This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimal decay rate for the 2-D compressible Oldroyd-B and Hall-MHD model

Zhaonan Luo1\mbox{Luo}^{1} 111Email: [email protected], Wei Luo2\mbox{Luo}^{2}222E-mail: [email protected]  and Zhaoyang Yin2,3\mbox{Yin}^{2,3}333E-mail: [email protected]
School1{}^{1}\mbox{School} of Mathematical Sciences, Fudan University, Shanghai 200433, China.
Department2{}^{2}\mbox{Department} of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
Faculty3{}^{3}\mbox{Faculty} of Information Technology,
Macau University of Science and Technology, Macau, China
Abstract

In this paper, we are concerned with long time behavior of the strong solutions to the 2-D compressible Oldroyd-B and Hall-MHD model. By virtue of the improved Fourier splitting method and the time weighted energy estimate, we obtain the L2L^{2} decay rate (1+t)14(1+t)^{-\frac{1}{4}}. According to the Littlewood-Paley theory, we prove that the solutions belong to the critical Besov space with negative index. Finally, we show optimal decay rate in H2H^{2}-framework without the smallness restriction of low frequencies.
2020 Mathematics Subject Classification: 35Q30, 76A10, 76N10.

Keywords: The compressible Oldroyd-B model; The compressible Hall-MHD equations; Besov spaces; Time decay rate.

 

1 Introduction

In this paper we mainly study the compressible Oldroyd-B model [32, 45]:

(1.5) {ϱt+div(ϱu)=0,(ϱu)t+div(ϱuu)(1ω)(Δu+divu)+xP(ϱ)=divτ,τt+uτ+aτ+gb(τ,u)=2ωD(u),ϱ|t=0=ϱ0,u|t=0=u0,τ|t=0=τ0.\displaystyle\left\{\begin{array}[]{ll}\varrho_{t}+div(\varrho u)=0,\\[4.30554pt] (\varrho u)_{t}+div(\varrho u\otimes u)-(1-\omega)(\Delta u+\nabla div~{}u)+\nabla_{x}{P(\varrho)}=div~{}\tau,\\[4.30554pt] \tau_{t}+u\cdot\nabla\tau+a\tau+g_{b}(\tau,\nabla u)=2\omega D(u),\\[4.30554pt] \varrho|_{t=0}=\varrho_{0},~{}~{}u|_{t=0}=u_{0},~{}~{}\tau|_{t=0}=\tau_{0}.\\[4.30554pt] \end{array}\right.

In (1.5), ϱ(t,x)\varrho(t,x) stands for the density of the solvent, u(t,x)u(t,x) denotes the velocity of the polymeric liquid and τ(t,x)\tau(t,x) represents the symmetric tensor of constrains. The parameters ω(0,1)\omega\in(0,1) stands for the coupling constant. The pressure satisfies P(ϱ)=ϱγP(\varrho)=\varrho^{\gamma} with γ1\gamma\geq 1. The parameters satisfy a0a\geq 0 and b[1,1]b\in[-1,1]. Moreover,

gb(τ,u)=τW(u)W(u)τ+b(D(u)τ+τD(u)),g_{b}(\tau,\nabla u)=\tau W(u)-W(u)\tau+b(D(u)\tau+\tau D(u)),

with the vorticity tensor W(u)=u(u)T2W(u)=\frac{\nabla u-(\nabla u)^{T}}{2} and the deformation tensor D(u)=u+(u)T2D(u)=\frac{\nabla u+(\nabla u)^{T}}{2}. For more explanations on the modeling, one can refer to [10] and [45].

Then we introduce the compressible Hall-MHD equations [9, 42]:

(1.10) {ϱt+div(ϱu)=0,(ϱu)t+div(ϱuu)μΔu(μ+λ)divu+xP(ϱ)=(curlB)×B,BtνΔBcurl(u×B)+curl[(curlB)×Bϱ]=0,divB=0,ϱ|t=0=ϱ0,u|t=0=u0,B|t=0=B0.\displaystyle\left\{\begin{array}[]{ll}\varrho_{t}+div(\varrho u)=0,\\[4.30554pt] (\varrho u)_{t}+div(\varrho u\otimes u)-\mu\Delta u-(\mu+\lambda)\nabla div~{}u+\nabla_{x}{P(\varrho)}=(curlB)\times B,\\[4.30554pt] B_{t}-\nu\Delta B-curl(u\times B)+curl[\frac{(curlB)\times B}{\varrho}]=0,~{}~{}~{}~{}div~{}B=0,\\[4.30554pt] \varrho|_{t=0}=\varrho_{0},~{}~{}u|_{t=0}=u_{0},~{}~{}B|_{t=0}=B_{0}.\\[4.30554pt] \end{array}\right.

In (1.10), B(t,x)B(t,x) represents magnetic field. The constants μ\mu and λ\lambda denote the viscosity coefficients of the flow and satisfy μ>0\mu>0 and 2μ+3λ02\mu+3\lambda\geq 0. The positive constant ν\nu is the magnetic diffusivity acting as a magnetic diffusion coefficient of the magnetic field. Moreover, curl((curlB)×Bϱ)curl(\frac{(curlB)\times B}{\varrho}) represents the Hall effect. Notice that

(curlB)×B=(B)B12(|B|2),(curlB)\times B=(B\cdot\nabla)B-\frac{1}{2}\nabla(|B|^{2}),

and

curl(u×B)=u(divB)(u)B+(B)uB(divu).curl(u\times B)=u(div~{}B)-(u\cdot\nabla)B+(B\cdot\nabla)u-B(div~{}u).

For more explanations on the modeling, one can refer to [42].

Let a=1a=1, ω=12\omega=\frac{1}{2} and x2x\in\mathbb{R}^{2}. Notice that (ϱ,u,τ)=(1,0,0)(\varrho,u,\tau)=(1,0,0) is a trivial solution of (1.5). Taking ρ=ϱ1\rho=\varrho-1, I(ρ)=ρρ+1I(\rho)=\frac{\rho}{\rho+1} and k(ρ)=γI(ρ)+γP(1+ρ)ρ+1k(\rho)=\gamma I(\rho)+\frac{\gamma-P^{\prime}(1+\rho)}{\rho+1}, we can rewrite (1.5) as the following system:

(1.15) {ρt+divu=F,ut12(Δ+div)u+γρdivτ=G,τt+τD(u)=H,ρ|t=0=ρ0,u|t=0=u0,τ|t=0=τ0,\displaystyle\left\{\begin{array}[]{ll}\rho_{t}+div~{}u=F,\\[4.30554pt] u_{t}-\frac{1}{2}(\Delta+\nabla div)u+\gamma\nabla\rho-div~{}\tau=G,\\[4.30554pt] \tau_{t}+\tau-D(u)=H,\\[4.30554pt] \rho|_{t=0}=\rho_{0},~{}~{}u|_{t=0}=u_{0},~{}~{}\tau|_{t=0}=\tau_{0},\\[4.30554pt] \end{array}\right.

where F=div(ρu)F=-div(\rho u), G=uu12I(ρ)(Δ+div)uI(ρ)divτ+k(ρ)ρG=-u\cdot\nabla u-\frac{1}{2}I(\rho)(\Delta+\nabla div)u-I(\rho)div~{}\tau+k(\rho)\nabla\rho and H=uτgb(τ,u)H=-u\cdot\nabla\tau-g_{b}(\tau,\nabla u).

Let μ=ν=1\mu=\nu=1 and λ=0\lambda=0. The equations (1.10) can be rewritten as the following system:

(1.20) {ρt+divu=F1,ut(Δ+div)u+γρ=G1,BtΔB=H1,ρ|t=0=ρ0,u|t=0=u0,B|t=0=B0,\displaystyle\left\{\begin{array}[]{ll}\rho_{t}+div~{}u=F_{1},\\[4.30554pt] u_{t}-(\Delta+\nabla div)u+\gamma\nabla\rho=G_{1},\\[4.30554pt] B_{t}-\Delta B=H_{1},\\[4.30554pt] \rho|_{t=0}=\rho_{0},~{}~{}u|_{t=0}=u_{0},~{}~{}B|_{t=0}=B_{0},\\[4.30554pt] \end{array}\right.

where F1=div(ρu)F_{1}=-div(\rho u), G1=uuI(ρ)(Δ+div)u(curlB)×B1+ρ+k(ρ)ρG_{1}=-u\cdot\nabla u-I(\rho)(\Delta+\nabla div)u-\frac{(curlB)\times B}{1+\rho}+k(\rho)\nabla\rho and H1=curl(u×B)curl[(curlB)×Bρ+1]H_{1}=curl(u\times B)-curl[\frac{(curlB)\times B}{\rho+1}].

1.1.  The incompressible Oldroyd-B model

In [12], C. Guillopé, and J. C. Saut first showed that the incompressible Oldroyd-B model admits a unique global strong solution in Sobolev spaces. The LpL^{p}-setting was given by E. Fernández-Cara, F.Guillén and R. Ortega [11]. The weak solutions of the incompressible Oldroyd-B model was proved by P. L. Lions and N. Masmoudi [24] for the case α=0\alpha=0. Notice that the problem for the case α0\alpha\neq 0 is still open, see [27, 28]. Later on, J. Y. Chemin and N. Masmoudi [4] proved the existence and uniqueness of strong solutions in homogenous Besov spaces with critical index of regularity. Optimal decay rates for solutions to the 3-D incompressible Oldroyd-B model were obtained by M. Hieber, H. Wen and R. Zi [14]. The sharp time decay rates of large solutions to the two-dimensional Oldroyd-B model were proved in [6]. An approach based on the deformation tensor can be found in [7, 20, 19, 43, 23, 44].

1.2.  The compressible Oldroyd-B model

Z. Lei [18] first investigated the incompressible limit problem of the compressible Oldroyd-B model in a torus. Recently, D. Fang and R. Zi [10] studied the global well-posedness for compressible Oldroyd-B model in critical Besov spaces with d2d\geq 2. In [45], Z. Zhou, C. Zhu and R. Zi proved the global well-posedness and decay rates for the 3-D compressible Oldroyd-B model. For the compressible Oldroyd-B type model based on the deformation tensor can be found in [34, 33, 2].

1.3.  The compressible Hall-MHD equations

In [9], J. S. Fan, A. Alsaedi, T. Hayat, G. Nakamura and Y. Zhou established global existence and optimal decay rates of solutions for 3-D compressible Hall-MHD equations in H3H^{3}-framework. Recently, H2H^{2}-framework for the same problem was studied by Z. A. Yao and J. Gao [42].

The compressible Hall-MHD equations reduce to the compressible MHD equations when the Hall effect term curl((curlB)×Bϱ)curl(\frac{(curlB)\times B}{\varrho}) is neglected. Then we cite some reference about the compressible MHD equations. For d=2d=2, S. Kawashima [17] obtained the global existence of smooth solution to the general electromagnetic fluid equations. Recently, X. Hu and D. Wang [16, 15] established the existence and large-time behavior of global weak solutions with large data in a bounded domain. A. Suen and D. Hoff [38] obtained the global low-energy weak solutions where initial data are chosen to be small and initial densities are assumed to be nonnegative and essentially bounded. F. C. Li and H. J. Yu [21] and Q. Chen and Z. Tan [5] established the global existence of solution and obtained the decay rate of solution for the 3-D compressible MHD equations. Large time behavior of strong solutions to the compressible MHD system in the critical LpL^{p} framework with d2d\geq 2 was proved by W. Shi and J. Xu in [37]. In [3], Q. Bie, Q. Wang and Z. A. Yao proved optimal decay for the compressible MHD equations in the critical regularity framework and and removed the smallness assumption of low frequencies.

1.4.  Short review for the CNS equations

Taking B=0B=0, the system (1.10) reduce to the well-known compressible Navier-Stokes (CNS) equations. In order to study about the large time behaviour for the (1.5), we cite some reference about the CNS equations. The large time behaviour of the global solutions (ρ,u)(\rho,u) to the 3-D CNS equations was firstly proved by A. Matsumura and T. Nishida in [30]. Recently, H. Li and T. Zhang [22] obtained the optimal time decay rate for the 3-D CNS equations by spectrum analysis in Sobolev spaces. R. Danchin and J. Xu [8] studied about the large time behaviour in the critical Besov space with d2d\geq 2. J. Xu [41] obtained the optimal time decay rate with a small low-frequency assumption in some Besov spaces with negative index. More recently, Z. Xin and J. Xu [40] studied about the large time behaviour and removed the smallness assumption of low frequencies.

1.5.  Main results

The long time behavior for polymeric models is noticed by N. Masmoudi [29]. To our best knowledge, large time behaviour for the 2-D compressible Oldroyd-B system (1.15) has not been studied yet. This problem is interesting and more difficult than the case with d3d\geq 3. In this paper, we firstly study about optimal time decay rate for the 2-D compressible Oldroyd-B system in H2H^{2}-framework. The proof is based on the Littlewood-Paley decomposition theory and the improved Fourier splitting method. Similar to [13] and [25], we first cancel the linear term in Fourier space. By the Fourier splitting method and the bootstrap argument, we firstly obtain initial logarithmic decay rate

(ρ,u,τ)L2Clnl(e+t),\displaystyle\|(\rho,u,\tau)\|_{L^{2}}\leq C\ln^{-l}(e+t),

for any lN+l\in N^{+}. The main difficulty for us is to get the initial polynomial decay rate. For lack of time information for global solutions in L1L^{1} from (1.15), we otain

S(t)0t|(k(ρ)ρ)u^¯|𝑑s𝑑ξC(1+t)120tρL2ρL2uL2𝑑s.\displaystyle\int_{S(t)}\int_{0}^{t}|\mathcal{F}(k(\rho)\nabla\rho)\cdot\bar{\hat{u}}|ds^{\prime}d\xi\leq C(1+t)^{-\frac{1}{2}}\int_{0}^{t}\|\rho\|_{L^{2}}\|\nabla\rho\|_{L^{2}}\|u\|_{L^{2}}ds^{\prime}.

By virtue of the time weighted energy estimate and logarithmic decay rate, we improve the time decay rate to

(ρ,u,τ)L2C(1+t)14.\displaystyle\|(\rho,u,\tau)\|_{L^{2}}\leq C(1+t)^{-\frac{1}{4}}.

Notice that the time decay rate we obtained is not the optimal decay rate. However, we can prove (ρ,u,τ)L(0,;B˙2,12)(\rho,u,\tau)\in L^{\infty}(0,\infty;\dot{B}^{-\frac{1}{2}}_{2,\infty}) from (1.15) by using the time decay rate (1+t)14(1+t)^{-\frac{1}{4}}. Then we improve the time decay rate to (1+t)516(1+t)^{-\frac{5}{16}} by the Littlewood-Paley decomposition theory and the Fourier splitting method. We deduce a slightly weaker conclusion

(ρ,u,τ)L(0,;B˙2,1)(\rho,u,\tau)\in L^{\infty}(0,\infty;\dot{B}^{-1}_{2,\infty})

from (1.15) by using the time decay rate (1+t)516(1+t)^{-\frac{5}{16}}. Without the smallness restriction of low frequencies, we obtain optimal time decay rate

(ρ,u)L2C(1+t)12\displaystyle\|(\rho,u)\|_{L^{2}}\leq C(1+t)^{-\frac{1}{2}}

by the Littlewood-Paley decomposition theory and the Fourier splitting method. Moreover, we can prove the faster time decay rate for τ\tau with

τL2C(1+t)1.\|\tau\|_{L^{2}}\leq C(1+t)^{-1}.

Finally, we apply the methods to the 2-D compressible Hall-MHD model (1.20). Processing Hall effect term through magnetic diffusion effect, we prove optimal time decay without small low-frequency assumption in critical Besov spaces with negative index. Notice that improved Fourier splitting method can be widely used for other complex systems in the future.

Our main result can be stated as follows.

Theorem 1.1.

Let d=2d=2. Let (ρ,u,τ)(\rho,u,\tau) be a global strong solution of (1.15) with the initial data (ρ0,u0,τ0)(\rho_{0},u_{0},\tau_{0}) under the condition in Theorem 3.1. In addition, if (ρ0,u0,τ0)B˙2,1(\rho_{0},u_{0},\tau_{0})\in\dot{B}^{-1}_{2,\infty}, then there exists a constant CC such that

(1.21) (ρ,u)L2C(1+t)12,τL2C(1+t)1,\displaystyle\|(\rho,u)\|_{L^{2}}\leq C(1+t)^{-\frac{1}{2}},~{}~{}~{}\|\tau\|_{L^{2}}\leq C(1+t)^{-1},

and

(1.22) (ρ,u,τ)H1C(1+t)1.\displaystyle\|\nabla(\rho,u,\tau)\|_{H^{1}}\leq C(1+t)^{-1}.
Remark 1.2.

Combining with the result in [41, 6], one can see that the time decay rate for (ρ,u)(\rho,u) obtained in Theorem 1.1 is optimal.

Remark 1.3.

In previous papers, researchers usually add the condition (ρ0,u0,τ0)L1(\rho_{0},u_{0},\tau_{0})\in L^{1} to obtain the optimal time decay rate. Since L1B˙2,1L^{1}\hookrightarrow\dot{B}^{-1}_{2,\infty}, it follows that our condition is weaker and the results still hold true for (ρ0,u0,τ0)L1(\rho_{0},u_{0},\tau_{0})\in L^{1}. Moreover, the assumption can be replaced with a weaker assumption supjj02jΔ˙j(ρ0,u0,τ0)L2<\sup_{j\leq j_{0}}2^{-j}\|\dot{\Delta}_{j}(\rho_{0},u_{0},\tau_{0})\|_{L^{2}}<\infty, for any j0j_{0}\in\mathbb{Z}.

Theorem 1.4.

Let d=2d=2. Let (ρ,u,B)(\rho,u,B) be a global strong solution of (1.20) with the initial data (ρ0,u0,B0)(\rho_{0},u_{0},B_{0}) under the condition in Theorem 4.1. In addition, if (ρ0,u0,B0)B˙2,1(\rho_{0},u_{0},B_{0})\in\dot{B}^{-1}_{2,\infty}, then there exists a constant CC such that

(1.23) (ρ,u,B)L2C(1+t)12,\displaystyle\|(\rho,u,B)\|_{L^{2}}\leq C(1+t)^{-\frac{1}{2}},

and

(1.24) (ρ,u,B)H1C(1+t)1.\displaystyle\|\nabla(\rho,u,B)\|_{H^{1}}\leq C(1+t)^{-1}.
Remark 1.5.

Combining with the result in [41], one can prove that the H1H^{1} decay rate for (ρ,u,B)(\rho,u,B) obtained in Theorem 1.4 is optimal.

The paper is organized as follows. In Section 2 we introduce some notations and give some preliminaries which will be used in the sequel. In Section 3 we prove the time decay rate of solutions to the 2-D compressible Oldroyd-B model by using the Fourier splitting method, the Littlewood-Paley decomposition theory and the bootstrap argument. In Section 4 we apply the methods to proving the time decay rate for the 2-D compressible Hall-MHD model.

2 Preliminaries

In this section we introduce some notations and useful lemmas which will be used in the sequel.

The symbol f^=(f)\widehat{f}=\mathcal{F}(f) represents the Fourier transform of ff. Let Λsf=1(|ξ|sf^)\Lambda^{s}f=\mathcal{F}^{-1}(|\xi|^{s}\widehat{f}). We agree that \nabla stands for x\nabla_{x} and divdiv stands for divxdiv_{x}.

We now recall the Littlewood-Paley decomposition theory and and Besov spaces.

Proposition 2.1.

[1] Let 𝒞\mathcal{C} be the annulus {ξ2:34|ξ|83}\{\xi\in\mathbb{R}^{2}:\frac{3}{4}\leq|\xi|\leq\frac{8}{3}\}. There exist radial function φ\varphi, valued in the interval [0,1][0,1], belonging respectively to 𝒟(𝒞)\mathcal{D}(\mathcal{C}), and such that

ξ2\{0},jφ(2jξ)=1,\forall\xi\in\mathbb{R}^{2}\backslash\{0\},\ \sum_{j\in\mathbb{Z}}\varphi(2^{-j}\xi)=1,
|jj|2Suppφ(2j)Suppφ(2j)=.|j-j^{\prime}|\geq 2\Rightarrow\mathrm{Supp}\ \varphi(2^{-j}\cdot)\cap\mathrm{Supp}\ \varphi(2^{-j^{\prime}}\cdot)=\emptyset.

Further, we have

ξ2\{0},12jφ2(2jξ)1.\forall\xi\in\mathbb{R}^{2}\backslash\{0\},\ \frac{1}{2}\leq\sum_{j\in\mathbb{Z}}\varphi^{2}(2^{-j}\xi)\leq 1.

Let uu be a tempered distribution in 𝒮h(2)\mathcal{S}^{\prime}_{h}(\mathbb{R}^{2}). For all jj\in\mathbb{Z}, define

Δ˙ju=1(φ(2j)u).\dot{\Delta}_{j}u=\mathcal{F}^{-1}(\varphi(2^{-j}\cdot)\mathcal{F}u).

Then the Littlewood-Paley decomposition is given as follows:

u=jΔ˙juin𝒮(2).u=\sum_{j\in\mathbb{Z}}\dot{\Delta}_{j}u\quad\text{in}\ \mathcal{S}^{\prime}(\mathbb{R}^{2}).

Let s, 1p,r.s\in\mathbb{R},\ 1\leq p,r\leq\infty. The homogeneous Besov space B˙p,rs\dot{B}^{s}_{p,r} is defined by

B˙p,rs={u𝒮h:uB˙p,rs=(2jsΔ˙juLp)jlr()<}.\dot{B}^{s}_{p,r}=\{u\in\mathcal{S}^{\prime}_{h}:\|u\|_{\dot{B}^{s}_{p,r}}=\Big{\|}(2^{js}\|\dot{\Delta}_{j}u\|_{L^{p}})_{j}\Big{\|}_{l^{r}(\mathbb{Z})}<\infty\}.

The following lemma describes inclusions between Lesbesgue and Besov spaces

Lemma 2.2.

[1] Let 1p21\leq p\leq 2 and d=2d=2. Then we have

LpB˙2,12p.L^{p}\hookrightarrow\dot{B}^{1-\frac{2}{p}}_{2,\infty}.

The following lemma is the Gagliardo-Nirenberg inequality of Sobolev type.

Lemma 2.3.

[31] Let d=2,p[2,+)d=2,~{}p\in[2,+\infty) and 0s,s1s20\leq s,s_{1}\leq s_{2}, then there exists a constant CC such that

ΛsfLpCΛs1fL21θΛs2fL2θ,\|\Lambda^{s}f\|_{L^{p}}\leq C\|\Lambda^{s_{1}}f\|^{1-\theta}_{L^{2}}\|\Lambda^{s_{2}}f\|^{\theta}_{L^{2}},

where 0θ10\leq\theta\leq 1 and θ\theta satisfy

s+2(121p)=s1(1θ)+θs2.s+2(\frac{1}{2}-\frac{1}{p})=s_{1}(1-\theta)+\theta s_{2}.

Note that we require that 0<θ<10<\theta<1, 0s1s0\leq s_{1}\leq s, when p=p=\infty.

3 Optimal time decay rate for the compressible Oldroyd-B model

This section is devoted to investigating the long time behaviour for the 2-D compressible Oldroyd-B model. We first introduce the energy and energy dissipation functionals for (ρ,u,τ)(\rho,u,\tau) as follows:

Eσ=Λσ(ρ,u,τ)H2σ2+2ηΛσu,ΛσρH1σ,E_{\sigma}=\|\Lambda^{\sigma}(\rho,u,\tau)\|^{2}_{H^{2-\sigma}}+2\eta\langle\Lambda^{\sigma}u,\nabla\Lambda^{\sigma}\rho\rangle_{H^{1-\sigma}},

and

Dσ=ηγΛσρH1σ2+12ΛσuH2σ2+12divΛσuH2σ2+ΛστH2σ2,D_{\sigma}=\eta\gamma\|\nabla\Lambda^{\sigma}\rho\|^{2}_{H^{1-\sigma}}+\frac{1}{2}\|\nabla\Lambda^{\sigma}u\|^{2}_{H^{2-\sigma}}+\frac{1}{2}\|div~{}\Lambda^{\sigma}u\|^{2}_{H^{2-\sigma}}+\|\Lambda^{\sigma}\tau\|^{2}_{H^{2-\sigma}},

where σ=0\sigma=0 or 1 and η\eta is a sufficiently small constant.

Using the energy method and interpolation theory in [45], one can easily deduce that the global existence of strong solutions for (1.15). Thus we omit the proof here and present the following Theorem.

Theorem 3.1.

Let d=2d=2. Let (ρ,u,τ)(\rho,u,\tau) be a strong solution of (1.15) with initial data (ρ0,u0,τ0)H2(\rho_{0},u_{0},\tau_{0})\in H^{2}. Then, there exists some sufficiently small constant ϵ0\epsilon_{0} such that if

E0(0)ϵ0,\displaystyle E_{0}(0)\leq\epsilon_{0},

then (1.15) admits a unique global strong solution (ρ,u,τ)(\rho,u,\tau). Moreover, for σ=0\sigma=0 or 1 and any t>0t>0, we have

(3.1) ddtEσ(t)+Dσ(t)0.\displaystyle\frac{d}{dt}E_{\sigma}(t)+D_{\sigma}(t)\leq 0.

Since the additional stress tensor τ\tau does not decay fast enough, we failed to use the bootstrap argument as in [35, 26]. Similar to [13] and [45], we consider the coupling effect between (ρ,u,τ)(\rho,u,\tau). By taking Fourier transform in (1.15) and using the Fourier splitting method, we obtain the initial L2L^{2} decay rate in following Proposition.

Proposition 3.2.

Let (ρ0,u0,τ0)B˙2,1(\rho_{0},u_{0},\tau_{0})\in\dot{B}^{-1}_{2,\infty}. Under the condition in Theorem 3.1, for any lN+l\in N^{+}, then there exists a constant CC such that

(3.2) E0(t)Clnl(e+t),E1(t)C(1+t)1lnl(e+t).\displaystyle E_{0}(t)\leq C\ln^{-l}(e+t),~{}~{}~{}~{}E_{1}(t)\leq C(1+t)^{-1}\ln^{-l}(e+t).
Proof.

Taking σ=0\sigma=0 in (3.1), we first have the following global energy estimation:

(3.3) ddtE0(t)+D0(t)0.\displaystyle\frac{d}{dt}E_{0}(t)+D_{0}(t)\leq 0.

Define S0(t)={ξ:|ξ|22C2f(t)f(t)}S_{0}(t)=\{\xi:|\xi|^{2}\leq 2C_{2}\frac{f^{\prime}(t)}{f(t)}\} with f(t)=ln3(e+t)f(t)=\ln^{3}(e+t) and C2C_{2} large enough. Applying Schonbek’s [36] strategy to (3.3), we obtain

(3.4) ddt[f(t)E0(t)]+C2f(t)(12uH22+ηγρH12)+f(t)τH22\displaystyle\frac{d}{dt}[f(t)E_{0}(t)]+C_{2}f^{\prime}(t)(\frac{1}{2}\|u\|^{2}_{H^{2}}+\eta\gamma\|\rho\|^{2}_{H^{1}})+f(t)\|\tau\|^{2}_{H^{2}}
Cf(t)S0(t)|u^(ξ)|2+|ρ^(ξ)|2dξ+2f(t)2ρL22.\displaystyle\leq Cf^{\prime}(t)\int_{S_{0}(t)}|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2}d\xi+2f^{\prime}(t)\|\nabla^{2}\rho\|^{2}_{L^{2}}.

The L2L^{2} estimate to the low frequency part of (ρ,u)(\rho,u) play a key role in studying time decay rates. Applying Fourier transform to (1.15), we obtain

(3.8) {ρ^t+iξku^k=F^,u^tj+12|ξ|2u^j+12ξjξku^k+iξjγρ^iξkτ^jk=G^j,τ^tjk+τ^jki2(ξku^j+ξju^k)=H^jk.\displaystyle\left\{\begin{array}[]{ll}\hat{\rho}_{t}+i\xi_{k}\hat{u}^{k}=\hat{F},\\[4.30554pt] \hat{u}^{j}_{t}+\frac{1}{2}|\xi|^{2}\hat{u}^{j}+\frac{1}{2}\xi_{j}\xi_{k}\hat{u}^{k}+i\xi_{j}\gamma\hat{\rho}-i\xi_{k}\hat{\tau}^{jk}=\hat{G}^{j},\\[4.30554pt] \hat{\tau}^{jk}_{t}+\hat{\tau}^{jk}-\frac{i}{2}(\xi_{k}\hat{u}^{j}+\xi_{j}\hat{u}^{k})=\hat{H}^{jk}.\\[4.30554pt] \end{array}\right.

One can verify that

e[iξu^ρ^¯]+e[ρ^iξu^¯]=e[iξu^¯(t,ξ):τ^]+e[iξu^:τ^¯]=0.\mathcal{R}e[i\xi\cdot\hat{u}\bar{\hat{\rho}}]+\mathcal{R}e[\hat{\rho}i\xi\cdot\bar{\hat{u}}]=\mathcal{R}e[i\xi\otimes\bar{\hat{u}}(t,\xi):\hat{\tau}]+\mathcal{R}e[i\xi\otimes\hat{u}:\bar{\hat{\tau}}]=0.

Since τ\tau is symmetric, using (3.8), we deduce that

(3.9) 12ddt(γ|ρ^|2+|u^|2+|τ^|2)+12|ξ|2|u^|2+12|ξu^|2+|τ^|2\displaystyle\frac{1}{2}\frac{d}{dt}(\gamma|\hat{\rho}|^{2}+|\hat{u}|^{2}+|\hat{\tau}|^{2})+\frac{1}{2}|\xi|^{2}|\hat{u}|^{2}+\frac{1}{2}|\xi\cdot\hat{u}|^{2}+|\hat{\tau}|^{2}
=e[γF^ρ^¯]+e[G^u^¯]+e[H^τ^¯].\displaystyle=\mathcal{R}e[\gamma\hat{F}\bar{\hat{\rho}}]+\mathcal{R}e[\hat{G}\cdot\bar{\hat{u}}]+\mathcal{R}e[\hat{H}\bar{\hat{\tau}}].

Integrating (3.9) over [0,t][0,t] with ss, we obtain

(3.10) |ρ^|2+|u^|2+|τ^|2C(|ρ^0|2+|u^0|2+|τ^0|2)+C0t|F^ρ^¯|+|G^u^¯|+|H^|2ds.\displaystyle|\hat{\rho}|^{2}+|\hat{u}|^{2}+|\hat{\tau}|^{2}\leq C(|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2})+C\int_{0}^{t}|\hat{F}\cdot\bar{\hat{\rho}}|+|\hat{G}\cdot\bar{\hat{u}}|+|\hat{H}|^{2}ds.

Integrating (3.10) over S0(t)S_{0}(t) with ξ\xi, then we have the following estimation to (3.8):

(3.11) S0(t)|ρ^|2+|u^|2+|τ^|2dξ\displaystyle\int_{S_{0}(t)}|\hat{\rho}|^{2}+|\hat{u}|^{2}+|\hat{\tau}|^{2}d\xi CS0(t)|ρ^0|2+|u^0|2+|τ^0|2dξ\displaystyle\leq C\int_{S_{0}(t)}|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2}d\xi
+CS0(t)0t|F^ρ^¯|+|G^u^¯|+|H^|2dsdξ.\displaystyle+C\int_{S_{0}(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{\rho}}|+|\hat{G}\cdot\bar{\hat{u}}|+|\hat{H}|^{2}dsd\xi.

If E0(0)<E_{0}(0)<\infty and (ρ0,u0,τ0)B˙2,1(\rho_{0},u_{0},\tau_{0})\in\dot{B}^{-1}_{2,\infty}, applying Proposition 2.1, we have

(3.12) S0(t)(|ρ^0|2+|u^0|2+|τ^0|2)𝑑ξ\displaystyle\int_{S_{0}(t)}(|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2})d\xi jlog2[43C212f(t)f(t)]22φ2(2jξ)(|ρ^0|2+|u^0|2+|τ^0|2)𝑑ξ\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}\sqrt{\frac{f^{\prime}(t)}{f(t)}}]}\int_{\mathbb{R}^{2}}2\varphi^{2}(2^{-j}\xi)(|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2})d\xi
jlog2[43C212f(t)f(t)]C(Δ˙ju0L22+Δ˙jρ0L22+Δ˙jτ0L22)\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}\sqrt{\frac{f^{\prime}(t)}{f(t)}}]}C(\|\dot{\Delta}_{j}u_{0}\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}\rho_{0}\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}\tau_{0}\|^{2}_{L^{2}})
C(ρ0,u0,τ0)B˙2,12jlog2[43C212f(t)f(t)]22j\displaystyle\leq C\|(\rho_{0},u_{0},\tau_{0})\|^{2}_{\dot{B}^{-1}_{2,\infty}}\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}\sqrt{\frac{f^{\prime}(t)}{f(t)}}]}2^{2j}
Cf(t)f(t)(ρ0,u0,τ0)B˙2,12.\displaystyle\leq C\frac{f^{\prime}(t)}{f(t)}\|(\rho_{0},u_{0},\tau_{0})\|^{2}_{\dot{B}^{-1}_{2,\infty}}.

By Minkowski’s inequality and (3.1), we get

(3.13) S0(t)0t|H^|2𝑑s𝑑ξ\displaystyle\int_{S_{0}(t)}\int_{0}^{t}|\hat{H}|^{2}dsd\xi =0tS0(t)|H^|2𝑑ξ𝑑s\displaystyle=\int_{0}^{t}\int_{S_{0}(t)}|\hat{H}|^{2}d\xi ds
Cf(t)f(t)0tuL22τL22+uL22τL22ds\displaystyle\leq C\frac{f^{\prime}(t)}{f(t)}\int_{0}^{t}\|u\|^{2}_{L^{2}}\|\nabla\tau\|^{2}_{L^{2}}+\|\nabla u\|^{2}_{L^{2}}\|\tau\|^{2}_{L^{2}}ds
Cf(t)f(t),\displaystyle\leq C\frac{f^{\prime}(t)}{f(t)},

and

(3.14) S0(t)0t|F^ρ^¯|+|G^u^¯|dsdξ\displaystyle\int_{S_{0}(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{\rho}}|+|\hat{G}\cdot\bar{\hat{u}}|dsd\xi =0tS0(t)|F^ρ^¯|+|G^u^¯|dξds\displaystyle=\int_{0}^{t}\int_{S_{0}(t)}|\hat{F}\cdot\bar{\hat{\rho}}|+|\hat{G}\cdot\bar{\hat{u}}|d\xi ds
Cf(t)f(t)0t(uL22+ρL22)D0(s)12𝑑s\displaystyle\leq C\sqrt{\frac{f^{\prime}(t)}{f(t)}}\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\rho\|^{2}_{L^{2}})D_{0}(s)^{\frac{1}{2}}ds
Cf(t)f(t)(1+t)12.\displaystyle\leq C\sqrt{\frac{f^{\prime}(t)}{f(t)}}(1+t)^{\frac{1}{2}}.

It follows from (3.11)-(3.14) that

(3.15) S0(t)|ρ^|2+|u^|2dξCln12(e+t).\displaystyle\int_{S_{0}(t)}|\hat{\rho}|^{2}+|\hat{u}|^{2}d\xi\leq C\ln^{-\frac{1}{2}}(e+t).

According to (3.4) and (3.15), we deduce that

(3.16) ddt[f(t)E0(t)]Cf(t)ln12(e+t)+2f(t)2ρL22,\displaystyle\frac{d}{dt}[f(t)E_{0}(t)]\leq Cf^{\prime}(t)\ln^{-\frac{1}{2}}(e+t)+2f^{\prime}(t)\|\nabla^{2}\rho\|^{2}_{L^{2}},

which implies that

f(t)E0(t)C+C0tf(s)ln12(e+s)𝑑s+0tf(s)2ρL22𝑑sCln52(e+t).\displaystyle f(t)E_{0}(t)\leq C+C\int_{0}^{t}f^{\prime}(s)\ln^{-\frac{1}{2}}(e+s)ds+\int_{0}^{t}f^{\prime}(s)\|\nabla^{2}\rho\|^{2}_{L^{2}}ds\leq C\ln^{\frac{5}{2}}(e+t).

Then we obtain the initial time decay rate:

(3.17) E0(t)Cln12(e+t).\displaystyle E_{0}(t)\leq C\ln^{-\frac{1}{2}}(e+t).

We improve the L2L^{2} decay rate in (3.17) by using the bootstrap argument. According to (3.14) and (3.17), we obtain

(3.18) S0(t)0t|F^ρ^¯|+|G^u^¯|dsdξ\displaystyle\int_{S_{0}(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{\rho}}|+|\hat{G}\cdot\bar{\hat{u}}|dsd\xi Cf(t)f(t)0t(uL22+ρL22)D0(s)12𝑑s\displaystyle\leq C\sqrt{\frac{f^{\prime}(t)}{f(t)}}\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\rho\|^{2}_{L^{2}})D_{0}(s)^{\frac{1}{2}}ds
Cf(t)f(t)(1+t)12ln12(e+t),\displaystyle\leq C\sqrt{\frac{f^{\prime}(t)}{f(t)}}(1+t)^{\frac{1}{2}}\ln^{-\frac{1}{2}}(e+t),

where we have used the fact that

limt0tln1(e+s)𝑑s(1+t)ln1(e+t)=limtln1(e+t)ln1(1+t)ln2(e+t)=1.\displaystyle\lim_{t\rightarrow\infty}\frac{\int_{0}^{t}\ln^{-1}(e+s)ds}{(1+t)\ln^{-1}(e+t)}=\lim_{t\rightarrow\infty}\frac{\ln^{-1}(e+t)}{\ln^{-1}(1+t)-\ln^{-2}(e+t)}=1.

Then the proof of (3.15) implies that

(3.19) S0(t)|ρ^|2+|u^|2dξCln1(e+t).\displaystyle\int_{S_{0}(t)}|\hat{\rho}|^{2}+|\hat{u}|^{2}d\xi\leq C\ln^{-1}(e+t).

According to (3.4) and (3.19), we obtain

E0Cln1(e+t).\displaystyle E_{0}\leq C\ln^{-1}(e+t).

By virtue of the bootstrap argument, for any lN+l\in N^{+}, we can deduce that

(3.20) E0Clnl(e+t).\displaystyle E_{0}\leq C\ln^{-l}(e+t).

Taking σ=1\sigma=1 in (3.1), we have

(3.21) ddtE1+D10,\displaystyle\frac{d}{dt}E_{1}+D_{1}\leq 0,

which implies that

(3.22) ddt[f(t)E1]+C2f(t)(12uH12+ηγρL22)+f(t)τH1(2)2\displaystyle\frac{d}{dt}[f(t)E_{1}]+C_{2}f^{\prime}(t)(\frac{1}{2}\|\nabla u\|^{2}_{H^{1}}+\eta\gamma\|\nabla\rho\|^{2}_{L^{2}})+f(t)\|\nabla\tau\|^{2}_{H^{1}(\mathcal{L}^{2})}
Cf(t)S0(t)|ξ|2(|u^(ξ)|2+|ρ^(ξ)|2)𝑑ξ+2f(t)2ρL22.\displaystyle\leq Cf^{\prime}(t)\int_{S_{0}(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2})d\xi+2f^{\prime}(t)\|\nabla^{2}\rho\|^{2}_{L^{2}}.

According to (3.20), we get

(3.23) f(t)S0(t)|ξ|2(|u^(ξ)|2+|ρ^(ξ)|2)𝑑ξC(1+t)2lnl+1(e+t).\displaystyle f^{\prime}(t)\int_{S_{0}(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2})d\xi\leq C(1+t)^{-2}\ln^{-l+1}(e+t).

It follows from (3.20)-(3.23) that

(1+t)lnl+1(e+t)E1\displaystyle(1+t)\ln^{l+1}(e+t)E_{1} C+Cln(e+t)+C0tlnl(e+s)2ρL22𝑑s+C0tlnl+1(e+s)E1𝑑s\displaystyle\leq C+C\ln(e+t)+C\int_{0}^{t}\ln^{l}(e+s)\|\nabla^{2}\rho\|^{2}_{L^{2}}ds+C\int_{0}^{t}\ln^{l+1}(e+s)E_{1}ds
Cln(e+t)+C0tlnl+1(e+s)D0𝑑s\displaystyle\leq C\ln(e+t)+C\int_{0}^{t}\ln^{l+1}(e+s)D_{0}ds
Cln(e+t)+C0t(1+s)1lnl(e+s)E0𝑑s\displaystyle\leq C\ln(e+t)+C\int_{0}^{t}(1+s)^{-1}\ln^{l}(e+s)E_{0}ds
Cln(e+t),\displaystyle\leq C\ln(e+t),

which implies that

(3.24) E1C(1+t)1lnl(e+t).\displaystyle E_{1}\leq C(1+t)^{-1}\ln^{-l}(e+t).

We thus complete the proof of Proposition 3.2. ∎

By virtue of the time weighted energy estimate and the improved Fourier splitting method, one can not obtain the optimal decay rate. However, we can obtain a weak result as follow.

Proposition 3.3.

Under the condition in Proposition 3.2, then there exists a constant CC such that

(3.25) E0(t)C(1+t)12,\displaystyle E_{0}(t)\leq C(1+t)^{-\frac{1}{2}},

and

(3.26) E1(t)C(1+t)32.\displaystyle E_{1}(t)\leq C(1+t)^{-\frac{3}{2}}.
Proof.

Define S(t)={ξ:|ξ|2C2(1+t)1}S(t)=\{\xi:|\xi|^{2}\leq C_{2}(1+t)^{-1}\} where the constant C2C_{2} will be chosen later on. Using Schonbek’s strategy, we split the phase space into two time-dependent domain:

uH22=S(t)(1+|ξ|4)|ξ|2|u^(ξ)|2𝑑ξ+S(t)c(1+|ξ|4)|ξ|2|u^(ξ)|2𝑑ξ.\|\nabla u\|^{2}_{H^{2}}=\int_{S(t)}(1+|\xi|^{4})|\xi|^{2}|\hat{u}(\xi)|^{2}d\xi+\int_{S(t)^{c}}(1+|\xi|^{4})|\xi|^{2}|\hat{u}(\xi)|^{2}d\xi.

One can verify that

C21+tS(t)c(1+|ξ|4)|u^(ξ)|2𝑑ξuH22,\frac{C_{2}}{1+t}\int_{S(t)^{c}}(1+|\xi|^{4})|\hat{u}(\xi)|^{2}d\xi\leq\|\nabla u\|^{2}_{H^{2}},

and

C21+tS(t)c(1+|ξ|2)|ρ^(ξ)|2𝑑ξρH12.\frac{C_{2}}{1+t}\int_{S(t)^{c}}(1+|\xi|^{2})|\hat{\rho}(\xi)|^{2}d\xi\leq\|\nabla\rho\|^{2}_{H^{1}}.

By (3.3), we have

(3.27) ddtE0(t)+C22(1+t)uH22+ηγC21+tρH12+τH22CC21+tS(t)|u^(ξ)|2+|ρ^(ξ)|2dξ.\displaystyle\frac{d}{dt}E_{0}(t)+\frac{C_{2}}{2(1+t)}\|u\|^{2}_{H^{2}}+\frac{\eta\gamma C_{2}}{1+t}\|\rho\|^{2}_{H^{1}}+\|\tau\|^{2}_{H^{2}}\leq\frac{CC_{2}}{1+t}\int_{S(t)}|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2}d\xi.

Integrating (3.10) over S(t)S(t) with ξ\xi, then we obtain

(3.28) S(t)|ρ^|2+|u^|2+|τ^|2dξ\displaystyle\int_{S(t)}|\hat{\rho}|^{2}+|\hat{u}|^{2}+|\hat{\tau}|^{2}d\xi CS(t)|ρ^0|2+|u^0|2+|τ^0|2dξ\displaystyle\leq C\int_{S(t)}|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2}d\xi
+CS(t)0t|F^ρ^¯|+|G^u^¯|+|H^|2dsdξ.\displaystyle+C\int_{S(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{\rho}}|+|\hat{G}\cdot\bar{\hat{u}}|+|\hat{H}|^{2}dsd\xi.

Using the fact that (ρ0,u0,τ0)H2B˙2,1(\rho_{0},u_{0},\tau_{0})\in H^{2}\cap\dot{B}^{-1}_{2,\infty} and applying Proposition 2.1, we deduce that

(3.29) S(t)|ρ^0|2+|u^0|2+|τ^0|2dξ\displaystyle\int_{S(t)}|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2}d\xi jlog2[43C212(1+t)12]22φ2(2jξ)(|ρ^0|2+|u^0|2+|τ^0|2)𝑑ξ\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}(1+t)^{-\frac{1}{2}}]}\int_{\mathbb{R}^{2}}2\varphi^{2}(2^{-j}\xi)(|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+|\hat{\tau}_{0}|^{2})d\xi
jlog2[43C212(1+t)12]2(Δ˙ju0L22+Δ˙jρ0L22+Δ˙jτ0L22)\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}(1+t)^{-\frac{1}{2}}]}2(\|\dot{\Delta}_{j}u_{0}\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}\rho_{0}\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}\tau_{0}\|^{2}_{L^{2}})
C(ρ0,u0,τ0)B˙2,12jlog2[43C212(1+t)12]22j\displaystyle\leq C\|(\rho_{0},u_{0},\tau_{0})\|^{2}_{\dot{B}^{-1}_{2,\infty}}\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}(1+t)^{-\frac{1}{2}}]}2^{2j}
C(1+t)1(ρ0,u0,τ0)B˙2,12.\displaystyle\leq C(1+t)^{-1}\|(\rho_{0},u_{0},\tau_{0})\|^{2}_{\dot{B}^{-1}_{2,\infty}}.

Thanks to Minkowski’s inequality, we have

(3.30) S(t)0t|F^ρ^¯|+|G^u^¯|dsdξC(S(t)𝑑ξ)120tF^ρ^¯L2+G^u^¯L2ds\displaystyle\int_{S(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{\rho}}|+|\hat{G}\cdot\bar{\hat{u}}|dsd\xi\leq C(\int_{S(t)}d\xi)^{\frac{1}{2}}\int_{0}^{t}\|\hat{F}\cdot\bar{\hat{\rho}}\|_{L^{2}}+\|\hat{G}\cdot\bar{\hat{u}}\|_{L^{2}}ds
C(1+t)120t(uL22+ρL22)(uH1+ρL2+τL2)𝑑s.\displaystyle\leq C(1+t)^{-\frac{1}{2}}\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\rho\|^{2}_{L^{2}})(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds.

Using (3.1), then we obtain

(3.31) S(t)0t|H^|2𝑑s𝑑ξ\displaystyle\int_{S(t)}\int_{0}^{t}|\hat{H}|^{2}dsd\xi C(1+t)10tuL22τL22+uL22τL22ds\displaystyle\leq C(1+t)^{-1}\int_{0}^{t}\|u\|^{2}_{L^{2}}\|\nabla\tau\|^{2}_{L^{2}}+\|\nabla u\|^{2}_{L^{2}}\|\tau\|^{2}_{L^{2}}ds
C(1+t)1.\displaystyle\leq C(1+t)^{-1}.

It follows from (3.28)-(3.31) that

(3.32) S(t)|ρ^(t,ξ)|2+|u^(t,ξ)|2dξC(1+t)1\displaystyle\int_{S(t)}|\hat{\rho}(t,\xi)|^{2}+|\hat{u}(t,\xi)|^{2}d\xi\leq C(1+t)^{-1}
+C(1+t)120t(uL22+ρL22)(uH1+ρL2+τL2)𝑑s.\displaystyle+C(1+t)^{-\frac{1}{2}}\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\rho\|^{2}_{L^{2}})(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds.

According to (3.27) and (3.32), we obtain

ddtE0(t)+C22(1+t)uH22+ηγC21+tρH12+τH22\displaystyle\frac{d}{dt}E_{0}(t)+\frac{C_{2}}{2(1+t)}\|u\|^{2}_{H^{2}}+\frac{\eta\gamma C_{2}}{1+t}\|\rho\|^{2}_{H^{1}}+\|\tau\|^{2}_{H^{2}}
CC21+t[(1+t)1+(1+t)120t(uL22+ρL22)(uH1+ρL2+τL2)𝑑s],\displaystyle\leq\frac{CC_{2}}{1+t}[(1+t)^{-1}+(1+t)^{-\frac{1}{2}}\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\rho\|^{2}_{L^{2}})(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds],

which implies that

(3.33) (1+t)32E0(t)\displaystyle(1+t)^{\frac{3}{2}}E_{0}(t) C0t2ρL22(1+s)12𝑑s+C(1+t)12\displaystyle\leq C\int_{0}^{t}\|\nabla^{2}\rho\|^{2}_{L^{2}}(1+s)^{\frac{1}{2}}ds+C(1+t)^{\frac{1}{2}}
+C(1+t)0t(uL22+ρL22)(uH1+ρL2+τL2)𝑑s\displaystyle+C(1+t)\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\rho\|^{2}_{L^{2}})(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds
C(1+t)12+C(1+t)0t(uL22+ρL22)(uH1+ρL2+τL2)𝑑s.\displaystyle\leq C(1+t)^{\frac{1}{2}}+C(1+t)\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\rho\|^{2}_{L^{2}})(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds.

Define N(t)=sup0st(1+s)12E0(s)N(t)=\sup_{0\leq s\leq t}(1+s)^{\frac{1}{2}}E_{0}(s). According to (3.33), we get

(3.34) N(t)\displaystyle N(t) C+C0t(uL22+ρL22)(uH1+ρL2+τL2)𝑑s\displaystyle\leq C+C\int_{0}^{t}(\|u\|^{2}_{L^{2}}+\|\rho\|^{2}_{L^{2}})(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds
C+C0tN(s)(1+s)12(uH1+ρL2+τL2)𝑑s.\displaystyle\leq C+C\int_{0}^{t}N(s)(1+s)^{-\frac{1}{2}}(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla\tau\|_{L^{2}})ds.

Applying Gronwall’s inequality, Proposition 3.2, we obtain N(t)CN(t)\leq C, which implies that

(3.35) E0C(1+t)12.\displaystyle E_{0}\leq C(1+t)^{-\frac{1}{2}}.

By (3.21), we can deduce that

(3.36) ddtE1+C21+t(12uH12+ηγρL22)+τH12CC21+tS(t)|ξ|2(|u^(ξ)|2+|ρ^(ξ)|2)𝑑ξ.\displaystyle\frac{d}{dt}E_{1}+\frac{C_{2}}{1+t}(\frac{1}{2}\|\nabla u\|^{2}_{H^{1}}+\eta\gamma\|\nabla\rho\|^{2}_{L^{2}})+\|\nabla\tau\|^{2}_{H^{1}}\leq\frac{CC_{2}}{1+t}\int_{S(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2})d\xi.

According to (3.35), we have

CC21+tS(t)|ξ|2(|u^(ξ)|2+|ρ^(ξ)|2)𝑑ξCC22(1+t)2(ρL22+uL22)C(1+t)52.\displaystyle\frac{CC_{2}}{1+t}\int_{S(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2})d\xi\leq C{C_{2}}^{2}(1+t)^{-2}(\|\rho\|^{2}_{L^{2}}+\|u\|^{2}_{L^{2}})\leq C(1+t)^{-\frac{5}{2}}.

This together with (3.3), (3.35) and (3.36) ensure that

(3.37) (1+t)52E1\displaystyle(1+t)^{\frac{5}{2}}E_{1} C(1+t)+C0t2ρL22(1+s)32𝑑s\displaystyle\leq C(1+t)+C\int_{0}^{t}\|\nabla^{2}\rho\|^{2}_{L^{2}}(1+s)^{\frac{3}{2}}ds
C(1+t)+C0tE0(s)(1+s)12𝑑s\displaystyle\leq C(1+t)+C\int_{0}^{t}E_{0}(s)(1+s)^{\frac{1}{2}}ds
C(1+t),\displaystyle\leq C(1+t),

which implies that

(3.38) E1C(1+t)32.\displaystyle E_{1}\leq C(1+t)^{-\frac{3}{2}}.

Therefore, we complete the proof of Proposition 3.3. ∎

Remark 3.4.

The proposition 3.3 indicates that

ρL2+uL2C(1+t)14.\|\rho\|_{L^{2}}+\|u\|_{L^{2}}\leq C(1+t)^{-\frac{1}{4}}.

Combining with the CNS system, one can see that this is not the optimal time decay.

By Proposition 3.3, we can prove that the solution of (1.15) belongs to some Besov space with negative index [39], which can be used to improve time decay rate.

Lemma 3.5.

Let 0<α,σ10<\alpha,\sigma\leq 1 and σ<2α\sigma<2\alpha. Assume that (ρ0,u0,τ0)(\rho_{0},u_{0},\tau_{0}) satisfy the condition in Proposition 3.2. If

(3.39) E0(t)C(1+t)α,E1(t)C(1+t)α1,\displaystyle E_{0}(t)\leq C(1+t)^{-\alpha},~{}~{}~{}~{}E_{1}(t)\leq C(1+t)^{-\alpha-1},

then we have

(3.40) (ρ,u,τ)L(0,;B˙2,σ).\displaystyle(\rho,u,\tau)\in L^{\infty}(0,\infty;\dot{B}^{-\sigma}_{2,\infty}).
Proof.

Applying Δ˙j\dot{\Delta}_{j} to (1.15), we obtain

(3.44) {Δ˙jρt+divΔ˙ju=Δ˙jF,Δ˙jut12(Δ+div)Δ˙ju+γΔ˙jρdivΔ˙jτ=Δ˙jG,Δ˙jτt+Δ˙jτΔ˙jD(u)=Δ˙jH.\displaystyle\left\{\begin{array}[]{ll}\dot{\Delta}_{j}\rho_{t}+div~{}\dot{\Delta}_{j}u=\dot{\Delta}_{j}F,\\[4.30554pt] \dot{\Delta}_{j}u_{t}-\frac{1}{2}(\Delta+\nabla div)\dot{\Delta}_{j}u+\gamma\nabla\dot{\Delta}_{j}\rho-div\dot{\Delta}_{j}\tau=\dot{\Delta}_{j}G,\\[4.30554pt] \dot{\Delta}_{j}\tau_{t}+\dot{\Delta}_{j}\tau-\dot{\Delta}_{j}D(u)=\dot{\Delta}_{j}H.\\[4.30554pt] \end{array}\right.

By virtue of the standard energy estimate for (3.44), we can deduce that

(3.45) ddt(γΔ˙jρL22+Δ˙juL22+Δ˙jτL22)+Δ˙juL22+divΔ˙juL22+2Δ˙jτL22\displaystyle\frac{d}{dt}(\gamma\|\dot{\Delta}_{j}\rho\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}u\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}\tau\|^{2}_{L^{2}})+\|\nabla\dot{\Delta}_{j}u\|^{2}_{L^{2}}+\|div\dot{\Delta}_{j}u\|^{2}_{L^{2}}+2\|\dot{\Delta}_{j}\tau\|^{2}_{L^{2}}
=22γΔ˙jFΔ˙jρ𝑑x+22Δ˙jGΔ˙ju𝑑x+22Δ˙jHΔ˙jτ𝑑x\displaystyle=2\int_{\mathbb{R}^{2}}\gamma\dot{\Delta}_{j}F\dot{\Delta}_{j}\rho dx+2\int_{\mathbb{R}^{2}}\dot{\Delta}_{j}G\dot{\Delta}_{j}udx+2\int_{\mathbb{R}^{2}}\dot{\Delta}_{j}H\dot{\Delta}_{j}\tau dx
C(Δ˙jFL2Δ˙jρL2+Δ˙jGL2Δ˙juL2+Δ˙jHL2Δ˙jτL2).\displaystyle\leq C(\|\dot{\Delta}_{j}F\|_{L^{2}}\|\dot{\Delta}_{j}\rho\|_{L^{2}}+\|\dot{\Delta}_{j}G\|_{L^{2}}\|\dot{\Delta}_{j}u\|_{L^{2}}+\|\dot{\Delta}_{j}H\|_{L^{2}}\|\dot{\Delta}_{j}\tau\|_{L^{2}}).

Multiplying both sides of (3.45) by 22jσ2^{-2j\sigma} and taking ll^{\infty} norm, we obtain

(3.46) ddt(γρB˙2,σ2+uB˙2,σ2+τB˙2,σ2)\displaystyle\frac{d}{dt}(\gamma\|\rho\|^{2}_{\dot{B}^{-\sigma}_{2,\infty}}+\|u\|^{2}_{\dot{B}^{-\sigma}_{2,\infty}}+\|\tau\|^{2}_{\dot{B}^{-\sigma}_{2,\infty}})
C(FB˙2,σρB˙2,σ+GB˙2,σuB˙2,σ+HB˙2,στB˙2,σ).\displaystyle\leq C(\|F\|_{\dot{B}^{-\sigma}_{2,\infty}}\|\rho\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|G\|_{\dot{B}^{-\sigma}_{2,\infty}}\|u\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|H\|_{\dot{B}^{-\sigma}_{2,\infty}}\|\tau\|_{\dot{B}^{-\sigma}_{2,\infty}}).

Define M(t)=0stρB˙2,σ+uB˙2,σ+τB˙2,σM(t)=\sum_{0\leq s\leq t}\|\rho\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|u\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|\tau\|_{\dot{B}^{-\sigma}_{2,\infty}}. According to (3.46), we deduce that

(3.47) M2(t)\displaystyle M^{2}(t) CM2(0)+CM(t)0tFB˙2,σ+GB˙2,σ+HB˙2,σds.\displaystyle\leq CM^{2}(0)+CM(t)\int_{0}^{t}\|F\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|G\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|H\|_{\dot{B}^{-\sigma}_{2,\infty}}ds.

Using (3.39) and Lemmas 2.2, 2.3, we obtain

(3.48) 0t(F,G,H)B˙2,σ𝑑s\displaystyle\int_{0}^{t}\|(F,G,H)\|_{\dot{B}^{-\sigma}_{2,\infty}}ds C0t(F,G,H)L2σ+1𝑑s\displaystyle\leq C\int_{0}^{t}\|(F,G,H)\|_{L^{\frac{2}{\sigma+1}}}ds
C0t(ρL2σ+uL2σ)(ρL2+uH1+τL2)𝑑s\displaystyle\leq C\int_{0}^{t}(\|\rho\|_{L^{\frac{2}{\sigma}}}+\|u\|_{L^{\frac{2}{\sigma}}})(\|\nabla\rho\|_{L^{2}}+\|\nabla u\|_{H^{1}}+\|\nabla\tau\|_{L^{2}})ds
C0t(ρ,u)L2σ(ρ,u)L21σ(ρL2+uH1+τL2)𝑑s\displaystyle\leq C\int_{0}^{t}\|(\rho,u)\|^{\sigma}_{L^{2}}\|\nabla(\rho,u)\|^{1-\sigma}_{L^{2}}(\|\nabla\rho\|_{L^{2}}+\|\nabla u\|_{H^{1}}+\|\nabla\tau\|_{L^{2}})ds
C0t(1+s)(1+ασ2)𝑑sC.\displaystyle\leq C\int_{0}^{t}(1+s)^{-(1+\alpha-\frac{\sigma}{2})}ds\leq C.

According to (3.47) and (3.48), we have M2(t)CM2(0)+CM(t)M^{2}(t)\leq CM^{2}(0)+CM(t). By virtue of interpolation theory, we can deduce that (ρ0,u0,τ0)B˙2,σ(\rho_{0},u_{0},\tau_{0})\in\dot{B}^{-\sigma}_{2,\infty} with 0<σ10<\sigma\leq 1. Then M2(0)CM^{2}(0)\leq C implies that M(t)CM(t)\leq C. ∎

Proposition 3.6.

Let 0<β,σ10<\beta,\sigma\leq 1 and 12α\frac{1}{2}\leq\alpha. Assume that (ρ0,u0,τ0)(\rho_{0},u_{0},\tau_{0}) satisfy the condition in Proposition 3.2. For any t[0,+)t\in[0,+\infty), if

(3.49) E0(t)C(1+t)α,E1(t)C(1+t)α1,\displaystyle E_{0}(t)\leq C(1+t)^{-\alpha},~{}~{}~{}~{}E_{1}(t)\leq C(1+t)^{-\alpha-1},

and

(3.50) (ρ,u,τ)L(0,;B˙2,σ),\displaystyle(\rho,u,\tau)\in L^{\infty}(0,\infty;\dot{B}^{-\sigma}_{2,\infty}),

then there exists a constant CC such that

(3.51) E0(t)C(1+t)βandE1(t)C(1+t)β1\displaystyle E_{0}(t)\leq C(1+t)^{-\beta}~{}~{}~{}~{}and~{}~{}~{}~{}E_{1}(t)\leq C(1+t)^{-\beta-1}

where β<σ+12\beta<\frac{\sigma+1}{2} for α=12\alpha=\frac{1}{2} and β=σ+12\beta=\frac{\sigma+1}{2} for α>12\alpha>\frac{1}{2}.

Proof.

According to the proof of Proposition 3.3, we obtain

(3.52) ddtE0(t)+C22(1+t)uH22+ηγC21+tρH12+τH22\displaystyle\frac{d}{dt}E_{0}(t)+\frac{C_{2}}{2(1+t)}\|u\|^{2}_{H^{2}}+\frac{\eta\gamma C_{2}}{1+t}\|\rho\|^{2}_{H^{1}}+\|\tau\|^{2}_{H^{2}}
CC21+t((1+t)1+S(t)0t|F^ρ^¯|+|G^u^¯|dsdξ).\displaystyle\leq\frac{CC_{2}}{1+t}((1+t)^{-1}+\int_{S(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{\rho}}|+|\hat{G}\cdot\bar{\hat{u}}|dsd\xi).

By virtue of (3.49) and (3.50), we deduce that

(3.53) S(t)0t|F^ρ^¯|+|G^u^¯|dsdξ\displaystyle\int_{S(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{\rho}}|+|\hat{G}\cdot\bar{\hat{u}}|dsd\xi C0t(FL1S(t)|ρ^|𝑑ξ+GL1S(t)|u^|𝑑ξ)𝑑s\displaystyle\leq C\int_{0}^{t}(\|F\|_{L^{1}}\int_{S(t)}|\hat{\rho}|d\xi+\|G\|_{L^{1}}\int_{S(t)}|\hat{u}|d\xi)ds
C(1+t)120t(FL1+GL1)(S(t)|ρ^|2+|u^|2dξ)12𝑑s\displaystyle\leq C(1+t)^{-\frac{1}{2}}\int_{0}^{t}(\|F\|_{L^{1}}+\|G\|_{L^{1}})(\int_{S(t)}|\hat{\rho}|^{2}+|\hat{u}|^{2}d\xi)^{\frac{1}{2}}ds
C(1+t)σ+12M(t)0tFL1+GL1ds\displaystyle\leq C(1+t)^{-\frac{\sigma+1}{2}}M(t)\int_{0}^{t}\|F\|_{L^{1}}+\|G\|_{L^{1}}ds
C(1+t)σ+120t(1+s)(α+12)𝑑s\displaystyle\leq C(1+t)^{-\frac{\sigma+1}{2}}\int_{0}^{t}(1+s)^{-(\alpha+\frac{1}{2})}ds
C(1+t)β.\displaystyle\leq C(1+t)^{-\beta}.

Using (3.52) and (3.53), we obtain

(3.54) E0(t)C(1+t)β.\displaystyle E_{0}(t)\leq C(1+t)^{-\beta}.

Recall that

ddtE1+C21+t(12uH12+ηγρL22)+τH12CC21+tS(t)|ξ|2(|u^(ξ)|2+|ρ^(ξ)|2)𝑑ξ.\displaystyle\frac{d}{dt}E_{1}+\frac{C_{2}}{1+t}(\frac{1}{2}\|\nabla u\|^{2}_{H^{1}}+\eta\gamma\|\nabla\rho\|^{2}_{L^{2}})+\|\nabla\tau\|^{2}_{H^{1}}\leq\frac{CC_{2}}{1+t}\int_{S(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2})d\xi.

According to (3.54), we have

CC21+tS(t)|ξ|2(|u^(ξ)|2+|ρ^(ξ)|2)𝑑ξCC22(1+t)2(ρL22+uL22)C(1+t)2β.\displaystyle\frac{CC_{2}}{1+t}\int_{S(t)}|\xi|^{2}(|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2})d\xi\leq C{C_{2}}^{2}(1+t)^{-2}(\|\rho\|^{2}_{L^{2}}+\|u\|^{2}_{L^{2}})\leq C(1+t)^{-2-\beta}.

Then the proof of (3.38) implies that E1C(1+t)1βE_{1}\leq C(1+t)^{-1-\beta}. We thus finish the proof of Proposition 3.6. ∎

The proof of Theorem 1.1:
We now improve the decay rate in Proposition 3.3. According to Proposition 3.3 and Lemma 3.5 with σ=α=12\sigma=\alpha=\frac{1}{2}, we obtain

(ρ,u,τ)L(0,;B˙2,12).\displaystyle(\rho,u,\tau)\in L^{\infty}(0,\infty;\dot{B}^{-\frac{1}{2}}_{2,\infty}).

Taking advantage of Proposition 3.6 with α=σ=12\alpha=\sigma=\frac{1}{2} and β=58\beta=\frac{5}{8}, we deduce that

E0(t)C(1+t)58andE1(t)C(1+t)581.\displaystyle E_{0}(t)\leq C(1+t)^{-\frac{5}{8}}~{}~{}~{}~{}and~{}~{}~{}~{}E_{1}(t)\leq C(1+t)^{-\frac{5}{8}-1}.

Taking σ=1\sigma=1 and α=58\alpha=\frac{5}{8} in Lemma 3.5, we obtain

(ρ,u,τ)L(0,;B˙2,1).\displaystyle(\rho,u,\tau)\in L^{\infty}(0,\infty;\dot{B}^{-1}_{2,\infty}).

Using Propositions 3.6 again with α=58\alpha=\frac{5}{8} and σ=β=1\sigma=\beta=1, we verify that

E0(t)C(1+t)1andE1(t)C(1+t)2.\displaystyle E_{0}(t)\leq C(1+t)^{-1}~{}~{}~{}~{}and~{}~{}~{}~{}E_{1}(t)\leq C(1+t)^{-2}.

To get the faster decay rate for τ\tau in L2L^{2}, we need the following standard energy estimation for (1.15)3\eqref{eq1}_{3}:

12ddtτL22+τL222D(u):τdx+uL2τL42.\displaystyle\frac{1}{2}\frac{d}{dt}\|\tau\|^{2}_{L^{2}}+\|\tau\|^{2}_{L^{2}}\leq\int_{\mathbb{R}^{2}}D(u):\tau dx+\|\nabla u\|_{L^{2}}\|\tau\|^{2}_{L^{4}}.

Using Lemma 2.3, we deduce that

ddtτL22+τL22CuL22(1+τL22),\displaystyle\frac{d}{dt}\|\tau\|^{2}_{L^{2}}+\|\tau\|^{2}_{L^{2}}\leq C\|\nabla u\|^{2}_{L^{2}}(1+\|\nabla\tau\|^{2}_{L^{2}}),

which implies that

τL22\displaystyle\|\tau\|^{2}_{L^{2}} τ0L22et+C0te(ts)uL22(1+τL22)𝑑s\displaystyle\leq\|\tau_{0}\|^{2}_{L^{2}}e^{-t}+C\int_{0}^{t}e^{-(t-s)}\|\nabla u\|^{2}_{L^{2}}(1+\|\nabla\tau\|^{2}_{L^{2}})ds
C(et+0te(ts)(1+s)2𝑑s)\displaystyle\leq C(e^{-t}+\int_{0}^{t}e^{-(t-s)}(1+s)^{-2}ds)
C(1+t)2.\displaystyle\leq C(1+t)^{-2}.

We thus complete the proof of Theorem 1.1. \Box

4 Optimal time decay rate for the compressible Hall-MHD equations

This section is devoted to investigating the large time behaviour for the 2-D compressible Hall-MHD equations. We introduce the energy and energy dissipation functionals for (ρ,u,B)(\rho,u,B) as follows:

E¯σ=Λσ(ρ,u,B)H2σ2+2ηΛσu,ΛσρH1σ,\bar{E}_{\sigma}=\|\Lambda^{\sigma}(\rho,u,B)\|^{2}_{H^{2-\sigma}}+2\eta\langle\Lambda^{\sigma}u,\nabla\Lambda^{\sigma}\rho\rangle_{H^{1-\sigma}},

and

D¯σ=ηγΛσρH1σ2+ΛσuH2σ2+divΛσuH2σ2+ΛσBH2σ2,\bar{D}_{\sigma}=\eta\gamma\|\nabla\Lambda^{\sigma}\rho\|^{2}_{H^{1-\sigma}}+\|\nabla\Lambda^{\sigma}u\|^{2}_{H^{2-\sigma}}+\|div~{}\Lambda^{\sigma}u\|^{2}_{H^{2-\sigma}}+\|\nabla\Lambda^{\sigma}B\|^{2}_{H^{2-\sigma}},

where σ=0\sigma=0 or 1 and η\eta is a sufficiently small constant.

By virtue of the energy method and interpolation theory in [42], one can easily deduce that the global existence of strong solutions for (1.20). Thus we omit the proof here and present the following Theorem.

Theorem 4.1.

Let d=2d=2. Let (ρ,u,B)(\rho,u,B) be a strong solution of (1.20) with initial data (ρ0,u0,B0)H2(\rho_{0},u_{0},B_{0})\in H^{2}. Then, there exists some sufficiently small constant ϵ0\epsilon_{0} such that if

E¯0(0)ϵ0,\displaystyle\bar{E}_{0}(0)\leq\epsilon_{0},

then (1.15) admits a unique global strong solution (ρ,u,B)(\rho,u,B). Moreover, for σ=0\sigma=0 or 1 and any t>0t>0, we have

(4.1) ddtE¯σ(t)+D¯σ(t)0.\displaystyle\frac{d}{dt}\bar{E}_{\sigma}(t)+\bar{D}_{\sigma}(t)\leq 0.

By taking Fourier transform in (1.20) and using the Fourier splitting method, we obtain the initial L2L^{2} decay rate in following Proposition.

Proposition 4.2.

Let d=2d=2. Under the condition in Theorem 1.4, then for any lN+l\in N^{+}, there exists a constant CC such that

E¯0(t)Clnl(e+t),E¯1(t)C(1+t)1lnl(e+t).\displaystyle\bar{E}_{0}(t)\leq C\ln^{-l}(e+t),~{}~{}~{}~{}\bar{E}_{1}(t)\leq C(1+t)^{-1}\ln^{-l}(e+t).
Proof.

Referring to the proof of Propositions 3.2, one can easily verify that Proposition 4.2 is true. More details can be found in the following Proposition 4.3. ∎

By virtue of the improved Fourier splitting method, one can not obtain the optimal decay rate. However, we can obtain a weak result as follow.

Proposition 4.3.

Under the condition in Theorem 1.4, there exists a constant CC such that

E¯0(t)C(1+t)12,E¯1(t)C(1+t)32.\displaystyle\bar{E}_{0}(t)\leq C(1+t)^{-\frac{1}{2}},~{}~{}~{}~{}\bar{E}_{1}(t)\leq C(1+t)^{-\frac{3}{2}}.
Proof.

Define S(t)={ξ:|ξ|2C2(1+t)1}S(t)=\{\xi:|\xi|^{2}\leq C_{2}(1+t)^{-1}\} where the constant C2C_{2} will be chosen later on. Taking σ=0\sigma=0 in (4.1), we can easily deduce that

(4.2) ddtE¯0(t)+C21+t(u,B)H22+ηγC21+tρH12CC21+tS(t)|u^(ξ)|2+|ρ^(ξ)|2+|B^(ξ)|2dξ.\displaystyle\frac{d}{dt}\bar{E}_{0}(t)+\frac{C_{2}}{1+t}\|(u,B)\|^{2}_{H^{2}}+\frac{\eta\gamma C_{2}}{1+t}\|\rho\|^{2}_{H^{1}}\leq\frac{CC_{2}}{1+t}\int_{S(t)}|\hat{u}(\xi)|^{2}+|\hat{\rho}(\xi)|^{2}+|\hat{B}(\xi)|^{2}d\xi.

The L2L^{2} estimate to the low frequency part of (ρ,u,B)(\rho,u,B) play a key role in studying time decay rates. Applying Fourier transform to (1.20), we obtain

(4.6) {ρ^t+iξku^k=F^1,u^tj+|ξ|2u^j+ξjξku^k+iξjγρ^=G^1j,B^tk+|ξ|2B^k=H^1k.\displaystyle\left\{\begin{array}[]{ll}\hat{\rho}_{t}+i\xi_{k}\hat{u}^{k}=\hat{F}_{1},\\[4.30554pt] \hat{u}^{j}_{t}+|\xi|^{2}\hat{u}^{j}+\xi_{j}\xi_{k}\hat{u}^{k}+i\xi_{j}\gamma\hat{\rho}=\hat{G}_{1}^{j},\\[4.30554pt] \hat{B}^{k}_{t}+|\xi|^{2}\hat{B}^{k}=\hat{H}_{1}^{k}.\\[4.30554pt] \end{array}\right.

One can verify that

e[iξu^ρ^¯]+e[ρ^iξu^¯]=0.\mathcal{R}e[i\xi\cdot\hat{u}\bar{\hat{\rho}}]+\mathcal{R}e[\hat{\rho}i\xi\cdot\bar{\hat{u}}]=0.

According to (4.6), then we have

(4.7) S(t)|ρ^|2+|u^|2+|B^|2dξ\displaystyle\int_{S(t)}|\hat{\rho}|^{2}+|\hat{u}|^{2}+|\hat{B}|^{2}d\xi CS(t)|ρ^0|2+|u^0|2+|B^0|2dξ\displaystyle\leq C\int_{S(t)}|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+|\hat{B}_{0}|^{2}d\xi
+CS(t)0t|F^1ρ^¯|+|G^1u^¯|+|H^1B^¯|dsdξ.\displaystyle+C\int_{S(t)}\int_{0}^{t}|\hat{F}_{1}\cdot\bar{\hat{\rho}}|+|\hat{G}_{1}\cdot\bar{\hat{u}}|+|\hat{H}_{1}\cdot\bar{\hat{B}}|dsd\xi.

By (ρ0,u0,B0)H2B˙2,1(\rho_{0},u_{0},B_{0})\in H^{2}\cap\dot{B}^{-1}_{2,\infty} and Proposition 2.1, we deduce that

(4.8) S(t)|ρ^0|2+|u^0|2+|B^0|2dξ\displaystyle\int_{S(t)}|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+|\hat{B}_{0}|^{2}d\xi jlog2[43C212(1+t)12]22φ2(2jξ)(|ρ^0|2+|u^0|2+|B^0|2)𝑑ξ\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}(1+t)^{-\frac{1}{2}}]}\int_{\mathbb{R}^{2}}2\varphi^{2}(2^{-j}\xi)(|\hat{\rho}_{0}|^{2}+|\hat{u}_{0}|^{2}+|\hat{B}_{0}|^{2})d\xi
jlog2[43C212(1+t)12]2(Δ˙ju0L22+Δ˙jρ0L22+Δ˙jτ0L22)\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}(1+t)^{-\frac{1}{2}}]}2(\|\dot{\Delta}_{j}u_{0}\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}\rho_{0}\|^{2}_{L^{2}}+\|\dot{\Delta}_{j}\tau_{0}\|^{2}_{L^{2}})
jlog2[43C212(1+t)12]C22j\displaystyle\leq\sum_{j\leq\log_{2}[\frac{4}{3}C_{2}^{\frac{1}{2}}(1+t)^{-\frac{1}{2}}]}C2^{2j}
C(1+t)1.\displaystyle\leq C(1+t)^{-1}.

Thanks to Minkowski’s inequality, we have

(4.9) S(t)0t|F^1ρ^¯|+|G^1u^¯|+|H^1B^¯|dsdξ\displaystyle\int_{S(t)}\int_{0}^{t}|\hat{F}_{1}\cdot\bar{\hat{\rho}}|+|\hat{G}_{1}\cdot\bar{\hat{u}}|+|\hat{H}_{1}\cdot\bar{\hat{B}}|dsd\xi
C(S(t)𝑑ξ)120tF^1ρ^¯L2+G^1u^¯L2+H^1B^¯L2ds\displaystyle\leq C(\int_{S(t)}d\xi)^{\frac{1}{2}}\int_{0}^{t}\|\hat{F}_{1}\cdot\bar{\hat{\rho}}\|_{L^{2}}+\|\hat{G}_{1}\cdot\bar{\hat{u}}\|_{L^{2}}+\|\hat{H}_{1}\cdot\bar{\hat{B}}\|_{L^{2}}ds
C(1+t)120t(ρ,u,B)L22(uH1+ρL2+BH1)𝑑s,\displaystyle\leq C(1+t)^{-\frac{1}{2}}\int_{0}^{t}\|(\rho,u,B)\|^{2}_{L^{2}}(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla B\|_{H^{1}})ds,

where we used the fact that

curl[(curlB)×Bρ+1]L1\displaystyle\|curl[\frac{(curlB)\times B}{\rho+1}]\|_{L^{1}} C(BL22BL2+BL22+BL2BL4ρL4)\displaystyle\leq C(\|B\|_{L^{2}}\|\nabla^{2}B\|_{L^{2}}+\|\nabla B\|^{2}_{L^{2}}+\|B\|_{L^{2}}\|\nabla B\|_{L^{4}}\|\nabla\rho\|_{L^{4}})
CBL2BH1.\displaystyle\leq C\|B\|_{L^{2}}\|\nabla B\|_{H^{1}}.

It follows from (4.7)-(4.9) that

(4.10) S(t)|ρ^(t,ξ)|2+|u^(t,ξ)|2+|B^(t,ξ)|2dξC(1+t)1\displaystyle\int_{S(t)}|\hat{\rho}(t,\xi)|^{2}+|\hat{u}(t,\xi)|^{2}+|\hat{B}(t,\xi)|^{2}d\xi\leq C(1+t)^{-1}
+C(1+t)120t(ρ,u,B)L22(uH1+ρL2+BH1)𝑑s.\displaystyle+C(1+t)^{-\frac{1}{2}}\int_{0}^{t}\|(\rho,u,B)\|^{2}_{L^{2}}(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla B\|_{H^{1}})ds.

According to (4.2) and (4.10), we obtain

ddtE¯0(t)+C21+t(u,B)H22+ηγC21+tρH12\displaystyle\frac{d}{dt}\bar{E}_{0}(t)+\frac{C_{2}}{1+t}\|(u,B)\|^{2}_{H^{2}}+\frac{\eta\gamma C_{2}}{1+t}\|\rho\|^{2}_{H^{1}}
CC21+t[(1+t)1+(1+t)120t(ρ,u,B)L22(uH1+ρL2+BH1)𝑑s],\displaystyle\leq\frac{CC_{2}}{1+t}[(1+t)^{-1}+(1+t)^{-\frac{1}{2}}\int_{0}^{t}\|(\rho,u,B)\|^{2}_{L^{2}}(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla B\|_{H^{1}})ds],

which implies that

(4.11) (1+t)32E¯0(t)\displaystyle(1+t)^{\frac{3}{2}}\bar{E}_{0}(t) C0t2ρL22(1+s)12𝑑s+C(1+t)12\displaystyle\leq C\int_{0}^{t}\|\nabla^{2}\rho\|^{2}_{L^{2}}(1+s)^{\frac{1}{2}}ds+C(1+t)^{\frac{1}{2}}
+C(1+t)0t(ρ,u,B)L22(uH1+ρL2+BL2)𝑑s\displaystyle+C(1+t)\int_{0}^{t}\|(\rho,u,B)\|^{2}_{L^{2}}(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla B\|_{L^{2}})ds
C(1+t)12+C(1+t)0t(ρ,u,B)L22(uH1+ρL2+BH1)𝑑s.\displaystyle\leq C(1+t)^{\frac{1}{2}}+C(1+t)\int_{0}^{t}\|(\rho,u,B)\|^{2}_{L^{2}}(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla B\|_{H^{1}})ds.

Define N¯(t)=sup0st(1+s)12E¯0(s)\bar{N}(t)=\sup_{0\leq s\leq t}(1+s)^{\frac{1}{2}}\bar{E}_{0}(s). According to (4.11), we get

(4.12) N¯(t)C+C0tN(s)(1+s)12(uH1+ρL2+BH1)𝑑s.\displaystyle\bar{N}(t)\leq C+C\int_{0}^{t}N(s)(1+s)^{-\frac{1}{2}}(\|\nabla u\|_{H^{1}}+\|\nabla\rho\|_{L^{2}}+\|\nabla B\|_{H^{1}})ds.

Applying Gronwall’s inequality and Proposition 4.2, we obtain N(t)CN(t)\leq C, which implies that

(4.13) E¯0C(1+t)12.\displaystyle\bar{E}_{0}\leq C(1+t)^{-\frac{1}{2}}.

Taking σ=1\sigma=1 in (4.1), we have

(4.14) ddtE¯1+D¯10,\displaystyle\frac{d}{dt}\bar{E}_{1}+\bar{D}_{1}\leq 0,

According to (4.13) and (4.14) we deduce that

(4.15) ddtE¯1+C21+t((u,B)H12+ηγρL22)C(1+t)52.\displaystyle\frac{d}{dt}\bar{E}_{1}+\frac{C_{2}}{1+t}(\|\nabla(u,B)\|^{2}_{H^{1}}+\eta\gamma\|\nabla\rho\|^{2}_{L^{2}})\leq C(1+t)^{-\frac{5}{2}}.

By (4.1), we obtain

(1+t)52E¯1\displaystyle(1+t)^{\frac{5}{2}}\bar{E}_{1} C(1+t)+C0t2ρL22(1+s)32𝑑s\displaystyle\leq C(1+t)+C\int_{0}^{t}\|\nabla^{2}\rho\|^{2}_{L^{2}}(1+s)^{\frac{3}{2}}ds
C(1+t)+C0tE¯0(s)(1+s)12𝑑s\displaystyle\leq C(1+t)+C\int_{0}^{t}\bar{E}_{0}(s)(1+s)^{\frac{1}{2}}ds
C(1+t),\displaystyle\leq C(1+t),

which implies that

E¯1C(1+t)32.\displaystyle\bar{E}_{1}\leq C(1+t)^{-\frac{3}{2}}.

Therefore, we complete the proof of Proposition 4.3. ∎

By Proposition 4.3, we can prove that the solution of (1.20) belongs to some Besov space with negative index.

Lemma 4.4.

Let 0<α,σ10<\alpha,\sigma\leq 1 and σ<2α\sigma<2\alpha. Assume that (ρ0,u0,B0)(\rho_{0},u_{0},B_{0}) satisfy the same condition in Theorem 1.4. For any t[0,+)t\in[0,+\infty), if

(4.16) E¯0(t)C(1+t)α,E¯1(t)C(1+t)α1,\displaystyle\bar{E}_{0}(t)\leq C(1+t)^{-\alpha},~{}~{}~{}~{}\bar{E}_{1}(t)\leq C(1+t)^{-\alpha-1},

then we have

(4.17) (ρ,u,B)L(0,;B˙2,σ).\displaystyle(\rho,u,B)\in L^{\infty}(0,\infty;\dot{B}^{-\sigma}_{2,\infty}).
Proof.

Applying Δ˙j\dot{\Delta}_{j} to (1.20), we get

(4.21) {Δ˙jρt+divΔ˙ju=Δ˙jF1,Δ˙jut(Δ+div)Δ˙ju+γΔ˙jρ=Δ˙jG1,Δ˙jBtΔΔ˙jB=Δ˙jH1.\displaystyle\left\{\begin{array}[]{ll}\dot{\Delta}_{j}\rho_{t}+div~{}\dot{\Delta}_{j}u=\dot{\Delta}_{j}F_{1},\\[4.30554pt] \dot{\Delta}_{j}u_{t}-(\Delta+\nabla div)\dot{\Delta}_{j}u+\gamma\nabla\dot{\Delta}_{j}\rho=\dot{\Delta}_{j}G_{1},\\[4.30554pt] \dot{\Delta}_{j}B_{t}-\Delta\dot{\Delta}_{j}B=\dot{\Delta}_{j}H_{1}.\\[4.30554pt] \end{array}\right.

Using the standard estimate in Besov spaces for (4.21), we obtain

(4.22) ddt(γρB˙2,σ2+uB˙2,σ2+BB˙2,σ(2)2)\displaystyle\frac{d}{dt}(\gamma\|\rho\|^{2}_{\dot{B}^{-\sigma}_{2,\infty}}+\|u\|^{2}_{\dot{B}^{-\sigma}_{2,\infty}}+\|B\|^{2}_{\dot{B}^{-\sigma}_{2,\infty}(\mathcal{L}^{2})})
C(FB˙2,σρB˙2,σ+GB˙2,σuB˙2,σ+HB˙2,σBB˙2,σ).\displaystyle\leq C(\|F\|_{\dot{B}^{-\sigma}_{2,\infty}}\|\rho\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|G\|_{\dot{B}^{-\sigma}_{2,\infty}}\|u\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|H\|_{\dot{B}^{-\sigma}_{2,\infty}}\|B\|_{\dot{B}^{-\sigma}_{2,\infty}}).

Define M¯(t)=0stρB˙2,σ+uB˙2,σ+BB˙2,σ\bar{M}(t)=\sum_{0\leq s\leq t}\|\rho\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|u\|_{\dot{B}^{-\sigma}_{2,\infty}}+\|B\|_{\dot{B}^{-\sigma}_{2,\infty}}. According to (4.22), we deduce that

(4.23) M¯2(t)\displaystyle\bar{M}^{2}(t) CM¯2(0)+CM¯(t)0t(F1,G1,H1)B˙2,σ𝑑s.\displaystyle\leq C\bar{M}^{2}(0)+C\bar{M}(t)\int_{0}^{t}\|(F_{1},G_{1},H_{1})\|_{\dot{B}^{-\sigma}_{2,\infty}}ds.

Using (4.16) and Lemmas 2.2, 2.3, we obtain

(4.24) 0t(F1,G1,H1)B˙2,σ𝑑s\displaystyle\int_{0}^{t}\|(F_{1},G_{1},H_{1})\|_{\dot{B}^{-\sigma}_{2,\infty}}ds C0t(F1,G1,H1)L2σ+1𝑑s\displaystyle\leq C\int_{0}^{t}\|(F_{1},G_{1},H_{1})\|_{L^{\frac{2}{\sigma+1}}}ds
C0t(ρ,u,B)L2σ(ρ,u,B)H1+BL2(ρ,B)L2σds\displaystyle\leq C\int_{0}^{t}\|(\rho,u,B)\|_{L^{\frac{2}{\sigma}}}\|\nabla(\rho,u,B)\|_{H^{1}}+\|\nabla B\|_{L^{2}}\|\nabla(\rho,B)\|_{L^{\frac{2}{\sigma}}}ds
C0t(1+s)(1+ασ2)𝑑sC.\displaystyle\leq C\int_{0}^{t}(1+s)^{-(1+\alpha-\frac{\sigma}{2})}ds\leq C.

Then we have M¯2(t)CM¯2(0)+CM¯(t)\bar{M}^{2}(t)\leq C\bar{M}^{2}(0)+C\bar{M}(t). By virtue of interpolation theory, we have M¯2(0)C\bar{M}^{2}(0)\leq C, which implies that M¯(t)C\bar{M}(t)\leq C. ∎

The proof of Theorem 1.4:
According to the proof of Proposition 4.3, we obtain

(4.25) ddtE¯0(t)+C21+t(u,B)H22+ηγC21+tρH12\displaystyle\frac{d}{dt}\bar{E}_{0}(t)+\frac{C_{2}}{1+t}\|(u,B)\|^{2}_{H^{2}}+\frac{\eta\gamma C_{2}}{1+t}\|\rho\|^{2}_{H^{1}}
CC21+t((1+t)1+S(t)0t|F^1ρ^¯|+|G^1u^¯|+|H^1B^¯|dsdξ).\displaystyle\leq\frac{CC_{2}}{1+t}((1+t)^{-1}+\int_{S(t)}\int_{0}^{t}|\hat{F}_{1}\cdot\bar{\hat{\rho}}|+|\hat{G}_{1}\cdot\bar{\hat{u}}|+|\hat{H}_{1}\cdot\bar{\hat{B}}|dsd\xi).

By virtue of Propositions 4.3 and Lemma 4.4 with α=σ=12\alpha=\sigma=\frac{1}{2}, we have

(4.26) S(t)0t|F^ρ^¯|+|G^u^¯|+|H^1B^¯|dsdξ\displaystyle\int_{S(t)}\int_{0}^{t}|\hat{F}\cdot\bar{\hat{\rho}}|+|\hat{G}\cdot\bar{\hat{u}}|+|\hat{H}_{1}\cdot\bar{\hat{B}}|dsd\xi C(1+t)34M¯(t)0t(F1,G1,H1)L1𝑑s\displaystyle\leq C(1+t)^{-\frac{3}{4}}\bar{M}(t)\int_{0}^{t}\|(F_{1},G_{1},H_{1})\|_{L^{1}}ds
C(1+t)340t(1+s)1𝑑s\displaystyle\leq C(1+t)^{-\frac{3}{4}}\int_{0}^{t}(1+s)^{-1}ds
C(1+t)58.\displaystyle\leq C(1+t)^{-\frac{5}{8}}.

Using (4.14), (4.25) and (4.26), we deduce that

(4.27) E¯0(t)C(1+t)58,E¯1(t)C(1+t)581\displaystyle\bar{E}_{0}(t)\leq C(1+t)^{-\frac{5}{8}},~{}~{}~{}~{}\bar{E}_{1}(t)\leq C(1+t)^{-\frac{5}{8}-1}

Taking α=58\alpha=\frac{5}{8} and σ=1\sigma=1 in (4.24) and Lemma 4.4, we have

(4.28) S(t)0t|F^1ρ^¯|+|G^1u^¯|+|H^1B^¯|dsdξ\displaystyle\int_{S(t)}\int_{0}^{t}|\hat{F}_{1}\cdot\bar{\hat{\rho}}|+|\hat{G}_{1}\cdot\bar{\hat{u}}|+|\hat{H}_{1}\cdot\bar{\hat{B}}|dsd\xi C(1+t)1M¯(t)0t(F1,G1,H1)L1𝑑s\displaystyle\leq C(1+t)^{-1}\bar{M}(t)\int_{0}^{t}\|(F_{1},G_{1},H_{1})\|_{L^{1}}ds
C(1+t)1.\displaystyle\leq C(1+t)^{-1}.

According to (4.25) and (4.28), we obtain E¯0(t)C(1+t)1\bar{E}_{0}(t)\leq C(1+t)^{-1}. By (4.14), we can deduce that E¯1C(1+t)2\bar{E}_{1}\leq C(1+t)^{-2}. We thus complete the proof of Theorem 1.4. \Box

Acknowledgments This work was partially supported by the National Natural Science Foundation of China (No.12171493 and No.11671407), the Macao Science and Technology Development Fund (No. 0091/2018/A3), Guangdong Province of China Special Support Program (No. 8-2015), the key project of the Natural Science Foundation of Guangdong province (No. 2016A030311004), and National Key R&\&D Program of China (No. 2021YFA1002100).

Data Availability. The data that support the findings of this study are available on citation. The data that support the findings of this study are also available from the corresponding author upon reasonable request.

References

  • [1] H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg, 2011.
  • [2] J. W. Barrett, L. Yong, and E. Süli. Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model. Communications in Mathematical Sciences, 15(5), 2016.
  • [3] Q. Bie, Q. Wang, and Z. A. Yao. Optimal decay for the compressible MHD equations in the critical regularity framework. arXiv:1906.09119, 2019.
  • [4] J.-Y. Chemin and N. Masmoudi. About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal., 33(1):84–112, 2001.
  • [5] Q. Chen and T. Zhong. Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations. Nonlinear Anal., 72(12):4438–4451, 2010.
  • [6] Y. Chen, M. Li, Q. Yao, and Z. Yao. The sharp time decay rates and stability of large solutions to the two-dimensional phan-thien-tanner system with magnetic field. Asymptotic Anal., 129:451–484, 2022.
  • [7] Y. Chen, M. Li, Q. Yao, and Z. Yao. Sharp rates of decay and global-in-time stabil- ity of large solutions to three-dimensional incompressible phan-thien-tanner system of polymeric flows. SIAM J. Math. Anal., 2023.
  • [8] R. Danchin and J. Xu. Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp{L}^{p} framework. Arch. Ration. Mech. Anal., 224:53–90, 2017.
  • [9] J. Fan, A. Alsaedi, T. Hayat, G. Nakamura, and Y. Zhou. On strong solutions to the compressible Hall-magnetohydrodynamic system. Nonlinear Anal. Real World Appl., 22:423–434, 2015.
  • [10] D. Fang and R. Zi. Incompressible limit of Oldroyd-B fluids in the whole space. J. Differential Equations, 256(7):2559–2602, 2014.
  • [11] E. Fernández-Cara, F. Guillén, and R. Ortega. Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26(1):1–29, 1998.
  • [12] C. Guillopé and J.-C. Saut. Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél. Math. Anal. Numér., 24(3):369–401, 1990.
  • [13] L. He and P. Zhang. L2{L}^{2} Decay of Solutions to a Micro-Macro Model for Polymeric Fluids Near Equilibrium. SIAM J. Math. Anal., 40(5):1905–1922, 2009.
  • [14] M. Hieber, H. Wen, and R. Zi. Optimal decay rates for solutions to the incompressible Oldroyd-B model in R3{R}^{3}. Nonlinearity, 32:833–852, 2019.
  • [15] X. Hu and D. Wang. Global solutions to the three-dimensional full compressible magnetohydrodynamic flows. Comm. Math. Phys., 283(1):255–284, 2008.
  • [16] X. Hu and D. Wang. Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Arch. Ration. Mech. Anal., 197(1):p.203–238, 2010.
  • [17] S. Kawashima. Smooth global solutions for two-dimensional equations of electro-magneto-fluid dynamics. Japan J. Appl. Math., 1(1):207–222, 1984.
  • [18] Z. Lei. Global existence of classical solutions for some Oldroyd-B model via the incompressible limit. Chinese Ann. of Math., 27(5):p.565–580, 2006.
  • [19] Z. Lei, C. Liu, and Y. Zhou. Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal., 188(3):371–398, 2008.
  • [20] Z. Lei and Y. Zhou. Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit. SIAM J. Math. Anal., 37(3):797–814, 2005.
  • [21] F. C. Li and H. J. Yu. Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations. Proc. Roy. Soc. Edinburgh Sec. A Math., 141(01):109–126, 2011.
  • [22] H.-L. Li and T. Zhang. Large time behavior of isentropic compressible Navier-Stokes system in R3{R}^{3}. Math. Methods Appl. Sci., 34(6):670–682, 2011.
  • [23] F. H. Lin, C. Liu, and P. Zhang. On hydrodynamics of viscoelastic fluids. Comm. Pure Appl. Math., 58(11):1437–1471, 2010.
  • [24] P. L. Lions and N. Masmoudi. Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann. Math. Ser. B, 21(2):131–146, 2000.
  • [25] W. Luo and Z. Yin. The Liouville Theorem and the L2L^{2} Decay for the FENE Dumbbell Model of Polymeric Flows. Arch. Ration. Mech. Anal., 224(1):209–231, 2017.
  • [26] W. Luo and Z. Yin. The L2L^{2} decay for the 2D co-rotation FENE dumbbell model of polymeric flows. Adv. Math., 343:522–537, 2019.
  • [27] N. Masmoudi. Global existence of weak solutions to macroscopic models of polymeric flows. J. Math. Pures Appl., 96(5):502–520, 2011.
  • [28] N. Masmoudi. Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math., 191(2):427–500, 2013.
  • [29] N. Masmoudi. Equations for Polymeric Materials. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2016.
  • [30] A. Matsumura and T. Nishida. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A Math. Sci., 55:337–342, 1979.
  • [31] L. Nirenberg. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, 13(2):115–162, 1959.
  • [32] J. G. Oldroyd. Non-newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. Roy. Soc. A, 245(1241):278–297, 1958.
  • [33] X. Pan and J. Xu. Global existence and optimal decay estimates of strong solutions to the compressible viscoelastic flows. arXiv:1711.11325, 2017.
  • [34] J. Qian and Z. Zhang. Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal., 198(3):p.835–868, 2010.
  • [35] M. E. Schonbek. L2{L}^{2} decay for weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal., 88(3):209–222, 1985.
  • [36] M. E. Schonbek. Existence and decay of polymeric flows. SIAM J. Math. Anal., 41(2):564–587, 2009.
  • [37] W. Shi and J. Xu. Large time behavior of strong solutions to the compressible magnetohydrodynamic system in the critical Lp{L}^{p} framework. J. Hyperbolic Differ. Equ., 15(02):259–290, 2018.
  • [38] A. Suen and D. Hoff. Global low-energy weak solutions of the equations of three-dimensional compressible magnetohydrodynamics. Arch. Ration. Mech. Anal., 205(1):27–58, 2012.
  • [39] L. Tong, Z. Tan, and Y. Wang. The asymptotic behavior of globally smooth solutions to the compressible magnetohydrodynamic equations with Coulomb force. Anal. Appl. (Singap), 15(4):571–594, 2017.
  • [40] Z. Xin and J. Xu. Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions. J. Differential Equations, 274:543–575, 2021.
  • [41] J. Xu. A low-frequency assumption for optimal time-decay estimates to the compressible Navier-Stokes equations. Comm. Math. Phys., 371(2):525–560, 2019.
  • [42] Z. A. Yao and J. Gao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete Contin. Dyn. Syst.-Ser. A (DCDS-A), 36(6):3077–3106, 2017.
  • [43] B. Yuan. On the initial-boundary value problem of the incompressible viscoelastic fluid system. Comm. Pure Appl. Math., 61(5):539–558, 2010.
  • [44] T. Zhang and D. Fang. Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical Lp{L}^{p} framework. SIAM J. Math. Anal., 44(4):2266–2288, 2012.
  • [45] Z. Zhou, C. Zhu, and R. Zi. Global well-posedness and decay rates for the three dimensional compressible Oldroyd-B model. J. Differential Equations, 265(4):1259–1278, 2018.