This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimal convex approximations of quantum states based on fidelity

Huaqi Zhou1    Ting Gao1 [email protected]    Fengli Yan2 [email protected] 1 School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China
2 College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, China
Abstract

We investigate the problem of optimally approximating a desired state by the convex mixing of a set of available states. The problem is recasted as finding the optimal state with the minimum distance from target state in a convex set of usable states. Based on the fidelity, we define the optimal convex approximation of an expected state and present the complete exact solutions with respect to an arbitrary qubit state. We find that the optimal state based on fidelity is closer to the target state than the optimal state based on trace norm in many ranges. Finally, we analyze the geometrical properties of the target states which can be completely represented by a set of practicable states. Using the feature of convex combination, we express this class of target states in terms of three available states.

Keywords: Optimal convex approximation; fidelity; optimal state; convex combination

pacs:
03.67.Mn, 03.65.Ud, 03.67.-a

I Introduction

In quantum information theory, the convex mixing is universal and plays an important role in the ensemble of quantum states, quantum channels, quantum measurements and quantum entanglement measures. Many entanglement measures of pure states are extended to the mixed states by using convex roof constructions in quantum entanglement theory, such as concurrence 78 ; 80 ; 64 ; 22 , entanglement of formation 54 , geometric measure of entanglement 34 , convex-roof extended negativity 68 , kk-ME concurrence 86 ; 112 and so on. Moreover, the concepts of separable and kk-producible mixed states are defined by the convex combination of corresponding pure states in multipartite systems 325 ; 86 ; 112 ; 12 ; 15 ; 194 ; 474 ; 401 . The weights in a convex combination are actually the coefficients of the extremal points and may correspond to classical probabilities 96 . In three-dimensional Hilbert space, the convex combination of several points represents a geometry with these points as its vertexes. In particular, the convex combination of two points expresses a line segment, and the convex combination of three points which are not on the same line shows a plane triangle.

Quantum states are very important in quantum mechanics. The so-called available states usually signify that they can be easily prepared and manipulated from the perspective of resource theory 101 . However, many states are not readily obtained directly either from the aspect of experiment or from the feasibility in state preparing. In recent years, some researchers studied the problem of optimally approximating the target state by the different available states 96 ; 18 ; 99 ; 101 . It is similar to the issues of addressing the optimal convex approximations of quantum channels and establishing measures of the quantum resource. The optimal convex approximations of quantum channels can be redefined as looking for the least distinguishable channels according to the desired channel among the convex combination of a set of gainable channels 17 . The measures of the quantum resource are embodied in quantum coherence, discord, entanglement and so on. Quantum coherence is regarded as the minimal distance of a quantum state to the set of incoherent states in the fixed reference orthogonal base 113 ; 19 ; v3 ; 312 . The quantum discord can be considered as the minimal distance of a target state to classically correlated states 104 . Quantum entanglement can be straightforwardly quantified by measuring the minimal difference between a given state and all separable states in quantum systems 57 ; 97 ; 81 .

In the same way, we discuss the optimal convex approximations of quantum states. Let Ω\Omega denote the convex mixing of obtainable states. The optimal convex approximations of quantum states can essentially be viewed as calculating the minimum distance from the wished state to the convex set Ω\Omega and finding the corresponding optimal states. When the minimum distance vanishes, the target state can be completely represented by the set of available states. This is the most anticipated case. In this case, we call the target state CR state. Therefore, the optimal convex approximations of quantum states can be considered from two aspects. One is to explore the features of desired states with the minimum distance vanishing. This research is closely related to how to choose the set of available states. Generally the set of available states consists of the eigenstates of usable logic gates. In Ref. 96 ; 99 , the scholars studied the set B3B_{3} of the eigenstates of all Pauli matrices. In Ref. 18 , the set of eigenstates of any two Pauli matrices has been discussed. Recently, Liang et al. considered the set of eigenstates of arbitrary two or three real quantum logic gates 101 . Other is to research the optimal convex approximation of expected state with the distance being strictly positive. This study depends on not only the set of available states but also the distance measures between quantum states. In the existing studies 96 ; 18 ; 99 ; 101 , they chose the distance between the states based on the trace norm. Apart from this, the geometrical properties of quantum states and quantum channels have also attracted extensive attention 007 ; 115 ; 083 ; 301 ; 019 ; 049 ; 331 . These properties allow one to check and understand the desired traits of the states and channels.

In this paper, we define the minimum distance between a quantum state and the convex combination of a set of available states based on the fidelity 41 ; 91 . In Sec. II, we provide the complete exact solution for optimal convex approximation of any qubit state in regard to the set B3B_{3}. The strengths and weaknesses of the optimal convex approximation based on the fidelity and trace norm are analyzed in Sec. III. In Sec. IV, we find the relative volumes of the CR states (under different usable sets) as well as whole quantum states. Furthermore, we also represent the target quantum state with fewer available states by discovering the regularity in geometry. In Sec. V, a summary is given. The appendices provide additional details on solution procedure and proofs.

II Optimal approximations of quantum states based on fidelity

Any qubit state ρ\rho can be characterized as 00

ρ=𝕀+𝒓𝝈2,\displaystyle\rho=\frac{\mathbb{I}+\boldsymbol{r}\cdot\boldsymbol{\sigma}}{2}, (1)

where 𝕀\mathbb{I} is the two dimensional identity operation, 𝒓\boldsymbol{r} denotes the three dimensional real vector (rx,ry,rz)(r_{x},r_{y},r_{z}). The length |𝒓|=rx2+ry2+rz2|\boldsymbol{r}|=\sqrt{r_{x}^{2}+r_{y}^{2}+r_{z}^{2}} is not more than 1, 𝝈=(σx,σy,σz)\boldsymbol{\sigma}=(\sigma_{x},\sigma_{y},\sigma_{z}) expresses a vector of Pauli matrices. As a matter of fact, each of the normalized three dimensional real vectors can uniquely represent a qubit quantum pure state.

The fidelity 41 between two quantum states ρ\rho and ϱ\varrho is a distance measure, which is defined as

F(ρ,ϱ)=[trρ1/2ϱρ1/2]2.\displaystyle F(\rho,\varrho)=[\textup{tr}\sqrt{\rho^{1/2}\varrho\rho^{1/2}}]^{2}. (2)

The range of F(ρ,ϱ)F(\rho,\varrho) is from 0 to 1, if and only if two states ρ\rho and ϱ\varrho are same, the fidelity is equal to 1. Suppose that two real vectors 𝒓=(rx,ry,rz)\boldsymbol{r}=(r_{x},r_{y},r_{z}) and 𝒔=(sx,sy,sz)\boldsymbol{s}=(s_{x},s_{y},s_{z}) satisfy the condition that length is not more than 1. Let 𝒓\boldsymbol{r} and 𝒔\boldsymbol{s} correspond to ρ\rho and ϱ\varrho respectively. Then the fidelity between states ρ\rho and ϱ\varrho has an elegant form 41 ; 91

F(ρ,ϱ)=12[1+𝒓𝒔+(1|𝒓|2)(1|𝒔|2)].\displaystyle F(\rho,\varrho)=\frac{1}{2}[1+\boldsymbol{r}\cdot\boldsymbol{s}+\sqrt{(1-|\boldsymbol{r}|^{2})(1-|\boldsymbol{s}|^{2})}]. (3)

Given a set B={|ψi,i=1,2,,n}B=\{|\psi_{i}\rangle,i=1,2,\ldots,n\}, where |ψi|\psi_{i}\rangle are available pure states. Based on the fidelity, we introduce the following definition.

Definition 11. For the desired state ρ\rho and the set BB, the optimal convex approximation is defined as

DBF(ρ)=1maxF(ρ,ipiρi),\displaystyle D_{B}^{F}(\rho)=1-\textup{max}F(\rho,\sum_{i}p_{i}\rho_{i}), (4)

where ρi=|ψiψi|\rho_{i}=|\psi_{i}\rangle\langle\psi_{i}|, the maximum is taken over all possible probability distributions {pi}\{p_{i}\} with pi0p_{i}\geq 0 and ipi=1\sum_{i}p_{i}=1 for i=1,2,,ni=1,2,\ldots,n. When the probability distribution {pi}\{p_{i}\} makes the fidelity between ρ\rho and ipiρi\sum_{i}p_{i}\rho_{i} reaching maximum, the state ρopt=ipiρi\rho^{\textup{opt}}=\sum_{i}p_{i}\rho_{i} is called optimal state. The optimal state of a target state may not be unique.

We discuss this optimal convex approximation in terms of measure, the distance between the target state and the convex combination of the available states. Naturally, the problem of optimally approximating the target state from other aspects can also be considered, for example, the coherence of quantum states. In this case, our definition just needs to be changed appropriately by referring to any other figure of merit that quantifies the coherence of quantum states.

Now, we concretely compute the optimal convex approximation of arbitrary qubit state with regard to the set 99

B3={|0,|1,|2=12(|0+|1),|3=12(|0|1),|4=12(|0+i|1),|5=12(|0i|1)},\displaystyle B_{3}=\{|0\rangle,|1\rangle,|2\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle),|3\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle),|4\rangle=\frac{1}{\sqrt{2}}(|0\rangle+\textup{i}|1\rangle),|5\rangle=\frac{1}{\sqrt{2}}(|0\rangle-\textup{i}|1\rangle)\}, (5)

which consists of the eigenstates of Pauli matrixes σx\sigma_{x}, σy\sigma_{y}, σz\sigma_{z}. Let ρi=|ii|\rho_{i}=|i\rangle\langle i|, i=0,,5i=0,\cdots,5. The convex combination ipiρi\sum_{i}p_{i}\rho_{i} of these states can be described by 𝒗=(p2p3,p4p5,p0p1)\boldsymbol{v}=(p_{2}-p_{3},p_{4}-p_{5},p_{0}-p_{1}). Due to the symmetry, we only address the optimal convex approximations of qubit states in the range rx,ry,rz[0,1]r_{x},r_{y},r_{z}\in[0,1].

Computing the maximum of fidelity between ρ\rho and ipiρi\sum_{i}p_{i}\rho_{i} is an optimization problem. When the function satisfies inequality and equality conditions, we can use the Karush-Kuhn-Tucker (KKT) theorem 101 ; 10 . Consider the minimum value of the function f(x)f(x). Suppose that gi(x)0g_{i}(x)\leq 0 and hj(x)=0h_{j}(x)=0 are inequality constraints and equality conditions respectively, i=1,2,,mi=1,2,\ldots,m; j=1,2,,kj=1,2,\ldots,k. A function can be constructed as G(x,λj)=f(x)+iuigi(x)+jλjhj(x)G(x,\lambda_{j})=f(x)+\sum_{i}u_{i}g_{i}(x)+\sum_{j}\lambda_{j}h_{j}(x). The optimal solution xx^{\ast} of the function f(x)f(x) (i.e. the local minimum point of the function f(x)f(x)) must satisfy the following conditions. First, inequality constraints gi(x)0g_{i}(x^{\ast})\leq 0 and equality conditions hj(x)=0h_{j}(x^{\ast})=0. Second, G(x)=0\nabla G(x^{\ast})=0, where \nabla is gradient operator. Third, inequality constraints ui0u_{i}\geq 0, uigi(x)=0u_{i}g_{i}(x^{\ast})=0. If f(x)f(x) and gi(x)g_{i}(x) are convex, and hj(x)h_{j}(x) are linear, the point satisfying above constraints and conditions is the optimal solution xx^{\ast} 06 .

Obviously, for the probability distribution {pi}i=05\{p_{i}\}_{i=0}^{5}, one has the inequality constraint pi0p_{i}\geq 0 and the equality condition ipi=1\sum_{i}p_{i}=1. Therefore, the function can be constructed as

G(pi,λ)\displaystyle G(p_{i},\lambda) =F(ρ,ipiρi)iλipiλ(jpj1)\displaystyle=-F(\rho,\sum_{i}p_{i}\rho_{i})-\sum_{i}\lambda_{i}p_{i}-\lambda(\sum_{j}p_{j}-1) (6)
=12{1+rx(p2p3)+ry(p4p5)+rz(p0p1)+(1|𝒓|2)[1(p2p3)2(p4p5)2(p0p1)2]}\displaystyle=-\frac{1}{2}\{1+r_{x}(p_{2}-p_{3})+r_{y}(p_{4}-p_{5})+r_{z}(p_{0}-p_{1})+\sqrt{(1-|\boldsymbol{r}|^{2})[1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}]}\}
iλipiλ(jpj1),\displaystyle\quad-\sum_{i}\lambda_{i}p_{i}-\lambda(\sum_{j}p_{j}-1),

where λi0\lambda_{i}\geq 0. According to the three conditions above, the optimization problem is equivalent to solving the following equations

Gp0=(p0p1)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2rz2λ0λ=0,\displaystyle\frac{\partial G}{\partial p_{0}}=\frac{(p_{0}-p_{1})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}-\frac{r_{z}}{2}-\lambda_{0}-\lambda=0, (7a)
Gp1=(p0p1)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2+rz2λ1λ=0,\displaystyle\frac{\partial G}{\partial p_{1}}=-\frac{(p_{0}-p_{1})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}+\frac{r_{z}}{2}-\lambda_{1}-\lambda=0, (7b)
Gp2=(p2p3)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2rx2λ2λ=0,\displaystyle\frac{\partial G}{\partial p_{2}}=\frac{(p_{2}-p_{3})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}-\frac{r_{x}}{2}-\lambda_{2}-\lambda=0, (7c)
Gp3=(p2p3)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2+rx2λ3λ=0,\displaystyle\frac{\partial G}{\partial p_{3}}=-\frac{(p_{2}-p_{3})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}+\frac{r_{x}}{2}-\lambda_{3}-\lambda=0, (7d)
Gp4=(p4p5)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2ry2λ4λ=0,\displaystyle\frac{\partial G}{\partial p_{4}}=\frac{(p_{4}-p_{5})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}-\frac{r_{y}}{2}-\lambda_{4}-\lambda=0, (7e)
Gp5=(p4p5)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2+ry2λ5λ=0,\displaystyle\frac{\partial G}{\partial p_{5}}=-\frac{(p_{4}-p_{5})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}+\frac{r_{y}}{2}-\lambda_{5}-\lambda=0, (7f)
Gλ=jpj1=0,λipi=0,λi0,pi0,i=0,,5.\displaystyle\frac{\partial G}{\partial\lambda}=\sum_{j}p_{j}-1=0,~{}\lambda_{i}p_{i}=0,~{}\lambda_{i}\geq 0,~{}p_{i}\geq 0,~{}i=0,\cdots,5. (7g)

Next we will show the exact solution of the equation (7), for the detailed procedure please refer to the Appendix A.

(V1) In the set S1={(rx,ry,rz)|rx+ry+rz1}S1=\{(r_{x},r_{y},r_{z})|r_{x}+r_{y}+r_{z}\leq 1\}, DB3F(ρ)=0D_{B_{3}}^{F}(\rho)=0, which means that the target state ρ\rho can be completely represented by the convex combination of {ρi}\{\rho_{i}\}. The corresponding coefficients are given by

p0=12rx2ry2+rz2t1t2,\displaystyle p_{0}=\frac{1}{2}-\frac{r_{x}}{2}-\frac{r_{y}}{2}+\frac{r_{z}}{2}-t_{1}-t_{2}, (8)
p1=12rx2ry2rz2t1t2,\displaystyle p_{1}=\frac{1}{2}-\frac{r_{x}}{2}-\frac{r_{y}}{2}-\frac{r_{z}}{2}-t_{1}-t_{2},
p2=rx+t2,\displaystyle p_{2}=r_{x}+t_{2},
p3=t2,\displaystyle p_{3}=t_{2},
p4=ry+t1,\displaystyle p_{4}=r_{y}+t_{1},
p5=t1,\displaystyle p_{5}=t_{1},

where t1t_{1} and t2t_{2} are arbitrary non-negative numbers such that p10p_{1}\geq 0.

(V2) In the set S2={(rx,ry,rz)|rx+ry<12rz2+rzorrx+ry<2rz,ry+rz<12rx2+rxorry+rz<2rx,rx+rz<12ry2+ryorrx+rz<2ry}S1S2=\{(r_{x},r_{y},r_{z})|r_{x}+r_{y}<\sqrt{1-2r_{z}^{2}}+r_{z}~{}\textup{or}~{}r_{x}+r_{y}<2r_{z},r_{y}+r_{z}<\sqrt{1-2r_{x}^{2}}+r_{x}~{}\textup{or}~{}r_{y}+r_{z}<2r_{x},r_{x}+r_{z}<\sqrt{1-2r_{y}^{2}}+r_{y}~{}\textup{or}~{}r_{x}+r_{z}<2r_{y}\}\setminus S1,

DB3F(ρ)=12r62(3r2)6,\displaystyle D_{B_{3}}^{F}(\rho)=\frac{1}{2}-\frac{r}{6}-\frac{\sqrt{2(3-r^{2})}}{6}, (9)

where r=rx+ry+rzr=r_{x}+r_{y}+r_{z}, with the optimal weights

p0=132(rx+ry2rz)33(rx+ry+rz)2,\displaystyle p_{0}=\frac{1}{3}-\frac{\sqrt{2}(r_{x}+r_{y}-2r_{z})}{3\sqrt{3-(r_{x}+r_{y}+r_{z})^{2}}}, (10)
p2=132(2rx+ry+rz)33(rx+ry+rz)2,\displaystyle p_{2}=\frac{1}{3}-\frac{\sqrt{2}(-2r_{x}+r_{y}+r_{z})}{3\sqrt{3-(r_{x}+r_{y}+r_{z})^{2}}},
p4=132(rx2ry+rz)33(rx+ry+rz)2,\displaystyle p_{4}=\frac{1}{3}-\frac{\sqrt{2}(r_{x}-2r_{y}+r_{z})}{3\sqrt{3-(r_{x}+r_{y}+r_{z})^{2}}},
p1=p3=p5=0.\displaystyle p_{1}=p_{3}=p_{5}=0.

(V3) In the set S3={(rx,ry,rz)|rx+rz>1ry2}S1S2S3=\{(r_{x},r_{y},r_{z})|r_{x}+r_{z}>\sqrt{1-r_{y}^{2}}\}\setminus S1\cup S2,

DB3F(ρ)=122(rx+rz)22ry2+(rx+rz)4,\displaystyle D_{B_{3}}^{F}(\rho)=\frac{1}{2}-\frac{\sqrt{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}+(r_{x}+r_{z})}{4}, (11)

with the pertaining optimal coefficients

p0=12rxrz22(rx+rz)22ry2,\displaystyle p_{0}=\frac{1}{2}-\frac{r_{x}-r_{z}}{2\sqrt{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}}, (12)
p2=12rx+rz22(rx+rz)22ry2,\displaystyle p_{2}=\frac{1}{2}-\frac{-r_{x}+r_{z}}{2\sqrt{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}},
p1=p3=p4=p5=0.\displaystyle p_{1}=p_{3}=p_{4}=p_{5}=0.

(V4) In the set S4={(rx,ry,rz)|ry+rz>1rx2}S1S2S4=\{(r_{x},r_{y},r_{z})|r_{y}+r_{z}>\sqrt{1-r_{x}^{2}}\}\setminus S1\cup S2,

DB3F(ρ)=122(ry+rz)22rx2+(ry+rz)4,\displaystyle D_{B_{3}}^{F}(\rho)=\frac{1}{2}-\frac{\sqrt{2-(r_{y}+r_{z})^{2}-2r_{x}^{2}}+(r_{y}+r_{z})}{4}, (13)

with the corresponding weights

p0=12ryrz22(ry+rz)22rx2,\displaystyle p_{0}=\frac{1}{2}-\frac{r_{y}-r_{z}}{2\sqrt{2-(r_{y}+r_{z})^{2}-2r_{x}^{2}}}, (14)
p4=12ry+rz22(ry+rz)22rx2,\displaystyle p_{4}=\frac{1}{2}-\frac{-r_{y}+r_{z}}{2\sqrt{2-(r_{y}+r_{z})^{2}-2r_{x}^{2}}},
p1=p2=p3=p5=0.\displaystyle p_{1}=p_{2}=p_{3}=p_{5}=0.

(V5) In the set S5={(rx,ry,rz)|rx+ry>1rz2}S1S2S5=\{(r_{x},r_{y},r_{z})|r_{x}+r_{y}>\sqrt{1-r_{z}^{2}}\}\setminus S1\cup S2,

DB3F(ρ)=122(rx+ry)22rz2+(rx+ry)4,\displaystyle D_{B_{3}}^{F}(\rho)=\frac{1}{2}-\frac{\sqrt{2-(r_{x}+r_{y})^{2}-2r_{z}^{2}}+(r_{x}+r_{y})}{4}, (15)

the related optimal coefficients are given by

p2=12ryrx22(ry+rx)22rz2,\displaystyle p_{2}=\frac{1}{2}-\frac{r_{y}-r_{x}}{2\sqrt{2-(r_{y}+r_{x})^{2}-2r_{z}^{2}}}, (16)
p4=12ry+rx22(ry+rx)22rz2,\displaystyle p_{4}=\frac{1}{2}-\frac{-r_{y}+r_{x}}{2\sqrt{2-(r_{y}+r_{x})^{2}-2r_{z}^{2}}},
p0=p1=p3=p5=0.\displaystyle p_{0}=p_{1}=p_{3}=p_{5}=0.

It needs to notice that there may be intersections between the sets S3S3, S4S4 and S5S5. If a quantum state (rx0,ry0,rz0)(r_{x}^{0},r_{y}^{0},r_{z}^{0}) belongs to all three sets, then the least optimal convex approximation in the three cases is the genuine optimal solution.

Clearly, we have obtained the optimal solution for arbitrary qubit state. Specially, in the set S1S1, the distance between target state and the convex combinations of the available states in B3B_{3} vanishes, which is the most desired case. These target states are all CR states. Further, we will study their geometric property in Sec. IV. In the cases of three numbers of {pi}\{p_{i}\} being nonzero, the optimal convex approximation has a solution only if p0,p2,p40p_{0},p_{2},p_{4}\neq 0. The value range of this solution is the set S2S2. In geometry, it is not difficult to find that the quantum state which cannot be completely represented is located at above the plane consisting of |0|0\rangle, |2|2\rangle and |4|4\rangle, and they are closest to these three points.

III Comparison with optimal approximation based on trace distance

The different choices of distance measure and set of available quantum states will have certain influence on the optimal convex approximation of quantum states. In Sec. II, taking B3B_{3} as an example, we addressed the general problem of approximating an unavailable qubit state through fidelity. In Ref. 99 , based on the trace norm, Liang et al. showed the analytical solutions in some cases by the convex mixing of quantum states in the set B3B_{3}. In this section, we analyze the advantages and disadvantages of the optimal convex approximation under fidelity by comparison the optiaml states obtained with these two distance measures.

Any qubit quantum state ρ\rho can also be expressed as

ρ=(1aka(1a)eiϕka(1a)eiϕa),\displaystyle\rho=\begin{pmatrix}1-a&k\sqrt{a(1-a)}\textup{e}^{-\textup{i}\phi}\\ k\sqrt{a(1-a)}\textup{e}^{\textup{i}\phi}&a\end{pmatrix}, (17)

where a[0,1]a\in[0,1], ϕ[0,2π]\phi\in[0,2\pi] and k[0,1]k\in[0,1]. Let u=ka(1a)cosϕu=k\sqrt{a(1-a)}\textup{cos}\phi and v=ka(1a)sinϕv=k\sqrt{a(1-a)}\textup{sin}\phi, in fact, a=1rz2a=\frac{1-r_{z}}{2}, u=rx2u=\frac{r_{x}}{2}, v=ry2v=\frac{r_{y}}{2}.

In quantum mechanics, the difference between quantum states can be reflected essentially by the difference between their eigenvalues. Any two qubit states ρ1\rho^{1} and ρ2\rho^{2} can be written in diagonalized form ρ1=λ+1|α+α+|+λ1|αα|\rho^{1}=\lambda_{+}^{1}|\alpha_{+}\rangle\langle\alpha_{+}|+\lambda_{-}^{1}|\alpha_{-}\rangle\langle\alpha_{-}| and ρ2=λ+2|β+β+|+λ2|ββ|\rho^{2}=\lambda_{+}^{2}|\beta_{+}\rangle\langle\beta_{+}|+\lambda_{-}^{2}|\beta_{-}\rangle\langle\beta_{-}| respectively. Here {|α+,|α}\{|\alpha_{+}\rangle,|\alpha_{-}\rangle\} and {|β+,|β}\{|\beta_{+}\rangle,|\beta_{-}\rangle\} are the two bases for a two-dimensional Hilbert space, they can be transformed into each other by unitary operators. If λ±1=λ±2\lambda_{\pm}^{1}=\lambda_{\pm}^{2}, they are equivalent. Therefore, the problem of comparing the optimal states can be transformed into comparing the difference between the eigenvalues of the optimal state and the target state based on these two distances. By calculating, the eigenvalues of any qubit state ρ\rho are

λ±=±rx2+ry2+rz22+12=±|𝒓|2+12.\displaystyle\lambda_{\pm}=\pm\frac{\sqrt{r_{x}^{2}+r_{y}^{2}+r_{z}^{2}}}{2}+\frac{1}{2}=\pm\frac{|\boldsymbol{r}|}{2}+\frac{1}{2}. (18)

The eigenvalues of the convex combination ipiρi\sum_{i}p_{i}\rho_{i} of available states are

h±=±12(p0p1)2+(p2p3)2+(p4p5)2+12.\displaystyle h_{\pm}=\pm\frac{1}{2}\sqrt{(p_{0}-p_{1})^{2}+(p_{2}-p_{3})^{2}+(p_{4}-p_{5})^{2}}+\frac{1}{2}. (19)

We construct the difference function that quantifying the distance between the eigenvalues of the optimal state and the target state as

g=|h+λ+|+|hλ|.\displaystyle g=|h_{+}-\lambda_{+}|+|h_{-}-\lambda_{-}|. (20)

Based on the trace norm, the optimal convex approximation 99 of ρ\rho with respect to B3B_{3} is defined as DB3(ρ)=min{ρipiρi1}D_{B_{3}}(\rho)=\textup{min}\{||\rho-\sum_{i}p_{i}^{\prime}\rho_{i}||_{1}\}, where ρi=|ii|\rho_{i}=|i\rangle\langle i|, pi0p_{i}^{\prime}\geq 0, and ipi=1\sum_{i}p_{i}^{\prime}=1, the minimum is taken over all possible probability distributions {pi}\{p_{i}^{\prime}\}. Let ρopt\rho^{\textup{opt}^{\prime}} denote the corresponding optimal state such that DB3(ρ)=ρρopt1D_{B_{3}}(\rho)=||\rho-\rho^{\textup{opt}^{\prime}}||_{1}. In the set S1S1, it is obvious that the value of difference function is zero under these two measures.

In Ref. 99 , when only three of the probabilities {pi}\{p_{i}^{\prime}\} are nonzero, the probabilities of optimal state ρopt\rho^{\textup{opt}^{\prime}} are

p0=14a32u32v3=13+2rzrxry3,\displaystyle p_{0}^{\prime}=1-\frac{4a}{3}-\frac{2u}{3}-\frac{2v}{3}=\frac{1}{3}+\frac{2r_{z}-r_{x}-r_{y}}{3}, (21)
p2=2a3+4u32v3=13+rz+2rxry3,\displaystyle p_{2}^{\prime}=\frac{2a}{3}+\frac{4u}{3}-\frac{2v}{3}=\frac{1}{3}+\frac{-r_{z}+2r_{x}-r_{y}}{3},
p4=2a32u3+4v3=13+rzrx+2ry3,\displaystyle p_{4}^{\prime}=\frac{2a}{3}-\frac{2u}{3}+\frac{4v}{3}=\frac{1}{3}+\frac{-r_{z}-r_{x}+2r_{y}}{3},
p1=p3=p5=0,\displaystyle p_{1}^{\prime}=p_{3}^{\prime}=p_{5}^{\prime}=0,

the value range of (rx,ry,rz)(r_{x},r_{y},r_{z}) is the set S2={(rx,ry,rz)|rx+ry1+2rz,ry+rz1+2rx,rx+rz1+2ry}S1S2^{\prime}=\{(r_{x},r_{y},r_{z})|r_{x}+r_{y}\leq 1+2r_{z},r_{y}+r_{z}\leq 1+2r_{x},r_{x}+r_{z}\leq 1+2r_{y}\}\setminus S1. Our result, when only three values of the probabilities {pi}\{p_{i}\} are nonzero, the coefficients of optimal state ρopt\rho^{\textup{opt}} are the equation (10)(\ref{3}), the value range of (rx,ry,rz)(r_{x},r_{y},r_{z}) is the set S2S2. It is apparent that S2S2S2\subset S2^{\prime}. For the state ρ\rho belonging to set S2S2, we have the following conclusion.

Proposition1.Proposition~{}1. In the set S2S2, the optimal state obtained by using the fidelity as a measure is closer to the expected state.

Proof.Proof. In the set S2S2, according to the equations (19) and (21), we obtain the eigenvalues of ρopt\rho^{\textup{opt}^{\prime}} as

h±1=±121+3|𝒓|2r23+12,\displaystyle h_{\pm}^{1^{\prime}}=\pm\frac{1}{2}\sqrt{\frac{1+3|\boldsymbol{r}|^{2}-r^{2}}{3}}+\frac{1}{2}, (22)

where r=rx+ry+rzr=r_{x}+r_{y}+r_{z}. Due to the equations (10) and (19), the eigenvalues of ρopt\rho^{\textup{opt}} are

h±1=±121+2|𝒓|2r23r2+12.\displaystyle h_{\pm}^{1}=\pm\frac{1}{2}\sqrt{\frac{1+2|\boldsymbol{r}|^{2}-r^{2}}{3-r^{2}}}+\frac{1}{2}. (23)

Let us to compare the difference functions. By using the results (18) and (22), the difference function between optimal state based on the trace distance and target state is

g1=|h+1λ+|+|h1λ|=|1+3|𝒓|2r23|𝒓||.\displaystyle g^{1^{\prime}}=|h_{+}^{1^{\prime}}-\lambda_{+}|+|h_{-}^{1^{\prime}}-\lambda_{-}|=|\sqrt{\frac{1+3|\boldsymbol{r}|^{2}-r^{2}}{3}}-|\boldsymbol{r}||. (24)

By the result (23), it is not difficult to get the difference function between optimal state based on the fidelity and target state

g1=|h+1λ+|+|h1λ|=|1+2|𝒓|2r23r2|𝒓||.\displaystyle g^{1}=|h_{+}^{1}-\lambda_{+}|+|h_{-}^{1}-\lambda_{-}|=|\sqrt{\frac{1+2|\boldsymbol{r}|^{2}-r^{2}}{3-r^{2}}}-|\boldsymbol{r}||. (25)

We have g1g10g^{1^{\prime}}-g^{1}\geq 0. For the detailed calculation please see the Appendix B. That is, the optimal state obtained by using fidelity is better than one obtained by using trace norm in the value range S2S2. This completes the proof of the proposition.

When only two values of the probabilities {pi}\{p_{i}^{\prime}\} are nonzero, the value ranges obtained by Ref. 99 are the set S3={(rx,ry,rz)|1rz<rx+ry1+2rz,ry+rz1+2rx,rx+rz>1+2ry}S3^{\prime}=\{(r_{x},r_{y},r_{z})|1-r_{z}<r_{x}+r_{y}\leq 1+2r_{z},r_{y}+r_{z}\leq 1+2r_{x},r_{x}+r_{z}>1+2r_{y}\}, S4={(rx,ry,rz)|1rz<rx+ry1+2rz,ry+rz>1+2rx,rx+rz1+2ry}S4^{\prime}=\{(r_{x},r_{y},r_{z})|1-r_{z}<r_{x}+r_{y}\leq 1+2r_{z},r_{y}+r_{z}>1+2r_{x},r_{x}+r_{z}\leq 1+2r_{y}\} and S5={(rx,ry,rz)|rx+ry>1+2rz}S5^{\prime}=\{(r_{x},r_{y},r_{z})|r_{x}+r_{y}>1+2r_{z}\}. In this case, we have the following conclusion.

Proposition2.Proposition~{}2. In the set S3S3^{\prime}, S4S4^{\prime} and S5S5^{\prime}, the optimal state based on the fidelity is closer to the desired state.

Proof.Proof. First, we consider the case in the value range S3S3^{\prime}. At this case, only p0p_{0}^{\prime} and p2p_{2}^{\prime} are nonzero. The probabilities 99 of the optimal state ρopt\rho^{\textup{opt}^{\prime}} are

p0=1au=12rxrz2,\displaystyle p_{0}^{\prime}=1-a-u=\frac{1}{2}-\frac{r_{x}-r_{z}}{2}, (26)
p2=a+u=12+rxrz2,\displaystyle p_{2}^{\prime}=a+u=\frac{1}{2}+\frac{r_{x}-r_{z}}{2},
p1=p3=p4=p5=0.\displaystyle p_{1}^{\prime}=p_{3}^{\prime}=p_{4}^{\prime}=p_{5}^{\prime}=0.

And according to the equation (19), the eigenvalues of ρopt\rho^{\textup{opt}^{\prime}} are

h±2=±121+2(rx2+rz2)(rx+rz)22+12.\displaystyle h_{\pm}^{2^{\prime}}=\pm\frac{1}{2}\sqrt{\frac{1+2(r_{x}^{2}+r_{z}^{2})-(r_{x}+r_{z})^{2}}{2}}+\frac{1}{2}. (27)

While, when only two probabilities p0p_{0} and p2p_{2} are nonzero, the value range is the set S3S3. The eigenvalues of ρopt\rho^{\textup{opt}} are

h±2=±121+rx2+rz2ry2(rx+rz)22(rx+rz)22ry2+12.\displaystyle h_{\pm}^{2}=\pm\frac{1}{2}\sqrt{\frac{1+r_{x}^{2}+r_{z}^{2}-r_{y}^{2}-(r_{x}+r_{z})^{2}}{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}}+\frac{1}{2}. (28)

Combining the equations (18) and (27), we gain the difference function between optimal state obtained by using the trace distance and target state

g2=|h+2λ+|+|h2λ|=|1+2(rx2+rz2)(rx+rz)22|𝒓||.\displaystyle g^{2^{\prime}}=|h_{+}^{2^{\prime}}-\lambda_{+}|+|h_{-}^{2^{\prime}}-\lambda_{-}|=|\sqrt{\frac{1+2(r_{x}^{2}+r_{z}^{2})-(r_{x}+r_{z})^{2}}{2}}-|\boldsymbol{r}||. (29)

In the light of the equation (28), the difference function between optimal state obtained by using fidelity and target state is

g2=|h+2λ+|+|h2λ|=|1+rx2+rz2ry2(rx+rz)22(rx+rz)22ry2|𝒓||.\displaystyle g^{2}=|h_{+}^{2}-\lambda_{+}|+|h_{-}^{2}-\lambda_{-}|=|\sqrt{\frac{1+r_{x}^{2}+r_{z}^{2}-r_{y}^{2}-(r_{x}+r_{z})^{2}}{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}}-|\boldsymbol{r}||. (30)

It is easy to know that S3S3S3^{\prime}\subset S3. We can prove g2g20g^{2^{\prime}}-g^{2}\geq 0, for the details please refer to the Appendix C. So, in the set S3S3^{\prime} the proposition is valid. The other two cases are same for only p0p_{0}, p4p_{4} and p2p_{2}, p4p_{4} being nonzero. The proof is completed.

The regions which have not been analyzed so far are S2S3S2^{\prime}\cap S3, S2S4S2^{\prime}\cap S4, and S2S5S2^{\prime}\cap S5. In these cases, we have the following inferences. In the value range S2S3S2^{\prime}\cap S3, when r2(rx+rz)2+2ry2r^{2}\geq(r_{x}+r_{z})^{2}+2r_{y}^{2}, if 13|𝒓|2+r201-3|\boldsymbol{r}|^{2}+r^{2}\leq 0, then g1g20g^{1^{\prime}}-g^{2}\geq 0, this means that using the fidelity as the measure is more advantageous, otherwise, cannot judge. When r2(rx+rz)2+2ry2r^{2}\leq(r_{x}+r_{z})^{2}+2r_{y}^{2}, if 13|𝒓|2+r201-3|\boldsymbol{r}|^{2}+r^{2}\geq 0, then g1g20g^{1^{\prime}}-g^{2}\leq 0, namely using the trace norm as the measure has superiority, otherwise, cannot judge. Please refer to the Appendix D for the details.

Analogously, in the domain of definition S2S4S2^{\prime}\cap S4, the difference function between the optimal state obtained by using fidelity and the expected state is

g3=|1+ry2+rz2rx2(ry+rz)22(ry+rz)22rx2|𝒓||.\displaystyle g^{3}=|\sqrt{\frac{1+r_{y}^{2}+r_{z}^{2}-r_{x}^{2}-(r_{y}+r_{z})^{2}}{2-(r_{y}+r_{z})^{2}-2r_{x}^{2}}}-|\boldsymbol{r}||. (31)

When r2(ry+rz)2+2rx2r^{2}\geq(r_{y}+r_{z})^{2}+2r_{x}^{2}, if 13|𝒓|2+r201-3|\boldsymbol{r}|^{2}+r^{2}\leq 0, then g1g30g^{1^{\prime}}-g^{3}\geq 0, otherwise, cannot judge. When r2(ry+rz)2+2rx2r^{2}\leq(r_{y}+r_{z})^{2}+2r_{x}^{2}, if 13|𝒓|2+r201-3|\boldsymbol{r}|^{2}+r^{2}\geq 0, then g1g30g^{1^{\prime}}-g^{3}\leq 0, otherwise, cannot judge.

In the set S2S5S2^{\prime}\cap S5, the difference function between the optimal state obtained by using the fidelity and the wished state is

g4=|1+rx2+ry2rz2(rx+ry)22(rx+ry)22rz2|𝒓||.\displaystyle g^{4}=|\sqrt{\frac{1+r_{x}^{2}+r_{y}^{2}-r_{z}^{2}-(r_{x}+r_{y})^{2}}{2-(r_{x}+r_{y})^{2}-2r_{z}^{2}}}-|\boldsymbol{r}||. (32)

When r2(rx+ry)2+2rz2r^{2}\geq(r_{x}+r_{y})^{2}+2r_{z}^{2}, if 13|𝒓|2+r201-3|\boldsymbol{r}|^{2}+r^{2}\leq 0, then g1g40g^{1^{\prime}}-g^{4}\geq 0, otherwise, cannot judge. When r2(rx+ry)2+2rz2r^{2}\leq(r_{x}+r_{y})^{2}+2r_{z}^{2}, if 13|𝒓|2+r201-3|\boldsymbol{r}|^{2}+r^{2}\geq 0, then g1g40g^{1^{\prime}}-g^{4}\leq 0, otherwise, cannot judge.

These results make us realize that it is meaningful to research the optimal convex approximation of desired state by taking advantage of the fidelity. This allows one to find the optimal state ρopt\rho^{\textup{opt}} closer to the target state in some regions.

IV The geometry of CR states

The CR states indicate that these states can be completely represented by the convex mixing of quantum states in usable set. They are most perfect in our research. Next, we will study their geometric properties. Because of the symmetry, we only consider the value range rx,ry,rz0r_{x},r_{y},r_{z}\geq 0. In the absence of ambiguity, the following is no longer marked.

According to the solution of equation (7), we know that if and only if rx+ry+rz1r_{x}+r_{y}+r_{z}\leq 1, DB3F(ρ)=0D_{B_{3}}^{F}(\rho)=0. In this case, the objective state ρ\rho is CR state about set B3B_{3}. From the view of the geometry, the region of CR states is the dark purple regions in FIG. 1. The region is called CR\mathcal{R}_{CR}. Its vertex coordinates are (1,0,0), (0,1,0), (0,0,1) and (0,0,0). The corresponding quantum states of these vertices are |2=12(|0+|1)|2\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), |4=12(|0+i|1)|4\rangle=\frac{1}{\sqrt{2}}(|0\rangle+\textup{i}|1\rangle), |0|0\rangle, 12(|00|+|11|)\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|). From FIG. 1, it can be seen that the convex combination of these points forms the region CR\mathcal{R}_{CR}. The all purple regions including dark and light purple represent all quantum states, which is called Q\mathcal{R}_{Q}. The relative volume of the CR states with respect to whole quantum states is

𝒱CR/𝒱Q=16/π6=1π.\displaystyle\mathcal{V}_{\mathcal{R}_{CR}}/\mathcal{V}_{\mathcal{R}_{Q}}=\frac{1}{6}/\frac{\pi}{6}=\frac{1}{\pi}. (33)
Refer to caption
Figure 1: The region CR\mathcal{R}_{CR} is represented by dark purple.
Refer to caption
Figure 2: The region CRα0\mathcal{R}_{CR}^{\alpha_{0}} is expressed by dark purple.
Refer to caption
Figure 3: The region CRα\mathcal{R}_{CR}^{\alpha} is denoted by dark purple.

We can also consider other available states to expand the volume of the CR states. A real quantum logic gate is of the form either 101

Uα=(cosαsinαsinαcosα)orVγ=(cosγsinγsinγcosγ).\displaystyle U_{\alpha}=\begin{pmatrix}\textup{cos}\alpha&\textup{sin}\alpha\\ \textup{sin}\alpha&-\textup{cos}\alpha\end{pmatrix}~{}~{}\textup{or}~{}~{}V_{\gamma}=\begin{pmatrix}\textup{cos}\gamma&-\textup{sin}\gamma\\ \textup{sin}\gamma&\textup{cos}\gamma\end{pmatrix}. (34)

The eigenvectors of UαU_{\alpha} are |ϕ1α=cosα2|0+sinα2|1|\phi_{1}^{\alpha}\rangle=\textup{cos}\frac{\alpha}{2}|0\rangle+\textup{sin}\frac{\alpha}{2}|1\rangle and |ϕ2α=sinα2|0cosα2|1|\phi_{2}^{\alpha}\rangle=\textup{sin}\frac{\alpha}{2}|0\rangle-\textup{cos}\frac{\alpha}{2}|1\rangle. It is not difficult to find that UαU_{\alpha} can be reduced to the ZZ gate (σz\sigma_{z}), Hadamard gate, and XX gate (σx\sigma_{x}) in quantum information processing, when α\alpha is equal to 0, π4\frac{\pi}{4}, and π2\frac{\pi}{2}, respectively. The vectors |4=12(|0+i|1)|4\rangle=\frac{1}{\sqrt{2}}(|0\rangle+\textup{i}|1\rangle) and |5=12(|0i|1)|5\rangle=\frac{1}{\sqrt{2}}(|0\rangle-\textup{i}|1\rangle) are the eigenvectors of VγV_{\gamma} (γ0,π\gamma\neq 0,\pi), which are also the eigenvectors of YY gate (σy\sigma_{y}). Now, we consider a new set

B3α0=B3{|ϕ1α0=cosα02|0+sinα02|1,|ϕ2α0=sinα02|0cosα02|1}.\displaystyle B_{3}^{\alpha_{0}}=B_{3}\cup\{|\phi_{1}^{\alpha_{0}}\rangle=\textup{cos}\frac{\alpha_{0}}{2}|0\rangle+\textup{sin}\frac{\alpha_{0}}{2}|1\rangle,|\phi_{2}^{\alpha_{0}}\rangle=\textup{sin}\frac{\alpha_{0}}{2}|0\rangle-\textup{cos}\frac{\alpha_{0}}{2}|1\rangle\}. (35)

Here cosα02=2+24\textup{cos}\frac{\alpha_{0}}{2}=\sqrt{\frac{2+\sqrt{2}}{4}}, sinα02=224\textup{sin}\frac{\alpha_{0}}{2}=\sqrt{\frac{2-\sqrt{2}}{4}}, the quantum state |ϕ1α0|\phi_{1}^{\alpha_{0}}\rangle is represented by the point Q0={22,0,22}Q_{0}=\{\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\} in FIG. 2. It is evident that the convex combination of this usable states |0|0\rangle, |2|2\rangle, |4|4\rangle, |ϕ1α0|\phi_{1}^{\alpha_{0}}\rangle and I/2I/2 is the dark purple region in FIG. 2, this region is called CRα0\mathcal{R}_{CR}^{\alpha_{0}}. We come to the following conclusion.

Proposition3.Proposition~{}3. The quantum state ρ\rho belongs to the region CRα0\mathcal{R}_{CR}^{\alpha_{0}} if and only if DB3α0F(ρ)=0D_{B_{3}^{\alpha_{0}}}^{F}(\rho)=0.

Proof.Proof. Let Qρ=(rx,ry,rz)Q_{\rho}=(r_{x},r_{y},r_{z}) be the corresponding point of quantum state ρ\rho. For convenience, ρi\rho_{i} for i=0,1,,4i=0,1,\ldots,4 express |0|0\rangle, |2|2\rangle, |4|4\rangle, |ϕ1α0|\phi_{1}^{\alpha_{0}}\rangle and I/2I/2 respectively. Qρi=(rxi,ryi,rzi)Q_{\rho_{i}}=(r_{x}^{i},r_{y}^{i},r_{z}^{i}) denotes the point of quantum state ρi\rho_{i} in Bloch sphere.

First, we show that the proposition is valid for QρCRα0Q_{\rho}\in\mathcal{R}_{CR}^{\alpha_{0}}. From the characterization of convex combination, it is obvious that QρQ_{\rho} can be linearly represented by the vertices of CRα0\mathcal{R}_{CR}^{\alpha_{0}}. More specifically, there is a set of weights {qi}\{q_{i}\} with qi0q_{i}\geq 0 and iqi=1\sum_{i}q_{i}=1, such that Qρ=iqiQρiQ_{\rho}=\sum_{i}q_{i}Q_{\rho_{i}}. Naturally, rx=iqirxir_{x}=\sum_{i}q_{i}r_{x}^{i}. It is easy to know

Tr(ρσx)=iqiTr(ρiσx)=Tr(iqiρiσx).\displaystyle\textup{Tr}(\rho\sigma_{x})=\sum_{i}q_{i}\textup{Tr}(\rho_{i}\sigma_{x})=\textup{Tr}(\sum_{i}q_{i}\rho_{i}\sigma_{x}).

It has the same form in the y-axis and the z-axis. This implies that ρ=iqiρi\rho=\sum_{i}q_{i}\rho_{i}. And due to I/2=12(|00|+|11|)I/2=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|), the quantum state ρ\rho can be expressed by a convex combination of the states in B3α0B_{3}^{\alpha_{0}}. So, we have DB3α0F(ρ)=0D_{B_{3}^{\alpha_{0}}}^{F}(\rho)=0.

Second, the reverse is still valid. This completes the proof of the proposition.

Therefore, the relative volume of the CR states under B3α0B_{3}^{\alpha_{0}} with regard to all quantum states is

𝒱CRα0/𝒱Q=26/π6=2π.\displaystyle\mathcal{V}_{\mathcal{R}_{CR}^{\alpha_{0}}}/\mathcal{V}_{\mathcal{R}_{Q}}=\frac{\sqrt{2}}{6}/\frac{\pi}{6}=\frac{\sqrt{2}}{\pi}. (36)

Next we discuss the available set

Bα={|4,|5,|ϕα=cosα2|0+sinα2|1}.\displaystyle B^{\alpha}=\{|4\rangle,|5\rangle,|\phi^{\alpha}\rangle=\textup{cos}\frac{\alpha}{2}|0\rangle+\textup{sin}\frac{\alpha}{2}|1\rangle\}. (37)

where α\alpha is taken over all the value from 0 to 2π2\pi. The state |ϕα|\phi^{\alpha}\rangle is expressed by Q|ϕα=(sinα,0,cosα)Q_{|\phi^{\alpha}\rangle}=(\textup{sin}\alpha,0,\textup{cos}\alpha). In FIG. 3, the dark purple region is called CRα\mathcal{R}_{CR}^{\alpha}. As a matter of fact, it is obtained by the rotation of point Q|ϕαQ_{|\phi^{\alpha}\rangle} around the circumference of the x-z plane. Similarly, we draw the following conclusion.

Proposition4.Proposition~{}4. The quantum state ρ\rho of the region CRα\mathcal{R}_{CR}^{\alpha} satisfy DBαF(ρ)=0D_{B^{\alpha}}^{F}(\rho)=0, and vice versa.

The proof is the same as above. Let ρi\rho_{i} for i=4,5,6i=4,5,6 show the quantum state |4|4\rangle, |5|5\rangle, |ϕα|\phi^{\alpha}\rangle respectively, pip_{i} is the corresponding weight. From our optimal approximation analysis, it is easy to get the following conclusion.

Proposition5.Proposition~{}5. For a qubit state ρ\rho, if and only if (1ry)2rx2+rz2(1-r_{y})^{2}\geq r_{x}^{2}+r_{z}^{2}, we have DBαF(ρ)=0D_{B^{\alpha}}^{F}(\rho)=0. Meanwhile, sinα=rxrx2+rz2\textup{sin}\alpha=\frac{r_{x}}{\sqrt{r_{x}^{2}+r_{z}^{2}}}, the coefficients of optimal state are

p4=12(1+ryrx2+rz2),\displaystyle p_{4}=\frac{1}{2}(1+r_{y}-\sqrt{r_{x}^{2}+r_{z}^{2}}), (38)
p5=12(1ryrx2+rz2),\displaystyle p_{5}=\frac{1}{2}(1-r_{y}-\sqrt{r_{x}^{2}+r_{z}^{2}}),
p6=rx2+rz2.\displaystyle p_{6}=\sqrt{r_{x}^{2}+r_{z}^{2}}.

Proof.Proof. First part, for arbitrary quantum state ρ\rho, due to the Proposition 4, we deduce that DBαF(ρ)=0D_{B^{\alpha}}^{F}(\rho)=0 if and only if (1ry)2rx2+rz2(1-r_{y})^{2}\geq r_{x}^{2}+r_{z}^{2}.

Furthermore, when ρCRα\rho\in\mathcal{R}_{CR}^{\alpha}, there must be a number α\alpha, such that the state ρ\rho lies in the plane consisting of ρj\rho_{j}, j=4,5,6j=4,5,6. In the meantime, we have sinαcosα=rxrz\frac{\textup{sin}\alpha}{\textup{cos}\alpha}=\frac{r_{x}}{r_{z}}. It can be converted to sinα=rxrx2+rz2\textup{sin}\alpha=\frac{r_{x}}{\sqrt{r_{x}^{2}+r_{z}^{2}}}. From this, there is a set of probabilities {pj}\{p_{j}\} with pj0p_{j}\geq 0 and jpj=1\sum_{j}p_{j}=1 for j=4,5,6j=4,5,6 that makes ρ=jpjρj\rho=\sum_{j}p_{j}\rho_{j}. This means that Qρ=(sinαp6,p4p5,cosαp6)Q_{\rho}=(\textup{sin}\alpha\cdot p_{6},p_{4}-p_{5},\textup{cos}\alpha\cdot p_{6}). Then, we gain

sinαp6=rx,p4p5=ry,cosαp6=rz,p4+p5+p6=1.\displaystyle\textup{sin}\alpha\cdot p_{6}=r_{x},~{}~{}p_{4}-p_{5}=r_{y},~{}~{}\textup{cos}\alpha\cdot p_{6}={r_{z}},~{}~{}p_{4}+p_{5}+p_{6}=1. (39)

By solving the above equation, we obtain the solution (38). That is the end of the proof.

So, the relative volume of the CR states concerning the set BαB^{\alpha} with respect to entire quantum states is

𝒱CRα/𝒱Q=π12/π6=12.\displaystyle\mathcal{V}_{\mathcal{R}_{CR}^{\alpha}}/\mathcal{V}_{\mathcal{R}_{Q}}=\frac{\pi}{12}/\frac{\pi}{6}=\frac{1}{2}. (40)

The above results show that the range of CR states about the set BαB^{\alpha} is the largest under the known usable states. In Ref. 101 , researchers studied the optimal convex approximation of the qubit state ρ\rho in reference to the eigenvectors of arbitrarily two or three real quantum logic gates. They considered the available state sets K1={|ϕ1α,|ϕ2α,|ϕ1β,|ϕ2β}K_{1}=\{|\phi_{1}^{\alpha}\rangle,|\phi_{2}^{\alpha}\rangle,|\phi_{1}^{\beta}\rangle,|\phi_{2}^{\beta}\rangle\}, K3={|ϕ1α,|ϕ2α,|4,|5}K_{3}=\{|\phi_{1}^{\alpha}\rangle,|\phi_{2}^{\alpha}\rangle,|4\rangle,|5\rangle\} and K={|ϕ1α,|ϕ2α,|ϕ1β,|ϕ2β,|4,|5}K=\{|\phi_{1}^{\alpha}\rangle,|\phi_{2}^{\alpha}\rangle,|\phi_{1}^{\beta}\rangle,|\phi_{2}^{\beta}\rangle,|4\rangle,|5\rangle\}. By analyzing the geometric properties of CR states, we can quickly know the range of CR states for different feasible sets. The region of CR states about the set K1K_{1} is a sector with 90 degree central angle. The convex combinations of the states in the set K3K_{3} and KK are both the region CRα\mathcal{R}_{CR}^{\alpha}. The proposition 5 indicates that we can use less resource to express the states in the region CRα\mathcal{R}_{CR}^{\alpha}.

V Conclusion

In summary, we define the optimal convex approximation based on the fidelity. For the set of eigenstates of all Pauli matrices, we have obtained the explicit analytical solution for an arbitrary qubit state. The advantage of our results is that the eigenvalues of the optimal state based on the fidelity are closer to the eigenvalues of the target state over the eigenvalues of the optimal state based on the trace norm in many ranges. Apart from the eigenstates of the Pauli matrices, we also consider the eigenvectors of other real quantum logic gates. We analytically calculate the volumes of the expected CR states in regard to several sets of available states, and find the relationship between the selected available states and CR states. The associated volume element depends only on the coordinates of gainable states with respect to three axes σx\sigma_{x}, σy\sigma_{y} and σz\sigma_{z}. Finally, we completely represent the desired states in the region CRα\mathcal{R}_{CR}^{\alpha} with fewer available states.

Acknowledgements.
This work was funded by the National Natural Science Foundation of China under Grant No. 12071110, the Hebei Natural Science Foundation of China under Grant No. A2020205014, the Science and Technology Project of Hebei Education Department under Grant Nos. ZD2020167 and ZD2021066, and the Graduate Student Innovation Funding Project of School of Mathematical Sciences of Hebei Normal University under Grant No. 2021sxbs002.

Appendix A the process of solving the equations (7)

Solve the following equations

Gp0=(p0p1)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2rz2λ0λ=0,\displaystyle\frac{\partial G}{\partial p_{0}}=\frac{(p_{0}-p_{1})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}-\frac{r_{z}}{2}-\lambda_{0}-\lambda=0, (41a)
Gp1=(p0p1)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2+rz2λ1λ=0,\displaystyle\frac{\partial G}{\partial p_{1}}=-\frac{(p_{0}-p_{1})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}+\frac{r_{z}}{2}-\lambda_{1}-\lambda=0, (41b)
Gp2=(p2p3)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2rx2λ2λ=0,\displaystyle\frac{\partial G}{\partial p_{2}}=\frac{(p_{2}-p_{3})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}-\frac{r_{x}}{2}-\lambda_{2}-\lambda=0, (41c)
Gp3=(p2p3)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2+rx2λ3λ=0,\displaystyle\frac{\partial G}{\partial p_{3}}=-\frac{(p_{2}-p_{3})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}+\frac{r_{x}}{2}-\lambda_{3}-\lambda=0, (41d)
Gp4=(p4p5)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2ry2λ4λ=0,\displaystyle\frac{\partial G}{\partial p_{4}}=\frac{(p_{4}-p_{5})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}-\frac{r_{y}}{2}-\lambda_{4}-\lambda=0, (41e)
Gp5=(p4p5)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2+ry2λ5λ=0,\displaystyle\frac{\partial G}{\partial p_{5}}=-\frac{(p_{4}-p_{5})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}+\frac{r_{y}}{2}-\lambda_{5}-\lambda=0, (41f)
Gλ=jpj1=0,λipi=0,i=0,,5.\displaystyle\frac{\partial G}{\partial\lambda}=\sum_{j}p_{j}-1=0,~{}\lambda_{i}p_{i}=0,~{}i=0,\cdots,5. (41g)

Step 1, it is easy to obtain

λ0λ12λ=0,\displaystyle-\lambda_{0}-\lambda_{1}-2\lambda=0, (42)
λ2λ32λ=0,\displaystyle-\lambda_{2}-\lambda_{3}-2\lambda=0,
λ4λ52λ=0.\displaystyle-\lambda_{4}-\lambda_{5}-2\lambda=0.

Step 2, (V1) if p0,p10p_{0},p_{1}\neq 0, or p2,p30p_{2},p_{3}\neq 0, or p4,p50p_{4},p_{5}\neq 0, or at least four elements of {pi}\{p_{i}\} are nonzero, then we have λi,λ=0\lambda_{i},\lambda=0, so the equation (41) is reduced to

(p0p1)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2rz2=0,\displaystyle\frac{(p_{0}-p_{1})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}-\frac{r_{z}}{2}=0, (43)
(p2p3)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2rx2=0,\displaystyle\frac{(p_{2}-p_{3})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}-\frac{r_{x}}{2}=0,
(p4p5)1|𝒓|221(p2p3)2(p4p5)2(p0p1)2ry2=0.\displaystyle\frac{(p_{4}-p_{5})\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}-(p_{0}-p_{1})^{2}}}-\frac{r_{y}}{2}=0.

It infers

(p0p1)2=rz2[1(p2p3)2(p4p5)2]1rx2ry2,\displaystyle(p_{0}-p_{1})^{2}=\frac{r_{z}^{2}[1-(p_{2}-p_{3})^{2}-(p_{4}-p_{5})^{2}]}{1-r_{x}^{2}-r_{y}^{2}}, (44)
(p2p3)2=rx2[1(p0p1)2(p4p5)2]1ry2rz2,\displaystyle(p_{2}-p_{3})^{2}=\frac{r_{x}^{2}[1-(p_{0}-p_{1})^{2}-(p_{4}-p_{5})^{2}]}{1-r_{y}^{2}-r_{z}^{2}},
(p4p5)2=ry2[1(p0p1)2(p2p3)2]1rx2rz2.\displaystyle(p_{4}-p_{5})^{2}=\frac{r_{y}^{2}[1-(p_{0}-p_{1})^{2}-(p_{2}-p_{3})^{2}]}{1-r_{x}^{2}-r_{z}^{2}}.

According (43) and (44), we find

p0p1=rz,p2p3=rx,p4p5=ry,ipi=1.\displaystyle p_{0}-p_{1}=r_{z},~{}~{}p_{2}-p_{3}=r_{x},~{}~{}p_{4}-p_{5}=r_{y},~{}~{}\sum_{i}p_{i}=1. (45)

Then, the solution is

p0=12rx2ry2+rz2t1t2,\displaystyle p_{0}=\frac{1}{2}-\frac{r_{x}}{2}-\frac{r_{y}}{2}+\frac{r_{z}}{2}-t_{1}-t_{2}, (46)
p1=12rx2ry2rz2t1t2,\displaystyle p_{1}=\frac{1}{2}-\frac{r_{x}}{2}-\frac{r_{y}}{2}-\frac{r_{z}}{2}-t_{1}-t_{2},
p2=rx+t2,\displaystyle p_{2}=r_{x}+t_{2},
p3=t2,\displaystyle p_{3}=t_{2},
p4=ry+t1,\displaystyle p_{4}=r_{y}+t_{1},
p5=t1,\displaystyle p_{5}=t_{1},

where t1t_{1} and t2t_{2} are arbitrary non-negative numbers such that pi0p_{i}\geq 0. The constraint pi0p_{i}\geq 0 with i=0,1,,5i=0,1,\ldots,5 is transformed to 1rxryrz01-r_{x}-r_{y}-r_{z}\geq 0. Let S1={(rx,ry,rz)|rx+ry+rz1}S1=\{(r_{x},r_{y},r_{z})|r_{x}+r_{y}+r_{z}\leq 1\}. Due to (45), it is easy to know that ρ\rho can be absolutely expressed by ipiρi\sum_{i}p_{i}\rho_{i}. That is to say DB3F(ρ)=0D_{B_{3}}^{F}(\rho)=0 in the set S1S1.

(V2) For 1rxryrz<01-r_{x}-r_{y}-r_{z}<0, there are the following eight cases where three elements of {pi}\{p_{i}\} are nonzero. (i) p00,p20,p40p_{0}\neq 0,~{}p_{2}\neq 0,~{}p_{4}\neq 0; (ii) p00,p20,p50p_{0}\neq 0,~{}p_{2}\neq 0,~{}p_{5}\neq 0; (iii) p00,p30,p40p_{0}\neq 0,~{}p_{3}\neq 0,~{}p_{4}\neq 0; (iv) p00,p30,p50p_{0}\neq 0,~{}p_{3}\neq 0,~{}p_{5}\neq 0; (v) p10,p20,p40p_{1}\neq 0,~{}p_{2}\neq 0,~{}p_{4}\neq 0; (vi) p10,p20,p50p_{1}\neq 0,~{}p_{2}\neq 0,~{}p_{5}\neq 0; (vii) p10,p30,p40p_{1}\neq 0,~{}p_{3}\neq 0,~{}p_{4}\neq 0; (viii) p10,p30,p50p_{1}\neq 0,~{}p_{3}\neq 0,~{}p_{5}\neq 0.

In the case (i), we have λ0,λ2,λ4=0\lambda_{0},\lambda_{2},\lambda_{4}=0, p1,p3,p5=0p_{1},p_{3},p_{5}=0, λ=λ12=λ32=λ52<0\lambda=-\frac{\lambda_{1}}{2}=-\frac{\lambda_{3}}{2}=-\frac{\lambda_{5}}{2}<0 then

p01|𝒓|221p22p42p02rz2λ=0,\displaystyle\frac{p_{0}\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-p_{2}^{2}-p_{4}^{2}-p_{0}^{2}}}-\frac{r_{z}}{2}-\lambda=0, (47)
p21|𝒓|221p22p42p02rx2λ=0,\displaystyle\frac{p_{2}\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-p_{2}^{2}-p_{4}^{2}-p_{0}^{2}}}-\frac{r_{x}}{2}-\lambda=0,
p41|𝒓|221p22p42p02ry2λ=0.\displaystyle\frac{p_{4}\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-p_{2}^{2}-p_{4}^{2}-p_{0}^{2}}}-\frac{r_{y}}{2}-\lambda=0.

It means

p02=(rz+2λ)2[1p22p42]1|𝒓|2+(rz+2λ)2,\displaystyle p_{0}^{2}=\frac{(r_{z}+2\lambda)^{2}[1-p_{2}^{2}-p_{4}^{2}]}{1-|\boldsymbol{r}|^{2}+(r_{z}+2\lambda)^{2}}, (48)
p22=(rx+2λ)2[1p02p42]1|𝒓|2+(rx+2λ)2,\displaystyle p_{2}^{2}=\frac{(r_{x}+2\lambda)^{2}[1-p_{0}^{2}-p_{4}^{2}]}{1-|\boldsymbol{r}|^{2}+(r_{x}+2\lambda)^{2}},
p42=(ry+2λ)2[1p02p22]1|𝒓|2+(ry+2λ)2.\displaystyle p_{4}^{2}=\frac{(r_{y}+2\lambda)^{2}[1-p_{0}^{2}-p_{2}^{2}]}{1-|\boldsymbol{r}|^{2}+(r_{y}+2\lambda)^{2}}.

According (47) and (48), we obtain

p0=(rz+2λ)1|𝒓|2+(rz+2λ)2+(rx+2λ)2+(ry+2λ)2,\displaystyle p_{0}=\frac{(r_{z}+2\lambda)}{\sqrt{1-|\boldsymbol{r}|^{2}+(r_{z}+2\lambda)^{2}+(r_{x}+2\lambda)^{2}+(r_{y}+2\lambda)^{2}}}, (49)
p2=(rx+2λ)1|𝒓|2+(rz+2λ)2+(rx+2λ)2+(ry+2λ)2,\displaystyle p_{2}=\frac{(r_{x}+2\lambda)}{\sqrt{1-|\boldsymbol{r}|^{2}+(r_{z}+2\lambda)^{2}+(r_{x}+2\lambda)^{2}+(r_{y}+2\lambda)^{2}}},
p4=(ry+2λ)1|𝒓|2+(rz+2λ)2+(rx+2λ)2+(ry+2λ)2,\displaystyle p_{4}=\frac{(r_{y}+2\lambda)}{\sqrt{1-|\boldsymbol{r}|^{2}+(r_{z}+2\lambda)^{2}+(r_{x}+2\lambda)^{2}+(r_{y}+2\lambda)^{2}}},
ipi=1.\displaystyle\sum_{i}p_{i}=1.

It implies λ=16[±3(rx+ry+rz)22(rx+ry+rz)]\lambda=\frac{1}{6}[\pm\sqrt{\frac{3-(r_{x}+r_{y}+r_{z})^{2}}{2}}-(r_{x}+r_{y}+r_{z})].

Because (rz+2λ)+(rx+2λ)+(ry+2λ)0(r_{z}+2\lambda)+(r_{x}+2\lambda)+(r_{y}+2\lambda)\geq 0, we get λ=16[3(rx+ry+rz)22(rx+ry+rz)]\lambda=\frac{1}{6}[\sqrt{\frac{3-(r_{x}+r_{y}+r_{z})^{2}}{2}}-(r_{x}+r_{y}+r_{z})]. The constraint λ<0\lambda<0 can be converted to 1rxryrz<01-r_{x}-r_{y}-r_{z}<0. So one has

p0=132(rx+ry2rz)33(rx+ry+rz)2,\displaystyle p_{0}=\frac{1}{3}-\frac{\sqrt{2}(r_{x}+r_{y}-2r_{z})}{3\sqrt{3-(r_{x}+r_{y}+r_{z})^{2}}}, (50)
p2=132(2rx+ry+rz)33(rx+ry+rz)2,\displaystyle p_{2}=\frac{1}{3}-\frac{\sqrt{2}(-2r_{x}+r_{y}+r_{z})}{3\sqrt{3-(r_{x}+r_{y}+r_{z})^{2}}},
p4=132(rx2ry+rz)33(rx+ry+rz)2,\displaystyle p_{4}=\frac{1}{3}-\frac{\sqrt{2}(r_{x}-2r_{y}+r_{z})}{3\sqrt{3-(r_{x}+r_{y}+r_{z})^{2}}},
p1=p3=p5=0.\displaystyle p_{1}=p_{3}=p_{5}=0.

And due to p0,p2,p4>0p_{0},p_{2},p_{4}>0, the above solutions should satisfy four constraints, rx+ry<12rz2+rzr_{x}+r_{y}<\sqrt{1-2r_{z}^{2}}+r_{z} or rx+ry<2rzr_{x}+r_{y}<2r_{z}, ry+rz<12rx2+rxr_{y}+r_{z}<\sqrt{1-2r_{x}^{2}}+r_{x} or ry+rz<2rxr_{y}+r_{z}<2r_{x}, rx+rz<12ry2+ryr_{x}+r_{z}<\sqrt{1-2r_{y}^{2}}+r_{y} or rx+rz<2ryr_{x}+r_{z}<2r_{y}, and rx+ry+rz>1r_{x}+r_{y}+r_{z}>1.

Let S2={(rx,ry,rz)|rx+ry<12rz2+rzorrx+ry<2rz,ry+rz<12rx2+rxorry+rz<2rx,rx+rz<12ry2+ryorrx+rz<2ry}S1S2=\{(r_{x},r_{y},r_{z})|r_{x}+r_{y}<\sqrt{1-2r_{z}^{2}}+r_{z}~{}\textup{or}~{}r_{x}+r_{y}<2r_{z},r_{y}+r_{z}<\sqrt{1-2r_{x}^{2}}+r_{x}~{}\textup{or}~{}r_{y}+r_{z}<2r_{x},r_{x}+r_{z}<\sqrt{1-2r_{y}^{2}}+r_{y}~{}\textup{or}~{}r_{x}+r_{z}<2r_{y}\}\setminus S1. In this range, it is not difficult to get

maxF(ρ,ipiρi)\displaystyle\max F(\rho,\sum_{i}p_{i}\rho_{i}) =12+rx+ry+rz6+2[3(rx+ry+rz)2]6\displaystyle=\frac{1}{2}+\frac{r_{x}+r_{y}+r_{z}}{6}+\frac{\sqrt{2[3-(r_{x}+r_{y}+r_{z})^{2}]}}{6} (51)
=12+r6+2(3r2)6,\displaystyle=\frac{1}{2}+\frac{r}{6}+\frac{\sqrt{2(3-r^{2})}}{6},

where r=rx+ry+rzr=r_{x}+r_{y}+r_{z}.

Further, we have

DB3F(ρ)=12r62(3r2)6.\displaystyle D_{B_{3}}^{F}(\rho)=\frac{1}{2}-\frac{r}{6}-\frac{\sqrt{2(3-r^{2})}}{6}. (52)

In the case (ii), we have λ0,λ2,λ5=0\lambda_{0},\lambda_{2},\lambda_{5}=0, p1,p3,p4=0p_{1},p_{3},p_{4}=0, λ=λ12=λ32=λ42<0\lambda=-\frac{\lambda_{1}}{2}=-\frac{\lambda_{3}}{2}=-\frac{\lambda_{4}}{2}<0 then

p01|𝒓|221p22p52p02rz2λ=0,\displaystyle\frac{p_{0}\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-p_{2}^{2}-p_{5}^{2}-p_{0}^{2}}}-\frac{r_{z}}{2}-\lambda=0, (53a)
p21|𝒓|221p22p52p02rx2λ=0,\displaystyle\frac{p_{2}\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-p_{2}^{2}-p_{5}^{2}-p_{0}^{2}}}-\frac{r_{x}}{2}-\lambda=0, (53b)
p51|𝒓|221p22p52p02+ry2λ=0.\displaystyle\frac{p_{5}\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-p_{2}^{2}-p_{5}^{2}-p_{0}^{2}}}+\frac{r_{y}}{2}-\lambda=0. (53c)

According (53c), we can know that 2λry02\lambda-r_{y}\geq 0. Clearly, 2λry<02\lambda-r_{y}<0. So there is a contradiction.

By the same method as above, it is easy to obtain that there are no solution in the other six cases.

(V3) Now consider the cases that only two elements of {pi}\{p_{i}\} are nonzero in the rest region.

(1)(1^{\prime}) For p0,p30p_{0},p_{3}\neq 0, λ0,λ3=0\lambda_{0},\lambda_{3}=0, λ=λ12=λ22=λ4+λ52<0\lambda=-\frac{\lambda_{1}}{2}=-\frac{\lambda_{2}}{2}=-\frac{\lambda_{4}+\lambda_{5}}{2}<0, then

p01|𝒓|221p32p03rz2λ=0,\displaystyle\frac{p_{0}\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-p_{3}^{2}-p_{0}^{3}}}-\frac{r_{z}}{2}-\lambda=0, (54a)
p31|𝒓|221p32p03+rx2λ=0.\displaystyle\frac{p_{3}\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-p_{3}^{2}-p_{0}^{3}}}+\frac{r_{x}}{2}-\lambda=0. (54b)

The equation (54b) implies 2λrx02\lambda-r_{x}\geq 0. As we know 2λrx<02\lambda-r_{x}<0. Hence there is a contradiction.

Similarly, in the cases p0,p50p_{0},p_{5}\neq 0; p1,p20p_{1},p_{2}\neq 0; p1,p30p_{1},p_{3}\neq 0; p1,p40p_{1},p_{4}\neq 0; p1,p50p_{1},p_{5}\neq 0; p2,p50p_{2},p_{5}\neq 0; p3,p40p_{3},p_{4}\neq 0; p3,p50p_{3},p_{5}\neq 0, there are no solution.

(2)(2^{\prime}) For p0,p20p_{0},p_{2}\neq 0, λ0,λ2=0\lambda_{0},\lambda_{2}=0, λ=λ12=λ32=λ4+λ52<0\lambda=-\frac{\lambda_{1}}{2}=-\frac{\lambda_{3}}{2}=-\frac{\lambda_{4}+\lambda_{5}}{2}<0, then

p01|𝒓|221p22p02rz2λ=0,\displaystyle\frac{p_{0}\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-p_{2}^{2}-p_{0}^{2}}}-\frac{r_{z}}{2}-\lambda=0, (55)
p21|𝒓|221p22p02rx2λ=0.\displaystyle\frac{p_{2}\sqrt{1-|\boldsymbol{r}|^{2}}}{2\sqrt{1-p_{2}^{2}-p_{0}^{2}}}-\frac{r_{x}}{2}-\lambda=0.

It signifies

p02=(rz+2λ)2[1p22]1|𝒓|2+(rz+2λ)2,\displaystyle p_{0}^{2}=\frac{(r_{z}+2\lambda)^{2}[1-p_{2}^{2}]}{1-|\boldsymbol{r}|^{2}+(r_{z}+2\lambda)^{2}}, (56)
p22=(rx+2λ)2[1p02]1|𝒓|2+(rx+2λ)2.\displaystyle p_{2}^{2}=\frac{(r_{x}+2\lambda)^{2}[1-p_{0}^{2}]}{1-|\boldsymbol{r}|^{2}+(r_{x}+2\lambda)^{2}}.

According (55) and (56), we deduce

p0=(rz+2λ)1|𝒓|2+(rz+2λ)2+(rx+2λ)2,\displaystyle p_{0}=\frac{(r_{z}+2\lambda)}{\sqrt{1-|\boldsymbol{r}|^{2}+(r_{z}+2\lambda)^{2}+(r_{x}+2\lambda)^{2}}}, (57)
p2=(rx+2λ)1|𝒓|2+(rz+2λ)2+(rx+2λ)2,\displaystyle p_{2}=\frac{(r_{x}+2\lambda)}{\sqrt{1-|\boldsymbol{r}|^{2}+(r_{z}+2\lambda)^{2}+(r_{x}+2\lambda)^{2}}},
ipi=1.\displaystyle\sum_{i}p_{i}=1.

Thus, we obtain λ=14[±2(rx+rz)22ry2(rx+rz)]\lambda=\frac{1}{4}[\pm\sqrt{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}-(r_{x}+r_{z})].

Because (rz+2λ)+(rx+2λ)0(r_{z}+2\lambda)+(r_{x}+2\lambda)\geq 0, we choose λ=14[2(rx+rz)22ry2(rx+rz)]\lambda=\frac{1}{4}[\sqrt{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}-(r_{x}+r_{z})]. Since λ<0\lambda<0, we have 12rxrz<rx2+ry2+rz21-2r_{x}r_{z}<r_{x}^{2}+r_{y}^{2}+r_{z}^{2} which can hold. It is easy to obtain

p0=12rxrz22(rx+rz)22ry2,\displaystyle p_{0}=\frac{1}{2}-\frac{r_{x}-r_{z}}{2\sqrt{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}}, (58)
p2=12rx+rz22(rx+rz)22ry2,\displaystyle p_{2}=\frac{1}{2}-\frac{-r_{x}+r_{z}}{2\sqrt{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}},
p1=p3=p4=p5=0,\displaystyle p_{1}=p_{3}=p_{4}=p_{5}=0,

where rxr_{x}, ryr_{y}, rzr_{z} belong to the set S3={(rx,ry,rz)|rx+rz>1ry2}S1S2S3=\{(r_{x},r_{y},r_{z})|r_{x}+r_{z}>\sqrt{1-r_{y}^{2}}\}\setminus S1\cup S2.

In this case, we have

maxF(ρ,ipiρi)\displaystyle\max F(\rho,\sum_{i}p_{i}\rho_{i}) =12+2(rx+rz)22ry2+(rx+rz)4.\displaystyle=\frac{1}{2}+\frac{\sqrt{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}+(r_{x}+r_{z})}{4}. (59)

Further, the optimal convex approximation of quantum state ρ\rho is

DB3F(ρ)=122(rx+rz)22ry2+(rx+rz)4.\displaystyle D_{B_{3}}^{F}(\rho)=\frac{1}{2}-\frac{\sqrt{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}+(r_{x}+r_{z})}{4}. (60)

(3)(3^{\prime}) Analogously, for p0,p40p_{0},p_{4}\neq 0, we get

p0=12ryrz22(ry+rz)22rx2,\displaystyle p_{0}=\frac{1}{2}-\frac{r_{y}-r_{z}}{2\sqrt{2-(r_{y}+r_{z})^{2}-2r_{x}^{2}}}, (61)
p4=12ry+rz22(ry+rz)22rx2,\displaystyle p_{4}=\frac{1}{2}-\frac{-r_{y}+r_{z}}{2\sqrt{2-(r_{y}+r_{z})^{2}-2r_{x}^{2}}},
p1=p2=p3=p5=0.\displaystyle p_{1}=p_{2}=p_{3}=p_{5}=0.

Here rxr_{x}, ryr_{y}, rzr_{z} belong to the set S4={(rx,ry,rz)|ry+rz>1rx2}S1S2S4=\{(r_{x},r_{y},r_{z})|r_{y}+r_{z}>\sqrt{1-r_{x}^{2}}\}\setminus S1\cup S2.

From this, one gets

maxF(ρ,ipiρi)\displaystyle\max F(\rho,\sum_{i}p_{i}\rho_{i}) =12+2(ry+rz)22rx2+(ry+rz)4.\displaystyle=\frac{1}{2}+\frac{\sqrt{2-(r_{y}+r_{z})^{2}-2r_{x}^{2}}+(r_{y}+r_{z})}{4}. (62)

Hence, we have

DB3F(ρ)=122(ry+rz)22rx2+(ry+rz)4.\displaystyle D_{B_{3}}^{F}(\rho)=\frac{1}{2}-\frac{\sqrt{2-(r_{y}+r_{z})^{2}-2r_{x}^{2}}+(r_{y}+r_{z})}{4}. (63)

(4)(4^{\prime}) For the case p2,p40p_{2},p_{4}\neq 0, similar with (3)(3^{\prime}) we have

p2=12ryrx22(ry+rx)22rz2,\displaystyle p_{2}=\frac{1}{2}-\frac{r_{y}-r_{x}}{2\sqrt{2-(r_{y}+r_{x})^{2}-2r_{z}^{2}}}, (64)
p4=12ry+rx22(ry+rx)22rz2,\displaystyle p_{4}=\frac{1}{2}-\frac{-r_{y}+r_{x}}{2\sqrt{2-(r_{y}+r_{x})^{2}-2r_{z}^{2}}},
p0=p1=p3=p5=0,\displaystyle p_{0}=p_{1}=p_{3}=p_{5}=0,

where rxr_{x}, ryr_{y}, rzr_{z} belong to the set S5={(rx,ry,rz)|rx+ry>1rz2}S1S2S5=\{(r_{x},r_{y},r_{z})|r_{x}+r_{y}>\sqrt{1-r_{z}^{2}}\}\setminus S1\cup S2.

As a result,

maxF(ρ,ipiρi)\displaystyle\max F(\rho,\sum_{i}p_{i}\rho_{i}) =12+2(rx+ry)22rz2+(rx+ry)4.\displaystyle=\frac{1}{2}+\frac{\sqrt{2-(r_{x}+r_{y})^{2}-2r_{z}^{2}}+(r_{x}+r_{y})}{4}. (65)

Thus, we obtain

DB3F(ρ)=122(rx+ry)22rz2+(rx+ry)4.\displaystyle D_{B_{3}}^{F}(\rho)=\frac{1}{2}-\frac{\sqrt{2-(r_{x}+r_{y})^{2}-2r_{z}^{2}}+(r_{x}+r_{y})}{4}. (66)

Appendix B the comparison of two difference functions in the set S2

It is not difficult to find S2S2=S2S2\cap S2^{\prime}=S2. In the set S2S2, the range of r2r^{2} is (1,3](1,3] because of r>1r>1 and r2[3|𝒓|23]2=3|𝒓|2r^{2}\leq[3\sqrt{\frac{|\boldsymbol{r}|^{2}}{3}}]^{2}=3|\boldsymbol{r}|^{2}. The equations (24) and (25) can be simplified as g1=|𝒓|1+3|𝒓|2r23g^{1^{\prime}}=|\boldsymbol{r}|-\sqrt{\frac{1+3|\boldsymbol{r}|^{2}-r^{2}}{3}}, g1=|𝒓|1+2|𝒓|2r23r2g^{1}=|\boldsymbol{r}|-\sqrt{\frac{1+2|\boldsymbol{r}|^{2}-r^{2}}{3-r^{2}}}. Thereby,

g1g1=1+2|𝒓|2r23r21+3|𝒓|2r23.\displaystyle g^{1^{\prime}}-g^{1}=\sqrt{\frac{1+2|\boldsymbol{r}|^{2}-r^{2}}{3-r^{2}}}-\sqrt{\frac{1+3|\boldsymbol{r}|^{2}-r^{2}}{3}}. (67)

Due to the monotonicity of the power function x12x^{\frac{1}{2}} on the domain x0x\geq 0, it only needs to know

1+2|𝒓|2r23r21+3|𝒓|2r23=(3|𝒓|2r2)(r21)3(3r2)0.\displaystyle\frac{1+2|\boldsymbol{r}|^{2}-r^{2}}{3-r^{2}}-\frac{1+3|\boldsymbol{r}|^{2}-r^{2}}{3}=\frac{(3|\boldsymbol{r}|^{2}-r^{2})(r^{2}-1)}{3(3-r^{2})}\geq 0. (68)

So, we obtain g1g10g^{1^{\prime}}-g^{1}\geq 0. That is to say that g1g^{1} is not greater than g1g^{1^{\prime}} in the set S2S2.

Appendix C the comparison of two difference functions in the set S3

It is obvious that S3S3=S3S3\cap S3^{\prime}=S3^{\prime}. Thus, in the set S3S3^{\prime}, the point satisfies (rx+rz)2+ry2>1(r_{x}+r_{z})^{2}+r_{y}^{2}>1. Further, we have (rx+rz)2+2ry2>1(r_{x}+r_{z})^{2}+2r_{y}^{2}>1. We cancel out the absolute value, the equations (29) and (30) become g2=|𝒓|1+2(rx2+rz2)(rx+rz)22g^{2^{\prime}}=|\boldsymbol{r}|-\sqrt{\frac{1+2(r_{x}^{2}+r_{z}^{2})-(r_{x}+r_{z})^{2}}{2}}, g2=|𝒓|1+rx2+rz2ry2(rx+rz)22(rx+rz)22ry2g^{2}=|\boldsymbol{r}|-\sqrt{\frac{1+r_{x}^{2}+r_{z}^{2}-r_{y}^{2}-(r_{x}+r_{z})^{2}}{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}}. In order to compare g2g^{2^{\prime}} with g2g^{2}, we compute

g2g2=1+rx2+rz2ry2(rx+rz)22(rx+rz)22ry21+2(rx2+rz2)(rx+rz)22.\displaystyle g^{2^{\prime}}-g^{2}=\sqrt{\frac{1+r_{x}^{2}+r_{z}^{2}-r_{y}^{2}-(r_{x}+r_{z})^{2}}{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}}-\sqrt{\frac{1+2(r_{x}^{2}+r_{z}^{2})-(r_{x}+r_{z})^{2}}{2}}. (69)

It is not difficult to know

1+rx2+rz2ry2(rx+rz)22(rx+rz)22ry21+2(rx2+rz2)(rx+rz)22=(rxrz)2[(rx+rz)2+2ry21]2[2(rx+rz)22ry2]0.\displaystyle\frac{1+r_{x}^{2}+r_{z}^{2}-r_{y}^{2}-(r_{x}+r_{z})^{2}}{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}-\frac{1+2(r_{x}^{2}+r_{z}^{2})-(r_{x}+r_{z})^{2}}{2}=\frac{(r_{x}-r_{z})^{2}[(r_{x}+r_{z})^{2}+2r_{y}^{2}-1]}{2[2-(r_{x}+r_{z})^{2}-2r_{y}^{2}]}\geq 0. (70)

Thus, we get g2g20g^{2^{\prime}}-g^{2}\geq 0. In other word, in the set S3S3^{\prime}, g2g^{2} is not greater than g2g^{2^{\prime}}.

Appendix D the comparison of two difference functions in the intersection of S2 and S3

In the range S2S3S2^{\prime}\cap S3, we have r2>1r^{2}>1, (rx+rz)2+2ry2>1(r_{x}+r_{z})^{2}+2r_{y}^{2}>1. It can be seen from the above, the difference functions based on the two measures are g1=|𝒓|1+3|𝒓|2r23g^{1^{\prime}}=|\boldsymbol{r}|-\sqrt{\frac{1+3|\boldsymbol{r}|^{2}-r^{2}}{3}} and g2=|𝒓|1+rx2+rz2ry2(rx+rz)22(rx+rz)22ry2g^{2}=|\boldsymbol{r}|-\sqrt{\frac{1+r_{x}^{2}+r_{z}^{2}-r_{y}^{2}-(r_{x}+r_{z})^{2}}{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}}. By this, we obtain

g1g2=1+rx2+rz2ry2(rx+rz)22(rx+rz)22ry21+3|𝒓|2r23.\displaystyle g^{1^{\prime}}-g^{2}=\sqrt{\frac{1+r_{x}^{2}+r_{z}^{2}-r_{y}^{2}-(r_{x}+r_{z})^{2}}{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}}-\sqrt{\frac{1+3|\boldsymbol{r}|^{2}-r^{2}}{3}}. (71)

When r2(rx+rz)2+2ry2r^{2}\geq(r_{x}+r_{z})^{2}+2r_{y}^{2}, one deduces

1+rx2+rz2ry2(rx+rz)22(rx+rz)22ry21+3|𝒓|2r23\displaystyle\quad\frac{1+r_{x}^{2}+r_{z}^{2}-r_{y}^{2}-(r_{x}+r_{z})^{2}}{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}-\frac{1+3|\boldsymbol{r}|^{2}-r^{2}}{3} (72)
=[3(1|𝒓|2)+(r21)][1(rx+rz)22ry2]+(r21)3[2(rx+rz)22ry2]\displaystyle=\frac{[3(1-|\boldsymbol{r}|^{2})+(r^{2}-1)][1-(r_{x}+r_{z})^{2}-2r_{y}^{2}]+(r^{2}-1)}{3[2-(r_{x}+r_{z})^{2}-2r_{y}^{2}]}
[13|𝒓|2+r2][1(rx+rz)22ry2]3[2(rx+rz)22ry2].\displaystyle\geq\frac{[1-3|\boldsymbol{r}|^{2}+r^{2}][1-(r_{x}+r_{z})^{2}-2r_{y}^{2}]}{3[2-(r_{x}+r_{z})^{2}-2r_{y}^{2}]}.

The inequality is obtained by narrowing r2r^{2} to (rx+rz)2+2ry2(r_{x}+r_{z})^{2}+2r_{y}^{2}. Due to 1(rx+rz)22ry2<01-(r_{x}+r_{z})^{2}-2r_{y}^{2}<0, if 13|𝒓|2+r201-3|\boldsymbol{r}|^{2}+r^{2}\leq 0, then g1g20g^{1^{\prime}}-g^{2}\geq 0, otherwise, cannot judge.

When r2(rx+rz)2+2ry2r^{2}\leq(r_{x}+r_{z})^{2}+2r_{y}^{2}, we have

1+rx2+rz2ry2(rx+rz)22(rx+rz)22ry21+3|𝒓|2r23[13|𝒓|2+r2][1(rx+rz)22ry2]3[2(rx+rz)22ry2].\displaystyle\frac{1+r_{x}^{2}+r_{z}^{2}-r_{y}^{2}-(r_{x}+r_{z})^{2}}{2-(r_{x}+r_{z})^{2}-2r_{y}^{2}}-\frac{1+3|\boldsymbol{r}|^{2}-r^{2}}{3}\leq\frac{[1-3|\boldsymbol{r}|^{2}+r^{2}][1-(r_{x}+r_{z})^{2}-2r_{y}^{2}]}{3[2-(r_{x}+r_{z})^{2}-2r_{y}^{2}]}. (73)

The inequality comes from amplifying r2r^{2} to (rx+rz)2+2ry2(r_{x}+r_{z})^{2}+2r_{y}^{2}. Because 1(rx+rz)22ry2<01-(r_{x}+r_{z})^{2}-2r_{y}^{2}<0, if 13|𝒓|2+r201-3|\boldsymbol{r}|^{2}+r^{2}\geq 0, then g1g20g^{1^{\prime}}-g^{2}\leq 0, otherwise, cannot judge.

In the range S2S4S2^{\prime}\cap S4 and S2S5S2^{\prime}\cap S5, the results are similar.

References