This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimal estimates for mappings admitting general Poisson representations in the unit ball

Deguang Zhong111[email protected] 1. Institute of Applied Mathematics, Shenzhen Polytechnic University,
Shenzhen, Guangdong, 518055, P. R. China
Fangming Cai222[email protected] 2. School of Mathematics, Hunan University,
Changsha, Hnan, 410082, P. R. China
Dongping Wei333[email protected] 3. Institute of Applied Mathematics, Shenzhen Polytechnic University,
Shenzhen, Guangdong, 518055, P. R. China
Abstract

Suppose that 1<p1<p\leq\infty and φLp(𝔹n,n).\varphi\in L^{p}(\mathbb{B}^{n},\mathbb{R}^{n}). In this note, we use Hölder inequality and some basic properties of hypergeometric functions to establish the sharp constant CpC_{p} and function Cp(x)C_{p}(x) in the following inequalities

|u(x)|Cp(1|x|2)(n1)/pφLp|u(x)|\leq\frac{C_{p}}{(1-|x|^{2})^{(n-1)/p}}\cdot||\varphi||_{L^{p}}

and

|u(x)|Cp(x)(1|x|2)(n1)/pφLp,|u(x)|\leq\frac{C_{p}(x)}{(1-|x|^{2})^{(n-1)/p}}\cdot||\varphi||_{L^{p}},

where uu are those mapping from the unit ball 𝔹n\mathbb{B}^{n} into n\mathbb{R}^{n} admitting general Poisson representations. The obtained results generalize and extend some known results from harmonic mappings ([2, Proposition 6.16] and [4, Theorems 1.1 and 1.2]) and hyperbolic harmonic mappings ([3, Theorems 1.1 and 1.2]).

keywords:
Harmonic mapping, hyperbolic harmonic mapping, general Poisson representations
MSC:
[2020] 31B05,31B10, 42B30

1 Introduction and main results

Let 𝔹n\mathbb{B}^{n} be the unit ball of n\mathbb{R}^{n} and 𝕊n1\mathbb{S}^{n-1} be its boundary. For any x=(x1,x2,,xn)n,x=(x_{1},x_{2},\ldots,x_{n})\in\mathbb{R}^{n}, its vector norm is defined by |x|=(i=1nxi2)1/2.|x|=(\sum_{i=1}^{n}x_{i}^{2})^{1/2}. For a,b,c,c0,1,2,,a,b,c\in\mathbb{R},c\neq 0,-1,-2,\cdot\cdot\cdot, the hypergeometric function is defined by

F(a,b;c;x)=k=0(a)k(b)k(c)kxkk!,|x|<1,F(a,b;c;x)=\sum_{k=0}^{\infty}\frac{(a)_{k}\cdot(b)_{k}}{(c)_{k}}\cdot\frac{x^{k}}{k!},\;|x|<1,

where (a)k=Γ(a+k)/Γ(a)(a)_{k}=\Gamma(a+k)/\Gamma(a) and Γ\Gamma is the Gamma function; cf. [1]. The following two elemental properties on hypergeometric function is well known; cf. [1, Chapter 2].

F(a,b;c;x)=(1x)cabF(ca,cb;c;x).F(a,b;c;x)=(1-x)^{c-a-b}\cdot F(c-a,c-b;c;x). (1)
F(a,b;c;1)=Γ(c)Γ(cab)Γ(ca)Γ(cb)ifcab>0.F(a,b;c;1)=\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\;\;{\rm if}\;c-a-b>0. (2)

For α,β,β>0.\alpha,\beta\in\mathbb{R},\beta>0. Then the general Poisson kernel [6] is defined by

Pα,β(x,η)=(1|x|2)α|xη|β,x𝔹nandη𝕊n1.P_{\alpha,\beta}(x,\eta)=\frac{(1-|x|^{2})^{\alpha}}{|x-\eta|^{\beta}},\;\;x\in\mathbb{B}^{n}\;{\rm and}\;\;\eta\in\mathbb{S}^{n-1}. (3)

In the following discussion, we always consider the positive integers nn which greater than or equal to 33. In this paper, we are interesting in those mappings admitting the following general Poisson representations:

uα,β[φ](x)=cn,β𝕊n1Pα,β(x,η)φ(η)𝑑σ(η),u_{\alpha,\beta}[\varphi](x)=c_{n,\beta}\cdot\int_{\mathbb{S}^{n-1}}P_{\alpha,\beta}(x,\eta)\varphi(\eta)d\sigma(\eta), (4)

where φL1(𝕊n1,n),\varphi\in L^{1}(\mathbb{S}^{n-1},\mathbb{R}^{n}), cn,β:=Γ(β2)Γ(β2n2+1)Γ(n2)Γ(βn+1)c_{n,\beta}:=\frac{\Gamma(\frac{\beta}{2})\Gamma(\frac{\beta}{2}-\frac{n}{2}+1)}{\Gamma(\frac{n}{2})\Gamma(\beta-n+1)} and σ\sigma is the surface measure on 𝕊n1\mathbb{S}^{n-1} normalized by σ(𝕊n1)=1.\sigma(\mathbb{S}^{n-1})=1. Here, we choose the constant cn,βc_{n,\beta} to be met the identity equation

cn,βlim|x|1𝕊n1Pα,β(x,η)𝑑σ(η)=1c_{n,\beta}\cdot\lim_{|x|\rightarrow 1^{-}}\int_{\mathbb{S}^{n-1}}P_{\alpha,\beta}(x,\eta)d\sigma(\eta)=1

when n+α=β+1.n+\alpha=\beta+1. It is noted that many classical functions defined in the unit ball can be written as the form in (4). For example, a harmonic mapping uu defined in the unit ball can be represented as u(x)=u1,n[φ](x),u(x)=u_{1,n}[\varphi](x), where φL1(𝕊n1,n).\varphi\in L^{1}(\mathbb{S}^{n-1},\mathbb{R}^{n}). If α=n1,β=2(n1),\alpha=n-1,\beta=2(n-1), then the function u(x)=un1,2(n1)[φ](x)u(x)=u_{n-1,2(n-1)}[\varphi](x) is hyperbolic harmonic mapping. It was show by Liu and Peng [5] that the following Dirichlet problem

{Δγu=0in𝔹n,u=fon𝕊n1\left\{\begin{aligned} \Delta_{\gamma}u&=0\;\;\;\;{\rm in}\;\;\;\mathbb{B}^{n},\\ u&=f\;\;\;\;{\rm on}\;\;\mathbb{S}^{n-1}\end{aligned}\right. (5)

has a solution for all f𝒞(𝕊n1)f\in\mathcal{C}(\mathbb{S}^{n-1}) if and only if γ>1/2,\gamma>-1/2, where

Δγ=(1|x|2)[1|x|24i2xi2+γixixi+γ(n21γ)].\Delta_{\gamma}=(1-|x|^{2})\cdot\left[\frac{1-|x|^{2}}{4}\cdot\sum_{i}\frac{\partial^{2}}{\partial x_{i}^{2}}+\gamma\sum_{i}x_{i}\cdot\frac{\partial}{\partial x_{i}}+\gamma(\frac{n}{2}-1-\gamma)\right].

In this case the solution is unique and is represented as u(x)=u1+2γ,n+2γ[f](x).u(x)=u_{1+2\gamma,n+2\gamma}[f](x).

In this paper, our aim is to obtain the sharp constants CpC_{p} and sharp function Cp(x)C_{p}(x) in the following inequalities

|uα,β[φ](x)|Cp(x)(1|x|2)(n1)/pφLp|u_{\alpha,\beta}[\varphi](x)|\leq\frac{C_{p}(x)}{(1-|x|^{2})^{(n-1)/p}}\cdot||\varphi||_{L^{p}} (6)

and

|uα,β[φ](x)|Cp(1|x|2)(n1)/pφLp,|u_{\alpha,\beta}[\varphi](x)|\leq\frac{C_{p}}{(1-|x|^{2})^{(n-1)/p}}\cdot||\varphi||_{L^{p}}, (7)

where φLp(𝕊n1,n)\varphi\in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^{n}) and n+α=β+1.n+\alpha=\beta+1.

A similar result proved in [8, Lemma 5.1.1], which states that if fHp,0<p,f\in H^{p},0<p\leq\infty, then

|f(z)|(1|z|2)1/pfp.|f(z)|\leq(1-|z|^{2})^{-1/p}||f||_{p}.

Here HpH^{p} stands for the Hardy space consisting of analytic functions ff and satisfying

fp:=supr<1(12πππ|f(reiθ)|p)1/p<.||f||_{p}:=\sup_{r<1}\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}|f(re^{i\theta})|^{p}\right)^{1/p}<\infty.

Suppose 1p.1\leq p\leq\infty. Let hp(𝔹n)h^{p}(\mathbb{B}^{n}) be the harmonic Hardy spaces on the unit ball 𝔹n,\mathbb{B}^{n}, which the function uhp(𝔹n)u\in h^{p}(\mathbb{B}^{n}) satisfying the following conditions

upp:=uhp(𝔹n)p=sup0<r<1𝕊n1|u(rζ)|p𝑑σ(ζ)<.||u||_{p}^{p}:=||u||_{h^{p}(\mathbb{B}^{n})}^{p}=\sup_{0<r<1}\int_{\mathbb{S}^{n-1}}|u(r\zeta)|^{p}d\sigma(\zeta)<\infty.

For the case of p=q=2,p=q=2, the following sharp estimate

|u(x)|1+|x|2(1|x|2)n1uh2(𝔹n)|u(x)|\leq\sqrt{\frac{1+|x|^{2}}{(1-|x|^{2})^{n-1}}}\cdot||u||_{h^{2}(\mathbb{B}^{n})}

was obtained in [2, Proposition 6.23]. In [4], Kalaj and Marković obtained the following optimal estimates for harmonic functions u1,n[φ]u_{1,n}[\varphi] in the unit ball.

Theorem 1.1.

[4, Theorems 1.1 and 1.2] Let 1<p1<p\leq\infty and qq be its conjugate. For all uhp(𝔹n)u\in h^{p}(\mathbb{B}^{n}) and x𝔹n,x\in\mathbb{B}^{n}, we have the following sharp inequalities

|u(x)|Cp(x)(1|x|2)(n1)/puhp(𝔹n)|u(x)|\leq\frac{C_{p}(x)}{(1-|x|^{2})^{(n-1)/p}}\cdot||u||_{h^{p}(\mathbb{B}^{n})} (8)

and

|u(x)|Cp(1|x|2)(n1)/puhp(𝔹n),|u(x)|\leq\frac{C_{p}}{(1-|x|^{2})^{(n-1)/p}}\cdot||u||_{h^{p}(\mathbb{B}^{n})}, (9)

where

Cp(x)=(F(nnq2,1+nnq2;n2;|x|2))1/qC_{p}(x)=\left(F\left(\frac{n-nq}{2},-1+n-\frac{nq}{2};\frac{n}{2};|x|^{2}\right)\right)^{1/q} (10)

and

Cp={1,ifq2(n1)n,(2nqnΓ(n2)Γ(nqn+12)πΓ(nq2))1/q,ifq>2(n1)n.C_{p}=\left\{\begin{aligned} &1,&&{\rm if}\;{q\leq\frac{2(n-1)}{n}},\\ &\left(\frac{2^{nq-n}\Gamma(\frac{n}{2})\Gamma(\frac{nq-n+1}{2})}{\sqrt{\pi}\Gamma(\frac{nq}{2})}\right)^{1/q},&&{\rm if}\;{q>\frac{2(n-1)}{n}.}\end{aligned}\right. (11)

Later, Chen and Kalaj [3] derived the following optimal estimates for hyperbolic Poisson integrals of functions un1,2n2[φ]u_{n-1,2n-2}[\varphi] in the unit ball.

Theorem 1.2.

[3, Theorems 1.1 and 1.2] Let 1<p1<p\leq\infty and qq be its conjugate. If u=un1,2n2[φ]u=u_{n-1,2n-2}[\varphi] and φLp(𝕊n1,n),\varphi\in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^{n}), then for any x𝔹n,x\in\mathbb{B}^{n}, we have the following sharp inequalities

|u(x)|Cp(x)(1|x|2)(n1)/pφLp|u(x)|\leq\frac{C_{p}(x)}{(1-|x|^{2})^{(n-1)/p}}\cdot||\varphi||_{L^{p}} (12)

and

|u(x)|Cp(1|x|2)(n1)/pφLp,|u(x)|\leq\frac{C_{p}}{(1-|x|^{2})^{(n-1)/p}}\cdot||\varphi||_{L^{p}}, (13)

where

Cp(x)=(F((n1)(q1),n2+qnq;n2;|x|2))1/qC_{p}(x)=\left(F\left(-(n-1)(q-1),\frac{n}{2}+q-nq;\frac{n}{2};|x|^{2}\right)\right)^{1/q} (14)

and

Cp=(Γ(n2)Γ((2q1)(n1))Γ(n2+(q1)(n1))Γ(q(n1)))1/q.C_{p}=\left(\frac{\Gamma(\frac{n}{2})\Gamma((2q-1)(n-1))}{\Gamma(\frac{n}{2}+(q-1)(n-1))\Gamma(q(n-1))}\right)^{1/q}. (15)

In this paper, we will povide a simple and direct method to established the following optimal estimates for mappings admitting general Poisson representations uα,β[φ]u_{\alpha,\beta}[\varphi] in the unit ball.

Theorem 1.3.

Let 1<p1<p\leq\infty and qq be its conjugate. Suppose that n+α=β+1n+\alpha=\beta+1 and βn.\beta\geq n. If u=uα,β[φ]u=u_{\alpha,\beta}[\varphi] and φLp(𝕊n1,n).\varphi\in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^{n}). Then for any x𝔹n,x\in\mathbb{B}^{n}, we have the following sharp inequality

|u(x)|Cp(x)(1|x|2)(n1)/pφLp,|u(x)|\leq\frac{C_{p}(x)}{(1-|x|^{2})^{(n-1)/p}}\cdot||\varphi||_{L^{p}}, (16)

where

Cp(x)=cn,β(F(nqβ2,n1qβ2;n2;|x|2))1/q.C_{p}(x)=c_{n,\beta}\cdot\left(F\left(\frac{n-q\beta}{2},n-1-\frac{q\beta}{2};\frac{n}{2};|x|^{2}\right)\right)^{1/q}. (17)
Theorem 1.4.

Let 1<p1<p\leq\infty and qq be its conjugate. Suppose that n+α=β+1.n+\alpha=\beta+1. If u=uα,β[φ]u=u_{\alpha,\beta}[\varphi] and φLp(𝕊n1,n).\varphi\in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^{n}). Then for any x𝔹n,x\in\mathbb{B}^{n}, we have the following sharp inequality

|u(x)|Cp(1|x|2)(n1)/pφLp.|u(x)|\leq\frac{C_{p}}{(1-|x|^{2})^{(n-1)/p}}\cdot||\varphi||_{L^{p}}. (18)

In the case that nβ<2(n1),n\leq\beta<2(n-1), we have

Cp={cn,β,ifq2(n1)β,cn,β(Γ(n2)Γ(qβn+1)Γ(qβ2)Γ(βqn+22))1/q,ifq>2(n1)β.C_{p}=\left\{\begin{aligned} &c_{n,\beta},&&{\rm if}\;{q\leq\frac{2(n-1)}{\beta}},\\ &c_{n,\beta}\cdot\left(\frac{\Gamma(\frac{n}{2})\Gamma(q\beta-n+1)}{\Gamma(\frac{q\beta}{2})\Gamma(\frac{\beta q-n+2}{2})}\right)^{1/q},&&{\rm if}\;{q>\frac{2(n-1)}{\beta}.}\end{aligned}\right. (19)

In the case that β2(n1),\beta\geq 2(n-1), we have

Cp=cn,β(Γ(n2)Γ(qβn+1)Γ(qβ2)Γ(βqn+22))1/q.C_{p}=c_{n,\beta}\cdot\left(\frac{\Gamma(\frac{n}{2})\Gamma(q\beta-n+1)}{\Gamma(\frac{q\beta}{2})\Gamma(\frac{\beta q-n+2}{2})}\right)^{1/q}. (20)
Remark 1.

If p=,p=\infty, then the proofs of Theorems 1.3 and 1.4 are trivial. Here, we leave the readers to check for this case.

Remark 2.

If let α=1,β=n\alpha=1,\beta=n in (17) and (19), that we can derive equations (10) and (11). The equations in (14) and (15) can be obtained be letting α=n1,β=2(n1)\alpha=n-1,\beta=2(n-1) in equations (17) and (19). If we consider those mappings satisfying Dirichlet problem (5), then we get the following corollary.

Corollary 1.5.

Suppose that f𝒞(𝕊n1)Lp(𝕊n1,n).f\in\mathcal{C}(\mathbb{S}^{n-1})\bigcap L^{p}(\mathbb{S}^{n-1},\mathbb{R}^{n}). Let uu be a function from unit ball satisfying the Dirichlet problem (5). Then for any x𝔹n,x\in\mathbb{B}^{n}, we have the following sharp inequalities

|u(x)|Cp(x)(1|x|2)(n1)/pφLp|u(x)|\leq\frac{C_{p}(x)}{(1-|x|^{2})^{(n-1)/p}}\cdot||\varphi||_{L^{p}} (21)

and

|u(x)|Cp(1|x|2)(n1)/pφLp,|u(x)|\leq\frac{C_{p}}{(1-|x|^{2})^{(n-1)/p}}\cdot||\varphi||_{L^{p}}, (22)

where

Cp(x)=cn,n+2γF((1q)n2qγ,(2q)n2qγ1;n2;|x|2)1/qC_{p}(x)=c_{n,n+2\gamma}\cdot F\left(\frac{(1-q)n}{2}-q\gamma,\frac{(2-q)n}{2}-q\gamma-1;\frac{n}{2};|x|^{2}\right)^{1/q} (23)

and in the case that 0γ<n21,0\leq\gamma<\frac{n}{2}-1,

Cp={cn,n+2γ,ifq2(n1)n+2γ,cn,n+2γ(Γ(n2)Γ((q1)n+2qγ+1)Γ(nq+2γq2)Γ((q1)n2+qγ+1))1/q,ifq>2(n1)n+2γC_{p}=\left\{\begin{aligned} &c_{n,n+2\gamma},&&{\rm if}\;{q\leq\frac{2(n-1)}{n+2\gamma}},\\ &c_{n,n+2\gamma}\cdot\left(\frac{\Gamma(\frac{n}{2})\Gamma((q-1)n+2q\gamma+1)}{\Gamma(\frac{nq+2\gamma q}{2})\Gamma\left(\frac{(q-1)n}{2}+q\gamma+1\right)}\right)^{1/q},&&{\rm if}\;{q>\frac{2(n-1)}{n+2\gamma}}\end{aligned}\right. (24)

and in the case that γn21,\gamma\geq\frac{n}{2}-1,

Cp=cn,n+2γ(Γ(n2)Γ((q1)n+2qγ+1)Γ(nq+2γq2)Γ((q1)n2+qγ+1))1/q.C_{p}=c_{n,n+2\gamma}\cdot\left(\frac{\Gamma(\frac{n}{2})\Gamma((q-1)n+2q\gamma+1)}{\Gamma(\frac{nq+2\gamma q}{2})\Gamma\left(\frac{(q-1)n}{2}+q\gamma+1\right)}\right)^{1/q}. (25)

The rest of the paper is organized as follows: In Sect. 2, we will make some preparations which will be used in proving our main results. In Sect. 3, the proof of Theorem 1.3 is given. The last Section will be devoted to proving Theorem 1.4.

2 Preliminaries

The following lemma concerning the monotonicity of hypergeometric functions was proved in [7].

Lemma 2.6.

[7, Lemma 1.2] Suppose that c>0,ac,bcc>0,a\leq c,b\leq c and ab0(ab0).ab\leq 0\;(ab\geq 0). Then the hypergeometric function F(a,b;c;)F(a,b;c;\cdot) is decreasing (increasing) on (0,1).(0,1).

The proof of following lemma can be found in [5, Lemma 2.1].

Lemma 2.7.

[5, Lemma 2.1] For x𝔹nx\in\mathbb{B}^{n} and λ.\lambda\in\mathbb{C}. Then we have

𝕊n11|xη|2λ𝑑σ(η)=F(λ,λn2+1;n2;|x|2).\int_{\mathbb{S}^{n-1}}\frac{1}{|x-\eta|^{2\lambda}}d\sigma(\eta)=F(\lambda,\lambda-\frac{n}{2}+1;\frac{n}{2};|x|^{2}). (26)

3 The proof of Theorem 1.3

Proof.

By Remark 1, we here only consider the case when 1<p<1<p<\infty. By the classical Hölder’s inequality, Lemma 2.7 and equation (1), we get

|u(x)|=cn,β|𝕊n1Pα,β(x,η)φ(η)𝑑σ(η)|\displaystyle|u(x)|=c_{n,\beta}\cdot\Big{|}\int_{\mathbb{S}^{n-1}}P_{\alpha,\beta}(x,\eta)\varphi(\eta)d\sigma(\eta)\Big{|} (27)
\displaystyle\leq cn,β(𝐒n1((1|x|2)α|xη|β)q𝑑σ(η))1/q(𝐒n1|φ(η)|p𝑑σ(η))1/p\displaystyle c_{n,\beta}\cdot\left(\int_{\mathbf{S}^{n-1}}\left(\frac{(1-|x|^{2})^{\alpha}}{|x-\eta|^{\beta}}\right)^{q}d\sigma(\eta)\right)^{1/q}\cdot\left(\int_{\mathbf{S}^{n-1}}|\varphi(\eta)|^{p}d\sigma(\eta)\right)^{1/p}
=\displaystyle= cn,β(1|x|2)α(𝐒n11|xη|qβ𝑑σ(η))1/qφLp\displaystyle c_{n,\beta}\cdot(1-|x|^{2})^{\alpha}\cdot\left(\int_{\mathbf{S}^{n-1}}\frac{1}{|x-\eta|^{q\beta}}d\sigma(\eta)\right)^{1/q}\cdot||\varphi||_{L^{p}}
=\displaystyle= cn,β(1|x|2)α(F(qβ2,qβ2n2+1;n2;|x|2))1/qφLp\displaystyle c_{n,\beta}\cdot(1-|x|^{2})^{\alpha}\cdot\left(F\left(\frac{q\beta}{2},\frac{q\beta}{2}-\frac{n}{2}+1;\frac{n}{2};|x|^{2}\right)\right)^{1/q}\cdot||\varphi||_{L^{p}}
=\displaystyle= cn,β(1|x|2)α(1|x|2)nqβ1q(F(nqβ2,n1qβ2;n2;|x|2))1/qφLp\displaystyle c_{n,\beta}\cdot(1-|x|^{2})^{\alpha}\cdot(1-|x|^{2})^{\frac{n-q\beta-1}{q}}\cdot\left(F\left(\frac{n-q\beta}{2},n-1-\frac{q\beta}{2};\frac{n}{2};|x|^{2}\right)\right)^{1/q}\cdot||\varphi||_{L^{p}}
=\displaystyle= cn,β(F(nqβ2,n1qβ2;n2;|x|2))1/q(1|x|2)(n1)/pφLp.\displaystyle\frac{c_{n,\beta}\cdot\left(F\left(\frac{n-q\beta}{2},n-1-\frac{q\beta}{2};\frac{n}{2};|x|^{2}\right)\right)^{1/q}}{(1-|x|^{2})^{(n-1)/p}}\cdot||\varphi||_{L^{p}}.

In order to prove (16) is sharp, we take φ0(η)=(Pα,β(x,η))q/p,x𝔹n,η𝕊n1.\varphi_{0}(\eta)=(P_{\alpha,\beta}(x,\eta))^{q/p},x\in\mathbb{B}^{n},\eta\in\mathbb{S}^{n-1}. Since

|uα,β[φ0](x)|\displaystyle|u_{\alpha,\beta}[\varphi_{0}](x)| =cn,β𝕊n1Pα,β(x,η)(Pα,β(x,η))q/p𝑑σ(η)\displaystyle=c_{n,\beta}\cdot\int_{\mathbb{S}^{n-1}}P_{\alpha,\beta}(x,\eta)\cdot\left(P_{\alpha,\beta}(x,\eta)\right)^{q/p}d\sigma(\eta) (28)
=cn,β𝕊n1(Pα,β(x,η))q𝑑σ(η)\displaystyle=c_{n,\beta}\cdot\int_{\mathbb{S}^{n-1}}\left(P_{\alpha,\beta}(x,\eta)\right)^{q}d\sigma(\eta)

and

cn,β(𝐒n1((1|x|2)α|xη|β)q𝑑σ(η))1/q(𝐒n1|φ(η)|p𝑑σ(η))1/p\displaystyle c_{n,\beta}\cdot\left(\int_{\mathbf{S}^{n-1}}\left(\frac{(1-|x|^{2})^{\alpha}}{|x-\eta|^{\beta}}\right)^{q}d\sigma(\eta)\right)^{1/q}\cdot\left(\int_{\mathbf{S}^{n-1}}|\varphi(\eta)|^{p}d\sigma(\eta)\right)^{1/p} (29)
=\displaystyle= cn,β(𝐒n1((1|x|2)α|xη|β)q𝑑σ(η))1/q(𝐒n1|(1|x|2)α|xη|β|q𝑑σ(η))1/p\displaystyle c_{n,\beta}\cdot\left(\int_{\mathbf{S}^{n-1}}\left(\frac{(1-|x|^{2})^{\alpha}}{|x-\eta|^{\beta}}\right)^{q}d\sigma(\eta)\right)^{1/q}\cdot\left(\int_{\mathbf{S}^{n-1}}\left|\frac{(1-|x|^{2})^{\alpha}}{|x-\eta|^{\beta}}\right|^{q}d\sigma(\eta)\right)^{1/p}
=\displaystyle= cn,β(𝐒n1((1|x|2)α|xη|β)q𝑑σ(η)),\displaystyle c_{n,\beta}\cdot\left(\int_{\mathbf{S}^{n-1}}\left(\frac{(1-|x|^{2})^{\alpha}}{|x-\eta|^{\beta}}\right)^{q}d\sigma(\eta)\right),

we get

|uα,β[φ0](x)|=cn,β(𝐒n1((1|x|2)α|xη|β)q𝑑σ(η))1/qφ0Lp.|u_{\alpha,\beta}[\varphi_{0}](x)|=c_{n,\beta}\cdot\left(\int_{\mathbf{S}^{n-1}}\left(\frac{(1-|x|^{2})^{\alpha}}{|x-\eta|^{\beta}}\right)^{q}d\sigma(\eta)\right)^{1/q}\cdot||\varphi_{0}||_{L^{p}}.

This shows (16) is sharp. Hence, the proof is finished. ∎

4 The proof of Theorem 1.4

Proof.

Here we also only consider the case when 1<p<1<p<\infty. The main ideal of proof of Theorem 4 is to study the monotonicity of function

ψ(r):=F(nqβ2,n1qβ2;n2;r),r[0,1).\psi(r):=F\left(\frac{n-q\beta}{2},n-1-\frac{q\beta}{2};\frac{n}{2};r\right),r\in[0,1).

This can be done by virtue of Lemma 2.6. To do this, it is noted that n2>nqβ2,n/2>n1qβ2.\frac{n}{2}>\frac{n-q\beta}{2},n/2>n-1-\frac{q\beta}{2}. Next, we will discuss in the following two cases:

Case (i): If nβ<2(n1).n\leq\beta<2(n-1). Since in this case, we have

{(nqβ2)(n1qβ2)0,ifq2(n1)β,(nqβ2)(n1qβ2)>0,ifq>2(n1)β.\left\{\begin{aligned} &(\frac{n-q\beta}{2})(n-1-\frac{q\beta}{2})\leq 0,&&{\rm if}\;{q\leq\frac{2(n-1)}{\beta}},\\ &(\frac{n-q\beta}{2})(n-1-\frac{q\beta}{2})>0,&&{\rm if}\;{q>\frac{2(n-1)}{\beta}.}\end{aligned}\right. (30)

Hence, we see from Lemma 2.6 that ψ\psi is monotonically decreasing (increasing) on [0,1)[0,1) if q2(n1)/βq\leq 2(n-1)/\beta (q>2(n1)/βq>2(n-1)/\beta). So there holds

Cp=max0|x|<1Cp(x)={Cp(0),ifq2(n1)β,Cp(1),ifq>2(n1)β.C_{p}=\max_{0\leq|x|<1}C_{p}(x)=\left\{\begin{aligned} &C_{p}(0),&&{\rm if}\;{q\leq\frac{2(n-1)}{\beta}},\\ &C_{p}(1),&&{\rm if}\;{q>\frac{2(n-1)}{\beta}.}\end{aligned}\right. (31)

Case (ii): If 2(n1)β.2(n-1)\leq\beta. In this case, we have

(nqβ2)(n1qβ2)>0forallq>1,(\frac{n-q\beta}{2})(n-1-\frac{q\beta}{2})>0\;\;\;{\rm for\;\;all}\;\;\;q>1,

which implies that ψ\psi is monotonically increasing on [0,1)[0,1) for all q>1q>1 according to Lemma 2.6. Hence, in this case, we have Cp=Cp(1).C_{p}=C_{p}(1).

At last, we will get the values of Cp(0)C_{p}(0) and Cp(1).C_{p}(1). It is obvious that Cp(0)=cn,β.C_{p}(0)=c_{n,\beta}. In addition, by combining equation (2) with equation (17), we derive

Cp(1)=cn,β(Γ(n2)Γ(qβn+1)Γ(qβ2)Γ(βqn+22))1/q.C_{p}(1)=c_{n,\beta}\cdot\left(\frac{\Gamma(\frac{n}{2})\Gamma(q\beta-n+1)}{\Gamma(\frac{q\beta}{2})\Gamma(\frac{\beta q-n+2}{2})}\right)^{1/q}. (32)

This finished the proof of Theorem 1.4. ∎

Acknowledgements

The first author was supported by Supporting Foundation of Shenzhen Polytechnic University (No. ZX2023000301) and Research Foundation of Shenzhen Polytechnic University (No. 6023312032K). The third author was supported by Guangdong Province Higher Vocational Education Teaching Reform Research and Practice Project of in 2020 (No. JGGZKZ2020167).

References

  • [1] G. E. Andrews, R. Askey, R. Roy, Special Functions. Cambridge University Press, Cambridge (1999).
  • [2] S. Axler, P. Bourdon, W. Ramey, Harmonic function theory. Springer, New York, 1992.
  • [3] J. L. Chen, D. Kalaj, Optimal estimates for hyperbolic Poisson integrals of functions in LpL^{p} with p>1p>1 and radial eigenfunctions of the hyperbolic Laplacian, Indag. Math., 31(2020): 1099-1109.
  • [4] D. Kalaj, M. Marković, Optimal estimates for harmonic functions in the unit ball, Positivity, 16(2012): 771-782.
  • [5] C. W. Liu and L. Peng, Boundary regularity in the Dirichlet problem for the invariant Laplacians Δγ\Delta_{\gamma} on the unit real ball, Proc. Amer. Math. Soc., 132(2004): 3259-3268.
  • [6] A. Khalfallah, M. Mateljević, M. Mhamdi, Some Properties of Mappings Admitting General Poisson Representations, Mediterr. J. Math., 18, 193 (2021).
  • [7] A. Olofsson, Differential operators for a scale of Poisson type kernels in the unit disc, J. Anal. Math., 123(2014): 227-249.
  • [8] M. Pavlović, Introduction to function spaces on the disk, Matematic̆ki Institut SANU, Belgrade, (2004).