkk=c¯\underline{c}=c_{1}^{k}<c_{2}^{k}<\cdots<c_{n_{k}}^{k}=\overline{c}, and consider the right-continuous step functions

ζk(c)=i=1nk1ζ(cik)I[cik,ci+1k),\zeta_{k}(c)={\displaystyle\sum\limits_{i=1}^{n_{k}-1}}\zeta(c_{i}^{k})I_{[c_{i}^{k},c_{i+1}^{k})},

such that δ(𝒮k)=maxi=1,,nk1(ci+1kcik)0\delta(\mathcal{S}^{k})=\max_{i=1,\cdots,n_{k}-1}(c_{i+1}^{k}-c_{i}^{k})\rightarrow 0. We have that ζkζ\zeta_{k}\rightarrow\zeta uniformly, and so both Aζk(c)Aζ(c)A^{\zeta_{k}}(c)\rightarrow A^{\zeta}(c) and Wζk(x,c)W^{\zeta_{k}}(x,c) \rightarrow Wζ(x,c)W^{\zeta}(x,c) uniformly. \blacksquare

We now look for the maximum of WζW^{\zeta} among ζ\zeta\in\mathcal{B}. We will show that if there exists a function ζ0\zeta_{0}\in\mathcal{B} such that

Aζ0(c¯)=max{Aζ(c¯):ζ},A^{\zeta_{0}}(\underline{c})=\max\{A^{\zeta}(\underline{c}):\zeta\in\mathcal{B}\}, (29)

then Wζ0(x,c)Wζ(x,c)W^{\zeta_{0}}(x,c)\geq W^{\zeta}(x,c) for all (x,c)[0,)×[c,c¯)(x,c)\in[0,\infty)\times[c,\overline{c})\ and ζ.\zeta\in\mathcal{B}. This follows from (24) and the next lemma, in which we prove that the function ζ0\zeta_{0} which maximizes (29) also maximizes Aζ(c)A^{\zeta}(c) for any c[c¯,c¯).c\in[\underline{c},\overline{c}).

Lemma 5.9

For a given c[c¯,c¯)c\in[\underline{c},\overline{c}), define

c={ζst. ζ:[c,c¯)[0,) is Riemann integrable and càdlàg with limdc¯ζ(d)<}.\mathcal{B}_{c}=\{~{}\zeta~{}st.\text{~{}}\zeta:[c,\overline{c})\rightarrow[0,\infty)\text{ is Riemann integrable and c\`{a}dl\`{a}g with }\lim_{d\rightarrow\overline{c}^{-}}\zeta(d)<\infty\}.

If ζ0\zeta_{0}\in\mathcal{B} satisfies (29), then for any c[c¯,c¯)c\in[\underline{c},\overline{c})

Aζ0(c)=max{Aζ(c):ζc}.A^{\zeta_{0}}(c)=\max\{A^{\zeta}(c):\zeta\in\mathcal{B}_{c}\}.\

Proof. Given ζ,\zeta\in\mathcal{B}, we can write

Aζ(c¯)=(c¯cec¯tb1(ζ(s),s)𝑑sb0(ζ(t),t)𝑑t)+(ec¯cb1(ζ(s),s)𝑑s)Aζ(c).A^{\zeta}(\underline{c})=\left(-\int_{\underline{c}}^{c}e^{-\int_{\underline{c}}^{t}b_{1}(\zeta(s),s)ds}b_{0}(\zeta(t),t)dt\right)+\left(e^{-\int_{\underline{c}}^{c}b_{1}(\zeta(s),s)ds}\right)A^{\zeta}(c).

So

Aζ0(c¯)=(c¯cec¯tb1(ζ0(s),s)𝑑sb0(ζ0(t),t)𝑑t)+(ec¯cb1(ζ0(s),s)𝑑s)maxζcAζ(c)A^{\zeta_{0}}(\underline{c})=\left(-\int_{\underline{c}}^{c}e^{-\int_{\underline{c}}^{t}b_{1}(\zeta_{0}(s),s)ds}b_{0}(\zeta_{0}(t),t)dt\right)+\left(e^{-\int_{\underline{c}}^{c}b_{1}(\zeta_{0}(s),s)ds}\right)\max_{\zeta\in\mathcal{B}_{c}}A^{\zeta}(c)\text{. }

\blacksquare

Assuming that ζ0\zeta_{0} exists, we will use calculus of variations to obtain an implicit equation for Aζ0A^{\zeta_{0}}. First we prove the following technical lemma.

Lemma 5.10

For any c[c¯,c¯],c\in[\underline{c},\overline{c}], we have

xb1(x,c)<0for x>0and xb1(0+,c)<0.\partial_{x}b_{1}(x,c)<0~{}\text{for }x>0~{}\text{and }\partial_{x}b_{1}(0^{+},c)<0.

Proof.

xb1(x,c)=θ1(c)e2θ1(c)x(1+e(θ1(c)θ2(c))x(1+(θ1(c)θ2(c))x))(eθ1(c)xeθ2(c)x)2+θ2(c)e2θ2(c)x(1+e(θ1(c)θ2(c))x(1(θ1(c)θ2(c))x))(eθ1(c)xeθ2(c)x)2<0\begin{array}[c]{lll}\partial_{x}b_{1}(x,c)&=&\dfrac{\theta_{1}^{\prime}(c)e^{2\theta_{1}(c)x}(-1+e^{-(\theta_{1}(c)-\theta_{2}(c))x}(1+(\theta_{1}(c)-\theta_{2}(c))x))}{(e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x})^{2}}\\ &&+\dfrac{\theta_{2}^{\prime}(c)e^{2\theta_{2}(c)x}(-1+e^{(\theta_{1}(c)-\theta_{2}(c))x}(1-(\theta_{1}(c)-\theta_{2}(c))x))}{(e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x})^{2}}\\ &<&0\end{array}

and, by Remark 3.1,

limx0xb1(x,c)=θ1(c)+θ2(c)2<0\lim_{x\rightarrow 0}\partial_{x}b_{1}(x,c)=-\frac{\theta_{1}^{\prime}(c)+\theta_{2}^{\prime}(c)}{2}<0\text{. }

\blacksquare

Let us now find the implicit equation for Aζ0.A^{\zeta_{0}}.

Proposition 5.11

If the function ζ0\zeta_{0} defined in (29) exists, then Aζ0(c)A^{\zeta_{0}}(c) satisfies

Aζ0(c)=xb0(ζ0(c),c)xb1(ζ0(c),c)A^{\zeta_{0}}(c)=-\frac{\partial_{x}b_{0}(\zeta_{0}(c),c)}{\partial_{x}b_{1}(\zeta_{0}(c),c)}

for all c[c¯,c¯)c\in[\underline{c},\overline{c}). Moreover, Aζ0(c¯)=0A^{\zeta_{0}}(\overline{c})=0 and Aζ0(c)>0A^{\zeta_{0}}(c)>0 for c[c¯,c¯)c\in[\underline{c},\overline{c}).

Proof. Consider any function ζ1\zeta_{1}\in\mathcal{B} with ζ1(c¯)=0\zeta_{1}(\overline{c})=0 then

Aζ0+εζ1(c¯)=c¯c¯ec¯cb1(ζ0(s)+εζ1(s),s)𝑑sb0(ζ0(c)+εζ1(c),c)𝑑c.\begin{array}[c]{ccc}A^{\zeta_{0}+\varepsilon\zeta_{1}}(\underline{c})&=&-\int_{\underline{c}}^{\overline{c}}e^{-\int_{\underline{c}}^{c}b_{1}(\zeta_{0}(s)+\varepsilon\zeta_{1}(s),s)ds}b_{0}(\zeta_{0}(c)+\varepsilon\zeta_{1}(c),c)\,dc.\end{array}

Taking the derivative with respect to ε\varepsilon and taking ε=0\varepsilon=0, we get

0=ε(Aζ0+εζ1)(c¯)|ε=0=c¯c¯((c¯cxb1(ζ0(s),s)ζ1(s)ds)ec¯cb1(ζ0(s),s)𝑑sb0(ζ0(c),c))𝑑cc¯c¯(ec¯cb1(ζ0(s),s)𝑑sxb0(ζ0(c),c)ζ1(c))𝑑c.=c¯c¯(xb1(ζ0(c),c)ζ1(c)(cc¯ec¯ub1(ζ0(s),s)𝑑sb0(ζ0(u),u)𝑑u))𝑑cc¯c¯(ec¯cb1(ζ0(s),s)𝑑sxb0(ζ0(c),c)ζ1(c))𝑑c.\begin{array}[c]{lll}0=\left.\partial_{\varepsilon}\left(A^{\zeta_{0}+\varepsilon\zeta_{1}}\right)(\underline{c})\right|_{\varepsilon=0}&=&\int_{\underline{c}}^{\overline{c}}\left((\int_{\underline{c}}^{c}\partial_{x}b_{1}(\zeta_{0}(s),s)\zeta_{1}(s)ds)e^{-\int_{\underline{c}}^{c}b_{1}(\zeta_{0}(s),s)ds}b_{0}(\zeta_{0}(c),c)\right)dc\\ &&-\int_{\underline{c}}^{\overline{c}}\left(e^{-\int_{\underline{c}}^{c}b_{1}(\zeta_{0}(s),s)ds}\partial_{x}b_{0}(\zeta_{0}(c),c)\zeta_{1}(c)\right)dc.\\ &=&\int_{\underline{c}}^{\overline{c}}\left(\partial_{x}b_{1}(\zeta_{0}(c),c)\zeta_{1}(c)\left(\int_{c}^{\overline{c}}e^{-\int_{\underline{c}}^{u}b_{1}(\zeta_{0}(s),s)ds}b_{0}(\zeta_{0}(u),u)du\right)\right)dc\\ &&-\int_{\underline{c}}^{\overline{c}}\left(e^{-\int_{\underline{c}}^{c}b_{1}(\zeta_{0}(s),s)ds}\partial_{x}b_{0}(\zeta_{0}(c),c)\zeta_{1}(c)\right)dc.\end{array}

And so,

0=c¯c¯(ec¯cb1(ζ0(s),s)𝑑sxb0(ζ0(c),c)xb1(ζ0(c),c)(cc¯ec¯ub1(ζ0(s),s)𝑑sb0(ζ0(u),u)𝑑u))ζ1(c)𝑑c.0=-\int_{\underline{c}}^{\overline{c}}\left(e^{-\int_{\underline{c}}^{c}b_{1}(\zeta_{0}(s),s)ds}\partial_{x}b_{0}(\zeta_{0}(c),c)-\partial_{x}b_{1}(\zeta_{0}(c),c)(\int_{c}^{\overline{c}}e^{-\int_{\underline{c}}^{u}b_{1}(\zeta_{0}(s),s)ds}b_{0}(\zeta_{0}(u),u)du)\right)\zeta_{1}(c)dc.

Since this holds for any ζ1\zeta_{1}\in\mathcal{B} with ζ1(c¯)=0\zeta_{1}(\overline{c})=0, we obtain that for any c[c,c¯)c\in[c,\overline{c})

0=xb0(ζ0(c),c)xb1(ζ0(c),c)(cc¯ecub1(ζ0(s),s)𝑑sb0(ζ0(u),u)𝑑u)=xb0(ζ0(c),c)xb1(ζ0(c),c)Aζ0(c).\begin{array}[c]{lll}0&=&\partial_{x}b_{0}(\zeta_{0}(c),c)-\partial_{x}b_{1}(\zeta_{0}(c),c)\left(\int_{c}^{\overline{c}}e^{-\int_{c}^{u}b_{1}(\zeta_{0}(s),s)ds}b_{0}(\zeta_{0}(u),u)du\right)\\ &=&\partial_{x}b_{0}(\zeta_{0}(c),c)-\partial_{x}b_{1}(\zeta_{0}(c),c)A^{\zeta_{0}}(c).\end{array}

Using Lemma 5.10, we get the implicit equation for ζ0\zeta_{0}. By definition Aζ0(c¯)=0A^{\zeta_{0}}(\overline{c})=0. Now take c[c¯,c¯)c\in[\underline{c},\overline{c}), and the constant step function ζ\zeta\in\mathcal{B} defined as ζx0\zeta\equiv x_{0} where x0x_{0} satisfies

cq(1eθ2(c)x0)<c¯q(1eθ2(c¯)x0).\frac{c}{q}\left(1-e^{\theta_{2}(c)x_{0}}\right)<\frac{\overline{c}}{q}\left(1-e^{\theta_{2}(\overline{c})x_{0}}\right).

Then

Aζ0(c)Aζ(c)=c¯q(1eθ2(c¯)x0)cq(1eθ2(c)x0)eθ1(c)x0eθ2(c)x>0A^{\zeta_{0}}(c)\geq A^{\zeta}(c)=\dfrac{\frac{\overline{c}}{q}\left(1-e^{\theta_{2}(\overline{c})x_{0}}\right)-\frac{c}{q}\left(1-e^{\theta_{2}(c)x_{0}}\right)}{e^{\theta_{1}(c)x_{0}}-e^{\theta_{2}(c)x}}>0\text{. }

\blacksquare

From now on, we extend the definition of ζ0\zeta_{0} to [c¯,c¯][\underline{c},\overline{c}] as

ζ0(c¯):=limdc¯ζ0(d).\zeta_{0}(\overline{c}):=\lim_{d\rightarrow\overline{c}^{-}}\zeta_{0}(d).

Since Aζ0(c¯)=0A^{\zeta_{0}}(\overline{c})=0, we get from Proposition 5.11

xb0(ζ(c¯),c¯)=0,\partial_{x}b_{0}(\zeta(\overline{c}),\overline{c})=0, (30)

and since Aζ0(c)>0A^{\zeta_{0}}(c)>0 for c[c¯,c¯)c\in[\underline{c},\overline{c}), we obtain that

xb0(ζ0(c),c)>0.\partial_{x}b_{0}(\zeta_{0}(c),c)>0\text{.}

In the next proposition we show that, under some assumptions, the function ζ0:\zeta_{0}: [c¯,c¯][0,)[\underline{c},\overline{c}]\rightarrow[0,\infty) is the unique solution of the first order differential equation

ζ(c)=(b0(xb1)2+b1xb0xb1xcb0xb1+xcb1xb0xxb0xb1xxb1xb0)(ζ(c),c)\zeta^{\prime}(c)=\left(\dfrac{-b_{0}~{}(\partial_{x}b_{1})^{2}+b_{1}~{}\partial_{x}b_{0}~{}\partial_{x}b_{1}-\partial_{xc}b_{0}~{}\partial_{x}b_{1}+\partial_{xc}b_{1}~{}\partial_{x}b_{0}}{\partial_{xx}b_{0}~{}\partial_{x}b_{1}-\partial_{xx}b_{1}~{}\partial_{x}b_{0}}\right)(\zeta(c),c) (31)

with boundary condition (30).

Proposition 5.12

If ζ0(c)\zeta_{0}(c)\ defined in (29) satisfies

(xxb0xb1xxb1xb0)(ζ0(c),c)0,\left(\partial_{xx}b_{0}~{}\partial_{x}b_{1}-\partial_{xx}b_{1}~{}\partial_{x}b_{0}\right)(\zeta_{0}(c),c)\neq 0\text{,} (32)

then ζ0\zeta_{0} is infinitely differentiable and it is the unique solution of (31) with boundary condition (30).

Proof. From (26), we have

(xb0(ζ0(c),c)xb1(ζ0(c),c))=b0(ζ0(c),c)+b1(ζ0(c),c)(xb0(ζ0(c),c)xb1(ζ0(c),c)).\left(-\frac{\partial_{x}b_{0}(\zeta_{0}(c),c)}{\partial_{x}b_{1}(\zeta_{0}(c),c)}\right)^{\prime}=b_{0}(\zeta_{0}(c),c)+b_{1}(\zeta_{0}(c),c)\left(\frac{\partial_{x}b_{0}(\zeta_{0}(c),c)}{-\partial_{x}b_{1}(\zeta_{0}(c),c)}\right). (33)

By Assumption (32), the function

G(ζ,c):=xb0(ζ,c)xb1(ζ,c)G(\zeta,c):=-\frac{\partial_{x}b_{0}(\zeta,c)}{\partial_{x}b_{1}(\zeta,c)}

satisfies

ζG(ζ0(c),c)=(xxb0(ζ0(c),c)xb1(ζ0(c),c)xxb1(ζ0(c),c)xb0(ζ0(c),c)xb1(ζ0(c),c)2)0.\partial_{\zeta}G(\zeta_{0}(c),c)=-\left(\frac{\partial_{xx}b_{0}(\zeta_{0}(c),c)\partial_{x}b_{1}(\zeta_{0}(c),c)-\partial_{xx}b_{1}(\zeta_{0}(c),c)\partial_{x}b_{0}(\zeta_{0}(c),c)}{\partial_{x}b_{1}(\zeta_{0}(c),c)^{2}}\right)\neq 0.

Hence, from (33), we have that ζ0(c)\zeta_{0}(c) is differentiable and we get the differential equation (31) for ζ0\zeta_{0}. We obtain by a recursive argument that ζ0(c)\zeta_{0}(c) is infinitely differentiable. \blacksquare

In the next proposition, we state that the value function Wζ0W^{\zeta_{0}} satisfies a smooth-pasting property on the smooth free-boundary curve

(ζ0)={(ζ0(c),c)with c[c¯,c¯)}.\mathcal{R(}\zeta_{0})=\{(\zeta_{0}(c),c)~{}\text{with }c\in[\underline{c},\overline{c})\}.

We also show that, under some conditions, ζ0\zeta_{0} is the unique continuous function ζ\zeta\in\mathcal{B} such that the associated ζ\zeta-value function WζW^{\zeta} satisfies the smooth-pasting property at the curve (ζ)\mathcal{R(}\zeta).

Proposition 5.13

If ζ0\zeta_{0} defined in (29) satisfies (32), then Wζ0W^{\zeta_{0}} satisfies the smooth-pasting property

Wcxζ0(ζ0(c),c)=Wccζ0(ζ0(c),c)=0 for c[c¯,c¯].W_{cx}^{\zeta_{0}}(\zeta_{0}(c),c)=W_{cc}^{\zeta_{0}}(\zeta_{0}(c),c)=0\text{ for }c\in[\underline{c},\overline{c}]\text{.}

Conversely, let h:[0,)×[c¯,c¯][0,)h:[0,\infty)\times[\underline{c},\overline{c}]\rightarrow[0,\infty)\ with h(x,c¯)=V{c¯}(x,c¯)h(x,\overline{c})=V^{\{\overline{c}\}}(x,\overline{c}) and h(0,c)=0h(0,c)=0 for c[c¯,c¯)c\in[\underline{c},\overline{c}). Assume that for c[c¯,c¯),c\in[\underline{c},\overline{c}),

ζ(c):=sup{y:c(h)(x,c)=0 for 0xy} \zeta(c):=\sup\left\{y:\mathcal{L}^{c}(h)(x,c)=0\text{ for }0\leq x\leq y\right\}\text{ }

is a positive and continuous function in \mathcal{B} satisfying

ch(ζ(c),c)=cxh(ζ(c),c)=0\partial_{c}h(\zeta(c),c)=\partial_{cx}h(\zeta(c),c)=0

and (xxb0xb1xxb1xb0)(ζ(c),c)0\left(\partial_{xx}b_{0}~{}\partial_{x}b_{1}-\partial_{xx}b_{1}~{}\partial_{x}b_{0}\right)(\zeta(c),c)\neq 0 for c[c¯,c¯)c\in[\underline{c},\overline{c}); then ζ\zeta coincides with ζ0\zeta_{0} and h(x,c)=h(x,c)= Wζ0(x,c)W^{\zeta_{0}}(x,c) for 0xζ(c)0\leq x\leq\zeta(c) and c[c¯,c¯]c\in[\underline{c},\overline{c}].

Proof. Let us define for x0x\geq 0 and c[c¯,c¯]c\in[\underline{c},\overline{c}] the function

H(x,c):=cq(1eθ2(c)x)+a(c)(eθ1(c)xeθ2(c)x),H(x,c):=\frac{c}{q}\left(1-e^{\theta_{2}(c)x}\right)+a(c)(e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x})\text{,} (34)

where a:[c¯,c¯][0,)a:[\underline{c},\overline{c}]\rightarrow[0,\infty) is a function with a(c¯)=0a(\overline{c})=0. Note that HH satisfies c(W(x,c))=0\mathcal{L}^{c}(W(x,c))=0 for all x0,x\geq 0, H(0,c)=0H(0,c)=0 and H(x,c¯)=c¯q(1eθ2(c)x)H(x,\overline{c})=\frac{\overline{c}}{q}\left(1-e^{\theta_{2}(c)x}\right). We have,

xH(x,c)=cqθ2(c)eθ2(c)x+a(c)(θ1(c)eθ1(c)xθ2(c)eθ2(c)x).\partial_{x}H(x,c)=-\frac{c}{q}\theta_{2}(c)e^{\theta_{2}(c)x}+a(c)(\theta_{1}(c)e^{\theta_{1}(c)x}-\theta_{2}(c)e^{\theta_{2}(c)x}).

If a(c)a(c) is differentiable,

cH(x,c)=(eθ1(c)xeθ2(c)x)(b0(x,c)b1(x,c)a(c)+a(c)),\partial_{c}H(x,c)=(e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x})\left(-b_{0}(x,c)-b_{1}(x,c)a(c)+a^{\prime}(c)\right), (35)

and

cxH(x,c)=xcH(x,c)=(θ1(c)eθ1(c)xθ2(c)eθ2(c)x)(b0(x,c)b1(x,c)a(c)+a(c))+(eθ1(c)xeθ2(c)x)(xb0(x,c)xb1(x,c)a(c)).\begin{array}[c]{lll}\partial_{cx}H(x,c)=\partial_{xc}H(x,c)&=&(\theta_{1}(c)e^{\theta_{1}(c)x}-\theta_{2}(c)e^{\theta_{2}(c)x})\left(-b_{0}(x,c)-b_{1}(x,c)a(c)+a^{\prime}(c)\right)\\ &&+(e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x})\left(-\partial_{x}b_{0}(x,c)-\partial_{x}b_{1}(x,c)a(c)\right).\end{array}

In the case that a(c)=Aζ0(c)a(c)=A^{\zeta_{0}}(c), take H=Hζ0H=H^{\zeta_{0}} as defined in (24), by (26) and Proposition 5.11, we obtain cxHζ0(ζ0(c),c)=0\partial_{cx}H^{\zeta_{0}}(\zeta_{0}(c),c)=0. Since Wζ0(x,c)=Hζ0(x,c)W^{\zeta_{0}}(x,c)=H^{\zeta_{0}}(x,c) for x<ζ0(c)x<\zeta_{0}(c) and Wζ0(x,c)=Hζ0(x,C(x,c))W^{\zeta_{0}}(x,c)=H^{\zeta_{0}}(x,C(x,c)) for xζ0(c)x\geq\zeta_{0}(c), we get cWζ0(x,c)=0\partial_{c}W^{\zeta_{0}}(x,c)=0 for xζ0(c)x\geq\zeta_{0}(c) and so cxWζ0(ζ(c),c)=0\partial_{cx}W^{\zeta_{0}}(\zeta(c),c)=0. From (35), we get

cHζ0(x,c)=(eθ1(c)xeθ2(c)x)(b0(ζ0(c),c)b0(x,c)+(b1(ζ0(c),c)b1(x,c))Aζ0(c)).\partial_{c}H^{\zeta_{0}}(x,c)=(e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x})\left(b_{0}(\zeta_{0}(c),c)-b_{0}(x,c)+\left(b_{1}(\zeta_{0}(c),c)-b_{1}(x,c)\right)A^{\zeta_{0}}(c)\right).

Hence, from (32), we have that ccHζ0\partial_{cc}H^{\zeta_{0}} exists. Since cHζ0(ζ0(c),c)=0\partial_{c}H^{\zeta_{0}}(\zeta_{0}(c),c)=0 for c[c¯,c¯],c\in[\underline{c},\overline{c}],

0=ddc(cHζ0(ζ0(c),c)) =ccHζ0(ζ0(c),c)+cxHζ0(ζ0(c),c)ζ0(c)=ccHζ0(ζ0(c),c).\begin{array}[c]{lll}0&=&\frac{d}{dc}(\partial_{c}H^{\zeta_{0}}(\zeta_{0}(c),c))\text{ }\\ &=&\partial_{cc}H^{\zeta_{0}}(\zeta_{0}(c),c)+\partial_{cx}H^{\zeta_{0}}(\zeta_{0}(c),c)\zeta_{0}^{\prime}(c)\\ &=&\partial_{cc}H^{\zeta_{0}}(\zeta_{0}(c),c).\end{array}

Finally, since Wζ0(x,c)=Hζ0(x,C(x,c))W^{\zeta_{0}}(x,c)=H^{\zeta_{0}}(x,C(x,c)) if xζ0(c)x\geq\zeta_{0}(c), we get ccWζ0(x,c)=0\partial_{cc}W^{\zeta_{0}}(x,c)=0 if xζ0(c)x\geq\zeta_{0}(c) and so ccWζ0(ζ0(c),c)=0\partial_{cc}W^{\zeta_{0}}(\zeta_{0}(c),c)=0.

Conversely, note that there exists a(c)a(c) such that h(x,c)=H(x,c)h(x,c)=H(x,c) defined in (34) for x<ζ(c)x<\zeta(c); the existence of ch\partial_{c}h implies that a(c)a(c) is differentiable. Hence,

0=ch(ζ(c),c)=(eθ1(c)ζ(c)eθ2(c)ζ(c))(b0(ζ(c),c)b1(ζ(c),c)a(c)+a(c))0=\partial_{c}h(\zeta(c),c)=(e^{\theta_{1}(c)\zeta(c)}-e^{\theta_{2}(c)\zeta(c)})\left(-b_{0}(\zeta(c),c)-b_{1}(\zeta(c),c)a(c)+a^{\prime}(c)\right)

which implies

a(c)=b0(ζ(c),c)+b1(ζ(c),c)a(c).a^{\prime}(c)=b_{0}(\zeta(c),c)+b_{1}(\zeta(c),c)a(c).

Also,

0=cxh(ζ(c),c)=(eθ1(c)ζ(c)eθ2(c)ζ(c))(xb0(ζ(c),c)xb1(ζ(c),c)a(c))+(θ1(c)eθ1(c)ζ(c)θ2(c)eθ2(c)ζ(c))(b0(ζ(c),c)b1(ζ(c),c)a(c)+a(c))\begin{array}[c]{lll}0=\partial_{cx}h(\zeta(c),c)&=&(e^{\theta_{1}(c)\zeta(c)}-e^{\theta_{2}(c)\zeta(c)})\left(-\partial_{x}b_{0}(\zeta(c),c)-\partial_{x}b_{1}(\zeta(c),c)a(c)\right)\\ &&+(\theta_{1}(c)e^{\theta_{1}(c)\zeta(c)}-\theta_{2}(c)e^{\theta_{2}(c)\zeta(c)})\left(-b_{0}(\zeta(c),c)-b_{1}(\zeta(c),c)a(c)+a^{\prime}(c)\right)\end{array}

implies

xb0(ζ(c),c)=xb1(ζ(c),c)a(c).\partial_{x}b_{0}(\zeta(c),c)=\partial_{x}b_{1}(\zeta(c),c)a(c).

Since (xxb0xb1xxb1xb0)(ζ(c),c)0\left(\partial_{xx}b_{0}~{}\partial_{x}b_{1}-\partial_{xx}b_{1}~{}\partial_{x}b_{0}\right)(\zeta(c),c)\neq 0, both ζ\zeta and ζ0\zeta_{0} satisfy the same equation and so they coincide. \blacksquare

In the next proposition, we show more regularity for Wζ0W^{\zeta_{0}} in the case that ζ0\zeta_{0} is increasing.

Proposition 5.14

If ζ0\zeta_{0}\ defined in (29), is increasing and satisfies (32), then Wζ0W^{\zeta_{0}} is (2,1)-differentiable. Also, since the inverse ζ01\zeta_{0}^{-1} exists, C(x,c)C(x,c) can be written in a simpler way:

C(x,c)={c¯ifζ0(c¯)x,ζ01(x)ifζ0(c)x<ζ0(c¯).C(x,c)=\left\{\begin{array}[c]{lll}\overline{c}&\text{if}&\zeta_{0}(\overline{c})\leq x,\\ \zeta_{0}^{-1}(x)&\text{if}&\zeta_{0}(c)\leq x<\zeta_{0}(\overline{c}).\end{array}\right.

Proof. It is enough to prove that xxWζ0(x+,c)=\partial_{xx}W^{\zeta_{0}}(x^{+},c)= xxWζ0(x,c)\partial_{xx}W^{\zeta_{0}}(x^{-},c) for ζ0(c)x<ζ0(c¯)\zeta_{0}(c)\leq x<\zeta_{0}(\overline{c}). We have

xWζ0(x+,c)=xHζ0(x,ζ01(x))+cHζ0(x,ζ01(x))(ζ01)(x)=xHζ0(x,ζ01(x))=xWζ0(x,c).\begin{array}[c]{lll}\partial_{x}W^{\zeta_{0}}(x^{+},c)&=&\partial_{x}H^{\zeta_{0}}(x,\zeta_{0}^{-1}(x))+\partial_{c}H^{\zeta_{0}}(x,\zeta_{0}^{-1}(x))\left(\zeta_{0}^{-1}\right)^{\prime}(x)\\ &=&\partial_{x}H^{\zeta_{0}}(x,\zeta_{0}^{-1}(x))\\ &=&\partial_{x}W^{\zeta_{0}}(x^{-},c).\end{array}

And so,

xxWζ0(x+,c)=xxHζ0(x,ζ01(x))+cxHζ0(x,ζ01(x))(ζ01)(x)=xxHζ0(x,ζ01(x))=xxWζ0(x,c)\begin{array}[c]{lll}\partial_{xx}W^{\zeta_{0}}(x^{+},c)&=&\partial_{xx}H^{\zeta_{0}}(x,\zeta_{0}^{-1}(x))+\partial_{cx}H^{\zeta_{0}}(x,\zeta_{0}^{-1}(x))\left(\zeta_{0}^{-1}\right)^{\prime}(x)\\ &=&\partial_{xx}H^{\zeta_{0}}(x,\zeta_{0}^{-1}(x))\\ &=&\partial_{xx}W^{\zeta_{0}}(x^{-},c)\text{. }\end{array}

\blacksquare

5.3 Optimal strategies for the closed interval S=[c¯,c¯]S=[\underline{c},\overline{c}]

First in this section, we give a verification result in order to check if a ζ\zeta-value function WζW^{\zeta} is the optimal value function VV. Our conjecture is that the solution ζ¯\overline{\zeta} of (31) with boundary condition (30) exists and is non-decreasing in [c¯,c¯][\underline{c},\overline{c}], and that Wζ¯W^{\overline{\zeta}} coincides with VV, so that there exists an optimal curve strategy.

Using Proposition 5.1, we know that the conjecture holds for c¯qσ2/(2μ)\overline{c}\leq q\sigma^{2}/(2\mu) taking ζ00.\zeta_{0}\equiv 0. In the case that c¯>qσ2/(2μ)\overline{c}>q\sigma^{2}/(2\mu), we will show that ζ¯\overline{\zeta} exists and is increasing and Wζ¯=VW^{\overline{\zeta}}=V for [c¯ε,c¯][\overline{c}-\varepsilon,\overline{c}] for ε>0\varepsilon>0\ small enough. We were not able to prove the conjecture in the general case, although it holds in our numerical explorations (see Section 6). However, we will prove that the ζ\zeta-value functions WζW^{\zeta} are ε\varepsilon-optimal in the following sense: There exists a sequence ζn\zeta_{n}\in\mathcal{B} such that WζnW^{\zeta_{n}} converges uniformly to the optimal value function VV.

We state now a verification result for checking whether the ζ\zeta-value function WζW^{\zeta} with ζ\zeta continuous is the optimal value function VV. In this verification result it is not necessary to use viscosity solutions because the proposed value function solves the HJB equation in a classical way. We will check these verification conditions for the limit value function associated to the unique solution of (31) with boundary condition (30) (if it exists).

Proposition 5.15

If there exists a smooth function ζ¯\overline{\zeta} such that the ζ¯\overline{\zeta}-value function Wζ¯W^{\overline{\zeta}} is (2,1)-differentiable and satisfies

xWζ¯(ζ¯(c),c)1 for c[c¯,c¯] and cWζ¯(x,c)0 for x[0,ζ¯(c)) and c[c¯,c¯),\partial_{x}W^{\overline{\zeta}}(\overline{\zeta}(c),c)\leq 1\text{ for }c\in[\underline{c},\overline{c}]\quad\text{ and }\quad\partial_{c}W^{\overline{\zeta}}(x,c)\leq 0\text{ for }x\in[0,\overline{\zeta}(c))\text{ and }c\in[\underline{c},\overline{c}),

then Wζ¯=VW^{\overline{\zeta}}=V.

Proof. We have that xWζ¯(x,c¯)1\partial_{x}W^{\overline{\zeta}}(x,\overline{c})\leq 1 for xζ¯(c¯)x\geq\overline{\zeta}(\overline{c}) because Wζ¯(,c¯)W^{\overline{\zeta}}(\cdot,\overline{c}) is concave and xWζ¯(ζ¯(c¯),c¯)1.\partial_{x}W^{\overline{\zeta}}(\overline{\zeta}(\overline{c}),\overline{c})\leq 1. Since cWζ¯(x,c)=0\mathcal{L}^{c}W^{\overline{\zeta}}(x,c)=0 for x[0,ζ¯(c)),x\in[0,\overline{\zeta}(c)), c[c¯,c¯)c\in[\underline{c},\overline{c}); cWζ¯(x,c)=0\partial_{c}W^{\overline{\zeta}}(x,c)=0 for xζ¯(c)),x\geq\overline{\zeta}(c)), c[c¯,c¯)c\in[\underline{c},\overline{c}) and Wζ¯(,c¯)=V(,c¯)W^{\overline{\zeta}}(\cdot,\overline{c})=V(\cdot,\overline{c}); by Theorem 3.3 it is sufficient to prove that cWζ¯(x,c)0\mathcal{L}^{c}W^{\overline{\zeta}}(x,c)\leq 0 for xζ¯(c)),x\geq\overline{\zeta}(c)), c[c¯,c¯)c\in[\underline{c},\overline{c}). In this case, we have that

C(x,c)=max{h[c,c¯]:ζ¯(d)xford[c,h)}C(x,c)=\max\{h\in[c,\overline{c}]:\overline{\zeta}(d)\leq x{\large\ }\text{{\large for}}{\large\ }d\in[c,h)\}

satisfies C(x,c)cC(x,c)\geq c, and also either C(x,c)=c¯C(x,c)=\overline{c} or ζ¯(C(x,c))=x.\overline{\zeta}(C(x,c))=x. So, we obtain C(x,c)V(x,C(x,c))=0\mathcal{L}^{C(x,c)}V(x,C(x,c))=0 and then

cV(x,c)=C(x,c)V(x,c)+(C(x,c)c)(xV(x,C(x,c))1)=(C(x,c)c)(Vx(x,C(x,c))1)0\begin{array}[c]{lll}\mathcal{L}^{c}V(x,c)&=&\mathcal{L}^{C(x,c)}V(x,c)+(C(x,c)-c)(\partial_{x}V(x,C(x,c))-1)\\ &=&(C(x,c)-c)(V_{x}(x,C(x,c))-1)\leq 0\text{. }\end{array}

\blacksquare

Next we see that there exists a unique solution ζ¯\overline{\zeta} of (31) with boundary condition (30) at least in [c¯ε,c¯][\overline{c}-\varepsilon,\overline{c}] for some ε>0\varepsilon>0. First, let us study the boundary condition (30) in the case c¯\overline{c} >qσ2/(2μ)>q\sigma^{2}/(2\mu).

Lemma 5.16

If c¯\overline{c} >qσ2/(2μ)>q\sigma^{2}/(2\mu), there exists a unique z¯>0\overline{z}>0 such that xb0(z¯,c¯)=0\partial_{x}b_{0}(\overline{z},\overline{c})=0; moreover xb0(x,c¯)<0\partial_{x}b_{0}(x,\overline{c})<0 for x[0,z¯)x\in[0,\overline{z}) and xb0(x,c¯)>0\partial_{x}b_{0}(x,\overline{c})>0 for x(z¯,)x\in(\overline{z},\infty). Also xxb0(z¯,c¯)>0.\partial_{xx}b_{0}(\overline{z},\overline{c})>0.

Proof. For x>0,x>0,

xb0(x,c)=eθ1(c)xθ1(c)eθ2(c)xθ2(c)ce2θ2(c)xθ2(c)+e(θ1(c)+θ2(c))x(θ1(c)+θ2(c)+cθ2(c)(1xθ1(c)+xθ2(c))q(eθ1(c)xeθ2(c)x)2,\partial_{x}b_{0}(x,c)=\tfrac{e^{\theta_{1}(c)x}\theta_{1}(c)-e^{\theta_{2}(c)x}\theta_{2}(c)-ce^{2\theta_{2}(c)x}\theta_{2}^{\prime}(c)+e^{(\theta_{1}(c)+\theta_{2}(c))x}(-\theta_{1}(c)+\theta_{2}(c)+c\theta_{2}^{\prime}(c)(1-x\theta_{1}(c)+x\theta_{2}(c))}{q\left(e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x}\right)^{2}}, (36a)
and so
limx0+xb0(x,c¯)=12q(θ1(c¯)θ2(c¯)θ1(c¯)θ2(c¯)+c¯θ2(c¯))=c¯2+qσ2c¯(μ+(c¯μ)2+2qσ2)2qσ2(c¯μ)2+2qσ2.\lim_{x\rightarrow 0^{+}}\partial_{x}b_{0}(x,\overline{c})=-\frac{1}{2q}(\tfrac{\theta_{1}(\overline{c})\theta_{2}(\overline{c})}{\theta_{1}(\overline{c})-\theta_{2}(\overline{c})}+\overline{c}\theta_{2}^{\prime}(\overline{c}))=\tfrac{\overline{c}^{2}+q\sigma^{2}-\overline{c}(\mu+\sqrt{(\overline{c}-\mu)^{2}+2q\sigma^{2}})}{2q\sigma^{2}\sqrt{(\overline{c}-\mu)^{2}+2q\sigma^{2}}}.

Hence, limx0+xb0(x,c¯)0\lim_{x\rightarrow 0^{+}}\partial_{x}b_{0}(x,\overline{c})\geq 0 for c¯qσ2/(2μ)\overline{c}\leq q\sigma^{2}/(2\mu) and limx0+xb0(x,c¯)<0\lim_{x\rightarrow 0^{+}}\partial_{x}b_{0}(x,\overline{c})<0 for c¯>qσ2/(2μ)\overline{c}>q\sigma^{2}/(2\mu). Also

limxxb0(x,c¯)eθ1(c¯)x=θ1(c¯)q>0.\lim_{x\rightarrow\infty}\partial_{x}b_{0}(x,\overline{c})e^{\theta_{1}(\overline{c})x}=\frac{\theta_{1}(\overline{c})}{q}>0.

So, for c¯\overline{c} >qσ2/(2μ)>q\sigma^{2}/(2\mu) there exists (at least one) z¯>0\overline{z}>0 such that xb0(z¯,c¯)=0.\partial_{x}b_{0}(\overline{z},\overline{c})=0.

We are showing next that xb0(x,c¯)=0\partial_{x}b_{0}(x,\overline{c})=0 for x>0x>0 implies that xxb0(x,c¯)>0\partial_{xx}b_{0}(x,\overline{c})>0. Consequently the result follows.

From (36a), we can write

xb0(x,c¯)q(eθ1(c¯)xeθ2(c¯)x)2=g11(x,c¯)θ2(c¯)+g10(x,c¯)\partial_{x}b_{0}(x,\overline{c})q\left(e^{\theta_{1}(\overline{c})x}-e^{\theta_{2}(\overline{c})x}\right)^{2}=g_{11}(x,\overline{c})\theta_{2}^{\prime}(\overline{c})+g_{10}(x,\overline{c})

and

xxb0(x,c¯)q(eθ1(c¯)xeθ2(c¯)x)3=g21(x,c¯)θ2(c¯)+g20(x,c¯),\partial_{xx}b_{0}(x,\overline{c})q\left(e^{\theta_{1}(\overline{c})x}-e^{\theta_{2}(\overline{c})x}\right)^{3}=g_{21}(x,\overline{c})\theta_{2}^{\prime}(\overline{c})+g_{20}(x,\overline{c}),

where

g11(x,c¯)=c¯e2θ2(c¯)x(1e(θ1(c¯)θ2(c¯))x(1x(θ1(c¯)θ2(c¯))),g_{11}(x,\overline{c})=-\overline{c}e^{2\theta_{2}(\overline{c})x}(1-e^{(\theta_{1}(\overline{c})-\theta_{2}(\overline{c}))x}(1-x(\theta_{1}(\overline{c})-\theta_{2}(\overline{c}))),
g10(x,c¯)=θ1(c¯)eθ1(c¯)x(eθ2(c¯)x1)+θ2(c¯)eθ2(c¯)x(eθ1(c¯)x1),g_{10}(x,\overline{c})=-\theta_{1}(\overline{c})e^{\theta_{1}(\overline{c})x}\left(e^{\theta_{2}(\overline{c})x}-1\right)+\theta_{2}(\overline{c})e^{\theta_{2}(\overline{c})x}\left(e^{\theta_{1}(\overline{c})x}-1\right),
g21(x,c¯)=c¯e(θ1(c¯)+θ2(c¯))x(θ1(c¯)θ2(c¯))(eθ1(c¯)x(2+xθ1(c¯)xθ2(c¯))+eθ2(c¯)x(2+xθ1(c¯)xθ2(c¯))),g_{21}(x,\overline{c})=\overline{c}e^{(\theta_{1}(\overline{c})+\theta_{2}(\overline{c}))x}(\theta_{1}(\overline{c})-\theta_{2}(\overline{c}))\left(e^{\theta_{1}(\overline{c})x}(-2+x\theta_{1}(\overline{c})-x\theta_{2}(\overline{c}))+e^{\theta_{2}(\overline{c})x}(2+x\theta_{1}(\overline{c})-x\theta_{2}(\overline{c}))\right),
g20(x,c¯)=eθ1(c¯)xθ12(c¯)(eθ2(c¯)x1)(eθ1(c¯)x+eθ2(c¯)x)2e(θ1(c¯)+θ2(c¯))xθ1(c¯)θ2(c¯)(2+eθ1(c¯)x+eθ2(c¯)x)+eθ2(c¯)xθ22(c¯)(eθ1(c¯)x1)(eθ1(c¯)x+eθ2(c¯)x).\begin{array}[c]{lll}g_{20}(x,\overline{c})&=&e^{\theta_{1}(\overline{c})x}\theta_{1}^{2}(\overline{c})(e^{\theta_{2}(\overline{c})x}-1)(e^{\theta_{1}(\overline{c})x}+e^{\theta_{2}(\overline{c})x})-2e^{(\theta_{1}(\overline{c})+\theta_{2}(\overline{c}))x}\theta_{1}(\overline{c})\theta_{2}(\overline{c})(-2+e^{\theta_{1}(\overline{c})x}+e^{\theta_{2}(\overline{c})x})\\ &&+e^{\theta_{2}(\overline{c})x}\theta_{2}^{2}(\overline{c})(e^{\theta_{1}(\overline{c})x}-1)(e^{\theta_{1}(\overline{c})x}+e^{\theta_{2}(\overline{c})x}).\end{array}

If x>0x>0, take u=x(θ1(c¯)θ2(c¯))>0u=x(\theta_{1}(\overline{c})-\theta_{2}(\overline{c}))>0, we can write

g11(x,c¯)c¯e2θ2(c¯)x=1eu(1u)>0-\frac{g_{11}(x,\overline{c})}{\overline{c}e^{2\theta_{2}(\overline{c})x}}=1-e^{u}(1-u)>0

which implies that g11(x,c¯)<0.g_{11}(x,\overline{c})<0.

Consider now

g(x,c¯):=xxb0(x,c¯)q(eθ1(c¯)xeθ2(c¯)x)3g11(x,c¯)xb0(x,c¯)q(eθ1(c¯)xeθ2(c¯)x)2g21(x,c¯)=g20(x,c¯)g11(x,c¯)g10(x,c¯)g21(x,c¯).\begin{array}[c]{lll}g(x,\overline{c})&:=&\partial_{xx}b_{0}(x,\overline{c})q\left(e^{\theta_{1}(\overline{c})x}-e^{\theta_{2}(\overline{c})x}\right)^{3}g_{11}(x,\overline{c})-\partial_{x}b_{0}(x,\overline{c})q\left(e^{\theta_{1}(\overline{c})x}-e^{\theta_{2}(\overline{c})x}\right)^{2}g_{21}(x,\overline{c})\\ &=&g_{20}(x,\overline{c})g_{11}(x,\overline{c})-g_{10}(x,\overline{c})g_{21}(x,\overline{c}).\end{array}

We are going to prove that g(x,c¯)<0g(x,\overline{c})<0 for x>0x>0. For that purpose, take

g0(x,c¯):=g(x,c¯)c¯(eθ1(c¯)xeθ2(c¯)x)2e2θ2(c¯)xθ12(c¯).g_{0}(x,\overline{c}):=-\frac{g(x,\overline{c})}{\overline{c}\left(e^{\theta_{1}(\overline{c})x}-e^{\theta_{2}(\overline{c})x}\right)^{2}e^{2\theta_{2}(\overline{c})x}\theta_{1}^{2}(\overline{c})}\text{.}

Calling t=θ2(c¯)θ1(c¯)>0t=-\frac{\theta_{2}(\overline{c})}{\theta_{1}(\overline{c})}>0 and s=θ1(c¯)x>0s=\theta_{1}(\overline{c})x>0, and we can write

g0(x,c¯)=t2+es(1+t)2+es+st(12t+st+st2).g_{0}(x,\overline{c})=-t^{2}+e^{s}(1+t)^{2}+e^{s+st}(-1-2t+st+st^{2}).

Then g0(x,c¯)>0g_{0}(x,\overline{c})>0 for x>0x>0, because g0(s,0)=tg0(s,0)=0g_{0}\left(s,0\right)=\partial_{t}g_{0}\left(s,0\right)=0, t2g0(s,0)=2+(22s+s2)es>0\partial_{t}^{2}g_{0}\left(s,0\right)=-2+(2-2s+s^{2})e^{s}>0 and

t3g0(s,t)=s3es+st(2+4t+st+st2)>0\partial_{t}^{3}g_{0}\left(s,t\right)=s^{3}e^{s+st}(2+4t+st+st^{2})>0

for s,t>0s,t>0. Finally, if xb0(z¯,c¯)=0\partial_{x}b_{0}(\overline{z},\overline{c})=0 for z¯>0\overline{z}>0, since

g(z¯,c¯)=xxb0(z¯,c¯)q(eθ1(c¯)z¯eθ2(c¯)z¯)3g11(z¯,c¯)xb0(z¯,c¯)q(eθ1(c¯)z¯eθ2(c¯)z¯)2g21(z¯,c¯)=xxb0(z¯,c¯)q(eθ1(c¯)z¯eθ2(c¯)z¯)3g11(z¯,c¯),\begin{array}[c]{lll}g(\overline{z},\overline{c})&=&\partial_{xx}b_{0}(\overline{z},\overline{c})q\left(e^{\theta_{1}(\overline{c})\overline{z}}-e^{\theta_{2}(\overline{c})\overline{z}}\right)^{3}g_{11}(\overline{z},\overline{c})-\partial_{x}b_{0}(\overline{z},\overline{c})q\left(e^{\theta_{1}(\overline{c})\overline{z}}-e^{\theta_{2}(\overline{c})\overline{z}}\right)^{2}g_{21}(\overline{z},\overline{c})\\ &=&\partial_{xx}b_{0}(\overline{z},\overline{c})q\left(e^{\theta_{1}(\overline{c})\overline{z}}-e^{\theta_{2}(\overline{c})\overline{z}}\right)^{3}g_{11}(\overline{z},\overline{c}),\end{array}

g(z¯,c¯)<0g(\overline{z},\overline{c})<0 and g11(z¯,c¯)g_{11}(\overline{z},\overline{c}) <0<0, we get that xxb0(z¯,c¯)>0\partial_{xx}b_{0}(\overline{z},\overline{c})>0. \blacksquare

Proposition 5.17

In the case c¯\overline{c} >qσ2/(2μ)>q\sigma^{2}/(2\mu) there exists a unique increasing solution ζ¯\overline{\zeta} of (31) with boundary condition (30) in [c¯ε,c¯][\overline{c}-\varepsilon,\overline{c}] for some ε>0\varepsilon>0.

Proof. From Lemma 5.16, ζ¯(c¯)=z¯\overline{\zeta}(\overline{c})=\overline{z}. By (31) and since the functions b0b_{0} and b1b_{1} are infinitely differentiable, it suffices to prove that

(xxb0xb1xxb1xb0)(x,c)0\left(\partial_{xx}b_{0}~{}\partial_{x}b_{1}-\partial_{xx}b_{1}~{}\partial_{x}b_{0}\right)(x,c)\neq 0

in a neighborhood of (z¯,c¯).\left(\overline{z},\overline{c}\right). From Lemmas 5.10 and 5.16,

(xxb0xb1xxb1xb0)(z¯,c¯)=(xxb0xb1)(z¯,c¯)<0.\left(\partial_{xx}b_{0}~{}\partial_{x}b_{1}-\partial_{xx}b_{1}~{}\partial_{x}b_{0}\right)\left(\overline{z},\overline{c}\right)=(\partial_{xx}b_{0}~{}\partial_{x}b_{1})\left(\overline{z},\overline{c}\right)<0.

The existence of ζ¯\overline{\zeta} follows by continuity.

In order to show that ζ¯\overline{\zeta} is increasing in [c¯ε,c¯][\overline{c}-\varepsilon,\overline{c}] for some ε>0\varepsilon>0, it is sufficient to prove

(b0(xb1)2+b1xb0xb1xcb0xb1+xcb1xb0)(x,c)<0\left(-b_{0}~{}(\partial_{x}b_{1})^{2}+b_{1}~{}\partial_{x}b_{0}~{}\partial_{x}b_{1}-\partial_{xc}b_{0}~{}\partial_{x}b_{1}+\partial_{xc}b_{1}~{}\partial_{x}b_{0}\right)(x,c)<0

in a neighborhood of (z¯,c¯).\left(\overline{z},\overline{c}\right). Since xb0(z¯,c¯)=0\partial_{x}b_{0}(\overline{z},\overline{c})=0, we get

(b0(xb1)2+b1xb0xb1xcb0xb1+xcb1xb0)(z¯,c¯)=xb1(z¯,c¯)(b0(z¯,c¯)xb1(z¯,c¯)+xcb0(z¯,c¯));\begin{array}[c]{l}\left(-b_{0}~{}(\partial_{x}b_{1})^{2}+b_{1}~{}\partial_{x}b_{0}~{}\partial_{x}b_{1}-\partial_{xc}b_{0}~{}\partial_{x}b_{1}+\partial_{xc}b_{1}~{}\partial_{x}b_{0}\right)(\overline{z},\overline{c})\\ =-\partial_{x}b_{1}(\overline{z},\overline{c})(b_{0}(\overline{z},\overline{c})\partial_{x}b_{1}(\overline{z},\overline{c})+\partial_{xc}b_{0}(\overline{z},\overline{c})~{});\end{array}

and since xb1(z¯,c¯)<0\partial_{x}b_{1}(\overline{z},\overline{c})<0, it is enough to show that

b0(z¯,c¯)xb1(z¯,c¯)+xcb0(z¯,c¯)<0.b_{0}(\overline{z},\overline{c})\partial_{x}b_{1}(\overline{z},\overline{c})+\partial_{xc}b_{0}(\overline{z},\overline{c})~{}<0.

Taking t=θ2(c¯)θ1(c¯)>0t=-\frac{\theta_{2}(\overline{c})}{\theta_{1}(\overline{c})}>0 and u=qθ2(c¯)σ2z¯>0u=\dfrac{-q~{}}{\theta_{2}(\overline{c})\sigma^{2}}\overline{z}>0, we can write

b0(z¯,c¯)xb1(z¯,c¯)+xcb0(z¯,c¯)g0(z¯,c¯)=g1(u,t)+c¯z¯σ2g2(u,t)\frac{b_{0}(\overline{z},\overline{c})\partial_{x}b_{1}(\overline{z},\overline{c})+\partial_{xc}b_{0}(\overline{z},\overline{c})}{g_{0}(\overline{z},\overline{c})}=g_{1}(u,t)+\frac{\overline{c}\overline{z}}{\sigma^{2}}g_{2}(u,t)

and

xb0(z¯,c¯)f0(z¯,c¯)=f1(u,t)+c¯z¯σ2f2(u,t)=0;\frac{\partial_{x}b_{0}(\overline{z},\overline{c})}{f_{0}(\overline{z},\overline{c})}=f_{1}(u,t)+\frac{\overline{c}\overline{z}}{\sigma^{2}}f_{2}(u,t)=0;

where

g0(z¯,c¯)=z¯(eθ1(c¯)z¯eθ2(c¯)z¯)3q2(θ1(c¯)θ2(c¯))32θ13(c¯)(θ2(c¯))>0g_{0}(\overline{z},\overline{c})=\frac{\overline{z}\left(e^{\theta_{1}(\overline{c})\overline{z}}-e^{\theta_{2}(\overline{c})\overline{z}}\right)^{3}q^{2}(\theta_{1}(\overline{c})-\theta_{2}(\overline{c}))^{3}}{2\theta_{1}^{3}(\overline{c})(-\theta_{2}(\overline{c}))}>0

and

f0(z¯,c¯)=z¯(eθ1(c¯)z¯eθ2(c¯)z¯)2q(θ1(c¯)θ2(c¯))2θ1(c¯))>0.f_{0}(\overline{z},\overline{c})=\frac{\overline{z}\left(e^{\theta_{1}(\overline{c})\overline{z}}-e^{\theta_{2}(\overline{c})\overline{z}}\right)^{2}q(\theta_{1}(\overline{c})-\theta_{2}(\overline{c}))}{2\theta_{1}(\overline{c}))}>0.

We are going to show that f2(u,t)<0f_{2}(u,t)<0 and also

d0(u,t):=g1(u,t)f2(u,t)f1(u,t)g2(u,t)>0.d_{0}(u,t):=g_{1}(u,t)f_{2}(u,t)-f_{1}(u,t)g_{2}(u,t)>0.~{}

From these inequalities, we conclude that

b0(z¯,c¯)xb1(z¯,c¯)+xcb0(z¯,c¯)=g0(z¯,c¯)f2(u,t)(d0(u,t)+xb0(z¯,c¯)f0(z¯,c¯)g2(u,t))=g0(z¯,c¯)f2(u,t)d0(u,t)<0.\begin{array}[c]{lll}b_{0}(\overline{z},\overline{c})\partial_{x}b_{1}(\overline{z},\overline{c})+\partial_{xc}b_{0}(\overline{z},\overline{c})&=&\frac{g_{0}(\overline{z},\overline{c})}{f_{2}(u,t)}\left(d_{0}(u,t)+\frac{\partial_{x}b_{0}(\overline{z},\overline{c})}{f_{0}(\overline{z},\overline{c})}g_{2}(u,t)\right)\\ &=&\frac{g_{0}(\overline{z},\overline{c})}{f_{2}(u,t)}d_{0}(u,t)\\ &<&0.\end{array}

Let us see first that

f2(u,t)=te4ut(1+(2u+2ut1)e2u+2ut)<0.f_{2}(u,t)=-te^{-4ut}\left(1+\left(2u+2ut-1\right)e^{2u+2ut}\right)<0.

This holds immediately taking y=2u+2uty=2u+2ut, because 1+(y1)ey1+\left(y-1\right)e^{y} >0>0 for y>0y>0. Let us see now that d0(u,t)>0d_{0}(u,t)>0, we obtain

d0(u,t)=h0(u,t)(P0(u,t)+P1(u,t)e2u+P2(u,t)e2u+2ut+P3(u,t)e4u+2ut+P4(u,t)e4u+4ut),d_{0}(u,t)=h_{0}(u,t)(P_{0}(u,t)+P_{1}(u,t)e^{2u}+P_{2}(u,t)e^{2u+2ut}+P_{3}(u,t)e^{4u+2ut}+P_{4}(u,t)e^{4u+4ut}),

where

h0(u,t)=2ut(1+t)e8ut(e2u+2ut1)>0 for t,u>0,h_{0}(u,t)=2ut(1+t)e^{-8ut}(e^{2u+2ut}-1)>0\text{ for }t,u>0,
P0(u,t)=t2P1(u,t)=(1+t)(2t+2u+2ut),P_{0}(u,t)=t^{2}\text{, }P_{1}(u,t)=(1+t)\left(2-t+2u+2ut\right),
P2(u,t)=22ut+4u2tt2+4ut2+6u2t2+2ut32u2t4,P_{2}(u,t)=-2-2u-t+4u^{2}t-t^{2}+4ut^{2}+6u^{2}t^{2}+2ut^{3}-2u^{2}t^{4},
P3(u,t)=2+2ut+2ut+2u2t+t22ut2+6u2t22ut3+6u2t3+2u2t4P_{3}(u,t)=-2+2u-t+2ut+2u^{2}t+t^{2}-2ut^{2}+6u^{2}t^{2}-2ut^{3}+6u^{2}t^{3}+2u^{2}t^{4}

and

P4(u,t)=22u+t6ut+2u2t4ut2+4u2t2+2u2t3.P_{4}(u,t)=2-2u+t-6ut+2u^{2}t-4ut^{2}+4u^{2}t^{2}+2u^{2}t^{3}.

Defining iteratively

d1(u,t):=ud0(u,t)2(1+t)e2u,d2(u,t):=u2d1(u,t)4e2ut,d3(u,t):=u3d2(u,t)8(1+t)4e2u,d4(u,t):=u3d3(u,t)e2ut;\begin{array}[c]{ccc}d_{1}(u,t):=\dfrac{\partial_{u}d_{0}(u,t)}{2(1+t)e^{2u}},&&d_{2}(u,t):=\dfrac{\partial_{u}^{2}d_{1}(u,t)}{4e^{2ut}},\\ d_{3}(u,t):=\dfrac{\partial_{u}^{3}d_{2}(u,t)}{8(1+t)^{4}e^{2u}},&&d_{4}(u,t):=\dfrac{\partial_{u}^{3}d_{3}(u,t)}{e^{2ut}};\end{array}

we obtain

d1(0,t)= ud1(0,t)=0,d_{1}(0,t)=\text{ }\partial_{u}d_{1}(0,t)=0, (37)
d2(0,t)= ud2(0,t)= u2d2(0,t)=0,d_{2}(0,t)=\text{ }\partial_{u}d_{2}(0,t)=\text{ }\partial_{u}^{2}d_{2}(0,t)=0, (38)
d3(0,t)=5t2ud3(0,t)=2t2(7+22t)u2d3(0,t)=8t2(1+18t+25t2)d_{3}(0,t)=5t^{2}\text{, }\partial_{u}d_{3}(0,t)=2t^{2}(7+22t)\text{, }\partial_{u}^{2}d_{3}(0,t)=8t^{2}(1+18t+25t^{2})\text{, } (39)

and

d4(u,t)=16t3(10+4u+42t+29ut+2u2t+43t2+64ut2+10u2t2+44ut3+16u2t3+8u2t4).d_{4}(u,t)=16t^{3}\left(10+4u+42t+29ut+2u^{2}t+43t^{2}+64ut^{2}+10u^{2}t^{2}+44ut^{3}+16u^{2}t^{3}+8u^{2}t^{4}\right).

Since d4(u,t)>0d_{4}(u,t)>0 and the expressions in (39) are positive, we have d3(u,t)>0d_{3}(u,t)>0. Similarly, by (38) and (37) we get that d2(u,t)d_{2}(u,t), d1(u,t)d_{1}(u,t)\ and finally d0(u,t)d_{0}(u,t) are all positive. \blacksquare

In the following proposition, we show that the conjecture holds for S=[c¯ε,c¯]S=[\overline{c}-\varepsilon,\overline{c}] with ε>0\varepsilon>0 small enough.

Proposition 5.18

In the case c¯\overline{c} >qσ2/(2μ)>q\sigma^{2}/(2\mu), there exists ε>0\varepsilon>0 such that Wζ¯=VW^{\overline{\zeta}}=V in [0,)×[c¯ε,c¯][0,\infty)\times[\overline{c}-\varepsilon,\overline{c}], where ζ¯\overline{\zeta} is the unique solution of (31) with boundary condition (30).

Proof. Take ε>0\varepsilon>0 small enough. By Proposition 5.17, ζ¯\overline{\zeta} is increasing and so, by Proposition 5.14, Wζ¯W^{\overline{\zeta}} is (2,1)-differentiable in [0,)×[c¯ε,c¯][0,\infty)\times[\overline{c}-\varepsilon,\overline{c}]. Hence, by Proposition 5.15, we need to prove that xWζ¯(ζ¯(c),c)1\partial_{x}W^{\overline{\zeta}}(\overline{\zeta}(c),c)\leq 1 for c[c¯ε,c¯]c\in[\overline{c}-\varepsilon,\overline{c}] and cWζ¯(x,c)0\partial_{c}W^{\overline{\zeta}}(x,c)\leq 0 for (x,c)(x,c)\ with c[c¯ε,c¯]c\in[\overline{c}-\varepsilon,\overline{c}] and 0xζ¯(c).0\leq x\leq\overline{\zeta}(c).

In order to show that xWζ¯(ζ¯(c),c)1\partial_{x}W^{\overline{\zeta}}(\overline{\zeta}(c),c)\leq 1 for c[c¯ε,c¯]c\in[\overline{c}-\varepsilon,\overline{c}], we will see that xWζ¯(z¯,c¯)<1\partial_{x}W^{\overline{\zeta}}(\overline{z},\overline{c})<1 and the result will follow by continuity. For the unique point

x0:=1θ2(c¯)log(qc¯θ2(c¯))x_{0}:=\frac{1}{\theta_{2}(\overline{c})}\log(\frac{-q}{\overline{c}\theta_{2}(\overline{c})})

where xWζ¯(x0,c¯)=1\partial_{x}W^{\overline{\zeta}}(x_{0},\overline{c})=1, we have that x0>0x_{0}>0 because c¯\overline{c} >qσ2/(2μ)>q\sigma^{2}/(2\mu).

From Lemma 5.16, the condition xb0(x0,c¯)<0\partial_{x}b_{0}(x_{0},\overline{c})<0 implies xWζ¯(z¯,c¯)<1\partial_{x}W^{\overline{\zeta}}(\overline{z},\overline{c})<1. Taking t=qθ2(c¯)c¯>0t=\dfrac{-q~{}}{\theta_{2}(\overline{c})\overline{c}}>0 and r=θ1(c¯)θ2(c¯)>0r=-\dfrac{~{}\theta_{1}(\overline{c})}{\theta_{2}(\overline{c})}>0, we can write

xb0(x0,c¯)=f(x0,c¯)g(t,r),\partial_{x}b_{0}(x_{0},\overline{c})=f(x_{0},\overline{c})g(t,r),

where

f(x0,c¯)=q3c¯θ2(c¯)θ22(c¯)(eθ1(c¯)x0eθ2(c¯)x0)2>0,f(x_{0},\overline{c})=q^{3}\overline{c}~{}\theta_{2}^{\prime}(\overline{c})\theta_{2}^{2}(\overline{c})\left(e^{\theta_{1}(\overline{c})x_{0}}-e^{\theta_{2}(\overline{c})x_{0}}\right)^{2}>0,

and

g(t,r)=1+1+(r+1)log(t)tr+1+r+1r(11+(t+1)(r+1)tr+1).g(t,r)=-1+\frac{1+(r+1)\log(t)}{t^{r+1}}+\frac{r+1}{r}\left(1-\frac{1+(t+1)(r+1)}{t^{r+1}}\right).

Since c¯\overline{c} >qσ2/(2μ)>q\sigma^{2}/(2\mu), we have that t<1.t<1. We also get g(t,r)<0g(t,r)<0, because g(1,r)=0g(1,r)=0 and

tg(t,r)=(r+1)2tr(t+1log(t))<0.\partial_{t}g(t,r)=\frac{(r+1)^{2}}{t^{r}}(t+1-\log(t))<0.

So xb0(x0,c¯)<0.\partial_{x}b_{0}(x_{0},\overline{c})<0.

Let us show now that cWζ¯(x,c)0\partial_{c}W^{\overline{\zeta}}(x,c)\leq 0 for c[c¯ε,c¯]c\in[\overline{c}-\varepsilon,\overline{c}] and 0xζ¯(c).0\leq x\leq\overline{\zeta}(c). Since

cWζ¯(x,c)=cHζ¯(x,c)=(eθ1(c)xeθ2(c)x)(b0(x,c)b1(x,c)Aζ¯(c)+(Aζ¯)(c)),\partial_{c}W^{\overline{\zeta}}(x,c)=\partial_{c}H^{\overline{\zeta}}(x,c)=(e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x})\left(-b_{0}(x,c)-b_{1}(x,c)A^{\overline{\zeta}}(c)+\left(A^{\overline{\zeta}}\right)^{\prime}(c)\right),

we should analyze the sign of

B(x,c):=b0(x,c)b1(x,c)Aζ¯(c)+(Aζ¯)(c)B(x,c):=-b_{0}(x,c)-b_{1}(x,c)A^{\overline{\zeta}}(c)+\left(A^{\overline{\zeta}}\right)^{\prime}(c)

for c[c¯ε,c¯]c\in[\overline{c}-\varepsilon,\overline{c}] and 0xζ¯(c).0\leq x\leq\overline{\zeta}(c). We have that B(ζ¯(c),c)=xB(ζ¯(c),c)=0.B(\overline{\zeta}(c),c)=\partial_{x}B(\overline{\zeta}(c),c)=0. Also, from Lemma 5.16, xxB(z¯,c¯)=xxb0(z¯,c¯)>0.\partial_{xx}B(\overline{z},\overline{c})=-\partial_{xx}b_{0}(\overline{z},\overline{c})>0. So, xxB(x,c)>0\partial_{xx}B(x,c)>0 in some neighborhood

U=(z¯ε1,z¯+ε1)×(c¯ε1,c¯][0,)×[c¯ε,c¯]U=(\overline{z}-\varepsilon_{1},\overline{z}+\varepsilon_{1})\times(\overline{c}-\varepsilon_{1},\overline{c}]\subset[0,\infty)\times[\overline{c}-\varepsilon,\overline{c}]

of (z¯,c¯)(\overline{z},\overline{c}); and this implies that for any c[c¯ε,c¯],c\in[\overline{c}-\varepsilon,\overline{c}], the function B(,c)B(\cdot,c)\ reaches a strict local maximum at x=ζ¯(c)x=\overline{\zeta}(c). In particular, by Lemma 5.16, B(,c¯)=b0(,c¯)+(Aζ¯)(c¯)B(\cdot,\overline{c})=-b_{0}(\cdot,\overline{c})+\left(A^{\overline{\zeta}}\right)^{\prime}(\overline{c}) reaches the strict global maximum at x=z¯x=\overline{z} because xB(,c¯)=xb0(,c¯)\partial_{x}B(\cdot,\overline{c})=-\partial_{x}b_{0}(\cdot,\overline{c}) changes from positive to negative at this point. This implies that there exists a δ>0\delta>0 such that B(x,c¯)<δB(x,\overline{c})<-\delta for 0xz¯ε1.0\leq x\leq\overline{z}-\varepsilon_{1}. Therefore, by continuity arguments, we get B(x,c)<0B(x,c)<0 for (x,c)[0,z¯ε1]×[c¯ε,c¯](x,c)\in[0,\overline{z}-\varepsilon_{1}]\times[\overline{c}-\varepsilon,\overline{c}] for some ε>0\varepsilon>0 small enough and so we conclude the result. \blacksquare

In the next proposition we show that the optimal value function VV is a uniform limit of ζ\zeta-value functions. Moreover, it is a limit of value functions of extended threshold strategies. The proof uses the convergence result obtained in Section 4.

Proposition 5.19

Consider, as in Section 4, a sequence of sets 𝒮n\mathcal{S}^{n} (with knk_{n} elements) of the form 

𝒮n={c1n=c¯<c2n<<cknn=c¯}\mathcal{S}^{n}=\left\{c_{1}^{n}=\underline{c}<c_{2}^{n}<\cdots<c_{k_{n}}^{n}=\overline{c}\right\}

satisfying 𝒮0={c¯,c¯}\mathcal{S}^{0}=\left\{\underline{c},\overline{c}\right\}, 𝒮n𝒮n+1\mathcal{S}^{n}\subset\mathcal{S}^{n+1} and mesh-size δ(𝒮n):=maxi=2,kn(cinci1n)0\delta(\mathcal{S}^{n}):=\max_{i=2,k_{n}}\left(c_{i}^{n}-c_{i-1}^{n}\right)\searrow 0 as nn goes to infinity, and the optimal threshold functions zn:S~n[0,)z_{n}^{\ast}:\widetilde{S}_{n}\rightarrow[0,\infty) defined in Section 5.1. Then, taking ζn(c):=i=1kn1zn(cin)I[cin,ci+1n)\zeta_{n}(c):={\displaystyle\sum\nolimits_{i=1}^{k_{n}-1}}z_{n}^{\ast}(c_{i}^{n})I_{[c_{i}^{n},c_{i+1}^{n})}, the ζn\zeta_{n}-value functions WζnW^{\zeta_{n}} converge uniformly to the optimal value function V.V.

Proof. Take the functions Vn:[0,)×[c¯,c¯]V^{n}:[0,\infty)\times[\underline{c},\overline{c}]\rightarrow{\mathbb{R}} defined in (12). By Proposition 4.1 and Theorem 4.2, VnV^{n} converges uniformly to the optimal value function VV. Since by Proposition 2.3 VV is Lipschitz with constant KK and by definition Vn(,cin)=Wζn(,cin)V^{n}(\cdot,c_{i}^{n})=W^{\zeta_{n}}(\cdot,c_{i}^{n}) for cin𝒮nc_{i}^{n}\in\mathcal{S}^{n}, we get for c[cin,ci+1n)c\in[c_{i}^{n},c_{i+1}^{n})

0V(x,c)Wζn(x,c)(V(x,c)V(x,cin))+(V(x,cin)Vn(x,cin))+|Wζn(x,cin)Wζn(x,c)|Kδ(𝒮n)+max|VVn|+|Wζn(x,cin)Wζn(x,c)|.\begin{array}[c]{l}0\leq V(x,c)-W^{\zeta_{n}}(x,c)\\ \begin{array}[c]{ll}\leq&\left(V(x,c)-V(x,c_{i}^{n})\right)+\left(V(x,c_{i}^{n})-V^{n}(x,c_{i}^{n})\right)+\left|W^{\zeta_{n}}(x,c_{i}^{n})-W^{\zeta_{n}}(x,c)\right|\\ \leq&K\delta(\mathcal{S}^{n})+\max\left|V-V^{n}\right|+\left|W^{\zeta_{n}}(x,c_{i}^{n})-W^{\zeta_{n}}(x,c)\right|.\end{array}\end{array}

Hence, in order to prove the result it suffices to show that there exists a K1>0K_{1}>0 such that

|Wζn(x,cin)Wζn(x,c)|K1|cinc|K1δ(𝒮n).\left|W^{\zeta_{n}}(x,c_{i}^{n})-W^{\zeta_{n}}(x,c)\right|\leq K_{1}\left|c_{i}^{n}-c\right|\leq K_{1}\delta(\mathcal{S}^{n}). (40)

We have that Wζn(x,ci+1n)=Wζn(x,c)W^{\zeta_{n}}(x,c_{i+1}^{n})=W^{\zeta_{n}}(x,c) for xζn(cin)x\geq\zeta_{n}(c_{i}^{n}). So if ζn(cin)>0\zeta_{n}(c_{i}^{n})>0 it remains to prove (40) for 0<x<ζn(cin)0<x<\zeta_{n}(c_{i}^{n}). Let us define

h(x,c):=eθ1(c)xeθ2(c)xeθ1(c)ζn(ci)eθ2(c)ζn(ci)h(x,c):=\dfrac{e^{\theta_{1}(c)x}-e^{\theta_{2}(c)x}}{e^{\theta_{1}(c)\zeta_{n}(c_{i})}-e^{\theta_{2}(c)\zeta_{n}(c_{i})}}

and

u(x,c):=(Hζn(ζn(ci),ci+1)cq(1eθ2(c)ζn(ci)))h(x,c).u(x,c):=\left(H^{\zeta_{n}}(\zeta_{n}(c_{i}),c_{i+1})-\frac{c}{q}\left(1-e^{\theta_{2}(c)\zeta_{n}(c_{i})}\right)\right)h(x,c).

We can write

|Wζn(x,cin)Wζn(x,c)|=|Hζn(x,cin)Hζn(x,c)||cinq(1eθ2(cin)x)cq(1eθ2(c)x)|+|u(x,c)u(x,ci)|.\begin{array}[c]{lll}\left|W^{\zeta_{n}}(x,c_{i}^{n})-W^{\zeta_{n}}(x,c)\right|&=&\left|H^{\zeta_{n}}(x,c_{i}^{n})-H^{\zeta_{n}}(x,c)\ \right|\\ &\leq&\left|\frac{c_{i}^{n}}{q}\left(1-e^{\theta_{2}(c_{i}^{n})x}\right)-\frac{c}{q}\left(1-e^{\theta_{2}(c)x}\right)\right|+\left|u(x,c)-u(x,c_{i})\right|.\end{array}

It is straightforward to see that there exists K11 K_{1}^{1\text{ }}such that

|cinq(1eθ2(cin)x)cq(1eθ2(c)x)|K11|ccin| for some K11>0.\left|\frac{c_{i}^{n}}{q}\left(1-e^{\theta_{2}(c_{i}^{n})x}\right)-\frac{c}{q}\left(1-e^{\theta_{2}(c)x}\right)\right|\leq K_{1}^{1}\left|c-c_{i}^{n}\right|\text{ for some }K_{1}^{1}>0.

Since h(,c)h(\cdot,c) is increasing, we obtain h(c,0)=0<h(x,c)h(ζn(ci),c)=1h(c,0)=0<h(x,c)\leq h(\zeta_{n}(c_{i}),c)=1. Also, we have that 0Hζn(x,c)V(x,c)c¯/q0\leq H^{\zeta_{n}}(x,c)\leq V(x,c)\leq\overline{c}/q\ for 0<x<ζn(cin);0<x<\zeta_{n}(c_{i}^{n}); so using that θ2(c)<0\theta_{2}(c)<0 it is easy to show that there exist constants K12,K13>0K_{1}^{2},K_{1}^{3}>0 such that

|cu(x,c)||1q(1eθ2(c)ζn(ci))+cqθ2(c)ζn(ci)eθ2(c)ζn(ci)θ2(c)θ2(c)|h(x,c)+|Hζn(ζn(ci),ci+1)cq(1eθ2(c)ζn(ci))||ch(x,c)|K12+K13|ch(x,c)|.\begin{array}[c]{lll}\left|\partial_{c}u(x,c)\right|&\leq&\left|-\frac{1}{q}\left(1-e^{\theta_{2}(c)\zeta_{n}(c_{i})}\right)+\frac{c}{q}\theta_{2}(c)\zeta_{n}(c_{i})e^{\theta_{2}(c)\zeta_{n}(c_{i})}\frac{\theta_{2}^{\prime}(c)}{\theta_{2}(c)}\right|h(x,c)\\ &&+\left|H^{\zeta_{n}}(\zeta_{n}(c_{i}),c_{i+1})-\frac{c}{q}\left(1-e^{\theta_{2}(c)\zeta_{n}(c_{i})}\right)\right|\left|\partial_{c}h(x,c)\right|\\ &\leq&K_{1}^{2}+K_{1}^{3}\left|\partial_{c}h(x,c)\right|.\end{array}

Calling y=ζn(ci)>0y=\zeta_{n}(c_{i})>0\ and ρ=xζn(ci)(0,1),\rho=\frac{x}{\zeta_{n}(c_{i})}\in(0,1), we obtain

ch(x,c)=T(ρ,y,c)=(θ1(c)ρyeθ1(c)ρyθ2(c)ρyeθ2(c)ρy)(eθ1(c)yeθ2(c)y)(eθ1(c)yeθ2(c)y)2 (θ1(c)yeθ1(c)yθ2(c)yeθ2(c)y)(eθ1(c)ρyeθ2(c)ρy)(eθ1(c)yeθ2(c)y)2 .\begin{array}[c]{lll}\partial_{c}h(x,c)&=&T(\rho,y,c)\\ &=&\dfrac{\left(\theta_{1}^{\prime}(c)\rho ye^{\theta_{1}(c)\rho y}-\theta_{2}^{\prime}(c)\rho ye^{\theta_{2}(c)\rho y}\right)\left(e^{\theta_{1}(c)y}-e^{\theta_{2}(c)y}\right)}{\left(e^{\theta_{1}(c)y}-e^{\theta_{2}(c)y}\right)^{2}}\text{ }\\ &&-\dfrac{\left(\theta_{1}^{\prime}(c)ye^{\theta_{1}(c)y}-\theta_{2}^{\prime}(c)ye^{\theta_{2}(c)y}\right)\left(e^{\theta_{1}(c)\rho y}-e^{\theta_{2}(c)\rho y}\right)}{\left(e^{\theta_{1}(c)y}-e^{\theta_{2}(c)y}\right)^{2}}\text{ .}\end{array}

Now, on the one hand,

T(0,y,c)=T(1,y,c)=0limy0T(ρ,y,c)=0T(0,y,c)=T(1,y,c)=0\text{, }\lim_{y\rightarrow 0}T(\rho,y,c)=0

and on the other hand, taking ε>0\varepsilon>0, and yε,y\geq\varepsilon, there exists K14>0K_{1}^{4}>0 such that

T(ρ,y,c)=y(1ρ)θ1(c)ey(1ρ)θ1(c)θ1(c)(1e(θ2(c)θ1(c))y)2θ1(c)+θ1(c)yeθ1(c)yeθ2(c)ρyρe((ρ1)θ1(c)+θ2(c))y(1e(θ2(c)θ1(c))y)2θ1(c)θ1(c)+θ1(c)yeθ1(c)ye((ρ1)θ1(c)+θ2(c))y+e((ρ+1)θ2(c)θ1(c))y(ρ1)ρeθ2(c)ρy(1e(θ2(c)θ1(c))y)2θ2(c)θ1(c)K14,\begin{array}[c]{lll}T(\rho,y,c)&=&-y(1-\rho)\theta_{1}(c)e^{-y(1-\rho)\theta_{1}(c)}\dfrac{\theta_{1}^{\prime}(c)}{\left(1-e^{(\theta_{2}(c)-\theta_{1}(c))y}\right)^{2}\theta_{1}(c)}\\ &&+\theta_{1}(c)ye^{-\theta_{1}(c)y}\dfrac{e^{\theta_{2}(c)\rho y}-\rho e^{\left((\rho-1)\theta_{1}(c)+\theta_{2}(c)\right)y}}{\left(1-e^{(\theta_{2}(c)-\theta_{1}(c))y}\right)^{2}}\frac{\theta_{1}^{\prime}(c)}{\theta_{1}(c)}\\ &&+\theta_{1}(c)ye^{-\theta_{1}(c)y}\dfrac{e^{\left((\rho-1)\theta_{1}(c)+\theta_{2}(c)\right)y}+e^{\left((\rho+1)\theta_{2}(c)-\theta_{1}(c)\right)y}(\rho-1)-\rho e^{\theta_{2}(c)\rho y}}{\left(1-e^{(\theta_{2}(c)-\theta_{1}(c))y}\right)^{2}}\frac{\theta_{2}^{\prime}(c)}{\theta_{1}(c)}\\ &\leq&K_{1}^{4},\end{array}

because sesse^{-s} is bounded for s0.s\geq 0. So we get (40) and finally the result. ~{}\blacksquare

6 Numerical examples

Let us finally consider a numerical illustration for the case μ=4\mu=4, σ=2\sigma=2 and q=0.1q=0.1 for S=[0,c¯]S=[0,\overline{c}]. In order to obtain the corresponding optimal value function VS,V^{S}, we proceed as follows:

  1. 1.

    We obtain ζ¯\overline{\zeta} solving numerically the ordinary differential equation (31) with boundary condition (30), using the Euler method.

  2. 2.

    We check that the ζ¯\overline{\zeta}-value function Wζ¯W^{\overline{\zeta}} defined in (27) satisfies the conditions of Proposition 5.15. Hence Wζ¯W^{\overline{\zeta}} is the optimal value function VSV^{S}.

Let us first consider the case c¯=4\overline{c}=4 (i.e. the maximal allowed dividend rate is the drift of the surplus process XtX_{t}). Figure 1(a) depicts VS(x,0)V^{S}(x,0) as a function of initial capital xx together with the value function VNR(x)V_{NR}(x) of the classical dividend problem without ratcheting constraint, for which the optimal strategy is a threshold strategy of not paying any dividends when the surplus level is below bb^{*} and pay dividends at rate c¯\overline{c} above bb^{*}. Recall from Asmussen and Taksar [7] or also Gerber and Shiu [20] that in the notation of the present paper

VNR(x)={c¯qeθ1(0)xeθ2(0)xθ1(0)eθ1(0)bθ2(0)eθ2(0)b,0xb,c¯q+eθ2(c¯)(xb)/θ2(c¯),xbV_{NR}(x)=\left\{\begin{array}[c]{ll}\frac{\overline{c}}{q}\,\frac{e^{\theta_{1}(0)x}-e^{\theta_{2}(0)x}}{\theta_{1}(0)\,e^{\theta_{1}(0)b^{*}}-\theta_{2}(0)\,e^{\theta_{2}(0)b^{*}}},&0\leq x\leq b^{*},\\ \frac{\overline{c}}{q}+e^{\theta_{2}(\overline{c})(x-b^{*})}/\theta_{2}(\overline{c}),&x\geq b^{*}\end{array}\right.

with optimal threshold

b=1θ1(0)θ2(0)logθ2(0)(θ2(0)θ2(c¯))θ1(0)(θ1(0)θ2(c¯)).b^{*}=\frac{1}{\theta_{1}(0)-\theta_{2}(0)}\log\frac{\theta_{2}(0)\;(\theta_{2}(0)-\theta_{2}(\overline{c}))}{\theta_{1}(0)\;(\theta_{1}(0)-\theta_{2}(\overline{c}))}.

One observes that for both small and large initial capital xx the efficiency loss when introducing the ratcheting constraint is very small, only for intermediate values of xx the resulting expected discounted dividends are significantly smaller, but even there the relative efficiency loss is not big (see Figure 2(a) for a plot of this difference). We also compare VS(x,0)V^{S}(x,0) in Figure 1(a) with the optimal value function

V1(x):=V0(x)for S={0,c¯}V_{1}(x):=V^{0}(x)\;\text{for }S=\{0,\overline{c}\}

of the further constrained one-step ratcheting strategy, where only once during the lifetime of the process the dividend rate can be increased from 0 to c¯\overline{c}. That latter case was studied in detail in [3], where it was also shown that the optimal threshold level bRb_{R}^{*} for that switch is exactly the one for which the resulting expected discounted dividends match with the ones of a threshold strategy underlying VNRV_{NR}, but at the (for the latter problem non-optimal) threshold bRb_{R}^{*}. We observe that the performance of this simple one-step ratcheting is already remarkably close to the one of the overall optimal ratcheting strategy represented by VS(x,0)V^{S}(x,0) (see also Figure 2(b) for a plot of the difference). A similar effect had already been observed for the optimal ratcheting in the Cramér-Lundberg model (cf. [1]).

Figure 1(b) depicts the optimal ratcheting curve (ζ(c),c)(\zeta(c),c) underlying VS(x,0)V^{S}(x,0) for this example together with the optimal threshold bb^{\ast} of the unconstrained dividend problem and the optimal switching barrier bRb_{R}^{\ast} for the one-step ratcheting strategy. One sees that the irreversibility of the dividend rate increase in the ratcheting case leads to a rather conservative behavior of not starting any (even not small) dividend payments until the surplus level is above the optimal threshold level bb^{\ast} underlying the non-constrained dividend problem. On the other hand, the one-step ratcheting strategy with optimal switching barrier bRb_{R}^{\ast} roughly in the middle of the optimal curve already leads to a remarkably good approximation (lower bound) for the performance of the overall optimal ratcheting strategy.

In Figures 3 and 4 we give the analogous plots for the case c¯=8\overline{c}=8, so that the maximal dividend rate is twice as large as the drift μ\mu of the uncontrolled risk process. The global picture is quite similar, also in this case the efficiency loss introduced by ratcheting is more pronounced and present also for larger initial capital xx. Also, the further efficiency loss by restricting to a simple one-step ratcheting strategy is considerably larger for not too large xx. Finally, in that case the first increase of dividends already happens for surplus values (slightly) smaller than the optimal threshold bb^{*} of the unconstrained case.

Refer to caption
(a) VS(x,0)V^{S}(x,0) (black) together with VNR(x)V_{NR}(x) (blue) and V1(x)V_{1}(x) (red)
Refer to caption
(b) Optimal curve (ζ(c),c)(\zeta(c),c) (black) together with bb^{*} (blue) and bRb_{R}^{*} (red)
Figure 1: c¯=4\overline{c}=4
Refer to caption
(a) VNR(x)VS(x,0)V_{NR}(x)-V^{S}(x,0) as a function of xx (c¯=4\overline{c}=4)
Refer to caption
(b) VS(x,0)V1(x)V^{S}(x,0)-V_{1}(x) as a function of xx (c¯=4\overline{c}=4)
Figure 2: c¯=4\overline{c}=4
Refer to caption
(a) VS(x,0)V^{S}(x,0) (black) together with VNR(x)V_{NR}(x) (blue) and V1(x)V_{1}(x) (red)
Refer to caption
(b) Optimal curve (ζ(c),c)(\zeta(c),c) (black) together with bb^{*} (blue) and bRb_{R}^{*} (red)
Figure 3: c¯=8\overline{c}=8
Refer to caption
(a) VS(x,0)V^{S}(x,0) (black) together with VNR(x)V_{NR}(x) (blue) and V1(x)V_{1}(x) (red)
Refer to caption
(b) VS(x,0)V1(x)V^{S}(x,0)-V_{1}(x) as a function of xx
Figure 4: c¯=8\overline{c}=8

7 Conclusion

In this paper we studied and solved the problem of finding optimal dividend strategies in a Brownian risk model, when the dividend rate can not be decreased over time. We showed that the value function is the unique viscosity solution of a two-dimensional Hamilton-Jacobi-Bellman equation and it can be approximated arbitrarily closely by threshold strategies for finitely many possible dividend rates, which are established to be optimal in their discrete setting. We used calculus of variation techniques to identify the optimal curve that separates the state space into a change and a non-change region and provided partial results for the overall optimality of this strategy (which can be seen as a two-dimensional analogue of the optimality of dividend threshold strategies in the one-dimensional diffusion setting without the ratcheting constraint). In contrast to [2], the same analysis is applicable for all finite levels of maximal dividend rate c¯\overline{c}, i.e. also if the latter exceeds the drift μ\mu. We also gave some numerical examples determining the optimal curve strategy. These results illustrate that the ratcheting constraint does not reduce the efficiency of the optimal dividend strategy substantially and that, much as in the compound Poisson setting, the simpler strategy of only stepping up the dividend rate once during the lifetime of the process is surprisingly close to optimal in absolute terms. In terms of a possible direction of future research, as mentioned in Section 5 we conjecture that a curve strategy dividing the state space into a change and a non-change region is optimal in full generality for the diffusion model, and it remains open to formally prove the latter. Furthermore, it could be interesting to extend the results of the present paper to the case where the dividend rate may be decreased by a certain percentage of its current value (see e.g. [5]) or to place the dividend consumption pattern into a general habit formation framework (see e.g. [6] for an interesting related paper in a deterministic setup).

8 Appendix

Proof of Proposition 2.3. By Proposition 2.2, we have

0VS(x2,c1)VS(x1,c2)0\leq V^{S}(x_{2},c_{1})-V^{S}(x_{1},c_{2}) (41)

for all 0x1x20\leq x_{1}\leq x_{2} and c1,c2Sc_{1},c_{2}\in S with c1c2.c_{1}\leq c_{2}.

Let us show now, that there exists K1>0K_{1}>0 such that

VS(x2,c)VS(x1,c)K1(x2x1)V^{S}(x_{2},c)-V^{S}(x_{1},c)\leq K_{1}\left(x_{2}-x_{1}\right) (42)

for all 0x1x20\leq x_{1}\leq x_{2}. Take ε>0\varepsilon>0 and CΠx2,cSC\in\Pi_{x_{2},c}^{S} such that

J(x2;C)VS(x2,c)ε,J(x_{2};C)\geq V^{S}(x_{2},c)-\varepsilon, (43)

the associated control process is given by

XtC=x2+0t(μCs)𝑑s+Wt.X_{t}^{C}=x_{2}+\int_{0}^{t}(\mu-C_{s})ds+W_{t}.

Let τ\tau be the ruin time of the process XtCX_{t}^{C}. Define C~Πx1,cS\widetilde{C}\in\Pi_{x_{1},c}^{S} as C~t=Ct\widetilde{C}_{t}=C_{t} and the associated control process

 XtC~=x1+0t(μCs)𝑑s+Wt.\text{ }X_{t}^{\widetilde{C}}=x_{1}+\int_{0}^{t}(\mu-C_{s})ds+W_{t}.

Let τ~τ\widetilde{\tau}\leq\tau be the ruin time of the process XtC~X_{t}^{\widetilde{C}}; it holds that XtCXtC~=x2x1X_{t}^{C}-X_{t}^{\widetilde{C}}=x_{2}-x_{1} for tτ~t\leq\widetilde{\tau}. Hence we have

VS(x2,c)VS(x1,c)J(x2;C)J(x1;C~)+εVS(x2x1,0)+εVNR(x2x1)+εK1(x2x1)+ε.\begin{array}[c]{lll}V^{S}(x_{2},c)-V^{S}(x_{1},c)&\leq&J(x_{2};C)-J(x_{1};\widetilde{C})+\varepsilon\\ &\leq&V^{S}(x_{2}-x_{1},0)+\varepsilon\\ &\leq&V_{NR}(x_{2}-x_{1})+\varepsilon\\ &\leq&K_{1}(x_{2}-x_{1})+\varepsilon.\end{array} (44)

So, by Remark 2.1, we have (42) with K1=VNR(0).K_{1}=V_{NR}^{\prime}(0).

Let us show now that, given c1,c2Sc_{1},c_{2}\in S with c1c2,c_{1}\leq c_{2}, there exists K2>0K_{2}>0 such that

VS(x,c1)VS(x,c2)K2(c2c1).V^{S}(x,c_{1})-V^{S}(x,c_{2})\leq K_{2}\left(c_{2}-c_{1}\right). (45)

Take ε>0\varepsilon>0 and CΠx,c1SC\in\Pi_{x,c_{1}}^{S} such that

J(x;C)VS(x,c1)ε,J(x;C)\geq V^{S}(x,c_{1})-\varepsilon, (46)

define the stopping time

T^=min{t:Ctc2}\widehat{T}=\min\{t:C_{t}\geq c_{2}\} (47)

and denote τ\tau the ruin time of the process XtCX_{t}^{C}. Let us consider C~Πx,c2S\widetilde{C}\in\Pi_{x,c_{2}}^{S}\ as C~t=c2It<T^+CtItT^\widetilde{C}_{t}=c_{2}I_{t<\widehat{T}}+C_{t}I_{t\geq\widehat{T}}; denote by XtC~X_{t}^{\widetilde{C}} the associated controlled surplus process and by τ¯τ\overline{\tau}\leq\tau the corresponding ruin time. We have that C~sCsc2c1\widetilde{C}_{s}-C_{s}\leq c_{2}-c_{1} and so Xτ¯C=Xτ¯CXτ¯C~(c2c1)τ¯X_{\overline{\tau}}^{C}=X_{\overline{\tau}}^{C}-X_{\overline{\tau}}^{\widetilde{C}}\leq(c_{2}-c_{1})\overline{\tau}, which implies

τ¯τCseq(sτ¯)𝑑sVNR((c2c1)τ¯).\int_{\overline{\tau}}^{\tau}C_{s}e^{-q\left(s-\overline{\tau}\right)}ds\leq V_{NR}((c_{2}-c_{1})\overline{\tau}).

Hence, we can write,

VS(x,c1)VS(x,c2)J(x;C)+εJ(x;C~)=𝔼[0τ¯(CsC~s)eqs𝑑s]+𝔼[τ¯τCseqs𝑑s]+ε0+𝔼[τ¯τCseqs𝑑s]+εE[eqτ¯τ¯τCseq(sτ¯)𝑑s]+εK1E[eqτ¯τ¯(c2c1)]+εK2(c2c1)+ε.\begin{array}[c]{lll}V^{S}(x,c_{1})-V^{S}(x,c_{2})&\leq&J(x;C)+\varepsilon-J(x;\widetilde{C})\\ &=&\mathbb{E}\left[\int_{0}^{\overline{\tau}}\left(C_{s}-\widetilde{C}_{s}\right)e^{-qs}ds\right]+\mathbb{E}\left[\int_{\overline{\tau}}^{\tau}C_{s}e^{-qs}ds\right]+\varepsilon\\ &\leq&0+\mathbb{E}\left[\int_{\overline{\tau}}^{\tau}C_{s}e^{-qs}ds\right]+\varepsilon\\ &\leq&E[e^{-q\overline{\tau}}\int_{\overline{\tau}}^{\tau}C_{s}e^{-q\left(s-\overline{\tau}\right)}ds]+\varepsilon\\ &\leq&K_{1}E[e^{-q\overline{\tau}}\overline{\tau}(c_{2}-c_{1})]+\varepsilon\\ &\leq&K_{2}(c_{2}-c_{1})+\varepsilon.\end{array} (48)

So, we deduce (45), taking K2=K1maxt0{eqtt}.K_{2}=K_{1}\max_{t\geq 0}\{e^{-qt}t\}. We conclude the result from (41), (42) and (45). \blacksquare

Proof of Proposition 3.1. Let us show first that VV is a viscosity supersolution in (0,)×[c¯,c¯)(0,\infty)\times[\underline{c},\overline{c}) . By Proposition 2.2, cV0\partial_{c}V\leq 0 in (0,)×[c¯,c¯)(0,\infty)\times[\underline{c},\overline{c}) in the viscosity sense.

Consider now (x,c)(0,)×[c¯,c¯)(x,c)\in(0,\infty)\times[\underline{c},\overline{c}) and the admissible strategy CΠx,cSC\in\Pi_{x,c}^{S}, which pays dividends at constant rate cc up to the ruin time τ\tau. Let XtCX_{t}^{C} be the corresponding controlled surplus process and suppose that there exists a test function φ\varphi for supersolution (8) at (x,c)(x,c). Using Lemma 2.1, we get for h>0h>0

φ(x,c)=V(x,c)𝔼[0τheqscds]+𝔼[eq(τh)φ(XτhC,c))].\begin{array}[c]{lll}\varphi(x,c)&=&V(x,c)\\ &\geq&\mathbb{E}\left[\int\nolimits_{0}^{\tau\wedge h}e^{-q\,s}\,cds\right]+\mathbb{E}\left[e^{-q(\tau\wedge h)}\varphi(X_{\tau\wedge h}^{C},c))\right].\end{array}

Hence, using Itô’s formula

0𝔼[0τheqsc𝑑s]+𝔼[Iτ>h(eqhφ(XsC,c)φ(x,c))]φ(x,c)(h>τ)=𝔼[0τheqsc𝑑s]+𝔼[Iτ>h0heqs(σ22xxφ(XsC,c)+xφ(XsC,c)(μc)qφ(XsC,c))𝑑s]φ(x,c)(h>τ).\begin{array}[c]{lll}0&\geq&\mathbb{E}\left[\int\nolimits_{0}^{\tau\wedge h}e^{-q\,s}\,c\,ds\right]+\mathbb{E}\left[I_{\tau>h}\left(e^{-q\,h}\varphi(X_{s}^{C},c)-\varphi(x,c)\right)\right]-\varphi(x,c)\mathbb{P(}h>\tau)\\ &=&\mathbb{E}\left[\int\nolimits_{0}^{\tau\wedge h}e^{-q\,s}\,c\,ds\right]+\mathbb{E}\left[I_{\tau>h}\int\nolimits_{0}^{h}e^{-q\,s}(\frac{\sigma^{2}}{2}\partial_{xx}\varphi(X_{s}^{C},c)+\partial_{x}\varphi(X_{s}^{C},c)(\mu-c)-q\varphi(X_{s}^{C},c))ds\right]-\varphi(x,c)\mathbb{P(}h>\tau).\end{array}

So, dividing by hh and taking h0+h\rightarrow 0^{+}, we get c(φ)(x,c)0;\mathcal{L}^{c}(\varphi)(x,c)\leq 0;, so that VV is a viscosity supersolution at (x,c)(x,c).

Let us prove now that VV it is a viscosity subsolution in (0,)×[c¯,c¯)(0,\infty)\times[\underline{c},\overline{c}). Assume first that VV is not a subsolution of (8) at (x,c)(0,)×[c¯,c¯)\left(x,c\right)\in(0,\infty)\times[\underline{c},\overline{c}). Then there exist ε>0\varepsilon>0, 0<h<min{x/2,c¯c}0<h<\min\left\{x/2,\overline{c}-c\right\} and a (2,1)-differentiable function ψ\psi with ψ(x,c)=V(x,c)\psi(x,c)=V(x,c) such that ψV\psi\geq V,

max{c(ψ)(y,d),cψ(y,d)}qε<0\max\{\mathcal{L}^{c}(\psi)(y,d),\partial_{c}\psi(y,d)\}\leq-q\varepsilon<0 (49)

for (y,d)\left(y,d\right)\in [xh,x+h]×[c,c+h][x-h,x+h]\times[c,c+h] and

V(y,d)ψ(y,d)εV(y,d)\leq\psi(y,d)-\varepsilon (50)

for (y,d)[xh,x+h]×[c,c+h]\left(y,d\right)\notin[x-h,x+h]\times[c,c+h]. Consider the controlled risk process XtX_{t} corresponding to an admissible strategy CΠx,cSC\in\Pi_{x,c}^{S} and define

τ=inf{t>0: (Xt,Ct)[xh,x+h]×[c,c+h]}.\tau^{\ast}=\inf\{t>0:\text{ }\left(X_{t},C_{t}\right)\notin[x-h,x+h]\times[c,c+h]\}\text{.}

Since CtC_{t} is non-decreasing and right-continuous, it can be written as

Ct=c+0t𝑑Csco+CsCs0st(CsCs),C_{t}=c+\int\nolimits_{0}^{t}dC_{s}^{co}+\sum_{\begin{subarray}{c}C_{s}\neq C_{s^{-}}\\ 0\leq s\leq t\end{subarray}}(C_{s}-C_{s^{-}}), (51)

where CscoC_{s}^{co} is a continuous and non-decreasing function.

Take a (2,1)-differentiable function ψ:(0,)×[c¯,c¯][0,)\psi:(0,\infty)\times[\underline{c},\overline{c}]\rightarrow[0,\infty). Using the expression (51) and the change of variables formula (see for instance [24]), we can write

eqτψ(XτC,Cτ)ψ(x,c)=0τeqsxψ(XsC,Cs)(μCs)ds+0τeqscψ(XsC,Cs)dCsco+CsCs0sτeqs(CsCs)cψ(XsC,Cs)+0τeqs(qψ(XsC,Cs)+σ22xxψ(XsC,Cs))𝑑s+0τeqsxψ(XsC,Cs)σdWs.\begin{array}[c]{l}e^{-q\tau^{\ast}}\psi(X_{\tau^{\ast}}^{C},C_{\tau^{\ast}})-\psi(x,c)\\ \begin{array}[c]{ll}=&\int\nolimits_{0}^{\tau^{\ast}}e^{-qs}\partial_{x}\psi(X_{s}^{C},C_{s^{-}})(\mu-C_{s^{-}})ds+\int\nolimits_{0}^{\tau^{\ast}}e^{-qs}\partial_{c}\psi(X_{s}^{C},C_{s^{-}})dC_{s}^{co}\\ &+\sum_{\begin{subarray}{c}C_{s}\neq C_{s^{-}}\\ 0\leq s\leq\tau^{\ast}\end{subarray}}e^{-qs}(C_{s}-C_{s^{-}})\partial_{c}\psi(X_{s}^{C},C_{s^{-}})\\ &+\int\nolimits_{0}^{\tau^{\ast}}e^{-qs}(-q\psi(X_{s}^{C},C_{s^{-}})+\frac{\sigma^{2}}{2}\partial_{xx}\psi(X_{s}^{C},C_{s^{-}}))ds+\int\nolimits_{0}^{\tau^{\ast}}e^{-qs}\partial_{x}\psi(X_{s}^{C},C_{s^{-}})\sigma dW_{s}.\end{array}\end{array} (52)

Hence, from (49), we can write

𝔼[eqτψ(XτC,Cτ)]ψ(x,c)=𝔼[0τeqsCs(ψ)(XsC,Cs)𝑑s0τeqsCs𝑑s]+𝔼[0τeqscψ(XsC,Cs)dCsc+CsCs0sτeqs(CsCs)cψ(XsC,Cs)]𝔼[ε(eqτ1)0τeqsCs𝑑sqε(0τeqs𝑑Cs)].\begin{array}[c]{l}\mathbb{E}\left[e^{-q\tau^{\ast}}\psi(X_{\tau^{\ast}}^{C},C_{\tau^{\ast}})\right]-\psi(x,c)\\ \begin{array}[c]{ll}=&\mathbb{E}\left[\int\nolimits_{0}^{\tau^{\ast}}e^{-qs}\mathcal{L}^{C_{s^{-}}}(\psi)(X_{s^{-}}^{C},C_{s^{-}})ds-\int\nolimits_{0}^{\tau^{\ast}}e^{-qs}C_{s^{-}}ds\right]\\ &+\mathbb{E}\left[\int\nolimits_{0}^{\tau^{\ast}}e^{-qs}\partial_{c}\psi(X_{s^{-}}^{C},C_{s^{-}})dC_{s}^{c}+\sum_{\begin{subarray}{c}C_{s}\neq C_{s^{-}}\\ 0\leq s\leq\tau^{\ast}\end{subarray}}e^{-qs}(C_{s}-C_{s^{-}})\partial_{c}\psi(X_{s^{-}}^{C},C_{s^{-}})\right]\\ \leq&\mathbb{E}\left[\varepsilon\left(e^{-q\tau^{\ast}}-1\right)-\int\nolimits_{0}^{\tau^{\ast}}e^{-qs}C_{s^{-}}ds-q\varepsilon\left(\int\nolimits_{0}^{\tau^{\ast}}e^{-qs}dC_{s}\right)\right].\end{array}\end{array}

So, from (50)

𝔼[eqτV(XτC,Cτ)]𝔼[ψ(x,c)eqτε]+𝔼[ψ(XτC,Cτ)eqτψ(x,c)]ψ(x,c)ε𝔼(0τeqsCs𝑑s).\begin{array}[c]{l}\mathbb{E}\left[e^{-q\tau^{\ast}}V(X_{\tau^{\ast}}^{C},C_{\tau^{\ast}})\right]\\ \begin{array}[c]{cl}\leq&\mathbb{E}\left[\psi(x,c)-e^{-q\tau^{\ast}}\varepsilon\right]+\mathbb{E}\left[\psi(X_{\tau^{\ast}}^{C},C_{\tau^{\ast}})e^{-q\tau^{\ast}}-\psi(x,c)\right]\\ \leq&\psi(x,c)-\varepsilon-\mathbb{E}(\int\nolimits_{0}^{\tau^{\ast}}e^{-qs}C_{s^{-}}ds).\end{array}\end{array}

Hence, using Lemma 2.1, we have that

V(x,c)=supCΠx,cS𝔼(0τeqsCs𝑑s+ecτV(XτC,Cτ))ψ(x,c)ε.V(x,c)=\sup\limits_{C\in\Pi_{x,c}^{S}}\mathbb{E}\left(\int\nolimits_{0}^{\tau^{\ast}}e^{-qs}C_{s^{-}}ds+e^{-c\tau^{\ast}}V(X_{\tau^{\ast}}^{C},C_{\tau^{\ast}})\right)\leq\psi(x,c)-\varepsilon.

but this is a contradiction because we have assumed that V(x,c)=ψ(x,c)V(x,c)=\psi(x,c). So we have the result. \blacksquare

Proof of Lemma 3.2. A locally Lipschitz function u¯\overline{u} :[0,)×[c¯,c¯]:[0,\infty)\times[\underline{c},\overline{c}]\rightarrow{\mathbb{R}} is a viscosity supersolution of (8) at (x,c)(0,)×(c¯,c¯)(x,c)\in(0,\infty)\times(\underline{c},\overline{c}), if any test function φ\varphi for supersolution at (x,c)(x,c) satisfies

max{c(φ)(x,c),cφ(x,c)}0,\max\{\mathcal{L}^{c}(\varphi)(x,c),\partial_{c}\varphi(x,c)\}\leq 0\text{,} (53)

and a locally Lipschitz function u¯:[0,)×[c¯,c¯]\underline{u}:[0,\infty)\times[\underline{c},\overline{c}]\rightarrow{\mathbb{R}} is a viscosity subsolution of (8) at (x,c)(0,)×(c¯,c¯)(x,c)\in(0,\infty)\times(\underline{c},\overline{c}) if any test function ψ\psi for subsolution at (x,c)(x,c) satisfies

max{c(ψ)(x,c),cψ(x,c)}0.\max\{\mathcal{L}^{c}(\psi)(x,c),\partial_{c}\psi(x,c)\}\geq 0. (54)

Suppose that there is a point (x0,c0)[0,)×(c¯,c¯)(x_{0},c_{0})\in[0,\infty)\times(\underline{c},\overline{c}) such that u¯(x0,c0)u¯(x0,c0)>0\underline{u}(x_{0},c_{0})-\overline{u}(x_{0},c_{0})>0. Let us define h(c)=1+ec/c¯h(c)=1+e^{-{c}/{{\overline{c}}}} and

u¯s(x,c)=sh(c)u¯(x,c)\overline{u}^{s}(x,c)=s\,h(c)\,\overline{u}(x,c)

for any s>1s>1. We have that φ\varphi is a test function for supersolution of u¯\overline{u} at (x,c)(x,c) if and only if φs=sh(c)φ\varphi^{s}=s\,h(c)\,\varphi is a test function for supersolution of u¯s\overline{u}^{s} at (x,c)(x,c). We have

c(φs)(x,c)=sh(c)c(φ)(x,c)+c(1sh(c))<0,\mathcal{L}^{c}(\varphi^{s})(x,c)=sh(c)\mathcal{L}^{c}(\varphi)(x,c)+c(1-sh(c))<0, (55)

and

cφs(x,c)sc¯φ(x,c)ecc¯<0\partial_{c}\varphi^{s}(x,c)\leq-\frac{s}{\overline{c}}\varphi(x,c)e^{-\frac{c}{\overline{c}}}<0 (56)

for φ(x,c)>0.\varphi(x,c)>0. Take s0>1s_{0}>1 such that u¯(x0,c0)u¯s0(x0,c0)>0\underline{u}(x_{0},c_{0})-\overline{u}^{s_{0}}(x_{0},c_{0})>0. We define

M=supx0,c¯cc¯(u¯(x,c)u¯s0(x,c)).M=\sup\limits_{x\geq 0,\underline{c}\leq c\leq\overline{c}}\left(\underline{u}(x,c)-\overline{u}^{s_{0}}(x,c)\right). (57)

Since limxu¯(x,c)c¯/qlimxu¯(x,c)\lim_{x\rightarrow\infty}\underline{u}(x,c)\leq\overline{c}/q\leq\lim_{x\rightarrow\infty}\overline{u}(x,c), there exist b>x0b>x_{0} such that

supc¯cc¯u¯(x,c)u¯s0(x,c)<0 for xb.\sup\limits_{\underline{c}\leq c\leq\overline{c}}\underline{u}(x,c)-\overline{u}^{s_{0}}(x,c)<0\text{ for }x\geq b. (58)

From (58), we obtain that

0<u¯(x0,c0)u¯s0(x0,c0)M:=maxx[0,b],c¯cc¯(u¯(x,c)u¯s0(x,c)).0<\underline{u}(x_{0},c_{0})-\overline{u}^{s_{0}}(x_{0},c_{0})\leq M:=\max\limits_{x\in\left[0,b\right],\underline{c}\leq c\leq\overline{c}}\left(\underline{u}(x,c)-\overline{u}^{s_{0}}(x,c)\right). (59)

Call (x,c):=argmaxx[0,b],c¯cc¯(u¯(x,c)u¯s0(x,c))\left(x^{\ast},c^{\ast}\right):=\arg\max\limits_{x\in\left[0,b\right],\underline{c}\leq c\leq\overline{c}}\left(\underline{u}(x,c)-\overline{u}^{s_{0}}(x,c)\right). Let us consider the set

𝒜={(x,y,c,d):0xybc¯cc¯c¯dc¯}\mathcal{A}=\left\{\left(x,y,c,d\right):0\leq x\leq y\leq b\text{, }\underline{c}\leq\ c\leq\overline{c}\text{, }\underline{c}\leq d\leq\overline{c}\right\}

and, for all λ>0\lambda>0, the functions

Φλ(x,y,c,d)=λ2(xy)2+λ2(cd)2+2mλ2(yx)+λ,Σλ(x,y,c,d)=u¯(x,c)u¯s0(y,d)Φλ(x,y,c,d).\begin{array}[c]{l}\Phi^{\lambda}\left(x,y,c,d\right)=\dfrac{\lambda}{2}\left(x-y\right)^{2}+\dfrac{\lambda}{2}\left(c-d\right)^{2}+\frac{2m}{\lambda^{2}\left(y-x\right)+\lambda},\\ \Sigma^{\lambda}\left(x,y,c,d\right)=\underline{u}(x,c)-\overline{u}^{s_{0}}(y,d)-\Phi^{\lambda}\left(x,y,c,d\right).\end{array} (60)

Calling Mλ=maxAΣλM^{\lambda}=\max\limits_{A}\Sigma^{\lambda} and (xλ,yλ,cλ,dλ)=argmaxAΣλ\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)=\arg\max\limits_{A}\Sigma^{\lambda}, we obtain that MλΣλ(x,x,c,c)=M2mλM^{\lambda}\geq\Sigma^{\lambda}(x^{\ast},x^{\ast},c^{\ast},c^{\ast})=M-\frac{2m}{\lambda}, and so

lim infλMλM.\liminf\limits_{\lambda\rightarrow\infty}M^{\lambda}\geq M. (61)

There exists λ0\lambda_{0} large enough such that if λλ0\lambda\geq\lambda_{0}, then (xλ,yλ,cλ,dλ)\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right) A\notin\partial A, the proof is similar to the one of Lemma 4.5 of [2].

Using the inequality

Σλ(xλ,xλ,cλ,cλ)+Σλ(yλ,yλ,dλ,dλ)2Σλ(xλ,yλ,cλ,dλ),\Sigma^{\lambda}\left(x_{\lambda},x_{\lambda},c_{\lambda},c_{\lambda}\right)+\Sigma^{\lambda}\left(y_{\lambda},y_{\lambda},d_{\lambda},d_{\lambda}\right)\leq 2\Sigma^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right),

we obtain that

λ(xλyλ,cλdλ)22u¯(xλ,cλ)u¯(yλ,dλ)+u¯s0(xλ,cλ)u¯s0(yλ,dλ)+4m(yλxλ).\lambda\left\|(x_{\lambda}-y_{\lambda},c_{\lambda}-d_{\lambda})\right\|_{2}^{2}\leq\underline{u}(x_{\lambda},c_{\lambda})-\underline{u}(y_{\lambda},d_{\lambda})+\overline{u}^{s_{0}}(x_{\lambda},c_{\lambda})-\overline{u}^{s_{0}}(y_{\lambda},d_{\lambda})+4m(y_{\lambda}-x_{\lambda}).

Consequently

λ(xλyλ,cλdλ)226m(xλyλ,cλdλ)2.\lambda\left\|(x_{\lambda}-y_{\lambda},c_{\lambda}-d_{\lambda})\right\|_{2}^{2}\leq 6m\left\|(x_{\lambda}-y_{\lambda},c_{\lambda}-d_{\lambda})\right\|_{2}. (62)

We can find a sequence λn\lambda_{n}\rightarrow\infty such that (xλn,yλn,cλn,dλn)(x^,y^,c^,d^)A\left(x_{\lambda_{n}},y_{\lambda_{n}},c_{\lambda_{n}},d_{\lambda_{n}}\right)\rightarrow\left(\widehat{x},\widehat{y},\widehat{c},\widehat{d}\right)\in A. From (62), we get that

(xλnyλn,cλndλn)26m/λn,\left\|(x_{\lambda_{n}}-y_{\lambda_{n}},c_{\lambda_{n}}-d_{\lambda_{n}})\right\|_{2}\leq 6m/\lambda_{n}, (63)

which gives x^=y^\widehat{x}=\widehat{y} and c^=d^\widehat{c}=\widehat{d}.

Since Σλ(x,y,c,d)=u¯(x,c)u¯s0(y,d)Φλ(x,y,c,d)\Sigma^{\lambda}\left(x,y,c,d\right)=\underline{u}(x,c)-\overline{u}^{s_{0}}(y,d)-\Phi^{\lambda}\left(x,y,c,d\right) reaches the maximum in (xλ,yλ,cλ,dλ)\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)\ in the interior of the set A,A, the function

ψ(x,c)=Φλ(x,yλ,c,dλ)Φλ(xλ,yλ,cλ,dλ)+u¯(xλ,cλ)\psi(x,c)=\Phi^{\lambda}\left(x,y_{\lambda},c,d_{\lambda}\right)-\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)+\underline{u}\left(x_{\lambda},c_{\lambda}\right)

is a test for subsolution for u¯\underline{u} of the HJB equation at the point (xλ,cλ)\left(x_{\lambda},c_{\lambda}\right). In addition, the function

φs0(y,d)=Φλ(xλ,y,cλ,d)+Φλ(xλ,yλ,cλ,dλ)+u¯s0(yλ,dλ)\varphi^{s_{0}}(y,d)=-\Phi^{\lambda}\left(x_{\lambda},y,c_{\lambda},d\right)+\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)+\overline{u}^{s_{0}}\left(y_{\lambda},d_{\lambda}\right)

is a test for supersolution for u¯s0\overline{u}^{s_{0}} at (yλ,dλ)\left(y_{\lambda},d_{\lambda}\right) and so

cφs0(yλ,dλ)s0c2φ(yλ,dλ)ecc2<0\partial_{c}\varphi^{s_{0}}(y_{\lambda},d_{\lambda})\leq-\frac{s_{0}}{c_{2}}\varphi(y_{\lambda},d_{\lambda})e^{-\frac{c}{c_{2}}}<0

(because yλ>0)y_{\lambda}>0). Hence, cψ(xλ,cλ)=cφs0(yλ,dλ)<0\partial_{c}\psi(x_{\lambda},c_{\lambda})=\partial_{c}\varphi^{s_{0}}(y_{\lambda},d_{\lambda})<0, and we have cλ(ψ)(xλ,cλ)0.\mathcal{L}^{c_{\lambda}}(\psi)(x_{\lambda},c_{\lambda})\geq 0.

Assume first that the functions u¯(x,c)\underline{u}(x,c) and u¯s0(y,d)\overline{u}^{s_{0}}(y,d) are (2,1)-differentiable at (xλ,cλ)(x_{\lambda},c_{\lambda})\ and (yλ,dλ)(y_{\lambda},d_{\lambda}) respectively. Since Σλ\Sigma^{\lambda} defined in (60) reaches a local maximum at (xλ,yλ,cλ,dλ)\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right) A\notin\partial A, we have that

xΣλ(xλ,yλ,cλ,dλ)=yΣλ(xλ,yλ,cλ,dλ)=0\partial_{x}\Sigma^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)=\partial_{y}\Sigma^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)=0

and so

xu¯(xλ,cλ)=xΦλ(xλ,yλ,cλ,dλ)=λ(xλyλ)+2m(λ(yλxλ)+1)2=yΦλ(xλ,yλ,cλ,dλ)=xu¯s0(yλ,dλ).\begin{array}[c]{lll}\partial_{x}\underline{u}(x_{\lambda},c_{\lambda})&=&\partial_{x}\Phi^{\lambda}(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda})\\ &=&\lambda\left(x_{\lambda}-y_{\lambda}\right)+\frac{2m}{\left(\lambda\left(y_{\lambda}-x_{\lambda}\right)+1\right)^{2}}\\ &=&-\partial_{y}\Phi^{\lambda}(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda})=\partial_{x}\overline{u}^{s_{0}}(y_{\lambda},d_{\lambda}).\end{array} (64)

Defining A=xxu¯(xλ,cλ)A=\partial_{xx}\underline{u}(x_{\lambda},c_{\lambda}) and B=xxu¯s0(yλ,dλ)B=\partial_{xx}\overline{u}^{s_{0}}(y_{\lambda},d_{\lambda}), we obtain

(xxΣλ(xλ,yλ,cλ,dλ)xyΣλ(xλ,yλ,cλ,dλ)xyΣλ(xλ,yλ,cλ,dλ)yyΣλ(xλ,yλ,cλ,dλ))=(AxxΦλ(xλ,yλ,cλ,dλ)xyΦλ(xλ,yλ,cλ,dλ)xyΦλ(xλ,yλ,cλ,dλ)ByyΦλ(xλ,yλ,cλ,dλ))0.\begin{array}[c]{l}\left(\begin{array}[c]{ll}\partial_{xx}\Sigma^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)&\partial_{xy}\Sigma^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)\\ \partial_{xy}\Sigma^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)&\partial_{yy}\Sigma^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)\end{array}\right)\\ =\left(\begin{array}[c]{ll}A-\partial_{xx}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)&-\partial_{xy}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)\\ -\partial_{xy}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)&-B-\partial_{yy}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)\end{array}\right)\leq 0.\end{array}

It is hence a negative semi-definite matrix, and

(A00B)xyH(Φλ)(xλ,yλ,cλ,dλ):=(xxΦλ(xλ,yλ,cλ,dλ)xyΦλ(xλ,yλ,cλ,dλ)xyΦλ(xλ,yλ,cλ,dλ)yyΦλ(xλ,yλ,cλ,dλ)).\begin{pmatrix}A&0\\ 0&-B\end{pmatrix}\leq\partial_{xy}H\left(\Phi^{\lambda}\right)(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}):=\left(\begin{array}[c]{ll}\partial_{xx}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)&\partial_{xy}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)\\ \partial_{xy}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)&\partial_{yy}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)\end{array}\right).

In the case that u¯(x,c)\underline{u}(x,c) and u¯s0(y,d)\overline{u}^{s_{0}}(y,d) are not (2,1)-differentiable at (xλ,cλ)\left(x_{\lambda},c_{\lambda}\right)\ and (yλ,dλ)(y_{\lambda},d_{\lambda})\ respectively, we can resort to a more general theorem to get a similar result. Using Theorem 3.2 of Crandall, Ishii and Lions [14], it can be proved that for any δ>0\delta>0, there exist real numbers AδA_{\delta} and BδB_{\delta} such that

(Aδ00Bδ)xyH(Φλ)(xλ,yλ,cλ,dλ)+δ(xyH(Φλ)(xλ,yλ,cλ,dλ))2\begin{pmatrix}A_{\delta}&0\\ 0&-B_{\delta}\end{pmatrix}\leq\partial_{xy}H\left(\Phi^{\lambda}\right)(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda})+\delta\left(\partial_{xy}H\left(\Phi^{\lambda}\right)(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda})\right)^{2} (65)

and

σ22Aδ+(μcλ)xψ(xλ,cλ)qψ(xλ,cλ)+cλ0,σ22Bδ+(μdλ)xφs0(yλ,dλ)qφs0(yλ,dλ)+dλ0.\begin{array}[c]{c}\frac{\sigma^{2}}{2}A_{\delta}+(\mu-c_{\lambda})\partial_{x}\psi(x_{\lambda},c_{\lambda})-q\psi(x_{\lambda},c_{\lambda})+c_{\lambda}\geq 0,\\ \frac{\sigma^{2}}{2}B_{\delta}+(\mu-d_{\lambda})\partial_{x}\varphi^{s_{0}}(y_{\lambda},d_{\lambda})-q\varphi^{s_{0}}(y_{\lambda},d_{\lambda})+d_{\lambda}\leq 0.\end{array} (66)

The expression (65) implies that AδBδ0A_{\delta}-B_{\delta}\leq 0 because

xyH(Φλ)(xλ,yλ,cλ,dλ)=xxΦλ(xλ,yλ,cλ,dλ)(1111)\partial_{xy}H\left(\Phi^{\lambda}\right)(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda})=\partial_{xx}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)\begin{pmatrix}1&-1\\ -1&1\end{pmatrix}

and

(xyH(Φλ)(xλ,yλ,cλ,dλ))2=2(xxΦλ(xλ,yλ,cλ,dλ))2(1111).\left(\partial_{xy}H\left(\Phi^{\lambda}\right)(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda})\right)^{2}=2\left(\partial_{xx}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)\right)^{2}\begin{pmatrix}1&-1\\ -1&1\end{pmatrix}.

Therefore,

AδBδ=(11)(Aδ00Bδ)(11)(11)(xyH(Φλ)(xλ,yλ,cλ,dλ)+δ(xyH(Φλ)(xλ,yλ,cλ,dλ))2)(11)=0.\begin{array}[c]{lll}A_{\delta}-B_{\delta}&=&\begin{pmatrix}1&1\end{pmatrix}\left(\begin{array}[c]{cc}A_{\delta}&0\\ 0&-B_{\delta}\end{array}\right)\left(\begin{array}[c]{c}1\\ 1\end{array}\right)\\ &\leq&\begin{pmatrix}1&1\end{pmatrix}\left(\partial_{xy}H\left(\Phi^{\lambda}\right)(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda})+\delta\left(\partial_{xy}H\left(\Phi^{\lambda}\right)(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda})\right)^{2}\right)\left(\begin{array}[c]{c}1\\ 1\end{array}\right)\\ &=&0.\end{array}

And so, since φs0(yλ,dλ)=u¯s0(yλ,dλ)\varphi^{s_{0}}\left(y_{\lambda},d_{\lambda}\right)=\overline{u}^{s_{0}}\left(y_{\lambda},d_{\lambda}\right), ψ(xλ,cλ)=u¯(xλ,cλ)\psi(x_{\lambda},c_{\lambda})=\underline{u}(x_{\lambda},c_{\lambda}) and

xφs0(yλ,dλ)=yΦλ(xλ,yλ,cλ,dλ)=xΦλ(xλ,yλ,cλ,dλ)=xψ(xλ,cλ),\partial_{x}\varphi^{s_{0}}\left(y_{\lambda},d_{\lambda}\right)=-\partial_{y}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)=\partial_{x}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right)=\partial_{x}\psi(x_{\lambda},c_{\lambda}),

we obtain

u¯(xλ,cλ)u¯s0(yλ,dλ)=ψ(xλ,cλ)φs0(yλ,dλ)σ22q(AδBδ)+(cλqdλq)(1xΦλ(xλ,yλ,cλ,dλ))(cλqdλq)(1λ(xλyλ)2m(λ(yλxλ)+1)2).\begin{array}[c]{lll}\underline{u}(x_{\lambda},c_{\lambda})-\overline{u}^{s_{0}}\left(y_{\lambda},d_{\lambda}\right)&=&\psi(x_{\lambda},c_{\lambda})-\varphi^{s_{0}}\left(y_{\lambda},d_{\lambda}\right)\\ &\leq&\frac{\sigma^{2}}{2q}(A_{\delta}-B_{\delta})\\ &&+\left(\frac{c_{\lambda}}{q}-\frac{d_{\lambda}}{q}\right)(1-\partial_{x}\Phi^{\lambda}\left(x_{\lambda},y_{\lambda},c_{\lambda},d_{\lambda}\right))\\ &\leq&\left(\frac{c_{\lambda}}{q}-\frac{d_{\lambda}}{q}\right)(1-\lambda\left(x_{\lambda}-y_{\lambda}\right)-\frac{2m}{\left(\lambda\left(y_{\lambda}-x_{\lambda}\right)+1\right)^{2}}).\end{array} (67)

Hence, from (63) and (61), we get

0\displaystyle 0 <Mlim infλMλlimnMλn=limnΣλn(xλn,yλn,cλn,dλn)=u¯(x^,c^)u¯s0(x^,c^)\displaystyle<M\leq\liminf\limits_{\lambda\rightarrow\infty}M_{\lambda}\leq\lim\limits_{{}_{n\rightarrow\infty}}M_{\lambda_{n}}=\lim\limits_{{}_{n\rightarrow\infty}}\Sigma^{\lambda_{n}}(x_{\lambda_{n}},y_{\lambda_{n}},c_{\lambda_{n}},d_{\lambda_{n}})=\underline{u}(\widehat{x},\widehat{c})-\overline{u}^{s_{0}}(\widehat{x},\widehat{c})
limn(cλnqdλnq)(1λn(xλnyλn)2m(λn(yλnxλn)+1)2)\displaystyle\leq\lim_{n\longrightarrow\infty}\left(\frac{c_{\lambda_{n}}}{q}-\frac{d_{\lambda_{n}}}{q}\right)(1-\lambda_{n}\left(x_{\lambda_{n}}-y_{\lambda_{n}}\right)-\frac{2m}{\left(\lambda_{n}\left(y_{\lambda_{n}}-x_{\lambda_{n}}\right)+1\right)^{2}})
.limn|cλnqdλnq|(1+λn(xλnyλn,cλndλn)2+2m(λn(yλnxλn)+1)2)\displaystyle\leq.\lim_{n\longrightarrow\infty}\left|\frac{c_{\lambda_{n}}}{q}-\frac{d_{\lambda_{n}}}{q}\right|(1+\lambda_{n}\left\|(x_{\lambda_{n}}-y_{\lambda_{n}},c_{\lambda_{n}}-d_{\lambda_{n}})\right\|_{2}+\frac{2m}{\left(\lambda_{n}\left(y_{\lambda_{n}}-x_{\lambda_{n}}\right)+1\right)^{2}})
limn|cλnqdλnq|(1+8m)=0.\displaystyle\leq\lim_{n\longrightarrow\infty}\left|\frac{c_{\lambda_{n}}}{q}-\frac{d_{\lambda_{n}}}{q}\right|(1+8m)=0.

This is a contradiction and so we get the result. \blacksquare

References

  • [1] Albrecher, H., Azcue, P. and Muler N. (2017). Optimal dividend strategies for two collaborating insurance companies. Advances in Applied Probability 49, No.2, 515–548.
  • [2] Albrecher, H., Azcue, P. and Muler N. (2020), Optimal ratcheting of dividends in insurance. SIAM Journal on Control and Optimization, 58(4), 1822–1845.
  • [3] Albrecher H., Bäuerle N. and Bladt M. (2018). Dividends: From refracting to ratcheting. Insurance Math. Econom. 83, 47–58.
  • [4] Albrecher, H. and Thonhauser, S. (2009). Optimality results for dividend problems in insurance. RACSAM-Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 103, No.2, 295–320.
  • [5] Angoshtari, B., Bayraktar, E. and Young, V.R. (2019) Optimal dividend distribution under drawdown and ratcheting constraints on dividend rates. SIAM Journal on Financial Mathematics 10, 2, 547–577.
  • [6] Angoshtari, B., Bayraktar, E. and Young, V.R. (2020) Optimal Consumption under a Habit-Formation Constraint. arXiv preprint arXiv:2012.02277.
  • [7] Asmussen, S.and Taksar, M. (1997). Controlled diffusion models for optimal dividend pay-out. Insurance: Mathematics and Economics 20, 1, 1-15.
  • [8] Avanzi, B. (2009). Strategies for dividend distribution: A review. North American Actuarial Journal 13, 2, 217-251.
  • [9] Avanzi, B., Tu, V., and Wong, B. (2016). A note on realistic dividends in actuarial surplus models. Risks 4, 4, 37, 1–9.
  • [10] Azcue P. and Muler N. (2014). Stochastic Optimization in Insurance: a Dynamic Programming Approach. Springer Briefs in Quantitative Finance. Springer.
  • [11] Azcue, P., Muler, N. and Palmowski, Z. (2019). Optimal dividend payments for a two-dimensional insurance risk process. European Actuarial Journal 9, 1, 241–272.
  • [12] Bäuerle, N. (2004). Approximation of optimal reinsurance and dividend payout policies. Mathematical Finance, 14, 1, 99–113.
  • [13] Cohen, A. and Young, V. R. (2020). Rate of convergence of the probability of ruin in the Cramér-Lundberg model to its diffusion approximation. Insurance: Mathematics and Economics, to appear.
  • [14] Crandall, M. G., Ishii, H. and Lions, P. L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27, 1–67.
  • [15] De Finetti, B. (1957). Su un’Impostazione Alternativa della Teoria Collettiva del Rischio. Transactions of the 15th Int. Congress of Actuaries 2, 433–443.
  • [16] Dybvig, P.H. (1995). Dusenberry’s ratcheting of consumption: optimal dynamic consumption and investment given intolerance for any decline in standard of living.The Review of Economic Studies, 62, No.2, 287–313.
  • [17] Elie, R. and Touzi, N. (2008). Optimal lifetime consumption and investment under a drawdown constraint. Finance and Stochastics 12, 3, 299–330.
  • [18] Gerber, H.U. (1969). Entscheidungskriterien fuer den zusammengesetzten Poisson-Prozess. Schweiz. Aktuarver. Mitt. (1969), No.1, 185–227.
  • [19] Gerber, H. U. and Shiu, E.S.W. (2004). Optimal dividends: analysis with Brownian motion. North American Actuarial Journal, 8, 1, 1–20.
  • [20] Gerber, H. U. and Shiu, E.S.W. (2004). On optimal dividends: from reflection to refraction. Journal of Computational and Applied Mathematics, 186, 1, 4–22.
  • [21] Grandits, P. (2019). On the gain of collaboration in a two dimensional ruin problem. European Actuarial Journal 9, 2, 635–644.
  • [22] Gu, J., Steffensen, M. and Zheng, H.(2017). Optimal dividend strategies of two collaborating businesses in the diffusion approximation model. Mathematics of Operations Research 43, 2, 377–398.
  • [23] Jeon, J., Koo, H.K. and Shin, Y.H. (2018). Portfolio selection with consumption ratcheting. Journal of Economic Dynamics and Control 92, 153–182.
  • [24] Protter, P. (1992). Stochastic integration and differential equations. Berlin: Springer Verlag.
  • [25] Schmidli, H. (2008). Stochastic Control in Insurance. Springer, New York.