This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimal Quantum State Tomography via Weak Value

Xuanmin Zhu [email protected] Dezheng Zhang Runping Gao Qun wei Lixia Liu Zijiang Luo Center for Quantum Information, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, China International Joint Research Center for Data Science and High-Performance Computing, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, China School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China School of Mathematics and Statistics, Xidian University, Xi’an 710071, China Institute of Intelligent Manufacturing, Shunde Polytechnic, Guangdong Shunde 528300,China
Abstract

To improve the efficiency of the state tomography strategy via weak value, we have searched the optimal coupling strength between the system and measuring device. For an arbitrary d-dimensional quantum system, the optimal strengths being used in measuring the real and imaginary parts of the density matrix are obtained. The optimal efficiency of the state tomography has also been studied by using mean square error. The minimal mean square errors in the reconstructed density matrices have been derived. The state tomography strategy studied in this article may be useful in the measurement of the unknown quantum states.

keywords:
Qauantum state tomography , Weak measurement , Weak value
journal: Physical Review A

1 Introduction

An unknown state of the quantum systems could be reconstructed by using quantum state tomography (QST) with perfect accuracy in theory  [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. In practice, the reconstruction of the quantum state suffers from random errors, which can be reduced by repeated measurements. Roughly speaking, the random error decreases as the number of the measurements. The number of the measurements is always determined by the identical quantum systems. Then, the identical unknown quantum systems are the important physical resources in QST. The optimization problem in QST is how to decrease the random errors by measuring a finite number of quantum systems.

Quantum state tomography via weak value (QSTW) is a strategy in which the elements of the unknown density matrix can be directly reconstructed by the measurement results of the weak values [23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. The scheme of QSTW is valid for an arbitrary d-dimensional unknown state and much more easily realized. Thus, much attention has been focused on the method of QSTW [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47].

The coupling strength between the system and measuring device in QSTW is neither strong nor weak. And the real and imaginary parts of the density matrix are individually reconstructed. The coupling strengths of measuring the two parts of the matrix can be different. In this article, we derive the optimal measurement strengths of QSTW and the mean minimal square error of the reconstructed state in theory. Furthermore, we improve the efficiency by the Hermiticity of the reconstructed density matrix. The results of the Monte Carlo simulations show that the theoretical values are consistent with the simulated results.

The rest of this paper is organized as follows. The quantum state tomography via weak value is simply reviewed in Sec. 2, and the optimal measurement strengths and the efficiency are derived in Sec. 3. In Sec. 4, we compare the efficiency of the optimal QSTW with that of the conventional QST. A short conclusion is given in Sec. 5.

2 Quantum state tomography via weak value

In this section, we simply review the quantum state tomography via weak value (QSTW) which is based on the weak measurement theory. We should point out that QSTW is the one named MDST (modified direct state tomography) in Ref. [48]. The procedure of QSTW is performed by the following steps.

First, the quantum systems with the same unknown state ρs\rho_{s} are divided into 2d2d equal parts when the dimension of the systems is dd. We perform a weak measurement on each part, the interaction Hamiltonian between the system and measuring device can be expressed as

Hn=gδ(tt0)Anσx,H_{n}=g\delta(t-t_{0})A_{n}\otimes\sigma_{x}, (1)

where {An=|anan|}\{A_{n}=|a_{n}\rangle\langle a_{n}|\} are the observables of the system, {|an}\{|a_{n}\rangle\} is a basis of the system, and gg is the measurement strength. Without loss of generality, the initial state of the measuring device is ρd=|0d0|\rho_{d}=|0\rangle_{d}\langle 0|, where |0d|0\rangle_{d} is the eigenstate of the usual Pauli matrix σz\sigma_{z} with the eigenvalue 11. After the interaction the combine state of the system and measuring device is

ρn=UnρsρdUn,\rho_{n}=U_{n}\rho_{s}\otimes\rho_{d}U_{n}^{\dagger}, (2)

where Un=eig|anan|σxU_{n}=e^{-ig|a_{n}\rangle\langle a_{n}|\otimes\sigma_{x}}, with =1\hbar=1.

Second, a strong projective measurement is implemented along a basis {|ψj}\{|\psi_{j}\rangle\} on the quantum system. In QSTW, the bases {|an}\{|a_{n}\rangle\} and {|ψj}\{|\psi_{j}\rangle\} are chosen as the mutually unbiased bases (MUBs) which satisfy ψj|an=e2πjni/d/d\langle\psi_{j}|a_{n}\rangle=e^{2\pi jni/d}/\sqrt{d} [49]. Conditioned on obtaining the system state |ψj|\psi_{j}\rangle in the projective measurement, the final measuring device state is

ρdnj=ψj|UnρsρdUn|ψjPj,\rho_{d}^{nj}=\frac{\langle\psi_{j}|U_{n}\rho_{s}\otimes\rho_{d}U_{n}^{\dagger}|\psi_{j}\rangle}{P_{j}}, (3)

where PjP_{j} is the probability of obtaining |ψj|\psi_{j}\rangle.

Third, the weak value WnjW_{nj} which is defined as [30]

Wnj=ψj|anan|ρs|ψjPjW_{nj}=\frac{\langle\psi_{j}|a_{n}\rangle\langle a_{n}|\rho_{s}|\psi_{j}\rangle}{P_{j}} (4)

can determined by measuring the two observables σR\sigma_{R} and σI\sigma_{I} of the measuring device [48, 50, 51, 52, 53, 54, 55]

Wnj=12g[𝐓𝐫(ρdnjσR)+i𝐓𝐫(ρdnjσI)],W_{nj}=\frac{1}{2g}\left[-\mathbf{Tr}(\rho_{d}^{nj}\sigma_{R})+i\mathbf{Tr}(\rho_{d}^{nj}\sigma_{I})\right], (5)

where

σR=gsing[σytan(g2)(Iσz)],σI=gsingσx.\begin{split}\sigma_{R}&=\frac{g}{\sin g}\left[\sigma_{y}-\tan\left(\frac{g}{2}\right)\left(I-\sigma_{z}\right)\right],\\ \sigma_{I}&=\frac{g}{\sin g}\sigma_{x}.\end{split} (6)

Finally, the matrix elements {ρnm}\{\rho_{nm}\} of the unknown state ρs\rho_{s} can be reconstructed by the results of the weak values,

an|ρs|am=jPjψj|amψj|anWnj.\langle a_{n}|\rho_{s}|a_{m}\rangle=\sum_{j}P_{j}\frac{\langle\psi_{j}|a_{m}\rangle}{\langle\psi_{j}|a_{n}\rangle}W_{nj}. (7)

Eq. (6) shows that the real and imaginary parts of the density matrix are measured independently. Thus the coupling strengths used to measuring the real and imaginary parts can be different, which are denoted as gRg_{R} and gIg_{I} respectively. In the next section we will derive the optimal gRg_{R} and gIg_{I}.

3 The optimal coupling strengths and the minimal error

In this section we search the optimal coupling strengths and the minimal error in the reconstructed state ρr\rho_{r}. The mean-square error (MSE) is used to measure the discrepancy between the true state ρs\rho_{s} and the reconstructed state ρr\rho_{r} [13, 14, 15], defined as

E(ρrρsHS2),\begin{split}\mathcal{E}\equiv E(\|\rho_{r}-\rho_{s}\|^{2}_{HS}),\end{split} (8)

where ρrρsHS2\|\rho_{r}-\rho_{s}\|^{2}_{HS} is the Hilbert-Schmidt norm. We have

=E(tr[(ρrρs)(ρrρs)])=nmE(|ρnm,rρnm,s|2).\begin{split}\mathcal{E}&=E(\mathrm{tr}[(\rho_{r}-\rho_{s})^{\dagger}(\rho_{r}-\rho_{s})])\\ &=\sum_{nm}E(|\rho_{nm,r}-\rho_{nm,s}|^{2}).\end{split} (9)

Thus MSE is the sum of the variances of all the elements of the density matrix. There is no system error in QSTW, we have ρs=E(ρ^r)\rho_{s}=E(\hat{\rho}_{r}), where ρ^r\hat{\rho}_{r} is the estimator. From Eq. (9), the MSE can be expressed as

=1N[trE(ρ^rρ^r)tr(ρs2)],\mathcal{E}=\frac{1}{N}[\mathrm{tr}E(\hat{\rho}_{r}^{\dagger}\hat{\rho}_{r})-\mathrm{tr}(\rho_{s}^{2})], (10)

where NN is the number of the measurements.

By Eq. (7), the estimator can be express as

ρ^r=njPjWnjψj|an|anψj|.\hat{\rho}_{r}=\sum_{nj}\frac{P_{j}W_{nj}}{\langle\psi_{j}|a_{n}\rangle}|a_{n}\rangle\langle\psi_{j}|. (11)

Using this equation and |ψj|an|=1/d|\langle\psi_{j}|a_{n}\rangle|=1/\sqrt{d}, we have

trE(ρ^rρ^r)=dnjE(PjWnjWnj),=dnjE(Re(PjWnj2))+E(Im(PjWnj2)).\begin{split}\mathrm{tr}E(\hat{\rho}_{r}^{\dagger}\hat{\rho}_{r})&=d\sum_{nj}E(P_{j}W_{nj}^{*}W_{nj}),\\ &=d\sum_{nj}E(Re(P_{j}W_{nj}^{2}))+E(Im(P_{j}W_{nj}^{2})).\end{split} (12)

Follows from Eqs. (4) and (5),

E(Re(PjWnj2))=ntr(ρn,dσR2)E(Im(PjWnj2))=ntr(ρn,dσI2),\begin{split}E(Re(P_{j}W_{nj}^{2}))&=\sum_{n}\mathrm{tr}(\rho_{n,d}\sigma_{R}^{2})\\ E(Im(P_{j}W_{nj}^{2}))&=\sum_{n}\mathrm{tr}(\rho_{n,d}\sigma_{I}^{2}),\end{split} (13)

where ρn,d=tr(UnρsρdUn)\rho_{n,d}=\mathrm{tr}(U_{n}\rho_{s}\otimes\rho_{d}U_{n}^{\dagger}), the identity operator j|ψjψj|=Is\sum_{j}|\psi_{j}\rangle\langle\psi_{j}|=I_{s} is used in the derivation. The expression of the density matrix ρn,d\rho_{n,d} is

ρn,d=|0d0|+ρnn[sin2g(|0d0|+|1d1|)+icosgsing(|0d1|+|1d0|),\begin{split}\rho_{n,d}&=|0\rangle_{d}\langle 0|+\rho_{nn}[\sin^{2}g(-|0\rangle_{d}\langle 0|+|1\rangle_{d}\langle 1|)\\ &+i\cos g\sin g(|0\rangle_{d}\langle 1|+|1\rangle_{d}\langle 0|),\end{split} (14)

where ρnn=an|ρs|an\rho_{nn}=\langle a_{n}|\rho_{s}|a_{n}\rangle is the diagonal element of the density matrix ρs\rho_{s}. Substituting Eqs. (6) and (14) into Eq. (13), by using the equation nρnn=1\sum_{n}\rho_{nn}=1, we obtain

E(Re(PjWnj2))=14(dsin2gR+2cos2(gR/2))E(Im(PjWnj2))=d4sin2gI.\begin{split}E(Re(P_{j}W_{nj}^{2}))&=\frac{1}{4}\left(\frac{d}{\sin^{2}g_{R}}+\frac{2}{\cos^{2}(g_{R}/2)}\right)\\ E(Im(P_{j}W_{nj}^{2}))&=\frac{d}{4\sin^{2}g_{I}}.\end{split} (15)

From Eqs.(10), (12) and (15), we have the MSE of the reconstructed state

=1N[d24(1sin2gR+1sin2gI)+d2cos2(gR/2)tr(ρs2)].\mathcal{E}=\frac{1}{N}[\frac{d^{2}}{4}(\frac{1}{\sin^{2}g_{R}}+\frac{1}{\sin^{2}g_{I}})+\frac{d}{2\cos^{2}(g_{R}/2)}-\mathrm{tr}(\rho_{s}^{2})]. (16)

The MSE \mathcal{E} is not only dependent on the dimension of the system, but also the measurement strengths gRg_{R} and gIg_{I}. We can search the optimal gRg_{R} and gIg_{I} to attain the minimal value of \mathcal{E}. By simple calculations, we obtain optimal measurement strengths

gR,o=arccos(1+d4d2+d216)gI,o=π2.\begin{split}g_{R,o}&=\arccos\left(1+\frac{d}{4}-\sqrt{\frac{d}{2}+\frac{d^{2}}{16}}\right)\\ g_{I,o}&=\frac{\pi}{2}.\end{split} (17)

And the optimal MSE is

o=1N[3d28+d2(d2+d216+1)tr(ρs2)].\mathcal{E}_{o}=\frac{1}{N}[\frac{3d^{2}}{8}+\frac{d}{2}\left(\sqrt{\frac{d}{2}+\frac{d^{2}}{16}}+1\right)-\mathrm{tr}(\rho_{s}^{2})]. (18)

We have performed the Monte Carlo simulations to verify our results. In the simulations, 10310^{3} identical five-dimensional quantum systems are used to accomplish 10210^{2} measurements. All the values of MSEs in Fig. 1 are averaged over 10310^{3} repeated simulations to decrease the influence of the statistical fluctuations. As shown in Fig.1, the simulation results are consistent with o=[16.91tr(ρs2)]/100\mathcal{E}_{o}=[16.91-\mathrm{tr}(\rho_{s}^{2})]/100 given by Eq. (16). The optimal coupling strengths are gR,o=1.33g_{R,o}=1.33 and gI,o=π/2g_{I,o}=\pi/2.

Refer to caption
Figure 1: (Color online) The MSEs of the simulation results and the ones given by Eq. (16) in theory. The diamond represents the minimal MSE when gR,o=1.33g_{R,o}=1.33 and gI,o=π/2g_{I,o}=\pi/2.

4 Hermitian density matrix and comparison

The reconstructed density matrix given by Eq. (7) is not a Hermitian matrix. By the Hermiticity of the density matrix ρs\rho_{s}, we can obtain a Hermitian density matrix according to the formula

ρ^r=ρ^r+ρ^r2.\hat{\rho}_{r}^{\prime}=\frac{\hat{\rho}_{r}+\hat{\rho}_{r}^{\dagger}}{2}. (19)

As the elements of the density ρnm\rho_{nm} and ρmn\rho_{mn} given by Eq. (7) are measured independently when nmn\neq m. The number of the measurements of the ρnm=(ρnm+ρmn)/2\rho_{nm}^{\prime}=(\rho_{nm}+\rho_{mn}^{\dagger})/2 will be 2N2N if the number of the measurements of the ρnm\rho_{nm} is NN. The proportion of the off-diagonal elements in the density matrix is (d1)/d(d-1)/d, Then the MSE of the off-diagonal elements of the ρ^r\hat{\rho}_{r}^{\prime} is

off=d12Nd[d24(1sin2gR+1sin2gI)+d2cos2(gR/2)tr(ρs2)].\mathcal{E}_{off}=\frac{d-1}{2Nd}[\frac{d^{2}}{4}(\frac{1}{\sin^{2}g_{R}}+\frac{1}{\sin^{2}g_{I}})+\frac{d}{2\cos^{2}(g_{R}/2)}-\mathrm{tr}(\rho_{s}^{2})]. (20)

The number of the measurements of the diagonal elements of ρ^r\hat{\rho}_{r}^{\prime} remains unchanged NN. However, the MSE of the imaginary part of the diagonal elements is eliminated, because ρ^r\hat{\rho}_{r}^{\prime} is a Hermitian matrix. As the proportion of the diagonal elements is 1/d1/d, the MSE of the diagonal elements of the ρ^r\hat{\rho}_{r}^{\prime} is only the MSE of the real part, which can be expressed as

dia=1Nd[d24sin2gR+d2cos2(gR/2)tr((Reρs)2)].\mathcal{E}_{dia}=\frac{1}{Nd}[\frac{d^{2}}{4\sin^{2}g_{R}}+\frac{d}{2\cos^{2}(g_{R}/2)}-\mathrm{tr}((Re\rho_{s})^{2})]. (21)

Then the total MSE of the Hermitian density matrix ρr\rho_{r}^{\prime} is

=off+dia=d+12dN[d24sin2gR+d2cos2(gR/2)tr((Reρs)2)]+d12dN[d24sin2gItr((Imρs)2)].\begin{split}\mathcal{E}^{\prime}&=\mathcal{E}_{off}+\mathcal{E}_{dia}\\ &=\frac{d+1}{2dN}[\frac{d^{2}}{4\sin^{2}g_{R}}+\frac{d}{2\cos^{2}(g_{R}/2)}-\mathrm{tr}((Re\rho_{s})^{2})]\\ &+\frac{d-1}{2dN}[\frac{d^{2}}{4\sin^{2}g_{I}}-\mathrm{tr}((Im\rho_{s})^{2})].\end{split} (22)

As shown in Fig. 2, the results of the Monte Carlo simulations are consistent with the ones given by Eq. (22).

Refer to caption
Figure 2: (Color online) The MSEs of the simulation results and the ones given by Eq. (22) in theory. In the simulations, the number of the measurements for the unknown five-dimensional quantum systems is 10210^{2} . All the values of MSEs are averaged over 10410^{4} repeated simulations to decrease the influence of the statistical fluctuations.

The optimal MSE of the density ρr\rho_{r}^{\prime} is

o=d+12dN[d28+d2(d2+d216+1)tr((Reρs)2)]+d12dN[d24tr((Imρs)2)].\begin{split}\mathcal{E}_{o}^{\prime}&=\frac{d+1}{2dN}[\frac{d^{2}}{8}+\frac{d}{2}\left(\sqrt{\frac{d}{2}+\frac{d^{2}}{16}}+1\right)-\mathrm{tr}((Re\rho_{s})^{2})]\\ &+\frac{d-1}{2dN}[\frac{d^{2}}{4}-\mathrm{tr}((Im\rho_{s})^{2})].\end{split} (23)

When the dimension dd is large, we have

o12N[3d28+d2(d2+d216+1)tr(ρs2)].\mathcal{E}_{o}^{\prime}\approx\frac{1}{2N}[\frac{3d^{2}}{8}+\frac{d}{2}\left(\sqrt{\frac{d}{2}+\frac{d^{2}}{16}}+1\right)-\mathrm{tr}(\rho_{s}^{2})]. (24)

Scale MSE is used to measure the efficiency of the quantum state tomography, which is defined by

s=N.\mathcal{E}_{s}=N\mathcal{E}. (25)

In this paper we discuss QSTW in comparison with two well-established state estimation strategies. One is MUB tomography which is composed of the measurements on a complete set of mutually unbiased bases (MUBs) [13, 15]. The other one is SIC tomography composed of symmetric informationally complete (SIC) measurements [13, 14, 15].

For an unknown d-dimensional state, the optimal MSE of MUB tomography is [13]

s,mub=(d+1)[dtr(ρs2)].\mathcal{E}_{s,mub}=(d+1)[d-\mathrm{tr}(\rho_{s}^{2})]. (26)

And the optimal MSE of SIC tomography is [13]

s,sic=d2+d1tr(ρs2).\mathcal{E}_{s,sic}=d^{2}+d-1-\mathrm{tr}(\rho_{s}^{2}). (27)

By Eq. (24), the optimal scaled MSE of QSTW is

s,o12[3d28+d2(d2+d216+1)tr(ρs2)].\mathcal{E}_{s,o}^{\prime}\approx\frac{1}{2}[\frac{3d^{2}}{8}+\frac{d}{2}\left(\sqrt{\frac{d}{2}+\frac{d^{2}}{16}}+1\right)-\mathrm{tr}(\rho_{s}^{2})]. (28)

As shown in Fig. 3, the values of s,o\mathcal{E}_{s,o}^{\prime} are less than the values of s,mub\mathcal{E}_{s,mub} and s,sic\mathcal{E}_{s,sic}. It means that the efficiency of QSTW is significantly higher than the efficiencies of SIC tomography and MUB tomography with the same number of the measurements.

Refer to caption
Figure 3: (Color online) The scaled MSEs of the different quantum tomography schemes with a pure unknown state. Circles represent s,o\mathcal{E}_{s,o}^{\prime}, squares represent s,o\mathcal{E}_{s,o}, dianmonds represent SIC tomography, and triangles represent MUB tomography.

However, the number of the measurements is always determined by the number of the identical unknown systems in quantum state tomography. In QSTW 2dN2dN systems are consumed to accomplish NN times measurements. It is reasonable to multiply o\mathcal{E}_{o}^{\prime} by 2dN2dN instead of NN to obtain the scaled MSE

s,od[3d28+d2(d2+d216+1)tr(ρs2)].\mathcal{E}_{s,o}\approx d[\frac{3d^{2}}{8}+\frac{d}{2}\left(\sqrt{\frac{d}{2}+\frac{d^{2}}{16}}+1\right)-\mathrm{tr}(\rho_{s}^{2})]. (29)

From Fig. 3 it appears that s,o\mathcal{E}_{s,o} is lager than s,mub\mathcal{E}_{s,mub} and s,sic\mathcal{E}_{s,sic}. The efficiency of QSTW is less than those of SIC and MUB when the number of the measurements determined by the identically prepared systems.

5 Conclusion

We have obtained the optimal quantum state tomography via weak value (QSTW). The optimal measurements strengths and the minimal mean squared error of the reconstructed state have been derived. The efficiency of QSTW is higher than the efficiencies of SIC and MUB with the same number of the measurements. While QSTW is less efficient than SIC and MUB when the number of the measurements determined by the identically prepared systems. The optimal QSTW discussed in this paper may be useful in reconstructing unknown quantum states.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grants No. 11965005).

References

  • [1]

References

  • [2] M. A. Nielsen, I. Chuang, in Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
  • [3] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys. Rev. Lett. 70 (1993) 1244.
  • [4] G. M. D’Ariano, U. Leonhardt, and H. Paul, Phys. Rev. A 52 (1995) R1801.
  • [5] G. M. D’Ariano, L. Maccone, and M. Paini, J. OPT. B: Quantum Semicalss. Opt. 5 (2003) 77.
  • [6] G. M. D’Ariano, L. Maccone, and M. G. A. Paris, J. Phys. A 34 (2001) 93.
  • [7] G. M. D’Ariano, L. Maccone, and M. F. Sacchi, in Qautnum information with Continuous Variables of Atoms and Light, edited by N.Cerf, G. Leuchs, and E. Polzik, World Scientific Press, London, 2007.
  • [8] T. Durt, C. Kurtsiefer, A. Lamas-Linares, and A. Ling, Phys. Rev. A 78 (2008) 042338.
  • [9] R. B. A. Adamson and A. M. Steinberg, Phys. Rev. Lett. 105 (2010) 030406.
  • [10] H. Wang, W. Zheng, Y. Yu, M. Jiang, X. Peng, and J. Du, Phys. Rev. A 89 (2014) 032103.
  • [11] A. I. Lvovsky, and M. G. Raymer, Rev. Mod. Phys. 81 (2009) 299.
  • [12] G. M. D’Ariano and P. Perinotti, Phys. Rev. Lett. 98 (2007) 020403.
  • [13] H. Zhu, Ph.D. thesis, National University of Singapore, 2012, available at http://scholarbank.nus.edu.sg/bitstream/handle/10635 /35247/ZhuHJthesis.pdf
  • [14] H. Zhu and B.-G. Englert, Phys. Rev. A 84 (2011) 022327.
  • [15] H. Zhu, Phys. Rev. A 90 (2014) 012115.
  • [16] J. Řeháček , Y. S. Teo, and Z. Hradil, Phys. Rev. A 92 (2015) 012108.
  • [17] N. Bent, H. Qassim, A. A. Tahir, D. Sych, G. Leuchs, L. L. Sánchez-Soto, E. Karimi, and R.W. Boyd, Phys. Rev. X 5 (2015) 041006.
  • [18] B.  Qi, Z. Hou, Y. Wang, D. Dong, H. Zhong, L. Li, G. Xiang, H. M. Wiseman, C. Li, and G, Guo, npj Quantum Inf. 2, (2017) 19.
  • [19] H. Sosa-Martinez, N. K. Lysne, C. H. Baldwin, A. Kalev, I. H. Deutsch, and P. S. Jessen, Phys. Rev. Lett. 119, (2017) 150401.
  • [20] L. Pereira, L. Zambrano, J. Cortés-Vega, S. Niklitschek, and A. Delgado, Phys. Rev. A 98, (2018) 012339.
  • [21] V. Métillon, S. Gerlich, M. Brune, J. M. Raimond, P. Rouchon, and I. Dotsenko, Phys. Rev. Lett. 123, (2019) 060404.
  • [22] C. A. Fuchs 1, M. C. Hoang, and B. C. Stacey, Axioms 6, (2017) 21.
  • [23] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60 (1988) 1351.
  • [24] I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, Phys. Rev. D 40 (1989) 2112.
  • [25] R. Jozsa,Phys. Rev. A 76 (2007) 044103.
  • [26] S. Wu and Y. Li, Phys. Rev. A 83 (2011) 052106.
  • [27] X. Zhu, Y. Zhang, S. Pang, C. Qiao, Q. Liu, and S. Wu, Phys. Rev. A 84 (2011) 052111.
  • [28] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, Nature (London) 474 (2011) 188.
  • [29] H. F. Hofmann, Phys.Rev. A 81 (2010) 012103.
  • [30] S. Wu, Sci. Rep. 3 (2013) 1193.
  • [31] J. Z. Salvail, M. Agnew, A. S. Johnson, E. Bolduc, J. Leach, and R. W. Boyd, Nat. Photon. 7 (2013) 316.
  • [32] Y. Shikano, in Measurements in Quantum Mechanics, edited by M. R. Pahlavani, InTech, Rijeka, 2012, p. 75.
  • [33] M. Mirhosseini, O. S. Magaña-Loaiza, S. M. HashemiRafsanjani, and R. W. Boyd, Phys. Rev Lett. 113 (2014) 090402.
  • [34] G. S. Thekkadath, L. Giner, Y. Chalich, M. J. Horton, J. Banker, and J. S. Lundeen, Phys. Rev. Lett. 117 (2016) 120401.
  • [35] T. Denkmayr, H. Geppert, H. Lemmel, M. Waegell, J. Dressel, Y. Hasegawa, and S. Sponar, Phys. Rev. Lett. 118 (2017) 010402.
  • [36] L. Qin, L. Xu, W. Feng, and X.  Li, New J. Phys. 19 (2017) 033036.
  • [37] X. Chen, H. Y. Dai, L. Yang, and M. Zhang, Phys. Rev. A 97 (2018) 032120.
  • [38] L. Calderaro, G. Foletto, D. Dequal, P. Villoresi, and G. Vallone, Phys. Rev. Lett. 121 (2018) 230501.
  • [39] Y. Cho, Y. Kim, Y. Choi, Y. Kim, S. Han, S. Lee, S. Moon, and Y.  Kim, Nature Phys. 15 (2019) 665-670.
  • [40] K. Ogawa, O. Yasuhiko, H. Kobayashi, T. Nakanishi, and A. Tomita, New J. Phys. 21 (2019) 043013.
  • [41] C. Ren, Y. Wang, and J. Du, Phys. Rev. Appl. 12 (2019) 014045.
  • [42] W. W. Pan, X. Y. Xu, Y. Kedem, Q. Q. Wang, Z. Chen, M. Jan, K. Sun, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, Phys. Rev. Lett. 123 (2019) 150402.
  • [43] C. R. Zhang, M. J.  Hu, Z. B. Hou, J. F. Tang, J. Zhu, G. Y. Xiang, C. F. Li, G. C. Guo, and Y. S. Zhang, Phys. Rev. A 101 (2020) 012119.
  • [44] K. Ogawa, T. Okazaki, H. Kobayashi, T.  Nakanishi, and A. Tomita, Opt. Express 29 (2021) 13.
  • [45] S. H. Knarr, D. J. Lum, J. Schneeloch, and J. C. Howell, Phys. Rev. A 98 (2018) 023854.
  • [46] A. Budiyono, Phys. Rev. A 108 (2023) 012431.
  • [47] Q. Yang, D. Xu, S. Chen, S. Wen, and H. Luo, Phys. Rev. Applied 20 (2023) 054011.
  • [48] X. Zhu, Y. X. Zhang, and S. Wu, Phys. Rev. A 93 (2016) 062304.
  • [49] T. Durt, B. Englert, I. Bengtsson, and K. Zyczkowski, Int. J. Quantum Inf. 8 (2010) 535-640.
  • [50] Y-X. Zhang, S. Wu, and Z-B. Chen, Phys. Rev. A 93 (2016) 032128.
  • [51] G. Vallone and D. Dequal, Phys. Rev. Lett. 116 (2016) 040502.
  • [52] J. A. Gross, N. Dangniam, C. Ferrie, and C. M. Caves, Phys. Rev. A 92 (2015) 062133.
  • [53] P. Zou, Z-M. Zhang, and W. Song, Phys. Rev. A 91 (2015) 052109.
  • [54] X. Zhu and Q. Wei, Ann. Phys. 376(2017) 283.
  • [55] X. Zhu, and Q. Wei, Results Phys.31 (2021) 104999.