This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimal finite elements for ergodic stochastic two-scale elliptic equations

Viet Ha Hoang, Chen Hui Pang and Wee Chin Tan

Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University, 21 Nanyang Link, Singapore 637371
Abstract

We develop an essentially optimal finite element approach for solving ergodic stochastic two-scale elliptic equations whose two-scale coefficient may depend also on the slow variable. We solve the limiting stochastic two-scale homogenized equation obtained from the stochastic two-scale convergence in the mean (A. Bourgeat, A. Mikelic and S. Wright, J. reine angew. Math, Vol. 456, 1994), whose solution comprises of the solution to the homogenized equation and the corrector, by truncating the infinite domain of the fast variable and using the sparse tensor product finite elements. We show that the convergence rate in terms of the truncation level is equivalent to that for solving the cell problems in the same truncated domain. Solving this equation, we obtain the solution to the homogenized equation and the corrector at the same time, using only a number of degrees of freedom that is essentially equivalent to that required for solving one cell problem. Optimal complexity is obtained when the corrector possesses sufficient regularity with respect to both the fast and the slow variables. Although the regularity norm of the corrector depends on the size of the truncated domain, we show that the convergence rate of the approximation for the solution to the homogenized equation is independent of the size of the truncated domain. With the availability of an analytic corrector, we construct a numerical corrector for the solution of the original stochastic two-scale equation from the finite element solution to the truncated stochastic two-scale homogenized equation. Numerical examples of quasi-periodic two-scale equations, and a stochastic two-scale equation of the checker board type, whose coefficient is discontinuous, confirm the theoretical results.

1 Introduction

We develop an essentially optimal finite element (FE) method to solve ergodic stochastic two-scale problems. For these problems, the homogenized coefficient can be found from solutions of abstract cell problems that are posed in the abstract probability space (see, e.g, [4], [23], [2], [16]). Each corresponding real realization of the solution of these abstract equations satisfies an equation in the whole real space. To establish the homogenized coefficient numerically, we need to solve cell problems in a truncated real domain. The accuracy of the approximation of the homogenized coefficient, which is also the accuracy of the approximation of the solution to the homogenized equation, depends essentially on the size of the truncated domain ([6]). When the two-scale coefficient depends also on the slow variable, homogenization is more complicated to justify ([5]). Further, for each macroscopic point in the slow variable domain, we need to solve a set of cell problems to approximate the homogenized coefficient at that point, leading to a large level of complexity.

Motivated by our previous works of solving locally periodic multiscale problems, we develop in this paper a high dimensional FE approach that provides the solution of the homogenized equation that approximates the solution of the two-scale equation macroscopically, and the corrector that encodes the microscopic information, at the same time. For the case of locally periodic problems, the multiscale homogenized equation ([25, 1]) contains all the necessary information on the solution of the multiscale problem: its solution provides the solution to the homogenized equation and the corrector. However, this equation is posed in a high dimensional tensorized domain. Schwab [26] and Hoang and Schwab [21] develop the sparse tensor product FE approach that solves this equation with an essentially optimal level of complexity for obtaining an approximation of its solution within a prescribed level of accuracy. The method has been successfully applied to other classes of equations: wave equation ([29]), elasticity ([30, 31]), electro-magnetic equations ([10, 11]), nonlinear equations ([20, 27, 28]). For ergodic stochastic two-scale equations, the corresponding stochastic version of the two-scale homogenized equation is obtained from the stochastic two-scale convergence in the mean which is developed by Bourgeat et al. [5]. In the stochastic two-scale homogenized equation (3.1), u0(x)u_{0}(x) and U1(x,ω)U_{1}(x,\omega) are the solution of the homogenized equation and the abstract corrector which is obtained from u0u_{0} and the solutions of the abstract cell problems respectively. We show that u0u_{0} and the realization U1(x,T(y)ω)U_{1}(x,T(y)\omega) of the corrector (here T(y)T(y) is the ergodic dynamical system on the probability space) can be approximated by the solution of the truncated stochastic two-scale homogenized equation which depends on real variables xx and yy where xx belongs to the real physical domain, and yy belongs to a truncated domain. Solving this equation with the sparse tensor product FEs, we obtain an approximation whose accuracy in terms of the FE mesh width and the truncation level of the domain of the fast variable yy is essentially equal to the accuracy of the approximation of the homogenized coefficient, obtained by solving the cell problems in the same truncated domain using the same FE mesh width. We thus obtain an approximation for the solution of the homogenized equation and the corrector at the same time, using an essentially optimal number of degrees of freedom which is equivalent (apart from a possible logarithmic multiplying factor) to that required for solving one cell problem in the truncated domain, for the same level of accuracy. The essential optimality of the sparse tensor product FEs is achieved when the corrector possesses sufficient regularity. However, in this case, the regularity norm of the corrector grows with the size of the truncated domain. Nevertheless, we show that the approximation rate for the solution u0u_{0} of the homogenized equation is independent of the size of the truncated domain. Given an analytic corrector, we construct a numerical corrector from the numerical solution of the truncated stochastic two-scale homogenized equation. Numerical experiments confirm our theory.

We note that general multiscale methods have been applied for ergodic stochastic multiscale problems. We mention exemplarily the work by Efendiev and Pankov [13] using the Multiscale Finite Element method ([22, 14]) and Gallistl and Peterseim [15] using the localization approach ([24]). These approaches need to solve multiscale local problems using microscopic meshes that must be at most of the order of the microscopic scale. In this paper, our mesh width is macroscopic; the convergence rate depends on the level of the truncation of the fast variable domain, which depends solely on the statistics of the ergodic random field, and not on the microscopic scale.

The paper is organized as follows.

In the next section, we formulate the ergodic two-scale equation and review some results on their homogenization. In section 3, we recall the concept of stochastic two-scale convergence in the mean of Bourgeat et al. [5]. We then establish the approximation of this equation by the truncated stochastic two-scale homogenized equation, where we consider a truncated domain for the fast variable with size 2ρ2\rho, and show that the approximation accuracy in terms of the truncated level of the fast variable domain is equal to that of the cell problems. In Section 4, we solve the truncated stochastic two-scale homogenized problem by tensor product FEs. We show that the sparse tensor product FEs obtain essentially equal convergence rate as the full tensor product FEs using a far smaller number of degrees of freedom, which is essentially optimal, given that the solution possesses sufficient regularity. In Section 5, with the availability of an analytic corrector result, we construct a numerial corrector for the solution of the two-scale equation from the FE solution of the truncated stochastic two-scale homogenized equation, when the microscopic scale, the FE mesh width converge to 0, and the size of the truncated domain tends to infinity. Section 6 presents some numerical experiments. We solve two-scale quasi periodic problems in one and two dimensional domains where the exact homogenized coefficient can be approximated highly accurately, so a reference solution can be approximated with a high level of accuracy. The numerical results confirm the theory. When the mesh size is larger, the decaying rate of the total error is similar to that of the FE error as the effect of truncation of the fast variable domain is less significant. However, when the FE mesh gets smaller, the decaying rate deteriorates due to the more prominent effect of the truncated fast variable domain. When we increase the size of the truncated domain, the total error gets smaller. We then solve a two dimensional checker board type problem whose coefficient is piecewise constant. We observe similar behaviour in the total error. The appendices contain the involved proofs of some technical results.

Throughout the paper, by cc we denotes a generic constant whose value may change between different appearances. Repeated indices indicate summation.

2 Problem setting

2.1 Ergodic two-scale problem

Let DD be a bounded Lipschitz domain in d\mathbb{R}^{d}. Let (Ω,Σ,)(\Omega,\Sigma,\mathbb{P}) be a probability space. We assume that there is an ergodic dynamical system T:d×ΩΩT:\mathbb{R}^{d}\times\Omega\to\Omega such that for y,ydy,y^{\prime}\in\mathbb{R}^{d} and ωΩ\omega\in\Omega, T(y+y)ω=T(y)T(y)ωT(y+y^{\prime})\omega=T(y)T(y^{\prime})\omega. Furthermore, any invariant subsets of Ω\Omega have either probability 0 or 1. Let A:d×Ωsymd×dA:\mathbb{R}^{d}\times\Omega\to\mathbb{R}^{d\times d}_{sym}. There are positive constants c1c_{1} and c2c_{2} such that for all ξ,ζd\xi,\zeta\in\mathbb{R}^{d}

c1|ξ|2A(x,ω)ξξ,andA(x,ω)ξζc2|ξ||ζ|,c_{1}|\xi|^{2}\leq A(x,\omega)\xi\cdot\xi,\ \ \mbox{and}\ \ A(x,\omega)\xi\cdot\zeta\leq c_{2}|\xi||\zeta|, (2.1)

for a.a. xD,ωΩx\in D,\omega\in\Omega. We assume further that AC(D¯,L(Ω))d×dA\in C(\bar{D},L^{\infty}(\Omega))^{d\times d}. Let ε>0\varepsilon>0 be a small quantity that represents the microscopic scale that the problem depends on. We define the ergodic random two-scale coefficient as

Aε(x,ω)=A(x,T(xε)ω).A^{\varepsilon}(x,\omega)=A(x,T({x\over\varepsilon})\omega).

We denote by V=H01(D)V=H^{1}_{0}(D) and H=L2(D)H=L^{2}(D). Let fVf\in V^{\prime}. We consider the problem

(Aε(x,ω)uε)=f-\nabla\cdot(A^{\varepsilon}(x,\omega)\nabla u^{\varepsilon})=f (2.2)

with the Dirichlet boundary condition uε(x)=0u^{\varepsilon}(x)=0 for xDx\in\partial D.

2.2 Homogenized equation

We review in this section the well known results on homogenization of problem (2.2). We refer to the standard references such as [4] and [23] for details. We denote by =(1,,d)\partial=(\partial_{1},\ldots,\partial_{d}) where i\partial_{i} is the generator of the semingroup T(x+ei)T(x+e_{i}) and eie_{i} is the iith unit vector in the standard basis of d\mathbb{R}^{d}. Following [23] and [6], we define Lpot2(Ω)L^{2}_{pot}(\Omega) the completion of the space of all functions in L2(Ω)dL^{2}(\Omega)^{d} of the form ψ\partial\psi for ψ\psi belonging to the domain of \partial; and by Lsol2(Ω)L^{2}_{sol}(\Omega) the completion in L2(Ω)dL^{2}(\Omega)^{d} of all functions ψ\psi whose components belong to the domain of the \partial operator such as divψ:=i=1diψ=0{\rm div}\psi:=\sum_{i=1}^{d}\partial_{i}\psi=0. For each basis vector eie^{i} in the standard basis of d\mathbb{R}^{d}, we consider the cell problem: Find wi(x,ω)Lpot2(Ω)w^{i}(x,\omega)\in L^{2}_{pot}(\Omega) such that

A(x,ω)(wi(x,ω)+ei)Lsol2(Ω).A(x,\omega)(w^{i}(x,\omega)+e^{i})\in L^{2}_{sol}(\Omega). (2.3)

Then the homogenized coefficient can be expressed as

Aij0(x)=ΩAik(x,ω)(wkj(x,ω)+δkj)(dω).A^{0}_{ij}(x)=\int_{\Omega}A_{ik}(x,\omega)(w^{j}_{k}(x,\omega)+\delta_{kj})\mathbb{P}(d\omega). (2.4)

We have that when ε0\varepsilon\to 0, uε(,ω)u0u^{\varepsilon}(\cdot,\omega)\rightharpoonup u_{0} in VV a.s. where the deterministic function u0u_{0} satisfies the homogenized problem

(A0(x)u0)=f-\nabla\cdot(A^{0}(x)\nabla u_{0})=f (2.5)

with the Dirichlet boundary condition on D\partial D. We note that Jikov et al. [23] only consider the case where A(x,ω)=A(ω)A(x,\omega)=A(\omega) i.e. it does not depend on xx, but the results hold identically for the case where AA depends on xx as considered in this paper. For ρ>0\rho>0, let YρY^{\rho} be the cube (ρ,ρ)dd(-\rho,\rho)^{d}\subset\mathbb{R}^{d}. We consider the problem

y(A(x,T(y)ω))(yNiρ(x,y,ω)+ei)=0,yYρ-\nabla_{y}\cdot(A(x,T(y)\omega))(\nabla_{y}N^{i\rho}(x,y,\omega)+e^{i})=0,\ \ y\in Y^{\rho} (2.6)

with the Dirichet boundary condition Niρ(x,y,ω)=0N^{i\rho}(x,y,\omega)=0 for yYρy\in\partial Y^{\rho}. We define the coefficient A0ρ(x,ω)symd×dA^{0\rho}(x,\omega)\in\mathbb{R}^{d\times d}_{sym} as

Aij0ρ(x,ω)=1|Yρ|YρAik(x,T(y)ω)(Njρyk(x,y,ω)+δkj)𝑑y.A_{ij}^{0\rho}(x,\omega)={1\over|Y^{\rho}|}\int_{Y^{\rho}}A_{ik}(x,T(y)\omega)({\partial N^{j\rho}\over\partial y_{k}}(x,y,\omega)+\delta_{kj})dy. (2.7)

We then have

Proposition 2.1

Assume that esssupωΩ|A(x,ω)A(x,ω)|c|xx|\operatorname*{ess\,sup}_{\omega\in\Omega}|A(x,\omega)-A(x^{\prime},\omega)|\leq c|x-x^{\prime}| for all x,xDx,x^{\prime}\in D, where cc is independent of xx and xx^{\prime}. Almost surely, limρA0()A0ρ(,ω)L(D)d×d=0\lim_{\rho\to\infty}\|A^{0}(\cdot)-A^{0\rho}(\cdot,\omega)\|_{L^{\infty}(D)^{d\times d}}=0.

Bourgeat and Piatnitski [6] show this result in the case where AA does not depend on xx, i.e. A=A(ω)A=A(\omega) (see also [16, 2]). We show this proposition for the case where AA also depends on xx in Appendix A. We note that with further assumption on the structure of the probability space (Ω,Σ,)(\Omega,\Sigma,\mathbb{P}), we also have the stronger convergence result ([6]):

𝔼[A0A0ρL(D)d×d2]cρβ\mathbb{E}[\|A^{0}-A^{0\rho}\|_{L^{\infty}(D)^{d\times d}}^{2}]\leq c\rho^{-\beta} (2.8)

for β>0\beta>0.

3 Stochastic two-scale convergence in the mean

In this section we recall the stochastic two-scale convergence in the mean and the stochastic two-scale homogenized equation obtained from it of Bourgeat et al. [5]. We then study approximation of its solution by the truncated stochastic two-scale homogenized equation.

3.1 Stochastic two-scale convergence in the mean

The homogenized problem can also be established by using the ”stochastic two-scale convergence in the mean” as defined by Bourgeat et al. [5]. This extends the concept of two-scale homogenization ([25],[1]) to the stochastic setting. Following [5] we say that a function ψL2(D×Ω)\psi\in L^{2}(D\times\Omega) is admissible if ψ(x,T(x)ω)\psi(x,T(x)\omega) belongs to L2(D×Ω)L^{2}(D\times\Omega). We first recall the definition

Definition 3.1

A sequence {wε}ε\{w^{\varepsilon}\}_{\varepsilon} in L2(D×Ω)L^{2}(D\times\Omega) stochastically two-scale converges in the mean to a function wL2(D×Ω)w\in L^{2}(D\times\Omega) if for every admissible function ψL2(D×Ω)\psi\in L^{2}(D\times\Omega),

limε0ΩDwε(x,ω)ψ(x,T(xε)ω)𝑑x(dω)=ΩDw(x,ω)ψ(x,ω)𝑑x(dω).\lim_{\varepsilon\to 0}\int_{\Omega}\int_{D}w^{\varepsilon}(x,\omega)\psi(x,T({x\over\varepsilon})\omega)dx\mathbb{P}(d\omega)=\int_{\Omega}\int_{D}w(x,\omega)\psi(x,\omega)dx\mathbb{P}(d\omega).

This definition makes sense due to the following result ([5] Theorem 3.4):

Lemma 3.2

From a bounded sequence in L2(D×Ω)L^{2}(D\times\Omega) we can extract a stochastic two-scale convergent in the mean subsequence.

For a bounded sequence in L2(Ω,V)L^{2}(\Omega,V) we have the following result ([5] Theorem 3.7):

Lemma 3.3

Let {wε}ε\{w^{\varepsilon}\}_{\varepsilon} be a bounded sequence in L2(Ω,V)L^{2}(\Omega,V). There is a subsequence (not renumbered), a function wVw\in V and a function w1L2(D,Lpot2(Ω))w_{1}\in L^{2}(D,L^{2}_{pot}(\Omega)) such that wεw^{\varepsilon} stochastically two-scale converges in the mean to ww and wε\nabla w^{\varepsilon} stochastically two-scale converges in the mean to w+w1\nabla w+w_{1}.

Using these, we have the following result on the stochastic two-scale convergence in the mean limit for the solution of problem (2.2).

Proposition 3.4

There are functions u0Vu_{0}\in V and U1L2(D,Lpot2(Ω))U_{1}\in L^{2}(D,L^{2}_{pot}(\Omega)) such that the sequence {uε}ε\{u^{\varepsilon}\}_{\varepsilon} of solution to problem (2.2) stochastic two-scale converges in the mean to u0u_{0}, and {uε}ε\{\nabla u^{\varepsilon}\}_{\varepsilon} stochastic two-scale converges in the mean to u0+U1\nabla u_{0}+U_{1}. The functions u0u_{0} and U1U_{1} form the unique solution of the problem:

ΩDA(x,ω)(u0(x)+U1(x,ω))(ϕ0(x)+Φ1(x,ω))𝑑x(dω)=Df(x)ϕ0(x)𝑑x,\int_{\Omega}\int_{D}A(x,\omega)(\nabla u_{0}(x)+U_{1}(x,\omega))\cdot(\nabla\phi_{0}(x)+\Phi_{1}(x,\omega))dx\mathbb{P}(d\omega)=\int_{D}f(x)\phi_{0}(x)dx, (3.1)

ϕ0V,\forall\,\phi_{0}\in V, Φ1L2(D,Lpot2(Ω))\Phi_{1}\in L^{2}(D,L^{2}_{pot}(\Omega)).

We refer to Bourgeat et al. [5] Theorem 4.1.1 for a proof.

3.2 The truncated equation

We note the following result.

Lemma 3.5

Let FiL2(Ω)F_{i}\in L^{2}(\Omega) (i=1,,di=1,\ldots,d), and GL2(Ω)G\in L^{2}(\Omega) be such that

Ω(Fi(ω)iψ(ω)+G(ω)ψ(ω))(dω)=0\int_{\Omega}(F_{i}(\omega)\partial_{i}\psi(\omega)+G(\omega)\psi(\omega))\mathbb{P}(d\omega)=0

for all ψ\psi belonging to the domain of the generator i\partial_{i} of the semi group T(y+ei)T(y+e_{i}) for all i=1,,di=1,\ldots,d. Then a.s. for all ϕC0(d)\phi\in C^{\infty}_{0}(\mathbb{R}^{d})

d(Fi(T(y)ω)ϕyi(y)+G(T(y)ω)ϕ(y))𝑑y=0.\int_{\mathbb{R}^{d}}\left(F_{i}(T(y)\omega){\partial\phi\over\partial y_{i}}(y)+G(T(y)\omega)\phi(y)\right)dy=0.

The proof of this result can be found, e.g. in Beliaev and Kozlov [3] page 12 (though Beliaev and Kozlov consider the more complicated case of a randomly perforated domain). From (3.1), we have

ΩDA(x,ω)(u0(x)+U1(x,ω))(ϕ0(x)+ψ(x)ϕ1(ω))𝑑x(dω)=Df(x)ϕ0(x)𝑑x\int_{\Omega}\int_{D}A(x,\omega)(\nabla u_{0}(x)+U_{1}(x,\omega))\cdot(\nabla\phi_{0}(x)+\psi(x)\partial\phi_{1}(\omega))dx\mathbb{P}(d\omega)=\int_{D}f(x)\phi_{0}(x)dx

for all ψC0(d)\psi\in C^{\infty}_{0}(\mathbb{R}^{d}) and ϕ1\phi_{1} belonging to the domain of \partial. Therefore

ΩDA(x,ω)(u0(x)+U1(x,ω))ϕ1(ω)ψ(x)dx(dω)=0.\int_{\Omega}\int_{D}A(x,\omega)(\nabla u_{0}(x)+U_{1}(x,\omega))\cdot\partial\phi_{1}(\omega)\psi(x)dx\mathbb{P}(d\omega)=0.

From this, we have for almost all ωΩ\omega\in\Omega

DdA(x,T(y)ω)(u0(x)+U1(x,T(y)ω))yϕ1(y))ψ(x)dydx=0\int_{D}\int_{\mathbb{R}^{d}}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))\cdot\nabla_{y}\phi_{1}(y))\psi(x)dydx=0 (3.2)

ψC0(D),ϕ1C0(d)\forall\,\psi\in C^{\infty}_{0}(D),\phi_{1}\in C^{\infty}_{0}(\mathbb{R}^{d}). On the other hand, as

ΩDA(x,ω)(u0(x)+U1(x,ω))ϕ0(x)𝑑x(dω)=Df(x)ϕ0(x)𝑑x,\int_{\Omega}\int_{D}A(x,\omega)(\nabla u_{0}(x)+U_{1}(x,\omega))\cdot\nabla\phi_{0}(x)dx\mathbb{P}(d\omega)=\int_{D}f(x)\phi_{0}(x)dx,

due to ergodicity

limρ1|Yρ|YρDA(x,T(y)ω)(u0(x)+U1(x,T(y)ω))ϕ0(x)𝑑x𝑑y=Df(x)ϕ0(x)𝑑x\lim_{\rho\to\infty}{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))\cdot\nabla\phi_{0}(x)dxdy=\int_{D}f(x)\phi_{0}(x)dx

for almost all ωΩ\omega\in\Omega. Thus almost surely ϕ1H01(Yρ)\forall\,\phi_{1}\in H^{1}_{0}(Y^{\rho})

limρ01|Yρ|DYρA(x,T(y)ω)(u0(x)+U1(x,T(y)ω)(ϕ0(x)+ψ(x)yϕ1(y))dydx=Df(x)ϕ0(x)dx.\lim_{\rho\to 0}{1\over|Y^{\rho}|}\int_{D}\int_{Y^{\rho}}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega)\cdot(\nabla\phi_{0}(x)+\psi(x)\nabla_{y}\phi_{1}(y))dydx=\int_{D}f(x)\phi_{0}(x)dx. (3.3)

As U1(x,T(y)ω)U_{1}(x,T(y)\omega) is a potential vector with respect to yy, this leads us to consider the following approximation problem. We denote by V1ρ:=L2(D,H01(Yρ))V_{1}^{\rho}:=L^{2}(D,H^{1}_{0}(Y^{\rho})) and 𝐕ρ=V×V1ρ{\bf V}^{\rho}=V\times V_{1}^{\rho} with the norm

(w0,w1)𝐕ρ=w0V+w1V1ρ\|(w_{0},w_{1})\|_{{\bf V}^{\rho}}=\|w_{0}\|_{V}+\|w_{1}\|_{V_{1}^{\rho}}

for (w0,w1)𝐕ρ(w_{0},w_{1})\in{\bf V}^{\rho}. We define the bilinear form Bρ(ω;(,),(,)):𝐕ρ×𝐕ρB^{\rho}(\omega;(\cdot,\cdot),(\cdot,\cdot)):{\bf V}^{\rho}\times{\bf V}^{\rho}\to\mathbb{R} by

Bρ(ω;(w0,w1),(ϕ0,ϕ1))\displaystyle B^{\rho}(\omega;(w_{0},w_{1}),(\phi_{0},\phi_{1}))
=1|Yρ|DYρA(x,T(y)ω)(w0(x)+yw1(x,y))(ϕ0(x)+yϕ1(x,y))𝑑y𝑑x,\displaystyle={1\over|Y^{\rho}|}\int_{D}\int_{Y^{\rho}}A(x,T(y)\omega)(\nabla w_{0}(x)+\nabla_{y}w_{1}(x,y))\cdot(\nabla\phi_{0}(x)+\nabla_{y}\phi_{1}(x,y))dydx,

(w0,w1),(ϕ0,ϕ1)𝐕ρ\forall\,(w_{0},w_{1}),(\phi_{0},\phi_{1})\in{\bf V}^{\rho}. From (2.1), it is straightforward to verify that Bρ(ω;(,),(,))B^{\rho}(\omega;(\cdot,\cdot),(\cdot,\cdot)) is bounded and coercive for almost all ωΩ\omega\in\Omega. We consider the approximate problem: Find (u0ρ(,ω),u1ρ(,,ω))𝐕ρ(u_{0}^{\rho}(\cdot,\omega),u_{1}^{\rho}(\cdot,\cdot,\omega))\in{{\bf V}}^{\rho} such that

Bρ(ω;(u0ρ(,ω),u1ρ(,,ω)),(ϕ0,ϕ1))=Df(x)ϕ0(x)𝑑xB^{\rho}(\omega;(u_{0}^{\rho}(\cdot,\omega),u_{1}^{\rho}(\cdot,\cdot,\omega)),(\phi_{0},\phi_{1}))=\int_{D}f(x)\phi_{0}(x)dx (3.4)

(ϕ0,ϕ1)𝐕ρ\forall\,(\phi_{0},\phi_{1})\in{\bf V}^{\rho}. From the boundedness and the coercivity conditions of the bilinear form Bρ(ω)B^{\rho}(\omega), this problem has a unique solution (u0ρ,u1ρ)𝐕ρ(u_{0}^{\rho},u_{1}^{\rho})\in{\bf V}^{\rho}. We have the following estimate

Lemma 3.6

There is a positive constant cc which is independent of ρ\rho such that for almost all ωΩ\omega\in\Omega

u0ρ(,ω)Vc,u1ρ(,,ω)V1ρc|Yρ|1/2.\|u_{0}^{\rho}(\cdot,\omega)\|_{V}\leq c,\ \ \|u_{1}^{\rho}(\cdot,\cdot,\omega)\|_{V_{1}^{\rho}}\leq c|Y^{\rho}|^{1/2}.

Proof  Letting ϕ0=u0ρ\phi_{0}=u_{0}^{\rho} and ϕ1=u1ρ\phi_{1}=u_{1}^{\rho} in (3.4) and using (2.1), we have

c(u0ρ(,ω)V2+|Yρ|1u1ρ(,,ω)V1ρ2)fVu0ρ(,ω)V.c(\|u_{0}^{\rho}(\cdot,\omega)\|_{V}^{2}+|Y^{\rho}|^{-1}\|u_{1}^{\rho}(\cdot,\cdot,\omega)\|_{V_{1}^{\rho}}^{2})\leq\|f\|_{V^{\prime}}\|u_{0}^{\rho}(\cdot,\omega)\|_{V}.

We then get the conclusion. \Box

It is straighforward to verify that u0ρu_{0}^{\rho} satisfies the problem

(A0ρ(x,ω)u0ρ(x,ω))=f-\nabla\cdot(A^{0\rho}(x,\omega)\nabla u_{0}^{\rho}(x,\omega))=f (3.5)

with the Dirichlet boundary condition on D\partial D, where A0ρA^{0\rho} is defined in (2.7). We then have the following approximation.

Proposition 3.7

Let (u0ρ(,ω),u1ρ(,,ω))𝐕ρ(u_{0}^{\rho}(\cdot,\omega),u_{1}^{\rho}(\cdot,\cdot,\omega))\in{\bf V}^{\rho} be the solution of problem (3.4). Then almost surely

limρu0u0ρ(,ω)V=0.\lim_{\rho\to\infty}\|u_{0}-u_{0}^{\rho}(\cdot,\omega)\|_{V}=0.

Proof   First we show that the coefficient A0ρA^{0\rho} is uniformly bounded and coercive for almost all (x,ω)D×Ω(x,\omega)\in D\times\Omega. As |Aik(x,ω)||A_{ik}(x,\omega)| is uniformly bounded for all xDx\in D and ωΩ\omega\in\Omega, we have

1|Yρ|YρAij(x,T(y)ω)𝑑y{1\over|Y^{\rho}|}\int_{Y^{\rho}}A_{ij}(x,T(y)\omega)dy

is uniformly bounded for almost all xDx\in D and ωΩ\omega\in\Omega. From (A.4), we have

1|Yρ|YρAik(x,T(y)ω)Njρyk(x,y,ω)𝑑yc1|Yρ|Yρ|Njρyk(x,y,ω)|𝑑y\displaystyle{1\over|Y^{\rho}|}\int_{Y^{\rho}}A_{ik}(x,T(y)\omega){\partial N^{j\rho}\over\partial y_{k}}(x,y,\omega)dy\leq c{1\over|Y^{\rho}|}\int_{Y^{\rho}}\left|{\partial N^{j\rho}\over\partial y_{k}}(x,y,\omega)\right|dy
c1|Yρ|(Yρ𝑑y)1/2(Yρ|Njρyk(x,y,ω)|2𝑑y)1/2c.\displaystyle\leq c{1\over|Y^{\rho}|}\left(\int_{Y^{\rho}}dy\right)^{1/2}\left(\int_{Y^{\rho}}\left|{\partial N^{j\rho}\over\partial y_{k}}(x,y,\omega)\right|^{2}dy\right)^{1/2}\leq c.

For the coercivity, we note that

Aij0ρ(x,ω)=1|Yρ|YρAlk(x,T(y)ω)(Njρyk+δkj)(Niρyl+δli)𝑑y\displaystyle A^{0\rho}_{ij}(x,\omega)={1\over|Y^{\rho}|}\int_{Y^{\rho}}A_{lk}(x,T(y)\omega)\left({\partial N^{j\rho}\over\partial y_{k}}+\delta_{kj}\right)\left({\partial N^{i\rho}\over\partial y_{l}}+\delta_{li}\right)dy

so for ξd\xi\in\mathbb{R}^{d},

Aij0ρξiξjc1|Yρ|k=1dYρ|(Njρyk+δkj)ξj|2𝑑yc|ξ|2.\displaystyle A_{ij}^{0\rho}\xi_{i}\xi_{j}\geq c{1\over|Y^{\rho}|}\sum_{k=1}^{d}\int_{Y^{\rho}}\left|\left({\partial N^{j\rho}\over\partial y_{k}}+\delta_{kj}\right)\xi_{j}\right|^{2}dy\geq c|\xi|^{2}.

Therefore u0ρ(,ω)V\|u_{0}^{\rho}(\cdot,\omega)\|_{V} is uniformly bounded. From (3.5) and (2.5), we have

(A0(u0u0ρ))=((A0A0ρ)u0ρ).-\nabla\cdot(A^{0}\nabla(u_{0}-u_{0}^{\rho}))=\nabla\cdot((A^{0}-A^{0\rho})\nabla u_{0}^{\rho}).

Thus

DA0(x)(u0(x)u0ρ(x,ω))(u0(x)u0ρ(x,ω))dx=\displaystyle\int_{D}A^{0}(x)\nabla(u_{0}(x)-u_{0}^{\rho}(x,\omega))\cdot\nabla(u_{0}(x)-u_{0}^{\rho}(x,\omega))dx=
D(A0A0ρ)u0ρ(x,ω)(u0(x)u0ρ(x,ω))dx.\displaystyle-\int_{D}(A^{0}-A^{0\rho})\nabla u_{0}^{\rho}(x,\omega)\cdot\nabla(u_{0}(x)-u_{0}^{\rho}(x,\omega))dx.

Therefore

u0u0ρ(,ω)VcA0A0ρ(,ω)L(D)d×d.\|u_{0}-u_{0}^{\rho}(\cdot,\omega)\|_{V}\leq c\|A^{0}-A^{0\rho}(\cdot,\omega)\|_{L^{\infty}(D)^{d\times d}}.

We then get the conclusion. \Box

Approximation for U1(,T()ω)U_{1}(\cdot,T(\cdot)\omega) in terms of u1ρ(,,ω)u_{1}^{\rho}(\cdot,\cdot,\omega) is presented in Lemma 5.2.

4 Finite element approximation of problem (3.4)

We develop finite element approximations for the solution of problem (3.4) in this section. Due to the tensorized structure of the problem, we use tensor product FE approximations. We will first develop the full tensor product FE approximation which only requires regularity for u1ρu_{1}^{\rho} with respect to the variables xx and yy separately, but the dimension of the FE space is exceedingly large. We then develop the sparse tensor product FE approximation which requires a stronger regularity condition to get the same level of accuracy but uses only an essentially optimal number of degrees of freedom. We will show later that this stronger regularity condition is obtained under sufficient regularity conditions on the domain DD, the coefficient AA and the forcing ff. Comparing to previous work on sparse tensor FEs for locally periodic problems such as [21] where the periodic unit cell has size 1, in this paper, we show that although the cube YρY^{\rho} has size 2ρ2\rho, and the regularity norm of u1ρu_{1}^{\rho} grows with ρ\rho, the FE rate of convergence for u0ρu_{0}^{\rho} is independent of ρ\rho; it only depends on the mesh size.

Let DD be a polygonal domain in d\mathbb{R}^{d}. We partition DD into hierarchical families of regular simplices. First the family 𝒯1{\cal T}^{1} is obtained by dividing DD into triangular simplices of mesh size O(21)O(2^{-1}). For l=2,3,l=2,3,\ldots, the family of simplices 𝒯l{\cal T}^{l} is obtained by dividing each simplex in 𝒯l1{\cal T}^{l-1} into 4 congruent triangles when d=2d=2 and 8 tetrahedra when d=3d=3. The mesh size of simplices in 𝒯l{\cal T}^{l} is hl=O(2l)h_{l}=O(2^{-l}). Similarly, we divide the cube YρY^{\rho} into families 𝒯ρ,l{\cal T}^{\rho,l} of simplices of mesh size hl=O(2l)h_{l}=O(2^{-l}) (which does not depend on ρ\rho). We define the following spaces:

Vl={wH1(D):w|TP1(K)K𝒯l},\displaystyle V^{l}=\{w\in H^{1}(D):\ w|_{T}\in P^{1}(K)\ \ \forall\,K\in{\cal T}^{l}\},
V0l={wH01(D):w|TP1(K)K𝒯l},\displaystyle V^{l}_{0}=\{w\in H^{1}_{0}(D):\ w|_{T}\in P^{1}(K)\ \ \forall\,K\in{\cal T}^{l}\},
V0ρ,l={wH01(Yρ):w|TP1(K)K𝒯ρ,l}.\displaystyle V^{\rho,l}_{0}=\{w\in H^{1}_{0}(Y^{\rho}):\ w|_{T}\in P^{1}(K)\ \ \forall\,K\in{\cal T}^{\rho,l}\}.

We then have the following approximation

infwlVlwwlHchl|w|H1(D),wH1(D),\displaystyle\inf_{w^{l}\in V^{l}}\|w-w^{l}\|_{H}\leq ch_{l}|w|_{H^{1}(D)},\ \ \forall\,w\in H^{1}(D),
infwlV0lwwlVchL|w|H2(D),wH2(D)H01(D),\displaystyle\inf_{w^{l}\in V^{l}_{0}}\|w-w^{l}\|_{V}\leq ch_{L}|w|_{H^{2}(D)},\ \ \forall\,w\in H^{2}(D)\cap H^{1}_{0}(D),
infwlV0ρ,lwwlH01(Yρ)chL|w|H2(Yρ),wH2(Yρ)H01(Yρ),\displaystyle\inf_{w^{l}\in V^{\rho,l}_{0}}\|w-w^{l}\|_{H^{1}_{0}(Y^{\rho})}\leq ch_{L}|w|_{H^{2}(Y^{\rho})},\ \ \forall\,w\in H^{2}(Y^{\rho})\cap H^{1}_{0}(Y^{\rho}),

where the constant cc in the last estimate does not depend on ρ\rho (see, e.g., [12] or [7]). As u1ρL2(D,H01(Yρ))HH01(Yρ)u_{1}^{\rho}\in L^{2}(D,H^{1}_{0}(Y^{\rho}))\cong H\otimes H^{1}_{0}(Y^{\rho}), we employ tensor product FEs to approximate u1ρu_{1}^{\rho}.

4.1 Full tensor product FE approximation

We consider the full tensor product FE space V1ρ,L=VLV0ρ,LV_{1}^{\rho,L}=V^{L}\otimes V_{0}^{\rho,L}. We define the FE space 𝐕ρ,L=VL×V1ρ,L{\bf V}^{\rho,L}=V^{L}\times V_{1}^{\rho,L}. We consider the full tensor product FE problem: Find (u0ρ,L(,ω),u1ρ,L(,,ω))𝐕ρ,L(u_{0}^{\rho,L}(\cdot,\omega),u_{1}^{\rho,L}(\cdot,\cdot,\omega))\in{\bf V}^{\rho,L} such that

Bρ(ω;(u0ρ,L(,ω),u1ρ,L(,,ω)),(ϕ0L,ϕ1L))=Df(x)ϕ0L(x)𝑑x,(ϕ0L,ϕ1L)𝐕ρ,L.B^{\rho}(\omega;(u_{0}^{\rho,L}(\cdot,\omega),u_{1}^{\rho,L}(\cdot,\cdot,\omega)),(\phi_{0}^{L},\phi_{1}^{L}))=\int_{D}f(x)\phi_{0}^{L}(x)dx,\ \ \forall\,(\phi_{0}^{L},\phi_{1}^{L})\in{\bf V}^{\rho,L}. (4.1)

We then have the following approximation.

Lemma 4.1

There is a positive constant cc which is independent of ρ\rho such that for almost all ωΩ\omega\in\Omega, the solution (u0ρ,L,u1ρ,L)(u_{0}^{\rho,L},u_{1}^{\rho,L}) of the full tensor product approximating problem (4.1) satisfies

|Yρ|u0ρ(,ω)u0ρ,L(,ω)V2+u1ρ(,,ω)u1ρ,L(,,ω)V1ρ2\displaystyle|Y^{\rho}|\|u_{0}^{\rho}(\cdot,\omega)-u_{0}^{\rho,L}(\cdot,\omega)\|_{V}^{2}+\|u_{1}^{\rho}(\cdot,\cdot,\omega)-u_{1}^{\rho,L}(\cdot,\cdot,\omega)\|^{2}_{V_{1}^{\rho}}
c(|Yρ|u0ρ(,ω)ϕ0LV2+u1ρ(,,ω)ϕ1LV1ρ2)\displaystyle\leq c(|Y^{\rho}|\|u_{0}^{\rho}(\cdot,\omega)-\phi_{0}^{L}\|^{2}_{V}+\|u_{1}^{\rho}(\cdot,\cdot,\omega)-\phi_{1}^{L}\|_{V_{1}^{\rho}}^{2})

(ϕ0L,ϕ1L)𝐕ρ,L\forall\,(\phi_{0}^{L},\phi_{1}^{L})\in{\bf V}^{\rho,L}.

Proof  The proof of this lemma is straightforward. We have

Bρ(ω;(u0ρ(,ω)u0ρ,L(,ω),u1ρ(,,ω)u1ρ,L(,,ω)),(u0ρ(,ω)u0ρ,L(,ω),u1ρ(,,ω)u1ρ,L(,,ω)))\displaystyle B^{\rho}(\omega;(u_{0}^{\rho}(\cdot,\omega)-u_{0}^{\rho,L}(\cdot,\omega),u_{1}^{\rho}(\cdot,\cdot,\omega)-u_{1}^{\rho,L}(\cdot,\cdot,\omega)),(u_{0}^{\rho}(\cdot,\omega)-u_{0}^{\rho,L}(\cdot,\omega),u_{1}^{\rho}(\cdot,\cdot,\omega)-u_{1}^{\rho,L}(\cdot,\cdot,\omega)))
=Bρ(ω;(u0ρ(,ω)u0ρ,L(,ω),u1ρ(,,ω)u1ρ,L(,,ω)),(u0ρ(,ω)ϕ0L,u1ρ(,,ω)ϕ1L))\displaystyle=B^{\rho}(\omega;(u_{0}^{\rho}(\cdot,\omega)-u_{0}^{\rho,L}(\cdot,\omega),u_{1}^{\rho}(\cdot,\cdot,\omega)-u_{1}^{\rho,L}(\cdot,\cdot,\omega)),(u_{0}^{\rho}(\cdot,\omega)-\phi_{0}^{L},u_{1}^{\rho}(\cdot,\cdot,\omega)-\phi_{1}^{L}))

(ϕ0L,ϕ1L)𝐕ρ,L\forall\,(\phi_{0}^{L},\phi_{1}^{L})\in{\bf V}^{\rho,L}. From (2.1), we have

c1DYρ(|(u0ρ(x,ω)u0ρ,L(x,ω))|2+|y(u1ρ(x,y,ω)u1ρ,L(x,y,ω))|2)𝑑y𝑑x\displaystyle c_{1}\int_{D}\int_{Y^{\rho}}(|\nabla(u_{0}^{\rho}(x,\omega)-u_{0}^{\rho,L}(x,\omega))|^{2}+|\nabla_{y}(u_{1}^{\rho}(x,y,\omega)-u_{1}^{\rho,L}(x,y,\omega))|^{2})dydx
c2(DYρ(|(u0ρ(x,ω)u0ρ,L(x,ω))|2+|y(u1ρ(x,y,ω)u1ρ,L(x,y,ω)|2)dydx)1/2\displaystyle\leq c_{2}\left(\int_{D}\int_{Y^{\rho}}(|\nabla(u_{0}^{\rho}(x,\omega)-u_{0}^{\rho,L}(x,\omega))|^{2}+|\nabla_{y}(u_{1}^{\rho}(x,y,\omega)-u_{1}^{\rho,L}(x,y,\omega)|^{2})dydx\right)^{1/2}
(DYρ(|(u0ρ(x,ω)ϕ0L(x))|2+|y(u1ρ(x,y,ω)ϕ1L(x,y))|2)𝑑y𝑑x)1/2.\displaystyle\cdot\left(\int_{D}\int_{Y^{\rho}}(|\nabla(u_{0}^{\rho}(x,\omega)-\phi_{0}^{L}(x))|^{2}+|\nabla_{y}(u_{1}^{\rho}(x,y,\omega)-\phi_{1}^{L}(x,y))|^{2})dydx\right)^{1/2}.

From this we get the conclusion. \Box

To quantify the error of the approximate problem (4.1), we define the following regularity space. Let ρ{\cal H}^{\rho} be the space L2(D,H2(Yρ))H1(D,H01(Yρ))L^{2}(D,H^{2}(Y^{\rho}))\bigcap H^{1}(D,H^{1}_{0}(Y^{\rho})). We define the semi norm

|w|ρ=α10d,|α1|=2|α1|wyα1L2(D×Yρ)+α0,α10d|α0|=1,|α1|1|α0|+|α1|wxα0yα1L2(D×Yρ).|w|_{{\cal H}^{\rho}}=\sum_{\alpha_{1}\in\mathbb{N}_{0}^{d},\atop|\alpha_{1}|=2}\left\|{\partial^{|\alpha_{1}|}w\over\partial y^{\alpha_{1}}}\right\|_{L^{2}(D\times Y^{\rho})}+\sum_{\alpha_{0},\alpha_{1}\in\mathbb{N}_{0}^{d}\atop|\alpha_{0}|=1,|\alpha_{1}|\leq 1}\left\|{\partial^{|\alpha_{0}|+|\alpha_{1}|}w\over\partial x^{\alpha_{0}}\partial y^{\alpha_{1}}}\right\|_{L^{2}(D\times Y^{\rho})}.

We then have the following approximating properties.

Lemma 4.2

There is a positive constant cc independent of ρ\rho such that for all wρw\in{\cal H}^{\rho}

infwLV1ρ,LwwLV1ρchL|w|ρ.\inf_{w^{L}\in V_{1}^{\rho,L}}\|w-w^{L}\|_{V_{1}^{\rho}}\leq ch_{L}|w|_{{\cal H}^{\rho}}.

The proof of this result is standard (see, e.g., [9, 21]). The fact that the constant cc in the lemma is independent of ρ\rho is because we can choose a constant cc independent of ρ\rho such that

infvLV1ρ,LvLvH1(Yρ)chL|v|H2(Yρ)\inf_{v^{L}\in V_{1}^{\rho,L}}\|v^{L}-v\|_{H^{1}(Y^{\rho})}\leq ch_{L}|v|_{H^{2}(Y^{\rho})}

for all vH01(Yρ)H2(Yρ)v\in H^{1}_{0}(Y^{\rho})\bigcap H^{2}(Y^{\rho}) (see, e.g.,[12], [7]).

Lemma 4.3

Assume that DD is a convex domain or a domain of the C2C^{2} class, AC1(D¯,L(Ω))A\in C^{1}(\bar{D},L^{\infty}(\Omega)) and AC1(D¯,L(Ω))d\partial A\in C^{1}(\bar{D},L^{\infty}(\Omega))^{d}, and fHf\in H. Then u0ρH2(D)u_{0}^{\rho}\in H^{2}(D) and u1ρρu_{1}^{\rho}\in{\cal H}^{\rho}. Further, there is a positive constant cc independent of ρ\rho such that

u0ρH2(D)c,|u1ρ|c|Yρ|1/2.\|u_{0}^{\rho}\|_{H^{2}(D)}\leq c,\ \ |u_{1}^{\rho}|_{\cal H}\leq c|Y^{\rho}|^{1/2}.

We prove this lemma in Apprendix B. From Lemmas 4.1, 4.2 and 4.3, we have the following error estimate for the full tensor product FE approximating problem (4.1).

Proposition 4.4

Assume the hypothesis of Lemma 4.3. There is a positive constant cc independent of ρ\rho such that for almost all ωΩ\omega\in\Omega, the solution of the approximating problem (4.1) satisfies

u0ρ(,ω)u0ρ,L(,ω)VchL,u1ρ(,,ω)u1ρ,L(,,ω)V1chL|Yρ|1/2.\|u_{0}^{\rho}(\cdot,\omega)-u_{0}^{\rho,L}(\cdot,\omega)\|_{V}\leq ch_{L},\ \ \|u_{1}^{\rho}(\cdot,\cdot,\omega)-u_{1}^{\rho,L}(\cdot,\cdot,\omega)\|_{V_{1}}\leq ch_{L}|Y^{\rho}|^{1/2}.
Remark 4.5

The dimension of the full tensor product FE space 𝐕ρ,L{\bf V}^{\rho,L} is O(22dLρd)O(2^{2dL}\rho^{d}).

4.2 Sparse tensor product FE approximation

We develop in this section the sparse tensor product FE approximation which requires a far less number of degrees of freedom to achieve a prescribed level of accuracy. To this end, we define the orthogonal projection

Pl:HVl,P1ρ,l:H01(Yρ)V0ρ,lP^{l}:H\to V^{l},\ \ P_{1}^{\rho,l}:H^{1}_{0}(Y^{\rho})\to V_{0}^{\rho,l}

with respect to the norm of HH and H01(Yρ)H^{1}_{0}(Y^{\rho}) respectively. We define the detail spaces

Wl=(PlPl1)Vl,Wρ,l=(P1ρ,lP1ρ,l1)V0ρ,l,W^{l}=(P^{l}-P^{l-1})V^{l},\ \ W^{\rho,l}=(P_{1}^{\rho,l}-P_{1}^{\rho,l-1})V^{\rho,l}_{0},

with the convention that P1=0P^{-1}=0 and P1ρ,1=0P^{\rho,-1}_{1}=0. We note that

VL=l=1LWl,V0ρ,L=l=1LWρ,lV^{L}=\bigoplus_{l=1}^{L}W^{l},\ \ V^{\rho,L}_{0}=\bigoplus_{l=1}^{L}W^{\rho,l}

so

V1ρ,L=l1,l2=1LWl1Wρ,l2.V_{1}^{\rho,L}=\bigoplus_{l_{1},l_{2}=1}^{L}W^{l_{1}}\otimes W^{\rho,l_{2}}.

We define the sparse tensor product FE space as

V^1ρ,L=l1+l2LWl1Wρ,l2.\hat{V}_{1}^{\rho,L}=\bigoplus_{l_{1}+l_{2}\leq L}W^{l_{1}}\otimes W^{\rho,l_{2}}.

Let 𝐕^ρ,L=VL×V^1ρ,L\hat{\bf V}^{\rho,L}=V^{L}\times\hat{V}_{1}^{\rho,L}. We consider the sparse tensor product FE problem: Find (u^0ρ,L(,ω),u^1ρ,L(,,ω))𝐕^ρ,L(\hat{u}_{0}^{\rho,L}(\cdot,\omega),\hat{u}_{1}^{\rho,L}(\cdot,\cdot,\omega))\in\hat{\bf V}^{\rho,L} such that

Bρ(ω;(u^0ρ,L(,ω),u^1ρ,L(,,ω)),(ϕ^0L,ϕ^1L))=Df(x)ϕ^0L(x)𝑑x,(ϕ^0L,ϕ^1L)𝐕^ρ,L.B^{\rho}(\omega;(\hat{u}_{0}^{\rho,L}(\cdot,\omega),\hat{u}_{1}^{\rho,L}(\cdot,\cdot,\omega)),(\hat{\phi}_{0}^{L},\hat{\phi}_{1}^{L}))=\int_{D}f(x)\hat{\phi}_{0}^{L}(x)dx,\ \ \forall\,(\hat{\phi}_{0}^{L},\hat{\phi}_{1}^{L})\in\hat{{\bf V}}^{\rho,L}. (4.2)

An identical proof to that of Lemma 4.1 shows that

Lemma 4.6

There is a positive constant cc which is independent of ρ\rho such that for almost all ωΩ\omega\in\Omega, the solution (u^0ρ,L,u^1ρ,L)(\hat{u}_{0}^{\rho,L},\hat{u}_{1}^{\rho,L}) of the sparse tensor product FE approximating problem (4.2) satisfies

|Yρ|u0ρ(,ω)u^0ρ,L(,ω)V2+u1ρ(,,ω)u^1ρ,L(,,ω)V1ρ2\displaystyle|Y^{\rho}|\|u_{0}^{\rho}(\cdot,\omega)-\hat{u}_{0}^{\rho,L}(\cdot,\omega)\|_{V}^{2}+\|u_{1}^{\rho}(\cdot,\cdot,\omega)-\hat{u}_{1}^{\rho,L}(\cdot,\cdot,\omega)\|^{2}_{V_{1}^{\rho}}
c(|Yρ|u0ρ(,ω)ϕ^0LV2+u1ρ(,,ω)ϕ^1LV1ρ2)\displaystyle\leq c(|Y^{\rho}|\|u_{0}^{\rho}(\cdot,\omega)-\hat{\phi}_{0}^{L}\|^{2}_{V}+\|u_{1}^{\rho}(\cdot,\cdot,\omega)-\hat{\phi}_{1}^{L}\|_{V_{1}^{\rho}}^{2})

(ϕ^0L,ϕ^1L)𝐕^ρ,L\forall\,(\hat{\phi}_{0}^{L},\hat{\phi}_{1}^{L})\in\hat{\bf V}^{\rho,L}.

We define the regularity space ^ρ\hat{\cal H}^{\rho} as the space of functions wL2(D,H01(Yρ))w\in L^{2}(D,H^{1}_{0}(Y^{\rho})) such that for all α0,α1d\alpha_{0},\alpha_{1}\in\mathbb{N}^{d} with |α0|1|\alpha_{0}|\leq 1 and |α1|2|\alpha_{1}|\leq 2,

|α0|+|α1|wxα0yα1L2(D×Yρ).{\partial^{|\alpha_{0}|+|\alpha_{1}|}w\over\partial x^{\alpha_{0}}\partial y^{\alpha_{1}}}\in L^{2}(D\times Y^{\rho}).

In other words, ^ρ=H1(D,H2(Yρ))\hat{\cal H}^{\rho}=H^{1}(D,H^{2}(Y^{\rho})). We define the semi norm

|w|^ρ=α0,α1d|α0|=1,|α1|=2|α0|+|α1|wxα0yα1L2(D×Yρ).|w|_{\hat{\cal H}^{\rho}}=\sum_{\alpha_{0},\alpha_{1}\in\mathbb{N}^{d}\atop|\alpha_{0}|=1,|\alpha_{1}|=2}\left\|{\partial^{|\alpha_{0}|+|\alpha_{1}|}w\over\partial x^{\alpha_{0}}\partial y^{\alpha_{1}}}\right\|_{L^{2}(D\times Y^{\rho})}.

We have the following approximating result.

Lemma 4.7

There is a positive constant cc independent of ρ\rho such that for all w^ρw\in\hat{\cal H}^{\rho}

infw^LV^1ρ,Lww^LV1cL1/2hL|w|^ρ.\inf_{\hat{w}^{L}\in{\hat{V}_{1}^{\rho,L}}}\|w-\hat{w}^{L}\|_{V_{1}}\leq cL^{1/2}h_{L}|w|_{\hat{\cal H}^{\rho}}.

As for the proof of Lemma 4.2, the proof of this lemma is standard (see, e.g., [9, 21]). We then have the following results on the regularity of the solution of problem (3.4).

Lemma 4.8

Assume that DD is a convex domain or belongs to the C2C^{2} class, AC1(D¯,L(Ω))A\in C^{1}(\bar{D},L^{\infty}(\Omega)), AC1(D¯,L(Ω))d\partial A\in C^{1}(\bar{D},L^{\infty}(\Omega))^{d}, and fHf\in H. Then u0ρH2(D)u_{0}^{\rho}\in H^{2}(D) and u1ρ^ρu_{1}^{\rho}\in\hat{\cal H}^{\rho}. There is a positive constant cc independent of ω\omega and ρ\rho such that

u0ρ(,ω)H2(D)c,|u1ρ(,,ω)|^ρc|Yρ|1/2.\|u_{0}^{\rho}(\cdot,\omega)\|_{H^{2}(D)}\leq c,\ \ |u_{1}^{\rho}(\cdot,\cdot,\omega)|_{\hat{\cal H}^{\rho}}\leq c|Y^{\rho}|^{1/2}.

We prove this lemma in Appendix B. From Lemmas 4.6, 4.7 and 4.8, we have the following error etimate.

Proposition 4.9

Assume the hypothesis of Lemma 4.8, there is a positive constant cc independent of ρ\rho such that for almost all ωΩ\omega\in\Omega, the solution of the sparse tensor product FE approximating problem (4.2) satisfies

u0ρ(,ω)u^0ρ,L(,ω)VcL1/2hL,u1ρ(,,ω)u^1ρ,L(,,ω)V1cL1/2hL|Yρ|1/2.\|u_{0}^{\rho}(\cdot,\omega)-\hat{u}_{0}^{\rho,L}(\cdot,\omega)\|_{V}\leq cL^{1/2}h_{L},\ \ \|u_{1}^{\rho}(\cdot,\cdot,\omega)-\hat{u}_{1}^{\rho,L}(\cdot,\cdot,\omega)\|_{V_{1}}\leq cL^{1/2}h_{L}|Y^{\rho}|^{1/2}.
Remark 4.10

The dimension of the sparse tensor product FE space 𝐕^ρ,L\hat{\bf V}^{\rho,L} is O(L2dLρd)O(L2^{dL}\rho^{d}) which is, apart from the multiplying factor LL, equal to the dimension of the FE space for solving one truncated cell problem in the cube YρY^{\rho}.

Remark 4.11

We note that tensor product FEs as considered above work equally in the case where the domain DD is not a polygon. For example, when DD is a smooth convex domain, to discretize u0ρu_{0}^{\rho}, we consider a polygon inscribed inside DD whose boundary edges (faces) are of the size O(2L)O(2^{-L}). For constructing the sparse tensor product FEs to approximate u1u_{1}, we consider a polygon D~\tilde{D} that contains DD. The sparse tensor product FE spaces for approximating u1ρu_{1}^{\rho} is the restriction of those for approximating functions in L2(D~,H01(Yρ))L^{2}(\tilde{D},H^{1}_{0}(Y^{\rho})) to D×YρD\times Y^{\rho}. We refer to [20] and [30] for details.

Alternatively, we can use parametric FEs as considered in [18].

Remark 4.12

Brown and Hoang [8] develop an algorithm using multilevels of FE resolution and of numbers of Monte Carlo approximation samples at different macroscopic points to compute the expectation of the effective coefficient A0ρ(x,ω)A^{0\rho}(x,\omega) on the truncated domain YρY^{\rho} to approximate the homogenized coefficient A0(x)A^{0}(x). The algorithm needs an essentially optimal number of degrees of freedom for approximating the homogenized coefficients at a dense grid of macroscopic points xx.

5 Numerical corrector

We use the FE solutions of problem (3.4) developed in the previous sections to construct a numerical corrector for the solution of the stochastic two-scale problem (2.2). To derive a numerical corrector for the solution of the two-scale problem (2.2), we assume the following corrector result.

limε0𝔼[uε[u0+wi(,T(ε)ω))u0xiHd]=0.\lim_{\varepsilon\to 0}\mathbb{E}[\|\nabla u^{\varepsilon}-[\nabla u_{0}+w^{i}(\cdot,T({\cdot\over\varepsilon})\omega)){\partial u_{0}\over\partial x_{i}}\|_{H^{d}}]=0. (5.1)
Remark 5.1

Jikov et al. [23] prove that when the coefficient AA does not depend on the slow variable, i.e. A=A(ω)A=A(\omega), then if u0C0(D)u_{0}\in C^{\infty}_{0}(D)

limε0uε[u0+wi(,T(ε)ω))u0xiHd=0,\lim_{\varepsilon\to 0}\|\nabla u^{\varepsilon}-[\nabla u_{0}+w^{i}(\cdot,T({\cdot\over\varepsilon})\omega)){\partial u_{0}\over\partial x_{i}}\|_{H^{d}}=0,

almost surely, which implies (5.1). Examining the proof [23], we find that this result holds under the weaker condition that u0H03(D)W3,(D)u_{0}\in H^{3}_{0}(D)\cap W^{3,\infty}(D). We do not find a similar result in the literature for the case where the coefficient AA depends also on the slow variable xx, i.e. A=A(x,ω)A=A(x,\omega). However, for quasi-periodic problems, assuming boundedness for the solution of the cell problems, we can derive this corrector result for the case where AA depends on the slow variable, following the standard procedure for the periodic case ([4], [23]).

From (3.1), we have

U1(x,ω)=wi(x,ω)u0xi(x).U_{1}(x,\omega)=w^{i}(x,\omega){\partial u_{0}\over\partial x_{i}}(x).

Thus we can write (5.1) as

limε0𝔼[uε[u0+U1(,T(ε)ω)]Hd]=0.\lim_{\varepsilon\to 0}\mathbb{E}[\|\nabla u^{\varepsilon}-[\nabla u_{0}+U_{1}(\cdot,T({\cdot\over\varepsilon})\omega)]\|_{H^{d}}]=0. (5.2)

We use the FE approximations for u0ρu_{0}^{\rho} and u1ρu_{1}^{\rho} in the previous section to construct a numerical corrector in this section. We first note the following convergence result.

Lemma 5.2

Almost surely, the solution of problems (3.1) and (3.4) satisfies

limρ1|Yρ|1/2U1(,T()ω)yu1ρ(,,ω)L2(D×Yρ)=0.\lim_{\rho\to\infty}{1\over|Y^{\rho}|^{1/2}}\|U_{1}(\cdot,T(\cdot)\omega)-\nabla_{y}u_{1}^{\rho}(\cdot,\cdot,\omega)\|_{L^{2}(D\times Y^{\rho})}=0.

Proof  We consider the expression

=1|Yρ|YρDA(x,T(y)ω)((u0(x)u0ρ(x,ω))+(U1(x,T(y)ω)yu1ρ(x,y,ω)))\displaystyle{\cal I}={1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla(u_{0}(x)-u_{0}^{\rho}(x,\omega))+(U_{1}(x,T(y)\omega)-\nabla_{y}u_{1}^{\rho}(x,y,\omega)))
((u0(x)u0ρ(x,ω))+(U1(x,T(y)ω)yu1ρ(x,y,ω)))dxdy\displaystyle\qquad\qquad\cdot(\nabla(u_{0}(x)-u_{0}^{\rho}(x,\omega))+(U_{1}(x,T(y)\omega)-\nabla_{y}u_{1}^{\rho}(x,y,\omega)))dxdy
=1|Yρ|YρDA(x,T(y)ω)(u0(x)+U1(x,T(y)ω))(u0(x)+U1(x,T(y)ω))𝑑x𝑑y\displaystyle={1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))\cdot(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))dxdy
2|Yρ|YρDA(x,T(y)ω)(u0(x)+U1(x,T(y)ω))(u0ρ(x,ω)+yu1ρ(x,y,ω))𝑑x𝑑y\displaystyle-{2\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))\cdot(\nabla u_{0}^{\rho}(x,\omega)+\nabla_{y}u_{1}^{\rho}(x,y,\omega))dxdy
+1|Yρ|YρDA(x,T(y)ω)(u0ρ(x,ω)+yu1ρ(x,y,ω))(u0ρ(x,ω)+yu1ρ(x,y,ω))𝑑x𝑑y.\displaystyle+{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}^{\rho}(x,\omega)+\nabla_{y}u_{1}^{\rho}(x,y,\omega))\cdot(\nabla u_{0}^{\rho}(x,\omega)+\nabla_{y}u_{1}^{\rho}(x,y,\omega))dxdy.

From ergodicity property and (3.1), we have almost surely

limρ1|Yρ|YρDA(x,T(y)ω)(u0(x)+U1(x,T(y)ω))(u0(x)+U1(x,T(y)ω))𝑑x𝑑y\displaystyle\lim_{\rho\to\infty}{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))\cdot(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))dxdy
=ΩDA(x,ω)(u0(x)+U1(x,ω))(u0(x)+U1(x,ω))𝑑x(dω)\displaystyle=\int_{\Omega}\int_{D}A(x,\omega)(\nabla u_{0}(x)+U_{1}(x,\omega))\cdot(\nabla u_{0}(x)+U_{1}(x,\omega))dx\mathbb{P}(d\omega)
=Df(x)u0(x)𝑑x.\displaystyle=\int_{D}f(x)u_{0}(x)dx.

Further

limρ1|Yρ|YρDA(x,T(y)ω)(u0ρ+yu1ρ)(u0ρ+yu1ρ)𝑑x𝑑y=limρDfu0ρ𝑑x=Dfu0𝑑x.\displaystyle\lim_{\rho\to\infty}{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}^{\rho}+\nabla_{y}u_{1}^{\rho})\cdot(\nabla u_{0}^{\rho}+\nabla_{y}u_{1}^{\rho})dxdy=\lim_{\rho\to\infty}\int_{D}fu_{0}^{\rho}dx=\int_{D}fu_{0}dx.

We find the limit of

1|Yρ|YρDA(x,T(y)ω)(u0(x)+U1(x,T(y)ω))(u0ρ(x,ω)+yu1ρ(x,y,ω))𝑑x𝑑y{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))\cdot(\nabla u_{0}^{\rho}(x,\omega)+\nabla_{y}u_{1}^{\rho}(x,y,\omega))dxdy

when ρ\rho\to\infty. From (3.2),

1|Yρ|YρDA(x,T(y)ω)(u0(x)+U1(x,T(y)ω))yu1ρ(x,y,ω)𝑑x𝑑y=0.{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))\cdot\nabla_{y}u_{1}^{\rho}(x,y,\omega)dxdy=0.

We now show that

limρ1|Yρ|YρDA(x,T(y)ω)(u0(x)+U1(x,T(y)ω))u0ρ(x,ω)𝑑x𝑑y=Df(x)u0(x)𝑑x\lim_{\rho\to\infty}{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))\cdot\nabla u_{0}^{\rho}(x,\omega)dxdy=\int_{D}f(x)u_{0}(x)dx

almost surely. From the ergodicity property and equation (3.1), we have

limρ1|Yρ|YρDA(x,T(y)ω)(u0(x)+U1(x,T(y)ω))u0(x)𝑑x𝑑y=\displaystyle\lim_{\rho\to\infty}{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))\cdot\nabla u_{0}(x)dxdy=
ΩDA(x,ω)(u0(x)+U1(x,ω))u0(x)𝑑x(dω)=Df(x)u0(x)𝑑x.\displaystyle\int_{\Omega}\int_{D}A(x,\omega)(\nabla u_{0}(x)+U_{1}(x,\omega))\cdot\nabla u_{0}(x)dx\mathbb{P}(d\omega)=\int_{D}f(x)u_{0}(x)dx.

We consider

1|Yρ|YρDA(x,T(y)ω)(u0(x)+U1(x,T(y)ω))(u0ρ(x,ω)u0(x))dxdy\displaystyle{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))\cdot\nabla(u_{0}^{\rho}(x,\omega)-u_{0}(x))dxdy
(1|Yρ|YρD|u0(x)+U1(x,T(y)ω)|2𝑑x𝑑y)1/2(1|Yρ|YρD|(u0ρ(x,ω)u0(x))|2𝑑x𝑑y)1/2.\displaystyle\leq\left({1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}|\nabla u_{0}(x)+U_{1}(x,T(y)\omega)|^{2}dxdy\right)^{1/2}\left({1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}|\nabla(u_{0}^{\rho}(x,\omega)-u_{0}(x))|^{2}dxdy\right)^{1/2}.

From (3.7),

limρ1|Yρ|YρD|(u0ρ(x,ω)u0(x))|2𝑑x𝑑y=limρD|(u0ρ(x,ω)u0(x))|2𝑑x=0.\lim_{\rho\to\infty}{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}|\nabla(u_{0}^{\rho}(x,\omega)-u_{0}(x))|^{2}dxdy=\lim_{\rho\to\infty}\int_{D}|\nabla(u_{0}^{\rho}(x,\omega)-u_{0}(x))|^{2}dx=0.

Due to ergodicity, we have

limρ1|Yρ|YρD|u0(x)+U1(x,T(y)ω)|2𝑑x𝑑y=ΩD|u0(x)+U1(x,ω)|2𝑑xP(dω),\displaystyle\lim_{\rho\to\infty}{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}|\nabla u_{0}(x)+U_{1}(x,T(y)\omega)|^{2}dxdy=\int_{\Omega}\int_{D}|\nabla u_{0}(x)+U_{1}(x,\omega)|^{2}dxP(d\omega),

so almost surely

1|Yρ|YρD|u0(x)+U1(x,T(y)ω)|2𝑑x𝑑y{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}|\nabla u_{0}(x)+U_{1}(x,T(y)\omega)|^{2}dxdy

is bounded. Thus

limρ1|Yρ|YρDA(x,T(y)ω)(u0(x)+U1(x,T(y)ω))(u0ρ(x,ω)u0(x))dxdy=0.\lim_{\rho\to\infty}{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))\cdot\nabla(u_{0}^{\rho}(x,\omega)-u_{0}(x))dxdy=0.

Therefore

limρ1|Yρ|YρDA(x,T(y)ω)(u0(x)+U1(x,T(y)ω))u0ρ(x,ω)𝑑x𝑑y=Df(x)u0(x)𝑑x.\lim_{\rho\to\infty}{1\over|Y^{\rho}|}\int_{Y^{\rho}}\int_{D}A(x,T(y)\omega)(\nabla u_{0}(x)+U_{1}(x,T(y)\omega))\cdot\nabla u_{0}^{\rho}(x,\omega)dxdy=\int_{D}f(x)u_{0}(x)dx.

Thus

limρ=0\lim_{\rho\to\infty}{\cal I}=0

almost surely. From (2.1), we have

limρ1|Yρ|1/2U1(,T()ω)yu1ρ(,,ω)L2(D×Yρ)d=0.\lim_{\rho\to\infty}{1\over|Y^{\rho}|^{1/2}}\|U_{1}(\cdot,T(\cdot)\omega)-\nabla_{y}u_{1}^{\rho}(\cdot,\cdot,\omega)\|_{L^{2}(D\times Y^{\rho})^{d}}=0.

\Box

From now on, we denote the FE solution of both the full tensor product FE and sparse tensor product FE approximating problems (4.1) and (4.2) by u0ρ,Lu_{0}^{\rho,L} and u1ρ,Lu_{1}^{\rho,L}. We will use these together with (5.2) to construct a numerical corrector for uεu^{\varepsilon}. However, although yu1ρ,L(x,y,ω)\nabla_{y}u_{1}^{\rho,L}(x,y,\omega) approximates U1(x,T(y)ω)U_{1}(x,T(y)\omega) in L2(D×Yρ)L^{2}(D\times Y^{\rho}), in general, yu1ρ,L(x,xε,ω)\nabla_{y}u_{1}^{\rho,L}(x,{x\over\varepsilon},\omega) does not approximate U1(x,T(xε)ω))U_{1}(x,T({x\over\varepsilon})\omega)) in HdH^{d}. We thus define the following map 𝒰ε:L1(D,Lloc1(d))L1(D){\cal U}^{\varepsilon}:L^{1}(D,L^{1}_{loc}(\mathbb{R}^{d}))\to L^{1}(D) and use it to construct the numerical corrector. For idi\in\mathbb{Z}^{d}, we denote the cube i2ρ+Yρi2\rho+Y^{\rho} by YiρY^{i\rho} and the cube ε(i2ρ+Yρ)\varepsilon(i2\rho+Y^{\rho}) by YiερY^{i\varepsilon\rho}. Let IdI\subset\mathbb{Z}^{d} be the set of all idi\in\mathbb{Z}^{d} such that YiερDY^{i\varepsilon\rho}\cap D\neq\emptyset. For ΦL1(D,Lloc1(d))\Phi\in L^{1}(D,L^{1}_{loc}(\mathbb{R}^{d})), we define

𝒰ε(Φ)(x)=1|Yiερ|YiερΦ(z,xε)𝑑z,{\cal U}^{\varepsilon}(\Phi)(x)={1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\Phi(z,{x\over\varepsilon})dz,

if xYiερx\in Y^{i\varepsilon\rho}. The function Φ\Phi is understood as 0 if zDz\notin D. We then have the following result.

Lemma 5.3

For ΦL1(D,Lloc1(d))\Phi\in L^{1}(D,L^{1}_{loc}(\mathbb{R}^{d})),

Dε𝒰ε(Φ)(x)𝑑x=iI1(2ρd)YiερYiρΦ(z,y)𝑑y𝑑z\int_{D^{\varepsilon}}{\cal U}^{\varepsilon}(\Phi)(x)dx=\sum_{i\in I}{1\over(2\rho^{d})}\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\rho}}\Phi(z,y)dydz

where Dε=iIYiερD^{\varepsilon}=\cup_{i\in I}Y^{i\varepsilon\rho}.

Proof  We have

Dε𝒰ε(Φ)(x)𝑑x=iI1|Yiερ|YiερYiερΦ(z,xε)𝑑z𝑑x.\int_{D^{\varepsilon}}{\cal U}^{\varepsilon}(\Phi)(x)dx=\sum_{i\in I}{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\varepsilon\rho}}\Phi(z,{x\over\varepsilon})dzdx.

Making the change of variable y=x/εy=x/\varepsilon, we get the conclusion. \Box

For xDx\in D and ydy\in\mathbb{R}^{d}, we define the function U1ρ,L(x,y,ω)U_{1}^{\rho,L}(x,y,\omega) by

U1ρ,L(x,y,ω)=yu1ρ,L(x,yi2ρ,T(i2ρ)ω)U_{1}^{\rho,L}(x,y,\omega)=\nabla_{y}u_{1}^{\rho,L}(x,y-i2\rho,T(i2\rho)\omega)

if yYiρy\in Y^{i\rho}. We have the following result.

Lemma 5.4

For all ε>0\varepsilon>0 we have

𝔼[D|𝒰ε(U1(,T()ω)U1ρ,L(,,ω))(x)|2𝑑x]\displaystyle\mathbb{E}\left[\int_{D}|{\cal U}^{\varepsilon}(U_{1}(\cdot,T(\cdot)\omega)-U_{1}^{\rho,L}(\cdot,\cdot,\omega))(x)|^{2}dx\right]
c1|Yρ|𝔼[DYρ|U1(x,T(y)ω)yu1ρ,L(x,y,ω)|2𝑑y𝑑x].\displaystyle\qquad\qquad\qquad\leq c{1\over|Y^{\rho}|}\mathbb{E}\left[\int_{D}\int_{Y^{\rho}}|U_{1}(x,T(y)\omega)-\nabla_{y}u_{1}^{\rho,L}(x,y,\omega)|^{2}dydx\right].

Proof  For all ΦL2(D,Lloc2(d))\Phi\in L^{2}(D,L^{2}_{loc}(\mathbb{R}^{d})), we have

𝒰ε(Φ)(x)2=1|Yiερ|2(YiερΦ(z,xε)𝑑z)21|Yiερ|YiερΦ(z,xε)2𝑑z=𝒰ε(Φ2)(x).{\cal U}^{\varepsilon}(\Phi)(x)^{2}={1\over|Y^{i\varepsilon\rho}|^{2}}\left(\int_{Y^{i\varepsilon\rho}}\Phi(z,{x\over\varepsilon})dz\right)^{2}\leq{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\Phi(z,{x\over\varepsilon})^{2}dz={\cal U}^{\varepsilon}(\Phi^{2})(x).

Thus

𝒥:=𝔼[D|𝒰ε(U1(,T()ω)U1ρ,L(,,ω))(x)|2𝑑x]\displaystyle{\cal J}:=\mathbb{E}\left[\int_{D}|{\cal U}^{\varepsilon}(U_{1}(\cdot,T(\cdot)\omega)-U_{1}^{\rho,L}(\cdot,\cdot,\omega))(x)|^{2}dx\right]
𝔼[D𝒰ε((U1(,T()ω)U1ρ,L(,,ω))2)(x)𝑑x]\displaystyle\leq\mathbb{E}\left[\int_{D}{\cal U}^{\varepsilon}((U_{1}(\cdot,T(\cdot)\omega)-U_{1}^{\rho,L}(\cdot,\cdot,\omega))^{2})(x)dx\right]
𝔼[Dε𝒰ε((U1(,T()ω)U1ρ,L(,,ω))2)(x)𝑑x].\displaystyle\leq\mathbb{E}\left[\int_{D^{\varepsilon}}{\cal U}^{\varepsilon}((U_{1}(\cdot,T(\cdot)\omega)-U_{1}^{\rho,L}(\cdot,\cdot,\omega))^{2})(x)dx\right].

From Lemma 5.3, using ergodicity

𝒥𝔼[1(2ρ)diIYiερYiρ((U1(x,T(y)ω)U1ρ,L(x,y,ω))2dydx]\displaystyle{\cal J}\leq\mathbb{E}\left[{1\over(2\rho)^{d}}\sum_{i\in I}\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\rho}}((U_{1}(x,T(y)\omega)-U_{1}^{\rho,L}(x,y,\omega))^{2}dydx\right]
=iI1(2ρ)d𝔼[YiερYρ((U1(x,T(y)T(2ρi)ω)yu1ρ,L(x,y,T(2ρi)ω))2dydx]\displaystyle=\sum_{i\in I}{1\over(2\rho)^{d}}\mathbb{E}\left[\int_{Y^{i\varepsilon\rho}}\int_{Y^{\rho}}((U_{1}(x,T(y)T(2\rho i)\omega)-\nabla_{y}u_{1}^{\rho,L}(x,y,T(2\rho i)\omega))^{2}dydx\right]
=iI1(2ρ)d𝔼[YiερYρ((U1(x,T(y)ω)yu1ρ,L(x,y,ω))2dydx]\displaystyle=\sum_{i\in I}{1\over(2\rho)^{d}}\mathbb{E}\left[\int_{Y^{i\varepsilon\rho}}\int_{Y^{\rho}}((U_{1}(x,T(y)\omega)-\nabla_{y}u_{1}^{\rho,L}(x,y,\omega))^{2}dydx\right]
=1(2ρ)d𝔼[DYρ((U1(x,T(y)ω)yu1ρ,L(x,y,ω))2dydx]\displaystyle={1\over(2\rho)^{d}}\mathbb{E}\left[\int_{D}\int_{Y^{\rho}}((U_{1}(x,T(y)\omega)-\nabla_{y}u_{1}^{\rho,L}(x,y,\omega))^{2}dydx\right]

(note that U1(x,T(y)ω)U_{1}(x,T(y)\omega) and yu1ρL\nabla_{y}u_{1}^{\rho L} are understood as 0 when xDx\notin D in the definition of the operator 𝒰ε{\cal U}^{\varepsilon}. \Box

Next we show the following estimate

Lemma 5.5

Assume that u0H2(D)u_{0}\in H^{2}(D). Then

𝔼[D|U1(x,T(xε)ω)𝒰ε(U1(,T()ω)(x)|2dx]c(ρε).\mathbb{E}\left[\int_{D}|U_{1}(x,T({x\over\varepsilon})\omega)-{\cal U}^{\varepsilon}(U_{1}(\cdot,T(\cdot)\omega)(x)|^{2}dx\right]\leq c(\rho\varepsilon).

Proof  Let JJ be the set of the index iIi\in I such that YiερDY^{i\varepsilon\rho}\subset D. We then have

𝔼[iJYiερ|U1(x,T(xε)ω)𝒰ε(U1(,T()ω)(x)|2dx]\displaystyle\mathbb{E}\left[\int_{\cup_{i\in J}Y^{i\varepsilon\rho}}|U_{1}(x,T({x\over\varepsilon})\omega)-{\cal U}^{\varepsilon}(U_{1}(\cdot,T(\cdot)\omega)(x)|^{2}dx\right]
=iJ𝔼[Yiερ|U1(x,T(xε)ω)1|Yiερ|YiερU1(z,T(xε)ω)𝑑z|2𝑑x]\displaystyle=\sum_{i\in J}\mathbb{E}\left[\int_{Y^{i\varepsilon\rho}}|U_{1}(x,T({x\over\varepsilon})\omega)-{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}U_{1}(z,T({x\over\varepsilon})\omega)dz|^{2}dx\right]
=iJ𝔼[Yiερ|1|Yiερ|Yiερ(U1(x,T(xε)ω)U1(z,T(xε)ω))𝑑z|2𝑑x]\displaystyle=\sum_{i\in J}\mathbb{E}\left[\int_{Y^{i\varepsilon\rho}}\left|{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}(U_{1}(x,T({x\over\varepsilon})\omega)-U_{1}(z,T({x\over\varepsilon})\omega))dz\right|^{2}dx\right]
iJ1|Yiερ|YiερYiερ𝔼[|U1(x,T(xε)ω)U1(z,T(xε)ω))|2]dzdx\displaystyle\leq\sum_{i\in J}{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\varepsilon\rho}}\mathbb{E}\left[|U_{1}(x,T({x\over\varepsilon})\omega)-U_{1}(z,T({x\over\varepsilon})\omega))|^{2}\right]dzdx
=iJ1|Yiερ|YiερYiερ𝔼[|U1(x,ω)U1(z,ω)|2]𝑑z𝑑x.\displaystyle=\sum_{i\in J}{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\varepsilon\rho}}\mathbb{E}[|U_{1}(x,\omega)-U_{1}(z,\omega)|^{2}]dzdx.

We note that

U1(x,ω)U1(z,ω)=(wi(x,ω)wi(z,ω))u0xi(x)+(u0xi(x)u0xi(z))wi(z,ω).U_{1}(x,\omega)-U_{1}(z,\omega)=(w^{i}(x,\omega)-w^{i}(z,\omega)){\partial u_{0}\over\partial x_{i}}(x)+\left({\partial u_{0}\over\partial x_{i}}(x)-{\partial u_{0}\over\partial x_{i}}(z)\right)w^{i}(z,\omega).

We have

YiερYiερ(u0xi(x))2𝔼[(wi(x,ω)wi(z,ω))2]𝑑z𝑑x\displaystyle\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\varepsilon\rho}}\left({\partial u_{0}\over\partial x_{i}}(x)\right)^{2}\mathbb{E}[(w^{i}(x,\omega)-w^{i}(z,\omega))^{2}]dzdx
c(ερ)2|Yiερ|Yiερ(u0xi(x))2𝑑x\displaystyle\leq c(\varepsilon\rho)^{2}|Y^{i\varepsilon\rho}|\int_{Y^{i\varepsilon\rho}}\left({\partial u_{0}\over\partial x_{i}}(x)\right)^{2}dx

due to (A.3). Thus

iJ1|Yiερ|YiερYiερ𝔼[(wi(x,ω)wi(z,ω))2](u0xi(x))2𝑑z𝑑xc(ερ)2.\displaystyle\sum_{i\in J}{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\varepsilon\rho}}\mathbb{E}[(w^{i}(x,\omega)-w^{i}(z,\omega))^{2}]\left({\partial u_{0}\over\partial x_{i}}(x)\right)^{2}dzdx\leq c(\varepsilon\rho)^{2}.

As 𝔼[|wi(z,ω)|2]\mathbb{E}[|w^{i}(z,\omega)|^{2}] is uniformly bounded with respect to zz, we now show that

iJ1|Yiερ|YiερYiερ(u0xi(x)u0xi(z))2𝑑z𝑑xc(ερ)2.\sum_{i\in J}{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\varepsilon\rho}}\left({\partial u_{0}\over\partial x_{i}}(x)-{\partial u_{0}\over\partial x_{i}}(z)\right)^{2}dzdx\leq c(\varepsilon\rho)^{2}.

As u0H2(D)u_{0}\in H^{2}(D), it is sufficient to to show that for ϕH1(D)\phi\in H^{1}(D),

iJ1|Yiερ|YiερYiερ(ϕ(x)ϕ(z))2𝑑z𝑑xc(ερ)2ϕH1(D)2.\sum_{i\in J}{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\varepsilon\rho}}\left(\phi(x)-\phi(z)\right)^{2}dzdx\leq c(\varepsilon\rho)^{2}\|\phi\|_{H^{1}(D)}^{2}.

The proof is similar to that of Lemma 5.5 in [19]. We include the proof here for completeness. We have

iJ1|Yiερ|YiερYiερ(ϕ(x)ϕ(z))2𝑑z𝑑x\displaystyle\sum_{i\in J}{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\varepsilon\rho}}\left(\phi(x)-\phi(z)\right)^{2}dzdx
ciJj=1d1|Yiερ|YiερYiερ|ϕ(x1,,xj,zj+1,,zd)ϕ(x1,,xj1,zj,,zd)|2𝑑z𝑑x\displaystyle\leq c\sum_{i\in J}\sum_{j=1}^{d}{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\varepsilon\rho}}|\phi(x_{1},\ldots,x_{j},z_{j+1},\ldots,z_{d})-\phi(x_{1},\ldots,x_{j-1},z_{j},\ldots,z_{d})|^{2}dzdx
=ciJj=1d1|Yiερ|YiερYiερ|zjxjϕt(x1,,xj1,t,zj+1,,zd)𝑑t|2𝑑z𝑑x\displaystyle=c\sum_{i\in J}\sum_{j=1}^{d}{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\varepsilon\rho}}\left|\int_{z_{j}}^{x_{j}}{\partial\phi\over\partial t}(x_{1},\ldots,x_{j-1},t,z_{j+1},\ldots,z_{d})dt\right|^{2}dzdx
c(ερ)iJj=1d1|Yiερ|YiερYiερε(ij2ρ)ε(ij+2ρ)(ϕt(x1,,xj1,t,zj+1,,zd))2𝑑t𝑑z𝑑x\displaystyle\leq c(\varepsilon\rho)\sum_{i\in J}\sum_{j=1}^{d}{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\int_{Y^{i\varepsilon\rho}}\int_{\varepsilon(i_{j}-2\rho)}^{\varepsilon(i_{j}+2\rho)}\left({\partial\phi\over\partial t}(x_{1},\ldots,x_{j-1},t,z_{j+1},\ldots,z_{d})\right)^{2}dtdzdx
=c(ερ)iJj=1d1|Yiερ|(ερ)d+1ϕxjL2(Yiερ)2\displaystyle=c(\varepsilon\rho)\sum_{i\in J}\sum_{j=1}^{d}{1\over|Y^{i\varepsilon\rho}|}(\varepsilon\rho)^{d+1}\left\|{\partial\phi\over\partial x_{j}}\right\|^{2}_{L^{2}(Y^{i\varepsilon\rho})}
c(ερ)2.\displaystyle\leq c(\varepsilon\rho)^{2}.

Let D2ερD^{2\varepsilon\rho} be the 2ερ2\varepsilon\rho neighbourhood of D\partial D. We have that iIJYiερDD2ερ\cup_{i\in I\setminus J}Y^{i\varepsilon\rho}\cap D\subset D^{2\varepsilon\rho}. Thus

𝔼[iIJYiερD|U1(x,T(xε)ω)|2]D2ερ𝔼[|wi(x,ω)|2](u0xi(x))2𝑑x\displaystyle\mathbb{E}\left[\int_{\cup_{i\in I\setminus J}Y^{i\varepsilon\rho}\cap D}|U_{1}(x,T({x\over\varepsilon})\omega)|^{2}\right]\leq\int_{D^{2\varepsilon\rho}}\mathbb{E}[|w^{i}(x,\omega)|^{2}]\left({\partial u_{0}\over\partial x_{i}}(x)\right)^{2}dx
i=1dD2ερ(u0xi(x))2𝑑xcερ\displaystyle\leq\sum_{i=1}^{d}\int_{D^{2\varepsilon\rho}}\left({\partial u_{0}\over\partial x_{i}}(x)\right)^{2}dx\leq c\varepsilon\rho

as u0W1,(D)u_{0}\in W^{1,\infty}(D). We further have

𝔼[iIJYiερD|𝒰ε(U1(,T()ω))(x)|2𝑑x]=𝔼[iIJYiερD1|Yiερ|2(YiερU1(z,T(xε)ω)𝑑z)2𝑑x]\displaystyle\mathbb{E}\left[\int_{\cup_{i\in I\setminus J}Y^{i\varepsilon\rho}\cap D}|{\cal U}^{\varepsilon}(U_{1}(\cdot,T(\cdot)\omega))(x)|^{2}dx\right]=\mathbb{E}\left[\sum_{i\in I\setminus J}\int_{Y^{i\varepsilon\rho}\cap D}{1\over|Y^{i\varepsilon\rho}|^{2}}\left(\int_{Y^{i\varepsilon\rho}}U_{1}(z,T({x\over\varepsilon})\omega)dz\right)^{2}dx\right]
=𝔼[iIJ1|Yiερ|YiερDYiερU1(z,T(xε)ω)2𝑑z𝑑x]=iIJ|YiερD||Yiερ|Yiερ𝔼[U1(z,ω)2]𝑑z\displaystyle=\mathbb{E}\left[\sum_{i\in I\setminus J}{1\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}\cap D}\int_{Y^{i\varepsilon\rho}}U_{1}(z,T({x\over\varepsilon})\omega)^{2}dzdx\right]=\sum_{i\in I\setminus J}{|Y^{i\varepsilon\rho}\cap D|\over|Y^{i\varepsilon\rho}|}\int_{Y^{i\varepsilon\rho}}\mathbb{E}[U_{1}(z,\omega)^{2}]dz
iIJYiερD𝔼[(wi(x,ω))2](u0xi(z))2𝑑xcD2ερ(u0xi(z))2𝑑zcερ\displaystyle\leq\sum_{i\in I\setminus J}\int_{Y^{i\varepsilon\rho}\cap D}\mathbb{E}[(w^{i}(x,\omega))^{2}]\left({\partial u_{0}\over\partial x_{i}}(z)\right)^{2}dx\leq c\int_{D^{2\varepsilon\rho}}\left({\partial u_{0}\over\partial x_{i}}(z)\right)^{2}dz\leq c\varepsilon\rho

We then get the conclusion. \Box

We then have the following numerical corrector result.

Theorem 5.6

Assume the hypothesis of Lemmas 4.3 and 4.8 hold, then for δ>0\delta>0, there are constants L0>0L_{0}>0, ρ0>0\rho_{0}>0, ε0>0\varepsilon_{0}>0 such that if L>L0L>L_{0}, ρ>ρ0\rho>\rho_{0}, ε<ε0\varepsilon<\varepsilon_{0} and ε<δ/ρ\varepsilon<\delta/\rho, then for the solution of the full and sparse tensor product FE approximating problems (4.1) and (4.2), we have

𝔼[uε[u0ρ,L+𝒰ε(U1ρ,L)()]H]δ.\mathbb{E}[\|\nabla u^{\varepsilon}-[\nabla u_{0}^{\rho,L}+{\cal U}^{\varepsilon}(U_{1}^{\rho,L})(\cdot)]\|_{H}]\leq\delta.

Proof  We note that

𝔼[uε[u0L+𝒰ε(U1ρ,L)()]H]𝔼[uε[u0+U1(,T(ε)ω)]H]\displaystyle\mathbb{E}[\|\nabla u^{\varepsilon}-[\nabla u_{0}^{L}+{\cal U}^{\varepsilon}(U_{1}^{\rho,L})(\cdot)]\|_{H}]\leq\mathbb{E}[\|\nabla u^{\varepsilon}-[\nabla u_{0}+U_{1}(\cdot,T({\cdot\over\varepsilon})\omega)]\|_{H}]
+𝔼[u0u0LH]+𝔼[U1(,T(ε)ω)𝒰ε(U1(,T()ω))H]\displaystyle+\mathbb{E}[\|\nabla u_{0}-\nabla u_{0}^{L}\|_{H}]+\mathbb{E}[\|U_{1}(\cdot,T({\cdot\over\varepsilon})\omega)-{\cal U}^{\varepsilon}(U_{1}(\cdot,T(\cdot)\omega))\|_{H}]
+𝔼[𝒰ε(U1(,T()ω))𝒰ε(U1ρ,L(,,ω))H].\displaystyle+\mathbb{E}[\|{\cal U}^{\varepsilon}(U_{1}(\cdot,T(\cdot)\omega))-{\cal U}^{\varepsilon}(U_{1}^{\rho,L}(\cdot,\cdot,\omega))\|_{H}].

From Lemma 5.4, we have

𝔼[𝒰ε(U1(,T()ω))𝒰ε(U1ρ,L(,,ω)H]2c|Yρ|𝔼[U1(,T()ω)yu1ρ(,,ω)L2(D×Yρ)2]\displaystyle\mathbb{E}[\|{\cal U}^{\varepsilon}(U_{1}(\cdot,T(\cdot)\omega))-{\cal U}^{\varepsilon}(U_{1}^{\rho,L}(\cdot,\cdot,\omega)\|_{H}]^{2}\leq{c\over|Y^{\rho}|}\mathbb{E}[\|U_{1}(\cdot,T(\cdot)\omega)-\nabla_{y}u_{1}^{\rho}(\cdot,\cdot,\omega)\|_{L^{2}(D\times Y^{\rho})}^{2}]
+c|Yρ|𝔼[yu1ρ(,,)yu1ρ,L(,,)L2(D×Yρ)2].\displaystyle+{c\over|Y^{\rho}|}\mathbb{E}[\|\nabla_{y}u_{1}^{\rho}(\cdot,\cdot,\cdot)-\nabla_{y}u_{1}^{\rho,L}(\cdot,\cdot,\cdot)\|_{L^{2}(D\times Y^{\rho})}^{2}].

From Proposition 4.4, Proposition 4.9, equation (5.2), Lemma 5.2, Lemma 5.5, we get the conclusion. \Box

Remark 5.7

If the hypothesis of Lemmas 4.3 and 4.8 does not hold, i.e. the regularity requirements on u1ρu_{1}^{\rho} for the convergence rate of the full and sparse tensor product FE approximation do not hold, then we still have

limLu0ρ(,ω)u0ρ,L(,ω)V+u1ρ(,,ω)u1ρ,L(,,ω)V1ρ=0\lim_{L\to\infty}\|u_{0}^{\rho}(\cdot,\omega)-u_{0}^{\rho,L}(\cdot,\omega)\|_{V}+\|u_{1}^{\rho}(\cdot,\cdot,\omega)-u_{1}^{\rho,L}(\cdot,\cdot,\omega)\|_{V_{1}^{\rho}}=0

albeit an explicit convergence rate in terms of the mesh size hLh_{L} is not available (here we denote the numerical solution of both the full and sparse tensor product FE approximations as u0ρ,Lu_{0}^{\rho,L} and u1ρ,Lu_{1}^{\rho,L}). The numerical corrector result in Theorem 5.6 still holds but the constant L0L_{0} now depends on ρ\rho.

Remark 5.8

For random homogenization, there are limited results on the homogenization rate of convergence (see, e.g., Yurinskii [32], Gloria and Otto [16], Armstrong et al. [2]). However, assume that we have a homogenization convergence rate

𝔼[uεu0V]cεγ\mathbb{E}[\|u^{\varepsilon}-u_{0}\|_{V}]\leq c\varepsilon^{\gamma}

for γ>0\gamma>0, then with the convergence rate (2.8) and Proposition 3.7, we have

𝔼[uεu0ρ,LV]c(ρβ/2+hL+εγ)\mathbb{E}[\|u^{\varepsilon}-u_{0}^{\rho,L}\|_{V}]\leq c(\rho^{-\beta/2}+h_{L}+\varepsilon^{\gamma})

for the solution of the full tensor product FE approximation problem (4.1); and

𝔼[uεu^0ρ,LV]c(ρβ/2+L1/2hL+εγ)\mathbb{E}[\|u^{\varepsilon}-\hat{u}_{0}^{\rho,L}\|_{V}]\leq c(\rho^{-\beta/2}+L^{1/2}h_{L}+\varepsilon^{\gamma})

for the solution of the sparse tensor product FE approximation problem (4.2).

6 Numerical experiments

We first consider a quasi-periodic problem on the one dimensional domain D=(0,1)D=(0,1). Let the probability space Ω\Omega be the square (0,1)×(0,1)(0,1)\times(0,1) in 2\mathbb{R}^{2} with the Lebesgue probability measure. Let λ\lambda be the vector (1,2)(1,\sqrt{2})^{\top}. The dynamical system T:ΩT:\mathbb{R}\to\Omega is defined as

T(y)ω=(ω+λy)mod 1=((ω1+y)mod 1(ω2+2y)mod 1).T(y)\omega=(\omega+\lambda y)\,{\rm mod}\,1=\left(\begin{matrix}(\omega_{1}+y)\,{\rm mod}\,1\\ (\omega_{2}+\sqrt{2}y)\,{\rm mod}\,1\end{matrix}\right).

We consider the coefficient

A(x,ω)=(1+x)(3+cos(2πω1)+cos(2πω2))A(x,\omega)=(1+x)(3+\cos(2\pi\omega_{1})+\cos(2\pi\omega_{2}))

for ω=(ω1,ω2)Ω\omega=(\omega_{1},\omega_{2})\in\Omega. We note that for a differentiable function ϕ\phi belonging to the domain of ω\partial_{\omega},

ωϕ(ω)=limy0ϕ(ω1+y,ω2+2y)ϕ(ω1,ω2)y=ϕω1(ω)+2ϕω2(ω).\partial_{\omega}\phi(\omega)=\lim_{y\to 0}{\phi(\omega_{1}+y,\omega_{2}+\sqrt{2}y)-\phi(\omega_{1},\omega_{2})\over y}={\partial\phi\over\partial\omega_{1}}(\omega)+\sqrt{2}{\partial\phi\over\partial\omega_{2}}(\omega).

The cell problem (2.3) is of the form

ΩA(x,ω)(1+Nω1+2Nω2)(ϕω1+2ϕω2)𝑑ω=0,ϕCper1(Ω).\int_{\Omega}A(x,\omega)\left(1+{\partial N\over\partial\omega_{1}}+\sqrt{2}{\partial N\over\partial\omega_{2}}\right)\left({\partial\phi\over\partial\omega_{1}}+\sqrt{2}{\partial\phi\over\partial\omega_{2}}\right)d\omega=0,\ \ \forall\,\phi\in C^{1}_{per}(\Omega).

We solve this cell problem numerically by FEs with a high accuracy level to compute the homogenized coefficient A0(x)A^{0}(x) from (2.4). We find that approximately

A0(x)=2.6085(1+x).A^{0}(x)=2.6085(1+x).

We choose the function ff in (2.2) such that the homogenized problem (2.5) has the exact solution u0=xx2u_{0}=x-x^{2}. Problem (3.4) is solved by sparse tensor product FEs. We record in Table 1 the numerical errors for 𝔼[u0ρ,Lu0V2]\mathbb{E}[\|u_{0}^{\rho,L}-u_{0}\|_{V}^{2}] computed by using a highly accurate Gauss-Legendre quadrature rule in Ω\Omega.

mesh level LL error for ρ=1\rho=1 error for ρ=2\rho=2 error for ρ=3\rho=3 error for ρ=4\rho=4
1 0.08643387 0.08642242 0.08640925 0.08639875
2 0.02175469 0.02168175 0.02163293 0.02160448
3 0.00547390 0.00541613 0.00535287 0.00530344
4 0.00153847 0.00147204 0.00139897 0.00134186
5 0.00056918 0.00050014 0.00042423 0.00036492
6 0.00032794 0.00025823 0.00018158 0.00012169
7 0.00026771 0.00019782 0.00012098 0.00006095
8 0.00025265 0.00018272 0.00010584 0.00004577
9 0.00024889 0.00017895 0.00010205 0.00004198
Table 1: Sparse tensor product FE error 𝔼[u0ρ,Lu0V2]\mathbb{E}[\|u_{0}^{\rho,L}-u_{0}\|_{V}^{2}] for the one dimensional problem

The numerical results show that for a fixed ρ\rho, when we reduce the mesh size, the error reduces as the theoretical error estimate for the sparse tensor product FE approximations at first until the error due to the truncated cube YρY^{\rho} becomes more significant than the FE error. However, when we increase ρ\rho, the error for smaller mesh sizes, where the FE error is less significant, decreases. This shows that the approximation gets more accurate when we enlarge the cube YρY^{\rho}.

We then consider a two-scale problem in the two dimensional domain D=(0,1)×(0,1)D=(0,1)\times(0,1). Let μ\mu be the matrix

μ=(1221).\mu=\left(\begin{matrix}1&\sqrt{2}\\ \sqrt{2}&1\end{matrix}\right).

We consider the dynamical system T:2ΩT:\mathbb{R}^{2}\to\Omega such as

T(y)ω=(ω+μy)mod 1=((ω1+y1+2y2)mod 1(ω2+2y1+y2)mod 1).T(y)\omega=(\omega+\mu y)\,{\rm mod}\,1=\left(\begin{matrix}(\omega_{1}+y_{1}+\sqrt{2}y_{2})\,{\rm mod}\,1\\ (\omega_{2}+\sqrt{2}y_{1}+y_{2})\,{\rm mod}\,1\end{matrix}\right).

The coefficient A(x,ω)A(x,\omega) for x=(x1,x2)Dx=(x_{1},x_{2})\in D and ωΩ\omega\in\Omega is

A(x,ω)=(1+x1)(1+x2)(3+cos(2πω1)+cos(2πω2)).A(x,\omega)=(1+x_{1})(1+x_{2})(3+\cos(2\pi\omega_{1})+\cos(2\pi\omega_{2})).

For a function ϕ\phi belonging to the domain of \partial, we have

1ϕ=ϕω1+2ϕω2,and2ϕ=2ϕω1+ϕω2.\partial_{1}\phi={\partial\phi\over\partial\omega_{1}}+\sqrt{2}{\partial\phi\over\partial\omega_{2}},\ \ \mbox{and}\ \ \partial_{2}\phi=\sqrt{2}{\partial\phi\over\partial\omega_{1}}+{\partial\phi\over\partial\omega_{2}}.

For the cell problems (2.3), we solve the problems

ΩA[(1+N1ω1+2N1ω2)(ϕω1+2ϕω2)+(2N1ω1+N1ω2)(2ϕω1+ϕω2)]𝑑ω=0\int_{\Omega}A\left[\left(1+{\partial N^{1}\over\partial\omega_{1}}+\sqrt{2}{\partial N^{1}\over\partial\omega_{2}}\right)\left({\partial\phi\over\partial\omega_{1}}+\sqrt{2}{\partial\phi\over\partial\omega_{2}}\right)+\left(\sqrt{2}{\partial N^{1}\over\partial\omega_{1}}+{\partial N^{1}\over\partial\omega_{2}}\right)\left(\sqrt{2}{\partial\phi\over\partial\omega_{1}}+{\partial\phi\over\partial\omega_{2}}\right)\right]d\omega=0

ϕCper1(Ω)\forall\,\phi\in C^{1}_{per}(\Omega), and

ΩA[(N2ω1+2N2ω2)(ϕω1+2ϕω2)+(1+2N2ω1+N2ω2)(2ϕω1+ϕω2)]𝑑ω=0\int_{\Omega}A\left[\left({\partial N^{2}\over\partial\omega_{1}}+\sqrt{2}{\partial N^{2}\over\partial\omega_{2}}\right)\left({\partial\phi\over\partial\omega_{1}}+\sqrt{2}{\partial\phi\over\partial\omega_{2}}\right)+\left(1+\sqrt{2}{\partial N^{2}\over\partial\omega_{1}}+{\partial N^{2}\over\partial\omega_{2}}\right)\left(\sqrt{2}{\partial\phi\over\partial\omega_{1}}+{\partial\phi\over\partial\omega_{2}}\right)\right]d\omega=0

ϕCper1(Ω)\forall\,\phi\in C^{1}_{per}(\Omega), numerically by FEs. We find that the homogenized coefficient A0(x)A^{0}(x) is approximately

A0(x)=(1+x1)(1+x2)(2.824910.167550.167552.82491).A^{0}(x)=(1+x_{1})(1+x_{2})\left(\begin{matrix}2.82491&-0.16755\\ -0.16755&2.82491\end{matrix}\right).

We then choose the function ff so that the homogenized equation (2.5) has the exact solution

u0(x)=(x1x12)(x2x22)u_{0}(x)=(x_{1}-x_{1}^{2})(x_{2}-x_{2}^{2})

for x=(x1,x2)Dx=(x_{1},x_{2})\in D. We have the following numerical result.

mesh level LL error for ρ=1\rho=1 error for ρ=2\rho=2 error for ρ=3\rho=3
1 0.00600307 0.00600258 0.00600243
2 0.00143868 0.00143325 0.00143156
3 0.00035356 0.00035110 0.00035004
4 0.00008871 0.00008734 0.00008708
5 0.00002200 0.00002191 0.00002175
Table 2: Sparse tensor product FE error 𝔼[u0ρ,Lu0V2]\mathbb{E}[\|u_{0}^{\rho,L}-u_{0}\|_{V}^{2}] for the two dimensional problem

In the chosen range of the mesh sizes we experiment, the sparse tensor product FE approximation on the truncated domain converges to the exact solution u0u_{0}. The FE error dominates the error due to the truncated cube YρY^{\rho} so that the total error behaves as the theoretical error proved above for the sparse tensor product FE approximations. For the same FE mesh size, the total error is lightly reduced when the size of the cube YρY^{\rho} increases.

The sparse tensor product FE convergence rate established in the paper holds when the coefficient AA is sufficiently smooth so that the solution of the truncated stochastic two-scale homogenized equation is sufficiently regular. However, when AA is not continuous, the sparse tensor product FEs may still work when the FE mesh fits into the surface of discontinuity. Now we consider the checker board problem where the two-scale coefficient AA is discontinuous. The problem is studied in details in [23] where the homogenized coefficient can be computed explicitly in two dimensions. The two dimensional space 2\mathbb{R}^{2} is split into squares of size 1 whose centres are of integer components. Let \cal M be the probability space of functions that takes values 11 or 22 in each square with probability 0.50.5. Let λ\lambda be the probability measure on \cal M. This probability space is ergodic with respect to the integer shift. We then define the probability space Ω\Omega to be the one of all piecewise constant functions obtained from those in \cal M by a shift with a vector belonging to the unit cube Y1Y^{1}, i.e.

Ω={u(t):u(t)=ϕ(t+η),ϕ(t),ηY1}.\Omega=\{u(t):\ u(t)=\phi(t+\eta),\ \phi(t)\in{\cal M},\ \eta\in Y^{1}\}.

The probability space Ω\Omega is associated with the product space ×Y1{\cal M}\times Y^{1} with the product probability measure. It is invariant and ergodic with respect to the shift operator. For ω=u(t)Ω\omega=u(t)\in\Omega, we define the coefficient

A(ω)={1if u(0)=1,2if u(0)=2.A(\omega)=\left\{\begin{array}[]{rl}1&\text{if }u(0)=1,\\ 2&\text{if }u(0)=2.\end{array}\right.

The coefficient AA is of the checker board type with value 11 or 22 in each square. The homogenized coefficient is A0(x)=21/2A^{0}(x)=2^{1/2}. We choose ff so that the homogenized equation has exact solution u0(x)=(x1x12)(x2x22)u_{0}(x)=(x_{1}-x_{1}^{2})(x_{2}-x_{2}^{2}) for x=(x1,x2)D=(0,1)×(0,1)x=(x_{1},x_{2})\in D=(0,1)\times(0,1). The average over the probability space Ω\Omega involving taking the integral with respect to the shift ηY1\eta\in Y^{1} and average over all the realizations of ϕ\phi in \cal M. We solve equation (3.4) with ρ=1,2\rho=1,2 and 33 by the sparse tensor product FEs. Integral over the unit cube Y1Y^{1} is approximated by the Newton-Cotes rule with 5 quadrature points on each direction. When ρ=1\rho=1, average over \cal M is computed exactly. When ρ=2\rho=2 and 33, average over \cal M is approximated with the Monte Carlo procedure with 1000 samples. Table 3 presents the error for 𝔼[u0ρ,Lu0V2]\mathbb{E}[\|u_{0}^{\rho,L}-u_{0}\|_{V}^{2}]. The results clearly indicates that the approximation gets better with larger values of ρ\rho. The reduction rate of the error gets worse with smaller mesh sizes; this shows the more prominent effect of the domain truncating error when the FE mesh size gets smaller.

mesh level LL error for ρ=1\rho=1 error for ρ=2\rho=2 error for ρ=3\rho=3
2 0.0632550 0.003578 0.003514
3 0.0384572 0.001048 0.000974
4 0.0274870 0.000372 0.000296
Table 3: Sparse tensor product FE error 𝔼[u0ρ,Lu0V2]\mathbb{E}[\|u_{0}^{\rho,L}-u_{0}\|_{V}^{2}] for the two dimensional checker board problem

Appendix A

We show Proposition 2.1. Let Niρ(x,y,ω)N^{i\rho}(x,y,\omega) be the solution of the cell problem

y(A(x,T(y)ω)(yNiρ(x,y,ω)+ei))=0-\nabla_{y}\cdot(A(x,T(y)\omega)(\nabla_{y}N^{i\rho}(x,y,\omega)+e^{i}))=0 (A.1)

with the Dirichlet boundary condition Niρ(x,y,ω)=0N^{i\rho}(x,y,\omega)=0 when yYρy\in\partial Y^{\rho}; eie^{i} is the iith unit vector in the standard basis of d\mathbb{R}^{d}. Following [6], we let Mi(x,z,ω)=1ρNiρ(x,ρz,ω)M^{i}(x,z,\omega)={1\over\rho}N^{i\rho}(x,\rho z,\omega). Then Mi(x,z,ω)M^{i}(x,z,\omega) is the solution of the problem

z(A(x,T(ρz)ω)(zMiρ(x,z,ω)+ei))=0,inY1-\nabla_{z}\cdot(A(x,T(\rho z)\omega)(\nabla_{z}M^{i\rho}(x,z,\omega)+e^{i}))=0,\ \ \mbox{in}\ Y^{1}

with the Dirichlet boundary condition on Y1\partial Y^{1}. By the homogenization theory, almost surely, MiρMi0M^{i\rho}\rightharpoonup M^{i0} in H01(Y1)H^{1}_{0}(Y^{1}) when ρ\rho\to\infty where Mi0M^{i0} is the solution of the homogenized equation

z(A0(x)(zMi0(x,z)+ei))=0,inY1-\nabla_{z}\cdot(A^{0}(x)(\nabla_{z}M^{i0}(x,z)+e^{i}))=0,\ \ \mbox{in}\ Y^{1} (A.2)

with the Dirichlet boundary condition on Y1\partial Y^{1}; A0A^{0} is the homogenized coefficient in (2.4). Almost surely, we have

Y1A(x,T(ρz)ω)(zMiρ(x,z,ω)+ei)𝑑zY1A0(x)(zMi0(x)+ei)𝑑z\int_{Y^{1}}A(x,T(\rho z)\omega)(\nabla_{z}M^{i\rho}(x,z,\omega)+e^{i})dz\to\int_{Y^{1}}A^{0}(x)(\nabla_{z}M^{i0}(x)+e^{i})dz

when ρ\rho\to\infty. As the solution Mi0=0M^{i0}=0, and

Y1A(x,T(ρz)ω)(zMiρ(x,z,ω)+ei)𝑑z=1ρdYρA(x,T(y)ω)(yNiρ(x,y,ω)+ei)𝑑y,\int_{Y^{1}}A(x,T(\rho z)\omega)(\nabla_{z}M^{i\rho}(x,z,\omega)+e^{i})dz={1\over\rho^{d}}\int_{Y^{\rho}}A(x,T(y)\omega)(\nabla_{y}N^{i\rho}(x,y,\omega)+e^{i})dy,

we have that

1|Yρ|YρA(x,T(y)ω)(yNiρ(x,y,ω)+ei)𝑑y1|Y1|Y1A0(x)(zMi0(x,z)+ei)𝑑z=A0(x)ei,{1\over|Y^{\rho}|}\int_{Y^{\rho}}A(x,T(y)\omega)(\nabla_{y}N^{i\rho}(x,y,\omega)+e^{i})dy\to{1\over|Y^{1}|}\int_{Y^{1}}A^{0}(x)(\nabla_{z}M^{i0}(x,z)+e^{i})dz=A^{0}(x)e^{i},

when ρ\rho\to\infty. We now show that almost surely the convergence is uniform with respect to xx. First we show that A0(x)A^{0}(x) is uniformly continuous in D¯\bar{D}. From (2.3), for x,xD¯x,x^{\prime}\in\bar{D}, we have

ΩA(x,ω)(wi(x,ω)+ei)(wi(x,ω)wi(x,ω))(dω)=0\int_{\Omega}A(x,\omega)(w^{i}(x,\omega)+e^{i})\cdot(w^{i}(x,\omega)-w^{i}(x^{\prime},\omega))\mathbb{P}(d\omega)=0

and

ΩA(x,ω)(wi(x,ω)+ei)(wi(x,ω)wi(x,ω))(dω)=0.\int_{\Omega}A(x^{\prime},\omega)(w^{i}(x^{\prime},\omega)+e^{i})\cdot(w^{i}(x,\omega)-w^{i}(x^{\prime},\omega))\mathbb{P}(d\omega)=0.

Thus

ΩA(x,ω)(wi(x,ω)wi(x,ω))(wi(x,ω)wi(x,ω))(dω)\displaystyle\int_{\Omega}A(x,\omega)(w^{i}(x,\omega)-w^{i}(x^{\prime},\omega))\cdot(w^{i}(x,\omega)-w^{i}(x^{\prime},\omega))\mathbb{P}(d\omega)
=Ω[(A(x,ω)A(x,ω))wi(x,ω)(wi(x,ω)wi(x,ω))\displaystyle=-\int_{\Omega}[(A(x,\omega)-A(x^{\prime},\omega))w^{i}(x^{\prime},\omega)\cdot(w^{i}(x,\omega)-w^{i}(x^{\prime},\omega))
(A(x,ω)A(x,ω))ei(wi(x,ω)wi(x,ω))](dω).\displaystyle-(A(x,\omega)-A(x^{\prime},\omega))e^{i}\cdot(w^{i}(x,\omega)-w^{i}(x^{\prime},\omega))]\mathbb{P}(d\omega).

From (2.3), we have that wi(x,)w^{i}(x,\cdot) is uniformly bounded in L2(Ω)L^{2}(\Omega) with respect to xx. Thus

wi(x,)wi(x,)L2(Ω)cA(x,)A(x,)L(Ω)c|xx|.\|w^{i}(x,\cdot)-w^{i}(x^{\prime},\cdot)\|_{L^{2}(\Omega)}\leq c\|A(x,\cdot)-A(x^{\prime},\cdot)\|_{L^{\infty}(\Omega)}\leq c|x-x^{\prime}|. (A.3)

From (2.4)

Aij0(x)Aij0(x)=Ω[(Aik(x,ω)Aik(x,ω))δkj+Aik(x,ω)(wkj(x,ω)wkj(x,ω))\displaystyle A^{0}_{ij}(x)-A^{0}_{ij}(x^{\prime})=\int_{\Omega}[(A_{ik}(x,\omega)-A_{ik}(x^{\prime},\omega))\delta_{kj}+A_{ik}(x,\omega)(w^{j}_{k}(x,\omega)-w^{j}_{k}(x^{\prime},\omega))
+(Aik(x,ω)Aik(x,ω))wkj(x,ω)](dω).\displaystyle+(A_{ik}(x,\omega)-A_{ik}(x^{\prime},\omega))w^{j}_{k}(x^{\prime},\omega)]\mathbb{P}(d\omega).

Thus

|Aij0(x)Aij0(x)|c|xx|.|A^{0}_{ij}(x)-A^{0}_{ij}(x^{\prime})|\leq c|x-x^{\prime}|.

Next we show that A0ρ(,ω)A^{0\rho}(\cdot,\omega) is also uniformly Lipschitz with respect to ρ\rho and ω\omega. From (2.6), we have

y(A(x,T(y)ω)yNiρ(x,y,ω))=y(A(x,T(y)ω)ei),-\nabla_{y}\cdot(A(x,T(y)\omega)\nabla_{y}N^{i\rho}(x,y,\omega))=\nabla_{y}\cdot(A(x,T(y)\omega)e^{i}),

so

yNiρ(x,,ω)L2(Yρ)cA(x,T()ω)L2(Yρ)c|Yρ|1/2.\|\nabla_{y}N^{i\rho}(x,\cdot,\omega)\|_{L^{2}(Y^{\rho})}\leq c\|A(x,T(\cdot)\omega)\|_{L^{2}(Y^{\rho})}\leq c|Y^{\rho}|^{1/2}. (A.4)

From (2.6), for x,xD¯x,x^{\prime}\in\bar{D} we have

y(A(x,T(y)ω)y(Niρ(x,y,ω)Niρ(x,y,ω)))=y((A(x,T(y)ω)A(x,T(y)ω))ei)\displaystyle-\nabla_{y}\cdot(A(x,T(y)\omega)\nabla_{y}(N^{i\rho}(x,y,\omega)-N^{i\rho}(x^{\prime},y,\omega)))=\nabla_{y}\cdot((A(x,T(y)\omega)-A(x^{\prime},T(y)\omega))e^{i})
+y((A(x,T(y)ω)A(x,T(y)ω))yNiρ(x,T(y)ω)).\displaystyle+\nabla_{y}\cdot((A(x,T(y)\omega)-A(x^{\prime},T(y)\omega))\nabla_{y}N^{i\rho}(x^{\prime},T(y)\omega)). (A.5)

Therefore

y(Niρ(x,,ω)Niρ(x,,ω))L2(Yρ)dcA(x,T()ω)A(x,T()ω)L2(Yρ)\displaystyle\|\nabla_{y}(N^{i\rho}(x,\cdot,\omega)-N^{i\rho}(x^{\prime},\cdot,\omega))\|_{L^{2}(Y^{\rho})^{d}}\leq c\|A(x,T(\cdot)\omega)-A(x^{\prime},T(\cdot)\omega)\|_{L^{2}(Y^{\rho})}
+A(x,T()ω)A(x,T()ω)L(Yρ)yNρ(x,T()ω)L2(Yρ)c|xx||Yρ|1/2.\displaystyle+\|A(x,T(\cdot)\omega)-A(x^{\prime},T(\cdot)\omega)\|_{L^{\infty}(Y^{\rho})}\|\nabla_{y}N^{\rho}(x,T(\cdot)\omega)\|_{L^{2}(Y^{\rho})}\leq c|x-x^{\prime}||Y^{\rho}|^{1/2}. (A.6)

From (2.7), we have

Aij0ρ(x,ω)Aij0ρ(x,ω)=1|Yρ|Yρ(Aik(x,T(y)ω)Aik(x,T(y)ω))δkj𝑑y\displaystyle A^{0\rho}_{ij}(x,\omega)-A^{0\rho}_{ij}(x^{\prime},\omega)={1\over|Y^{\rho}|}\int_{Y^{\rho}}(A_{ik}(x,T(y)\omega)-A_{ik}(x^{\prime},T(y)\omega))\delta_{kj}dy
+1|Yρ|Yρ[Aik(x,T(y)ω)Njρyk(x,T(y)ω)Aik(x,T(y)ω)Njρyk(x,T(y)ω)]𝑑y\displaystyle\qquad\qquad+{1\over|Y^{\rho}|}\int_{Y^{\rho}}[A_{ik}(x,T(y)\omega){\partial N^{j\rho}\over\partial y_{k}}(x,T(y)\omega)-A_{ik}(x^{\prime},T(y)\omega){\partial N^{j\rho}\over\partial y_{k}}(x^{\prime},T(y)\omega)]dy
=1|Yρ|Yρ[Aik(x,T(y)ω)Aik(x,T(y)ω)]δkj𝑑y\displaystyle\qquad\qquad={1\over|Y^{\rho}|}\int_{Y^{\rho}}[A_{ik}(x,T(y)\omega)-A_{ik}(x^{\prime},T(y)\omega)]\delta_{kj}dy
+1|Yρ|Yρ[Aik(x,T(y)ω)Aik(x,T(y)ω))Njρyk(x,T(y)ω)\displaystyle\qquad\qquad+{1\over|Y^{\rho}|}\int_{Y^{\rho}}\Big{[}A_{ik}(x,T(y)\omega)-A_{ik}(x^{\prime},T(y)\omega)){\partial N^{j\rho}\over\partial y_{k}}(x,T(y)\omega)
+Aik(x,T(y)ω)(Njρyk(x,T(y)ω)Njρyk(x,T(y)ω))]dy.\displaystyle\qquad\qquad+A_{ik}(x^{\prime},T(y)\omega)({\partial N^{j\rho}\over\partial y_{k}}(x,T(y)\omega)-{\partial N^{j\rho}\over\partial y_{k}}(x^{\prime},T(y)\omega))\Big{]}dy.

From (A.6) and the fact that A(,ω)A(\cdot,\omega) is uniformly bounded in C0,1(D¯)C^{0,1}(\bar{D}), we have that Aij0ρ(,ω)A^{0\rho}_{ij}(\cdot,\omega) is uniformly Lipschitz in D¯\bar{D}. For each nn\in\mathbb{N}, we consider the cubes DinD_{i}^{n} (i=1,,Mni=1,\ldots,M_{n}) of size 1/n1/n with vertices having coordinates of the form j/nj/n for jdj\in\mathbb{Z}^{d} that intersects DD. In each cube DinD_{i}^{n} for i=1,,Mni=1,\ldots,M_{n} we choose a point xinDx_{i}^{n}\in D. Then there is a set ΩnΩ\Omega_{n}\subset\Omega with (Ωn)=1\mathbb{P}(\Omega_{n})=1 such that for all ωΩn\omega\in\Omega_{n} A0ρ(xin,ω)A0(xin)A^{0\rho}(x_{i}^{n},\omega)\to A^{0}(x_{i}^{n}) when ρ\rho\to\infty for all i=1,,ni=1,\ldots,n. For each xDinx\in D_{i}^{n}, |A0(x)A0(xin)|c/n|A^{0}(x)-A^{0}(x_{i}^{n})|\leq c/n and |A0ρ(x,ω)A0ρ(xin,ω)|c/n|A^{0\rho}(x,\omega)-A^{0\rho}(x_{i}^{n},\omega)|\leq c/n. For each ωΩn\omega\in\Omega_{n}, there is a constant ρn=ρn(ω)\rho_{n}=\rho_{n}(\omega) such that when ρ>ρn\rho>\rho_{n}

|A0ρ(xin,ω)A0(xin)|1/n|A^{0\rho}(x_{i}^{n},\omega)-A^{0}(x_{i}^{n})|\leq 1/n

for all i=1,,Mni=1,\ldots,M_{n}. Thus for ωΩn\omega\in\Omega_{n}, for all xDinx\in D_{i}^{n} for all ii, when ρ>ρn\rho>\rho_{n}

|A0ρ(x,ω)A0(x)||A0ρ(x,ω)A0ρ(xin,ω)|+|A0ρ(xin,ω)A0(xin)|+|A0(xin)A0(x)|c/n.\displaystyle|A^{0\rho}(x,\omega)-A^{0}(x)|\leq|A^{0\rho}(x,\omega)-A^{0\rho}(x_{i}^{n},\omega)|+|A^{0\rho}(x_{i}^{n},\omega)-A^{0}(x_{i}^{n})|+|A^{0}(x_{i}^{n})-A^{0}(x)|\leq c/n.

Let Ω0=n=1Ωn\Omega_{0}=\cap_{n=1}^{\infty}\Omega_{n}. For ωΩ0\omega\in\Omega_{0}, limρA0ρ(,ω)A0()L(D)=0\lim_{\rho\to\infty}\|A^{0\rho}(\cdot,\omega)-A^{0}(\cdot)\|_{L^{\infty}(D)}=0.

Appendix B

Proof of Lemma 4.8. We show Lemma 4.8 (which implies Lemma 4.3). From (3.5), we deduce that

u0ρ(,ω)H2(D)cfH\|u_{0}^{\rho}(\cdot,\omega)\|_{H^{2}(D)}\leq c\|f\|_{H}

where the constant cc only depends on the convex domain DD and the C0,1(D¯)C^{0,1}(\bar{D}) norm of A0ρ(,ω)A^{0\rho}(\cdot,\omega) (see Grisvard [17] Theorems 3.1.3.1 and 3.2.1.2).

We note that

u1ρ(x,y,ω)=u0ρxi(x,ω)Ni(x,y,ω)u_{1}^{\rho}(x,y,\omega)={\partial u_{0}^{\rho}\over\partial x_{i}}(x,\omega)N^{i}(x,y,\omega)

where Ni(x,y,ω)N^{i}(x,y,\omega) is the solution of the cell problem (A.1). To show that |u1ρ|^c|Yρ|1/2|u_{1}^{\rho}|_{\hat{\cal H}}\leq c|Y^{\rho}|^{1/2}, it is sufficient to show that

|Niρ(x,,ω)|H2(Y))c|Yρ|1/2,and|Niρ(x,,ω)Niρ(x,,ω)|H2(Yρ)c|xx||Yρ|1/2|N^{i\rho}(x,\cdot,\omega)|_{H^{2}(Y))}\leq c|Y^{\rho}|^{1/2},\ \mbox{and}\ |N^{i\rho}(x,\cdot,\omega)-N^{i\rho}(x^{\prime},\cdot,\omega)|_{H^{2}(Y^{\rho})}\leq c|x-x^{\prime}||Y^{\rho}|^{1/2}

for all x,xDx,x^{\prime}\in D. From (A.1)

y(A(x,T(y)ω)yNiρ(x,y,ω))=y(A(x,T(y)ω)ei).-\nabla_{y}\cdot(A(x,T(y)\omega)\nabla_{y}N^{i\rho}(x,y,\omega))=\nabla_{y}\cdot(A(x,T(y)\omega)e^{i}).

From the proof of Lemma 3.1.3.2 of [17], there is a constant cc that only depends on the Lipschitz norm of the coefficient A(x,T()ω)A(x,T(\cdot)\omega) so that the following inequality on the semi H2(Yρ)H^{2}(Y^{\rho}) norm holds:

|Niρ(x,,ω|H2(D)cy(A(x,T()ω)ei)L2(Yρ)+Niρ(x,,ω)H1(Yρ)).|N^{i\rho}(x,\cdot,\omega|_{H^{2}(D)}\leq c\|\nabla_{y}\cdot(A(x,T(\cdot)\omega)e^{i})\|_{L^{2}(Y^{\rho})}+\|N^{i\rho}(x,\cdot,\omega)\|_{H^{1}(Y^{\rho})}).

Indeed, Grisvard [17] proves this estimate for the full H2H^{2} norm so the constant depends on the diameter of the domain. However, from the proof of Theorem 3.1.2.1 of [17], we have that for the semi H2H^{2} norm only, this constant does not depend on the diameter of the domain (the only part of the proof in [17] where this constant depends on the domain is when using the Poincare inequality to bound the L2L^{2} norm of the solution). Thus using (A.4), we have

|Niρ(x,,ω)|H2(Yρ)c|Yρ|1/2.|N^{i\rho}(x,\cdot,\omega)|_{H^{2}(Y^{\rho})}\leq c|Y^{\rho}|^{1/2}. (B.1)

For x,xD¯x,x^{\prime}\in\bar{D} from (A.5), we have

y(A(x,T(y)ω)y(Niρ(x,y,ω)Niρ(x,y,ω)))=\displaystyle\nabla_{y}\cdot(A(x,T(y)\omega)\cdot\nabla_{y}(N^{i\rho}(x,y,\omega)-N^{i\rho}(x^{\prime},y,\omega)))=
y((A(x,T(y)ω)A(x,T(y)ω))ei)y((A(x,T(y)ω)A(x,T(y)ω))yNiρ(x,T(y)ω)).\displaystyle\nabla_{y}\cdot((A(x,T(y)\omega)-A(x^{\prime},T(y)\omega))e^{i})-\nabla_{y}\cdot((A(x,T(y)\omega)-A(x^{\prime},T(y)\omega))\nabla_{y}N^{i\rho}(x^{\prime},T(y)\omega)).

From (A.6) and (B.1), we have

|Niρ(x,,ω)Niρ(x,,ω)|H2(Yρ)c|xx||Yρ|1/2|N^{i\rho}(x,\cdot,\omega)-N^{i\rho}(x^{\prime},\cdot,\omega)|_{H^{2}(Y^{\rho})}\leq c|x-x^{\prime}||Y^{\rho}|^{1/2}

for a constant cc independent of ρ\rho and ω\omega. We thus have |u1ρ(,,ω)|^c|Yρ|1/2|u_{1}^{\rho}(\cdot,\cdot,\omega)|_{\hat{\cal H}}\leq c|Y^{\rho}|^{1/2} for a constant cc independent of ω\omega and ρ\rho.


Acknowledgment VHH and WCT gratefully acknowledge the financial support of the Singapore Ministry of Education Academic Research Fund Tier 2 grant MOE2017-T2-2-144. CHP is supported by a Graduate Scholarship of Nanyang Technological University.

References

  • [1] G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal., 23(6):1482–1518, 1992.
  • [2] Scott Armstrong, Tuomo Kuusi, and Jean-Christophe Mourrat. Quantitative stochastic homogenization and large-scale regularity, volume 352 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham, 2019.
  • [3] A. Yu. Beliaev and S. M. Kozlov. Darcy equation for random porous media. Comm. Pure Appl. Math., 49(1):1–34, 1996.
  • [4] Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou. Asymptotic analysis for periodic structures, volume 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1978.
  • [5] Alain Bourgeat, Andro Mikelic, and Steve Wright. Stochastic two-scale convergence in the mean and applications. Journal für die reine und angewandte Mathematik, 456:19–52, 1994.
  • [6] Alain Bourgeat and Andrey Piatnitski. Approximations of effective coefficients in stochastic homogenization. Ann. Inst. H. Poincaré Probab. Statist., 40(2):153–165, 2004.
  • [7] S.C. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, 2008.
  • [8] Donald L. Brown and Viet Ha Hoang. A hierarchical finite element Monte Carlo method for stochastic two-scale elliptic equations. J. Comput. Appl. Math., 323:16–35, 2017.
  • [9] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numer., 13:147–269, 2004.
  • [10] Van Tiep Chu and Viet Ha Hoang. High dimensional finite elements for multiscale Maxwell equations. IMA J. Numer. Anal., 38:227–270, 2018.
  • [11] Van Tiep Chu and Viet Ha Hoang. High dimensional finite elements for two-scale Maxwell wave equations. J. Comput. Appl. Math., 375:112756, 32, 2020.
  • [12] Philippe G. Ciarlet. The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].
  • [13] Y. Efendiev and A. Pankov. Numerical homogenization and correctors for nonlinear elliptic equations. SIAM J. Appl. Math., 65(1):43–68, 2004.
  • [14] Yalchin Efendiev and Thomas Y. Hou. Multiscale Finite Element Methods: Theory and Applications. Surveys and Tutorials in the Applied Mathematical Sciences. Springer, 2009.
  • [15] Dietmar Gallistl and Daniel Peterseim. Numerical stochastic homogenization by quasilocal effective diffusion tensors. Commun. Math. Sci., 17(3):637–651, 2019.
  • [16] Antoine Gloria and Felix Otto. Quantitative results on the corrector equation in stochastic homogenization. J. Eur. Math. Soc. (JEMS), 19(11):3489–3548, 2017.
  • [17] Pierre Grisvard. Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
  • [18] Helmut Harbrecht and Christoph Schwab. Sparse tensor finite elements for elliptic multiple scale problems. Computer Methods in Applied Mechanics and Engineering, 200(45-46):3100 – 3110, 2011.
  • [19] V. H. Hoang and Ch. Schwab. Analytic regularity and polynomial approximation of stochastic, parametric elliptic multiscale PDEs. Analysis and Applications, 11(01):1350001, 2013.
  • [20] Viet Ha Hoang. Sparse tensor finite element method for periodic multiscale nonlinear monotone problems. Multiscale Modeling & Simulation, 7(3):1042–1072, 2008.
  • [21] Viet Ha Hoang and Christoph Schwab. High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul., 3(1):168–194, 2004/05.
  • [22] Thomas Y. Hou and Xiao-Hui Wu. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 134(1):169 – 189, 1997.
  • [23] V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik. Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosifyan].
  • [24] Axel Målqvist and Daniel Peterseim. Localization of elliptic multiscale problems. Math. Comp., 83(290):2583–2603, 2014.
  • [25] Gabriel Nguetseng. A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal., 20(3):608–623, 1989.
  • [26] Ch. Schwab. High dimensional finite elements for elliptic problems with multiple scales and stochastic data. In Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), pages 727–734. Higher Ed. Press, Beijing, 2002.
  • [27] Wee Chin Tan and Viet Ha Hoang. High dimensional finite element method for multiscale nonlinear monotone parabolic equations. J. Comput. Appl. Math., 345:471–500, 2019.
  • [28] Wee Chin Tan and Viet Ha Hoang. Sparse tensor product finite element for nonlinear multicale varitional inequalities of monotone type. IMA J. Numer. Anal., 2020 https://doi.org/10.1093/imanum/drz011.
  • [29] Bingxing Xia and Viet Ha Hoang. High dimensional finite elements for multiscale wave equations. Multiscale Modeling & Simulation, 12(4):1622–1666, 2014.
  • [30] Bingxing Xia and Viet Ha Hoang. High-dimensional finite element method for multiscale linear elasticity. IMA Journal of Numerical Analysis, 35(3):1277–1314, 2015.
  • [31] Bingxing Xia and Viet Ha Hoang. Sparse tensor finite elements for elastic wave equation with multiple scales. Journal of Computational and Applied Mathematics, 282:179 – 214, 2015.
  • [32] V. V. Yurinskiĭ. Averaging of symmetric diffusion in a random medium. Sibirsk. Mat. Zh., 27(4):167–180, 215, 1986.