This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimal Design to Dual-Scale Channel Estimation for Sensing-Assisted Communication Systems

Zhiyue Bai Fen Hou State Key Laboratory of IOTSC and Department of ECE, Faculty of Science and Technology, University
of Macau, Macao, China
Hangguan Shan Lin X. Cai Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, USA
Abstract

Sensing-assisted communication is critical to enhance the system efficiency in integrated sensing and communication (ISAC) systems. However, most existing literature focuses on large-scale channel sensing, without considering the impacts of small-scale channel aging. In this paper, we investigate a dual-scale channel estimation framework for sensing-assisted communication, where both large-scale channel sensing and small-scale channel aging are considered. By modeling the channel aging effect with block fading and incorporating CRB (Cramér-Rao bound)-based sensing errors, we optimize both the time duration of large-scale detection and the frequency of small-scale update within each subframe to maximize the achievable rate while satisfying sensing requirements. Since the formulated optimization problem is non-convex, we propose a two-dimensional search-based optimization algorithm to obtain the optimal solution. Simulation results demonstrate the superiority of our proposed optimal design over three counterparts.

Index Terms:
Sensing-assisted communication, channel estimation, and channel aging.

I Introduction

The ever-evolving applications of perceptive mobile network (PMN) spark the rapid evolution of ISAC[1]. But the critical spectrum conflict between sensing and communication (S&C) continues to challenge the research on more cost-effective and powerful ISAC. Enhancing integration and coordination gains of ISAC systems with minimal hardware and signal processing modifications has become a key research focus.

Sensing-assisted communication typically aims to achieve sensing-assisted beamforming, or sensing-assisted secure communication, which can further unlock the potential of ISAC systems. Radar localization can provide more accurate and direct position information than traditional channel estimation. In ISAC-enabled Vehicle-to-Everything (V2X) networks, the authors in [2] and [3] employed the state evolution model and estimated kinematic parameters for beam prediction and tracking, showing that sensing-assisted beamforming can reduce communication errors, and alleviate channel estimation overheads. Fan etal.et\,\,al. in [4], and Meng etal.et\,\,al. [5] also revealed the inverse relationship between noise offset during parameter estimation and sensing SNR, and the impact of sensing on communication is typically observed in the accuracy of angular alignment. However, most existing works overlooked the dual-scale characteristics of physical-layer channel estimation, where large-scale channel information varies slowly, but small-scale channel information varies rapidly[6]. Sensing results provide only large-scale channel information, as validated by [5], which shows that repeated sensing over short periods offers very limited improvement. Therefore, small-scale channel information should be considered to mitigate the impacts of channel aging. Although [7] and [6] analyzed the performance of ISAC systems with the dual-scale channel estimation framework from the perspectives of deep learning and compressed sampling, the analysis and optimal design that combine both the large-scale and small-scale channel information remain unexplored.

Motivated by the above discussions, this paper jointly considers and optimizes both large-scale channel detection and small-scale channel estimation in ISAC systems to maximize communication efficiency. The main contributions are summarized as follows.

  • We focus on dual-scale channel estimation for sensing-assisted communication systems, where we model and analyze the large-scale spatial correlation matrix based on sensing angular CRB and the small-scale channel aging, then we theoretically derive the system achievable rate. An optimal design problem is formulated to maximize the system achievable rate while satisfying the sensing requirements.

  • To address the non-convexity mixed integer nonlinear programming (MINLP) problem, we prove the segmented convexity of the sensing duration problem and propose a two-dimensional search-based optimization algorithm to solve it efficiently.

  • Simulation results demonstrate the significance and the performance improvement of our proposed design. Specifically, the proposed optimal design can improve the system achievable rate 928%9\sim 28\% compared to three counterparts.

II System Model and Problem Formulation

We consider the downlink transmission in an ISAC system consisting of a dual-function base station (BS) and KK users, where BS employs a uniform linear array (ULA) with LtL_{t} transmit antennas for communication and tracking targets, and LrL_{r} receive antennas for the reception of sensing echo signals, and K users are denoted by 𝒦={1,,K}\mathcal{K}=\left\{1,...,K\right\}.

In this paper, we consider both large-scale channel detection and small-scale channel aging. As shown in Fig. 1, at the beginning of each subframe, large-scale channel detection will be conducted through a radar sensing process. The obtained large-scale spatial correlation matrix is key to efficient precoding and resource scheduling in communication systems. In addition, the small-scale Doppler shifts and the minor movement between the users and BS lead to channel aging, which makes the small-scale channel information across the transmission blocks inconsistent and time-correlated. Therefore, within a subframe, multiple small-scale channel estimations should be arranged to update the small-scale channel information such that a higher communication efficiency can be achieved. However, the increase of large-scale sensing duration and small-scale update frequency can improve the channel estimation quality but sacrifice the data transmission time. Therefore, how to optimally design the sensing duration of the large-scale channel detection and the frequency of small-scale channel update is critical and challenging in an ISAC system. In this paper, we model and analyze the impacts of dual-scale channel estimation, and propose the optimal design within specific frame structure.

Refer to caption


Figure 1: Illustration of the frame structure with dual-scale channel estimation.

II-A Frame Structure

As shown in Fig. 1, each subframe consists of NN blocks. The beginning of each subframe is subjected to a large-scale detection periodically, which is consistent with the design of the physical layer CSI-RS reference signals. The acquisition of large-scale slow-varying channel information is generally achieved by designing the "CSI-ResourcePeriodicityAndOffset" parameter to be periodic between 4-640 timeslots[8]. The time duration of large-scale detection is denoted as TlT_{l}, which is an optimization variable. In addition, several small-scale estimations should be arranged at the start of some blocks (denoted as MM in Fig. 1, which is also an optimization variable). The time duration of small-scale estimation is fixed and denoted as TmT_{m}. This corresponds to the design of the physical layer DM-RS and TRS reference signals[9]. Let TsT_{s} and TbT_{b} denote the time duration of a symbol and a block, respectively. MbM_{b} and MmM_{m} denote the number of symbols for each block and small-scale estimation, respectively. Then, the fixed time durations of each block and each small-scale channel estimation are Tb=MbTsT_{b}=M_{b}T_{s} and Tm=MmTsT_{m}=M_{m}T_{s}, respectively.

As shown in Fig. 1, to improve the achievable rate, this system entails a compromise on sensing duration design, i.e., the duration of large-scale detection TlT_{l}, the number of small-scale updates MM, and the number of blocks for each small-scale update Nm,m{1,2,.M}N_{m},m\in\left\{1,2,....M\right\}. Within the total NN blocks of each subframe, TlTb\lfloor\frac{T_{l}}{T_{b}}\rfloor blocks are used for radar sensing to achieve large-scale channel detection, while the remaining Nt=NTlTb=N1++NMN_{t}=N-\lfloor\frac{T_{l}}{T_{b}}\rfloor=N_{1}+...+N_{M} blocks are for communication transmission.

II-B Channel Model

We assume the channel is quasi-static in each block but varies across different blocks. The classical "one-ring" model uses the spatial correlation matrix to capture large-scale information, along with the user surrounding effects of clutter. Accordingly, the time-varying channel for the user kk at the block nn can be written as [10]

𝒉k,n=+θkΔθθk+Δθ𝒂(θ)e(j2πfdTbn)rk(θ,fd)𝑑θ𝑑fd,\boldsymbol{h}_{k,n}=\int_{-\infty}^{+\infty}{\int_{\theta_{k}-\Delta\theta}^{\theta_{k}+\Delta\theta}{\boldsymbol{a}\left(\theta\right)}e^{\left(j2\pi f_{d}T_{b}n\right)}r_{k}\left(\theta,f_{d}\right)d\theta df_{d}}, (1)

where Δθ\Delta\theta is the single-side angular spread, and rk(θ,fd)r_{k}\left(\theta,f_{d}\right) denotes the joint angle-Doppler channel gain function on the direction of arrival (DOA) θ\theta and the Doppler frequency fdf_{d}. With the assumption that the joint angle-Doppler channel gain rk(θ,fd)r_{k}\left(\theta,f_{d}\right) for different (θ\theta, fdf_{d}) are uncorrelated, we have

𝔼[rk(θ,fd)rk(θ,fd)]=βkSkA(θ)SkD(fd)δ(θθ)δ(fdfd),\begin{split}&\mathbb{E}\left[r_{k}\left(\theta,f_{d}\right)r_{k}^{*}\left(\theta^{\prime},f_{d}^{\prime}\right)\right]\\ &=\beta_{k}S_{k}^{A}\left(\theta\right)S_{k}^{D}\left(f_{d}\right)\delta\left(\theta-\theta^{\prime}\right)\delta\left(f_{d}-f_{d}^{\prime}\right),\end{split} (2)

where βk\beta_{k}, SkA(θ)S_{k}^{A}\left(\theta\right) and SkD(fd)S_{k}^{D}\left(f_{d}\right) are the average channel gain, power-angle-spectrum and power-Doppler-spectrum, respectively. According to (1) and (LABEL:62615), the temporal-spatial autocorrelation matrix of 𝒉k,n\boldsymbol{h}_{k,n} is given by

𝑹k(Δn)=𝔼[𝒉k,n𝒉k,n+ΔnH]=+SkD(fd)e2jπfdTbΔn𝑑fdρk,n×βkθkΔθθk+ΔθSkA(θ)𝒂(θ)𝒂H(θ)𝑑θ𝑹˙k,\begin{split}\boldsymbol{R}_{k}\left(\Delta n\right)=&\ \mathbb{E}\left[\boldsymbol{h}_{k,n}\boldsymbol{h}_{k,n+\Delta n}^{H}\right]\\ =&\underset{\rho_{k,n}}{\underbrace{\int_{-\infty}^{+\infty}{S_{k}^{D}\left(f_{d}\right)e^{-2j\pi f_{d}T_{b}\Delta n}}df_{d}}}\\ &\times\beta_{k}\underset{\boldsymbol{\dot{R}}_{k}}{\underbrace{\int_{\theta_{k}-\Delta\theta}^{\theta_{k}+\Delta\theta}{S_{k}^{A}\left(\theta\right)\boldsymbol{a}}\left(\theta\right)\boldsymbol{a}^{H}\left(\theta\right)d\theta}},\end{split} (3)

where ρk,n\rho_{k,n} is the temporal correlation coefficient, and 𝑹˙kLt×Lt\boldsymbol{\dot{R}}_{k}\in\mathbb{C}^{L_{t}\times L_{t}} is the large-scale spatial correlation matrix111Given the temporal scope of resource scheduling spanning tens of milliseconds, it is general to assume that the large-scale characteristics of the communication channel keep constant[7]. Thus, the large-scale spatial matrix 𝑹˙k\boldsymbol{\dot{R}}_{k} is independent of the time index.. Based on the Clarke-Jakes model[11], the temporal correlation coefficient is given by

ρk,n=J0(2πfd,kmaxTbΔn),\rho_{k,n}=J_{0}\left(2\pi f_{d,k}^{\max}T_{b}\Delta n\right), (4)

where J0()J_{0}\left(\cdot\right) is the zeroth-order Bessel function of the first kind, and fd,kmaxf_{d,k}^{\max} is the maximum Doppler frequency of user kk. Considering channel aging effects, the channel of the nn-th block can be characterized as

𝒉k,n=ρk,n𝒉k,1+𝒆t,n,k,\boldsymbol{h}_{k,n}=\rho_{k,n}\boldsymbol{h}_{k,1}+\boldsymbol{e}_{t,n,k}, (5)

where 𝒉k,1\boldsymbol{h}_{k,1} is the initial channel vector derived through channel estimation. It is assumed that 𝒉k,n𝒞𝒩(0,βk𝑹˙k)\boldsymbol{h}_{k,n}\sim\mathcal{C}\mathcal{N}\left(0,\beta_{k}\boldsymbol{\dot{R}}_{k}\right) according to the central limit theorem (CLT)[12]. 𝒆t,n,k𝒞𝒩(0,βk(1ρk,n2)𝑹˙k)\boldsymbol{e}_{t,n,k}\sim\mathcal{C}\mathcal{N}\left(0,\beta_{k}\left(1-\rho_{k,n}^{2}\right)\boldsymbol{\dot{R}}_{k}\right) is the independent residual error.

It can be seen from (3) that both large-scale and small-scale channel estimation results influence communication efficiency. In the following subsection, we will model and analyze the large-scale channel detection and small-scale channel estimation in detail.

II-C Two-Scale Channel Estimation

II-C1 Large-Scale Detection Model

In an ISAC system, the large-scale channel detection conducted at the BS depends on the radar sensing accuracy. The sensing seudorandom sequence 𝐬r(t)=[sr,1(t),,sr,K(t)]TK×1\mathbf{s}_{r}\left(t\right)=\left[s_{r,1}\left(t\right),...,s_{r,K}\left(t\right)\right]^{T}\in\mathbb{C}^{K\times 1} is transmitted as 𝒔~r(t)=𝑾r𝒔r(t)K×1\boldsymbol{\tilde{s}}_{r}\left(t\right)=\boldsymbol{W}_{r}\boldsymbol{s}_{r}\left(t\right)\in\mathbb{C}^{K\times 1} for users’ tracking at the time tt, where 𝑾rLt×K\boldsymbol{W}_{r}\in\mathbb{C}^{L_{t}\times K} is the transmit beamforming matrix for target detection. It is assumed that the ISAC signals {sr,k(t)}\left\{s_{r,k}\left(t\right)\right\} for different users are orthogonal, i.e., sr,k(t)sr,j(t)=0s_{r,k}\left(t\right)s_{r,j}\left(t\right)=0, where kjk\neq j, and sr,k(t)sr,k(t)=1s_{r,k}\left(t\right)s_{r,k}^{*}\left(t\right)=1, k,j𝒦k,j\in\mathcal{K}. Accordingly, the reflected echoes at the BS is given by

𝒚r(t)=k=1KLrLtαkej2πνkt𝒃(θk)𝒂T(θk)×𝒘r,ksk(tτk)+𝒛r(t),\vspace{-0.5em}\begin{split}\boldsymbol{y}_{r}\left(t\right)=&\sum_{k=1}^{K}{\sqrt{L_{r}L_{t}}}\alpha_{k}e^{j2\pi\nu_{k}t}\boldsymbol{b}\left(\theta_{k}\right)\boldsymbol{a}^{T}\left(\theta_{k}\right)\\ &\times\boldsymbol{w}_{r,k}s_{k}\left(t-\tau_{k}\right)+\boldsymbol{z}_{r}\left(t\right),\end{split}\vspace{-0.5em} (6)

where LrLt\sqrt{L_{r}L_{t}} is the array gain factor, αk\alpha_{k} is the complex reflection coefficient, νk\nu_{k}, and τk\tau_{k} are the Doppler phase shift and time delay, respectively. 𝒛r(t)𝒞𝒩(0,σr2𝐈Lr)\boldsymbol{z}_{r}\left(t\right)\sim\mathcal{C}\mathcal{N}\left(0,\sigma_{r}^{2}\mathbf{I}_{L_{r}}\right) stands for the complex additive white Gaussian noise at the sensing receiver. Assuming the half-wavelength antenna spacing at the BS, the transmit and receive steering vectors, i.e., 𝒂(θ)\boldsymbol{a}\left(\theta\right), and 𝒃(θ)\boldsymbol{b}\left(\theta\right) is given by

𝒂(θ)=1Lt[1,ejπsinθ,,ejπ(Lt1)sinθ]T,\displaystyle\boldsymbol{a}\left(\theta\right)=\frac{1}{\sqrt{L_{t}}}\left[1,e^{-j\pi\sin\theta},...,e^{-j\pi\left(L_{t}-1\right)\sin\theta}\right]^{T}, (7a)
𝒃(θ)=1Lr[1,ejπsinθ,,ejπ(Lr1)sinθ]T.\displaystyle\boldsymbol{b}\left(\theta\right)=\frac{1}{\sqrt{L_{r}}}\left[1,e^{-j\pi\sin\theta},...,e^{-j\pi\left(L_{r}-1\right)\sin\theta}\right]^{T}. (7b)

Since the interference between targets is negligible in the large-scale multiple-input multiple-output (MIMO) regime and the targets can be distinguished in the delay-Doppler domain [13], the BS is capable of processing each echo signal individually, as 𝒚r,k(t)\boldsymbol{y}_{r,k}\left(t\right). Thus, the output of the user kk after delay and Doppler frequency compensation of the matched filter is expressed as

𝒚~r,k=GLrLtαk𝒃(θk)𝒂T(θk)𝒘r,k+𝒛~r,k,\begin{split}\tilde{\boldsymbol{y}}_{r,k}=\sqrt{GL_{r}L_{t}}\alpha_{k}\boldsymbol{b}\left(\theta_{k}\right)\boldsymbol{a}^{T}\left(\theta_{k}\right)\boldsymbol{w}_{r,k}+\tilde{\boldsymbol{z}}_{r,k},\end{split} (8)

where GG is the matched-filtering gain, 𝒘r,k\boldsymbol{w}_{r,k} is the kkth column of 𝑾r\boldsymbol{W}_{r}, 𝒛~r,k\tilde{\boldsymbol{z}}_{r,k} denotes the measurement noise. Then, assuming the unbiased measurements, the angular CRB is given by[14]222Our model focuses on the impact of angular deviation on sensing, similar to [5, 4]. This is due to the consistent influence of sensing accuracy of speed, angle, and distance on resource scheduling.

CRB(θk)=σr22Tl|α˙k|2(tr(𝑨˙k𝑾r,k𝑨˙kH)|tr(𝑨k𝑾r,k𝑨˙kH)|2tr(𝑨k𝑾r,k𝑨kH)),\begin{split}\text{CRB}\!\left(\theta_{k}\right)\!=\!\frac{\sigma_{r}^{2}}{2T_{l}\left|\dot{\alpha}_{k}\right|^{2}\!\!\left(\!\text{tr}\!\left(\!\boldsymbol{\dot{A}}_{k}\boldsymbol{W}_{r,k}\boldsymbol{\dot{A}}_{k}^{H}\right)\!\!-\!\frac{\left|\text{tr}\left(\boldsymbol{A}_{k}\boldsymbol{W}_{r,k}\boldsymbol{\dot{A}}_{k}^{H}\right)\right|^{2}}{\text{tr}\left(\boldsymbol{A}_{k}\boldsymbol{W}_{r,k}\boldsymbol{A}_{k}^{H}\right)}\!\right)},\end{split} (9)

where α˙k=GLrLtαk,𝑨˙k=𝑨kθk\dot{\alpha}_{k}=\sqrt{GL_{r}L_{t}}\alpha_{k},\boldsymbol{\dot{A}}_{k}=\frac{\partial\boldsymbol{A}_{k}}{\partial\theta_{k}}, and 𝑾r,k=𝒘r,k𝒘r,kH\boldsymbol{W}_{r,k}=\boldsymbol{w}_{r,k}\boldsymbol{w}_{r,k}^{H}. Due to space limit, we simplify the design of 𝒘r,k=𝒂(θk)\boldsymbol{w}_{r,k}=\boldsymbol{a}^{*}\left(\theta_{k}\right), similar to [5, 11]. CRB is widely accepted as the lower bound of mean square error, we can define[15]

θkθ^k=z˙a,k,\theta_{k}-\hat{\theta}_{k}=\dot{z}_{a,k}, (10)

where z˙a,k𝒞𝒩(0,CRB(θk))\dot{z}_{a,k}\sim\mathcal{C}\mathcal{N}\left(0,\mathrm{CRB}\left(\theta_{k}\right)\right). Since the communication channel is a function of θk\theta_{k} from (1), i.e., 𝒉k,n=𝒇(θk),k𝒦\boldsymbol{h}_{k,n}=\boldsymbol{f}\left(\theta_{k}\right),k\in\mathcal{K}, a first-order Taylor expansion-based delta method can be deployed to derive[16]

𝔼[𝒇(θ^k)]\displaystyle\mathbb{E}\left[\boldsymbol{f}\left(\hat{\theta}_{k}\right)\right]\approx 𝒇(θk),\displaystyle\ \boldsymbol{f}\left(\theta_{k}\right), (11a)
𝕍[𝒇(θ^k)]\displaystyle\mathbb{V}\left[\boldsymbol{f}\left(\hat{\theta}_{k}\right)\right]\approx 𝒇(θk)𝒇(θk)HCRB(θk)𝑹r,k.\displaystyle\boldsymbol{f}\prime\left(\theta_{k}\right)\boldsymbol{f}\prime\left(\theta_{k}\right)^{H}\mathrm{CRB}\left(\theta_{k}\right)\triangleq\boldsymbol{R}_{r,k}. (11b)

With (11a) and (11b), the covariance matrix of estimation error for the deterministic parameter θk\theta_{k} during a single realization is 𝑹r,k\boldsymbol{R}_{r,k}. Combining with the CLT, we can conclude that

𝒉k,n=𝒉^k,n+𝒆r,k,\boldsymbol{h}_{k,n}=\hat{\boldsymbol{h}}_{k,n}+\boldsymbol{e}_{r,k}, (12)

where 𝒉^k,n\hat{\boldsymbol{h}}_{k,n} is the sensing-estimated channel and 𝒆r,k\boldsymbol{e}_{r,k} is the large-scale channel error with zero mean and covariance matrix 𝑹r,k\boldsymbol{R}_{r,k}. Therefore, the large-scale correlation matrix for 𝒉^k,n\hat{\boldsymbol{h}}_{k,n} is given by

𝑹^k=𝔼[𝒉^k,n𝒉^k,nH]=𝔼[𝒉k,n𝒉k,nH]𝔼[𝒆r,k𝒆r,kH]=βk𝑹˙k𝑹r,k.\begin{split}\hat{\boldsymbol{R}}_{k}&=\mathbb{E}\left[\hat{\boldsymbol{h}}_{k,n}\hat{\boldsymbol{h}}_{k,n}^{H}\right]\!\!=\mathbb{E}\left[\boldsymbol{h}_{k,n}\boldsymbol{h}_{k,n}^{H}\right]\!\!-\mathbb{E}\left[\boldsymbol{e}_{r,k}\boldsymbol{e}_{r,k}^{H}\right]\\ &=\beta_{k}\boldsymbol{\dot{R}}_{k}-\boldsymbol{R}_{r,k}.\end{split} (13)

Without perfect knowledge of large-scale fading, the communication estimation on the small-scale stage should based on 𝑹^k\hat{\boldsymbol{R}}_{k} rather than βk𝑹˙k\beta_{k}\boldsymbol{\dot{R}}_{k}.

II-C2 Small-scale estimation model

With the orthogonal pilot sequences of length TmT_{m}, the observation vector for user kk after signal pre-processing with the imperfect large-scale information is given by [17]

𝐲m,k=TmPm𝒉^k,n+𝒛e,\mathbf{y}_{m,k}=T_{m}\sqrt{P_{m}}\boldsymbol{\hat{h}}_{k,n}+\boldsymbol{z}_{e}, (14)

where PmP_{m} is the transmit power of pilot sequence, and 𝒛e𝒞𝒩(0,Tmσm2)\boldsymbol{z}_{e}\sim\mathcal{C}\mathcal{N}\left(0,T_{m}\sigma_{m}^{2}\right) is the time-accumulated thermal noise. Therefore, the SNR of the training sequence is typically defined as γe=TmPm/σm2\gamma_{e}=T_{m}P_{m}/\sigma_{m}^{2}.

With the prior knowledge of the large-scale channel, the well-investigated minimum mean squared error (MMSE) estimator is given by

𝒉^k,1=𝒉~k,1+𝒆c,k,\boldsymbol{\hat{h}}_{k,1}=\boldsymbol{\tilde{h}}_{k,1}+\boldsymbol{e}_{c,k}, (15)

where 𝒉~k,1=1TmPm𝑹^k(𝑹^k+1γe𝐈Lt)1𝐲m,k\boldsymbol{\tilde{h}}_{k,1}=\frac{1}{T_{m}\sqrt{P_{m}}}\boldsymbol{\hat{R}}_{k}\left(\boldsymbol{\hat{R}}_{k}+\frac{1}{\gamma_{e}}\mathbf{I}_{\text{L}_{\text{t}}}\right)^{-1}\mathbf{y}_{m,k}, and the corresponding error covariance matrix of 𝒆c,k\boldsymbol{e}_{c,k} is 𝑪e,k=𝑹^kγe(𝑹^k+1γe𝐈Lt)1\boldsymbol{C}_{e,k}=\frac{\boldsymbol{\hat{R}}_{k}}{\gamma_{e}}\left(\boldsymbol{\hat{R}}_{k}+\frac{1}{\gamma_{e}}\mathbf{I}_{\text{L}_{\text{t}}}\right)^{-1}. According to the analyses in (12) and (15), the initial channel 𝒉k,1\boldsymbol{h}_{k,1} can be represented as

𝒉k,1=𝒉~k,1+𝒆c,k+𝒆r,k.\boldsymbol{h}_{k,1}=\tilde{\boldsymbol{h}}_{k,1}+\boldsymbol{e}_{c,k}+\boldsymbol{e}_{r,k}. (16)

Combined with (5), we then have

𝒉k,n=ρk,n𝒉~k,1+𝒆¯k,n,\boldsymbol{h}_{k,n}=\rho_{k,n}\tilde{\boldsymbol{h}}_{k,1}+\bar{\boldsymbol{e}}_{k,n}, (17)

where 𝒆¯k,nρk,n(𝒆c,k+𝒆r,k)+𝒆t,n,k\bar{\boldsymbol{e}}_{k,n}\triangleq\rho_{k,n}\left(\boldsymbol{e}_{c,k}+\boldsymbol{e}_{r,k}\right)+\boldsymbol{e}_{t,n,k} is the total prediction error.

II-D Communication Rates in Dual-Scale Estimation

With the transmitted communication signal sc,k,n(t)s_{c,k,n}\left(t\right) at the block nn, the received signals of user kk is given by

yc,k,n(t)=𝒉k,nHi=1Kpi𝐟i,nsc,k,n(t)+zk,n(t)=pk𝔼[𝒉k,nH𝐟k,n]sc,k,n(t)+ξk,n(t)+ζk,n(t)+zk,n(t),\begin{split}y_{c,k,n}\left(t\right)=&\boldsymbol{h}_{k,n}^{H}\sum_{i=1}^{K}{\sqrt{p_{i}}}\mathbf{f}_{i,n}\,\,s_{c,k,n}\left(t\right)+z_{k,n}\left(t\right)\\ =&\sqrt{p_{k}}\mathbb{E}\left[\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{k,n}\right]s_{c,k,n}\left(t\right)+\xi_{k,n}\left(t\right)\\ &+\zeta_{k,n}\left(t\right)+z_{k,n}\left(t\right),\end{split} (18)

where zk,n(t)z_{k,n}\left(t\right) is the Gaussian noise with mean zero and variance σc2\sigma_{c}^{2}. ξk,n(t)\xi_{k,n}\left(t\right), and ζk,n(t)\zeta_{k,n}\left(t\right) are the interference caused by beamforming gain uncertainty and other users, respectively, and given by

ξk,n(t)=pi{𝒉k,nH𝐟k,n𝔼[𝒉k,nH𝐟k,n]}sc,k,n(t),ζk,n(t)=𝒉k,nHikKpi𝐟i,nsc,i,n(t).\begin{aligned} &\xi_{k,n}\left(t\right)=\sqrt{p_{i}}\left\{\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{k,n}-\mathbb{E}\left[\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{k,n}\right]\right\}s_{c,k,n}\left(t\right),\\ &\zeta_{k,n}\!\left(t\right)=\boldsymbol{h}_{k,n}^{H}\sum_{i\neq k}^{K}{\sqrt{p_{i}}}\mathbf{f}_{i,n}s_{c,i,n}\left(t\right).\end{aligned}

(19)

Accordingly, the signal-to-interference-plus-noise ratio (SINR) of ISAC user kk is given by

γk,n=pk|𝔼[𝒉k,nH𝐟k,n]|2𝔼[|ξk,n(t)|2]+𝔼[|ξk,n(t)|2]+σc2.\begin{split}\gamma_{k,n}=\frac{p_{k}\left|\mathbb{E}\left[\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{k,n}\right]\right|^{2}}{\mathbb{E}\left[\left|\xi_{k,n}\left(t\right)\right|^{2}\right]+\mathbb{E}\left[\left|\xi_{k,n}\left(t\right)\right|^{2}\right]+\sigma_{c}^{2}}.\end{split} (20)

To maximize the spectral efficiency, the low-complexity maximum ratio transmission (MRT) beamforming method can be adopted as

𝐟k,n=1tr(𝑪h,k)𝒉~k,1,\begin{split}\mathbf{f}_{k,n}=\frac{1}{\sqrt{\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}}\tilde{\boldsymbol{h}}_{k,1},\end{split} (21)

where 𝑪h,k=𝑹^k(𝑹^k+1γe𝐈Lt)1𝑹^k\boldsymbol{C}_{h,k}=\hat{\boldsymbol{R}}_{k}\left(\hat{\boldsymbol{R}}_{k}+\frac{1}{\gamma_{e}}\mathbf{I}_{\mathrm{L}_{\mathrm{t}}}\right)^{-1}\hat{\boldsymbol{R}}_{k} is the covariance matrix of 𝒉~k,1\boldsymbol{\tilde{h}}_{k,1}.

Proposition 1: With the MRT transmit beamforming method in (21) and the predicted results in (17), the SINR γk,n\gamma_{k,n} in the n-th block is given by

γk,n=pkρk,n2tr(𝑪h,k)i=1Kβkpitr(𝑹˙k𝑪h,i)tr(𝑪h,i)+σc2.\begin{split}\gamma_{k,n}\!=\!\frac{p_{k}\rho_{k,n}^{2}\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}{\sum_{i=1}^{K}\frac{\beta_{k}p_{i}\mathrm{tr}\left(\boldsymbol{\dot{R}}_{k}\boldsymbol{C}_{h,i}\right)}{\mathrm{tr}\left(\boldsymbol{C}_{h,i}\right)}\!+\!\sigma_{c}^{2}}.\end{split} (22)
Proof:

Please refer to Appendix A

It can be seen from (22) that both small and large-scale estimations influence the communication rate. Large-scale characteristics are reflected in tr(𝑪h,k)\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right), while small-scale characteristics are evident in both ρk,n\rho_{k,n} and tr(𝑪h,k)\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right). The spectral efficiency (bps/Hz) in the nn-th block for user kk can be written as

SEk,n=log2(1+γk,n).\begin{split}\mathrm{SE}_{k,n}=\log_{2}\left(1+\gamma_{k,n}\right).\end{split} (23)

Thus, based on the frame structure shown in Fig. 1, the system achievable rate is given by

=Tbk=1Km=1Mn=1NmSEk,n(MTm+mod(Tl,Tb))k=1KSEk,1,\begin{split}\mathcal{R}=&\ T_{b}\sum_{k=1}^{K}\sum_{m=1}^{M}{\!}\sum_{n=1}^{N_{m}}{\text{SE}_{k,n}}\\ &-\left(MT_{m}+\!\text{mod}\left(T_{l},T_{b}\right)\right)\sum_{k=1}^{K}{\text{SE}_{k,1}},\end{split} (24)

where the second term at the right-hand side of (24) is the rate discount caused by the dual-scale channel estimation, and (MTm+mod(Tl,Tb))(MT_{m}+\text{mod}(T_{l},T_{b})) is the time duration occupied by dual-scale channel estimation.

II-E Problem Formulation

In this paper, we aim to maximize communication efficiency given in (24) while satisfying sensing requirements by jointly optimizing the large-scale sensing duration, the number of small-scale updates, and the number of blocks in each small-scale update. Thus, the optimization problem can be formulated as

𝐏1:\displaystyle\mathbf{P}1:\qquad\quad maxM,Tl,{Nm},\displaystyle\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\mathop{\max}_{M,T_{l},\left\{N_{m}\right\},}\!\mathcal{R} (25a)
s. t. CRB(θk)Γk,k,\displaystyle\mathrm{CRB}\left(\theta_{k}\right)\leqslant\varGamma_{k},\forall k, (25b)
TlTb+m=1MNm=N,\displaystyle\lfloor\frac{T_{l}}{T_{b}}\rfloor+\sum_{m=1}^{M}{N_{m}=N}, (25c)
TlNTb,MN,\displaystyle T_{l}\leqslant NT_{b},M\leqslant N, (25d)
Nm1,m,\displaystyle N_{m}\geqslant 1,\forall m, (25e)

where Γk\varGamma_{k} is the allowed maximum detection error for user kk; the constraint (25b) gives the sensing requirements for each user; the constraint (25c) limits the number of communication transmission blocks to NTlTbN-\lfloor\frac{T_{l}}{T_{b}}\rfloor; (25d) constraints the times of small-scale and large-scale within scheduling cycle, while (25e) constraints the number of blocks in each update not less than 1.

III Problem Decomposition and Algorithm Design

The problem 𝐏1\mathbf{P}1 is a MINLP problem that is hard to tackle. Thus, we propose the following two-dimensional search-based optimization algorithm to solve it efficiently.

III-A Determination of the number of blocks in the mthm^{th} update (i.e., NmN_{m})

When MM and TlT_{l} are fixed, the second row of (24) is constant and 𝐏1\mathbf{P}1 can be equivalently reformulated as

𝐏2:max{Nm}\displaystyle\mathbf{P}2:\mathop{\max}\limits_{\left\{N_{m}\right\}}\quad Tbm=1Mn=1Nmk=1KSEk,n\displaystyle T_{b}\sum_{m=1}^{M}{\!}\sum_{n=1}^{N_{m}}{{\sum_{k=1}^{K}{\mathrm{SE}_{k,n}}}} (26a)
s. t. TlTb+m=1MNm=N,\displaystyle\lfloor\frac{T_{l}}{T_{b}}\rfloor+\sum_{m=1}^{M}{N_{m}=N}, (26b)
Nm1,m,\displaystyle N_{m}\geqslant 1,\forall m, (26c)

Since this discrete problem is intractable, we leverage the following proposition to obtain closed-form solutions.

Proposition 2: The closed-form solutions of NmN_{m} in 𝐏2\mathbf{P}2 are given by

Nm={NtM,NtM+1,m.\begin{split}\vspace{-0.2em}N_{m}=\begin{cases}\lfloor\frac{N_{t}}{M}\rfloor,\\ \lfloor\frac{N_{t}}{M}\rfloor+1,\\ \end{cases}\!\!\!\!\forall m.\end{split} (27)

where Nt=m=1MNmN_{t}=\sum_{m=1}^{M}{N_{m}}. That is, after an even distribution equal to NtM\lfloor\frac{N_{t}}{M}\rfloor for each update, the remaining mod(Nt,M)\text{mod}(N_{t},M) blocks need to spread evenly in random mod(Nt,M)\text{mod}(N_{t},M) updates, which will have NtM+1\lfloor\frac{N_{t}}{M}\rfloor+1 blocks, and the other Mmod(Nt,M)M-\text{mod}(N_{t},M) updates keep to have NtM\lfloor\frac{N_{t}}{M}\rfloor blocks.

Proof:

Please refer to Appendix B

III-B Determination of the number of small-scale updates (i.e., MM) and the large-scale sensing time (i.e., TlT_{l})

Based on the results in (27), the achievable rate in (24) can be summarized as

=TbMk=1Kn=1NtMSEk,n+Tbmod(Nt,M)k=1KSEk,NtM+1(MTm+mod(Tl,Tb))k=1KSEk,1.\begin{split}\mathcal{R}\!=&T_{b}M\sum_{k=1}^{K}{\sum_{n=1}^{\lfloor\frac{N_{t}}{M}\rfloor}{\mathrm{SE}_{k,n}}}\!+\!T_{b}\mathrm{mod}\left(N_{t},M\right)\!\sum_{k=1}^{K}{\mathrm{SE}_{k,\lfloor\frac{N_{t}}{M}\rfloor+1}}\\ &-\left(MT_{m}+\!\mathrm{mod}\left(T_{l},T_{b}\right)\right)\sum_{k=1}^{K}{\mathrm{SE}_{k,\!1}}.\end{split}

With the well-known inequality tr(AB)A2tr(B)\mathrm{tr}\left(AB\right)\leqslant\left\|A\right\|_{2}\mathrm{tr}\left(B\right), the lower bound of SEk,n\mathrm{SE}_{k,n} is given by

γk,nl=pkρk,n2tr(𝑪h,k)βkPt𝑹˙k2+σc2,\begin{split}\gamma_{k,n}^{l}=\frac{p_{k}\rho_{k,n}^{2}\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}{\beta_{k}P_{t}\left\|\boldsymbol{\dot{R}}_{k}\right\|_{2}\!+\!\sigma_{c}^{2}},\end{split} (28)

where PtP_{t} is total transmit power of all users[11]. The channel estimation quality is reflected in 𝑪h,k\boldsymbol{C}_{h,k}, for which we have the simpler form

tr(𝑪h,k)=tr(𝑹^k)+1γe2tr(𝑹^k+1γe𝐈Lt)1Ltγe.\begin{split}\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)=\mathrm{tr}\left(\hat{\boldsymbol{R}}_{k}\right)+\frac{1}{\gamma_{e}^{2}}\mathrm{tr}\left(\hat{\boldsymbol{R}}_{k}+\frac{1}{\gamma_{e}}\mathbf{I}_{\mathrm{L}_{\mathrm{t}}}\right)^{-1}\!\!\!-\frac{\mathrm{L}_{\mathrm{t}}}{\gamma_{e}}.\end{split} (29)

Then, the following proposition is motivated.

Proposition 3: For (h1)Tb<Tl<hTb,h{1,,N}\left(h-1\right)T_{b}<T_{l}<hT_{b},\forall h\in\left\{1,...,N\right\}, when TlTb\lfloor\frac{T_{l}}{T_{b}}\rfloor is fixed and radar’s large-scale sensing accuracy is reasonable, i.e., 𝑹^k=βk𝑹˙k𝑹r,k0\hat{\boldsymbol{R}}_{k}=\beta_{k}\boldsymbol{\dot{R}}_{k}-\boldsymbol{R}_{r,k}\succeq 0, the derivative of achieved throughput monotonically decreases and then it is segmented concave on TlT_{l}.

Proof:

Please refer to Appendix C

III-C Analysis of the computational complexity

According to Proposition 3, time-related resource optimization is a convex problem with fixed MM and blocks occupied by TlT_{l}, i.e., TlTb\lfloor\frac{T_{l}}{T_{b}}\rfloor. Thus, the optimal solution of this subproblem can be derived via a two-dimension search over MM and TlTb\lfloor\frac{T_{l}}{T_{b}}\rfloor. For these two discrete variables, TlTb\lfloor\frac{T_{l}}{T_{b}}\rfloor is between TlminTb\lfloor\frac{T_{l}^{min}}{T_{b}}\rfloor and NN, where TlminT_{l}^{\min} is determined by the sensing requirements in (25b), and MM is between 1 and NTlTbN-\lfloor\frac{T_{l}}{T_{b}}\rfloor. Accordingly, there are Tl=TlminTbN(NTlTb)\sum_{T_{l}=\lfloor\frac{T_{l}^{min}}{T_{b}}\rfloor}^{N}{\left(N-\lfloor\frac{T_{l}}{T_{b}}\rfloor\right)} loops and each loop optimizes a single variable via the interior-point method with complexity 𝒪(13.5)\mathcal{O}\left(1^{3.5}\right). The total computational complexity of the two-dimensional search-based optimization algorithm is Tl=TlminTbN(NTlTb)\sum_{T_{l}=\lfloor\frac{T_{l}^{min}}{T_{b}}\rfloor}^{N}{\left(N-\lfloor\frac{T_{l}}{T_{b}}\rfloor\right)}.

Refer to caption
(a) Comparison of achievable rate under different sensing requirements.
Refer to caption
(b) The achievable rate versus number of small-scale updates MM.
Refer to caption
(c) The achievable rate versus time duration of large-scale channel detection TlT_{l}.

IV Performance Evaluation

In this section, we evaluate the performance of our proposed optimal design. We consider an ISAC system where BS has Lt=Lr=8L_{t}=L_{r}=8 transceivers and five users randomly distributed around it. The power budget is 23 dBm, evenly allocated to each user. All users are assumed to have the same mobility speed333Due to the space limit, we simplify the parameter setting as Lt=Lr=8L_{t}=L_{r}=8, users have the same speed and equal power allocation. However, the proposed analysis and method are valid in any general setting without any modifications., with block fading following ρk,n=ρn=(ρ1)n\rho_{k,n}=\rho_{n}=\left(\rho_{1}\right)^{n}, and ρ1=0.98\rho_{1}=0.98[11]. The symbol duration Ts=1T_{s}=1 us, with Mb=70M_{b}=70 and Me=9M_{e}=9 (including guard interval). The scheduling cycle is 5 ms with N=35N=35. The sensing requirements of all users are the same, with Γk=Γ\varGamma_{k}=\varGamma. The power-angle-spectrum follows a uniform distribution with single-side angular spread Δθ=1\Delta\theta=1^{\circ} [10].

We compare our proposed method with the following benchmark strategies: (a) Single small-scale update (SSU), which only conducts one time small-scale update at the frame’s start and optimizes the sensing duration TlT_{l} [11]; (b) Frequent small-scale update (FSU), which performs small-scale update at each block and optimize the sensing duration TlT_{l} [6]; (c) Random block allocation (RBA), which includes a random setting of NmN_{m} under the dual-scale resource scheduling.

Fig. 2(a) compares the performance of achievable rate with different sensing requirements. It is observed that our proposed optimal design outperforms the three counterparts with different settings of sensing requirements. Specifically, when Γ=0.05\varGamma=0.05, our proposed method can improve the data rate by 11.3%\%, 9.1%\%, and 10.8%\% compared with SSU, FSU, and RBA, respectively. Meanwhile, it shows that the achieved rate increases with the increase of Γ\varGamma. With a larger value of Γ\varGamma, the sensing requirement is relaxed and the sensing time will minimally encroach on communication time, thus, the achieved data rate increases. It can also be seen that with a larger value of Γ=0.5\varGamma=0.5, our proposed method shows a larger performance improvement, 28.9%\%, than SSU.

Fig. 2(b) shows the achievable rate versus the number of small-scale updates under different detection error requirements. It is observed that as MM increases, the achievable rate increases at first and then decreases, indicating that both too few and too frequent updates inevitably degrade the system performance. This also highlights the significance of our proposed optimal design of small-scale updates. Additionally, it can be observed that increased sensing requirements result in decreased achievable rates, due to the saturation of sensing resources encroaching on communication time.

We further demonstrate the impacts of sensing duration on the system’s achievable rate when Γ=0.5\varGamma=0.5. Note that in order to satisfy the sensing requirement, the value of sensing duration in Fig. 5 starts from 4 blocks. It is observed from Fig. 2(c) that as sensing duration increases, the achievable rate initially increases and then decreases, highlighting the trade-off between sensing and communication time. A longer sensing time improves large-scale channel accuracy but reduces communication time. Our proposed optimal design can find an optimal sensing duration to maximize communication efficiency. In addition, it is observed that the achievable rate for MM = 7 exceeds that for MM = 1 and MM = 20, consistent with the findings presented in Fig. 2(b) and again validates the significance of our proposed optimal design.

V Conclusion

In this paper, we have considered the dual-scale channel estimation in the sensing-assisted communication system. We have leveraged the slow-varying large-scale spatial estimation errors and fast-varying small-scale channel aging to mathematically quantify the communication rate. A joint optimization problem has been formulated to design the duration of large-scale sensing and the frequency of small-scale updates with the objective of maximizing the system achievable rate while satisfying the sensing requirements. A two-dimensional search-based algorithm has been proposed to obtain the optimal solution. Simulation results demonstrate the significance and performance improvement of the proposed method compared with the three counterparts.

Appendix A Proof of Proposition 1

With the MRT beamforming vector 𝐟k,n=1tr(𝑪h,k)𝒉~k,1\mathbf{f}_{k,n}=\frac{1}{\sqrt{\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}}\tilde{\boldsymbol{h}}_{k,1}, terms in (20) can be summarized as

  • 1)

    Compute 𝔼[𝒉k,nH𝐟k,n]\mathbb{E}\left[\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{k,n}\right]: It is general to assume that 𝒆¯k,n\bar{\boldsymbol{e}}_{k,n}, and 𝒉~k,1\tilde{\boldsymbol{h}}_{k,1} are statistically independent[18, 19]. Therefore, we have

    𝔼[𝒉k,nH𝐟k,n]=𝔼[(ρk,n𝒉~k,1H+𝒆¯k,nH)𝒉~k,1tr(𝑪h,k)]=𝔼[ρk,n𝒉~k,1H𝒉~k,1tr(𝑪h,k)]=ρk,ntr(𝑪h,k)\begin{split}\mathbb{E}&\left[\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{k,n}\right]\\ &=\mathbb{E}\left[\left(\rho_{k,n}\tilde{\boldsymbol{h}}_{k,1}^{H}+\bar{\boldsymbol{e}}_{k,n}^{H}\right)\frac{\tilde{\boldsymbol{h}}_{k,1}}{\sqrt{\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}}\right]\\ &=\mathbb{E}\left[\frac{\rho_{k,n}\tilde{\boldsymbol{h}}_{k,1}^{H}\tilde{\boldsymbol{h}}_{k,1}}{\sqrt{\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}}\right]=\rho_{k,n}\sqrt{\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}\end{split} (30)
  • 2)

    Compute 𝔼[|𝒉k,nH𝐟i,n|2]\mathbb{E}\left[\left|\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{i,n}\right|^{2}\right]:

    𝔼[|𝒉k,nH𝐟i,n|2]=𝔼[𝒉k,nH𝒉~i,1𝒉~i,1H𝒉k,n]tr(𝑪h,i)=tr(𝔼[𝒉k,n𝒉k,nH]𝔼[𝒉~i,1𝒉~i,1H])tr(𝑪h,i)=βktr(𝑹o,k𝑪h,i)tr(𝑪h,i)\begin{split}\mathbb{E}\left[\left|\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{i,n}\right|^{2}\right]&=\frac{\mathbb{E}\left[\boldsymbol{h}_{k,n}^{H}\tilde{\boldsymbol{h}}_{i,1}\tilde{\boldsymbol{h}}_{i,1}^{H}\boldsymbol{h}_{k,n}\right]}{\mathrm{tr}\left(\boldsymbol{C}_{h,i}\right)}\\ &=\!\frac{\mathrm{tr}\left(\mathbb{E}\left[\boldsymbol{h}_{k,n}\boldsymbol{h}_{k,n}^{H}\right]\!\mathbb{E}\left[\tilde{\boldsymbol{h}}_{i,1}\tilde{\boldsymbol{h}}_{i,1}^{H}\right]\right)}{\mathrm{tr}\left(\boldsymbol{C}_{h,i}\right)}\\ &=\frac{\beta_{k}\mathrm{tr}\left(\boldsymbol{R}_{o,k}\boldsymbol{C}_{h,i}\right)}{\mathrm{tr}\left(\boldsymbol{C}_{h,i}\right)}\end{split} (31)
  • 3)

    Compute 𝔼[|𝒉k,nH𝐟k,n𝔼[𝒉k,nH𝐟k,n]|2]\mathbb{E}\left[\left|\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{k,n}-\mathbb{E}\left[\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{k,n}\right]\right|^{2}\right]:

    𝔼[|𝒉k,nH𝐟k,n𝔼[𝒉k,nH𝐟k,n]|2]=𝔼[|ρk,n𝒉~k,1H𝒉~k,1tr(𝑪h,k)|2]+𝔼[|𝒆¯k,nH𝒉~k,1tr(𝑪h,k)|2]ρk,n2tr(𝑪h,k)=ρk,n2𝔼[𝒉~k,1H𝒉~k,1𝒉~k,1H𝒉~k,1]tr(𝑪h,k)+tr(𝑪h,k𝑪¯e,k)tr(𝑪h,k)ρk,n2tr(𝑪h,k).\begin{split}\mathbb{E}&\left[\left|\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{k,n}-\mathbb{E}\left[\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{k,n}\right]\right|^{2}\right]\\ =&\mathbb{E}\left[\left|\frac{\rho_{k,n}\tilde{\boldsymbol{h}}_{k,1}^{H}\tilde{\boldsymbol{h}}_{k,1}}{\sqrt{\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}}\right|^{2}\right]+\mathbb{E}\left[\left|\frac{\bar{\boldsymbol{e}}_{k,n}^{H}\tilde{\boldsymbol{h}}_{k,1}}{\sqrt{\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}}\right|^{2}\right]\\ &-\rho_{k,n}^{2}\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)\\ =&\frac{\rho_{k,n}^{2}\mathbb{E}\left[\tilde{\boldsymbol{h}}_{k,1}^{H}\tilde{\boldsymbol{h}}_{k,1}\tilde{\boldsymbol{h}}_{k,1}^{H}\tilde{\boldsymbol{h}}_{k,1}\right]}{\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}+\frac{\mathrm{tr}\left(\boldsymbol{C}_{h,k}\bar{\boldsymbol{C}}_{e,k}\right)}{\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}\\ &-\rho_{k,n}^{2}\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right).\end{split} (32)

    where 𝑪¯e,k=βk𝑹k0ρk,n2𝑪h,k\bar{\boldsymbol{C}}_{e,k}=\beta_{k}\boldsymbol{R}_{k}^{0}-\rho_{k,n}^{2}\boldsymbol{C}_{h,k} Then, if the MMSE estimation is deployed, we have

    𝔼[𝒉~k,1H𝒉~k,1𝒉~k,1H𝒉~k,1]=𝔼[|1Te2Pe𝐲e,kH𝑹˙k1𝑹^k𝑹^k𝑹˙k1𝐲e,k|2]=|tr(𝑹˙k1𝑹^k𝑹^k𝑹˙k1𝑹˙k)|2+tr(𝑹˙k1𝑹^k𝑹^k𝑹˙k1𝑹˙k(𝑹˙k1𝑹^k𝑹^k𝑹˙k1)H𝑹˙k)=|tr(𝑪h,k)|2+tr(𝑪h,k𝑪h,k),\begin{split}&\mathbb{E}\left[\tilde{\boldsymbol{h}}_{k,1}^{H}\tilde{\boldsymbol{h}}_{k,1}\tilde{\boldsymbol{h}}_{k,1}^{H}\tilde{\boldsymbol{h}}_{k,1}\right]\\ &=\mathbb{E}\left[\small{\left|\frac{1}{T_{e}^{2}P_{e}}\mathbf{y}_{e,k}^{H}\dot{\boldsymbol{R}}_{k}^{-1}\hat{\boldsymbol{R}}_{k}\hat{\boldsymbol{R}}_{k}\dot{\boldsymbol{R}}_{k}^{-1}\mathbf{y}_{e,k}\right|^{2}}\right]\\ &=\left|\mathrm{tr}\left(\dot{\boldsymbol{R}}_{k}^{-1}\hat{\boldsymbol{R}}_{k}\hat{\boldsymbol{R}}_{k}\dot{\boldsymbol{R}}_{k}^{-1}\dot{\boldsymbol{R}}_{k}\right)\right|^{2}\\ &+\!\mathrm{tr}\left(\dot{\boldsymbol{R}}_{k}^{-1}\hat{\boldsymbol{R}}_{k}\hat{\boldsymbol{R}}_{k}\dot{\boldsymbol{R}}_{k}^{-1}\dot{\boldsymbol{R}}_{k}\left(\dot{\boldsymbol{R}}_{k}^{-1}\hat{\boldsymbol{R}}_{k}\hat{\boldsymbol{R}}_{k}\dot{\boldsymbol{R}}_{k}^{-1}\right)^{H}\!\!\dot{\boldsymbol{R}}_{k}\right)\\ &=\left|\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)\right|^{2}+\mathrm{tr}\left(\boldsymbol{C}_{h,k}\boldsymbol{C}_{h,k}\right),\end{split} (33)

    where 𝑹˙k=(𝑹^k+1γe𝐈Lt)\dot{\boldsymbol{R}}_{k}=\left(\boldsymbol{\hat{R}}_{k}+\frac{1}{\gamma_{e}}\mathbf{I}_{\text{L}_{\text{t}}}\right). We then conclude that

    𝔼[|𝒉k,nH𝐟k,n𝔼[𝒉k,nH𝐟k,n]|2]=ρk,n2tr(𝑪h,k𝑪h,k)+tr(𝑪h,k𝑪¯e,k)tr(𝑪h,k)=βktr(𝑪h,k𝑹o,k)tr(𝑪h,k)\begin{split}\mathbb{E}&\left[\left|\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{k,n}-\mathbb{E}\left[\boldsymbol{h}_{k,n}^{H}\mathbf{f}_{k,n}\right]\right|^{2}\right]\\ &=\frac{\rho_{k,n}^{2}\mathrm{tr}\left(\boldsymbol{C}_{h,k}\boldsymbol{C}_{h,k}\right)+\mathrm{tr}\left(\boldsymbol{C}_{h,k}\bar{\boldsymbol{C}}_{e,k}\right)}{\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}\\ &=\frac{\beta_{k}\mathrm{tr}\left(\boldsymbol{C}_{h,k}\boldsymbol{R}_{o,k}\right)}{\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}\end{split} (34)

Finally, the γk,n\gamma_{k,n} in (20) can be represented as

γk,n=pkρk,n2tr(𝑪h,k)i=1Kβkpitr(𝑹o,k𝑪h,i)tr(𝑪h,i)+σc2\begin{split}\gamma_{k,n}\!=\!\frac{p_{k}\rho_{k,n}^{2}\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}{\sum_{i=1}^{K}\frac{\beta_{k}p_{i}\mathrm{tr}\left(\boldsymbol{R}_{o,k}\boldsymbol{C}_{h,i}\right)}{\mathrm{tr}\left(\boldsymbol{C}_{h,i}\right)}\!+\!\sigma_{c}^{2}}\end{split} (35)

Appendix B Proof of Proposition 2

The Lagrangian function of 𝐏2\mathbf{P}2 is given by

(Nm,λm,μ)=Tbm=1Mn=1NmΦn+m=1Mλm(1Nm)+μ(m=1MNm+TlTbN),\begin{split}\mathcal{L}\left(N_{m},\lambda_{m},\mu\right)=&-T_{b}\sum_{m=1}^{M}{\!}\sum_{n=1}^{N_{m}}{\varPhi_{n}}+\sum_{m=1}^{M}{\!}\lambda_{m}\left(1-N_{m}\right)\\ &+\mu\left(\sum_{m=1}^{M}{N_{m}}+\lfloor\frac{T_{l}}{T_{b}}\rfloor-N\right),\end{split} (36)

where Φn=k=1KSEk,n\varPhi_{n}=\sum_{k=1}^{K}{\mathrm{SE}_{k,n}} is only effected by the index nn. To satisfy the stability condition, we require

(Nm,λm,μ)Nm=TbΦNmλm+μ=0.\begin{split}\small{\frac{\partial\mathcal{L}\left(N_{m},\lambda_{m},\mu\right)}{\partial N_{m}}}=-T_{b}\varPhi_{N_{m}}-\lambda_{m}+\mu=0.\end{split} (37)

Whether the optimal solution is on the boundary or not, we have the following result according to the complementary slackness condition λm(1Nm)=0\lambda_{m}\left(1-N_{m}\right)=0

(μTbΦNm)(1Nm)=0.\begin{split}\left(\mu-T_{b}\varPhi_{N_{m}}\right)\left(1-N_{m}\right)=0.\end{split} (38)

Based on the fact that MNM\leqslant N, and Φ1>Φ2,,>ΦNm\varPhi_{1}>\varPhi_{2},\cdots,>\varPhi_{N_{m}}, the rapid update of Nm=1N_{m}=1 will inevitably cause a decrease in the achieved throughput. Thus, we conclude N1=N2,,=Nm=NtMN_{1}=N_{2},...,=N_{m}=\frac{N_{t}}{M} from (38). However, NmN_{m} is a discrete variable and Φ1>Φ2,,>ΦNm\varPhi_{1}>\varPhi_{2},\cdots,>\varPhi_{N_{m}}, which means that mod(Nt,M)\text{mod}(N_{t},M) redundant blocks need to spread evenly in random mod(Nt,M)\text{mod}(N_{t},M) updates. So there are mod(Nt,M)\text{mod}(N_{t},M) updates that have NtM+1\lfloor\frac{N_{t}}{M}\rfloor+1 blocks, and the other Mmod(Nt,M)M-\text{mod}(N_{t},M) updates have NtM\lfloor\frac{N_{t}}{M}\rfloor blocks. We can conclude that

Nm={NtM,NtM+1,m.\begin{split}N_{m}=\begin{cases}\lfloor\frac{N_{t}}{M}\rfloor,\\ \lfloor\frac{N_{t}}{M}\rfloor+1,\\ \end{cases}\!\!\!\!\forall m.\end{split} (39)

Appendix C Proof of Proposition 3

Based on the results in (27), the throughput in (24) can be summarized as

SET=TbMk=1Kn=1NtMSEk,n+Tbmod(Nt,M)k=1KSEk,NtM+1(MTe+mod(Tr,Tb))k=1KSEk,1,\begin{split}\mathrm{SE}_{\mathrm{T}}\!=&T_{b}M\sum_{k=1}^{K}{\sum_{n=1}^{\lfloor\frac{N_{t}}{M}\rfloor}{\mathrm{SE}_{k,n}}}\!+\!T_{b}\mathrm{mod}\left(N_{t},M\right)\!\sum_{k=1}^{K}{\mathrm{SE}_{k,\lfloor\frac{N_{t}}{M}\rfloor+1}}\\ &-\left(MT_{e}+\!\mathrm{mod}\left(T_{r},T_{b}\right)\right)\sum_{k=1}^{K}{\mathrm{SE}_{k,\!1}},\end{split} (40)

Assuming the number of blocks occupied by TrT_{r} is fixed, NtM\lfloor\frac{N_{t}}{M}\rfloor will be a constant value and mod(Tr,Tb)\mathrm{mod}\left(T_{r},T_{b}\right) can be represented as T^r\hat{T}_{r}, which is continuous. Therefore, only SEk,n\mathrm{SE}_{k,n} is correlated with T^r\hat{T}_{r} in the first two terms of (40). Based on (28), the derivative of SEk,n\mathrm{SE}_{k,n} is given by

SEk,nT^r=ln2κk,n1+κk,ntr(𝑪h,k)tr(𝑪h,k)T^r,\begin{split}\frac{\partial\mathrm{SE}_{k,n}}{\partial\hat{T}_{r}}=\frac{\mathrm{ln}2\kappa_{k,n}}{1+\kappa_{k,n}\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}\frac{\partial\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}{\partial\hat{T}_{r}},\end{split} (41)

where κk=pkρk,n2βkPt𝑹k02+σc2\kappa_{k}=\frac{p_{k}\rho_{k,n}^{2}}{\beta_{k}P_{t}\left\|\boldsymbol{R}_{k}^{0}\right\|_{2}\!+\!\sigma_{c}^{2}} is derived from (28). With the identity of the Neuman series for matrices[20, 21], the following approximation is given

1γe2tr(𝑹^k+1γe𝐈Lt)1tr(𝐈Ltγe𝑹^k+γe𝑹^k𝑹^k),\begin{split}\frac{1}{\gamma_{e}^{2}}\mathrm{tr}\left(\hat{\boldsymbol{R}}_{k}+\frac{1}{\gamma_{e}}\mathbf{I}_{\mathrm{L}_{\mathrm{t}}}\right)^{-1}\cong\mathrm{tr}\left(\frac{\mathbf{I}_{\mathrm{L}_{\mathrm{t}}}}{\gamma_{e}}-\hat{\boldsymbol{R}}_{k}+\gamma_{e}\hat{\boldsymbol{R}}_{k}\hat{\boldsymbol{R}}_{k}\right),\end{split} (42)

therefore, we can conclude form (29) that

tr(𝑪h,k)γeCRB2(θk)tr(𝑹~r,k𝑹~r,k)+γeβk2tr(𝑹k0𝑹k0)2γeCRB(θk)βktr(𝑹~r,k𝑹k0),\begin{split}\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)\cong&\gamma_{e}\mathrm{CRB}^{2}\left(\theta_{k}\right)\mathrm{tr}\!\left(\!\tilde{\boldsymbol{R}}_{r,k}\tilde{\boldsymbol{R}}_{r,k}\right)\!+\!\gamma_{e}\beta_{k}^{2}\mathrm{tr}\!\left(\boldsymbol{R}_{k}^{0}\boldsymbol{R}_{k}^{0}\right)\\ &-2\gamma_{e}\mathrm{CRB}\left(\theta_{k}\right)\beta_{k}\mathrm{tr}\!\left(\tilde{\boldsymbol{R}}_{r,k}\boldsymbol{R}_{k}^{0}\right),\end{split} (43)

where 𝑹~r,k=𝒇(θk)𝒇(θk)H\tilde{\boldsymbol{R}}_{r,k}=\boldsymbol{f}\prime\left(\theta_{k}\right)\boldsymbol{f}\prime\left(\theta_{k}\right)^{H} from (11b), and tr(𝑹~r,k𝑹k0)\mathrm{tr}\!\left(\tilde{\boldsymbol{R}}_{r,k}\boldsymbol{R}_{k}^{0}\right) is a real value since 𝑹~r,k\tilde{\boldsymbol{R}}_{r,k} and 𝑹k0\boldsymbol{R}_{k}^{0} are hermitian matrix. Since we assume 𝑹^k=βk𝑹k0CRB(θk)𝑹~r,k0\hat{\boldsymbol{R}}_{k}=\beta_{k}\boldsymbol{R}_{k}^{0}-\mathrm{CRB}\left(\theta_{k}\right)\tilde{\boldsymbol{R}}_{r,k}\succeq 0, the first-order derivative of (43) on CRB(θk)\mathrm{CRB}\left(\theta_{k}\right) will be

𝒰(CRB(θk))=CRB(θk)tr(𝑹~r,k𝑹~r,k)βktr(𝑹k0𝑹~r,k)<0.\begin{split}\mathcal{U}&\left(\mathrm{CRB}\left(\theta_{k}\right)\right)=\\ &\mathrm{CRB}\left(\theta_{k}\right)\mathrm{tr}\left(\tilde{\boldsymbol{R}}_{r,k}\tilde{\boldsymbol{R}}_{r,k}\right)-\beta_{k}\mathrm{tr}\left(\boldsymbol{R}_{k}^{0}\tilde{\boldsymbol{R}}_{r,k}\right)<0.\end{split} (44)

Therefore, the maximization of tr(𝑪h,k)\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right) is equivalent to minimizing CRB(θk)\mathrm{CRB}\left(\theta_{k}\right). So, the lower bound 𝒰lb,k(t)\mathcal{U}_{lb,k}^{\left(t\right)} of (43) in ttth iteration can be obtained by applying the first-order Taylor approximation

tr(𝑪h,k)𝒰(CRB(t)(θk))CRB(θk)+tr(𝑪h,k(t))𝒰(CRB(t)(θk))CRB(t)(θk)𝒰lb,k(t).\begin{split}\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)\!\geqslant&\ \mathcal{U}\left(\mathrm{CRB}^{\left(t\right)}\left(\theta_{k}\right)\right)\mathrm{CRB}\left(\theta_{k}\right)+\mathrm{tr}\!\left(\boldsymbol{C}_{h,k}^{\left(t\right)}\right)\!\!\\ &-\mathcal{U}\!\left(\!\mathrm{CRB}^{\left(t\right)}\!\left(\theta_{k}\right)\!\right)\mathrm{CRB}^{\left(t\right)}\!\left(\theta_{k}\right)\triangleq\mathcal{U}_{lb,k}^{\left(t\right)}.\end{split} (45)

Accordingly, we can conclude

𝒰lb,k(t)T^r𝒰(CRB(t)(θk))T^r20.\begin{split}\frac{\partial\mathcal{U}_{lb,k}^{\left(t\right)}}{\partial\hat{T}_{r}}\!\!\propto\frac{-\mathcal{U}\left(\mathrm{CRB}^{\left(t\right)}\left(\theta_{k}\right)\right)}{\hat{T}_{r}^{2}}\geqslant 0.\end{split} (46)

Since tr(𝑪h,k)\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right) increases with T^r\hat{T}_{r}, we conclude that the derivative form in (41) is monotonically decreasing with T^r\hat{T}_{r} after approximation. So tr(𝑪h,k)\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right) is concave on T^r\hat{T}_{r} . For the second row of (40), combined with the SEk,1\mathrm{SE}_{k,1} in the first row, it can transformed as (MTbMTeT^r)k=1KSEk,1\left(MT_{b}-MT_{e}-\hat{T}_{r}\right)\sum_{k=1}^{K}{\mathrm{SE}_{k,1}} and its derivative is given by

k=1KSEk,1+(MTbMTeT^r)tr(𝑪h,k)T^r.\begin{split}-\sum_{k=1}^{K}{\mathrm{SE}_{k,1}}+\left(MT_{b}-MT_{e}-\hat{T}_{r}\right)\frac{\partial\mathrm{tr}\left(\boldsymbol{C}_{h,k}\right)}{\partial\hat{T}_{r}}.\end{split} (47)

The expressions in (47) is obviously decreases with T^r\hat{T}_{r} increases, thus concave on T^r\hat{T}_{r}.

References

  • [1] F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE journal on selected areas in communications, vol. 40, no. 6, pp. 1728–1767, 2022.
  • [2] W. Yuan, Z. Wei, S. Li, J. Yuan, and D. W. K. Ng, “Integrated sensing and communication-assisted orthogonal time frequency space transmission for vehicular networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 6, pp. 1515–1528, 2021.
  • [3] F. Liu, W. Yuan, C. Masouros, and J. Yuan, “Radar-assisted predictive beamforming for vehicular links: Communication served by sensing,” IEEE Transactions on Wireless Communications, vol. 19, no. 11, pp. 7704–7719, 2020.
  • [4] Y. Fan, S. Gao, D. Duan, X. Cheng, and L. Yang, “Radar integrated mimo communications for multi-hop V2V networking,” IEEE Wireless Communications Letters, vol. 12, no. 2, pp. 307–311, 2022.
  • [5] K. Meng, Q. Wu, W. Chen, and D. Li, “Sensing-assisted communication in vehicular networks with intelligent surface,” IEEE Transactions on Vehicular Technology, 2023.
  • [6] Z. Gao, Z. Wan, D. Zheng, S. Tan, C. Masouros, D. W. K. Ng, and S. Chen, “Integrated sensing and communication with mmWave massive mimo: A compressed sampling perspective,” IEEE Transactions on Wireless Communications, vol. 22, no. 3, pp. 1745–1762, 2022.
  • [7] S. Huang, M. Zhang, Y. Gao, and Z. Feng, “MIMO radar aided mmWave time-varying channel estimation in MU-MIMO V2X communications,” IEEE Transactions on Wireless Communications, vol. 20, no. 11, pp. 7581–7594, 2021.
  • [8] E. Dahlman, S. Parkvall, and J. Skold, 5G NR: The next generation wireless access technology.   Academic Press, 2020.
  • [9] 3GPP TS 38.221 v17.4.0,"Physical channels and modulation", 2023.
  • [10] H. Li, Y. Wang, C. Sun, and Z. Wang, “Impact of channel aging on user-centric cell-free vehicular networks with non-isotropic scattering,” in Proc. IEEE Vehicular Technology Conference (VTC2023-Spring).   IEEE, 2023, Florence, Italy.
  • [11] J. Chen, X. Wang, and Y.-C. Liang, “Impact of channel aging on dual-function radar-communication systems: Performance analysis and resource allocation,” IEEE Transactions on Communications, vol. 71, no. 8, pp. 4972–4987, 2023.
  • [12] L. You, X. Gao, A. L. Swindlehurst, and W. Zhong, “Channel acquisition for massive MIMO-OFDM with adjustable phase shift pilots,” IEEE Transactions on Signal Processing, vol. 64, no. 6, pp. 1461–1476, 2015.
  • [13] H. Q. Ngo, Massive MIMO: Fundamentals and system designs.   Linköping University Electronic Press, 2015.
  • [14] X. Song, J. Xu, F. Liu, T. X. Han, and Y. C. Eldar, “Intelligent reflecting surface enabled sensing: Cramér-rao bound optimization,” IEEE Transactions on Signal Processing, vol. 71, pp. 2011–2026, 2023.
  • [15] S. M. Kay, Fundamentals of statistical signal processing: estimation theory.   Prentice-Hall, Inc., 1993.
  • [16] H. Benaroya, S. M. Han, and M. Nagurka, Probability models in engineering and science.   CRC press, 2005.
  • [17] F. Rezaei, D. Galappaththige, C. Tellambura, and A. Maaref, “Time-spread pilot-based channel estimation for backscatter networks,” IEEE Transactions on Communications, vol. 72, pp. 434–449, 2023.
  • [18] J. Zheng, J. Zhang, E. Björnson, and B. Ai, “Impact of channel aging on cell-free massive mimo over spatially correlated channels,” IEEE Transactions on Wireless Communications, vol. 20, no. 10, pp. 6451–6466, 2021.
  • [19] Y. Li, C. Tao, G. Seco-Granados, A. Mezghani, A. L. Swindlehurst, and L. Liu, “Channel estimation and performance analysis of one-bit massive mimo systems,” IEEE Transactions on Signal Processing, vol. 65, no. 15, pp. 4075–4089, 2017.
  • [20] K. B. Petersen, M. S. Pedersen et al., “The matrix cookbook,” Technical University of Denmark, vol. 7, no. 15, p. 510, 2008.
  • [21] R. André, X. Luciani, and E. Moreau, “Joint eigenvalue decomposition algorithms based on first-order taylor expansion,” IEEE Transactions on Signal Processing, vol. 68, pp. 1716–1727, 2020.