This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Optimal collision energy for realizing macroscopic high baryon-density matter

Hidetoshi Taya [email protected] Department of Physics, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521, Japan RIKEN iTHEMS, RIKEN, Wako 351-0198, Japan    Asanosuke Jinno [email protected] Department of Physics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan    Masakiyo Kitazawa [email protected] Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8317, Japan J-PARC Branch, KEK Theory Center, Institute of Particle and Nuclear Studies, KEK, 319-1106, Japan    Yasushi Nara [email protected] Akita International University, Yuwa, Akita-city 010-1292, Japan
Abstract

We investigate the volume and lifetime of the high baryon-density matter created in heavy-ion collisions and estimate the optimal collision energy to realize the high baryon-density region over a large spacetime volume. We simulate central collisions of gold ions for the center-of-mass energy per nucleon pair sNN=2.4 19.6GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}=2.4\,\mathchar 45\relax\,19.6\;{\rm GeV} with a microscopic transport model JAM. We discover that the optimal collision energy is around sNN=3 4GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}=3\,\mathchar 45\relax\,4\;{\rm GeV}, where a baryon density exceeding three times the normal nuclear density is realized with a substantially large spacetime volume. Higher and lower energies are disfavored due to short lifetime and low density, respectively. We also point out that event-by-event fluctuations of the spacetime density profile are large, indicating the importance of the event selection in the experimental analysis.

preprint: RIKEN-iTHEMS-Report-24, YITP-24-112, J-PARC-TH-0308, KUNS-3017

Introduction.— Exploring the properties of matter at extremely high baryon densities that exceed several times the normal nuclear density ρ00.17fm3\rho_{0}\approx 0.17\;{\rm fm}^{-3} is one of the most exciting frontiers in current physics. Such a high density environment is realized in, for example, the core of neutron stars. Recent remarkable progress in the observation of neutron stars through gravitational waves from binary neutron-star mergers [1, *LIGOScientific:2017ync, *LIGOScientific:2018cki, *LIGOScientific:2018hze] and pulsar X-rays [5, *Miller:2021qha, *Riley:2019yda, *Riley:2021pdl] provides valuable information for constraining the equation of state of the dense matter [9]. The form of matter in such extreme conditions is determined by quantum chromodynamics (QCD) — the theory of strong interaction — and is expected to have rich phase structure [10]. Unveiling their properties is one of the ultimate goals of nuclear physics. Experimental inputs are crucial to achieve this, since the first-principle lattice-QCD calculation is difficult due to the notorious sign problem [11] and the low-energy effective models, such as the chiral effective theory, become invalid when the baryon density exceeds about 2ρ02\rho_{0} [12, 13, 14].

Relativistic heavy-ion collisions are the only terrestrial experiments to create such high baryon-density matter and to study their properties in laboratories [15]. In these experiments, dense and hot matter is created by colliding heavy nuclei accelerated up to almost the speed of light with a large accelerator. The experiments have been carried out at various facilities such as the LHC [16], RHIC [17], and SIS18 [18], for a wide range of collision energies with the center-of-mass energy per nucleon pair sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} up to 5TeV5\;{\rm TeV}. In the past decades, the high energy region sNN100GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\gtrsim 100\;{\rm GeV} has been extensively investigated at the LHC and RHIC. They are suitable for creating extremely hot but low baryon-density matter, and have succeeded in reproducing the primordial form of matter of the Universe just after the Big Bang — the quark-gluon plasma [19]. Recently, the lower energy range sNN3 20GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\approx 3\,\mathchar 45\relax\,20\;{\rm GeV}, which we call intermediate collision energies, is attracting renewed attention. The intermediate energies are expected to be suitable for exploring high baryon-density and low-temperature matter, which is crucial to understand the interiors of neutron stars and supernovae. This energy range is actively investigated in the Beam-Energy Scan (BES) program at RHIC [20] and NA61/SHINE at SPS [21], and will be further studied worldwide [22] in NICA [23], FAIR [24], HIAF [25], and J-PARC-HI [26], which will drastically improve the statistics.

Several experimental results support the formation of high baryon-density matter at the intermediate energy region. First, the rapidity distribution of net-proton number in collisions of gold (Au) nuclei at sNN=5 200GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}=5\,\mathchar 45\relax\,200\;{\rm GeV} [27] implies strong stopping of baryon charges at mid-rapidity for the AGS energy sNN5GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\approx 5\;{\rm GeV} and hence realization of high baryon density. Second, a more quantitative estimate is feasible with the thermal-statistical fit to the hadron yields. It has been estimated in Ref. [28] that the baryon density at the chemical freezeout is maximized at sNN8GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\approx 8\;{\rm GeV}. However, it is not the maximum baryon density for a whole heavy-ion reaction, since the chemical freezeout occurs at a late stage, where the baryon density is diluted by the expansion.

To investigate the maximum baryon density, one must resort to dynamical models of heavy-ion collisions, such as microscopic transport models [29, 30, 31, 32], hydrodynamic models [33, 34, 35, 36], and hybrid models [37, 38, 39, 40]. Previous microscopic transport-model calculations predicted that the maximum baryon density at the center of the collision system can exceed 8ρ08\rho_{0} for sNN5GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\gtrsim 5\;{\rm GeV} [41, 42, 43, 44]. It has also been discussed that even higher densities over 10ρ010\rho_{0} can be reached in some collision events due to large event-by-event fluctuations [43]. However, these studies focus on the density at the center, and it is unclear how much the dense region extends in space and time. The large spatial and temporal sizes, besides the maximum baryon density, are crucial for the dense matter to leave observable signals in the final state. Despite its importance, to the best of our knowledge, quantitative studies on the volume and lifetime of the dense region and their dependence on sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} have not been performed.

The purpose of this letter is to examine the spacetime volume of the high baryon-density region in intermediate-energy heavy-ion collisions and to estimate the optimal collision energy that maximizes the spacetime volume.

Measures.— To quantify the volume and lifetime of the high-baryon-density region in heavy-ion collisions, we propose the following three measures. These measures are constructed from the baryon density in the local rest frame (Eckart frame) 111Equation (1) is ill-defined for J2<0J^{2}<0, which can happen when anti-baryon production occurs. However, anti-baryon production is well suppressed for sNN<20GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}<20\;{\rm GeV}. Hence, it is rare to have J2<0J^{2}<0, and even if it happens the value is very close to zero within the numerical accuracy. Therefore, in our simulation, we simply set ρ(x)=0\rho(x)=0 if J2(x)<0J^{2}(x)<0. ,

ρ(x):=Jμ(x)Jμ(x),\displaystyle\rho(x):=\sqrt{J^{\mu}(x)J_{\mu}(x)}\;, (1)

where Jμ(x)J^{\mu}(x) is the baryon current at each spacetime point xx in the center-of-mass frame of a collision system.

The first measure is the spatial volume that exceeds a threshold density value ρth\rho_{\rm th},

V3(ρth;t):=ρ(x)>ρthd3𝒙γ[J(x)].\displaystyle V_{3}(\rho_{\rm th};t):=\int_{\rho(x)>\rho_{\rm th}}{\rm d}^{3}{\bm{x}}\,\gamma[J(x)]\;. (2)

The Lorentz factor γ[J(x)]:=1/1(𝑱(x)/J0(x))2\gamma[J(x)]:=1/\sqrt{1-({\bm{J}}(x)/J^{0}(x))^{2}} is inserted to define the volume in the local rest frame. Second, we introduce a Lorentz invariant four-volume V4(ρth)V_{4}(\rho_{\rm th}) as 222The integral in Eq. (3) diverges for ρthρ0\rho_{\rm th}\lesssim\rho_{0}, since nuclear matter has the density ρ0\rho_{0} for t<0t<0 and also nuclear clusters can be formed during heavy-ion reactions, which can survive for a long time. We, thus, limit ourselves to ρth>2ρ0\rho_{\rm th}>2\rho_{0}, where these effects are negligible.

V4(ρth):=ρ(x)>ρthdtd3𝒙.\displaystyle V_{4}(\rho_{\rm th}):=\int_{\rho(x)>\rho_{\rm th}}{\rm d}t{\rm d}^{3}\bm{x}\;. (3)

Finally, we define a measure of the typical lifetime of the dense region as

τ(ρth):=V4(ρth)max[V3(ρth;t)],\displaystyle\tau(\rho_{\rm th}):=\frac{V_{4}(\rho_{\rm th})}{\max[V_{3}(\rho_{\rm th};t)]}\;, (4)

where max[V3(ρth;t)]\max[V_{3}(\rho_{\rm th};t)] is the maximum of V3(ρth;t)V_{3}(\rho_{\rm th};t) over time. We compute Eqs. (2)–(4) on an event-by-event basis, i.e., they are constructed from Jμ(x)J^{\mu}(x) for each event.

The advantages of the measures are their simplicity and the clarity of the physical meanings. They can be calculated straightforwardly in a given dynamical model without any further assumptions, once Jμ(x)J^{\mu}(x) is given. However, these measures are not concerned with the local equilibration, and hence the local temperature and/or the chemical potential. Whereas local equilibration has been studied within some microscopic transport models [47, 48, 49, 50, 51, 52], it must introduce criteria for equilibration in a finite and dynamical system, leaving ambiguities in the analysis/interpretation.

Nevertheless, we emphasize that these measures can constrain the spacetime profile of the equilibrated region, since V3(ρth,t)V_{3}(\rho_{\rm th},t) and V4(ρth)V_{4}(\rho_{\rm th}) obviously give the upper limits for the spacetime volumes of the equilibrated region. Furthermore, the formation of the dense region is of interest even without equilibration because such a high density can induce intriguing phenomena, such as the chiral vortical effect [53] and the nucleation of deconfined regions.

Simulation method.— We investigate the sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} dependence of the measures (2)–(4) in central Au ​+ ​Au collisions. We employ a microscopic transport model JAM [54, 55] and generate 1000 collision events with the impact parameter less than 3fm3\;{\rm fm}, which roughly corresponds to the top 5% centrality cut. The simulations are performed with version 2.5743 in the default setting, unless otherwise stated. This version incorporates the recently implemented covariant cascade algorithm [56] and the Lorentz-vector version of the relativistic molecular dynamics (RQMDv) with the mean field of the soft momentum-dependent potential [57, 58]. As shown in Refs. [57, 58], RQMDv can successfully reproduce various experimental data, such as the collision energy dependencies of the directed flows of protons and Λ\Lambda over a wide range of collision energies.

To define the baryon current Jμ(x)J^{\mu}(x) as a continuous quantity, we smear the baryon density of particles at position XbX_{b} and momentum PbμP^{\mu}_{b} as Jμ(x):=bbaryonsVbμBbg(xXb;Pb)J^{\mu}(x):=\sum_{b\in{\rm baryons}}V^{\mu}_{b}B_{b}g(x-X_{b};P_{b}), where BbB_{b} and Vbμ=Pbμ/Pb0V^{\mu}_{b}=P^{\mu}_{b}/P_{b}^{0} are the baryon number and velocity of the bb-th baryon 333In general, the velocity VμV^{\mu} can receive correction from the mean field [92, 93]. However, we neglect it since we have checked that its effect is well suppressed., respectively, and g(x;P):=γ[P]/(2πr)3exp[(|𝒙|2+(γ[P]𝑽b𝒙)2)/(2r2)]g(x;P):=\gamma[P]/(\sqrt{2\pi}r)^{3}\exp[-(|\bm{x}|^{2}+(\gamma[P]\bm{V}_{b}\cdot\bm{x})^{2})/(2r^{2})] is a relativistic Gaussian smearing function [60, 61]. We use the smearing width r=1fmr=1\;{\rm fm} for all baryons, which is almost the same size as the charge radius of protons [62]. The smearing can be interpreted as the intrinsic distribution of baryon density inside baryons or a technical coarse-graining for numerics. The maximum value of the smearing function g(0;0)0.37ρ0g(0;0)\approx 0.37\rho_{0} is much smaller than ρ0\rho_{0}, indicating that a considerable number of baryons must overlap to realize ρ(x)ρ0\rho(x)\gg\rho_{0}.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Time evolution of the spatial volume V3(ρth;t)V_{3}(\rho_{\rm th};t) in central Au ​+ ​Au collisions for several thresholds ρth\rho_{\rm th} and collision energies sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}. The thick-solid, dashed, and dotted lines represent MF, Cascade, and FS results, respectively. The color bands around the MF results show the 1σ1\sigma (denser) and 2σ2\sigma (lighter) bands of event-by-event fluctuations. At the initial time t=0t=0, the centers of the colliding nuclei are separated by 2RAu/γAu+3fm2R_{\rm Au}/\gamma_{\rm Au}+3\;{\rm fm} in the longitudinal direction with γAu\gamma_{\rm Au} being the Lorentz factor for the incident Au ions.

Simulation results.— Figure 1 shows the time dependence of V3(ρth;t)V_{3}(\rho_{\rm th};t) for various collision energies. The thick-solid, thin-dashed, and dotted lines show, respectively, the results from the full simulation with the mean field (MF), the cascade mode (Cascade), where the mean field is turned off, and the free streaming (FS) simulations, where all the interactions are switched off.

One observes that V3(ρth;t)V_{3}(\rho_{\rm th};t) for ρth/ρ0=3\rho_{\rm th}/\rho_{0}=3 has the maximum value (max[V3(ρth;t)])1/36fm({\rm max}[V_{3}(\rho_{\rm th};t)])^{1/3}\approx 6\;{\rm fm} for all collision energies. We regard this length scale as “macroscopically” large, since it is much larger than the typical microscopic length scale of the system 1fm\approx 1\;{\rm fm}, determined by the interaction range and the sizes of hadrons. Additionally, the achieved length scale is comparable to the radius of the colliding gold ions RAu6.4fmR_{\rm Au}\approx 6.4\;{\rm fm} and thus is “maximally” large in the sense that the overlap of two nuclei cannot result in a volume larger than RAu3\approx R_{\rm Au}^{3}. Regions with ρth/ρ0>3\rho_{\rm th}/\rho_{0}>3 are created with smaller V3(ρth;t)V_{3}(\rho_{\rm th};t), which increase with sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}. It is also found that the dense region disappears more quickly for larger sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}.

When comparing MF with Cascade, one finds that V3(ρth;t)V_{3}(\rho_{\rm th};t) is more suppressed in MF. This is because the repulsive mean field [57] makes the matter less compressed [63]. The mean-field effect becomes more important for lower collision energies, especially for sNN3.0GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\lesssim 3.0\;{\rm GeV}. The comparison between MF and FS shows that V3(ρth;t)V_{3}(\rho_{\rm th};t) is enhanced by the interaction. Due to the collisions, the particles are decelerated and gather around the collision point, forming a dense region.

Refer to caption
Figure 2: MF results for the collision energy sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} dependence of the maximum volume max[V3]{\rm max}[V_{3}] (solid) and the lifetime τ\tau (dashed) in central Au ​+ ​Au collisions. The bands show the event-by-event fluctuations as in Fig. 1.
Refer to caption
Figure 3: The collision energy sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} dependence of the spacetime volume V4(ρth)V_{4}(\rho_{\rm th}) in central Au ​+ ​Au collisions. The meanings of the lines and bands are the same as Fig. 1.

In order to examine the sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} dependence observed in Fig. 1 quantitatively, we show max[V3(ρth;t)]{\rm max}[V_{3}(\rho_{\rm th};t)] and τ(ρth)\tau(\rho_{\rm th}) as functions of sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} in Fig. 2. It shows that max[V3(ρth;t)]{\rm max}[V_{3}(\rho_{\rm th};t)] grows and saturates with increasing sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}. Meanwhile, τ(ρth)\tau(\rho_{\rm th}) decreases except for ρth/ρ05\rho_{\rm th}/\rho_{0}\geq 5 at low collision energies, where the formation of the region with ρ(x)>ρth\rho(x)>\rho_{\rm th} scarcely occurs.

To obtain an observable signal of dense matter, both the spatial volume and the lifetime must be large. The optimal sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} to maximize max[V3(ρth;t)]{\rm max}[V_{3}(\rho_{\rm th};t)] and τ(ρth)\tau(\rho_{\rm th}) simultaneously may be estimated from the crossing point of the solid- and dashed-blue lines in Fig. 2. Taking ρth/ρ0=3\rho_{\rm th}/\rho_{0}=3 as an example, it is located at sNN2.6GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\approx 2.6\;{\rm GeV}, where a macroscopically large spacetime volume, max[V3(ρth;t)]1/3=τ(ρth)5.5fm{\rm max}[V_{3}(\rho_{\rm th};t)]^{1/3}=\tau(\rho_{\rm th})\approx 5.5\;{\rm fm}, is realized. For ρth/ρ0=4\rho_{\rm th}/\rho_{0}=4, the crossing point is located at sNN2.8GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\approx 2.8\;{\rm GeV} with max[V3(ρth;t)]1/3=τ4fm{\rm max}[V_{3}(\rho_{\rm th};t)]^{1/3}=\tau\approx 4\;{\rm fm}, which is smaller than the result for ρth/ρ0=3\rho_{\rm th}/\rho_{0}=3, but still occupies a certain spacetime volume of the reaction zone. Similar arguments suggest that an experimental analysis of the matter with ρ(x)/ρ05\rho(x)/\rho_{0}\gtrsim 5 is challenging, as max[V3(ρth;t)]{\rm max}[V_{3}(\rho_{\rm th};t)] and τ(ρth)\tau(\rho_{\rm th}) are suppressed and are no longer macroscopically large.

One can make a similar estimate of the optimal sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} from an analysis of the sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} dependence of V4(ρth)V_{4}(\rho_{\rm th}), shown in Fig. 3. We estimate the optimal sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} with the maximum of V4(ρth)V_{4}(\rho_{\rm th}), which is located around sNN=4\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}=4 and 5.5GeV5.5\;{\rm GeV} for ρth/ρ0=3\rho_{\rm th}/\rho_{0}=3 and 44, respectively. These values are slightly higher than those estimated from the crossing points in Fig. 2. The corresponding maximum values are (V4(ρth))1/4=5.8fm(V_{4}(\rho_{\rm th}))^{1/4}=5.8\;{\rm fm} and 4.9fm4.9\;{\rm fm}, respectively, which are almost the same as the values of (V3(ρth,t))1/3(V_{3}(\rho_{\rm th},t))^{1/3} and τ(ρth)\tau(\rho_{\rm th}) at the crossing points in Fig. 2.

Wrapping up these results, we conclude that the region with ρ(x)/ρ03\rho(x)/\rho_{0}\geq 3 can be formed with macroscopically large spatial and temporal sizes in central Au ​+ ​Au collisions. The sweet spot of sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} to maximize the spatial and temporal sizes simultaneously starts from sNN3GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\lesssim 3\;{\rm GeV} and extends up to sNN4GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\gtrsim 4\;{\rm GeV}. The optimal collision energy for ρ(x)/ρ04\rho(x)/\rho_{0}\geq 4 is estimated to be slightly higher than that for ρ(x)/ρ03\rho(x)/\rho_{0}\geq 3. Compared to the previous research, the estimated optimal sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} is considerably smaller [28, 43]. RemoveAlso, Although the maximum baryon density can locally exceed ρ(x)/ρ0=8\rho(x)/\rho_{0}=8, as shown in Refs. [41, 42, 43, 44], the volume and lifetime of such high baryon-density regions are small.

Finally, we discuss the event-by-event fluctuations. In Figs. 13, the colored bands show the 1σ1\sigma (dense) and 2σ2\sigma (light) ranges of the event-by-event distribution of the individual quantities. The figures show that V3(ρth;t)V_{3}(\rho_{\rm th};t), τ\tau, and V4(ρth)V_{4}(\rho_{\rm th}) can fluctuate significantly, which are driven by the positional fluctuation of nucleons on the colliding nuclei [63]. For example, the upper and lower bounds of the 2σ2\sigma band of V4(ρth)V_{4}(\rho_{\rm th}) at sNN3GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\lesssim 3\;{\rm GeV} and ρth/ρ0=3\rho_{\rm th}/\rho_{0}=3 are 12501250 and 850fm4850\;{\rm fm}^{4}, respectively. In other words, the values of V4(3ρ0)V_{4}(3\rho_{0}) in the top and bottom 2.5%2.5\% collision events differ by a factor of more than 1250/8501.51250/850\approx 1.5. This means that, if a selection of such large- and small-V4V_{4} events is available, their comparison is used to investigate the properties of dense matter from the spacetime-volume dependence of experimental observables. As another example, for ρth/ρ0=5\rho_{\rm th}/\rho_{0}=5, the lower 2σ2\sigma-bound of max[V3(5ρ0,t)]{\rm max}[V_{3}(5\rho_{0},t)] vanishes at sNN3GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\approx 3\;{\rm GeV}, whereas the upper bound is about (3fm)3(3\;{\rm fm})^{3}. Exploiting these large event-by-event fluctuations may allow us to explore even denser regions in the experiments.

Discussions.— We have shown that a high-density matter with ρ(x)/ρ03\rho(x)/\rho_{0}\gtrsim 3 can be created with macroscopically large volume at intermediate collision energies. Since ρ(x)/ρ03\rho(x)/\rho_{0}\gtrsim 3 is the density expected to be realized in the core of neutron stars [64, 9], it is an important next step to pursue the connection between the two realms. In heavy-ion collisions, observables, such as the directed flow [65, 66], dilepton yields [67, 68, 69, 70], and fluctuations of conserved charges [71, 72, 73], are expected to be sensitive to the equations of state and the phase transitions. Examining these observables based on our results on the spacetime density profile enables us to further constrain the properties of the matter at baryon densities relevant to neutron stars. In the present study, we have focused on the measures (2)–(4), which do not care about the equilibration of matter. Although this ignorance is the key to realizing the quantitative analysis of the spacetime profile, the consideration of equilibration, as well as the estimation of the resulting temperature and chemical potential, is another important extension of this study to approach the matter properties in equilibrium [63].

Let us discuss the validity of our JAM simulation, which (1) is based on the particular choice of the mean field, i.e., RQMDv with a soft momentum-dependent potential, and (2) is a hadronic model, containing no explicit quark and gluon degrees of freedom. Regarding the choice of the mean field (1), we have also executed JAM with other mean field parameters, such as a hard momentum-dependent potential and momentum-independent potentials [57], for comparison. We have found that the choice of the mean field for sNN>2.4GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}>2.4\;{\rm GeV} only gives minor differences, which are smaller than that between the MF and Cascade results shown in Figs. 1 and 3 [63]. Thus, we expect that the estimated optimal sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} is robust against the choice of the mean field. Nevertheless, the above expectation is drawn from the analysis within JAM, and hence it is an interesting subject to study the spacetime volume and the optimal sNN\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}} with other transport models to reinforce our findings. Regarding (2), we note that recent experimental data on elliptic flow suggest that quark-number scaling [74], which is a possible signal of the formation of the quark-gluon plasma, is violated for sNN4GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\lesssim 4\;{\rm GeV} [75, 76, 77]. Therefore, at least around the optimal sNN3 4GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\approx 3\,\mathchar 45\relax\,4\;{\rm GeV}, the quark-gluon plasma is unformed, and hence the hadronic treatment would suffice. One could, nonetheless, argue that the violation of the quark-number scaling does not fully exclude the possibility that the quark-gluon plasma is locally created in the matter. We expect that the inclusion of quark and gluon degrees of freedom will not significantly alter our conclusions, as the fraction of quark deconfinement phase at sNN10GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\lesssim 10\;{\rm GeV} is not so large [78, 32]. Additionally, the phase transition can influence the spacetime evolution of the matter by softening the equations of state, whose impact on the density is found to be small [52]. Nevertheless, it is worthwhile to test those expectations using models that include explicit quark degrees of freedom such as AMPT [79, 80], PHSD [81, 82, 78], PHQMD [32], PACIAE [83], and hybrid models [84, 39, 85, 86, 40], and that incorporate the phase transition dynamics such as UrQMD [68, 87, 88, 89] and JAM with an advanced option [52].

We comment on the relation of this study with the event-by-event analysis of fluctuations in conserved charges [71, 72, 73]. The large fluctuations of the spacetime volume shown in Figs. 13 may fake signals of the fluctuation observables, which are important for the search for the QCD critical point. Taming the fluctuations of the spacetime volume, which would in part be regarded as the volume fluctuations [90, 91], may be crucial in this energy range.

Summary.— We have investigated the volume and lifetime of the high baryon-density matter created in central Au ​+ ​Au collisions by introducing the three measures (2)–(4) and estimated the optimal collision energy to realize the largest spacetime volume using a microscopic transport model JAM. The numerical results suggest that the dense region with ρ(x)/ρ03\rho(x)/\rho_{0}\gtrsim 3 can be created with large volume and lifetime with the optimal collision energy around sNN3 4GeV\sqrt{s_{{}_{\;\!\!N\;\!\!\;\!\!N}}}\approx 3\,\mathchar 45\relax\,4\;{\rm GeV}. These findings are crucial for further investigations of the dense matter with near-future facilities such as NICA, FAIR, HIAF, and J-PARC-HI, as well as the current RHIC BES program.

Acknowledgments.— The authors thank Akira Ohnishi and Toru Nishimura for the collaboration at the early stage of the present work. They also thank Takao Sakaguchi and Hiroyuki Sako for useful discussions. This work is supported by JSPS KAKENHI under grant Nos. 22K14045 and 24K17058 (HT), Nos. JP19H05598, JP22K03619, JP23H04507, and JP24K07049 (MK), No. JP21K03577 (YN), the RIKEN special postdoctoral researcher program (HT), JST SPRING, Grant Number JPMJSP2110 (AJ), the Center for Gravitational Physics and Quantum Information (CGPQI) at Yukawa Institute for Theoretical Physics (MK). A part of the numerical simulations have been carried out on Yukawa-21 at Yukawa Institute for Theoretical Physics (YITP), Kyoto University.

References

  • Abbott et al. [2017a] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 161101 (2017a), eprint 1710.05832.
  • Abbott et al. [2017b] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT), Astrophys. J. Lett. 848, L12 (2017b), eprint 1710.05833.
  • Abbott et al. [2018] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 121, 161101 (2018), eprint 1805.11581.
  • Abbott et al. [2019] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 011001 (2019), eprint 1805.11579.
  • Miller et al. [2019] M. C. Miller et al., Astrophys. J. Lett. 887, L24 (2019), eprint 1912.05705.
  • Miller et al. [2021] M. C. Miller et al., Astrophys. J. Lett. 918, L28 (2021), eprint 2105.06979.
  • Riley et al. [2019] T. E. Riley et al., Astrophys. J. Lett. 887, L21 (2019), eprint 1912.05702.
  • Riley et al. [2021] T. E. Riley et al., Astrophys. J. Lett. 918, L27 (2021), eprint 2105.06980.
  • Kumar et al. [2024] R. Kumar et al. (MUSES), Living Rev. Rel. 27, 3 (2024), eprint 2303.17021.
  • Fukushima and Hatsuda [2011] K. Fukushima and T. Hatsuda, Rept. Prog. Phys. 74, 014001 (2011), eprint 1005.4814.
  • Nagata [2022] K. Nagata, Prog. Part. Nucl. Phys. 127, 103991 (2022), eprint 2108.12423.
  • Tews et al. [2018] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, Astrophys. J. 860, 149 (2018), eprint 1801.01923.
  • Drischler et al. [2021] C. Drischler, J. W. Holt, and C. Wellenhofer, Ann. Rev. Nucl. Part. Sci. 71, 403 (2021), eprint 2101.01709.
  • Koehn et al. [2024] H. Koehn et al. (2024), eprint 2402.04172.
  • Luo et al. [2022] X. Luo, Q. Wang, N. Xu, and P. Zhuang, Properties of QCD Matter at High Baryon Density (Springer Nature Singapore, 2022), ISBN 9789811944406.
  • [16] https://home.cern/science/accelerators/large-hadron-collider.
  • Chen et al. [2024] J. Chen et al. (2024), eprint 2407.02935.
  • Adamczewski-Musch et al. [2019] J. Adamczewski-Musch et al. (HADES), Nature Phys. 15, 1040 (2019).
  • Yagi et al. [2005] K. Yagi, T. Hatsuda, and Y. Miake, Quark-gluon plasma: From big bang to little bang, vol. 23 (2005).
  • Aparin [2023] A. Aparin (STAR Collaboration), Phys. Atom. Nucl. 86, 758 (2023).
  • NA [6] https://shine.web.cern.ch/.
  • Galatyuk [2019] T. Galatyuk, Nucl. Phys. A 982, 163 (2019).
  • [23] https://nica.jinr.ru/.
  • [24] https://fair-center.de/.
  • [25] https://english.imp.cas.cn/research/facilities/HIAF/.
  • [26] https://asrc.jaea.go.jp/soshiki/gr/hadron/jparc-hi/index.html.
  • Bearden et al. [2004] I. G. Bearden et al. (BRAHMS), Phys. Rev. Lett. 93, 102301 (2004), eprint nucl-ex/0312023.
  • Randrup and Cleymans [2006] J. Randrup and J. Cleymans, Phys. Rev. C 74, 047901 (2006), eprint hep-ph/0607065.
  • Bass et al. [1998] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998), eprint nucl-th/9803035.
  • Buss et al. [2012] O. Buss, T. Gaitanos, K. Gallmeister, H. van Hees, M. Kaskulov, O. Lalakulich, A. B. Larionov, T. Leitner, J. Weil, and U. Mosel, Phys. Rept. 512, 1 (2012), eprint 1106.1344.
  • Weil et al. [2016] J. Weil et al. (SMASH), Phys. Rev. C 94, 054905 (2016), eprint 1606.06642.
  • Aichelin et al. [2020] J. Aichelin, E. Bratkovskaya, A. Le Fèvre, V. Kireyeu, V. Kolesnikov, Y. Leifels, V. Voronyuk, and G. Coci, Phys. Rev. C 101, 044905 (2020), eprint 1907.03860.
  • Ivanov et al. [2006] Y. B. Ivanov, V. N. Russkikh, and V. D. Toneev, Phys. Rev. C 73, 044904 (2006), eprint nucl-th/0503088.
  • Ivanov [2013a] Y. B. Ivanov, Phys. Rev. C 87, 064904 (2013a), eprint 1302.5766.
  • Ivanov [2013b] Y. B. Ivanov, Phys. Rev. C 87, 064905 (2013b), eprint 1304.1638.
  • Ivanov [2014] Y. B. Ivanov, Phys. Rev. C 89, 024903 (2014), eprint 1311.0109.
  • Petersen et al. [2008] H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, and H. Stöcker, Phys. Rev. C 78, 044901 (2008), eprint 0806.1695.
  • Batyuk et al. [2016] P. Batyuk, D. Blaschke, M. Bleicher, Y. B. Ivanov, I. Karpenko, S. Merts, M. Nahrgang, H. Petersen, and O. Rogachevsky, Phys. Rev. C 94, 044917 (2016), eprint 1608.00965.
  • Akamatsu et al. [2018] Y. Akamatsu, M. Asakawa, T. Hirano, M. Kitazawa, K. Morita, K. Murase, Y. Nara, C. Nonaka, and A. Ohnishi, Phys. Rev. C 98, 024909 (2018), eprint 1805.09024.
  • Cimerman et al. [2023] J. Cimerman, I. Karpenko, B. Tomasik, and P. Huovinen, Phys. Rev. C 107, 044902 (2023), eprint 2301.11894.
  • Danielewicz et al. [1998] P. Danielewicz, R. A. Lacey, P. B. Gossiaux, C. Pinkenburg, P. Chung, J. M. Alexander, and R. L. McGrath, Phys. Rev. Lett. 81, 2438 (1998), eprint nucl-th/9803047.
  • Arsene et al. [2007] I. C. Arsene, L. V. Bravina, W. Cassing, Y. B. Ivanov, A. Larionov, J. Randrup, V. N. Russkikh, V. D. Toneev, G. Zeeb, and D. Zschiesche, Phys. Rev. C 75, 034902 (2007), eprint nucl-th/0609042.
  • Ohnishi [2016] A. Ohnishi, J. Phys. Conf. Ser. 668, 012004 (2016), eprint 1512.08468.
  • Bhaduri [2022] P. P. Bhaduri (CBM), PoS CPOD2021, 031 (2022).
  • Note [1] Note1, equation (1) is ill-defined for J2<0J^{2}<0, which can happen when anti-baryon production occurs. However, anti-baryon production is well suppressed for s\tmspace+.2777emN\tmspace+.2777em\tmspace+.2777emN<20\tmspace+.2777emGeV\sqrt{s_{{}_{\tmspace+{.2777em}\!\!N\tmspace+{.2777em}\!\!\tmspace+{.2777em}\!\!N}}}<20\tmspace+{.2777em}{\rm GeV}. Hence, it is rare to have J2<0J^{2}<0, and even if it happens the value is very close to zero within the numerical accuracy. Therefore, in our simulation, we simply set ρ(x)=0\rho(x)=0 if J2(x)<0J^{2}(x)<0.
  • Note [2] Note2, the integral in Eq. (3) diverges for ρthρ0\rho_{\rm th}\lesssim\rho_{0}, since nuclear matter has the density ρ0\rho_{0} for t<0t<0 and also nuclear clusters can be formed during heavy-ion reactions, which can survive for a long time. We, thus, limit ourselves to ρth>2ρ0\rho_{\rm th}>2\rho_{0}, where these effects are negligible.
  • Sorge [1996] H. Sorge, Phys. Lett. B 373, 16 (1996), eprint nucl-th/9510056.
  • Bravina et al. [1998] L. V. Bravina et al., Phys. Lett. B 434, 379 (1998), eprint nucl-th/9804008.
  • Bravina et al. [1999] L. V. Bravina et al., Phys. Rev. C 60, 024904 (1999), eprint hep-ph/9906548.
  • Bravina et al. [2000] L. V. Bravina, E. E. Zabrodin, S. A. Bass, M. Bleicher, M. Brandstetter, S. Soff, H. Stoecker, and W. Greiner, Phys. Rev. C 62, 064906 (2000), eprint nucl-th/0011011.
  • Bravina et al. [2008] L. V. Bravina et al., Phys. Rev. C 78, 014907 (2008), eprint 0804.1484.
  • Nara et al. [2018] Y. Nara, H. Niemi, A. Ohnishi, J. Steinheimer, X. Luo, and H. Stöcker, Eur. Phys. J. A 54, 18 (2018), eprint 1708.05617.
  • Kharzeev et al. [2016] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Prog. Part. Nucl. Phys. 88, 1 (2016), eprint 1511.04050.
  • Nara et al. [2000] Y. Nara, N. Otuka, A. Ohnishi, K. Niita, and S. Chiba, Phys. Rev. C 61, 024901 (2000), eprint nucl-th/9904059.
  • [55] https://gitlab.com/transportmodel/jam2.
  • Nara et al. [2023] Y. Nara, A. Jinno, T. Maruyama, K. Murase, and A. Ohnishi, Phys. Rev. C 108, 024910 (2023), eprint 2306.12131.
  • Nara and Ohnishi [2022] Y. Nara and A. Ohnishi, Phys. Rev. C 105, 014911 (2022), eprint 2109.07594.
  • Nara et al. [2022] Y. Nara, A. Jinno, K. Murase, and A. Ohnishi, Phys. Rev. C 106, 044902 (2022), eprint 2208.01297.
  • Note [3] Note3, in general, the velocity VμV^{\mu} can receive correction from the mean field [92, 93]. However, we neglect it since we have checked that its effect is well suppressed.
  • Fuchs and Wolter [1995] C. Fuchs and H. H. Wolter, Nucl. Phys. A 589, 732 (1995).
  • Oliinychenko and Petersen [2016] D. Oliinychenko and H. Petersen, Phys. Rev. C 93, 034905 (2016), eprint 1508.04378.
  • Gao and Vanderhaeghen [2022] H. Gao and M. Vanderhaeghen, Rev. Mod. Phys. 94, 015002 (2022), eprint 2105.00571.
  • [63] H. Taya, A. Jinno, M. Kitazawa, and Y. Nara, in preparation.
  • Baym et al. [2018] G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and T. Takatsuka, Rept. Prog. Phys. 81, 056902 (2018), eprint 1707.04966.
  • Sahu et al. [2000] P. K. Sahu, W. Cassing, U. Mosel, and A. Ohnishi, Nucl. Phys. A 672, 376 (2000), eprint nucl-th/9907002.
  • Nara et al. [2017] Y. Nara, H. Niemi, J. Steinheimer, and H. Stöcker, Phys. Lett. B 769, 543 (2017), eprint 1611.08023.
  • Nishimura et al. [2022] T. Nishimura, M. Kitazawa, and T. Kunihiro, PTEP 2022, 093D02 (2022), eprint 2201.01963.
  • Savchuk et al. [2023a] O. Savchuk, A. Motornenko, J. Steinheimer, V. Vovchenko, M. Bleicher, M. Gorenstein, and T. Galatyuk, J. Phys. G 50, 125104 (2023a), eprint 2209.05267.
  • Nishimura et al. [2023] T. Nishimura, M. Kitazawa, and T. Kunihiro, PTEP 2023, 053D01 (2023), eprint 2302.03191.
  • Nishimura et al. [2024] T. Nishimura, Y. Nara, and J. Steinheimer, Eur. Phys. J. A 60, 82 (2024), eprint 2311.14135.
  • Asakawa and Kitazawa [2016] M. Asakawa and M. Kitazawa, Prog. Part. Nucl. Phys. 90, 299 (2016), eprint 1512.05038.
  • Luo and Xu [2017] X. Luo and N. Xu, Nucl. Sci. Tech. 28, 112 (2017), eprint 1701.02105.
  • Bluhm et al. [2020] M. Bluhm et al., Nucl. Phys. A 1003, 122016 (2020), eprint 2001.08831.
  • Fries et al. [2003] R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, Phys. Rev. C 68, 044902 (2003), eprint nucl-th/0306027.
  • Adamczyk et al. [2013] L. Adamczyk et al. (STAR), Phys. Rev. C 88, 014902 (2013), eprint 1301.2348.
  • Adamczyk et al. [2016] L. Adamczyk et al. (STAR), Phys. Rev. C 93, 014907 (2016), eprint 1509.08397.
  • Adam et al. [2021] J. Adam et al. (STAR), Phys. Rev. C 103, 034908 (2021), eprint 2007.14005.
  • Konchakovski et al. [2012] V. P. Konchakovski, E. L. Bratkovskaya, W. Cassing, V. D. Toneev, S. A. Voloshin, and V. Voronyuk, Phys. Rev. C 85, 044922 (2012), eprint 1201.3320.
  • Lin et al. [2005] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, Phys. Rev. C 72, 064901 (2005), eprint nucl-th/0411110.
  • Wang et al. [2022] H.-S. Wang, G.-L. Ma, Z.-W. Lin, and W.-j. Fu, Phys. Rev. C 105, 034912 (2022), eprint 2102.06937.
  • Cassing and Bratkovskaya [2008] W. Cassing and E. L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008), eprint 0808.0022.
  • Cassing and Bratkovskaya [2009] W. Cassing and E. L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009), eprint 0907.5331.
  • Lei et al. [2023] A.-K. Lei, Y.-L. Yan, D.-M. Zhou, Z.-L. She, L. Zheng, G.-C. Yong, X.-M. Li, G. Chen, X. Cai, and B.-H. Sa, Phys. Rev. C 108, 064909 (2023), eprint 2309.05110.
  • Steinheimer and Bleicher [2011] J. Steinheimer and M. Bleicher, Phys. Rev. C 84, 024905 (2011), eprint 1104.3981.
  • Schäfer et al. [2022] A. Schäfer, I. Karpenko, X.-Y. Wu, J. Hammelmann, and H. Elfner (SMASH), Eur. Phys. J. A 58, 230 (2022), eprint 2112.08724.
  • Ege et al. [2024] M. Ege, J. Mohs, J. Staudenmaier, and H. Elfner (2024), eprint 2409.04209.
  • Savchuk et al. [2023b] O. Savchuk, R. V. Poberezhnyuk, A. Motornenko, J. Steinheimer, M. I. Gorenstein, and V. Vovchenko, Phys. Rev. C 107, 024913 (2023b), eprint 2211.13200.
  • Li et al. [2023] P. Li, J. Steinheimer, T. Reichert, A. Kittiratpattana, M. Bleicher, and Q. Li, Sci. China Phys. Mech. Astron. 66, 232011 (2023), eprint 2209.01413.
  • Steinheimer et al. [2022] J. Steinheimer, A. Motornenko, A. Sorensen, Y. Nara, V. Koch, and M. Bleicher, Eur. Phys. J. C 82, 911 (2022), eprint 2208.12091.
  • Skokov et al. [2013] V. Skokov, B. Friman, and K. Redlich, Phys. Rev. C 88, 034911 (2013), eprint 1205.4756.
  • Braun-Munzinger et al. [2017] P. Braun-Munzinger, A. Rustamov, and J. Stachel, Nucl. Phys. A 960, 114 (2017), eprint 1612.00702.
  • Bertsch and Das Gupta [1988] G. F. Bertsch and S. Das Gupta, Phys. Rept. 160, 189 (1988).
  • Weber et al. [1992] K. Weber, B. Blaettel, W. Cassing, H. C. Doenges, V. Koch, A. Lang, and U. Mosel, Nucl. Phys. A 539, 713 (1992).