This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimal decay rate for the generalized Oldroyd-B model with only stress tensor diffusion in 2\mathbb{R}^{2}

Zhaonan Luo1\mbox{Luo}^{1} 111E-mail: [email protected], Wei Luo2\mbox{Luo}^{2}222E-mail: [email protected]  and Zhaoyang Yin2,3\mbox{Yin}^{2,3}333E-mail: [email protected]
School1{}^{1}\mbox{School} of Mathematical Sciences, Fudan University, Shanghai 200433, China.
Department2{}^{2}\mbox{Department} of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
Faculty3{}^{3}\mbox{Faculty} of Information Technology,
Macau University of Science and Technology, Macau, China
Abstract

In this paper, we are concerned with optimal decay rate for the 2-D generalized Oldroyd-B model with only stress tensor diffusion (Δ)βτ(-\Delta)^{\beta}\tau. In the case β=1\beta=1, we first establish optimal decay rate in H1H^{1} framework and remove the smallness assumption of low frequencies by virtue of the Fourier splitting method and the Littlewood-Paley decomposition theory. Furthermore, we prove optimal decay rate for the highest derivative of the solution by a different method combining time frequency decomposition and the time weighted energy estimate. In the case 12β<1\frac{1}{2}\leq\beta<1, we study optimal decay rate for the highest derivative of the solution by the improved Fourier splitting method.
2020 Mathematics Subject Classification: 35Q31, 76A05, 74B20, 42A38.

Keywords: The generalized Oldroyd-B model; Optimal decay rate; The Fourier splitting method.

 

1 Introduction

The classical Oldroyd-B model can be written as follows:

(1.4) {tu+uu+P=divτ+νΔu,divu=0,tτ+uτ+a0τ+Q(u,τ)=αD(u),u|t=0=u0,τ|t=0=τ0.\displaystyle\left\{\begin{array}[]{l}\partial_{t}u+u\cdot\nabla u+\nabla P=div~{}\tau+\nu\Delta u,~{}~{}~{}~{}div~{}u=0,\\[4.30554pt] \partial_{t}\tau+u\cdot\nabla\tau+a_{0}\tau+Q(\nabla u,\tau)=\alpha D(u),\\[4.30554pt] u|_{t=0}=u_{0},~{}~{}\tau|_{t=0}=\tau_{0}.\\[4.30554pt] \end{array}\right.

The Oldroyd-B model derived by J. G. Oldroyd in [24] which was used to describe the dynamics of viscoelastic fluids. In (1.4), u(t,x)u(t,x) represents the velocity of the liquid, PP denotes the pressure and τ(t,x)\tau(t,x) is the symmetric stress tensor. The parameters a0a_{0}, ν\nu and α\alpha are nonnegative. Furthermore, QQ is the following bilinear form

Q(u,τ)=τΩΩτ+b(D(u)τ+τD(u)),b[1,1],Q(\nabla u,\tau)=\tau\Omega-\Omega\tau+b(D(u)\tau+\tau D(u)),~{}~{}~{}~{}b\in[-1,1],

with the deformation tensor D(u)=u+(u)T2D(u)=\frac{\nabla u+(\nabla u)^{T}}{2} and the vorticity tensor Ω=u(u)T2\Omega=\frac{\nabla u-(\nabla u)^{T}}{2}. One can refer to [9] for more explanations of the Oldroyd-B model.

In this paper, we are concerned with the generalized Oldroyd-B model with only stress tensor diffusion and without the damping (a0=0)(a_{0}=0):

(1.8) {tu+uu+P=divτ,divu=0,tτ+uτ+Q(u,τ)+(Δ)βτ=D(u),u|t=0=u0,τ|t=0=τ0.\displaystyle\left\{\begin{array}[]{l}\partial_{t}u+u\cdot\nabla u+\nabla P=div~{}\tau,~{}~{}~{}~{}div~{}u=0,\\[4.30554pt] \partial_{t}\tau+u\cdot\nabla\tau+Q(\nabla u,\tau)+(-\Delta)^{\beta}\tau=D(u),\\[4.30554pt] u|_{t=0}=u_{0},~{}~{}\tau|_{t=0}=\tau_{0}.\\[4.30554pt] \end{array}\right.

Taking τ=0\tau=0 in (1.8)\eqref{eq1}, then we obtain Du=0Du=0, which means that u=0u=0 in Sobolev spaces. This observation reveals the essential difference between (1.8) and the well-known Euler equation.

1.1.  The Oldroyd-B model

We first recall some mathematic results for the classical Oldroyd-B model (1.4). In [11], C. Guillopé, and J. C. Saut first proved that the Oldroyd-B model admits a unique global strong solution in Sobolev spaces. The LpL^{p}-setting was showed by E. Fernández-Cara, F.Guillén and R. Ortega [10]. The global week solutions of the Oldroyd-B model were obtained by P. L. Lions and N. Masmoudi [17] for the co-rotation case that is b=0b=0. However, the problem for the general case b0b\neq 0 is still open, see [20, 21]. J. Y. Chemin and N. Masmoudi [3] showed the existence and uniqueness of strong solutions in homogenous Besov spaces with critical index of regularity. Optimal decay rates for solutions to the 3-D Oldroyd-B model were given by M. Hieber, H. Wen and R. Zi [13]. An approach based on the deformation tensor can be found in [5, 4, 15, 14, 16, 29, 2].

Some mathematic results for the generalized Oldroyd-B model (1.8) are given as follows. T. M. Elgindi and F. Rousset [9] first showed global regularity for (1.8) with a0>0a_{0}>0 and β=1\beta=1. In [8], T. M. Elgindi and J. Liu proved global strong solutions of the 3-D case under the assumption that initial data is sufficiently small. Recently, W. Deng, Z. Luo and Z. Yin [7] obtained the global solutions in co-rotation case and proved the H1H^{1} decay rate for the global solutions to (1.8). For the case a0=0a_{0}=0 and β[12,1]\beta\in[\frac{1}{2},1], P. Constantin, J. Wu, J. Zhao and Y. Zhu [6] established the global well-posedness for (1.8) with small data. In [28], J. Wu and J. Zhao investigated the global well-posedness in Besov spaces for fractional dissipation with small data. Optimal time decay rate in H1H^{1} framework of global solutions to (1.8) was given by [27, 18]. However, they can’t deal with critical case d=2d=2 and β=1\beta=1.

1.2.  Main results

Optimal decay rate for (1.8) has been studied widely. The problem of time decay rate with d=2d=2 is more difficult than the case with d3d\geq 3. Since the additional stress tensor τ\tau does not decay fast enough, we failed to use the bootstrap argument as in [25, 19]. For critical case d=2d=2, we can not get any algebraic decay rate by the Fourier splitting method directly as in [12]. We will study this problem by virtue of the refinement to Schonbek’s [26] strategy. Using the Fourier splitting method, we obtain initial logarithmic decay rate

(u,τ)L2Clnl(e+t),\displaystyle\|(u,\tau)\|_{L^{2}}\leq C\ln^{-l}(e+t),

for any lN+l\in N^{+}. The main difficulty for proving optimal decay rate is lack of damping term and low-frequency estimation of L1L^{1} for τ\tau. However, we have

S(t)0t|Q(u,τ)τ^¯|𝑑s𝑑ξC(1+t)120tτL22uL2𝑑s.\displaystyle\int_{S(t)}\int_{0}^{t}|\mathcal{F}Q(\nabla u,\tau)\cdot\bar{\hat{\tau}}|ds^{\prime}d\xi\leq C(1+t)^{-\frac{1}{2}}\int_{0}^{t}\|\tau\|^{2}_{L^{2}}\|\nabla u\|_{L^{2}}ds^{\prime}.

By virtue of the time weighted energy estimate and the logarithmic decay rate, then we improve the time decay rate to algebraic decay rate (1+t)12(1+t)^{-\frac{1}{2}}. Notice that this is not the optimal decay rate. Then, we prove optimal decay rate in H1H^{1} framework for the 2-D generalized Oldroyd-B type model by virtue of the Fourier spiltting method and the Littlewood-Paley decomposition theory. Considering the decay rate for the highest derivative of the solution to (1.8), the main difficulty is unclosed energy estimate. The complete dissipation ΛsτL22+Λs1uL22\|\nabla\Lambda^{s}\tau\|^{2}_{L^{2}}+\|\nabla\Lambda^{s-1}u\|^{2}_{L^{2}} can be obtained by estimating the mixed term Λs(u,τ)L22+Λs1τ,Λs1u\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+\langle\Lambda^{s-1}\tau,-\nabla\Lambda^{s-1}u\rangle. One can see that the decay rate of inner product is slower than the decay rate of energy. To overcome this difficulty, we construct a different energy and dissipation functional for (u,τ)(u,\tau) as follows:

E~s=k(1+t)Λs(u,τ)L22+Λs1τ,Λs1u,\widetilde{E}_{s}=k(1+t)\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+\langle\Lambda^{s-1}\tau,-\nabla\Lambda^{s-1}u\rangle,

and

D~s=k(1+t)ΛsτL22+14Λs1uL22,\widetilde{D}_{s}=k(1+t)\|\nabla\Lambda^{s}\tau\|^{2}_{L^{2}}+\frac{1}{4}\|\nabla\Lambda^{s-1}u\|^{2}_{L^{2}},

where kk is small enough. Finally, we introduce a new method which flexibly combines the Fourier splitting method and the time weighted energy estimate to prove the decay rate for the highest derivative.

We also present optimal decay rate for the generalized Oldroyd-B model (1.8) in the fractional case 12β<1\frac{1}{2}\leq\beta<1. By virtue of the traditional Fourier splitting method, one can not obtain the optimal decay for the fractional case. P. Wang, J. Wu, X. Xu and Y. Zhong [27] use spectral analysis method to prove the optimal decay rate of the lower order energy of the fractional case. The corresponding linearized system of (1.8) is given by

(1.11) {tu=divτ,divu=0,tdivτ+(Δ)βdivτ=Δu.\displaystyle\left\{\begin{array}[]{l}\partial_{t}u=\mathbb{P}div~{}\tau,~{}~{}~{}~{}div~{}u=0,\\[4.30554pt] \partial_{t}\mathbb{P}div~{}\tau+(-\Delta)^{\beta}\mathbb{P}div~{}\tau=\Delta u.\\[4.30554pt] \end{array}\right.

where \mathbb{P} denotes the Leray projection onto divergence free vector fields. One can see that (u,divτ)(u,\mathbb{P}div~{}\tau) satisfy the same system of wave-type equation

(1.12) ttW+(Δ)βtWΔW=0.\displaystyle\partial_{tt}W+(-\Delta)^{\beta}\partial_{t}W-\Delta W=0.

The structure in (1.12) reveals that there are both dissipative and dispersive effects on (u,divτ)(u,\mathbb{P}div~{}\tau). However, we point out that the refinement of Schonbek’s strategy also work in this case with extra lower energy dissipation estimate

(1.13) ddt[(u,τ)Hs2+2k(u,τHsβ+τ,Λ2+2βu)]+k2ΛβuHs+12β2+ΛβτHs20,\displaystyle\frac{d}{dt}[\|(u,\tau)\|^{2}_{H^{s}}+2k(\langle-\nabla u,\tau\rangle_{H^{s-\beta}}+\langle\tau,-\Lambda^{-2+2\beta}\nabla u\rangle)]+\frac{k}{2}\|\Lambda^{\beta}u\|^{2}_{H^{s+1-2\beta}}+\|\Lambda^{\beta}\tau\|^{2}_{H^{s}}\leq 0,

where we use the properties of Calderon-Zygmund type operator. Then, we rediscover optimal decay rates in H1H^{1} [27] by the improved Fourier splitting method. The main difficulty to obtain optimal decay rate for the highest derivative of the solution is unclosed energy estimate. The complete dissipation Λs+βτL22+ΛsβuL22\|\Lambda^{s+\beta}\tau\|^{2}_{L^{2}}+\|\nabla\Lambda^{s-\beta}u\|^{2}_{L^{2}} can be obtained by estimating the mixed term Λs(u,τ)L22+Λsβτ,Λsβu\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+\langle\Lambda^{s-\beta}\tau,-\nabla\Lambda^{s-\beta}u\rangle. One can see that the decay rate of inner product is slower than the decay rate of energy. To overcome this difficulty, we construct a different energy and dissipation functional for (u,τ)(u,\tau) as follows:

E¯β=(1+t)aΛs(u,τ)L22+kΛsβτ,Λsβu,\overline{E}_{\beta}=(1+t)^{a}\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+k\langle\Lambda^{s-\beta}\tau,-\nabla\Lambda^{s-\beta}u\rangle,

and

D¯β=(1+t)aΛs+βτL22+k4ΛsβuL22,\overline{D}_{\beta}=(1+t)^{a}\|\Lambda^{s+\beta}\tau\|^{2}_{L^{2}}+\frac{k}{4}\|\nabla\Lambda^{s-\beta}u\|^{2}_{L^{2}},

where a=21β[0,1)a=2-\frac{1}{\beta}\in[0,1) and kk is small enough. We prove optimal decay rate for the highest derivative of the solution to 2-D generalized Oldroyd-B type model by the improved Fourier splitting method. Notice that this novel result for (1.8) has not been studied before.

Let’s review the global existence result for (1.8).

Theorem 1.1.

[6] Let d=2d=2, 12β1\frac{1}{2}\leq\beta\leq 1 and s>2s>2. Let (u,τ)(u,\tau) be a strong solution of (1.8) with the initial data (u0,τ0)Hs(u_{0},\tau_{0})\in H^{s} and τ0\tau_{0} is symmetric. There exists a small constant δ\delta such that if

(u0,τ0)Hsδ,\displaystyle\|(u_{0},\tau_{0})\|_{H^{s}}\leq\delta,

then the system (1.8) admits a unique global strong solution (u,τ)C([0,);Hs)(u,\tau)\in C([0,\infty);H^{s}). Moreover, the energy estimate for (u,τ)(u,\tau) implies that

(1.14) ddt((u,τ)Hs2+2ku,τHsβ)+k2uHsβ2+ΛβτHs20,\displaystyle\frac{d}{dt}(\|(u,\tau)\|^{2}_{H^{s}}+2k\langle-\nabla u,\tau\rangle_{H^{s-\beta}})+\frac{k}{2}\|\nabla u\|^{2}_{H^{s-\beta}}+\|\Lambda^{\beta}\tau\|^{2}_{H^{s}}\leq 0,

where kk is a sufficiently small constant.

Our main results can be stated as follows:

Theorem 1.2.

Let β=1\beta=1. Let (u,τ)(u,\tau) be a strong solution of (1.4) with the initial data (u0,τ0)(u_{0},\tau_{0}) under the condition in Theorem 1.1. Suppose that (u0,τ0)B˙2,1(u_{0},\tau_{0})\in\dot{B}^{-1}_{2,\infty}, then there exists C>0C>0 such that for every t>0t>0 and s1[0,s]s_{1}\in[0,s], there holds

(1.15) Λs1(u,τ)L2C(1+t)1+s12.\displaystyle\|\Lambda^{s_{1}}(u,\tau)\|_{L^{2}}\leq C(1+t)^{-\frac{1+{s_{1}}}{2}}.

In addition, if (u0,τ0)Hs+1(u_{0},\tau_{0})\in H^{s+1} and 0<c0=|2(u0,τ0)𝑑x|0<c_{0}=|\int_{\mathbb{R}^{2}}(u_{0},\tau_{0})dx|, then there exists C0(s1,c0)CC_{0}(s_{1},c_{0})\leq C such that

(1.16) Λs1(u,τ)L2C02(1+t)s1+12.\displaystyle\|\Lambda^{s_{1}}(u,\tau)\|_{L^{2}}\geq\frac{C_{0}}{2}(1+t)^{-\frac{s_{1}+1}{2}}.
Theorem 1.3.

Let β[12,1)\beta\in[\frac{1}{2},1). Let (u,τ)(u,\tau) be a strong solution of (1.4) with the initial data (u0,τ0)(u_{0},\tau_{0}) under the condition in Theorem 1.1. If (u0,τ0)B˙2,1(u_{0},\tau_{0})\in\dot{B}^{-1}_{2,\infty}, then there exists C>0C>0 such that for every t>0t>0,

(1.17) Λs(u,τ)L2C(1+t)s+12β.\displaystyle\|\Lambda^{s}(u,\tau)\|_{L^{2}}\leq C(1+t)^{-\frac{{s}+1}{2\beta}}.

Furthermore, suppose that (u0,τ0)Hs+β(u_{0},\tau_{0})\in H^{s+\beta} and 0<|2(u0,τ0)𝑑x|0<|\int_{\mathbb{R}^{2}}(u_{0},\tau_{0})dx|, then there exists CβCC_{\beta}\leq C such that

(1.18) Λs(u,τ)L2Cβ2(1+t)s+12β.\displaystyle\|\Lambda^{s}(u,\tau)\|_{L^{2}}\geq\frac{C_{\beta}}{2}(1+t)^{-\frac{s+1}{2\beta}}.
Remark 1.4.

The classical result about large time behaviour often supposed that the initial data belongs to L1L^{1}(See [25]). Since L1B˙2,1L^{1}\hookrightarrow\dot{B}^{-1}_{2,\infty}, it follows that the above results still hold true when (u0,τ0)L1(u_{0},\tau_{0})\in L^{1}.

The paper is organized as follows. In Section 2 we introduce some lemmas which will be used in the sequel. In Section 3 we prove optimal decay rate for the 2-D generalized Oldroyd-B model in critical case by virtue of a different Fourier splitting method and the time weighted energy estimate. In Section 4 we prove optimal decay rate for the highest derivative of the solution to 2-D generalized Oldroyd-B model in fractional case by the improved Fourier splitting method and the time weighted energy estimate.

2 Preliminaries

In this section we introduce some lemmas which will be used in the sequel.

The Littlewood-Paley decomposition theory and and Besov spaces are given as follows.

Lemma 2.1.

[1] Let 𝒞={ξ2:34|ξ|83}\mathcal{C}=\{\xi\in\mathbb{R}^{2}:\frac{3}{4}\leq|\xi|\leq\frac{8}{3}\}. There exists radial function φ\varphi, valued in the interval [0,1][0,1], belonging respectively to 𝒟(𝒞)\mathcal{D}(\mathcal{C}), and

ξ2\{0},jφ(2jξ)=1,\forall\xi\in\mathbb{R}^{2}\backslash\{0\},\ \sum_{j\in\mathbb{Z}}\varphi(2^{-j}\xi)=1,
|jj|2Suppφ(2j)Suppφ(2j)=.|j-j^{\prime}|\geq 2\Rightarrow\mathrm{Supp}\ \varphi(2^{-j}\cdot)\cap\mathrm{Supp}\ \varphi(2^{-j^{\prime}}\cdot)=\emptyset.

Moreover, there holds

ξ2\{0},12jφ2(2jξ)1.\forall\xi\in\mathbb{R}^{2}\backslash\{0\},\ \frac{1}{2}\leq\sum_{j\in\mathbb{Z}}\varphi^{2}(2^{-j}\xi)\leq 1.

\mathcal{F} denotes the Fourier transform and its inverse is represented by 1\mathcal{F}^{-1}. Suppose that uu is a tempered distribution in 𝒮h(2)\mathcal{S}^{\prime}_{h}(\mathbb{R}^{2}). For all jj\in\mathbb{Z}, define

Δ˙ju=1(φ(2j)u).\dot{\Delta}_{j}u=\mathcal{F}^{-1}(\varphi(2^{-j}\cdot)\mathcal{F}u).

Then the Littlewood-Paley decomposition is defined by:

u=jΔ˙juin𝒮(2).u=\sum_{j\in\mathbb{Z}}\dot{\Delta}_{j}u\quad\text{in}\ \mathcal{S}^{\prime}(\mathbb{R}^{2}).

Let s, 1p,r.s\in\mathbb{R},\ 1\leq p,r\leq\infty. The homogeneous Besov space B˙p,rs\dot{B}^{s}_{p,r} is given as follows

B˙p,rs={u𝒮h:uB˙p,rs=(2jsΔ˙juLp)jlr()<}.\dot{B}^{s}_{p,r}=\{u\in\mathcal{S}^{\prime}_{h}:\|u\|_{\dot{B}^{s}_{p,r}}=\Big{\|}(2^{js}\|\dot{\Delta}_{j}u\|_{L^{p}})_{j}\Big{\|}_{l^{r}(\mathbb{Z})}<\infty\}.

Take Λf=1(|ξ|(f)),\Lambda f=\mathcal{F}^{-1}(|\xi|\mathcal{F}(f)), we introduce the Gagliardo-Nirenberg inequality of Sobolev type with d=2d=2.

Lemma 2.2.

[23] For d=2,p[2,+)d=2,~{}p\in[2,+\infty) and 0s,s1s20\leq s,s_{1}\leq s_{2}, there holds

ΛsfLpCΛs1fL21θΛs2fL2θ,\|\Lambda^{s}f\|_{L^{p}}\leq C\|\Lambda^{s_{1}}f\|^{1-\theta}_{L^{2}}\|\Lambda^{s_{2}}f\|^{\theta}_{L^{2}},

where 0θ10\leq\theta\leq 1 and

s+12p=s1(1θ)+θs2.s+1-\frac{2}{p}=s_{1}(1-\theta)+\theta s_{2}.

Note that we also require that 0<θ<10<\theta<1, 0s1s0\leq s_{1}\leq s, when p=p=\infty.

Lemma 2.3.

[22] Assume that s1s\geq 1, p,p1,p4(1,)p,p_{1},p_{4}\in(1,\infty) and 1p=1p1+1p2=1p3+1p4\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p_{3}}+\frac{1}{p_{4}}, then we obtain

[Λs,f]gLpC(ΛsfLp1gLp2+fLp3Λs1gLp4).\displaystyle\|[\Lambda^{s},f]g\|_{L^{p}}\leq C(\|\Lambda^{s}f\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}+\|\nabla f\|_{L^{p_{3}}}\|\Lambda^{s-1}g\|_{L^{p_{4}}}).

3 Optimal decay rate with β=1\beta=1

In this section, we present optimal decay rate for the generalized Oldroyd-B model (1.8) in critical case with β=1\beta=1. Inspired by [12], we consider the coupling effect between (u,τ)(u,\tau). We need to introduce the following energy and dissipation functionals for (u,τ)(u,\tau):

Eθ=Λθ(u,τ)Hsθ2+2kΛθu,ΛθτHs1θ,E_{\theta}=\|\Lambda^{\theta}(u,\tau)\|^{2}_{H^{s-\theta}}+2k\langle\nabla\Lambda^{\theta}u,\Lambda^{\theta}\tau\rangle_{H^{s-1-\theta}},

and

Dθ=k2ΛθuHs1θ2+ΛθτHsθ2,D_{\theta}=\frac{k}{2}\|\nabla\Lambda^{\theta}u\|^{2}_{H^{s-1-\theta}}+\|\nabla\Lambda^{\theta}\tau\|^{2}_{H^{s-\theta}},

where θ=0or1\theta=0~{}or~{}1. The key point is the refinement of Schonbek’s [26] strategy. Using a different Fourier splitting method and taking Fourier transform in (1.8), we obtain the initial L2L^{2} decay rate in following proposition.

Proposition 3.1.

Assume that (u0,τ0)(u_{0},\tau_{0}) satisfy the condition in Theorem 1.1 and (u0,τ0)B˙2,1(u_{0},\tau_{0})\in\dot{B}^{-1}_{2,\infty}. For any lN+l\in N^{+}, there exists constant ClC_{l} such that

(3.1) E0(t)Cllnl(e+t).\displaystyle E_{0}(t)\leq C_{l}\ln^{-l}(e+t).
Proof.

Taking β=1\beta=1 in Theorem 1.1, we get the following global energy estimate:

(3.2) ddtE0(t)+D0(t)0.\displaystyle\frac{d}{dt}E_{0}(t)+D_{0}(t)\leq 0.

Denote that S0(t)={ξ:|ξ|22C2f(t)f(t)}S_{0}(t)=\{\xi:|\xi|^{2}\leq 2C_{2}\frac{f^{\prime}(t)}{f(t)}\}, where f(t)=ln3(e+t)f(t)=\ln^{3}(e+t) and C2C_{2} is large enough. By (3.2), we deduce that

(3.3) ddt[f(t)E0(t)]+C2f(t)(k2uHs2+τHs2)Cf(t)S0(t)|u^(ξ)|2+|τ^(ξ)|2dξ.\displaystyle\frac{d}{dt}[f(t)E_{0}(t)]+C_{2}f^{\prime}(t)(\frac{k}{2}\|u\|^{2}_{H^{s}}+\|\tau\|^{2}_{H^{s}})\leq Cf^{\prime}(t)\int_{S_{0}(t)}|\hat{u}(\xi)|^{2}+|\hat{\tau}(\xi)|^{2}d\xi.

The L2L^{2} estimate to the low frequency part of (u,τ)(u,\tau) is useful for studying time decay rates. Applying Fourier transform to (1.8), we have

(3.6) {u^tj+iξjP^iξkτ^jk=F^j,τ^tjk+|ξ|2τ^jki2(ξku^j+ξju^k)=G^jk,\displaystyle\left\{\begin{array}[]{ll}\hat{u}^{j}_{t}+i\xi_{j}\hat{P}-i\xi_{k}\hat{\tau}^{jk}=\hat{F}^{j},\\[4.30554pt] \hat{\tau}^{jk}_{t}+|\xi|^{2}\hat{\tau}^{jk}-\frac{i}{2}(\xi_{k}\hat{u}^{j}+\xi_{j}\hat{u}^{k})=\hat{G}^{jk},\\[4.30554pt] \end{array}\right.

where F=uuF=-u\cdot\nabla u and G=uτQ(u,τ)G=-u\cdot\nabla\tau-Q(\nabla u,\tau). According to e[iξu^¯(t,ξ):τ^]+e[iξu^:τ^¯]=0\mathcal{R}e[i\xi\otimes\bar{\hat{u}}(t,\xi):\hat{\tau}]+\mathcal{R}e[i\xi\otimes\hat{u}:\bar{\hat{\tau}}]=0 and (3.6), we infer that

(3.7) 12ddt(|u^|2+|τ^|2)+|ξ|2|τ^|2=e[F^u^¯]+e[G^τ^¯].\displaystyle\frac{1}{2}\frac{d}{dt}(|\hat{u}|^{2}+|\hat{\tau}|^{2})+|\xi|^{2}|\hat{\tau}|^{2}=\mathcal{R}e[\hat{F}\cdot\bar{\hat{u}}]+\mathcal{R}e[\hat{G}\bar{\hat{\tau}}].

Integrating (3.7) in time on [0,t][0,t], we get

(3.8) |u^|2+|τ^|2C(|u^0|2+|τ^0|2)+C0t|F^u^¯|+|G^τ^¯|ds.\displaystyle|\hat{u}|^{2}+|\hat{\tau}|^{2}\leq C(|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2})+C\int_{0}^{t}|\hat{F}\cdot\bar{\hat{u}}|+|\hat{G}\cdot\bar{\hat{\tau}}|ds^{\prime}.

Integrating (3.8) over S0(t)S_{0}(t) with ξ\xi, then we obtain the following estimate for (3.6):

(3.9) S0(t)|u^|2+|τ^|2dξCS0(t)|u^0|2+|τ^0|2dξ+CS0(t)0t|F^u^¯|+|G^τ^¯|dsdξ.\displaystyle\int_{S_{0}(t)}|\hat{u}|^{2}+|\hat{\tau}|^{2}d\xi\leq C\int_{S_{0}(t)}|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2}d\xi+C\int_{S_{0}(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{u}}|+|\hat{G}\cdot\bar{\hat{\tau}}|ds^{\prime}d\xi.

According to E0(0)<E_{0}(0)<\infty, (u0,τ0)B˙2,1(u_{0},\tau_{0})\in\dot{B}^{-1}_{2,\infty} and applying Lemma 2.1, we infer that

(3.10) S0(t)(|u^0|2+|τ^0|2)𝑑ξ\displaystyle\int_{S_{0}(t)}(|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2})d\xi jlog2[43C212f(t)f(t)]22φ2(2jξ)(|u^0|2+|τ^0|2)𝑑ξ\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}\sqrt{\frac{f^{\prime}(t)}{f(t)}}]}\int_{\mathbb{R}^{2}}2\varphi^{2}(2^{-j}\xi)(|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2})d\xi
jlog2[43C212f(t)f(t)]C(Δ˙ju0L22+Δ˙jτ0L22)\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}\sqrt{\frac{f^{\prime}(t)}{f(t)}}]}C(\|\dot{\Delta}_{j}u_{0}\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}\tau_{0}\|^{2}_{L^{2}})
Cf(t)f(t)(u0,τ0)B˙2,12.\displaystyle\leq C\frac{f^{\prime}(t)}{f(t)}\|(u_{0},\tau_{0})\|^{2}_{\dot{B}^{-1}_{2,\infty}}.

By (3.2) and Minkowski’s inequality, we obtain

(3.11) S0(t)0t|F^u^¯|+|G^τ^¯|dsdξ\displaystyle\int_{S_{0}(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{u}}|+|\hat{G}\cdot\bar{\hat{\tau}}|ds^{\prime}d\xi =0tS0(t)|F^u^¯|+|G^τ^¯|dξds\displaystyle=\int_{0}^{t}\int_{S_{0}(t)}|\hat{F}\cdot\bar{\hat{u}}|+|\hat{G}\cdot\bar{\hat{\tau}}|d\xi ds^{\prime}
Cf(t)f(t)0t(uL22+τL22)D0(s)12𝑑s\displaystyle\leq C\sqrt{\frac{f^{\prime}(t)}{f(t)}}\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\tau\|^{2}_{L^{2}})D_{0}(s^{\prime})^{\frac{1}{2}}ds^{\prime}
Cf(t)f(t)(1+t)12.\displaystyle\leq C\sqrt{\frac{f^{\prime}(t)}{f(t)}}(1+t)^{\frac{1}{2}}.

It follows from (3.9)-(3.11) that

(3.12) S0(t)|u^|2+|τ^|2dξCln12(e+t).\displaystyle\int_{S_{0}(t)}|\hat{u}|^{2}+|\hat{\tau}|^{2}d\xi\leq C\ln^{-\frac{1}{2}}(e+t).

Combining (3.3) and (3.12), we have

(3.13) ddt[f(t)E0(t)]Cf(t)ln12(e+t).\displaystyle\frac{d}{dt}[f(t)E_{0}(t)]\leq Cf^{\prime}(t)\ln^{-\frac{1}{2}}(e+t).

Consequently, we get the initial time decay rate:

(3.14) E0(t)Cln12(e+t).\displaystyle E_{0}(t)\leq C\ln^{-\frac{1}{2}}(e+t).

By virtue of the bootstrap argument, for any lN+l\in N^{+}, we infer that E0Cllnl(e+t).E_{0}\leq C_{l}\ln^{-l}(e+t).

We now consider the the initial time decay rate of E1(t)E_{1}(t).

Proposition 3.2.

Let (u0,τ0)B˙2,1(u_{0},\tau_{0})\in\dot{B}^{-1}_{2,\infty}. Under the condition in Theorem 1.1, for any lN+l\in N^{+}, then there exists a constant ClC_{l} such that

(3.15) E1(t)Cl(1+t)1lnl(e+t).\displaystyle E_{1}(t)\leq C_{l}(1+t)^{-1}\ln^{-l}(e+t).
Proof.

Since uu,Δu=0\langle u\cdot\nabla u,\Delta u\rangle=0 with d=2d=2, then we have

(3.16) 12ddt(u,τ)L22+2τL22=uτ+Q(u,τ),ΔτCδD1,\displaystyle\frac{1}{2}\frac{d}{dt}\|\nabla(u,\tau)\|^{2}_{L^{2}}+\|\nabla^{2}\tau\|^{2}_{L^{2}}=\langle u\cdot\nabla\tau+Q(u,\tau),\Delta\tau\rangle\leq C\delta D_{1},

and

(3.17) ddtΔτ,u+122uL22\displaystyle\frac{d}{dt}\langle\Delta\tau,\nabla u\rangle+\frac{1}{2}\|\nabla^{2}u\|^{2}_{L^{2}} =div(uτ+Q(u,τ)Δτ),Δu\displaystyle=\langle div~{}(u\cdot\nabla\tau+Q(u,\tau)-\Delta\tau),\Delta u\rangle
(uudivτ),Δτ\displaystyle-\langle\nabla\mathbb{P}(u\cdot\nabla u-div~{}\tau),\Delta\tau\rangle
CδD1+C2τL22.\displaystyle\leq C\delta D_{1}+C\|\nabla^{2}\tau\|^{2}_{L^{2}}.

Using Lemma 2.3, we obtain

(3.18) 12ddtΛs(u,τ)L22+ΛsτL22\displaystyle\frac{1}{2}\frac{d}{dt}\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+\|\nabla\Lambda^{s}\tau\|^{2}_{L^{2}} =[Λs,u]u,ΛsuΛs(uτ+Q(u,τ)),Λsτ\displaystyle=-\langle[\Lambda^{s},u\cdot\nabla]u,\Lambda^{s}u\rangle-\langle\Lambda^{s}(u\cdot\nabla\tau+Q(u,\tau)),\Lambda^{s}\tau\rangle
C(uLΛsuL22+τLΛsuL2Λs+1τL2\displaystyle\leq C(\|\nabla u\|_{L^{\infty}}\|\Lambda^{s}u\|^{2}_{L^{2}}+\|\tau\|_{L^{\infty}}\|\Lambda^{s}u\|_{L^{2}}\|\Lambda^{s+1}\tau\|_{L^{2}}
+uLΛsτL2Λs+1τL2+uLΛs1τL2Λs+1τL2).\displaystyle+\|u\|_{L^{\infty}}\|\Lambda^{s}\tau\|_{L^{2}}\|\Lambda^{s+1}\tau\|_{L^{2}}+\|\nabla u\|_{L^{\infty}}\|\Lambda^{s-1}\tau\|_{L^{2}}\|\Lambda^{s+1}\tau\|_{L^{2}}).

By Lemma 2.2, we have uLΛs1τL2CuL2s2ssuL22sτL21sΛsτL2s1s\|\nabla u\|_{L^{\infty}}\|\Lambda^{s-1}\tau\|_{L^{2}}\leq C\|u\|^{\frac{s-2}{s}}_{L^{2}}\|\nabla^{s}u\|^{\frac{2}{s}}_{L^{2}}\|\tau\|^{\frac{1}{s}}_{L^{2}}\|\Lambda^{s}\tau\|^{\frac{s-1}{s}}_{L^{2}}. This together with (3.18) and Theorem 1.1 ensure that

(3.19) ddtΛs(u,τ)L22+ΛsτL22CδD1.\displaystyle\frac{d}{dt}\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+\|\nabla\Lambda^{s}\tau\|^{2}_{L^{2}}\leq C\delta D_{1}.

Using Lemmas 2.2 and 2.3, we deduce that

(3.20) ddtΛs1τ,Λs1u+12Λs1uL22\displaystyle\frac{d}{dt}\langle\Lambda^{s-1}\tau,-\nabla\Lambda^{s-1}u\rangle+\frac{1}{2}\|\nabla\Lambda^{s-1}u\|^{2}_{L^{2}}
=Λs1(uτ+Q(u,τ)Δτ),Λs1u\displaystyle=\langle\Lambda^{s-1}(u\cdot\nabla\tau+Q(u,\tau)-\Delta\tau),\nabla\Lambda^{s-1}u\rangle
Λs1(uudivτ),divΛs1τ\displaystyle-\langle\Lambda^{s-1}\mathbb{P}(u\cdot\nabla u-div~{}\tau),div~{}\Lambda^{s-1}\tau\rangle
CΛsuL2(uLΛsτL2+τLΛsuL2+Λs+1τL2)\displaystyle\leq C\|\Lambda^{s}u\|_{L^{2}}(\|u\|_{L^{\infty}}\|\Lambda^{s}\tau\|_{L^{2}}+\|\tau\|_{L^{\infty}}\|\Lambda^{s}u\|_{L^{2}}+\|\Lambda^{s+1}\tau\|_{L^{2}})
+CΛsτL2(uLΛsuL2+ΛsτL2)\displaystyle+C\|\Lambda^{s}\tau\|_{L^{2}}(\|u\|_{L^{\infty}}\|\Lambda^{s}u\|_{L^{2}}+\|\Lambda^{s}\tau\|_{L^{2}})
CδD1+CΛsτH12.\displaystyle\leq C\delta D_{1}+C\|\Lambda^{s}\tau\|^{2}_{H^{1}}.

Combining (3.16)-(3.20), we obtain

(3.21) ddtE1+D10,\displaystyle\frac{d}{dt}E_{1}+D_{1}\leq 0,

which implies that

(3.22) ddt[f(t)E1]+C2f(t)(k2uHs12+τHs12)Cf(t)S0(t)|ξ|2(|u^(ξ)|2+|τ^(ξ)|2)𝑑ξ.\displaystyle\frac{d}{dt}[f(t)E_{1}]+C_{2}f^{\prime}(t)(\frac{k}{2}\|\nabla u\|^{2}_{H^{s-1}}+\|\nabla\tau\|^{2}_{H^{s-1}})\leq Cf^{\prime}(t)\int_{S_{0}(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\tau}(\xi)|^{2})d\xi.

By Proposition 3.1, we obtain

(3.23) f(t)S0(t)|ξ|2(|u^(ξ)|2+|τ^(ξ)|2)𝑑ξC(1+t)2lnl+1(e+t).\displaystyle f^{\prime}(t)\int_{S_{0}(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\tau}(\xi)|^{2})d\xi\leq C(1+t)^{-2}\ln^{-l+1}(e+t).

According to (3.22)-(3.23), we infer that

(3.24) E1C(1+t)1lnl(e+t).\displaystyle E_{1}\leq C(1+t)^{-1}\ln^{-l}(e+t).

Therefore, we complete the proof of Proposition 3.2. ∎

By virtue of the standard method, we can’t immediately obtain the optimal decay rate. However, we obtain a weak result as follows.

Proposition 3.3.

Assume that (u0,τ0)(u_{0},\tau_{0}) satisfy the condition in Proposition 3.1, there holds

(3.25) E0(t)C(1+t)12,\displaystyle E_{0}(t)\leq C(1+t)^{-\frac{1}{2}},

and

(3.26) E1(t)C(1+t)32.\displaystyle E_{1}(t)\leq C(1+t)^{-\frac{3}{2}}.
Proof.

Define S(t)={ξ:|ξ|2C2(1+t)1}S(t)=\{\xi:|\xi|^{2}\leq C_{2}(1+t)^{-1}\} with C2C_{2} large enough. By (3.2), we infer that

(3.27) ddtE0(t)+kC22(1+t)uHs2+C21+tτHs2C1+tS(t)|u^(ξ)|2+|τ^(ξ)|2dξ.\displaystyle\frac{d}{dt}E_{0}(t)+\frac{kC_{2}}{2(1+t)}\|u\|^{2}_{H^{s}}+\frac{C_{2}}{1+t}\|\tau\|^{2}_{H^{s}}\leq\frac{C}{1+t}\int_{S(t)}|\hat{u}(\xi)|^{2}+|\hat{\tau}(\xi)|^{2}d\xi.

Integrating (3.8) over S(t)S(t) with ξ\xi, then we get

(3.28) S(t)|u^|2+|τ^|2dξCS(t)|u^0|2+|τ^0|2dξ+CS(t)0t|F^u^¯|+|G^τ^¯|dsdξ.\displaystyle\int_{S(t)}|\hat{u}|^{2}+|\hat{\tau}|^{2}d\xi\leq C\int_{S(t)}|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2}d\xi+C\int_{S(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{u}}|+|\hat{G}\cdot\bar{\hat{\tau}}|ds^{\prime}d\xi.

According to (u0,τ0)HsB˙2,1(u_{0},\tau_{0})\in H^{s}\cap\dot{B}^{-1}_{2,\infty} and applying Lemma 2.1, we deduce that

(3.29) S(t)|u^0|2+|τ^0|2dξ\displaystyle\int_{S(t)}|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2}d\xi jlog2[43C212(1+t)12]22φ2(2jξ)(|u^0|2+|τ^0|2)𝑑ξ\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}(1+t)^{-\frac{1}{2}}]}\int_{\mathbb{R}^{2}}2\varphi^{2}(2^{-j}\xi)(|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2})d\xi
jlog2[43C212(1+t)12]2(Δ˙ju0L22+Δ˙jτ0L22)\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}(1+t)^{-\frac{1}{2}}]}2(\|\dot{\Delta}_{j}u_{0}\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}\tau_{0}\|^{2}_{L^{2}})
C(1+t)1(u0,τ0)B˙2,12,\displaystyle\leq C(1+t)^{-1}\|(u_{0},\tau_{0})\|^{2}_{\dot{B}^{-1}_{2,\infty}},

and

(3.30) S(t)0t|F^u^¯|+|G^τ^¯|dsdξC(1+t)120t(uL22+τL22)(uL2+τL2)𝑑s.\displaystyle\int_{S(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{u}}|+|\hat{G}\cdot\bar{\hat{\tau}}|ds^{\prime}d\xi\leq C(1+t)^{-\frac{1}{2}}\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\tau\|^{2}_{L^{2}})(\|\nabla u\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds^{\prime}.

Combining (3.27)-(3.30), we have

(3.31) ddtE0(t)+kC22(1+t)uHs2+C21+tτHs2\displaystyle\frac{d}{dt}E_{0}(t)+\frac{kC_{2}}{2(1+t)}\|u\|^{2}_{H^{s}}+\frac{C_{2}}{1+t}\|\tau\|^{2}_{H^{s}}
C1+t[(1+t)1+(1+t)120t(uL22+τL22)(uL2+τL2)𝑑s],\displaystyle\leq\frac{C}{1+t}[(1+t)^{-1}+(1+t)^{-\frac{1}{2}}\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\tau\|^{2}_{L^{2}})(\|\nabla u\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds^{\prime}],

which implies that

(3.32) (1+t)32E0(t)C(1+t)12+C(1+t)0t(uL22+τL22)(uL2+τL2)𝑑s.\displaystyle(1+t)^{\frac{3}{2}}E_{0}(t)\leq C(1+t)^{\frac{1}{2}}+C(1+t)\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\tau\|^{2}_{L^{2}})(\|\nabla u\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds^{\prime}.

Let N(t)=sup0st(1+s)12E0(s)N(t)=\sup_{0\leq s\leq t}(1+s)^{\frac{1}{2}}E_{0}(s). By (3.32), we obtain

(3.33) N(t)C+C0tN(s)(1+s)12(uL2+τL2)𝑑s.\displaystyle N(t)\leq C+C\int_{0}^{t}N(s)(1+s)^{-\frac{1}{2}}(\|\nabla u\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds^{\prime}.

Applying Gronwall’s inequality and Proposition 3.2, we deduce that N(t)CN(t)\leq C, which implies that

(3.34) E0C(1+t)12.\displaystyle E_{0}\leq C(1+t)^{-\frac{1}{2}}.

According to (3.21), we infer that

(3.35) ddtE1+C21+t(k2uHs12+τHs12)C1+tS(t)|ξ|2(|u^(ξ)|2+|τ^(ξ)|2)𝑑ξ.\displaystyle\frac{d}{dt}E_{1}+\frac{C_{2}}{1+t}(\frac{k}{2}\|\nabla u\|^{2}_{H^{s-1}}+\|\nabla\tau\|^{2}_{H^{s-1}})\leq\frac{C}{1+t}\int_{S(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\tau}(\xi)|^{2})d\xi.

By (3.34), we get

(3.36) C1+tS(t)|ξ|2(|u^(ξ)|2+|τ^(ξ)|2)𝑑ξC(1+t)2(uL22+τL22)C(1+t)52.\displaystyle\frac{C}{1+t}\int_{S(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\tau}(\xi)|^{2})d\xi\leq C(1+t)^{-2}(\|u\|^{2}_{L^{2}}+\|\tau\|^{2}_{L^{2}})\leq C(1+t)^{-\frac{5}{2}}.

This together with (3.2), (3.34) and (3.35) ensure that

(3.37) E1C(1+t)32.\displaystyle E_{1}\leq C(1+t)^{-\frac{3}{2}}.

We thus complete the proof of Proposition 3.3. ∎

Using Proposition 3.3, we can prove that the solution of (1.8) belongs to some Besov space with negative index.

Lemma 3.4.

Let 0<α,σ10<\alpha,\sigma\leq 1 and σ<2α\sigma<2\alpha. Under the condition in Proposition 3.1. If

(3.38) E0(t)C(1+t)α,E1(t)C(1+t)α1,\displaystyle E_{0}(t)\leq C(1+t)^{-\alpha},~{}~{}~{}~{}E_{1}(t)\leq C(1+t)^{-\alpha-1},

then we have

(3.39) (u,τ)L(0,;B˙2,σ).\displaystyle(u,\tau)\in L^{\infty}(0,\infty;\dot{B}^{-\sigma}_{2,\infty}).
Proof.

Applying Δ˙j\dot{\Delta}_{j} to (1.8), we have

(3.42) {Δ˙jut+Δ˙jPdivΔ˙jτ=Δ˙jF,Δ˙jτtΔΔ˙jτΔ˙jD(u)=Δ˙jG.\displaystyle\left\{\begin{array}[]{ll}\dot{\Delta}_{j}u_{t}+\nabla\dot{\Delta}_{j}P-div~{}\dot{\Delta}_{j}\tau=\dot{\Delta}_{j}F,\\[4.30554pt] \dot{\Delta}_{j}\tau_{t}-\Delta\dot{\Delta}_{j}\tau-\dot{\Delta}_{j}D(u)=\dot{\Delta}_{j}G.\\[4.30554pt] \end{array}\right.

We first deduce from (3.42) that

(3.43) ddt(Δ˙juL22+Δ˙jτL22)+2Δ˙jτL22C(Δ˙jFL2Δ˙juL2+Δ˙jGL2Δ˙jτL2).\displaystyle\frac{d}{dt}(\|\dot{\Delta}_{j}u\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}\tau\|^{2}_{L^{2}})+2\|\nabla\dot{\Delta}_{j}\tau\|^{2}_{L^{2}}\leq C(\|\dot{\Delta}_{j}F\|_{L^{2}}\|\dot{\Delta}_{j}u\|_{L^{2}}+\|\dot{\Delta}_{j}G\|_{L^{2}}\|\dot{\Delta}_{j}\tau\|_{L^{2}}).

Applying 22jσ2^{-2j\sigma} to (3.43) and taking ll^{\infty} norm, we obtain

(3.44) ddt(uB˙2,σ2+τB˙2,σ2)C(FB˙2,σuB˙2,σ+GB˙2,στB˙2,σ).\displaystyle\frac{d}{dt}(\|u\|^{2}_{\dot{B}^{-\sigma}_{2,\infty}}+\|\tau\|^{2}_{\dot{B}^{-\sigma}_{2,\infty}})\leq C(\|F\|_{\dot{B}^{-\sigma}_{2,\infty}}\|u\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|G\|_{\dot{B}^{-\sigma}_{2,\infty}}\|\tau\|_{\dot{B}^{-\sigma}_{2,\infty}}).

Let M(t)=0stuB˙2,σ+τB˙2,σM(t)=\sum_{0\leq s\leq t}\|u\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|\tau\|_{\dot{B}^{-\sigma}_{2,\infty}}. According to (3.44), we infer that

(3.45) M2(t)\displaystyle M^{2}(t) CM2(0)+CM(t)0tFB˙2,σ+GB˙2,σds.\displaystyle\leq CM^{2}(0)+CM(t)\int_{0}^{t}\|F\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|G\|_{\dot{B}^{-\sigma}_{2,\infty}}ds^{\prime}.

Using (3.38) and inclusion between Lesbesgue and Besov space, we deduce that

(3.46) 0t(F,G)B˙2,σ𝑑s\displaystyle\int_{0}^{t}\|(F,G)\|_{\dot{B}^{-\sigma}_{2,\infty}}ds^{\prime} C0t(F,G)L2σ+1𝑑s\displaystyle\leq C\int_{0}^{t}\|(F,G)\|_{L^{\frac{2}{\sigma+1}}}ds^{\prime}
C0t(uL2σ+τL2σ)(uL2+τL2)𝑑s\displaystyle\leq C\int_{0}^{t}(\|u\|_{L^{\frac{2}{\sigma}}}+\|\tau\|_{L^{\frac{2}{\sigma}}})(\|\nabla u\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds^{\prime}
C0t(u,τ)L2σ(u,τ)L22σ𝑑s\displaystyle\leq C\int_{0}^{t}\|(u,\tau)\|^{\sigma}_{L^{2}}\|\nabla(u,\tau)\|^{2-\sigma}_{L^{2}}ds^{\prime}
C0t(1+s)(1+ασ2)𝑑sC.\displaystyle\leq C\int_{0}^{t}(1+s)^{-(1+\alpha-\frac{\sigma}{2})}ds^{\prime}\leq C.

Combining (3.45) and (3.46), we get M(t)CM(t)\leq C. ∎

Lemma 3.5.

Let 0<β,σ10<\beta,\sigma\leq 1 and 12α\frac{1}{2}\leq\alpha. Under the condition in Proposition 3.1. For any t[0,+)t\in[0,+\infty), if

(3.47) E0(t)C(1+t)α,E1(t)C(1+t)α1,\displaystyle E_{0}(t)\leq C(1+t)^{-\alpha},~{}~{}~{}~{}E_{1}(t)\leq C(1+t)^{-\alpha-1},

and

(3.48) (u,τ)L(0,;B˙2,σ),\displaystyle(u,\tau)\in L^{\infty}(0,\infty;\dot{B}^{-\sigma}_{2,\infty}),

then there exists a constant CC such that

(3.49) E0(t)C(1+t)βandE1(t)C(1+t)β1,\displaystyle E_{0}(t)\leq C(1+t)^{-\beta}~{}~{}~{}~{}and~{}~{}~{}~{}E_{1}(t)\leq C(1+t)^{-\beta-1},

where β<σ+12\beta<\frac{\sigma+1}{2} for α=12\alpha=\frac{1}{2} and β=σ+12\beta=\frac{\sigma+1}{2} for α>12\alpha>\frac{1}{2}.

Proof.

According to the proof of Proposition 3.2, we have

(3.50) ddtE0(t)+kC22(1+t)uHs2+C21+tτHs2\displaystyle\frac{d}{dt}E_{0}(t)+\frac{kC_{2}}{2(1+t)}\|u\|^{2}_{H^{s}}+\frac{C_{2}}{1+t}\|\tau\|^{2}_{H^{s}}
CC21+t((1+t)1+S(t)0t|F^u^¯|+|G^τ^¯|dsdξ).\displaystyle\leq\frac{CC_{2}}{1+t}((1+t)^{-1}+\int_{S(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{u}}|+|\hat{G}\cdot\bar{\hat{\tau}}|dsd\xi).

Using (3.47) and (3.48), we infer that

(3.51) S(t)0t|F^u^¯|+|G^τ^¯|dsdξ\displaystyle\int_{S(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{u}}|+|\hat{G}\cdot\bar{\hat{\tau}}|dsd\xi C0t(FL1S(t)|u^|𝑑ξ+GL1S(t)|τ^|𝑑ξ)𝑑s\displaystyle\leq C\int_{0}^{t}(\|F\|_{L^{1}}\int_{S(t)}|\hat{u}|d\xi+\|G\|_{L^{1}}\int_{S(t)}|\hat{\tau}|d\xi)ds
C(1+t)120t(FL1+GL1)(S(t)|u^|2+|τ^|2dξ)12𝑑s\displaystyle\leq C(1+t)^{-\frac{1}{2}}\int_{0}^{t}(\|F\|_{L^{1}}+\|G\|_{L^{1}})(\int_{S(t)}|\hat{u}|^{2}+|\hat{\tau}|^{2}d\xi)^{\frac{1}{2}}ds
C(1+t)σ+12M(t)0tFL1+GL1ds\displaystyle\leq C(1+t)^{-\frac{\sigma+1}{2}}M(t)\int_{0}^{t}\|F\|_{L^{1}}+\|G\|_{L^{1}}ds
C(1+t)σ+120t(1+s)(α+12)𝑑s\displaystyle\leq C(1+t)^{-\frac{\sigma+1}{2}}\int_{0}^{t}(1+s)^{-(\alpha+\frac{1}{2})}ds
C(1+t)β.\displaystyle\leq C(1+t)^{-\beta}.

By virtue of (3.50) and (3.51), we get

(3.52) E0(t)C(1+t)β.\displaystyle E_{0}(t)\leq C(1+t)^{-\beta}.

Moreover, we have

(3.53) ddtE1+C21+t(k2uHs12+τHs12)\displaystyle\frac{d}{dt}E_{1}+\frac{C_{2}}{1+t}(\frac{k}{2}\|\nabla u\|^{2}_{H^{s-1}}+\|\nabla\tau\|^{2}_{H^{s-1}}) C1+tS(t)|ξ|2(|u^(ξ)|2+|τ^(ξ)|2)𝑑ξ.\displaystyle\leq\frac{C}{1+t}\int_{S(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\tau}(\xi)|^{2})d\xi.
C(1+t)2(uL22+τL22)\displaystyle\leq C(1+t)^{-2}(\|u\|^{2}_{L^{2}}+\|\tau\|^{2}_{L^{2}})
C(1+t)2β,\displaystyle\leq C(1+t)^{-2-\beta},

which implies that E1C(1+t)1βE_{1}\leq C(1+t)^{-1-\beta}. ∎

We improve the decay rates in H1H^{1} by Lemmas 3.4 and 3.5. However, considering the decay rate for the highest derivative of the solution to (1.8), the main difficulty is unclosed energy estimate. To overcome this difficulty, we introduce a new method which flexibly combines the Fourier splitting method and the time weighted energy estimate.

Proposition 3.6.

Assume that (u0,τ0)(u_{0},\tau_{0}) satisfy the condition in Proposition 3.1, then there exists a constant CC such that

(3.54) Λs1(u,τ)L2C(1+t)1+s12,\displaystyle\|\Lambda^{s_{1}}(u,\tau)\|_{L^{2}}\leq C(1+t)^{-\frac{1+{s_{1}}}{2}},

where s1[0,s]s_{1}\in[0,s].

Proof.

We first improve the decay rate in Proposition 3.3. According to Proposition 3.3 and Lemma 3.4 with σ=α=12\sigma=\alpha=\frac{1}{2}, we have

(u,τ)L(0,;B˙2,12).\displaystyle(u,\tau)\in L^{\infty}(0,\infty;\dot{B}^{-\frac{1}{2}}_{2,\infty}).

By virtue of Lemma 3.5 with α=σ=12\alpha=\sigma=\frac{1}{2} and β=58\beta=\frac{5}{8}, we infer that

E0(t)C(1+t)58andE1(t)C(1+t)581.\displaystyle E_{0}(t)\leq C(1+t)^{-\frac{5}{8}}~{}~{}~{}~{}and~{}~{}~{}~{}E_{1}(t)\leq C(1+t)^{-\frac{5}{8}-1}.

Taking σ=1\sigma=1 and α=58\alpha=\frac{5}{8} in Lemma 3.4, we get

(3.55) (u,τ)L(0,;B˙2,1).\displaystyle(u,\tau)\in L^{\infty}(0,\infty;\dot{B}^{-1}_{2,\infty}).

Taking advantage of Lemma 3.5 again with α=58\alpha=\frac{5}{8} and σ=β=1\sigma=\beta=1, we deduce that

(3.56) E0(t)C(1+t)1andE1(t)C(1+t)2.\displaystyle E_{0}(t)\leq C(1+t)^{-1}~{}~{}~{}~{}and~{}~{}~{}~{}E_{1}(t)\leq C(1+t)^{-2}.

Then, we introduce some new energy and dissipation functionals for (u,τ)(u,\tau) as follows:

E~s=k(1+t)Λs(u,τ)L22+Λs1τ,Λs1u,\widetilde{E}_{s}=k(1+t)\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+\langle\Lambda^{s-1}\tau,-\nabla\Lambda^{s-1}u\rangle,

and

D~s=k(1+t)ΛsτL22+14Λs1uL22,\widetilde{D}_{s}=k(1+t)\|\nabla\Lambda^{s}\tau\|^{2}_{L^{2}}+\frac{1}{4}\|\nabla\Lambda^{s-1}u\|^{2}_{L^{2}},

where kk is small enough. Using (3.18), (3.20), (3.56) and Lemmas 2.2-2.3, we deduce that

(3.57) ddtE~s+2D~s\displaystyle\frac{d}{dt}\widetilde{E}_{s}+2\widetilde{D}_{s} kΛs(u,τ)L22+Ck(1+t)(uLΛsuL22+τLΛsuL2Λs+1τL2\displaystyle\leq k\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+Ck(1+t)(\|\nabla u\|_{L^{\infty}}\|\Lambda^{s}u\|^{2}_{L^{2}}+\|\tau\|_{L^{\infty}}\|\Lambda^{s}u\|_{L^{2}}\|\Lambda^{s+1}\tau\|_{L^{2}}
+uLΛsτL2Λs+1τL2+uLΛs1τL2Λs+1τL2),\displaystyle+\|u\|_{L^{\infty}}\|\Lambda^{s}\tau\|_{L^{2}}\|\Lambda^{s+1}\tau\|_{L^{2}}+\|\nabla u\|_{L^{\infty}}\|\Lambda^{s-1}\tau\|_{L^{2}}\|\Lambda^{s+1}\tau\|_{L^{2}}),
+CΛsuL2(uLΛsτL2+τLΛsuL2+Λs+1τL2)\displaystyle+C\|\Lambda^{s}u\|_{L^{2}}(\|u\|_{L^{\infty}}\|\Lambda^{s}\tau\|_{L^{2}}+\|\tau\|_{L^{\infty}}\|\Lambda^{s}u\|_{L^{2}}+\|\Lambda^{s+1}\tau\|_{L^{2}})
+CΛsτL2(uLΛsuL2+ΛsτL2)\displaystyle+C\|\Lambda^{s}\tau\|_{L^{2}}(\|u\|_{L^{\infty}}\|\Lambda^{s}u\|_{L^{2}}+\|\Lambda^{s}\tau\|_{L^{2}})
(Ck+12)D~s+Ck(1+t)uL2ΛsτL22+CΛsτL22\displaystyle\leq(Ck+\frac{1}{2})\widetilde{D}_{s}+Ck(1+t)\|u\|^{2}_{L^{\infty}}\|\Lambda^{s}\tau\|^{2}_{L^{2}}+C\|\Lambda^{s}\tau\|^{2}_{L^{2}}
+Ck(1+t)uLΛs1τL2Λs+1τL2\displaystyle+Ck(1+t)\|\nabla u\|_{L^{\infty}}\|\Lambda^{s-1}\tau\|_{L^{2}}\|\Lambda^{s+1}\tau\|_{L^{2}}
(Ck+12)D~s+CΛs1τL2Λs+1τL2,\displaystyle\leq(Ck+\frac{1}{2})\widetilde{D}_{s}+C\|\Lambda^{s-1}\tau\|_{L^{2}}\|\Lambda^{s+1}\tau\|_{L^{2}},

where we use ΛsτL22CΛs1τL2Λs+1τL2\|\Lambda^{s}\tau\|^{2}_{L^{2}}\leq C\|\Lambda^{s-1}\tau\|_{L^{2}}\|\Lambda^{s+1}\tau\|_{L^{2}}. By (3.56) and Lemma 2.2, we have

(3.58) CΛs1τL2Λs+1τL2\displaystyle C\|\Lambda^{s-1}\tau\|_{L^{2}}\|\Lambda^{s+1}\tau\|_{L^{2}} CτL22s+1Λs+1τL22ss+1\displaystyle\leq C\|\tau\|^{\frac{2}{s+1}}_{L^{2}}\|\Lambda^{s+1}\tau\|^{\frac{2s}{s+1}}_{L^{2}}
k4(1+t)Λs+1τL22+C(1+t)sτL22\displaystyle\leq\frac{k}{4}(1+t)\|\Lambda^{s+1}\tau\|^{2}_{L^{2}}+C(1+t)^{-s}\|\tau\|^{2}_{L^{2}}
14D~s+C(1+t)s1.\displaystyle\leq\frac{1}{4}\widetilde{D}_{s}+C(1+t)^{-s-1}.

Combining (3.57) and (3.58), we infer that

(3.59) ddtE~s+D~sC(1+t)s1,\displaystyle\frac{d}{dt}\widetilde{E}_{s}+\widetilde{D}_{s}\leq C(1+t)^{-s-1},

which implies that

(3.60) ddtE~s+kC2ΛsτL22+14Λs1uL22\displaystyle\frac{d}{dt}\widetilde{E}_{s}+kC_{2}\|\Lambda^{s}\tau\|^{2}_{L^{2}}+\frac{1}{4}\|\nabla\Lambda^{s-1}u\|^{2}_{L^{2}} C(1+t)s1+kC2S(t)|ξ|2s|τ^(ξ)|2𝑑ξ\displaystyle\leq C(1+t)^{-s-1}+kC_{2}\int_{S(t)}|\xi|^{2s}|\hat{\tau}(\xi)|^{2}d\xi
C(1+t)s1.\displaystyle\leq C(1+t)^{-s-1}.

According to (3.60), we infer that

(3.61) (1+t)s+1E~s+0tk(1+s)s+1Λs(τ,u)L22𝑑s\displaystyle(1+t)^{s+1}\widetilde{E}_{s}+\int_{0}^{t}k(1+s^{\prime})^{s+1}\|\Lambda^{s}(\tau,u)\|^{2}_{L^{2}}ds^{\prime}
C(1+t)+C0t(1+s)sΛs1τ,Λs1u𝑑s\displaystyle\leq C(1+t)+C\int_{0}^{t}(1+s^{\prime})^{s}\langle\Lambda^{s-1}\tau,-\nabla\Lambda^{s-1}u\rangle ds^{\prime}
C(1+t)+k20t(1+s)s+1ΛsuL22𝑑s+C0t(1+s)s1Λs1τL22𝑑s\displaystyle\leq C(1+t)+\frac{k}{2}\int_{0}^{t}(1+s^{\prime})^{s+1}\|\Lambda^{s}u\|^{2}_{L^{2}}ds^{\prime}+C\int_{0}^{t}(1+s^{\prime})^{s-1}\|\Lambda^{s-1}\tau\|^{2}_{L^{2}}ds^{\prime}
C(1+t)+k20t(1+s)s+1Λs(τ,u)L22𝑑s+C0t(1+s)1sτL22𝑑s\displaystyle\leq C(1+t)+\frac{k}{2}\int_{0}^{t}(1+s^{\prime})^{s+1}\|\Lambda^{s}(\tau,u)\|^{2}_{L^{2}}ds^{\prime}+C\int_{0}^{t}(1+s^{\prime})^{1-s}\|\tau\|^{2}_{L^{2}}ds^{\prime}
C(1+t)+k20t(1+s)s+1Λs(τ,u)L22𝑑s.\displaystyle\leq C(1+t)+\frac{k}{2}\int_{0}^{t}(1+s^{\prime})^{s+1}\|\Lambda^{s}(\tau,u)\|^{2}_{L^{2}}ds^{\prime}.

Using Lemma 2.2 again, we obtain

(3.62) (1+t)s+2Λs(u,τ)L22\displaystyle(1+t)^{s+2}\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}} C(1+t)+C(1+t)s+1Λs1τ,Λs1u\displaystyle\leq C(1+t)+C(1+t)^{s+1}\langle\Lambda^{s-1}\tau,-\nabla\Lambda^{s-1}u\rangle
C(1+t)+k(1+t)s+2ΛsuL22+C(1+t)sΛs1τL22\displaystyle\leq C(1+t)+k(1+t)^{s+2}\|\Lambda^{s}u\|^{2}_{L^{2}}+C(1+t)^{s}\|\Lambda^{s-1}\tau\|^{2}_{L^{2}}
C(1+t)+k(1+t)s+2Λs(u,τ)L22+C(1+t)2sτL22,\displaystyle\leq C(1+t)+k(1+t)^{s+2}\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+C(1+t)^{2-s}\|\tau\|^{2}_{L^{2}},

which implies that

(3.63) Λs(u,τ)L22C(1+t)s1.\displaystyle\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}\leq C(1+t)^{-s-1}.

We thus complete the proof of Proposition 3.6. ∎

The proof of Theorem 1.2: By Proposition 3.6, we only need to prove the lower bound of the decay rate. We first consider the linear system of (1.8) with β=1\beta=1:

(3.67) {tuL+PLdivτL=0,divuL=0,tτLD(uL)ΔτL=0,uL|t=0=u0,τL|t=0=τ0.\displaystyle\left\{\begin{array}[]{l}\partial_{t}u_{L}+\nabla P_{L}-div~{}\tau_{L}=0,~{}~{}~{}~{}div~{}u_{L}=0,\\[4.30554pt] \partial_{t}\tau_{L}-D(u_{L})-\Delta\tau_{L}=0,\\[4.30554pt] u_{L}|_{t=0}=u_{0},~{}~{}\tau_{L}|_{t=0}=\tau_{0}.\\[4.30554pt] \end{array}\right.

According to Proposition 3.6 and Lemma 3.4, one can deduce that Λs1(uL,τL)L22C(1+t)s11\|\Lambda^{s_{1}}(u_{L},\tau_{L})\|^{2}_{L^{2}}\leq C(1+t)^{-s_{1}-1} and (uL,τL)L(0,;B˙2,1)(u_{L},\tau_{L})\in L^{\infty}(0,\infty;\dot{B}^{-1}_{2,\infty}). Applying Fourier transform to (3.67), we get

(3.70) {tu^Lj+iξjP^Liξkτ^Ljk=0,tτ^Ljk+|ξ|2τ^Ljki2(ξku^Lj+ξju^Lk)=0.\displaystyle\left\{\begin{array}[]{ll}\partial_{t}\hat{u}_{L}^{j}+i\xi_{j}\hat{P}_{L}-i\xi_{k}\hat{\tau}_{L}^{jk}=0,\\[4.30554pt] \partial_{t}\hat{\tau}_{L}^{jk}+|\xi|^{2}\hat{\tau}_{L}^{jk}-\frac{i}{2}(\xi_{k}\hat{u}_{L}^{j}+\xi_{j}\hat{u}_{L}^{k})=0.\\[4.30554pt] \end{array}\right.

We introduce a new weighted energy estimate instead of complex spectral analysis to prove the lower bound of the decay rate. From (3.70), we have

(3.71) 12ddt[e2|ξ|2t|(u^L,τ^L)|2]|ξ|2e2|ξ|2t|u^L|2=0,\displaystyle\frac{1}{2}\frac{d}{dt}[e^{2|\xi|^{2}t}|(\hat{u}_{L},\hat{\tau}_{L})|^{2}]-|\xi|^{2}e^{2|\xi|^{2}t}|\hat{u}_{L}|^{2}=0,

which implies that

(3.72) |ξ|2s1|(u^L,τ^L)|2=|ξ|2s1e2|ξ|2t|(u^0,τ^0)|2+0t2|ξ|2s1+2e2|ξ|2(ts)|u^L|2𝑑s.\displaystyle|\xi|^{2s_{1}}|(\hat{u}_{L},\hat{\tau}_{L})|^{2}=|\xi|^{2s_{1}}e^{-2|\xi|^{2}t}|(\hat{u}_{0},\hat{\tau}_{0})|^{2}+\int_{0}^{t}2|\xi|^{2s_{1}+2}e^{-2|\xi|^{2}(t-s^{\prime})}|\hat{u}_{L}|^{2}ds^{\prime}.

According to 0<c0=|2(u0,τ0)𝑑x|=|(u^0(0),τ^0(0))|0<c_{0}=|\int_{\mathbb{R}^{2}}(u_{0},\tau_{0})dx|=|(\hat{u}_{0}(0),\hat{\tau}_{0}(0))|, we deduce that there exists η>0\eta>0 such that |(u^0(ξ),τ^0(ξ))|c02|(\hat{u}_{0}(\xi),\hat{\tau}_{0}(\xi))|\geq\frac{c_{0}}{2} if ξB(0,η)\xi\in B(0,\eta). From (3.72), we have

(3.73) (uL,τL)H˙s12\displaystyle\|(u_{L},\tau_{L})\|_{\dot{H}^{s_{1}}}^{2} |ξ|η|ξ|2s1e2|ξ|2t|(u^0,τ^0)|2𝑑ξ\displaystyle\geq\int_{|\xi|\leq\eta}|\xi|^{2s_{1}}e^{-2|\xi|^{2}t}|(\hat{u}_{0},\hat{\tau}_{0})|^{2}d\xi
c024|ξ|η|ξ|2s1e2|ξ|2t𝑑ξ\displaystyle\geq\frac{c^{2}_{0}}{4}\int_{|\xi|\leq\eta}|\xi|^{2s_{1}}e^{-2|\xi|^{2}t}d\xi
C02(1+t)1s1,\displaystyle\geq C^{2}_{0}(1+t)^{-1-s_{1}},

where C02=c024|y|η|y|2s1e2|y|2𝑑yC^{2}_{0}=\frac{c^{2}_{0}}{4}\int_{|y|\leq\eta}|y|^{2s_{1}}e^{-2|y|^{2}}dy. Taking uN=uuLu_{N}=u-u_{L}, τN=ττL\tau_{N}=\tau-\tau_{L} and PN=PPLP_{N}=P-P_{L}, then we immediately obtain Λs1(uN,τN)L22C(1+t)s11\|\Lambda^{s_{1}}(u_{N},\tau_{N})\|^{2}_{L^{2}}\leq C(1+t)^{-s_{1}-1} and (uN,τN)L(0,;B˙2,1)(u_{N},\tau_{N})\in L^{\infty}(0,\infty;\dot{B}^{-1}_{2,\infty}). Moreover, we have

(3.77) {tuN+PNdivτN=F,divuN=0,tτND(uN)ΔτN=G,uN|t=0=τN|t=0=0.\displaystyle\left\{\begin{array}[]{l}\partial_{t}u_{N}+\nabla P_{N}-div~{}\tau_{N}=F,~{}~{}~{}~{}div~{}u_{N}=0,\\[4.30554pt] \partial_{t}\tau_{N}-D(u_{N})-\Delta\tau_{N}=G,\\[4.30554pt] u_{N}|_{t=0}=\tau_{N}|_{t=0}=0.\\[4.30554pt] \end{array}\right.

According to (3.77) and time decay rates for (uN,τN)(u_{N},\tau_{N}) and (u,τ)(u,\tau), we deduce that

(3.78) 12ddt(uN,τN)L22+τNL22\displaystyle\frac{1}{2}\frac{d}{dt}\|(u_{N},\tau_{N})\|^{2}_{L^{2}}+\|\nabla\tau_{N}\|^{2}_{L^{2}} =F,uN+G,τN\displaystyle=\langle F,u_{N}\rangle+\langle G,\tau_{N}\rangle
CuL2uL4uNL4+CτNL4(τ,u)L2(τ,u)L4\displaystyle\leq C\|\nabla u\|_{L^{2}}\|u\|_{L^{4}}\|u_{N}\|_{L^{4}}+C\|\tau_{N}\|_{L^{4}}\|\nabla(\tau,u)\|_{L^{2}}\|(\tau,u)\|_{L^{4}}
Cδ(1+t)2,\displaystyle\leq C\delta(1+t)^{-2},

and

(3.79) ddtτN,uN+12uNL22\displaystyle\frac{d}{dt}\langle\tau_{N},-\nabla u_{N}\rangle+\frac{1}{2}\|\nabla u_{N}\|^{2}_{L^{2}} =G+ΔτN,uN(F+divτN),divτN\displaystyle=\langle G+\Delta\tau_{N},-\nabla u_{N}\rangle-\langle\mathbb{P}(F+div~{}\tau_{N}),div~{}\tau_{N}\rangle
C(1+t)2.\displaystyle\leq C(1+t)^{-2}.

Using (3.77) again, we obtain

(3.80) 12ddtuNL22\displaystyle\frac{1}{2}\frac{d}{dt}\|\nabla u_{N}\|^{2}_{L^{2}} =F,ΔuNdivτN,ΔuN\displaystyle=\langle F,-\Delta u_{N}\rangle-\langle div~{}\tau_{N},-\Delta u_{N}\rangle
Cδ(1+t)2.\displaystyle\leq C\delta(1+t)^{-2}.

By (3.78)-(3.80), we have

(3.81) ddt((uN,τN)L22+uNL22+2k0τN,uN)\displaystyle\frac{d}{dt}(\|(u_{N},\tau_{N})\|^{2}_{L^{2}}+\|\nabla u_{N}\|^{2}_{L^{2}}+2k_{0}\langle\tau_{N},-\nabla u_{N}\rangle)
+2τNL22+k0uNL22\displaystyle+2\|\nabla\tau_{N}\|^{2}_{L^{2}}+k_{0}\|\nabla u_{N}\|^{2}_{L^{2}}
C(δ+k0)(1+t)2,\displaystyle\leq C(\delta+k_{0})(1+t)^{-2},

which implies that

(3.82) ddt((uN,τN)L22+uNL22+2k0τN,uN)+k0C12(1+t)uNH12+C11+tτNL22\displaystyle\frac{d}{dt}(\|(u_{N},\tau_{N})\|^{2}_{L^{2}}+\|\nabla u_{N}\|^{2}_{L^{2}}+2k_{0}\langle\tau_{N},-\nabla u_{N}\rangle)+\frac{k_{0}C_{1}}{2(1+t)}\|u_{N}\|^{2}_{H^{1}}+\frac{C_{1}}{1+t}\|\tau_{N}\|^{2}_{L^{2}}
CC11+tS(t)|u^N(ξ)|2+|τ^N(ξ)|2dξ+C(δ+k0)(1+t)2.\displaystyle\leq\frac{CC_{1}}{1+t}\int_{S(t)}|\hat{u}_{N}(\xi)|^{2}+|\hat{\tau}_{N}(\xi)|^{2}d\xi+C(\delta+k_{0})(1+t)^{-2}.

Similar to (3.28) and (3.51), we infer that

(3.83) S(t)|u^N|2+|τ^N|2dξ\displaystyle\int_{S(t)}|\hat{u}_{N}|^{2}+|\hat{\tau}_{N}|^{2}d\xi CS(t)0t|F^u^¯N|+|G^τ^¯N|dsdξ\displaystyle\leq C\int_{S(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{u}}_{N}|+|\hat{G}\cdot\bar{\hat{\tau}}_{N}|ds^{\prime}d\xi
C(1+t)10t(u,τ)L2(u,τ)L2(uN,τN)B˙2,1𝑑s\displaystyle\leq C(1+t)^{-1}\int_{0}^{t}\|(u,\tau)\|_{L^{2}}\|\nabla(u,\tau)\|_{L^{2}}\|(u_{N},\tau_{N})\|_{\dot{B}^{-1}_{2,\infty}}ds^{\prime}
Cδ(1+t)1.\displaystyle\leq C\delta(1+t)^{-1}.

According to (3.82) and (3.83), we obtain

(uN,τN)L22+uNL22C(δC1+k0)(1+t)1.\displaystyle\|(u_{N},\tau_{N})\|^{2}_{L^{2}}+\|\nabla u_{N}\|^{2}_{L^{2}}\leq C(\delta C_{1}+k_{0})(1+t)^{-1}.

Applying Λs1\Lambda^{s_{1}} to (3.77), 0s1s0\leq s_{1}\leq s, we get

(3.86) {tΛs1uN+Λs1PNdivΛs1τN=Λs1F,tΛs1τND(Λs1uN)ΔΛs1τN=Λs1G.\displaystyle\left\{\begin{array}[]{l}\partial_{t}\Lambda^{s_{1}}u_{N}+\nabla\Lambda^{s_{1}}P_{N}-div~{}\Lambda^{s_{1}}\tau_{N}=\Lambda^{s_{1}}F,\\[4.30554pt] \partial_{t}\Lambda^{s_{1}}\tau_{N}-D(\Lambda^{s_{1}}u_{N})-\Delta\Lambda^{s_{1}}\tau_{N}=\Lambda^{s_{1}}G.\\[4.30554pt] \end{array}\right.

Using (3.86), Lemmas 2.2-2.3 and time decay rates, we infer that

(3.87) 12ddtΛs(uN,τN)L22+ΛsτNL22\displaystyle\frac{1}{2}\frac{d}{dt}\|\Lambda^{s}(u_{N},\tau_{N})\|^{2}_{L^{2}}+\|\nabla\Lambda^{s}\tau_{N}\|^{2}_{L^{2}}
=[Λs,u]u,ΛsuNuΛsu,ΛsuN+ΛsG,ΛsτN\displaystyle=-\langle[\Lambda^{s},u\cdot\nabla]u,\Lambda^{s}u_{N}\rangle-\langle u\cdot\nabla\Lambda^{s}u,\Lambda^{s}u_{N}\rangle+\langle\Lambda^{s}G,\Lambda^{s}\tau_{N}\rangle
=[Λs,u]u,ΛsuNuΛsuL,ΛsuN+Λs1G,Λs+1τN\displaystyle=-\langle[\Lambda^{s},u\cdot\nabla]u,\Lambda^{s}u_{N}\rangle-\langle u\cdot\nabla\Lambda^{s}u_{L},\Lambda^{s}u_{N}\rangle+\langle\Lambda^{s-1}G,\Lambda^{s+1}\tau_{N}\rangle
Cδ((1+t)2s+(1+t)1s2Λs+1τNL2)+CuLΛsuLL2ΛsuNL2\displaystyle\leq C\delta((1+t)^{-2-s}+(1+t)^{-1-\frac{s}{2}}\|\Lambda^{s+1}\tau_{N}\|_{L^{2}})+C\|u\|_{L^{\infty}}\|\nabla\Lambda^{s}u_{L}\|_{L^{2}}\|\Lambda^{s}u_{N}\|_{L^{2}}
Cδ(1+t)2s+CδΛs+1τNL22,\displaystyle\leq C\delta(1+t)^{-2-s}+C\delta\|\Lambda^{s+1}\tau_{N}\|^{2}_{L^{2}},

and

(3.88) ddtΛs1τN,Λs1uN+12Λs1uNL22\displaystyle\frac{d}{dt}\langle\Lambda^{s-1}\tau_{N},-\nabla\Lambda^{s-1}u_{N}\rangle+\frac{1}{2}\|\nabla\Lambda^{s-1}u_{N}\|^{2}_{L^{2}}
=Λs1(G+ΔτN),Λs1uN+Λs1(F+divτN),divΛs1τN\displaystyle=\langle\Lambda^{s-1}(G+\Delta\tau_{N}),-\nabla\Lambda^{s-1}u_{N}\rangle+\langle\Lambda^{s-1}\mathbb{P}(F+div~{}\tau_{N}),div~{}\Lambda^{s-1}\tau_{N}\rangle
14Λs1uNL22+CΛsτNH12+Cδ(1+t)1s.\displaystyle\leq\frac{1}{4}\|\nabla\Lambda^{s-1}u_{N}\|^{2}_{L^{2}}+C\|\Lambda^{s}\tau_{N}\|^{2}_{H^{1}}+C\delta(1+t)^{-1-s}.

Combining (3.87) and (3.88), we get

(3.89) ddt[(1+t)Λs(uN,τN)L22+4Λs1τN,Λs1uN]+(1+t)ΛsτNL22+Λs1uNL22\displaystyle\frac{d}{dt}[(1+t)\|\Lambda^{s}(u_{N},\tau_{N})\|^{2}_{L^{2}}+4\langle\Lambda^{s-1}\tau_{N},-\nabla\Lambda^{s-1}u_{N}\rangle]+(1+t)\|\nabla\Lambda^{s}\tau_{N}\|^{2}_{L^{2}}+\|\nabla\Lambda^{s-1}u_{N}\|^{2}_{L^{2}}
Λs(uN,τN)L22+CΛsτNL22+Cδ(1+t)1s,\displaystyle\leq\|\Lambda^{s}(u_{N},\tau_{N})\|^{2}_{L^{2}}+C\|\Lambda^{s}\tau_{N}\|^{2}_{L^{2}}+C\delta(1+t)^{-1-s},

which implies that

(3.90) ddt[(1+t)Λs(uN,τN)L22+4Λs1τN,Λs1uN]+C22ΛsτNL22+Λs1uNL22\displaystyle\frac{d}{dt}[(1+t)\|\Lambda^{s}(u_{N},\tau_{N})\|^{2}_{L^{2}}+4\langle\Lambda^{s-1}\tau_{N},-\nabla\Lambda^{s-1}u_{N}\rangle]+\frac{C_{2}}{2}\|\Lambda^{s}\tau_{N}\|^{2}_{L^{2}}+\|\nabla\Lambda^{s-1}u_{N}\|^{2}_{L^{2}}
C2S0(t)|ξ|2s|τ^N(ξ)|2𝑑ξ+Cδ(1+t)1s\displaystyle\leq C_{2}\int_{S_{0}(t)}|\xi|^{2s}|\hat{\tau}_{N}(\xi)|^{2}d\xi+C\delta(1+t)^{-1-s}
C[δ+(δC1+k0)C2](1+t)1s.\displaystyle\leq C[\delta+(\delta C_{1}+k_{0})C_{2}](1+t)^{-1-s}.

Note that k0C1k_{0}C_{1} and C2C_{2} large enough. We need to take (δC1+k0)C2(\delta C_{1}+k_{0})C_{2} small enough. According to (3.90), we obtain

(3.91) (1+t)s+2Λs(uN,τN)L22\displaystyle(1+t)^{s+2}\|\Lambda^{s}(u_{N},\tau_{N})\|^{2}_{L^{2}} 4(1+t)s+1Λs1τN,Λs1uN+C[δ+(δ+k0)kC2](1+t)\displaystyle\leq 4(1+t)^{s+1}\langle\Lambda^{s-1}\tau_{N},\nabla\Lambda^{s-1}u_{N}\rangle+C[\delta+(\delta+k_{0})kC_{2}](1+t)
12(1+t)s+2Λs(uN,τN)L22+C[δ+(δC1+k0)C2](1+t).\displaystyle\leq\frac{1}{2}(1+t)^{s+2}\|\Lambda^{s}(u_{N},\tau_{N})\|^{2}_{L^{2}}+C[\delta+(\delta C_{1}+k_{0})C_{2}](1+t).

Take suitable constants in (3.91), we have

(3.92) Λs(uN,τN)L22C024(1+t)1s,\displaystyle\|\Lambda^{s}(u_{N},\tau_{N})\|^{2}_{L^{2}}\leq\frac{C^{2}_{0}}{4}(1+t)^{-1-s},

which implies that

(3.93) Λs1(uN,τN)L22C024(1+t)1s1.\displaystyle\|\Lambda^{s_{1}}(u_{N},\tau_{N})\|^{2}_{L^{2}}\leq\frac{C^{2}_{0}}{4}(1+t)^{-1-s_{1}}.

According to (3.73) and (3.93), we infer that

(3.94) (u,τ)H˙s12C024(1+t)1s1.\displaystyle\|(u,\tau)\|_{\dot{H}^{s_{1}}}^{2}\geq\frac{C^{2}_{0}}{4}(1+t)^{-1-s_{1}}.

Therefore, we complete the proof of Theorem 1.2. \Box

4 Optimal decay rate with 12β<1\frac{1}{2}\leq\beta<1

In this section, we present optimal decay rate for the generalized Oldroyd-B model (1.8) in fractional case 12β<1\frac{1}{2}\leq\beta<1. We point out that the refinement of Schonbek’s strategy also work in this case with a extra lower energy dissipation estimate. Similarly, we obtain the decay rates in H1H^{1}. Moreover, considering the decay rate for the highest derivative of the solution to (1.8), the main difficulty is unclosed energy estimate. To overcome this difficulty, we introduce another method which flexibly combines the Fourier spiltting method and the time weighted energy estimate. We rewrite (1.8) as follows.

(4.3) {tu+Pdivτ=F,divu=0,tτ+(Δ)βτD(u)=G.\displaystyle\left\{\begin{array}[]{l}\partial_{t}u+\nabla P-div~{}\tau=F,~{}~{}~{}~{}div~{}u=0,\\[4.30554pt] \partial_{t}\tau+(-\Delta)^{\beta}\tau-D(u)=G.\\[4.30554pt] \end{array}\right.

For convenience of explanation, we assume that β=12\beta=\frac{1}{2}. By Theorem 1.1, then we have

(4.4) ddt((u,τ)Hs2+2ku,τHs12)+k2uHs122+Λ12τHs20.\displaystyle\frac{d}{dt}(\|(u,\tau)\|^{2}_{H^{s}}+2k\langle-\nabla u,\tau\rangle_{H^{s-\frac{1}{2}}})+\frac{k}{2}\|\nabla u\|^{2}_{H^{s-\frac{1}{2}}}+\|\Lambda^{\frac{1}{2}}\tau\|^{2}_{H^{s}}\leq 0.

To present optimal decay rate for (4.3), we need additional lower energy dissipation estimate for uu. According to properties of Calderon-Zygmund operator and Lemma 2.2, we infer that

(4.5) ddtτ,Λ1(u)+12Λ12uL22\displaystyle\frac{d}{dt}\langle\tau,\Lambda^{-1}(-\nabla u)\rangle+\frac{1}{2}\|\Lambda^{\frac{1}{2}}u\|^{2}_{L^{2}} =GΛτ,Λ1u(F+divτ),Λ1divτ\displaystyle=\langle G-\Lambda\tau,-\Lambda^{-1}\nabla u\rangle-\langle\mathbb{P}(F+div~{}\tau),\Lambda^{-1}div~{}\tau\rangle
C(Λ12τL2Λ12uL2+Λ12τL22\displaystyle\leq C(\|\Lambda^{\frac{1}{2}}\tau\|_{L^{2}}\|\Lambda^{\frac{1}{2}}u\|_{L^{2}}+\|\Lambda^{\frac{1}{2}}\tau\|^{2}_{L^{2}}
+uL42τL2+uL2uL4τL4)\displaystyle+\|u\|^{2}_{L^{4}}\|\nabla\tau\|_{L^{2}}+\|\nabla u\|_{L^{2}}\|u\|_{L^{4}}\|\tau\|_{L^{4}})
CδΛ12uL22+CΛ12τL22.\displaystyle\leq C\delta\|\Lambda^{\frac{1}{2}}u\|^{2}_{L^{2}}+C\|\Lambda^{\frac{1}{2}}\tau\|^{2}_{L^{2}}.

Combining (4.4) and (4.5), we obtain

(4.6) ddt[(u,τ)Hs2+2k(u,τHs12+τ,Λ1u)]+k2Λ12uHs2+Λ12τHs20.\displaystyle\frac{d}{dt}[\|(u,\tau)\|^{2}_{H^{s}}+2k(\langle-\nabla u,\tau\rangle_{H^{s-\frac{1}{2}}}+\langle\tau,-\Lambda^{-1}\nabla u\rangle)]+\frac{k}{2}\|\Lambda^{\frac{1}{2}}u\|^{2}_{H^{s}}+\|\Lambda^{\frac{1}{2}}\tau\|^{2}_{H^{s}}\leq 0.

Define S1(t)={ξ:|ξ|C2(1+t)1}S_{1}(t)=\{\xi:|\xi|\leq C_{2}(1+t)^{-1}\} for β=12\beta=\frac{1}{2}. By (4.6), we get

(4.7) ddt[(u,τ)Hs2+2k(u,τHs12+τ,Λ1u)]+kC22(1+t)uHs2+C21+tτHs2\displaystyle\frac{d}{dt}[\|(u,\tau)\|^{2}_{H^{s}}+2k(\langle-\nabla u,\tau\rangle_{H^{s-\frac{1}{2}}}+\langle\tau,-\Lambda^{-1}\nabla u\rangle)]+\frac{kC_{2}}{2(1+t)}\|u\|^{2}_{H^{s}}+\frac{C_{2}}{1+t}\|\tau\|^{2}_{H^{s}}
C1+tS1(t)|u^(ξ)|2+|τ^(ξ)|2dξ.\displaystyle\leq\frac{C}{1+t}\int_{S_{1}(t)}|\hat{u}(\xi)|^{2}+|\hat{\tau}(\xi)|^{2}d\xi.

According to the refinement of the Fourier spiltting method in Theorem 1.2, one can rediscover the following proposition with β=12\beta=\frac{1}{2} , which contain optimal decay for the solution in H1H^{1} [27].

Proposition 4.1.

Let d=2d=2 and 12β<1\frac{1}{2}\leq\beta<1. Let (u,τ)(u,\tau) be a strong solution of (1.4) with the initial data (u0,τ0)(u_{0},\tau_{0}) under the condition in Theorem 1.1. Then we have

(4.8) ddt[(u,τ)Hs2+2k(u,τHsβ+τ,Λ2+2βu)]+k2ΛβuHs+12β2+ΛβτHs20.\displaystyle\frac{d}{dt}[\|(u,\tau)\|^{2}_{H^{s}}+2k(\langle-\nabla u,\tau\rangle_{H^{s-\beta}}+\langle\tau,-\Lambda^{-2+2\beta}\nabla u\rangle)]+\frac{k}{2}\|\Lambda^{\beta}u\|^{2}_{H^{s+1-2\beta}}+\|\Lambda^{\beta}\tau\|^{2}_{H^{s}}\leq 0.

In addition, if (u0,τ0)B˙2,1(u_{0},\tau_{0})\in\dot{B}^{-1}_{2,\infty}, then there exists C>0C>0 such that for every t>0t>0, there holds

(4.9) Λs2(u,τ)Hss2C(1+t)12βs22β,\displaystyle\|\Lambda^{s_{2}}(u,\tau)\|_{H^{s-s_{2}}}\leq C(1+t)^{-\frac{1}{2\beta}-\frac{s_{2}}{2\beta}},

where 0s210\leq s_{2}\leq 1.

We omit the proof of Proposition 4.1, which is similar to the proof of (4.7) and Theorem 1.2.
The proof of Theorem 1.3: Applying Λs1\Lambda^{s_{1}} to (4.3), we obtain

(4.12) {tΛs1u+Λs1PdivΛs1τ=Λs1F,tΛs1τD(Λs1u)+(Δ)βΛs1τ=Λs1G.\displaystyle\left\{\begin{array}[]{l}\partial_{t}\Lambda^{s_{1}}u+\nabla\Lambda^{s_{1}}P-div~{}\Lambda^{s_{1}}\tau=\Lambda^{s_{1}}F,\\[4.30554pt] \partial_{t}\Lambda^{s_{1}}\tau-D(\Lambda^{s_{1}}u)+(-\Delta)^{\beta}\Lambda^{s_{1}}\tau=\Lambda^{s_{1}}G.\\[4.30554pt] \end{array}\right.

We first introduce the energy and dissipation functionals for (u,τ)(u,\tau) as follows:

E¯β=(1+t)aΛs(u,τ)L22+kΛsβτ,Λsβu,\overline{E}_{\beta}=(1+t)^{a}\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+k\langle\Lambda^{s-\beta}\tau,-\nabla\Lambda^{s-\beta}u\rangle,

and

D¯β=(1+t)aΛs+βτL22+k4ΛsβuL22,\overline{D}_{\beta}=(1+t)^{a}\|\Lambda^{s+\beta}\tau\|^{2}_{L^{2}}+\frac{k}{4}\|\nabla\Lambda^{s-\beta}u\|^{2}_{L^{2}},

where a=21β[0,1)a=2-\frac{1}{\beta}\in[0,1) and kk is small enough to overcome the difficulty about inner product estimate of linear term divτdiv\tau in (4.12)1(\ref{eq10})_{1} with β=12\beta=\frac{1}{2}. By (4.12), we have

(4.13) 12ddtΛs(u,τ)L22+Λs+βτL22=ΛsF,Λsu+ΛsG,Λsτ,\displaystyle\frac{1}{2}\frac{d}{dt}\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+\|\Lambda^{s+\beta}\tau\|^{2}_{L^{2}}=\langle\Lambda^{s}F,\Lambda^{s}u\rangle+\langle\Lambda^{s}G,\Lambda^{s}\tau\rangle,

and

(4.14) ddtΛsβτ,Λsβu+12ΛsβuL22\displaystyle\frac{d}{dt}\langle\Lambda^{s-\beta}\tau,-\nabla\Lambda^{s-\beta}u\rangle+\frac{1}{2}\|\nabla\Lambda^{s-\beta}u\|^{2}_{L^{2}}
=(ΛsβGΛs+βτ),Λsβu+Λsβ(F+divτ),divΛsβτ.\displaystyle=\langle(-\Lambda^{s-\beta}G-\Lambda^{s+\beta}\tau),\nabla\Lambda^{s-\beta}u\rangle+\langle\Lambda^{s-\beta}\mathbb{P}(F+div~{}\tau),div~{}\Lambda^{s-\beta}\tau\rangle.

Combining (4.13) and (4.14), we get

(4.15) ddtE¯β+2D¯β\displaystyle\frac{d}{dt}\overline{E}_{\beta}+2\overline{D}_{\beta} =a(1+t)a1Λs(u,τ)L22+2(1+t)a(ΛsF,Λsu+ΛsG,Λsτ)\displaystyle=a(1+t)^{a-1}\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+2(1+t)^{a}(\langle\Lambda^{s}F,\Lambda^{s}u\rangle+\langle\Lambda^{s}G,\Lambda^{s}\tau\rangle)
+k(ΛsβGΛs+βτ),Λsβu+kΛsβ(F+divτ),divΛsβτ.\displaystyle+k\langle(-\Lambda^{s-\beta}G-\Lambda^{s+\beta}\tau),\nabla\Lambda^{s-\beta}u\rangle+k\langle\Lambda^{s-\beta}\mathbb{P}(F+div~{}\tau),div~{}\Lambda^{s-\beta}\tau\rangle.

By Lemma 2.2, we obtain ΛsuL2CuL21θΛs+1βuL2θ\|\Lambda^{s}u\|_{L^{2}}\leq C\|u\|^{1-\theta}_{L^{2}}\|\Lambda^{s+1-\beta}u\|^{\theta}_{L^{2}} and uLCuL21θ1Λs+1βuL2θ1\|\nabla u\|_{L^{\infty}}\leq C\|u\|^{1-\theta_{1}}_{L^{2}}\|\Lambda^{s+1-\beta}u\|^{\theta_{1}}_{L^{2}} with (θ,θ1)=(ss+1β,2s+1β)(\theta,\theta_{1})=(\frac{s}{s+1-\beta},\frac{2}{s+1-\beta}). By Lemmas 2.2-2.3 and Proposition 4.1, we have

(4.16) (1+t)aΛsF,Λsu\displaystyle(1+t)^{a}\langle\Lambda^{s}F,\Lambda^{s}u\rangle C(1+t)auLΛsuL22\displaystyle\leq C(1+t)^{a}\|\nabla u\|_{L^{\infty}}\|\Lambda^{s}u\|^{2}_{L^{2}}
C(1+t)auLβuL21βΛs+1βuL22\displaystyle\leq C(1+t)^{a}\|\nabla u\|^{\beta}_{L^{\infty}}\|\nabla u\|^{1-\beta}_{L^{2}}\|\Lambda^{s+1-\beta}u\|^{2}_{L^{2}}
C(1+t)a(1+t)1212βΛs+1βuL22\displaystyle\leq C(1+t)^{a}(1+t)^{-\frac{1}{2}-\frac{1}{2\beta}}\|\Lambda^{s+1-\beta}u\|^{2}_{L^{2}}
C(1+t)3232βΛs+1βuL22.\displaystyle\leq C(1+t)^{\frac{3}{2}-\frac{3}{2\beta}}\|\Lambda^{s+1-\beta}u\|^{2}_{L^{2}}.

When 12β<1\frac{1}{2}\leq\beta<1, we have (1+t)aΛsF,ΛsuδD¯β(1+t)^{a}\langle\Lambda^{s}F,\Lambda^{s}u\rangle\leq\delta\overline{D}_{\beta}. Similarly, we deduce that

(4.17) (1+t)aΛsG,Λsτ\displaystyle(1+t)^{a}\langle\Lambda^{s}G,\Lambda^{s}\tau\rangle C(1+t)aΛsβGL2Λs+βτL2\displaystyle\leq C(1+t)^{a}\|\Lambda^{s-\beta}G\|_{L^{2}}\|\Lambda^{s+\beta}\tau\|_{L^{2}}
C(1+t)aΛs+βτL2(uLΛs+1βτL2+τLΛsβuL2)\displaystyle\leq C(1+t)^{a}\|\Lambda^{s+\beta}\tau\|_{L^{2}}(\|u\|_{L^{\infty}}\|\Lambda^{s+1-\beta}\tau\|_{L^{2}}+\|\tau\|_{L^{\infty}}\|\nabla\Lambda^{s-\beta}u\|_{L^{2}})
δD¯β+C(1+t)a(uL2Λs+1βτL22+τL2ΛsβuL22)\displaystyle\leq\delta\overline{D}_{\beta}+C(1+t)^{a}(\|u\|^{2}_{L^{\infty}}\|\Lambda^{s+1-\beta}\tau\|^{2}_{L^{2}}+\|\tau\|^{2}_{L^{\infty}}\|\nabla\Lambda^{s-\beta}u\|^{2}_{L^{2}})
2δD¯β+(1+t)a1βΛs+1βτL22.\displaystyle\leq 2\delta\overline{D}_{\beta}+(1+t)^{a-\frac{1}{\beta}}\|\Lambda^{s+1-\beta}\tau\|^{2}_{L^{2}}.

Applying Lemma 2.2 again, we get Λs+1βτL2CτL21θ2Λs+βτL2θ2\|\Lambda^{s+1-\beta}\tau\|_{L^{2}}\leq C\|\tau\|^{1-\theta_{2}}_{L^{2}}\|\Lambda^{s+\beta}\tau\|^{\theta_{2}}_{L^{2}} with θ2=s+1βs+β\theta_{2}=\frac{s+1-\beta}{s+\beta}, which implies that

(4.18) Λs+1βτL22\displaystyle\|\Lambda^{s+1-\beta}\tau\|^{2}_{L^{2}} C(1+t)s+1β+1τL22+C(1+t)aΛs+βτL22\displaystyle\leq C(1+t)^{-\frac{s+1}{\beta}+1}\|\tau\|^{2}_{L^{2}}+C(1+t)^{a}\|\Lambda^{s+\beta}\tau\|^{2}_{L^{2}}
C(1+t)s+1β+a1+C(1+t)aΛs+βτL22.\displaystyle\leq C(1+t)^{-\frac{s+1}{\beta}+a-1}+C(1+t)^{a}\|\Lambda^{s+\beta}\tau\|^{2}_{L^{2}}.

Combining (4.17) and (4.18), we infer that

(4.19) (1+t)aΛsG,ΛsτCδD¯β+C(1+t)s+1β+a1.\displaystyle(1+t)^{a}\langle\Lambda^{s}G,\Lambda^{s}\tau\rangle\leq C\delta\overline{D}_{\beta}+C(1+t)^{-\frac{s+1}{\beta}+a-1}.

Moreover, we can easily deduce from (4.17) and (4.18) that

(4.20) k(ΛsβGΛs+βτ),Λsβu+kΛsβ(F+divτ),divΛsβτ\displaystyle k\langle(-\Lambda^{s-\beta}G-\Lambda^{s+\beta}\tau),\nabla\Lambda^{s-\beta}u\rangle+k\langle\Lambda^{s-\beta}\mathbb{P}(F+div\tau),div\Lambda^{s-\beta}\tau\rangle
C(δ+k)D¯β+C(1+t)s+1β+a1.\displaystyle\leq C(\delta+k)\overline{D}_{\beta}+C(1+t)^{-\frac{s+1}{\beta}+a-1}.

According (4.15)-(4.20), we infer that

(4.21) ddtE¯β+2D¯β\displaystyle\frac{d}{dt}\overline{E}_{\beta}+2\overline{D}_{\beta} a(1+t)a1Λs(u,τ)L22+C(δ+k)D¯β++C(1+t)s+1β+a1.\displaystyle\leq a(1+t)^{a-1}\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+C(\delta+k)\overline{D}_{\beta}++C(1+t)^{-\frac{s+1}{\beta}+a-1}.

Define Sβ(t)={ξ:|ξ|2β4C2(1+t)1}S^{\beta}(t)=\{\xi:|\xi|^{2\beta}\leq 4C_{2}(1+t)^{-1}\}. By (4.21), we get

(4.22) ddtE¯β+kC2(1+t)a1Λs(u,τ)L22\displaystyle\frac{d}{dt}\overline{E}_{\beta}+kC_{2}(1+t)^{a-1}\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}
C(1+t)s+1β+a1+C(1+t)a1Sβ(t)|ξ|2s(|u^(ξ)|2+|τ^(ξ)|2)𝑑ξ\displaystyle\leq C(1+t)^{-\frac{s+1}{\beta}+a-1}+C(1+t)^{a-1}\int_{S^{\beta}(t)}|\xi|^{2s}(|\hat{u}(\xi)|^{2}+|\hat{\tau}(\xi)|^{2})d\xi
C(1+t)s+1β+a1,\displaystyle\leq C(1+t)^{-\frac{s+1}{\beta}+a-1},

which implies that

(4.23) (1+t)s+1βa+1E¯β+0tkC2(1+s)s+1βΛs(τ,u)L22𝑑s\displaystyle(1+t)^{\frac{s+1}{\beta}-a+1}\overline{E}_{\beta}+\int_{0}^{t}kC_{2}(1+s^{\prime})^{\frac{s+1}{\beta}}\|\Lambda^{s}(\tau,u)\|^{2}_{L^{2}}ds^{\prime}
C(1+t)+Cs0t(1+s)s+1βaΛsβτ,Λsβu𝑑s\displaystyle\leq C(1+t)+C_{s}\int_{0}^{t}(1+s^{\prime})^{\frac{s+1}{\beta}-a}\langle\Lambda^{s-\beta}\tau,-\nabla\Lambda^{s-\beta}u\rangle ds^{\prime}
C(1+t)+Cs0t(1+s)s+1βΛsuL22𝑑s+Cs0t(1+s)s+1β2aΛs+12βτL22𝑑s\displaystyle\leq C(1+t)+C_{s}\int_{0}^{t}(1+s^{\prime})^{\frac{s+1}{\beta}}\|\Lambda^{s}u\|^{2}_{L^{2}}ds^{\prime}+C_{s}\int_{0}^{t}(1+s^{\prime})^{\frac{s+1}{\beta}-2a}\|\Lambda^{s+1-2\beta}\tau\|^{2}_{L^{2}}ds^{\prime}
C(1+t)+Cs0t(1+s)s+1βΛs(τ,u)L22𝑑s+Cs0t(1+s)1sβτL22𝑑s\displaystyle\leq C(1+t)+C_{s}\int_{0}^{t}(1+s^{\prime})^{\frac{s+1}{\beta}}\|\Lambda^{s}(\tau,u)\|^{2}_{L^{2}}ds^{\prime}+C_{s}\int_{0}^{t}(1+s^{\prime})^{\frac{1-s}{\beta}}\|\tau\|^{2}_{L^{2}}ds^{\prime}
C(1+t)+Cs0t(1+s)s+1βΛs(τ,u)L22𝑑s.\displaystyle\leq C(1+t)+C_{s}\int_{0}^{t}(1+s^{\prime})^{\frac{s+1}{\beta}}\|\Lambda^{s}(\tau,u)\|^{2}_{L^{2}}ds^{\prime}.

Taking kC2CskC_{2}\geq C_{s} and using Lemma 2.2, we infer that

(4.24) (1+t)s+1β+1Λs(u,τ)L22\displaystyle(1+t)^{\frac{s+1}{\beta}+1}\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}} C(1+t)+Ck(1+t)s+1βa+1Λsβτ,Λsβu\displaystyle\leq C(1+t)+Ck(1+t)^{\frac{s+1}{\beta}-a+1}\langle\Lambda^{s-\beta}\tau,-\nabla\Lambda^{s-\beta}u\rangle
C[(1+t)+k(1+t)s+1+ββΛsuL22+k(1+t)s+33ββΛs+12βτL22]\displaystyle\leq C[(1+t)+k(1+t)^{\frac{s+1+\beta}{\beta}}\|\Lambda^{s}u\|^{2}_{L^{2}}+k(1+t)^{\frac{s+3-3\beta}{\beta}}\|\Lambda^{s+1-2\beta}\tau\|^{2}_{L^{2}}]
C(1+t)+Ck(1+t)s+1β+1Λs(u,τ)L22+Ck(1+t)1sβ+1τL22,\displaystyle\leq C(1+t)+Ck(1+t)^{\frac{s+1}{\beta}+1}\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}+Ck(1+t)^{\frac{1-s}{\beta}+1}\|\tau\|^{2}_{L^{2}},

which implies that

(4.25) Λs(u,τ)L22C(1+t)s+1β.\displaystyle\|\Lambda^{s}(u,\tau)\|^{2}_{L^{2}}\leq C(1+t)^{-\frac{s+1}{\beta}}.

The lower bound of time decay rate can be obtained by the similar method in Theorem 1.2. We omit the details here. \Box

Acknowledgments This work was partially supported by the National Natural Science Foundation of China (No.12171493 and No.11671407), the Macao Science and Technology Development Fund (No. 0091/2018/A3), Guangdong Province of China Special Support Program (No. 8-2015), the key project of the Natural Science Foundation of Guangdong province (No. 2016A030311004), and National Key R&\&D Program of China (No. 2021YFA1002100).

References

  • [1] H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011.
  • [2] Y. Cai, Z. Lei, F. Lin, and N. Masmoudi. Vanishing Viscosity Limit for Incompressible Viscoelasticity in Two Dimensions. Comm. Pure Appl. Math., 72(10):2063–2120, 2019.
  • [3] J.-Y. Chemin and N. Masmoudi. About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal., 33(1):84–112, 2001.
  • [4] Y. Chen, M. Li, Q. Yao, and Z. Yao. The sharp time decay rates and stability of large solutions to the two-dimensional phan-thien-tanner system with magnetic field. Asymptotic Anal., 129:451–484, 2022.
  • [5] Y. Chen, M. Li, Q. Yao, and Z. Yao. Sharp rates of decay and global-in-time stabil- ity of large solutions to three-dimensional incompressible phan-thien-tanner system of polymeric flows. SIAM J. Math. Anal., 2023.
  • [6] P. Constantin, J. Wu, J. Zhao, and Y. Zhu. High reynolds number and high weissenberg number Oldroyd-B model with dissipation. J. Evol. Equ., 21(3):2787––2806, 2020.
  • [7] W. Deng, Z. Luo, and Z. Yin. Global solutions and large time behavior for some Oldroyd-B type models in R2{R}^{2}. arXiv, 2021.
  • [8] T. M. Elgindi and J. Liu. Global wellposedness to the generalized Oldroyd type models in R3{R}^{3}. J. Differential Equations, 259(5):1958–1966, 2015.
  • [9] T. M. Elgindi and F. Rousset. Global regularity for some Oldroyd-B type models. Comm. Pure Appl. Math., 68(11):2005–2021, 2015.
  • [10] E. Fernández-Cara, F. Guillén, and R. R. Ortega. Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26(1):1–29, 1998.
  • [11] C. Guillopé and J.-C. Saut. Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél. Math. Anal. Numér., 24(3):369–401, 1990.
  • [12] L. He and P. Zhang. L2L^{2} decay of solutions to a micro-macro model for polymeric fluids near equilibrium. SIAM J. Math. Anal., 40(5):1905–1922, 2008/09.
  • [13] M. Hieber, H. Wen, and R. Zi. Optimal decay rates for solutions to the incompressible Oldroyd-B model in R3{R}^{3}. Nonlinearity, 32(3):833–852, 2019.
  • [14] Z. Lei, C. Liu, and Y. Zhou. Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal., 188(3):371–398, 2008.
  • [15] Z. Lei and Y. Zhou. Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit. SIAM J. Math. Anal., 37(3):797–814, 2005.
  • [16] F. Lin and P. Zhang. On the initial-boundary value problem of the incompressible viscoelastic fluid system. Comm. Pure Appl. Math., 61(4):539–558, 2008.
  • [17] P. L. Lions and N. Masmoudi. Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann. Math. Ser. B, 21(2):131–146, 2000.
  • [18] S. Liu and Y. Wang. Time-decay rate of global solutions to the generalized incompressible Oldroyd-B model with fractional dissipation. Appl. Math. Lett., 131:108032, 2022.
  • [19] W. Luo and Z. Yin. The L2L^{2} decay for the 2D co-rotation FENE dumbbell model of polymeric flows. Adv. Math., 343:522–537, 2019.
  • [20] N. Masmoudi. Global existence of weak solutions to macroscopic models of polymeric flows. J. Math. Pures Appl. (9), 96(5):502–520, 2011.
  • [21] N. Masmoudi. Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math., 191(2):427–500, 2013.
  • [22] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations. I. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 20:265–315, 1966.
  • [23] L. Nirenberg. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13:115–162, 1959.
  • [24] J. G. Oldroyd. Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. Roy. Soc. London Ser. A, 245:278–297, 1958.
  • [25] M. E. Schonbek. L2L^{2} decay for weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal., 88(3):209–222, 1985.
  • [26] M. E. Schonbek. Existence and decay of polymeric flows. SIAM J. Math. Anal., 41(2):564–587, 2009.
  • [27] P. Wang, J. Wu, X. Xu, and Y. Zhong. Sharp decay estimates for Oldroyd-B model with only fractional stress tensor diffusion. J. Funct. Anal., 282:109332, 2022.
  • [28] J. Wu and J. Zhao. Global regularity for the generalized incompressible Oldroyd-B model with only stress tentor dissipation in critical Besov spaces. J. Differential Equations, 316:641––686, 2022.
  • [29] T. Zhang and D. Fang. Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical LpL^{p} framework. SIAM J. Math. Anal., 44(4):2266–2288, 2012.