This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: Current address: Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Tianjin University, Tianjin 300354, China

Optical conductivity of a metal near an Ising-nematic quantum critical point

Songci Li Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA    Prachi Sharma School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA    Alex Levchenko Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA    Dmitrii L. Maslov [email protected] Department of Physics, University of Florida, Gainesville, Florida 32611, USA
(October 31, 2023)
Abstract

We study the optical conductivity of a pristine two-dimensional electron system near an Ising-nematic quantum critical point. We discuss the relation between the frequency scaling of the conductivity and the shape of the Fermi surface, namely, whether it is isotropic, convex, or concave. We confirm the cancellation of the leading order terms in the optical conductivity for the cases of isotropic and convex Fermi surfaces and show that the remaining contribution scales as |ω|2/3|\omega|^{2/3} at T=0T=0. On the contrary, the leading term, |ω|2/3\propto|\omega|^{-2/3}, survives for a concave FS. We also address the frequency dependence of the optical conductivity near the convex-to-concave transition. Explicit calculations are carried out for the Fermi-liquid regime using the modified (but equivalent to the original) version of the Kubo formula, while the quantum-critical regime is accessed by employing the space-time scaling of the Z=3Z=3 critical theory.

I Introduction

The optical conductivity of a correlated electron system contains important information about the strength of electron-electron (ee) interaction. This information is encoded both in the renormalization of the Drude weight and in the frequency and/or temperature scaling of the conductivity. Experimental and theoretical studies of optical conductivity is a very active research area Basov and Timusk (2005); Basov et al. (2011); Maslov and Chubukov (2017); Armitage (2018); Tanner (2019).

Unlike the dc conductivity, which is rendered finite only either by umklapp ee scattering Landau and Pomeranchuk (1936); *Landau:collected; Lifshitz and Pitaevskii (1981) or Baber (electron-hole) scattering in compensated metals Baber (1937); Lifshitz and Pitaevskii (1981), the optical conductivity is relatively free of the constraints imposed by momentum conservation: as long as the electron spectrum is not parabolic, the optical conductivity is rendered finite by ee interaction even in the absence of umklapps/compensation. In the Fermi liquid (FL) regime, the optical conductivity so far has been shown to adhere to two scaling forms. The first one is due to Gurzhi Gurzhi (1959):

σ(ω,T)ω2+4π2T2ω2.\displaystyle\sigma^{\prime}(\omega,T)\propto\frac{\omega^{2}+4\pi^{2}T^{2}}{\omega^{2}}. (1)

This form occurs in the presence of umklapp scattering or compensation both in two dimensions (2D) and three dimensions (3D), but also in 3D even without umklapps/compensation, as long as the electron dispersion contains higher than quadratic terms Pal et al. (2012a). The second scaling form,

σ(ω,T)\displaystyle\sigma^{\prime}(\omega,T) \displaystyle\propto ω2+4π2T2ω2(3ω2+8π2T2)\displaystyle\frac{\omega^{2}+4\pi^{2}T^{2}}{\omega^{2}}(3\omega^{2}+8\pi^{2}T^{2}) (4)
×{lnmax{|ω|,T}, 2D1, 3D,\displaystyle\times\left\{\begin{array}[]{ccc}\ln\max\{|\omega|,T\},\,\mathrm{2D}\\ 1,\,\mathrm{3D}\end{array}\right.,

is believed to describe systems with isotropic but nonparabolic spectrum, e.g., Dirac metals Sharma et al. (2021); Goyal et al. (2023), in the absence of umklapp scattering/compensation. 111Although the primary focus of Ref. Sharma et al. (2021) is on Dirac metals, the analysis there is applicable to any nonparabolic spectrum. At T=0T=0, Eqs. (1) and (4) are reduced to const\mathrm{const} and ω2\omega^{2}, respectively (modulo a ln|ω|\ln|\omega| factor in 2D). A suppression of σ(ω,0)\sigma^{\prime}(\omega,0) in Eq. (4) compared to Eq. (1) reflects partial Galilean invariance of an isotropic system. The limiting forms of Eq. (4), i.e., ω2\omega^{2} and T4/ω2T^{4}/\omega^{2}, have been derived by a large number of authors in a variety of contexts Gurzhi et al. (1982, 1987, 1995); Rosch and Howell (2005); Rosch (2006); Briskot et al. (2015); Ledwith et al. (2019). Both scaling forms are valid for ω1/τj(T)\omega\gg 1/\tau_{\mathrm{j}}(T), where τj(T)\tau_{\mathrm{j}}(T) is the appropriate current relaxation time at finite TT, which behaves as 1/T21/T^{2} under the conditions when Eq. (1) is applicable or as 1/T41/T^{4} (modulo a lnT\ln T factor in 2D) under the conditions when Eq. (4) is applicable.

The case of a 2D anisotropic Fermi surface (FS) (again, in the absence of umklapp scattering/compensation) is more complicated. There, the conductivity depends on whether the FS is convex or concave, i.e., on whether it has inflection points. In the dc case, the FL-like T2T^{2} correction to the residual resistivity vanishes for a convex FS, while the surviving term behaves as T4lnTT^{4}\ln T Gurzhi et al. (1982, 1987, 1995); Maslov et al. (2011); Pal et al. (2012a). On the other hand, the correction to the residual resistivity for a concave 2D FL is free of such cancellations and behaves as T2T^{2}. A similar cancellation for a convex FS is expected to occur for the optical conductivity Maslov and Chubukov (2017) and, indeed, it has recently been shown to be the case for a non-FL at the Ising-nematic quantum critical point (QCP) Guo et al. (2022), while Ref. Shi et al. (2022) arrived at the same result regardless of the shape (convex vs concave) of the FS. The issues pertaining to the surviving term in the optical conductivity for a convex FS as well of the leading term for a concave FS have not been analyzed even in the FL regime. One of the goals of this paper is to resolve these outstanding issues. We will show explicitly that σ(ω,T)\sigma^{\prime}(\omega,T) for a 2D FL with convex/concave FS scales as predicted by Eqs. (4) and (1), respectively.

Another goal of this paper is to generalize the results for an electron system at the Ising-nematic QCP, which is an example of the D=2D=2, Z=3Z=3 criticality Hertz (1976); Millis (1993). This subject has a long and somewhat controversial history. The optical conductivity of such a system [in the context of fermions coupled to a U(1)U(1) gauge field] was claimed in Ref. Kim et al. (1994) to behave as

σ(ω,0)|ω|2/3.\displaystyle\sigma^{\prime}(\omega,0)\propto|\omega|^{-2/3}. (5)

Later, it was realized, however, that the current-relaxing mechanism in Ref. Kim et al. (1994) was not properly specified Maslov and Chubukov (2017); Chubukov and Maslov (2017); Guo et al. (2022); Shi et al. (2022, 2023). As we already mentioned, subsequent studies demonstrated the vanishing of the leading |ω|2/3|\omega|^{-2/3} term for a convex FS Guo et al. (2022). In this paper, we revisit the issue of the 2/3-2/3 scaling of the optical conductivity near an Ising-nematic QCP. We confirm that the |ω|2/3|\omega|^{-2/3} term vanishes both for an isotropic but nonparabolic spectrum and for a convex FS. We also show that the surviving term in the FL regime behaves according to Eq. (4) for both cases.222The actual form of the scaling function is somewhat different for the nematic system due to another contribution to the charge current, see Sec. II.1. When extrapolated to the immediate vicinity of the Ising-nematic QCP, our result translates into

σ(ω,T)|ω|2/3max{1,(T/|ω|)8/3}.\displaystyle\sigma^{\prime}(\omega,T)\propto|\omega|^{2/3}\max\left\{1,(T/|\omega|)^{8/3}\right\}. (6)

The T=0T=0 limit of our result, σ(ω,0)|ω|2/3\sigma^{\prime}(\omega,0)\propto|\omega|^{2/3}, contradicts the σ(ω,0)=const\sigma^{\prime}(\omega,0)=\mathrm{const} result of Ref. Guo et al. (2022). With respect to a concave FS, we show explicitly that the conductivity is restored back to the original form, Eq. (5). For finite TT, we find

σ(ω,T)|ω|2/3max{1,(T/|ω|)4/3}.\displaystyle\sigma^{\prime}(\omega,T)\propto|\omega|^{-2/3}\max\{1,(T/|\omega|)^{4/3}\}. (7)

The T=0T=0 limit of this result was also obtained in Ref. Shi et al. (2023) for a model of fermions coupled to loop current fluctuations. Following Refs. Pal et al. (2012a) and Pal et al. (2012b), we also obtain the scaling form of the conductivity near the convex-to-concave transition. For the reader’s convenience, we summarize the results for the optical conductivity in various regimes in Table 1.

σ(ω,T)\sigma^{\prime}(\omega,T) Fermi surface
Isotropic with nonparabolic spectrum or convex Concave
FL QCP FL QCP
ωT\omega\gg T ω2ln|ω|\omega^{2}\ln|\omega| |ω|2/3|\omega|^{2/3} const |ω|2/3|\omega|^{-2/3}
ωT\omega\ll T T4lnT/ω2T^{4}\ln T/\omega^{2} T8/3/ω2T^{8/3}/\omega^{2} T2/ω2T^{2}/\omega^{2} T4/3/ω2T^{4/3}/\omega^{2}
Table 1: Optical conductivity of a 2D electron system near an Ising-nemtaic quantum critical point (QCP) for different types of Fermi surfaces. FL stands for the Fermi-liquid region.

The rest of the paper is organized as follows. In Sec. II, we formulate the model and introduce the modified version of the Kubo formula that offers a practical advantage in calculation of the optical conductivity. In Sec. III, we apply this formalism to an isotropic electron system with a nonparabolic energy spectrum. In Secs. IV and V, we derive the optical conductivity of metals with convex and concave FSs, respectively, and also the near convex-to-concave transition. For each case, we discuss the frequency scaling of the conductivity both in the FL and quantum-critical regions. In Sec. VI we summarize our main finding and provide a broader discussion. Appendices AC present some technical details of our calculations.

II General formalism

II.1 Hamiltonian and charge currents

We consider the following model Hamiltonian:

H=H0+gHint,\displaystyle H=H_{0}+gH_{\text{int}}, (8a)
H0=𝐤sε𝐤c𝐤,sc𝐤,s,\displaystyle H_{0}=\sum_{{\bf k}s}\varepsilon_{\bf k}c^{\dagger}_{{\bf k},s}c^{\phantom{dagger}}_{{\bf k},s}\!\!\!\!\!, (8b)
Hint=12𝐪V(𝐪)d𝐪d𝐪\displaystyle H_{\text{int}}=\frac{1}{2}\sum_{\bf q}V({\bf q})d_{\bf q}d_{-{\bf q}}
=12𝐤𝐩𝐪ssU(𝐤,𝐩,𝐪)c𝐤+,sc𝐩,sc𝐩+,sc𝐤,s,\displaystyle=\frac{1}{2}\sum_{{\bf k}{\bf p}{\bf q}ss^{\prime}}U({\bf k},{\bf p},{\bf q})c^{\dagger}_{{\bf k}_{+},s}c^{\dagger}_{{\bf p}_{-},s^{\prime}}c^{\phantom{dagger}}_{{\bf p}_{+},s^{\prime}}\!\!\!c^{\phantom{dagger}}_{{\bf k}_{-},s}\!\!\!, (8c)

where c𝐤,s(c𝐤,s)c^{\dagger}_{{\bf k},s}(c_{{\bf k},s}) are the fermion creation (annihilation) operators for a particle in a state with momentum 𝐤{\bf k} and spin projection ss,

𝐤±=𝐤±𝐪/2,and𝐩±=𝐩±𝐪/2.\displaystyle{\bf k}_{\pm}={\bf k}\pm\mathbf{q}/2,\;\mathrm{and}\;{\bf p}_{\pm}={\bf p}\pm\mathbf{q}/2. (9)

The coupling constant gg is factored out for convenience. Furthermore, ε𝐤=ϵ𝐤EF\varepsilon_{\bf k}=\epsilon_{\bf k}-E_{\text{F}}, ϵ𝐤\epsilon_{\bf k} is the band dispersion, EFE_{\text{F}} is the Fermi energy,

d𝐪=𝐤,sF(𝐤)c𝐤+,sc𝐤,s\displaystyle d_{\bf q}=\sum_{{\bf k},s}F({\bf k})c^{\dagger}_{{\bf k}_{+},s}c^{\phantom{dagger}}_{{\bf k}_{-},s} (10)

is the charge density in the angular momentum channel with a form-factor F(𝐤)F({\bf k}), and U(𝐤,𝐩,𝐪)=F(𝐤)F(𝐩)V(𝐪)U({\bf k},{\bf p},{\bf q})=F({\bf k})F({\bf p})V({\bf q}). For simplicity, we assume that the FS has at least fourfold symmetry, although this assumption is by no means crucial. The form factor is normalized such that

dϕ𝐤2πF2(𝐤)=1,\displaystyle\int\frac{d\phi_{\bf k}}{2\pi}F^{2}({\bf k})=1, (11)

where ϕ𝐤\phi_{\bf k} is the azimuthal angle of 𝐤{\bf k}. For a purely density-density interaction, F(𝐤)=1F({\bf k})=1 and U(𝐤,𝐩,𝐪)=V(𝐪)U({\bf k},{\bf p},{\bf q})=V({\bf q}). The interaction responsible for a quantum phase transition is modeled by the standard Orenstein-Zernike form

V(𝐪)=1q2+qB2,\displaystyle V({\bf q})=\frac{1}{q^{2}+q_{\text{B}}^{2}}, (12)

where qBq_{\text{B}} is the bosonic mass, equal to the inverse correlation length of the order parameter fluctuations. We assume that the system is close to the QCP, such that qBkFq_{\text{B}}\ll k_{\mathrm{F}}. At finite qBq_{\text{B}}, the system is in a FL regime at low enough energies namely, for max{ω,T}ωFL\max\{\omega,T\}\ll\omega_{\text{FL}}, where

ωFL=\varvFqB3/gNF,\displaystyle\omega_{\text{FL}}=\varv_{\mathrm{F}}q_{\text{B}}^{3}/gN_{\mathrm{F}}, (13)

\varvF\varv_{\mathrm{F}} is the Fermi velocity, appropriately averaged over the FS, and NFN_{\mathrm{F}} is the density of states at the Fermi energy. In the FL regime, the dynamic interaction can be replaced by the static one, which is what we did in Eq. (12). Our explicit calculations will be carried out in the FL regime only. To extend the results to the immediate vicinity of the QCP, we will invoke the space-time scaling of the Z=3Z=3 critical theory and replace qBq_{\text{B}} by max{|ω|1/3,T1/3}\max\{|\omega|^{1/3},T^{1/3}\} Chubukov and Maslov (2017).

As usual, the (longitudinal part of) charge current is deduced from the continuity equation

𝐪𝐣𝐪=[ρ𝐪,H],\displaystyle{\bf q}\cdot{\bf j}_{\bf q}=-[\rho_{\bf q},H], (14)

where ρ𝐪=e𝐤sc𝐤+,sc𝐤,s\rho_{\bf q}=e\sum_{{\bf k}s}c^{\dagger}_{{\bf k}_{+},s}c^{\phantom{dagger}}_{{\bf k}_{-},s} is the charge density operator. The commutator [ρ,H0][\rho,H_{0}] yields the single-particle part of the current, the 𝐪=0{\bf q}=0 part of which is given by

𝐣0=e𝐤s\varv𝐤c𝐤,sc𝐤,s,\displaystyle{\bf j}_{0}=e\sum_{{\bf k}s}\bm{\varv}_{{\bf k}}c^{\dagger}_{{\bf k},s}c^{\phantom{dagger}}_{{\bf k},s}\!\!\!\!\!, (15)

where \varvk=𝐤ε𝐤\bm{\varv}_{k}=\bm{\nabla}_{\bf k}\varepsilon_{\bf k} is the group velocity. However, the interaction part of the Hamiltonian Eq. (8c) does not commute with the charge density and, therefore, there is one more contribution to the current. Computing the commutator [ρ𝐪,Hint][\rho_{\bf q},H_{\text{int}}], we obtain for the interaction part of the current at 𝐪=0{\bf q}=0 (see Appendix A for details)

𝐣int=e𝐤𝐩𝐪ss[(𝐤+𝐩)U(𝐤,𝐩,𝐪)]c𝐤+,sc𝐩,sc𝐩+,sc𝐤,s,,\displaystyle{\bf j}_{\text{int}}=e\sum_{{\bf k}{\bf p}{\bf q}ss^{\prime}}\left[\left(\bm{\nabla}_{{\bf k}}+\bm{\nabla}_{\bf p}\right)U({\bf k},{\bf p},{\bf q})\right]c^{\dagger}_{{\bf k}_{+},s}c^{\dagger}_{{\bf p}_{-},s^{\prime}}c^{\phantom{dagger}}_{{\bf p}_{+},s^{\prime}}\!\!\!c^{\phantom{dagger}}_{{\bf k}_{-},s}\!\!\!\!\!,, (16)

where 𝐤=(ϕ^/k)ϕ𝐤\bm{\nabla}_{\bf k}=(\hat{\phi}/k)\partial_{\phi_{\bf k}}. The total current is given by the sum

𝐣=𝐣0+g𝐣int.\displaystyle{\bf j}={\bf j}_{0}+g{\bf j}_{\text{int}}. (17)

II.2 Modified Kubo formula for the optical conductivity

Due to the fourfold symmetry of our model, σxx=σyy\sigma_{xx}=\sigma_{yy}, and one can define the conductivity as σ(σxx+σyy)/2\sigma\equiv(\sigma_{xx}+\sigma_{yy})/2. To calculate the conductivity, we will be using the modified version of the Kubo formula. The standard Kubo formula relates the real part of the conductivity to the imaginary part of the (retarded) current-current correlation function,

σ(ω,T)Reσ(ω,T)=1ωImΠj(ω,T),\displaystyle\sigma^{\prime}(\omega,T)\equiv\mathrm{Re}\,\sigma(\omega,T)=-\frac{1}{\omega}\mathrm{Im}\,\Pi_{\mathrm{j}}(\omega,T), (18)

where

Πj(ω,T)=i20𝑑teiωt[𝐣(t),𝐣(0)]i2[𝐣(t),𝐣(0)]ω\Pi_{\mathrm{j}}(\omega,T)=-\frac{i}{2}\int_{0}^{\infty}dte^{i\omega t}\langle[{\bf j}(t)\stackrel{{\scriptstyle\cdot}}{{,}}{\bf j}(0)]\rangle\equiv-\frac{i}{2}\langle[{\bf j}(t)\stackrel{{\scriptstyle\cdot}}{{,}}{\bf j}(0)]\rangle_{\omega} (19)

where [𝐚;𝐛]=𝐚𝐛𝐛𝐚[{\mathbf{a}};{\mathbf{b}}]={\mathbf{a}}\cdot{\mathbf{b}}-{\mathbf{b}}\cdot{\mathbf{a}}. In this approach, the dissipative (real) part of the conductivity occurs only if the interaction is dynamic, which means that the bare static interaction in Eq. (8c) needs to be renormalized by dynamic particle-hole pairs. An equivalent version of the Kubo formula is obtained integrating Eq. (19) by parts Rosch and Howell (2005); Rosch (2006); Sharma et al. (2021)

σ(ω,T)=12ω3Im[𝐊(t),𝐊(0)]ω,\displaystyle\sigma^{\prime}(\omega,T)=\frac{1}{2\omega^{3}}{\mathrm{Im}}\,\left\langle\left[{\bf K}(t)\stackrel{{\scriptstyle\cdot}}{{,}}{\bf K}(0)\right]\right\rangle_{\omega}, (20)

where 𝐊(t)=it𝐣=[𝐣,H]{\bf K}(t)=i\partial_{t}{\bf j}=[{\bf j},H]. While Eq. (18) contains a two-particle Green’s function, Eq. (20) contains a four-particle Green’s function which, in general, is a more complicated object. However, to calculate the optical conductivity to order 𝒪(g2)\mathcal{O}(g^{2}), it suffices to find 𝐊{\bf K} to order 𝒪(g)\mathcal{O}(g):

𝐊(t)=[𝐣0+g𝐣int,H0+gHint]=g𝐊1(t)+g𝐊2(t)+𝒪(g2),{\bf K}(t)=[{\bf j}_{0}+g{\bf j}_{\text{int}},H_{0}+gH_{\text{int}}]=g{\bf K}_{1}(t)+g{\bf K}_{2}(t)+\mathcal{O}(g^{2}), (21)

where

𝐊1(t)\displaystyle{\bf K}_{1}(t) =\displaystyle= [𝐣0,Hint],\displaystyle[{\bf j}_{0},H_{\text{int}}], (22a)
𝐊2(t)\displaystyle{\bf K}_{2}(t) =\displaystyle= [𝐣int,H0].\displaystyle[{\bf j}_{\text{int}},H_{0}]. (22b)

Because the product of 𝐊(t){\bf K}(t) and 𝐊(0){\bf K}(0) in Eq. (20) is already of order g2g^{2}, the averaging in this equation can be performed over the free-fermion states. The advantage of Eq. (20) is that it accounts automatically only for current-relaxing processes without the need of combining diagrams for the current-current correlation function. In this approach, the renormalization of the bare static interaction by dynamic particle-hole pairs is accounted for automatically, when the product of two four-fermion correlators in Eq. (20) is averaged over the quantum states of a noninteracting system.

Substituting Eq. (21) into Eq. (20), we obtain the conductivity as the sum of three terms:

σ(ω,T)=σ1(ω,T)+σ2(ω,T)+σ12(ω,T),\displaystyle\sigma^{\prime}(\omega,T)=\sigma^{\prime}_{1}(\omega,T)+\sigma^{\prime}_{2}(\omega,T)+\sigma^{\prime}_{12}(\omega,T), (23)

where

σ1(ω,T)=g22ω3Im[𝐊1(t),𝐊1(0)]ω,\displaystyle\sigma^{\prime}_{1}(\omega,T)=\frac{g^{2}}{2\omega^{3}}{\mathrm{Im}}\,\langle\left[{\bf K}_{1}(t)\stackrel{{\scriptstyle\cdot}}{{,}}{\bf K}_{1}(0)\right]\rangle_{\omega}, (24a)
σ2(ω,T)=g22ω3Im[𝐊2(t),𝐊2(0)]ω,\displaystyle\sigma^{\prime}_{2}(\omega,T)=\frac{g^{2}}{2\omega^{3}}{\mathrm{Im}}\,\langle\left[{\bf K}_{2}(t)\stackrel{{\scriptstyle\cdot}}{{,}}{\bf K}_{2}(0)\right]\rangle_{\omega}, (24b)
σ12(ω,T)=g22ω3Im{[𝐊1(t),𝐊2(0)]ω[𝐊1(t),𝐊2(0)]ω}.\displaystyle\sigma^{\prime}_{12}(\omega,T)=\frac{g^{2}}{2\omega^{3}}{\mathrm{Im}}\left\{\langle\left[{\bf K}_{1}(t)\stackrel{{\scriptstyle\cdot}}{{,}}{\bf K}_{2}(0)\right]\rangle_{\omega}-\langle\left[{\bf K}_{1}(t)\stackrel{{\scriptstyle\cdot}}{{,}}{\bf K}_{2}(0)\right]\rangle_{-\omega}\right\}. (24c)

For the commutators in Eqs. (22a) and (22b) we obtain (see Appendix B for details)

𝐊1=e2𝐤𝐩𝐪ssΔ\varvU(𝐤,𝐩,𝐪)c𝐤+,sc𝐩,sc𝐩+,s,c𝐤,s\displaystyle{\bf K}_{1}=-\frac{e}{2}\sum_{{\bf k}{\bf p}{\bf q}ss^{\prime}}\Delta\bm{\varv}\,U({\bf k},{\bf p},{\bf q})c^{\dagger}_{{\bf k}_{+},s}c^{\dagger}_{{\bf p}_{-},s^{\prime}}c^{\phantom{dagger}}_{{\bf p}_{+},s^{\prime}}\!\!\!\!\!,c^{\phantom{dagger}}_{{\bf k}_{-},s} (25a)
𝐊2=e𝐤𝐩𝐪ssΔε(𝐤+𝐩)U(𝐤,𝐩,𝐪)c𝐤+,sc𝐩,sc𝐩+,s,c𝐤,s\displaystyle{\bf K}_{2}=e\sum_{{\bf k}{\bf p}{\bf q}ss^{\prime}}\Delta\varepsilon\left(\bm{\nabla}_{{\bf k}}+\bm{\nabla}_{\bf p}\right)U({\bf k},{\bf p},{\bf q})c^{\dagger}_{{\bf k}_{+},s}c^{\dagger}_{{\bf p}_{-},s^{\prime}}c^{\phantom{dagger}}_{{\bf p}_{+},s^{\prime}}\!\!\!\!\!,c^{\phantom{dagger}}_{{\bf k}_{-},s} (25b)

where

Δ\varv=\varv𝐤++\varv𝐩\varv𝐤\varv𝐩+\displaystyle\Delta\bm{\varv}=\bm{\varv}_{{\bf k}_{+}}+\bm{\varv}_{{\bf p}_{-}}-\bm{\varv}_{{\bf k}_{-}}-\bm{\varv}_{{\bf p}_{+}} (26)

and

Δε=ε𝐤++ε𝐩ε𝐤ε𝐩+,\displaystyle\Delta\varepsilon=\varepsilon_{{\bf k}_{+}}+\varepsilon_{{\bf p}_{-}}-\varepsilon_{{\bf k}_{-}}-\varepsilon_{{\bf p}_{+}}, (27)

are the changes in the total velocity and total energy of two fermions, respectively, due to a collision. The commutator in Eq. (22a) vanishes for a Galilean-invariant system, i.e., for \varv𝐤=𝐤/m\bm{\varv}_{\bf k}={\bf k}/m, and thus the conductivity for this case is not affected by the electron-electron interaction, as it should be.

Substituting Eqs. (25a) and (25b) into Eq. (20) and applying Wick’s theorem, we obtain for the three components of the conductivity

σ1(ω,T)=πe2g21eω/Tω3𝐤,𝐩,𝐪U2(𝐤,𝐩,𝐪)(Δ\varv)2M(𝐤,𝐩,𝐪)δ(ε𝐤++ε𝐩ε𝐤ε𝐩++ω),\displaystyle\sigma^{\prime}_{1}(\omega,T)=\pi e^{2}g^{2}\frac{1-e^{-\omega/T}}{\omega^{3}}\int_{{\bf k},{\bf p},{\bf q}}U^{2}({\bf k},{\bf p},{\bf q})\left(\Delta\bm{\varv}\right)^{2}M({\bf k},{\bf p},{\bf q})\delta(\varepsilon_{{\bf k}_{+}}+\varepsilon_{{\bf p}_{-}}-\varepsilon_{{\bf k}_{-}}-\varepsilon_{{\bf p}_{+}}+\omega), (28a)
σ2(ω,T)=4πe2g21eω/Tω3𝐤,𝐩,𝐪[(𝐤+𝐩)U(𝐤,𝐩,𝐪)]2(Δε)2M(𝐤,𝐩,𝐪)δ(ε𝐤++ε𝐩ε𝐤ε𝐩++ω),\displaystyle\sigma^{\prime}_{2}(\omega,T)=4\pi e^{2}g^{2}\frac{1-e^{-\omega/T}}{\omega^{3}}\int_{{\bf k},{\bf p},{\bf q}}\left[\left(\bm{\nabla}_{\bf k}+\bm{\nabla}_{\bf p}\right)U({\bf k},{\bf p},{\bf q})\right]^{2}\left(\Delta\varepsilon\right)^{2}M({\bf k},{\bf p},{\bf q})\delta(\varepsilon_{{\bf k}_{+}}+\varepsilon_{{\bf p}_{-}}-\varepsilon_{{\bf k}_{-}}-\varepsilon_{{\bf p}_{+}}+\omega), (28b)
σ12(ω,T)=4πe2g21eω/Tω3𝐤,𝐩,𝐪ΔεΔ\varv(𝐤+𝐩)U2(𝐤,𝐩,𝐪)M(𝐤,𝐩,𝐪)δ(ε𝐤++ε𝐩ε𝐤ε𝐩++ω),\displaystyle\sigma^{\prime}_{12}(\omega,T)=4\pi e^{2}g^{2}\frac{1-e^{-\omega/T}}{\omega^{3}}\int_{{\bf k},{\bf p},{\bf q}}\Delta\varepsilon\Delta\bm{\varv}\cdot\left(\bm{\nabla}_{\bf k}+\bm{\nabla}_{\bf p}\right)U^{2}({\bf k},{\bf p},{\bf q})M({\bf k},{\bf p},{\bf q})\delta(\varepsilon_{{\bf k}_{+}}+\varepsilon_{{\bf p}_{-}}-\varepsilon_{{\bf k}_{-}}-\varepsilon_{{\bf p}_{+}}+\omega), (28c)

where 𝐤\int_{\bf k} is a shorthand for d2k/(2π)2\int d^{2}k/(2\pi)^{2}, while

M(𝐤,𝐩,𝐪)=nF(ε𝐤+)nF(ε𝐩)[1nF(ε𝐤)][1nF(ε𝐩+)],M({\bf k},{\bf p},{\bf q})=n_{F}(\varepsilon_{{\bf k}_{+}})n_{F}(\varepsilon_{{\bf p}_{-}})[1-n_{F}(\varepsilon_{{\bf k}_{-}})][1-n_{F}(\varepsilon_{{\bf p}_{+}})], (29)

with nF(ε)n_{F}(\varepsilon) being the Fermi function. In the equations above, we neglected the exchange part of the interaction, which is small compared to the direct part for a long-range interaction, considered in this paper.

The delta functions in Eqs. (28b) and (28c) impose a constraint Δε=ω\Delta\varepsilon=-\omega. Applying this constraint, we obtain instead of Eqs. (28b) and (28c)

σ2(ω,T)=4πe2g21eω/Tω𝐤,𝐩,𝐪[(𝐤+𝐩)U(𝐤,𝐩,𝐪)]2M(𝐤,𝐩,𝐪)δ(ε𝐤++ε𝐩ε𝐤ε𝐩++ω),\displaystyle\sigma^{\prime}_{2}(\omega,T)=4\pi e^{2}g^{2}\frac{1-e^{-\omega/T}}{\omega}\int_{{\bf k},{\bf p},{\bf q}}\left[\left(\bm{\nabla}_{\bf k}+\bm{\nabla}_{\bf p}\right)U({\bf k},{\bf p},{\bf q})\right]^{2}M({\bf k},{\bf p},{\bf q})\delta(\varepsilon_{{\bf k}_{+}}+\varepsilon_{{\bf p}_{-}}-\varepsilon_{{\bf k}_{-}}-\varepsilon_{{\bf p}_{+}}+\omega), (30a)
σ12(ω,T)=4πe2g21eω/Tω2𝐤,𝐩,𝐪Δ\varv(𝐤+𝐩)U2(𝐤,𝐩,𝐪)M(𝐤,𝐩,𝐪)δ(ε𝐤++ε𝐩ε𝐤ε𝐩++ω).\displaystyle\sigma^{\prime}_{12}(\omega,T)=-4\pi e^{2}g^{2}\frac{1-e^{-\omega/T}}{\omega^{2}}\int_{{\bf k},{\bf p},{\bf q}}\Delta\bm{\varv}\cdot\left(\bm{\nabla}_{\bf k}+\bm{\nabla}_{\bf p}\right)U^{2}({\bf k},{\bf p},{\bf q})M({\bf k},{\bf p},{\bf q})\delta(\varepsilon_{{\bf k}_{+}}+\varepsilon_{{\bf p}_{-}}-\varepsilon_{{\bf k}_{-}}-\varepsilon_{{\bf p}_{+}}+\omega). (30b)

Equations (28a), (30a), and (30b) form the basis of further analysis. In what follows, we will consider three examples: the case of an isotropic but non-parabolic spectrum, as well as of convex and concave FSs. In all cases, we focus on a single-band system and neglect umklapp scattering. The reason for the last assumption is that a long-range interaction, characteristic for an Ising-nematic QCP, strongly suppresses umklapp scattering even if the FS occupies a substantial part of the Brillouin zone Maslov et al. (2011); Pal et al. (2012a).

III Isotropic but nonparabolic spectrum

In this section, we consider the case of an isotropic but nonparabolic spectrum, ϵ𝐤=ϵ(k)\epsilon_{\bf k}=\epsilon(k), which is encountered, e.g., in Dirac metals. We begin with σ1(ω,T)\sigma^{\prime}_{1}(\omega,T) in Eq. (28a), the analysis of which follows along the same lines as in Ref. Sharma et al. (2021). Relabeling the momenta as 𝐤+𝐪/2𝐤{\bf k}+{\bf q}/2\to{\bf k} and 𝐩𝐪/2𝐩{\bf p}-{\bf q}/2\to{\bf p}, introducing the energy transfer as Ω=ε𝐤𝐪ε𝐤=ε𝐩ε𝐩+𝐪+ω\Omega=\varepsilon_{{\bf k}-{\bf q}}-\varepsilon_{{\bf k}}=\varepsilon_{{\bf p}}-\varepsilon_{{\bf p}+{\bf q}}+\omega, and restricting the integrals over the fermionic momenta to narrow regions near the FS, we rewrite Eq. (28a) as

σ1(ω,T)=\displaystyle\sigma^{\prime}_{1}(\omega,T)= e2g2πNF2ω3(1eω/T)d2q(2π)2+𝑑ε𝐤+𝑑ε𝐩+𝑑Ω02πdϕ𝐤𝐪2π02πdϕ𝐩𝐪2πF2(𝐤𝐪2)F2(𝐩+𝐪2)V2(𝐪)\displaystyle e^{2}g^{2}\frac{\pi N_{\mathrm{F}}^{2}}{\omega^{3}}(1-e^{-\omega/T})\int\frac{d^{2}q}{(2\pi)^{2}}\int^{+\infty}_{-\infty}d\varepsilon_{\bf k}\int^{+\infty}_{-\infty}d\varepsilon_{\bf p}\int^{+\infty}_{-\infty}d\Omega\int_{0}^{2\pi}\frac{d\phi_{{\bf k}{\bf q}}}{2\pi}\int_{0}^{2\pi}\frac{d\phi_{{\bf p}{\bf q}}}{2\pi}F^{2}\left({\bf k}-\frac{{\bf q}}{2}\right)F^{2}\left({\bf p}+\frac{{\bf q}}{2}\right)V^{2}({\bf q})
×(Δ\varv)2nF(ε𝐤)nF(ε𝐩)[1nF(ε𝐤+Ω)][1nF(ε𝐩Ω+ω)]δ(Ωε𝐤𝐪+ε𝐤)δ(Ωω+ε𝐩+𝐪ε𝐩),\displaystyle\times\left(\Delta\bm{\varv}\right)^{2}n_{\mathrm{F}}(\varepsilon_{{\bf k}})n_{\mathrm{F}}(\varepsilon_{\bf p})\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf k}}+\Omega)\right]\left[1-n_{\mathrm{F}}(\varepsilon_{\bf p}-\Omega+\omega)\right]\delta(\Omega-\varepsilon_{{\bf k}-{\bf q}}+\varepsilon_{{\bf k}})\delta(\Omega-\omega+\varepsilon_{{\bf p}+{\bf q}}-\varepsilon_{{\bf p}}), (31)

where ϕ𝐧𝐦\phi_{{\bf n}{\bf m}} is the angle between vectors 𝐧{\bf n} and 𝐦{\bf m}, and

Δ\varv=\varv𝐤+\varv𝐩\varv𝐤𝐪\varv𝐩+𝐪.\displaystyle\Delta\bm{\varv}=\bm{\varv}_{\bf k}+\bm{\varv}_{\bf p}-\bm{\varv}_{{\bf k}-{\bf q}}-\bm{\varv}_{{\bf p}+{\bf q}}. (32)

Note that \varv𝐤=ϵ(k)𝐤/k\bm{\varv}_{\mathbf{k}}=\epsilon^{\prime}(k)\mathbf{k}/k for an isotropic dispersion. Therefore, if we project all the momenta onto the FS, i.e., put k=p=|𝐤𝐪|=|𝐩+𝐪|=kFk=p=|\mathbf{k}-\mathbf{q}|=|{\bf p}+{\bf q}|=k_{F} in Δ\varv\Delta\bm{\varv}, then Δ\varv\Delta\bm{\varv} vanishes and so does the conductivity. To get a finite result, we need to expand Δ\varv\Delta\bm{\varv} around the FS. Performing such an expansion, we obtain

Δ\varv\displaystyle\Delta\bm{\varv} =\displaystyle= wnpkF[(ε𝐤ε𝐤𝐪)𝐤^+(ε𝐩ε𝐩+𝐪)𝐩^\displaystyle\frac{w_{\text{np}}}{k_{\mathrm{F}}}\left[\left(\varepsilon_{\bf k}-\varepsilon_{{\bf k}-{\bf q}}\right)\hat{\bf k}+\left(\varepsilon_{\bf p}-\varepsilon_{{\bf p}+{\bf q}}\right)\hat{\bf p}\right. (33)
+(ε𝐤𝐪ε𝐩+𝐪)𝐪kF],\displaystyle\left.+\left(\varepsilon_{{\bf k}-{\bf q}}-\varepsilon_{{\bf p}+{\bf q}}\right)\frac{{\bf q}}{k_{\mathrm{F}}}\right],

where 𝐤^\hat{\bf k} is the unit vector in the direction of 𝐤{\bf k}, etc., and

wnp=1kFϵ′′(k)ϵ(k)|k=kF\displaystyle w_{\text{np}}=1-\frac{k_{F}\epsilon^{\prime\prime}(k)}{\epsilon^{\prime}(k)}\Big{|}_{k=k_{F}} (34)

is the nonparabolicity coefficient Sharma et al. (2021). A Galilean-invariant system has a parabolic spectrum , in which case wnp=0w_{\mathrm{np}}=0. For a nonparabolic spectrum wnp0w_{\mathrm{np}}\neq 0; for example, wnp=1w_{\mathrm{np}}=1 for the Dirac spectrum.

Near quantum criticality, momentum transfers are small: qqBkFq\lesssim q_{\text{B}}\ll k_{\mathrm{F}}. Therefore, we can neglect the last term, proportional to 𝐪{\bf q}, in Eq. (33), and also replace F(𝐤𝐪/2)F(𝐤)F({\bf k}-{{\bf q}}/{2})\approx F({\bf k}) and F(𝐩+𝐪/2)F(𝐩)F({\bf p}+{{\bf q}}/{2})\approx F({\bf p}) in Eq. (III). Next, we express the dispersions entering Eq. (33) via ω\omega and Ω\Omega, using the constraints imposed by the delta functions in Eq. (III). This yields

(Δ\varv)2=wnp2kF2[Ω2+(Ω+ω)22Ω(Ω+ω)cosϕ𝐤𝐩].\displaystyle\left(\Delta\bm{\varv}\right)^{2}=\frac{w^{2}_{\text{np}}}{k_{\mathrm{F}}^{2}}\left[\Omega^{2}+(\Omega+\omega)^{2}-2\Omega(\Omega+\omega)\cos\phi_{{\bf k}{\bf p}}\right].
(35)

It is to be expected (and will be shown below to be the case) that typical values of |Ω||\Omega| are on the order of max{|ω|,T}\max\{|\omega|,T\}. Then (Δ\varv)2wnp2max{ω2,T2}/kF2(\Delta\bm{\varv})^{2}\sim w^{2}_{\text{np}}\max\{\omega^{2},T^{2}\}/k_{\mathrm{F}}^{2}, which implies that the conductivity is suppressed compared to its canonical FL value, Eq. (1). To obtain the leading term in the conductivity, it suffices to neglect Ω\Omega and ω\omega in the delta functions in Eq. (III). For small qq, these delta functions are then reduced to the geometric constraints cosϕ𝐤𝐪=0\cos\phi_{{\bf k}{\bf q}}=0 and cosϕ𝐩𝐪=0\cos\phi_{{\bf p}{\bf q}}=0, which implies that 𝐤{\bf k} and 𝐩{\bf p} are either parallel or anti-parallel to each other, i.e., that cosϕ𝐤𝐩=±1\cos\phi_{{\bf k}{\bf p}}=\pm 1. Recalling the fourfold symmetry of the interaction, we find that the contributions from cosϕ𝐤𝐩=±1\cos\phi_{{\bf k}{\bf p}}=\pm 1 in Eq. (35) cancel each other, while the integral of the form factors over ϕ𝐪\phi_{\bf q} gives a constant

a=02πdϕ𝐪2πF4(𝐪).\displaystyle a=\int^{2\pi}_{0}\frac{d\phi_{\bf q}}{2\pi}F^{4}({\bf q}). (36)

Next, the triple integral over ε𝐤\varepsilon_{\bf k}, ε𝐩\varepsilon_{\bf p}, and Ω\Omega is solved as Sharma et al. (2021)

+𝑑ε𝐤𝑑ε𝐩𝑑Ω[(Ω+ω)2+Ω2]\displaystyle\iiint\limits^{+\infty}_{-\infty}d\varepsilon_{\bf k}d\varepsilon_{\bf p}d\Omega\left[(\Omega+\omega)^{2}+\Omega^{2}\right]
×nF(ε𝐤)nF(ε𝐩)[1nF(ε𝐤+Ω)][1nF(ε𝐩Ω+ω)]\displaystyle\times n_{\mathrm{F}}(\varepsilon_{\bf k})n_{\mathrm{F}}(\varepsilon_{\bf p})\left[1-n_{\mathrm{F}}(\varepsilon_{\bf k}+\Omega)\right]\left[1-n_{\mathrm{F}}(\varepsilon_{\bf p}-\Omega+\omega)\right]
=ω530(1eω/T)(1+4πT2ω2)(3+8π2T2ω2).\displaystyle=\frac{\omega^{5}}{30(1-e^{-\omega/T})}\left(1+\frac{4\pi T^{2}}{\omega^{2}}\right)\left(3+\frac{8\pi^{2}T^{2}}{\omega^{2}}\right). (37)

Note that typical values of the variables in this integral are |ε𝐤||ε𝐩||Ω|max{|ω|,T}|\varepsilon_{\bf k}|\sim|\varepsilon_{\bf p}|\sim|\Omega|\sim\max\{|\omega|,T\}, which proves our earlier assertion. Finally, we notice that the integral over qq diverges logarithmically at the lower limit because each of the delta functions in Eq. (III) brings in a factor of 1/q1/q. To regularize the divergence, one needs to return to the dynamic form of the interaction and ask how large qq should be for the Landau-damping term to be neglected. The answer is that qqB|ω|/ωFLq\gg q_{\text{B}}|\omega|/\omega_{\text{FL}}, where ωFL\omega_{\text{FL}} is the upper boundary of the FL region Pimenov et al. (2022) 333We thank A. Chubukov for clarifying the cutoff procedure for us and for bringing Ref. Pimenov et al. (2022) to our attention., given by Eq. (13). Therefore,

qB|ω|/ωFLdqqV2(q)1qB4lnωFL|ω|.\displaystyle\int^{\infty}_{q_{\text{B}}|\omega|/\omega_{\text{FL}}}\frac{dq}{q}V^{2}(q)\approx\frac{1}{q_{\text{B}}^{4}}\ln\frac{\omega_{\text{FL}}}{|\omega|}. (38)

Collecting everything together, we arrive at

σ1(ω,T)\displaystyle\sigma^{\prime}_{1}(\omega,T) =\displaystyle= e260π2awnp2g2NF2qB4(ω\varvFkF)2(1+4π2T2ω2)\displaystyle\frac{e^{2}}{60\pi^{2}}aw^{2}_{\text{np}}\frac{g^{2}N^{2}_{\mathrm{F}}}{q_{\text{B}}^{4}}\left(\frac{\omega}{\varv_{\mathrm{F}}k_{\mathrm{F}}}\right)^{2}\left(1+\frac{4\pi^{2}T^{2}}{\omega^{2}}\right) (39)
×(3+8π2T2ω2)ln(ωFLmax{ω,T}),\displaystyle\times\left(3+\frac{8\pi^{2}T^{2}}{\omega^{2}}\right)\ln\left(\frac{\omega_{\text{FL}}}{\max\{\omega,T\}}\right),

which is the scaling form advertised in Eq. (4).

We now turn to σ2(ω,T)\sigma^{\prime}_{2}(\omega,T) in Eq. (30a). The integrand of σ2(ω,T)\sigma^{\prime}_{2}(\omega,T) can be projected right onto the FS without further expansions. The rest of the calculation is the same as for σ1(ω,T)\sigma^{\prime}_{1}(\omega,T), except for the energy integral, which yields

+𝑑ε𝐤𝑑ε𝐩𝑑Ω[1nF(ε𝐤+Ω)][1nF(ε𝐩Ω+ω)]\displaystyle\iiint\limits^{+\infty}_{-\infty}d\varepsilon_{\bf k}d\varepsilon_{\bf p}d\Omega\,\left[1-n_{\mathrm{F}}(\varepsilon_{\bf k}+\Omega)\right]\left[1-n_{\mathrm{F}}(\varepsilon_{\bf p}-\Omega+\omega)\right]
×nF(ε𝐤)nF(ε𝐩)=ω36(1eω/T)(1+4π2T2ω2).\displaystyle\times n_{\mathrm{F}}(\varepsilon_{\bf k})n_{\mathrm{F}}(\varepsilon_{\bf p})=\frac{\omega^{3}}{6(1-e^{-\omega/T})}\left(1+\frac{4\pi^{2}T^{2}}{\omega^{2}}\right). (40)

A straightforward calculation then leads to

σ2(ω,T)=e224π2g2NF2qB4wnem2(ω\varvFkF)2(1+4π2T2ω2)\displaystyle\sigma^{\prime}_{2}(\omega,T)=\frac{e^{2}}{24\pi^{2}}\frac{g^{2}N^{2}_{\mathrm{F}}}{q_{\text{B}}^{4}}w_{\text{nem}}^{2}\left(\frac{\omega}{\varv_{\mathrm{F}}k_{\mathrm{F}}}\right)^{2}\left(1+\frac{4\pi^{2}T^{2}}{\omega^{2}}\right)
×ln(ωFLmax{ω,T}),\displaystyle\times\ln\left(\frac{\omega_{\text{FL}}}{\max\{\omega,T\}}\right), (41)

where

wnem2=02πdϕ𝐪2π(F2(𝐪)ϕ𝐪)2\displaystyle w^{2}_{\text{nem}}=\int^{2\pi}_{0}\frac{d\phi_{\bf q}}{2\pi}\left(\frac{\partial F^{2}({\bf q})}{\partial\phi_{\bf q}}\right)^{2} (42)

is the nematicity coefficient.

Finally, we come to the σ12(ω,T)\sigma^{\prime}_{12}(\omega,T) contribution to the conductivity, Eq. (30b). By power counting, it is of the same order as σ1\sigma^{\prime}_{1} and σ2\sigma^{\prime}_{2} because Δ\varvΔε\Delta\varv\Delta\varepsilon scales as ω2\omega^{2} [cf. Eq. (26)]. However σ12(ω,T)\sigma^{\prime}_{12}(\omega,T) vanishes within the approximation of this section. The reason is that, once the last term in Eq. (33) is neglected, Δ\varv\Delta\bm{\varv} becomes a sum of two radial vectors, directed along 𝐤^\hat{\bf k} and 𝐩^\hat{\bf p}, respectively. As we already know, the leading contribution to the integral comes from almost collinear momenta 𝐤{\bf k} and 𝐩{\bf p}. Therefore, Δ\varv\Delta\bm{\varv} is also a radial vector, collinear with 𝐤{\bf k} (or 𝐩{\bf p}). Now, in Eq. (30b) Δ\varv\Delta\bm{\varv} is dotted into 𝐰(𝐤+𝐩)U2(𝐤,𝐩,𝐪){\bf w}\equiv(\bm{\nabla}_{\bf k}+\bm{\nabla}_{\bf p})U^{2}({\bf k},{\bf p},{\bf q}), which is a vector sum of two tangential vectors, proportional to ϕ^𝐤\hat{\phi}_{\bf k} and ϕ^𝐩\hat{\phi}_{\bf p}, respectively. Again, due to collinearity of 𝐤{\bf k} and 𝐩{\bf p}, vector 𝐰{\bf w} is perpendicular to both. Thus Δ\varv𝐰=0\Delta\bm{\varv}\cdot{\bf w}=0, and the leading term in σ12(ω,T)\sigma^{\prime}_{12}(\omega,T) vanishes.

Therefore, the final result for the conductivity is the sum of Eqs. (39) and (41):

σ(ω,T)=e212π2g2NF2qB4(ω\varvFkF)2(1+4π2T2ω2)\displaystyle\sigma^{\prime}(\omega,T)=\frac{e^{2}}{12\pi^{2}}\frac{g^{2}N^{2}_{\mathrm{F}}}{q_{\text{B}}^{4}}\left(\frac{\omega}{\varv_{\mathrm{F}}k_{\mathrm{F}}}\right)^{2}\left(1+\frac{4\pi^{2}T^{2}}{\omega^{2}}\right)
×[awnp25(3+8π2T2ω2)+wnem22]ln(ωFLmax{|ω|,T}).\displaystyle\times\left[\frac{aw^{2}_{\mathrm{np}}}{5}\left(3+\frac{8\pi^{2}T^{2}}{\omega^{2}}\right)+\frac{w_{\mathrm{nem}}^{2}}{2}\right]\ln\left(\frac{\omega_{\text{FL}}}{\max\{|\omega|,T\}}\right). (43)

The nonparabolic and nematic contributions to the conductivity are of the same order for ωT\omega\gtrsim T, while the nonparabolic contribution is the dominant one for ωT\omega\ll T. Schematically,

σ(ω,T)qB4ω2max{lnωFL|ω|,T4ω4lnωFLT}.\displaystyle\sigma^{\prime}(\omega,T)\propto q_{\text{B}}^{-4}\omega^{2}\max\left\{\ln\frac{\omega_{\text{FL}}}{|\omega|},\frac{T^{4}}{\omega^{4}}\ln\frac{\omega_{\text{FL}}}{T}\right\}. (44)

As explained in Sec. II.1, a crossover to the QCP is achieved by replacing qBmax{|ω|1/3,T1/3}q_{\text{B}}\to\max\{|\omega|^{1/3},T^{1/3}\}. At the same time, ωFL\omega_{\text{FL}} is replaced by max{|ω|,T}\max\{|\omega|,T\}, and thus the logarithmic factors are replaced by constants of order one. As a result, Eq. (44) is replaced by Eq. (6).

Next, we turn our attention to anisotropic FSs.

Refer to caption
Figure 1: (a) Graphic solution of the equation ε𝐤𝐪=ε𝐤\varepsilon_{{\bf k}-{\bf q}}=\varepsilon_{\bf k}. As shown, a convex FS contour has no more than two self-intersection points (black dots). (b) Swap scattering process, in which 𝐤𝐩{\bf k}\to{\bf p}^{\prime} and 𝐩𝐤{\bf p}\to{\bf k}^{\prime}. (c) Cooper scattering process, in which 𝐤+𝐩=0=𝐤+𝐩{\bf k}+{\bf p}=0={\bf k}^{\prime}+{\bf p}^{\prime}. Neither swap nor Cooper channel leads to current relaxation.

IV Convex Fermi surface

We proceed with the optical conductivity for a generic convex FS. As has been shown by many authors (see Sec. I), the leading term in the conductivity, i.e., max{const,T2/ω2}\max\{\text{const},T^{2}/\omega^{2}\} in the FL regime, vanishes in this case. Our goal is to derive the surviving term. Our main interest will be in the σ1(ω,T)\sigma^{\prime}_{1}(\omega,T) contribution [Eq. (28a)], because the general form of the σ2(ω,T)\sigma^{\prime}_{2}(\omega,T) contribution [Eq. (30a)] does not depend on the shape of the FS.

We focus on the T=0T=0 case first and begin with a brief review of the arguments for the vanishing of the leading term, as given in Refs. Pal et al. (2012a) and Maslov et al. (2011). To leading order in max{ω,T}\max\{\omega,T\}, we project the integrand in Eq. (III) onto the FS and neglect both frequencies in the delta functions (Ω\Omega and ω\omega). To ensure that the both delta functions are nonzero within the domain of integration, we need to find the solutions of two equations for the initial momenta 𝐤{\bf k} and 𝐩{\bf p} at fixed 𝐪{\bf q}:

ε𝐤𝐪\displaystyle\varepsilon_{{\bf k}-{\bf q}} =\displaystyle= ε𝐤=0,\displaystyle\varepsilon_{\bf k}=0, (45a)
ε𝐩+𝐪\displaystyle\varepsilon_{{\bf p}+{\bf q}} =\displaystyle= ε𝐩=0.\displaystyle\varepsilon_{\bf p}=0. (45b)

Excluding umklapps, the solutions of Eqs. (45a) and  (45b) are the points of intersection between the original FS contour and its two copied translated by ±𝐪\pm{\bf q}, see Fig. 1(a). Denoting 𝐩¯=𝐩\bar{\bf p}=-{\bf p} and using that ε𝐤=ε𝐤\varepsilon_{-{\bf k}}=\varepsilon_{{\bf k}}, we rewrite Eq (45b) as ε𝐩¯𝐪=ε𝐩¯=0\varepsilon_{\bar{\bf p}-{\bf q}}=\varepsilon_{\bar{\bf p}}=0, upon which it becomes identical to Eq. (45b). For a convex FS, the first equation has (at most) two solutions, see Fig. 1(a). If we denote one of the solutions by 𝐤0{\bf k}_{0}, then the second one is 𝐤0+𝐪-{\bf k}_{0}+{\bf q}. Indeed, ε𝐤0+𝐪𝐪=ε𝐤0+𝐪ε𝐤0=ε𝐤0𝐪\varepsilon_{-{\bf k}_{0}+{\bf q}-{\bf q}}=\varepsilon_{-{\bf k}_{0}+{\bf q}}\to\varepsilon_{{\bf k}_{0}}=\varepsilon_{{\bf k}_{0}-{\bf q}}. However, the equation for 𝐩¯\bar{\bf p} also has (at most) two solutions: (𝐩¯0,𝐩¯0+𝐪)=(𝐩0,𝐩0+𝐪)(\bar{\bf p}_{0},-\bar{\bf p}_{0}+{\bf q})=(-{\bf p}_{0},{\bf p}_{0}+{\bf q}). Because the equations are the same, the solutions must also coincide, which leaves us with two choices: either 𝐩0=𝐤0𝐪{\bf p}_{0}={\bf k}_{0}-{\bf q} or 𝐩0=𝐤0{\bf p}_{0}=-{\bf k}_{0}. The first choice corresponds to a “swap” scattering process, in which two electrons swap their initial momenta: 𝐤0𝐤0𝐪=𝐩0{\bf k}_{0}\to{\bf k}_{0}-{\bf q}={\bf p}_{0}, 𝐩0=𝐤0𝐪𝐩0+𝐪=𝐤0{\bf p}_{0}={\bf k}_{0}-{\bf q}\to{\bf p}_{0}+{\bf q}={\bf k}_{0}, see Fig. 1 (b). The second choice is a Cooper (or head-on) scattering process: 𝐤0𝐤0𝐪{\bf k}_{0}\to{\bf k}_{0}-{\bf q}, 𝐩0=𝐤0𝐤0+𝐪{\bf p}_{0}=-{\bf k}_{0}\to\-{\bf k}_{0}+{\bf q}; see Fig. 1(c). According to Eqs. (28a)-(28c), a scattering process contributes to the conductivity only if Δ\varv=\varv𝐤+\varv𝐩\varv𝐤\varv𝐩0\Delta\bm{\varv}=\bm{\varv}_{{\bf k}^{\prime}}+\bm{\varv}_{{\bf p}^{\prime}}-\bm{\varv}_{{\bf k}}-\bm{\varv}_{\bf p}\neq 0. However, in a swap process \varv𝐤=\varv𝐩\bm{\varv}_{\bf k}^{\prime}=\bm{\varv}_{\bf p} and \varv𝐩=\varv𝐤\bm{\varv}_{\bf p}^{\prime}=\bm{\varv}_{\bf k}, such that Δ\varv=0\Delta\bm{\varv}=0. Likewise, in a Cooper process \varv𝐩=\varv𝐤=\varv𝐤\bm{\varv}_{{\bf p}}=\bm{\varv}_{-{\bf k}}=-\bm{\varv}_{\bf k} and \varv𝐩=\varv𝐤=\varv𝐤\bm{\varv}_{{\bf p}^{\prime}}=\bm{\varv}_{-{\bf k}^{\prime}}=-\bm{\varv}_{{\bf k}^{\prime}}, such that Δ\varv=0\Delta\bm{\varv}=0 again. Therefore, the leading term in the conductivity vanishes.

To obtain a nonzero result, we have to consider small deviations from the previously found solutions for the swap and Cooper channels, i.e.,

𝐤\displaystyle{\bf k} =\displaystyle= 𝐤0+δ𝐤,𝐩=𝐩0+δ𝐩=𝐤0𝐪+δ𝐩,\displaystyle{\bf k}_{0}+\delta{\bf k},\;{\bf p}={\bf p}_{0}+\delta{\bf p}={\bf k}_{0}-{\bf q}+\delta{\bf p}, (46a)
𝐤\displaystyle{\bf k} =\displaystyle= 𝐤0+δ𝐤,𝐩=𝐩0+δ𝐩=𝐤0+δ𝐩.\displaystyle{\bf k}_{0}+\delta{\bf k},\;{\bf p}={\bf p}_{0}+\delta{\bf p}=-{\bf k}_{0}+\delta{\bf p}. (46b)

Expanding Δ\varv\Delta\bm{\varv} to first order in δ𝐤\delta{\bf k} and δ𝐩\delta{\bf p} around 𝐤0{\bf k}_{0} and 𝐩0{\bf p}_{0}, we obtain

Δ\varvS\displaystyle\Delta\bm{\varv}_{\text{S}} =\displaystyle= [(δ𝐤δ𝐩)](\varv𝐤0\varv𝐤0𝐪),\displaystyle\left[(\delta{\bf k}-\delta{\bf p})\cdot\bm{\nabla}\right](\bm{\varv}_{{\bf k}_{0}}-\bm{\varv}_{{\bf k}_{0}-{\bf q}}), (47a)
Δ\varvC\displaystyle\Delta\bm{\varv}_{\text{C}} =\displaystyle= [(δ𝐤+δ𝐩)](\varv𝐤0𝐪\varv𝐤0)\displaystyle\left[(\delta{\bf k}+\delta{\bf p})\cdot\bm{\nabla}\right](\bm{\varv}_{{\bf k}_{0}-{\bf q}}-\bm{\varv}_{{\bf k}_{0}}) (47b)

for the swap (S) and Cooper (C) channels, respectively. Without a loss of generality, we choose ω>0\omega>0. With this choice and at T=0T=0, the σ1(ω,0)\sigma^{\prime}_{1}(\omega,0) contribution to the conductivity is reduced to

σ1(ω,0)\displaystyle\sigma^{\prime}_{1}(\omega,0) =\displaystyle= πe2g2(2π)6ω3d2qd2δkd2δpω0𝑑ΩF2(𝐤+𝐪2)F2(𝐩𝐪2)V2(𝐪)(Δ\varv)2\displaystyle\frac{\pi e^{2}g^{2}}{(2\pi)^{6}\omega^{3}}\int d^{2}q\int d^{2}\delta k\int d^{2}\delta p\int^{0}_{-\omega}d\Omega\,F^{2}\left({\bf k}+\frac{{\bf q}}{2}\right)F^{2}\left({\bf p}-\frac{{\bf q}}{2}\right)V^{2}({\bf q})(\Delta\bm{\varv})^{2} (48)
×θ(ε𝐤)θ(ε𝐤Ω)θ(ε𝐩)θ(ε𝐩+Ω+ω)δ(Ωε𝐤𝐪+ε𝐤)δ(Ω+ω+ε𝐩+𝐪ε𝐩).\displaystyle\times\theta(\varepsilon_{\bf k})\theta(-\varepsilon_{\bf k}-\Omega)\theta(\varepsilon_{\bf p})\theta(-\varepsilon_{\bf p}+\Omega+\omega)\delta(\Omega-\varepsilon_{{\bf k}-{\bf q}}+\varepsilon_{{\bf k}})\delta(\Omega+\omega+\varepsilon_{{\bf p}+{\bf q}}-\varepsilon_{{\bf p}}).

For any given 𝐪{\bf q}, we need to find solutions 𝐤0{\bf k}_{0} and 𝐩0{\bf p}_{0} of Eq. (45a) and (45b), integrate over δ𝐤\delta{\bf k} and δ𝐩\delta{\bf p} near these solutions, and then integrate over 𝐪{\bf q}.

We start with the swap channel, in which 𝐩0=𝐤0𝐪{\bf p}_{0}={\bf k}_{0}-{\bf q}. We expand the integrand of Eq. (48) in δ𝐤\delta{\bf k} and δ𝐩\delta{\bf p} and also use the condition qkFq\ll\langle k_{\mathrm{F}}\rangle, where kF\langle k_{\mathrm{F}}\rangle is a characteristic size of the FS. Then

σ1(ω,0)\displaystyle\sigma^{\prime}_{1}(\omega,0) =\displaystyle= πe2g2(2π)6ω3d2qF4(𝐤0)V2(𝐪)d2δkd2δpω0𝑑Ω(Δ\varvS)2\displaystyle\frac{\pi e^{2}g^{2}}{(2\pi)^{6}\omega^{3}}\int d^{2}qF^{4}({\bf k}_{0})V^{2}({\bf q})\int d^{2}\delta k\int d^{2}\delta p\int^{0}_{-\omega}d\Omega\,(\Delta\bm{\varv}_{\text{S}})^{2} (49)
×θ(\varv𝐤0δ𝐤)θ(\varv𝐤0δ𝐤Ω)θ(\varv𝐤0𝐪δ𝐩)θ(\varv𝐤0𝐪δ𝐩+Ω+ω)δ(δ𝐤𝐮Ω)δ(δ𝐩𝐮Ωω),\displaystyle\times\theta(\bm{\varv}_{{\bf k}_{0}}\cdot\delta{\bf k})\theta(-\bm{\varv}_{{\bf k}_{0}}\cdot\delta{\bf k}-\Omega)\theta(\bm{\varv}_{{\bf k}_{0}-{\bf q}}\cdot\delta{\bf p})\theta(-\bm{\varv}_{{\bf k}_{0}-{\bf q}}\cdot\delta{\bf p}+\Omega+\omega)\delta(\delta{\bf k}\cdot{\bf u}-\Omega)\delta(\delta{\bf p}\cdot{\bf u}-\Omega-\omega),

where Δ\varvS\Delta\bm{\varv}_{\mathrm{S}} is given by Eq. (47a) and

𝐮=\varv𝐤0𝐪\varv𝐤0(𝐪)\varv𝐤0.\displaystyle{\bf u}=\bm{\varv}_{{\bf k}_{0}-{\bf q}}-\bm{\varv}_{{\bf k}_{0}}\approx-\left({\bf q}\cdot\bm{\nabla}\right)\bm{\varv}_{{\bf k}_{0}}. (50)

The delta functions in Eq. (49) imply that the 2D integrals over δ𝐤\delta{\bf k} and δ𝐩\delta{\bf p} are, in fact, one-dimensional integrals along the straight lines:

δ𝐤𝐮=Ω,\displaystyle\delta{\bf k}\cdot{\bf u}=\Omega, (51a)
δ𝐩𝐮=Ω+ω.\displaystyle\delta{\bf p}\cdot{\bf u}=\Omega+\omega. (51b)

It is convenient to choose δkx\delta k_{x} and δpx\delta p_{x} as independent integration variables and exclude δky\delta k_{y} and δpy\delta p_{y} via

δky\displaystyle\delta k_{y} =\displaystyle= Ωuyδkxuxuy,\displaystyle\frac{\Omega}{u_{y}}-\delta k_{x}\frac{u_{x}}{u_{y}}, (52a)
δpy\displaystyle\delta p_{y} =\displaystyle= Ω+ωuyδpxuxuy.\displaystyle\frac{\Omega+\omega}{u_{y}}-\delta p_{x}\frac{u_{x}}{u_{y}}. (52b)

The Pauli principle (imposed by the theta functions) and energy conservation (imposed by the delta-functions), confine δkx\delta k_{x} and δpx\delta p_{x} to the following intervals:

kmin\displaystyle k_{\min}\leq δkx\displaystyle\delta k_{x} kmax,\displaystyle\leq k_{\max}, (53a)
pmin\displaystyle p_{\min}\leq δpx\displaystyle\delta p_{x} pmax,\displaystyle\leq p_{\max}, (53b)

where

kmin=θ(νuy)\varv𝐤0𝐪,yνΩ+θ(νuy)\varv𝐤0,yνΩ,\displaystyle k_{\min}=\theta\left(\frac{\nu}{u_{y}}\right)\frac{\varv_{{\bf k}_{0}-{\bf q},y}}{\nu}\Omega+\theta\left(-\frac{\nu}{u_{y}}\right)\frac{\varv_{{\bf k}_{0},y}}{\nu}\Omega, (54a)
kmax=θ(νuy)\varv𝐤0,yνΩ+θ(νuy)\varv𝐤0𝐪,yνΩ,\displaystyle k_{\max}=\theta\left(\frac{\nu}{u_{y}}\right)\frac{\varv_{{\bf k}_{0},y}}{\nu}\Omega+\theta\left(-\frac{\nu}{u_{y}}\right)\frac{\varv_{{\bf k}_{0}-{\bf q},y}}{\nu}\Omega, (54b)
pmin=θ(νuy)\varv𝐤0,yν(Ω+ω)+θ(νuy)\varv𝐤0𝐪,yν(Ω+ω),\displaystyle p_{\min}=\theta\left(\frac{\nu}{u_{y}}\right)\frac{\varv_{{\bf k}_{0},y}}{\nu}(\Omega+\omega)+\theta\left(-\frac{\nu}{u_{y}}\right)\frac{\varv_{{\bf k}_{0}-{\bf q},y}}{\nu}(\Omega+\omega), (54c)
pmax=θ(νuy)\varv𝐤0𝐪,yν(Ω+ω)+θ(νuy)\varv𝐤0,yν(Ω+ω),\displaystyle p_{\max}=\theta\left(\frac{\nu}{u_{y}}\right)\frac{\varv_{{\bf k}_{0}-{\bf q},y}}{\nu}(\Omega+\omega)+\theta\left(-\frac{\nu}{u_{y}}\right)\frac{\varv_{{\bf k}_{0},y}}{\nu}(\Omega+\omega), (54d)

and

ν\displaystyle\nu =\displaystyle= \varv𝐤0𝐪,x\varv𝐤0,y\varv𝐤0𝐪,y\varv𝐤0,x\displaystyle\varv_{{\bf k}_{0}-{\bf q},x}\varv_{{\bf k}_{0},y}-\varv_{{\bf k}_{0}-{\bf q},y}\varv_{{\bf k}_{0},x} (55)
\displaystyle\approx \varv𝐤0,x(𝐪)\varv𝐤0,y\varv𝐤0,y(𝐪)\varv𝐤0,x,\displaystyle\varv_{{\bf k}_{0},x}\left({\bf q}\cdot\bm{\nabla}\right)\varv_{{\bf k}_{0},y}-\varv_{{\bf k}_{0},y}\left({\bf q}\cdot\bm{\nabla}\right)\varv_{{\bf k}_{0},x},

with 𝐮{\bf u} defined by Eq. (50). The last step in Eq. (55) again accounts for the smallness of qq.

Substituting Eqs. (52a) and (52b) into Eq. (47a), we obtain for (Δ\varv)2(\Delta\bm{\varv})^{2} near the swap solution:

(Δ\varvS)2\displaystyle(\Delta\bm{\varv}_{\text{S}})^{2} =\displaystyle= {[δkx(kxuxuyky)+δpy(uyuxkxky)\displaystyle\left\{\left[\delta k_{x}\left(\partial_{k_{x}}-\frac{u_{x}}{u_{y}}\partial_{k_{y}}\right)+\delta p_{y}\left(\frac{u_{y}}{u_{x}}\partial_{k_{x}}-\partial_{k_{y}}\right)\right.\right. (56)
Ω+ωuxkx+Ωuyky]𝐮}2.\displaystyle\left.\left.-\frac{\Omega+\omega}{u_{x}}\partial_{k_{x}}+\frac{\Omega}{u_{y}}\partial_{k_{y}}\right]{\bf u}\right\}^{2}.

With all the constraints having been resolved, Eq. (49) is reduced to

σ1(ω,0)=πe2g2(2π)6ω3d2qF4(𝐤0)V2(𝐪)1uy2\displaystyle\sigma^{\prime}_{1}(\omega,0)=\frac{\pi e^{2}g^{2}}{(2\pi)^{6}\omega^{3}}\int d^{2}qF^{4}({\bf k}_{0})V^{2}({\bf q})\frac{1}{u^{2}_{y}}
×ω0dΩkminkmaxdδkxpminpmaxdδpx(Δ\varvS)2,\displaystyle\times\int^{0}_{-\omega}d\Omega\int^{k_{\max}}_{k_{\min}}d\delta k_{x}\int^{p_{\max}}_{p_{\min}}d\delta p_{x}(\Delta\bm{\varv}_{\text{S}})^{2}, (57)

The power counting of σ1(ω,0)\sigma^{\prime}_{1}(\omega,0) is already obvious at this point. Indeed, the integrals over δkx\delta k_{x} and δpx\delta p_{x} give a factor of ω\omega each. Another factor of ω2\omega^{2} comes from (Δ\varvS)2(\Delta\bm{\varv}_{\text{S}})^{2}. Finally, the integral over Ω\Omega gives one more factor of ω\omega. Therefore, σ1(ω,0)ω3×ω2×ω2×ω=ω2\sigma^{\prime}_{1}(\omega,0)\propto\omega^{-3}\times\omega^{2}\times\omega^{2}\times\omega=\omega^{2}.

To find the dependence of σ1(ω,0)\sigma^{\prime}_{1}(\omega,0) on the bosonic mass (qBq_{\text{B}}), we need to analyze the behavior of the integrand in Eq. (57) at q0q\to 0. For simplicity, let’s assume that ν/uy>0\nu/u_{y}>0. Then kmaxkmin=(v𝐤0,yv𝐤0𝐪,y)Ω/νk_{\max}-k_{\min}=(v_{{\bf k}_{0},y}-v_{{\bf k}_{0}-{\bf q},y})\Omega/\nu. The numerator in the last formula vanishes as qq at q0q\to 0 but, according to Eq. (55), ν\nu also vanishes as qq and, therefore, the range of integration over δkx\delta k_{x} remains finite at q0q\to 0. The same is true for pmaxpminp_{\max}-p_{\min}. Next, (Δ\varv)2(\Delta\bm{\varv})^{2} in Eq. (56) contains only the ratios ui/uju_{i}/u_{j} and kiuj/ul\partial_{k_{i}}u_{j}/u_{l} with i,j,l=x,yi,j,l=x,y. While uiu_{i} by itself vanishes as qq [cf. Eq. (50)], the ratios quoted above remain finite and, therefore, (Δ\varvS)2(\Delta\bm{\varv}_{\text{S}})^{2} remains finite at q0q\to 0. Finally, the factor of 1/uy21/u_{y}^{2} in Eq. (57) diverges as 1/q21/q^{2}, and thus the integral over qq diverges logarithmically at q0q\to 0. This is exactly the same divergence that we encountered in Sec. III. Cutting the divergence off in the same way as before, we arrive at the final result:

σ1(ω,0)qB4ω2lnωFL|ω|.\displaystyle\sigma^{\prime}_{1}(\omega,0)\propto q_{\text{B}}^{-4}\omega^{2}\ln\frac{\omega_{\text{FL}}}{|\omega|}. (58)

The frequency dependence of the conductivity is the same as for an isotropic but non-parabolic spectrum at T=0T=0 [cf. Eq. (44)].

The contribution from the Cooper channel is analyzed along the same lines. It can be readily shown that the limits of integration over δkx\delta k_{x} and δpx\delta p_{x} for this case remain the same as for the swap channel [cf. Eqs. (54c-54d)]. The only change compared to the swap case is in the relative sign of δ𝐤\delta{\bf k} and δ𝐩\delta{\bf p} in Eq. (47b), which is irrelevant for scaling. Therefore, the combined contribution of the swap and Cooper channels is still given by Eq. (58).

The finite-temperature case does not require a special analysis because, in the FL regime, the integrals over the energies and over momenta tangential to the FS factorize. Therefore, the energy integration gives the same result as in Eq. (37).

As we already said, the scaling form of the σ2(ω,0)\sigma^{\prime}_{2}(\omega,0) contribution is insensitive to the shape of the FS, hence Eq. (41) applies to a convex FS as well. Next, the σ12(ω,0)\sigma^{\prime}_{12}(\omega,0) contribution already contains an extra factor of ω\omega [cf. Eq. (30b)], while another factor of ω\omega comes from the expansion of Δ\varv\Delta\bm{\varv} around the swap and Cooper solutions. Therefore, the total conductivity for a convex FS can be written as

σ(ω,T)=\displaystyle\sigma^{\prime}(\omega,T)= e2g2NF2qB4(ω\varvFkF)2(1+4π2T2ω2)\displaystyle e^{2}\frac{g^{2}N^{2}_{\mathrm{F}}}{q_{\text{B}}^{4}}\left(\frac{\omega}{\varv_{\mathrm{F}}k_{\mathrm{F}}}\right)^{2}\left(1+\frac{4\pi^{2}T^{2}}{\omega^{2}}\right)
×[α(3+8π2T2ω2)+β]ln(ωFLmax{|ω|,T}),\displaystyle\times\left[\alpha\left(3+\frac{8\pi^{2}T^{2}}{\omega^{2}}\right)+\beta\right]\ln\left(\frac{\omega_{\text{FL}}}{\max\{|\omega|,T\}}\right), (59)

where α\alpha and β\beta are the dimensionless coefficients which depend on the details of the convex FS. The overall form of the conductivity is the same as for an isotropic FS, cf. Eq. (43).

Extrapolating Eq. (59) to the vicinity of the QCP in the same way as in Sec. III, we arrive again at Eq. (6). At T=0T=0, the conductivity scales as

σ(ω,0)|ω|2/3.\displaystyle\sigma^{\prime}(\omega,0)\propto|\omega|^{2/3}. (60)

This result disagrees with that by Guo et al. Guo et al. (2022), who argued that σ(ω,0)=const\sigma^{\prime}(\omega,0)=\text{const}.

Refer to caption
Figure 2: (a) Isoenergetic contours for a fourfold symmetric energy spectrum in 2D. As an example, we employ the tight-binding model with next-to-nearest neighbor hopping, for which ε(𝐤)=2t(coskx+cosky)+4rtcoskxcosky\varepsilon({\bf k})=-2t(\cos k_{x}+\cos k_{y})+4rt\cos k_{x}\cos k_{y}, and set t=1t=1 and r=0.3r=0.3. The convex-to-convex transitions occur at E=Ec=8r(2r21)E=E_{c}=8r(2r^{2}-1). The solid blue (red) curves are the convex (concave) Fermi surfaces. The dashed black curve corresponds to the critical value of Fermi energy at the convex-to-concave transition. (b) A concave FS contour can have more than two self-intersection points (six in the example shown). (c) Even for a concave FS, the number of self-intersection points can be smaller than the maximum number allowed if 𝐪{\bf q} is pointed away from a special direction. (d) If the magnitude of the shift is sufficiently large, the number of self-intersection points is also less than the maximum number allowed.
Refer to caption
Figure 3: Scattering processes on a concave Fermi surface. (a) An example of Cooper process with Δ\varv=0\Delta\bm{\varv}=0. (b) An example of swap process, also with Δ\varv=0\Delta\bm{\varv}=0. (c) A current-relaxing scattering process with Δ\varv0\Delta\bm{\varv}\neq 0.

V Concave Fermi surface

V.1 Generic concave Fermi surface

A concave FS can have more than two self-intersection points. If the FS has mirror symmetry, the maximum number of such points is six, and it is achieved if the FS is translated along the mirror axis, as illustrated in Fig. 2(b). One such point is the inflection point, two more are located on the same side of the curvilinear polygon, and the other three are located on the opposite side. Therefore, for given 𝐪{\bf q}, Eq. (45a) for the allowed initial momenta 𝐤{\bf k} has up to six solutions. Solutions of Eq. (45b) for the initial momenta 𝐩{\bf p} are obtained by translating the FS by 𝐪-{\bf q}, which yields another up to six solutions, see Fig. 2(c). The two sets of up to six solutions each generate up to 36 pairs of the initial momenta 𝐤{\bf k} and 𝐩{\bf p} at given 𝐪{\bf q}. These pairs contain not only Cooper [Fig. 3(a)] and swap [Fig. 3(b)] channels, but also scattering processes that do relax the current. An example of such process is shown in Fig. 3(c). For any such process Δ\varv0\Delta\bm{\varv}\neq 0, and the conductivity in Eq. (28a)-(28c) remains finite after projecting the integrands onto the FS. Equation (28a) for σ1(ω,T)\sigma^{\prime}_{1}(\omega,T) is then reduced to

σ1(ω,T)=πe2g2(2π)41eω/Tω3𝑑ε𝐤𝑑ε𝐩𝑑ΩnF(ε𝐤+Ω)nF(ε𝐩ωΩ)[1nF(ε𝐤)][1nF(ε𝐩)]\displaystyle\sigma^{\prime}_{1}(\omega,T)=\frac{\pi e^{2}g^{2}}{(2\pi)^{4}}\frac{1-e^{-\omega/T}}{\omega^{3}}\int^{\infty}_{-\infty}d\varepsilon_{\bf k}\int^{\infty}_{-\infty}d\varepsilon_{\bf p}\int^{\infty}_{-\infty}d\Omega\,n_{\mathrm{F}}(\varepsilon_{{\bf k}}+\Omega)n_{\mathrm{F}}(\varepsilon_{\bf p}-\omega-\Omega)\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf k}})\right]\left[1-n_{\mathrm{F}}(\varepsilon_{\bf p})\right]
×d2q(2π)2d𝐤\varv𝐤d𝐩\varv𝐩(Δ\varv)2U2(𝐤,𝐩,𝐪)δ(ε𝐤ε𝐤𝐪+Ω)δ(ε𝐩+𝐪ε𝐩+ω+Ω)|FS,\displaystyle\times\int\frac{d^{2}q}{(2\pi)^{2}}\oint\frac{d\ell_{\bf k}}{\varv_{{\bf k}}}\oint\frac{d\ell_{\bf p}}{\varv_{{\bf p}}}\left(\Delta\bm{\varv}\right)^{2}U^{2}({\bf k},{\bf p},{\bf q})\delta\left(\varepsilon_{{\bf k}}-\varepsilon_{{\bf k}-{\bf q}}+\Omega\right)\delta\left(\varepsilon_{{\bf p}+{\bf q}}-\varepsilon_{{\bf p}}+\omega+\Omega\right)\Big{|}_{\mathrm{FS}}, (61)

where d𝐤d\ell_{\bf k} is the line element of the FS contour, and it is understood that the fermionic momenta in the second line belong to the FS. As before, one can neglect the frequencies inside the delta-functions. In contrast to the convex case of Sec. IV, Δ\varv\Delta\bm{\varv} does not contain additional dependence on the frequencies Ω\Omega and ω\omega but, instead, it vanishes at q0q\to 0 as q2q^{2}. Therefore, the integral over qq is convergent at the lower limit (as opposed to being logarithmically divergent in the convex case) and gives 𝑑qqq2/q2(q2+qB2)2qB2\int dqqq^{2}/q^{2}(q^{2}+q_{\text{B}}^{2})^{2}\sim q_{\text{B}}^{-2}. Next, the triple integral over energies in the first line of Eq. (61) is given by Eq. (III). We thus obtain

σ1(ω,T)qB2ω2+4π2T2ω2,\displaystyle\sigma^{\prime}_{1}(\omega,T)\propto q_{\text{B}}^{-2}\frac{\omega^{2}+4\pi^{2}T^{2}}{\omega^{2}}, (62)

which is just the Gurzhi scaling in Eq. (1).

Up to an overall factor, the σ2\sigma_{2}^{\prime} contribution is still given by Eq. (41), which is subleading to Eq. (62) and can be neglected.

The σ12(ω,T)\sigma^{\prime}_{12}(\omega,T) contribution requires a bit of care. Rewriting Eq. (30b) in the same way as Eq. (61), we obtain

σ12(ω,T)\displaystyle\sigma^{\prime}_{12}(\omega,T) =\displaystyle= e2g24π31eω/Tω2d2q(2π)2V2(𝐪)+𝑑ε𝐤+𝑑ε𝐩+𝑑Ωd𝐤\varv𝐤d𝐩\varv𝐩\displaystyle-\frac{e^{2}g^{2}}{4\pi^{3}}\frac{1-e^{-\omega/T}}{\omega^{2}}\int\frac{d^{2}q}{(2\pi)^{2}}V^{2}({\bf q})\int^{+\infty}_{-\infty}d\varepsilon_{\bf k}\int^{+\infty}_{-\infty}d\varepsilon_{\bf p}\int^{+\infty}_{-\infty}d\Omega\oint\frac{d\ell_{\bf k}}{\varv_{\bf k}}\oint\frac{d\ell_{\bf p}}{\varv_{\bf p}} (63)
×(Δ\varv𝐰)nF(ε𝐤)nF(ε𝐩)[1nF(ε𝐤+Ω)][1nF(ε𝐩Ω+ω)]δ(Ωε𝐤𝐪+ε𝐤)δ(Ωω+ε𝐩+𝐪ε𝐩),\displaystyle\times\left(\Delta\bm{\varv}\cdot{\bf w}\right)n_{\mathrm{F}}(\varepsilon_{{\bf k}})n_{\mathrm{F}}(\varepsilon_{\bf p})\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf k}}+\Omega)\right]\left[1-n_{\mathrm{F}}(\varepsilon_{\bf p}-\Omega+\omega)\right]\delta(\Omega-\varepsilon_{{\bf k}-{\bf q}}+\varepsilon_{{\bf k}})\delta(\Omega-\omega+\varepsilon_{{\bf p}+{\bf q}}-\varepsilon_{{\bf p}}),

where

𝐰=F2(𝐩+𝐪/2)𝐤F2|𝐤𝐪/2+F2(𝐤𝐪/2)𝐩F2|𝐩+𝐪/2.{\bf w}=F^{2}({\bf p}+{\bf q}/2)\bm{\nabla}_{\bf k}F^{2}|_{{\bf k}-{\bf q}/2}+F^{2}({\bf k}-{\bf q}/2)\bm{\nabla}_{\bf p}F^{2}|_{{\bf p}+{\bf q}/2}. (64)

Suppose that we project all the momenta in the last equation onto the FS and set T=0T=0. Then the triple integral over energies gives a factor of ω3\omega^{3} [cf. Eq. (37)], and thus σ12(ω,0)\sigma^{\prime}_{12}(\omega,0) appears to scale as ω\omega. However, this is impossible because σ12(ω,0)\sigma^{\prime}_{12}(\omega,0) must be even in ω\omega. Therefore, the leading, ω\omega term must vanish identically, while the subleading term comes from expanding Δ\varv\Delta\bm{\varv} near the FS, as it was the case for an isotropic FS, cf. Sec. III. This implies that σ12(ω,0)\sigma^{\prime}_{12}(\omega,0) scales at least as ω2\omega^{2} and is thus subleading to σ1(ω,0)\sigma_{1}^{\prime}(\omega,0). An expanded discussion of this point is presented in Appendix C.

As before, a crossover to the QCP is achieved by replacing qBmax{|ω|1/3,T1/3}q_{\text{B}}\to\max\{|\omega|^{1/3},T^{1/3}\} in Eq. (62), which yields

σ(ω,T)max{1|ω|2/3,T4/3ω2}.\displaystyle\sigma^{\prime}(\omega,T)\propto\max\;\left\{\frac{1}{|\omega|^{2/3}},\frac{T^{4/3}}{\omega^{2}}\right\}. (65)

This result restores the naive scaling form in Eq. (5), obtained by substituting the current relaxation rate, 1/τj(ω,T)max{|ω|4/3,T4/3}1/\tau_{\mathrm{j}}(\omega,T)\propto\max\{|\omega|^{4/3},T^{4/3}\}, into the Drude formula σ(ω,T)1/ω2τj(ω,T)\sigma^{\prime}(\omega,T)\propto 1/\omega^{2}\tau_{\mathrm{j}}(\omega,T).

V.2 Optical conductivity near a convex-to-concave transition

Suppose that at a certain critical value of Fermi energy, EF=EcE_{F}=E_{c}, the shape of the FS changes from convex (ΔEFEc<0\Delta\equiv E_{F}-E_{c}<0) to concave (Δ>0\Delta>0), see Fig. 2(b). The results presented in Secs. IV and V.1 are valid either well below or well above the convex-concave transition. Now, we consider the vicinity of the transition.

Even if the FS is concave, the kinematic constraint ε𝐤𝐪=ε𝐤\varepsilon_{{\bf k}-{\bf q}}=\varepsilon_{\bf k} has more than two solutions only if 𝐪{\bf q} is along one of the high-symmetry axes and its magnitude is sufficiently small. If these conditions are not satisfied, then, as shown in Figs. 2 (d) and 2(e), the number of self-intersection points goes back to two and, again, only the Cooper and swap channels are possible. The width of the angular interval near a high-symmetry direction, δϕ𝐪\delta\phi_{\bf q}, and the maximum value of q,qmaxq,\,q_{\mathrm{max}}, depend on Δ\Delta in a critical manner. In what follows, we will determine these parameters for the fourfold symmetric case and analyze the dependence of optical conductivity on ω\omega and Δ\Delta. In doing so, we will follow closely a derivation of the dc resistivity near the convex-to-concave transition in the presence of disorder, presented in Ref. Pal et al. (2012b).

Refer to caption
Figure 4: (a) At the self-intersection points (black dots), the momentum transfer 𝐪{\bf q} is a tangent to the Fermi surface. \varv𝐤\bm{\varv}_{\bf k} is the Fermi velocity at point 𝐤{\bf k} on the Fermi surface (FS). (b) The dependence of ϕ𝐤\phi^{*}_{\bf k} on ϕ𝐤\phi_{\bf k} for various types of the FS. Dashed curve: E<EcE<E_{c}, convex FS; dotted line: at the convex-concave transition; solid curve: E>EcE>E_{c}, concave FS. (c) An enlarged view of the non-monotonic dependence of ϕ𝐤\phi^{*}_{\bf k} on ϕ𝐤\phi_{\bf k}. (d) A portion of the FS contour in local Cartesian coordinates.

Let us first find δϕ𝐪\delta\phi_{\bf q}. For qkFq\ll k_{\mathrm{F}}, the kinematic constraint ε𝐤=ε𝐤𝐪\varepsilon_{\bf k}=\varepsilon_{{\bf k}-{\bf q}} is equivalent to \varv𝐤𝐪=0\bm{\varv}_{\bf k}\cdot{\bf q}=0. Since \varv𝐤\bm{\varv}_{\bf k} is along the normal to the FS at point 𝐤{\bf k}, this condition implies that the normals to the FS at the self-intersection points are perpendicular to 𝐪{\bf q}, see Fig. 4(a). Let ϕ𝐤\phi^{*}_{\bf k} be an azimuthal angle of the normal to the FS at any given point 𝐤{\bf k}. Then the constraint \varv𝐤𝐪=0\bm{\varv}_{\bf k}\cdot{\bf q}=0 can be written as ϕ𝐤=ϕ𝐪+π/2\phi^{*}_{\bf k}=\phi_{\bf q}+\pi/2. (By symmetry it suffices to consider only the interval ϕ𝐤ϕ𝐪{0,π}\phi^{*}_{\bf k}-\phi_{\bf q}\in\{0,\pi\}). Given the relation between ϕ𝐤\phi^{*}_{\bf k} and ϕ𝐪\phi_{\bf q}, one can find the corresponding angular interval δϕ𝐤\delta\phi^{*}_{\bf k} instead of δϕ𝐪\delta\phi_{\bf q}. As one goes around the FS, ϕ𝐤\phi^{*}_{\bf k} varies with ϕ𝐤\phi_{\bf k}. The difference between the convex and concave FSs is in that the dependence of ϕ𝐤\phi^{*}_{\bf k} on ϕ𝐤\phi_{\bf k} is monotonic for the former and non-monotonic for the latter, see Fig. 4(b). The equation ϕ𝐤=ϕ𝐪+π/2\phi^{*}_{\bf k}=\phi_{\bf q}+\pi/2 has multiple roots only for a concave FS. Note that the curves ϕ𝐤(ϕ𝐤)\phi^{*}_{\bf k}(\phi_{\bf k}) below and above the convex-to-concave transition coincide at inflection points. Near any of such points, the function ϕ𝐤(ϕ𝐤)\phi^{*}_{\bf k}(\phi_{\bf k}) is described by a cubic polynomial [see Fig. 4(c)],

ϕ𝐤(ϕ𝐤)=b(ϕ𝐤ϕinf)3cΔ(ϕ𝐤ϕinf),\displaystyle\phi^{*}_{\bf k}(\phi_{\bf k})=b(\phi_{\bf k}-\phi_{\mathrm{inf}})^{3}-c\Delta(\phi_{\bf k}-\phi_{\mathrm{inf}}), (66)

where ϕinf\phi_{\mathrm{inf}} is the azimuthal coordinate of the inflection point, while bb and c>0c>0 are constants that are specific for a given FS. The interval δϕ𝐤\delta\phi^{*}_{\bf k} is then equal to the vertical distance between the maximum and minimum of the curve, which gives

δϕ𝐤=4c3/233b1/2Δ3/2Δ3/2.\delta\phi^{*}_{\bf k}=\frac{4c^{3/2}}{3\sqrt{3}b^{1/2}}\Delta^{3/2}\sim\Delta^{3/2}. (67)

Next, we need to find Δ\varv\Delta\bm{\varv}. For small qq, we can write Δ\varv(𝐪)(\varv𝐤1\varv𝐤2)\Delta\bm{\varv}\approx({\bf q}\cdot\bm{\nabla})\left(\bm{\varv}_{{\bf k}_{1}}-\bm{\varv}_{{\bf k}_{2}}\right), where 𝐤2{\bf k}_{2} and 𝐤1{\bf k}_{1} are any two solutions of the kinematic constraint \varv𝐤𝐪=0\bm{\varv}_{\bf k}\cdot{\bf q}=0. In terms of angles ϕ𝐤\phi^{*}_{\bf k} and ϕ𝐤\phi_{\bf k}, we can rewrite (Δ\varv)2q2(ϕ𝐤ϕ𝐤|ϕ𝐤1ϕ𝐤ϕ𝐤|ϕ𝐤2)2(\Delta\bm{\varv})^{2}\approx q^{2}\left(\frac{\partial\phi^{*}_{\bf k}}{\partial\phi_{\bf k}}\Big{|}_{\phi_{{\bf k}_{1}}}-\frac{\partial\phi^{*}_{\bf k}}{\partial\phi_{\bf k}}\Big{|}_{\phi_{{\bf k}_{2}}}\right)^{2}; see Fig. 4(d). For the ϕ𝐤(ϕ𝐤)\phi^{*}_{\bf k}(\phi_{\bf k}) curve in Eq. (66), we immediately find

(Δ\varv)2(qΔ)2.(\Delta\bm{\varv})^{2}\propto(q\Delta)^{2}. (68)

Finally, to find qmaxq_{\mathrm{max}}, we rewrite Eq. (66) in a local Cartesian system with the xx axis along the tangent to the FS at the inflection point, see Fig. 4 (d). As shown in Ref. Pal et al. (2012b), such an equation reads ky=bkx4/12+cΔkx2/2k_{y}=-bk^{4}_{x}/12+c\Delta k^{2}_{x}/2, where kx,yk_{x,y} are measured from the inflection point Pal et al. (2012b). Using this relation to solve ε𝐤=ε𝐤𝐪\varepsilon_{\bf k}=\varepsilon_{{\bf k}-{\bf q}}, we obtain a cubic equation of kxk_{x} which admits three different real roots only if q2cΔ/bq\leq 2\sqrt{c\Delta/b}. We thus arrive at following result:

qmaxΔ1/2.q_{\mathrm{max}}\propto\Delta^{1/2}. (69)

We now come back to the integral over 𝐪{\bf q} in the second line of Eq. (61). Approximating d2q\int d^{2}q by 0qmax𝑑qqδϕ𝐪0qmax𝑑qqδϕ𝐤\int^{q_{\max}}_{0}dqq\delta\phi_{\bf q}\sim\int^{q_{\max}}_{0}dqq\delta\phi^{*}_{\bf k}, using Eqs. (67)–(69), and substituting the interaction from Eq. (12), we obtain for the contribution to the conductivity from current-relaxing channels:

σ~(ω,0)δϕ𝐤Δ20qmaxdqq(q2+qB2)2Δ7/2max{1qB2,qmax2qB4}.\displaystyle\tilde{\sigma}^{\prime}(\omega,0)\propto\delta\phi_{\bf k}^{*}\Delta^{2}\int^{q_{\mathrm{max}}}_{0}\frac{dqq}{(q^{2}+q_{\text{B}}^{2})^{2}}\propto\Delta^{7/2}\max\left\{\frac{1}{q_{\text{B}}^{2}},\frac{q^{2}_{\max}}{q_{\text{B}}^{4}}\right\}. (70)

Adding up the contributions from the Cooper and swap channels, we obtain the conductivity in the FL regime,

σ(ω,0)e2g2[(ΔEF)7/2max{kF2qB2,mΔkF2qB4}Θ(Δ)+kF4qB4(ωEF)2lnωFL|ω|],\displaystyle\sigma^{\prime}(\omega,0)\sim e^{2}g^{2}\left[\left(\frac{\Delta}{E_{\text{F}}}\right)^{7/2}\max\left\{\frac{k_{\mathrm{F}}^{2}}{q_{\text{B}}^{2}},\frac{m\Delta k_{\mathrm{F}}^{2}}{q_{\text{B}}^{4}}\right\}\Theta(\Delta)+\frac{k_{\mathrm{F}}^{4}}{q_{\text{B}}^{4}}\left(\frac{\omega}{E_{\text{F}}}\right)^{2}\ln\frac{\omega_{\text{FL}}}{|\omega|}\right], (71)

where Θ(x)\Theta(x) is the Heaviside function. The first term in the equation above is Gurzhi-like [cf. Eq. (1)], while the second one is the same as for a convex FS.

Near the QCP, the first option for the Gurzhi-like term in Eq. (71), Δ7/2/qB2\propto\Delta^{7/2}/q_{\text{B}}^{2}, becomes Δ7/2/|ω|2/3\Delta^{7/2}/|\omega|^{2/3}. The second option, Δ9/2/qB4\propto\Delta^{9/2}/q_{\text{B}}^{4}, formally becomes Δ9/2/|ω|4/3\Delta^{9/2}/|\omega|^{4/3} but it occurs only in the regime where it is already subleading to the last term, and thus can be neglected. Finally, the optical conductivity near a convex-to-concave transition acquires the following scaling form:

σ(ω,0)Θ(Δ)Δ7/2|ω|2/3+|ω|2/3.\displaystyle\sigma^{\prime}(\omega,0)\propto\Theta(\Delta)\frac{\Delta^{7/2}}{|\omega|^{2/3}}+|\omega|^{2/3}. (72)

Note that the conductivity has a minimum at ω=ωminΔ21/8\omega=\omega_{\min}\propto\Delta^{21/8}.

VI Summary

In this paper, we presented detailed calculations for the optical conductivity of a 2D metal near the Ising-nematic QCP. The focus of our attention was on the effect of the FS geometry that constrains the kinematics of possible scattering processes and thus ultimately determines the frequency dependence of the optical response. We identified the swap and Cooper channels for the case of a convex FS, which do not relax current, and extra channels for the case of a concave FS, which do. On a technical level, we used the modified Kubo formula, which expresses the conductivity via the correlation function of the time derivatives of the current rather than that of the current itself Rosch and Howell (2005); Rosch (2006); Sharma et al. (2021). This method gives certain advantages as compared to a direct diagrammatic computation, namely it (i) bypasses the need to consider the dynamical interaction and (ii) automatically accounts for all current-relaxing processes. This obviates the need for the usual bookkeeping of various diagrams that tend to partially cancel each other for a generic non-Galilean–invariant FL.

First, we considered an electron system with a nonparabolic but isotropic dispersion relation. Our main result is given by Eq. (43), which generalizes prior related calculations Sharma et al. (2021); Goyal et al. (2023) by going beyond the model of a purely density-density interaction. Extrapolating Eq. (43) to the quantum-critical regime of an Ising-nematic phase transition, we find the frequency scaling of the optical conductivity as given by Eq. (6).

Next, we showed explicitly that Eqs. (43) and (6) also hold for a generic convex FS. In doing so, we confirmed the vanishing of the leading term in the conductivity Maslov and Chubukov (2017); Guo et al. (2022); Shi et al. (2022). However, we disagree with the conclusion of Ref. Guo et al. (2022) that the remaining term is independent of the frequency.

Finally, we showed that the naive scaling form of the conductivity, σ(ω)1/|ω|2/3\sigma^{\prime}(\omega)\propto 1/|\omega|^{2/3}, is restored for a concave FS. In this respect, our results disagree with those of Ref. Shi et al. (2022), in which the conductivity was found to contain only the δ(ω)\delta(\omega) term, regardless of the shape of the FS. We also derived the frequency dependence of conductivity at the onset of a convex-to-concave transition, see Eq. (71).

Note added in proof: In a recent preprint arXiv:2311.03458 [cond-mat.str-el], H. Guo showed that the result of Ref. Guo et al. (2022) σ=\sigma^{\prime}=const for a convex Fermi surface is not valid.

Acknowledgements.
We thank A. Chubukov, L. Delacretaz, D. Else, I. Esterlis, Ya. Gindikin, H. Guo, I. Mandal, A. Patel, and S. Sachdev for fruitful discussions. This paper was supported by the National Science Foundation via Grants No. DMR-2203411 (S.L. and A.L.), No. DMR-2224000 (D.L.M.), and DMR-2011401 for MRSEC (P. S.). A.L. acknowledges hospitality of the Max Planck Institute for Solid State Research, where this work was performed in part, and a research fellowship funded by the Alexander von Humboldt Foundation. A.L. and D.L.M. acknowledge the hospitality of the Kavli Institute for Theoretical Physics (KITP), Santa Barbara, supported by the National Science Foundation under Grants No. NSF PHY-1748958 and No. PHY-2309135.

Appendix A Commutator algebra

In this appendix, we will make use of the following two identities:

[A,BC]=[A,B]C+B[A,C]\displaystyle[A,BC]=[A,B]C+B[A,C] (73)

and

[A,BC]={A,B}CB{A,C},\displaystyle[A,BC]=\{A,B\}C-B\{A,C\}, (74)

where [x,y][x,y] and {x,y}\{x,y\} denote a commutator and anticommutator, respectively, of xx and yy. To simplify notations, we will suppress spin indices of the fermionic operators, as they are not essential for the commutator algebra.

A.1 Interaction part of the charge current

According to Eq. (14), we need to calculate the following commutator:

[ρ𝐪,Hint]=𝐪V(𝐪)[ρ𝐪,d𝐪d𝐪]\displaystyle\left[\rho_{\bf q},H_{\mathrm{int}}\right]=\sum_{{\bf q}^{\prime}}V({\bf q}^{\prime})\left[\rho_{\bf q},d_{{\bf q}^{\prime}}d_{-{\bf q}^{\prime}}\right] (75)

where d𝐪d_{\bf q} is given by Eq. (10). According to Eq. (73):

[ρ𝐪,d𝐪d𝐪]=[ρ𝐪,d𝐪]d𝐪+d𝐪[ρ𝐪,d𝐪].\displaystyle\left[\rho_{\bf q},d_{{\bf q}^{\prime}}d_{-{\bf q}^{\prime}}\right]=[\rho_{\bf q},d_{{\bf q}^{\prime}}]d_{-{\bf q}^{\prime}}+d_{{\bf q}^{\prime}}[\rho_{\bf q},d_{-{\bf q}^{\prime}}]. (76)

Next, applying Eq. (73) and then Eq. (74), we obtain

[ρ𝐪,d𝐪]/e\displaystyle[\rho_{\bf q},d_{{\bf q}^{\prime}}]/e =\displaystyle= 𝐤,𝐤F(𝐤)[c𝐤+𝐪/2c𝐤𝐪/2,c𝐤+𝐪/2c𝐤𝐪/2]\displaystyle\sum_{{\bf k},{\bf k}^{\prime}}F({\bf k}^{\prime})\left[c^{\dagger}_{{\bf k}+{\bf q}/2}c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2},c^{\dagger}_{{\bf k}^{\prime}+{\bf q}^{\prime}/2}c^{\phantom{\dagger}}_{{\bf k}^{\prime}-{\bf q}^{\prime}/2}\right] (77)
=\displaystyle= 𝐤,𝐤F(𝐤)([c𝐤+𝐪/2,c𝐤+𝐪/2c𝐤𝐪/2]c𝐤𝐪/2+c𝐤+𝐪/2[c𝐤𝐪/2,c𝐤+𝐪/2c𝐤𝐪/2])\displaystyle-\sum_{{\bf k},{\bf k}^{\prime}}F({\bf k}^{\prime})\left(\left[c^{\dagger}_{{\bf k}^{\prime}+{\bf q}^{\prime}/2},c^{\dagger}_{{\bf k}+{\bf q}/2}c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2}\right]c^{\phantom{\dagger}}_{{\bf k}^{\prime}-{\bf q}^{\prime}/2}+c^{\dagger}_{{\bf k}^{\prime}+{\bf q}^{\prime}/2}\left[c^{\phantom{\dagger}}_{{\bf k}^{\prime}-{\bf q}^{\prime}/2},c^{\dagger}_{{\bf k}+{\bf q}/2}c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2}\right]\right)
=\displaystyle= 𝐤,𝐤F(𝐤)(({c𝐤+𝐪/2,c𝐤+𝐪/2}c𝐤𝐪/2c𝐤+𝐪/2{c𝐤+𝐪/2,c𝐤𝐪/2})c𝐤𝐪/2\displaystyle-\sum_{{\bf k},{\bf k}^{\prime}}F({\bf k}^{\prime})\left(\left(\left\{c^{\dagger}_{{\bf k}^{\prime}+{\bf q}^{\prime}/2},c^{\dagger}_{{\bf k}+{\bf q}/2}\right\}c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2}-c^{\dagger}_{{\bf k}+{\bf q}/2}\left\{c^{\dagger}_{{\bf k}^{\prime}+{\bf q}^{\prime}/2},c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2}\right\}\right)c^{\phantom{\dagger}}_{{\bf k}^{\prime}-{\bf q}^{\prime}/2}\right.
c𝐤+𝐪/2({c𝐤+𝐪/2,c𝐤+𝐪/2}c𝐤𝐪/2c𝐤+𝐪/2{c𝐤𝐪/2,c𝐤𝐪/2}))\displaystyle\left.-c^{\dagger}_{{\bf k}^{\prime}+{\bf q}^{\prime}/2}\left(\left\{c^{\phantom{\dagger}}_{{\bf k}^{\prime}+{\bf q}/2},c^{\dagger}_{{\bf k}+{\bf q}/2}\right\}c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2}-c^{\dagger}_{{\bf k}+{\bf q}/2}\left\{c^{\phantom{\dagger}}_{{\bf k}^{\prime}-{\bf q}^{\prime}/2},c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2}\right\}\right)\right)
=\displaystyle= 𝐤F(𝐤𝐪/2𝐪/2)c𝐤+𝐪/2c𝐤𝐪/2𝐪F(𝐤+𝐪/2+𝐪/2)c𝐤+𝐪/2+𝐪c𝐤𝐪/2\displaystyle\sum_{{\bf k}}F({\bf k}-{\bf q}/2-{\bf q}^{\prime}/2)c^{\dagger}_{{\bf k}+{\bf q}/2}c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2-{\bf q}^{\prime}}-F({\bf k}+{\bf q}/2+{\bf q}^{\prime}/2)c^{\dagger}_{{\bf k}+{\bf q}/2+{\bf q}^{\prime}}c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2}
=\displaystyle= 𝐤(F(𝐤𝐪/2+𝐪/2)F(𝐤+𝐪/2+𝐪/2))c𝐤+𝐪/2+𝐪c𝐤𝐪/2,\displaystyle\sum_{{\bf k}}\left(F({\bf k}-{\bf q}/2+{\bf q}^{\prime}/2)-F({\bf k}+{\bf q}/2+{\bf q}^{\prime}/2)\right)c^{\dagger}_{{\bf k}+{\bf q}/2+{\bf q}^{\prime}}c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2},

where we relabeled 𝐤𝐪𝐤{\bf k}-{\bf q}^{\prime}\to{\bf k} at the last step. For small 𝐪{\bf q}:

[ρ𝐪,d𝐪]/e=𝐤𝐪𝐤F(𝐤+𝐪/2)c𝐤+𝐪/2+𝐪c𝐤𝐪/2.\displaystyle[\rho_{\bf q},d_{{\bf q}^{\prime}}]/e=-\sum_{\bf k}{\bf q}\cdot\bm{\nabla}_{\bf k}F({\bf k}+{\bf q}^{\prime}/2)c^{\dagger}_{{\bf k}+{\bf q}/2+{\bf q}^{\prime}}c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2}. (78)

Likewise,

[ρ𝐪,d𝐪]=𝐤𝐪𝐤F(𝐤𝐪/2)c𝐤+𝐪/2𝐪c𝐤𝐪/2.\displaystyle[\rho_{\bf q},d_{-{\bf q}^{\prime}}]=-\sum_{\bf k}{\bf q}\cdot\bm{\nabla}_{\bf k}F({\bf k}-{\bf q}^{\prime}/2)c^{\dagger}_{{\bf k}+{\bf q}/2-{\bf q}^{\prime}}c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2}. (79)

The corresponding current operator is read from Eq. (14) as

𝐣int(𝐪)=e𝐤,𝐩,𝐪(𝐤F(𝐤+𝐪/2)F(𝐩)c𝐤+𝐪/2+𝐪c𝐩𝐪/2c𝐩+𝐪/2c𝐤𝐪/2+𝐩F(𝐩𝐪/2)F(𝐤)c𝐤+𝐪/2c𝐩+𝐪/2𝐪c𝐩𝐪/2c𝐤𝐪/2).\displaystyle{\bf j}_{\mathrm{int}}({\bf q})=e\sum_{{\bf k},{\bf p},{\bf q}^{\prime}}\left(\bm{\nabla}_{\bf k}F({\bf k}+{\bf q}^{\prime}/2)F({\bf p})c^{\dagger}_{{\bf k}+{\bf q}/2+{\bf q}^{\prime}}c^{\dagger}_{{\bf p}-{\bf q}^{\prime}/2}c^{\phantom{\dagger}}_{{\bf p}+{\bf q}^{\prime}/2}c^{\phantom{\dagger}}_{{\bf k}-{\bf q}/2}+\bm{\nabla}_{\bf p}F({\bf p}-{\bf q}^{\prime}/2)F({\bf k})c^{\dagger}_{{\bf k}+{\bf q}^{\prime}/2}c^{\dagger}_{{\bf p}+{\bf q}/2-{\bf q}^{\prime}}c^{\phantom{\dagger}}_{{\bf p}-{\bf q}/2}c^{\phantom{\dagger}}_{{\bf k}-{\bf q}^{\prime}/2}\right). (80)

On putting 𝐪=0{\bf q}=0, relabeling 𝐤+𝐪/2𝐤{\bf k}+{\bf q}^{\prime}/2\to{\bf k} in the first term and 𝐩𝐪/2𝐩{\bf p}-{\bf q}^{\prime}/2\to{\bf p} in the second one, and restoring spin indices, the last equation is reduced to Eq. (16) of the main text.

A.2 Commutators of currents with the Hamiltonian

We start with 𝐊1=[𝐣0,Hint]{\bf K}_{1}=[{\bf j}_{0},H_{\text{int}}], where H0H_{0} and 𝐣0{\bf j}_{0} are given by Eqs. (8b) and (15) of the main text, respectively. Applying Eq. (73), we obtain

𝐊1=12𝐪V(𝐪)([𝐣0,d𝐪]d𝐪+d𝐪[𝐣0,d𝐪]).\displaystyle{\bf K}_{1}=\frac{1}{2}\sum_{\bf q}V({\bf q})\left([{\bf j}_{0},d_{\bf q}]d_{-{\bf q}}+d_{\bf q}[{\bf j}_{0},d_{-{\bf q}}]\right). (81)

Evaluating the commutators in the above equation with the help of Eqs. (73) and (74), we find

[𝐣0,d𝐪]=e𝐤s(\varv𝐤+𝐪/2\varv𝐤𝐪/2)F(𝐤)c𝐤+𝐪/2c𝐤𝐪/2\displaystyle[{\bf j}_{0},d_{\bf q}]=e\sum_{{\bf k}s}(\bm{\varv}_{{\bf k}+{\bf q}/2}-\bm{\varv}_{{\bf k}-{\bf q}/2})F({\bf k})c^{\dagger}_{{\bf k}+{\bf q}/2}c^{\phantom{dagger}}_{{\bf k}-{\bf q}/2} (82)

and, correspondingly,

[𝐣0,d𝐪]=e𝐩(\varv𝐩𝐪/2\varv𝐩+𝐪/2)F(𝐩)c𝐩𝐪/2c𝐩+𝐪/2.\displaystyle[{\bf j}_{0},d_{-{\bf q}}]=e\sum_{{\bf p}}(\bm{\varv}_{{\bf p}-{\bf q}/2}-\bm{\varv}_{{\bf p}+{\bf q}/2})F({\bf p})c^{\dagger}_{{\bf p}-{\bf q}/2}c^{\phantom{dagger}}_{{\bf p}+{\bf q}/2}. (83)

Combining the last two equations, we have

𝐊1=e2𝐤𝐩𝐪(\varv𝐤+𝐪/2+\varv𝐩𝐪/2\varv𝐤𝐪/2\varv𝐩+𝐪/2)U(𝐤,𝐩,𝐪)c𝐤+𝐪/2c𝐩𝐪/2c𝐩+𝐪/2c𝐤𝐪/2.\displaystyle{\bf K}_{1}=-\frac{e}{2}\sum_{{\bf k}{\bf p}{\bf q}}(\bm{\varv}_{{\bf k}+{\bf q}/2}+\bm{\varv}_{{\bf p}-{\bf q}/2}-\bm{\varv}_{{\bf k}-{\bf q}/2}-\bm{\varv}_{{\bf p}+{\bf q}/2})U({\bf k},{\bf p},{\bf q})c^{\dagger}_{{\bf k}+{\bf q}/2}c^{\dagger}_{{\bf p}-{\bf q}/2}c^{\phantom{dagger}}_{{\bf p}+{\bf q}/2}c^{\phantom{dagger}}_{{\bf k}-{\bf q}/2}. (84)

Restoring spin indices, we obtain Eq. (25a) of the main text.

Next, we compute 𝐊2=[𝐣int,H0]{\bf K}_{2}=[{\bf j}_{\text{int}},H_{0}], where 𝐣int{\bf j}_{\text{int}} is defined in Eq. (16) of the main text. With nematic density d𝐪d_{\bf q}, defined in Eq. (10), and nematic current, defined as

𝓙𝐪=e𝐤𝐤F(𝐤)c𝐤+𝐪/2c𝐤𝐪/2,\displaystyle\bm{\mathcal{J}}_{\bf q}=e\sum_{\bf k}\bm{\nabla}_{\bf k}F({\bf k})c^{\dagger}_{{\bf k}+{\bf q}/2}c^{\phantom{dagger}}_{{\bf k}-{\bf q}/2}, (85)

the interacting part of the current 𝐣int{\bf j}_{\text{int}} can be re-written as

𝐣int=12𝐪V(𝐪)(𝓙𝐪d𝐪+𝓙𝐪d𝐪).\displaystyle{\bf j}_{\text{int}}=\frac{1}{2}\sum_{\bf q}V({\bf q})(\bm{\mathcal{J}}_{\bf q}d_{-{\bf q}}+\bm{\mathcal{J}}_{-{\bf q}}d_{\bf q}). (86)

With the help of Eq. (73), 𝐊2{\bf K}_{2} becomes

𝐊2\displaystyle{\bf K}_{2} =\displaystyle= 12𝐪V(𝐪)([H0,𝓙𝐪]d𝐪+𝓙𝐪[H0,d𝐪]+[H0,𝓙𝐪]d𝐪+𝓙𝐪[H0,d𝐪]).\displaystyle-\frac{1}{2}\sum_{\bf q}V({\bf q})\left([H_{0},\bm{\mathcal{J}}_{\bf q}]d_{-{\bf q}}+\bm{\mathcal{J}}_{\bf q}[H_{0},d_{-{\bf q}}]+[H_{0},\bm{\mathcal{J}}_{-{\bf q}}]d_{\bf q}+\bm{\mathcal{J}}_{-{\bf q}}[H_{0},d_{\bf q}]\right). (87)

Calculating the commutators in the above equation, we obtain

[H0,𝓙𝐪]=e𝐤𝐤F(𝐤)(ε𝐤+𝐪/2ε𝐤𝐪/2)c𝐤+𝐪/2c𝐤𝐪/2\displaystyle[H_{0},\bm{\mathcal{J}}_{\bf q}]=e\sum_{{\bf k}}\bm{\nabla}_{\bf k}F({\bf k})(\varepsilon_{{\bf k}+{\bf q}/2}-\varepsilon_{{\bf k}-{\bf q}/2})c^{\dagger}_{{\bf k}+{\bf q}/2}c^{\phantom{dagger}}_{{\bf k}-{\bf q}/2} (88)

and

[H0,d𝐪]=𝐩F(𝐩)(ε𝐩+𝐪/2ε𝐩𝐪/2)c𝐩+𝐪/2c𝐩𝐪/2\displaystyle[H_{0},d_{{\bf q}}]=\sum_{\bf p}F({\bf p})(\varepsilon_{{\bf p}+{\bf q}/2}-\varepsilon_{{\bf p}-{\bf q}/2})c^{\dagger}_{{\bf p}+{\bf q}/2}c^{\phantom{dagger}}_{{\bf p}-{\bf q}/2} (89)

Combining all the terms in Eq. (87), we obtain

𝐊2=e𝐤𝐩𝐪(𝐤+𝐩)U(𝐤,𝐩,𝐪)(ε𝐤𝐪/2+ε𝐩+𝐪/2ε𝐤+𝐪/2ε𝐩𝐪/2)c𝐤+𝐪/2c𝐩𝐪/2c𝐩+𝐪/2c𝐤𝐪/2.\displaystyle{\bf K}_{2}=-e\sum_{{\bf k}{\bf p}{\bf q}}(\bm{\nabla}_{{\bf k}}+\bm{\nabla}_{{\bf p}})U({\bf k},{\bf p},{\bf q})\left(\varepsilon_{{\bf k}-{\bf q}/2}+\varepsilon_{{\bf p}+{\bf q}/2}-\varepsilon_{{\bf k}+{\bf q}/2}-\varepsilon_{{\bf p}-{\bf q}/2}\right)c^{\dagger}_{{\bf k}+{\bf q}/2}c^{\dagger}_{{\bf p}-{\bf q}/2}c^{\phantom{dagger}}_{{\bf p}+{\bf q}/2}c^{\phantom{dagger}}_{{\bf k}-{\bf q}/2}. (90)

On restoring spin indices, the last result gives Eq. (25b) of the main text.

Appendix B Averaging of commutators over the noninteracting system

In this appendix, we derive Eqs. (28a)–(28c). We begin with Eq. (24a), which reads explicitly

[𝐊1(t),𝐊1(0)]ω\displaystyle\langle\left[{\bf{K}}_{1}(t),{\bf{K}}_{1}(0)\right]\rangle_{\omega} =\displaystyle= ie240𝑑teiωts1s1s2s2𝐤1𝐩1𝐪1𝐤2𝐩2𝐪2(\varv𝐤1++\varv𝐩1\varv𝐤1\varv𝐩1+)(\varv𝐤2++\varv𝐩2\varv𝐤2\varv𝐩2+)\displaystyle-i\frac{e^{2}}{4}\int_{0}^{\infty}dte^{i\omega t}\sum_{s_{1}s^{\prime}_{1}s_{2}s^{\prime}_{2}}\sum_{{\bf k}_{1}{\bf p}_{1}{\bf q}_{1}}\sum_{{\bf k}_{2}{\bf p}_{2}{\bf q}_{2}}\left(\bm{\varv}_{{\bf k}{}_{1+}}+\bm{\varv}_{{\bf p}{}_{1-}}-\bm{\varv}_{{\bf k}{}_{1-}}-\bm{\varv}_{{\bf p}{}_{1+}}\right)\left(\bm{\varv}_{{\bf k}{}_{2+}}+\bm{\varv}_{{\bf p}{}_{2-}}-\bm{\varv}_{{\bf k}{}_{2-}}-\bm{\varv}_{{\bf p}{}_{2+}}\right)
×U(𝐤1,𝐩1,𝐪1)U(𝐤2,𝐩2,𝐪2)[c𝐤,1+s1(t)c𝐩,1s1(t)c𝐩1+,s1(t)c𝐤1,s1(t),c𝐤,2+s2(0)c𝐩,2s2(0)c𝐩2+,s2(0)c𝐤2,s2(0)].\displaystyle\times U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})U({\bf k}_{2},{\bf p}_{2},{\bf q}_{2})\langle[c_{{\bf k}{}_{1+},s_{1}}^{\dagger}(t)c_{{\bf p}{}_{1-},s^{\prime}_{1}}^{\dagger}(t)c_{{\bf p}_{1+}^{\phantom{\dagger}},s^{\prime}_{1}}(t)c_{{\bf k}_{1-},s_{1}}^{\phantom{\dagger}}(t),c_{{\bf k}{}_{2+},s_{2}}^{\dagger}(0)c_{{\bf p}{}_{2-},s^{\prime}_{2}}^{\dagger}(0)c_{{\bf p}_{2+},s^{\prime}_{2}}^{\phantom{\dagger}}(0)c_{{\bf k}_{2-},s{}_{2}}^{\phantom{\dagger}}(0)]\rangle.

Since Eq. (B) already contains a square of the interaction, we can safely put H=H0H=H_{0} in the evolution operators eiHteiH0te^{iHt}\approx e^{iH_{0}t}, which leads to

c𝐤,1+s1(t)c𝐩,1s1(t)c𝐩1+,s1(t)c𝐤1,s1(t)=c𝐤,1+s1c𝐩,1s1c𝐩1+,s1c𝐤1,s1ei(ε𝐤1++ε𝐩1ε𝐩1+ε𝐤1)t.\displaystyle c_{{\bf k}{}_{1+},s_{1}}^{\dagger}(t)c_{{\bf p}{}_{1-},s^{\prime}_{1}}^{\dagger}(t)c_{{\bf p}_{1+},s^{\prime}_{1}}^{\phantom{\dagger}}(t)c_{{\bf k}_{1-},s_{1}}^{\phantom{\dagger}}(t)=c_{{\bf k}{}_{1+},s_{1}}^{\dagger}c_{{\bf p}{}_{1-},s^{\prime}_{1}}^{\dagger}c_{{\bf p}_{1+},s^{\prime}_{1}}^{\phantom{\dagger}}c_{{\bf k}_{1-},s_{1}}^{\phantom{\dagger}}e^{i(\varepsilon_{{\bf k}_{1+}}+\varepsilon_{{\bf p}_{1-}}-\varepsilon_{{\bf p}_{1+}}-\varepsilon_{{\bf k}_{1-}})t}. (92)

Adding an infinitesimally small imaginary part to ω\omega, we solve the time integral in Eq. (B) as

0𝑑tei(ω+i0++ε𝐤1++ε𝐩1ε𝐩1+ε𝐤1)t=iω+ε𝐤1++ε𝐩1ε𝐩1+ε𝐤1+i0+.\displaystyle\int_{0}^{\infty}dte^{i\left(\omega+i0^{+}+\varepsilon_{{\bf k}_{1+}}+\varepsilon_{{\bf p}_{1-}}-\varepsilon_{{\bf p}_{1+}}-\varepsilon_{{\bf k}_{1-}}\right)t}=\frac{i}{\omega+\varepsilon_{{\bf k}_{1+}}+\varepsilon_{{\bf p}_{1-}}-\varepsilon_{{\bf p}_{1+}}-\varepsilon_{{\bf k}_{1-}}+i0^{+}}. (93)

Therefore,

Im[𝐊1(t),𝐊1(0)]ω\displaystyle\mathrm{Im}\langle\left[{\bf{K}}_{1}(t),{\bf{K}}_{1}(0)\right]\rangle_{\omega} =πe24s1s1s2s2𝐤1𝐩1𝐪1𝐤2𝐩2𝐪2δ(ω+ε𝐤1++ε𝐩1ε𝐩1+ε𝐤1)U(𝐤1,𝐩1,𝐪1)U(𝐤2,𝐩2,𝐪2)\displaystyle=-\frac{\pi e^{2}}{4}\sum_{s_{1}s^{\prime}_{1}s_{2}s^{\prime}_{2}}\sum_{{\bf k}_{1}{\bf p}_{1}{\bf q}_{1}}\sum_{{\bf k}_{2}{\bf p}_{2}{\bf q}_{2}}\delta(\omega+\varepsilon_{{\bf k}_{1+}}+\varepsilon_{{\bf p}_{1-}}-\varepsilon_{{\bf p}_{1+}}-\varepsilon_{{\bf k}_{1-}})U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})U({\bf k}_{2},{\bf p}_{2},{\bf q}_{2}) (94)
×(\varv𝐤1++\varv𝐩1\varv𝐤1\varv𝐩1+)(\varv𝐤2++\varv𝐩2\varv𝐤2\varv𝐩2+)(III),\displaystyle\times\left(\bm{\varv}_{{\bf k}{}_{1+}}+\bm{\varv}_{{\bf p}{}_{1-}}-\bm{\varv}_{{\bf k}{}_{1-}}-\bm{\varv}_{{\bf p}{}_{1+}}\right)\left(\bm{\varv}_{{\bf k}{}_{2+}}+\bm{\varv}_{{\bf p}{}_{2-}}-\bm{\varv}_{{\bf k}{}_{2-}}-\bm{\varv}_{{\bf p}{}_{2+}}\right)\bigg{(}\langle\cdots\rangle^{\mathrm{I}}-\langle\cdots\rangle^{\mathrm{II}}\bigg{)},

where we defined

I=c𝐤,1+s1c𝐩,1s1c𝐩1+,s1c𝐤1,s1c𝐤,2+s2c𝐩,2s2c𝐩2+,s2c𝐤2,s2,\displaystyle\langle\cdots\rangle^{\mathrm{I}}=\langle c_{{\bf k}{}_{1+},s_{1}}^{\dagger}c_{{\bf p}{}_{1-},s^{\prime}_{1}}^{\dagger}c_{{\bf p}_{1+}^{\phantom{\dagger}},s^{\prime}_{1}}c_{{\bf k}_{1-},s_{1}}^{\phantom{\dagger}}c_{{\bf k}{}_{2+},s_{2}}^{\dagger}c_{{\bf p}{}_{2-},s^{\prime}_{2}}^{\dagger}c_{{\bf p}_{2+},s^{\prime}_{2}}^{\phantom{\dagger}}c_{{\bf k}_{2-},s{}_{2}}^{\phantom{\dagger}}\rangle, (95a)
II=c𝐤,2+s2c𝐩,2s2c𝐩2+,s2c𝐤2,s2c𝐤,1+s1c𝐩,1s1c𝐩1+,s1c𝐤1,s1.\displaystyle\langle\cdots\rangle^{\mathrm{II}}=\langle c_{{\bf k}{}_{2+},s_{2}}^{\dagger}c_{{\bf p}{}_{2-},s^{\prime}_{2}}^{\dagger}c_{{\bf p}_{2+},s^{\prime}_{2}}^{\phantom{\dagger}}c_{{\bf k}_{2-},s{}_{2}}^{\phantom{\dagger}}c_{{\bf k}{}_{1+},s_{1}}^{\dagger}c_{{\bf p}{}_{1-},s^{\prime}_{1}}^{\dagger}c_{{\bf p}_{1+}^{\phantom{\dagger}},s^{\prime}_{1}}c_{{\bf k}_{1-},s_{1}}^{\phantom{\dagger}}\rangle. (95b)

We now proceed by evaluating the average of the first term in the commutator, I\langle\cdots\rangle^{\mathrm{I}}, using Wick’s theorem:

I\displaystyle\langle\cdots\rangle^{\mathrm{I}} =c𝐤,1+s1c𝐤2,s2c𝐩1,s1c𝐩2+s2c𝐩1+,s1c𝐤2+,s2c𝐤1,s1c𝐩2,s2\displaystyle=-\left\langle c_{{\bf k}{}_{1+},s_{1}}^{\dagger}c_{{\bf k}_{2-},s{}_{2}}^{\phantom{\dagger}}\right\rangle\left\langle c_{{\bf p}_{1-},s^{\prime}_{1}}^{\dagger}c_{{\bf p}_{2+}s^{\prime}_{2}}^{\phantom{\dagger}}\right\rangle\left\langle c_{{\bf p}_{1+},s^{\prime}_{1}}^{\phantom{\dagger}}c_{{\bf k}_{2+},s_{2}}^{\dagger}\right\rangle\left\langle c_{{\bf k}_{1-},s_{1}}^{\phantom{\dagger}}c_{{\bf p}_{2-},s^{\prime}_{2}}^{\dagger}\right\rangle (96)
+c𝐤1+,s1c𝐤2,s2c𝐩1,s1c𝐩2+,s2c𝐩1+,s1c𝐩2,s2c𝐤1,s1c𝐤2+,s2\displaystyle+\left\langle c_{{\bf k}_{1+},s_{1}}^{\dagger}c_{{\bf k}_{2-}^{\phantom{\dagger}},s_{2}}\right\rangle\left\langle c_{{\bf p}_{1-},s^{\prime}_{1}}^{\dagger}c_{{\bf p}_{2+},s^{\prime}_{2}}^{\phantom{\dagger}}\right\rangle\left\langle c_{{\bf p}_{1+},s^{\prime}_{1}}^{\phantom{\dagger}}c_{{\bf p}_{2-},s^{\prime}_{2}}^{\dagger}\right\rangle\left\langle c_{{\bf k}_{1-},s_{1}}^{\phantom{\dagger}}c_{{\bf k}_{2+},s_{2}}^{\dagger}\right\rangle
+c𝐤1+,s1c𝐩2+,s2c𝐩1,s1c𝐤2,s2c𝐩1+,s1c𝐤2+,s2c𝐤1,s1c𝐩2,s2\displaystyle+\left\langle c_{{\bf k}_{1+},s_{1}}^{\dagger}c_{{\bf p}_{2+},s^{\prime}_{2}}^{\phantom{\dagger}}\right\rangle\left\langle c_{{\bf p}_{1-},s^{\prime}_{1}}^{\dagger}c_{{\bf k}_{2-},s_{2}}^{\phantom{\dagger}}\right\rangle\left\langle c_{{\bf p}_{1+},s^{\prime}_{1}}^{\phantom{\dagger}}c_{{\bf k}_{2+},s_{2}}^{\dagger}\right\rangle\left\langle c_{{\bf k}_{1-},s_{1}}^{\phantom{\dagger}}c_{{\bf p}_{2-},s^{\prime}_{2}}^{\dagger}\right\rangle
c𝐤1+,s1c𝐩2+,s2c𝐩1,s1c𝐤2,s2c𝐩1+,s1c𝐩2,s2c𝐤1,s1c𝐤2,s2.\displaystyle-\left\langle c_{{\bf k}_{1+},s_{1}}^{\dagger}c_{{\bf p}_{2+},s^{\prime}_{2}}\right\rangle\left\langle c_{{\bf p}_{1-},s^{\prime}_{1}}^{\dagger}c_{{\bf k}_{2-},s{}_{2}}^{\phantom{\dagger}}\right\rangle\left\langle c_{{\bf p}_{1+},s^{\prime}_{1}}^{\phantom{\dagger}}c_{{\bf p}_{2-},s^{\prime}_{2}}^{\dagger}\right\rangle\left\langle c_{{\bf k}_{1-},s_{1}}^{\phantom{\dagger}}c_{{\bf k}_{2},s_{2}}^{\dagger}\right\rangle.

Using the equal-time averages c𝐦,s1c𝐧,s2=δ𝐦,𝐧δs1,s2nF(ε𝐦)\langle c_{{\bf{m}},s_{1}}^{\dagger}c_{{\bf{n}},s{}_{2}}^{\phantom{\dagger}}\rangle=\delta_{\bf{m},\bf{n}}\delta_{s_{1},s_{2}}n_{F}(\varepsilon_{\bf{m}}) and c𝐦,s1c𝐧,s2=δ𝐦,𝐧δs1,s2[1nF(ε𝐦)]\langle c_{{\bf{m}},s_{1}}^{\phantom{\dagger}}c_{{\bf{n}},s{}_{2}}^{\dagger}\rangle=\delta_{\bf{m},\bf{n}}\delta_{s_{1},s_{2}}\left[1-n_{F}(\varepsilon_{\bf{m}})\right], we sum over over 𝐤2{\bf k}_{2}, 𝐩2{\bf p}_{2}, and all spin indices in Eq. (94) to obtain

s1,s2,s1s2𝐤2𝐩2𝐪2U(𝐤2,𝐩2,𝐪2)(\varv𝐤2++\varv𝐩2\varv𝐤2\varv𝐩2+)I=(\varv𝐤1++\varv𝐩1\varv𝐤1\varv𝐩1+)\displaystyle\sum_{s_{1},s_{2},s^{\prime}_{1}s^{\prime}_{2}}\sum_{{\bf k}_{2}{\bf p}_{2}{\bf q}_{2}}U({\bf k}_{2},{\bf p}_{2},{\bf q}_{2})\left(\bm{\varv}_{{\bf k}{}_{2+}}+\bm{\varv}_{{\bf p}{}_{2-}}-\bm{\varv}_{{\bf k}{}_{2-}}-\bm{\varv}_{{\bf p}{}_{2+}}\right)\langle\cdots\rangle^{\mathrm{I}}=\left(\bm{\varv}_{{\bf k}{}_{1+}}+\bm{\varv}_{{\bf p}{}_{1-}}-\bm{\varv}_{{\bf k}{}_{1-}}-\bm{\varv}_{{\bf p}{}_{1+}}\right) (97)
×\displaystyle\times [2U(𝐤1+𝐩1+𝐪12,𝐤1+𝐩1𝐪12𝐩1𝐤1)4U(𝐤1,𝐩1,𝐪1)4U(𝐩1,𝐤1,𝐪1)\displaystyle\left[2U\left(\frac{{\bf k}_{1}+{\bf p}_{1}+{\bf q}_{1}}{2},\frac{{\bf k}_{1}+{\bf p}_{1}-{\bf q}_{1}}{2}{\bf p}_{1}-{\bf k}_{1}\right)-4U({\bf k}_{1},{\bf p}_{1},-{\bf q}_{1})-4U({\bf p}_{1},{\bf k}_{1},{\bf q}_{1})\right.
+2U(𝐤1+𝐩1𝐪12,𝐤1+𝐩1+𝐪12,𝐤1𝐩1)]nF(ε𝐤1+)nF(ε𝐩1)[1nF(ε𝐤1)][1nF(ε𝐩1+)].\displaystyle\left.+2U\left(\frac{{\bf k}_{1}+{\bf p}_{1}-{\bf q}_{1}}{2},\frac{{\bf k}_{1}+{\bf p}_{1}+{\bf q}_{1}}{2},{\bf k}_{1}-{\bf p}_{1}\right)\right]n_{F}(\varepsilon_{{\bf k}_{1+}})n_{F}(\varepsilon_{{\bf p}_{1-}})\left[1-n_{F}(\varepsilon_{{\bf k}_{1-}})\right]\left[1-n_{F}(\varepsilon_{{\bf p}_{1+}})\right].

All other terms vanish due to incompatible conditions on the electron momenta. Recalling that U(𝐤,𝐩,𝐪)=F(𝐤)F(𝐩)V(𝐪)=F(𝐤)F(𝐩)V(𝐪)=U(𝐤,𝐩,𝐪)U({\bf k},{\bf p},-{\bf q})=F({\bf k})F({\bf p})V(-{\bf q})=F({\bf k})F({\bf p})V({\bf q})=U({\bf k},{\bf p},{\bf q}), we simplify the last expression to

s1,s2,s1s2𝐤2𝐩2𝐪2U(𝐤2,𝐩2,𝐪2)(\varv𝐤2++\varv𝐩2\varv𝐤2\varv𝐩2+)I=8(\varv𝐤1++\varv𝐩1\varv𝐤1\varv𝐩1+)\displaystyle\sum_{s_{1},s_{2},s^{\prime}_{1}s^{\prime}_{2}}\sum_{{\bf k}_{2}{\bf p}_{2}{\bf q}_{2}}U({\bf k}_{2},{\bf p}_{2},{\bf q}_{2})\left(\bm{\varv}_{{\bf k}{}_{2+}}+\bm{\varv}_{{\bf p}{}_{2-}}-\bm{\varv}_{{\bf k}{}_{2-}}-\bm{\varv}_{{\bf p}{}_{2+}}\right)\langle\cdots\rangle^{\mathrm{I}}=-8\left(\bm{\varv}_{{\bf k}{}_{1+}}+\bm{\varv}_{{\bf p}{}_{1-}}-\bm{\varv}_{{\bf k}{}_{1-}}-\bm{\varv}_{{\bf p}{}_{1+}}\right)
×[U(𝐤1,𝐩1,𝐪1)12U(𝐤1+𝐩1+𝐪12,𝐤1+𝐩1𝐪12,𝐩1𝐤1)]nF(ε𝐤1+)nF(ε𝐩1)[1nF(ε𝐤1)][1nF(ε𝐩1+)].\displaystyle\times\bigg{[}U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})-\frac{1}{2}U\bigg{(}\frac{{\bf k}_{1}+{\bf p}_{1}+{\bf q}_{1}}{2},\frac{{\bf k}_{1}+{\bf p}_{1}-{\bf q}_{1}}{2},{\bf p}_{1}-{\bf k}_{1}\bigg{)}\bigg{]}n_{F}(\varepsilon_{{\bf k}_{1+}})n_{F}(\varepsilon_{{\bf p}_{1-}})\left[1-n_{F}(\varepsilon_{{\bf k}_{1-}})\right]\left[1-n_{F}(\varepsilon_{{\bf p}_{1+}})\right]. (98)

Likewise, we obtain for the second, II\langle\cdots\rangle^{\mathrm{II}} term in Eq. (94):

s1,s2,s1s2𝐤2𝐩2𝐪2U(𝐤2,𝐩2,𝐪2)(\varv𝐤2++\varv𝐩2\varv𝐤2\varv𝐩2+)II=8(\varv𝐤1++\varv𝐩1\varv𝐤1\varv𝐩1+)\displaystyle\sum_{s_{1},s_{2},s^{\prime}_{1}s^{\prime}_{2}}\sum_{{\bf k}_{2}{\bf p}_{2}{\bf q}_{2}}U({\bf k}_{2},{\bf p}_{2},{\bf q}_{2})\left(\bm{\varv}_{{\bf k}{}_{2+}}+\bm{\varv}_{{\bf p}{}_{2-}}-\bm{\varv}_{{\bf k}{}_{2-}}-\bm{\varv}_{{\bf p}{}_{2+}}\right)\langle\cdots\rangle^{\mathrm{II}}=-8\left(\bm{\varv}_{{\bf k}{}_{1+}}+\bm{\varv}_{{\bf p}{}_{1-}}-\bm{\varv}_{{\bf k}{}_{1-}}-\bm{\varv}_{{\bf p}{}_{1+}}\right)
×[U(𝐤1,𝐩1,𝐪1)12U(𝐤1+𝐩1+𝐪12,𝐤1+𝐩1𝐪12,𝐩1𝐤1)]nF(ε(𝐤1)nF(ε𝐩1+)[1nF(ε𝐤1+)][1nF(ε𝐩1)].\displaystyle\times\left[U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})-\frac{1}{2}U\bigg{(}\frac{{\bf k}_{1}+{\bf p}_{1}+{\bf q}_{1}}{2},\frac{{\bf k}_{1}+{\bf p}_{1}-{\bf q}_{1}}{2},{\bf p}_{1}-{\bf k}_{1}\bigg{)}\right]n_{F}(\varepsilon(_{{\bf k}_{1-}})n_{F}(\varepsilon_{{\bf p}_{1+}})\left[1-n_{F}(\varepsilon_{{\bf k}_{1+}})\right]\left[1-n_{F}(\varepsilon_{{\bf p}_{1-}})\right]. (99)

Substituting Eqs. (98) and (99) into Eq. (94), using the property 1nF(ε)=eε/TnF(ε)1-n_{F}(\varepsilon)={e^{\varepsilon/T}}n_{F}(\varepsilon), and relabeling 𝐤1𝐤{\bf k}_{1}\to{\bf k}, 𝐩1𝐩{\bf p}_{1}\to{\bf p}, 𝐪1𝐪{\bf q}_{1}\to{\bf q}, we get

Im[𝐊1(t),𝐊1(0)]ω\displaystyle\mathrm{Im}\langle\left[{\bf{K}}_{1}(t),{\bf{K}}_{1}(0)\right]\rangle_{\omega} =\displaystyle= 2πe2(1eω/T)𝐤𝐩𝐪δ(ω+ε𝐤++ε𝐩ε𝐩+ε𝐤)(\varv𝐤++\varv𝐩\varv𝐤\varv𝐩+)2\displaystyle{2\pi e^{2}}(1-e^{-\omega/T})\sum_{{\bf k}{\bf p}{\bf q}}\delta(\omega+\varepsilon_{{\bf k}_{+}}+\varepsilon_{{\bf p}_{-}}-\varepsilon_{{\bf p}_{+}}-\varepsilon_{{\bf k}_{-}})\left(\bm{\varv}_{{\bf k}{}_{+}}+\bm{\varv}_{{\bf p}{}_{-}}-\bm{\varv}_{{\bf k}{}_{-}}-\bm{\varv}_{{\bf p}{}_{+}}\right)^{2} (100)
×\displaystyle\times U(𝐤,𝐩,𝐪)[U(𝐤,𝐩,𝐪)12U(𝐤+𝐩+𝐪2,𝐤+𝐩𝐪2,𝐩𝐤)]M(𝐤,𝐩,𝐪),\displaystyle U({\bf k},{\bf p},{\bf q})\bigg{[}U({\bf k},{\bf p},{\bf q})-\frac{1}{2}U\bigg{(}\frac{{\bf k}+{\bf p}+{\bf q}}{2},\frac{{\bf k}+{\bf p}-{\bf q}}{2},{\bf p}-{\bf k}\bigg{)}\bigg{]}M({\bf k},{\bf p},{\bf q}),

where M(𝐤,𝐩,𝐪)M({\bf k},{\bf p},{\bf q}) is given by Eq. (29). The second term in [][\dots] in the last expression is the exchange part of the interaction, which is small compared to the first (direct) term for our case of a long-range U(𝐪)U({\bf q}). Neglecting the exchange term and substituting Eq. (100) into Eq. (24a), we obtain Eq. (28a) of the main text.

We now turn to Eq. (28b). Following the same steps as above up to Eq. (96), we arrive at

Im[𝐊2(t),𝐊2(0)]ω=πe2s1s1s2s2𝐤1𝐩1𝐪1𝐤2𝐩2𝐪2δ(ω+ε𝐤1++ε𝐩1ε𝐩1+ε𝐤1)(𝐤1+𝐩1)U(𝐤1,𝐩1,𝐪1)\displaystyle\mathrm{Im}\langle\left[{\bf{K}}_{2}(t),{\bf{K}}_{2}(0)\right]\rangle_{\omega}=-{\pi e^{2}}\sum_{s_{1}s^{\prime}_{1}s_{2}s^{\prime}_{2}}\sum_{{\bf k}_{1}{\bf p}_{1}{\bf q}_{1}}\sum_{{\bf k}_{2}{\bf p}_{2}{\bf q}_{2}}\delta(\omega+\varepsilon_{{\bf k}_{1+}}+\varepsilon_{{\bf p}_{1-}}-\varepsilon_{{\bf p}_{1+}}-\varepsilon_{{\bf k}_{1-}})\left(\bm{\nabla}_{{\bf k}_{1}}+\bm{\nabla}_{{\bf p}_{1}}\right)U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})
×(𝐤2+𝐩2)U(𝐤2,𝐩2,𝐪2)(ε𝐤1++ε𝐩1ε𝐤1ε𝐩1+)(ε𝐤2++ε𝐩2ε𝐤2ε𝐩2+)(III),\displaystyle\times\left(\bm{\nabla}_{{\bf k}_{2}}+\bm{\nabla}_{{\bf p}_{2}}\right)U({\bf k}_{2},{\bf p}_{2},{\bf q}_{2})\left(\varepsilon_{{\bf k}{}_{1+}}+\varepsilon_{{\bf p}{}_{1-}}-\varepsilon_{{\bf k}{}_{1-}}-\varepsilon_{{\bf p}{}_{1+}}\right)\left(\varepsilon_{{\bf k}{}_{2+}}+\varepsilon_{{\bf p}{}_{2-}}-\varepsilon_{{\bf k}{}_{2-}}-\varepsilon_{{\bf p}{}_{2+}}\right)\bigg{(}\langle\cdots\rangle^{\mathrm{I}}-\langle\cdots\rangle^{\mathrm{II}}\bigg{)}, (101)

where I\langle\dots\rangle^{\mathrm{I}} and II\langle\dots\rangle^{\mathrm{II}} are the same as in Eqs. (95a) and (95b). Summing the I\langle\dots\rangle^{\mathrm{I}} term in Eq. (101) over 𝐤2{\bf k}_{2}, 𝐩2{\bf p}_{2}, and over spins, we find

s1,s2,s1s2𝐤2𝐩2𝐪2(𝐤2+𝐩2)U(𝐤2,𝐩2,𝐪2)(ε𝐤2++ε𝐩2ε𝐤2ε𝐩2+)I=8(ε𝐤1++ε𝐩1ε𝐤1ε𝐩1+)\displaystyle\sum_{s_{1},s_{2},s^{\prime}_{1}s^{\prime}_{2}}\sum_{{\bf k}_{2}{\bf p}_{2}{\bf q}_{2}}\left(\bm{\nabla}_{{\bf k}_{2}}+\bm{\nabla}_{{\bf p}_{2}}\right)U({\bf k}_{2},{\bf p}_{2},{\bf q}_{2})\left(\varepsilon_{{\bf k}{}_{2+}}+\varepsilon_{{\bf p}{}_{2-}}-\varepsilon_{{\bf k}{}_{2-}}-\varepsilon_{{\bf p}{}_{2+}}\right)\langle\cdots\rangle^{\mathrm{I}}=-8\left(\varepsilon_{{\bf k}{}_{1+}}+\varepsilon_{{\bf p}{}_{1-}}-\varepsilon_{{\bf k}{}_{1-}}-\varepsilon_{{\bf p}{}_{1+}}\right)
×[(𝐤1+𝐩1)U(𝐤1,𝐩1,𝐪1)12(𝐤2+𝐩2)U(𝐤2,𝐩2,𝐩1𝐤1)|𝐤2=𝐤1+𝐩1+𝐪12,𝐩2=𝐤1+𝐩1𝐪12]\displaystyle\times\left[\left(\bm{\nabla}_{{\bf k}_{1}}+\bm{\nabla}_{{\bf p}_{1}}\right)U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})-\frac{1}{2}\left(\bm{\nabla}_{{\bf k}_{2}}+\bm{\nabla}_{{\bf p}_{2}}\right)U({\bf k}_{2},{\bf p}_{2},{\bf p}_{1}-{\bf k}_{1})\bigg{|}_{{\bf k}_{2}=\frac{{\bf k}_{1}+{\bf p}_{1}+{\bf q}_{1}}{2},{\bf p}_{2}=\frac{{\bf k}_{1}+{\bf p}_{1}-{\bf q}_{1}}{2}}\right]
×nF(ε𝐤1+)nF(ε𝐩1)[1nF(ε𝐤1)][1nF(ε𝐩1+)].\displaystyle\times n_{F}(\varepsilon_{{\bf k}_{1+}})n_{F}(\varepsilon_{{\bf p}_{1-}})\left[1-n_{F}(\varepsilon_{{\bf k}_{1-}})\right]\left[1-n_{F}(\varepsilon_{{\bf p}_{1+}})\right]. (102)

Following similar steps for the II\langle\dots\rangle^{\mathrm{II}} term in Eq. (101) and using the same property of the Fermi functions, we arrive at

Im[𝐊2(t),𝐊2(0)]ω=8πe2(1eω/T)𝐤1𝐩1𝐪1δ(ω+ε𝐤1++ε𝐩1ε𝐩1+ε𝐤1)(ε𝐤1++ε𝐩1ε𝐤1ε𝐩1+)2\displaystyle\mathrm{Im}\langle\left[{\bf{K}}_{2}(t),{\bf{K}}_{2}(0)\right]\rangle_{\omega}={8\pi e^{2}}(1-e^{-\omega/T})\sum_{{\bf k}_{1}{\bf p}_{1}{\bf q}_{1}}\delta(\omega+\varepsilon_{{\bf k}_{1+}}+\varepsilon_{{\bf p}_{1-}}-\varepsilon_{{\bf p}_{1+}}-\varepsilon_{{\bf k}_{1-}})\left(\varepsilon_{{\bf k}{}_{1+}}+\varepsilon_{{\bf p}{}_{1-}}-\varepsilon_{{\bf k}{}_{1-}}-\varepsilon_{{\bf p}{}_{1+}}\right)^{2}
×(𝐤1+𝐩1)U(𝐤1,𝐩1,𝐪1)[(𝐤1+𝐩1)U(𝐤1,𝐩1,𝐪1)12(𝐤2+𝐩2)U(𝐤2,𝐩2,𝐪2)|𝐤2=𝐤1+𝐩1+𝐪12,𝐩2=𝐤1+𝐩1𝐪12,𝐪2=𝐩1𝐤1]\displaystyle\times\left(\bm{\nabla}_{{\bf k}_{1}}+\bm{\nabla}_{{\bf p}_{1}}\right)U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})\bigg{[}\left(\bm{\nabla}_{{\bf k}_{1}}+\bm{\nabla}_{{\bf p}_{1}}\right)U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})-\frac{1}{2}\left(\bm{\nabla}_{{\bf k}_{2}}+\bm{\nabla}_{{\bf p}_{2}}\right)U({\bf k}_{2},{\bf p}_{2},{\bf q}_{2})\bigg{|}_{{\bf k}_{2}=\frac{{\bf k}_{1}+{\bf p}_{1}+{\bf q}_{1}}{2},{\bf p}_{2}=\frac{{\bf k}_{1}+{\bf p}_{1}-{\bf q}_{1}}{2},{\bf q}_{2}={\bf p}_{1}-{\bf k}_{1}}\bigg{]}
×nF(ε𝐤1+)nF(ε𝐩1)[1nF(ε𝐤1)][1nF(ε𝐩1+)].\displaystyle\times n_{F}(\varepsilon_{{\bf k}_{1+}})n_{F}(\varepsilon_{{\bf p}_{1-}})\left[1-n_{F}(\varepsilon_{{\bf k}_{1-}})\right]\left[1-n_{F}(\varepsilon_{{\bf p}_{1+}})\right]. (103)

Neglecting the second (exchange) term in [][\dots] in the last expression and substituting the result into Eq. (24b), we obtain Eq. (28b) of the main text.

Finally, we turn to Eq. (24c) which contains the cross-correlators, Im[𝐊1(t),𝐊2(0)]±ω\mathrm{Im}\langle\left[{\bf{K}}_{1}(t),{\bf{K}}_{2}(0)\right]\rangle_{\pm\omega}. The same steps as before lead us to

Im[𝐊1(t),𝐊2(0)]ω=πe22s1s1s2s2𝐤1𝐩1𝐪1𝐤2𝐩2𝐪2δ(ω+ε𝐤1++ε𝐩1ε𝐩1+ε𝐤1)U(𝐤1,𝐩1,𝐪1)(\varv𝐤1++\varv𝐩1\varv𝐤1\varv𝐩1+)\displaystyle\mathrm{Im}\langle\left[{\bf{K}}_{1}(t),{\bf{K}}_{2}(0)\right]\rangle_{\omega}=\frac{\pi e^{2}}{2}\sum_{s_{1}s^{\prime}_{1}s_{2}s^{\prime}_{2}}\sum_{{\bf k}_{1}{\bf p}_{1}{\bf q}_{1}}\sum_{{\bf k}_{2}{\bf p}_{2}{\bf q}_{2}}\delta(\omega+\varepsilon_{{\bf k}_{1+}}+\varepsilon_{{\bf p}_{1-}}-\varepsilon_{{\bf p}_{1+}}-\varepsilon_{{\bf k}_{1-}})U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})\left(\bm{\varv}_{{\bf k}{}_{1+}}+\bm{\varv}_{{\bf p}{}_{1-}}-\bm{\varv}_{{\bf k}{}_{1-}}-\bm{\varv}_{{\bf p}{}_{1+}}\right)
(𝐤2+𝐩2)U(𝐤2,𝐩2,𝐪2)(ε𝐤2++ε𝐩2ε𝐤2ε𝐩2+)(III)\displaystyle\cdot\left(\bm{\nabla}_{{\bf k}_{2}}+\bm{\nabla}_{{\bf p}_{2}}\right)U({\bf k}_{2},{\bf p}_{2},{\bf q}_{2})\left(\varepsilon_{{\bf k}{}_{2+}}+\varepsilon_{{\bf p}{}_{2-}}-\varepsilon_{{\bf k}{}_{2-}}-\varepsilon_{{\bf p}{}_{2+}}\right)\bigg{(}\langle\cdots\rangle^{\mathrm{I}}-\langle\cdots\rangle^{\mathrm{II}}\bigg{)} (104)

and

Im[𝐊1(t),𝐊2(0)]ω=4πe2ω(1eω/T)𝐤1𝐩1𝐪1δ(ω+ε𝐤1++ε𝐩1ε𝐩1+ε𝐤1)(\varv𝐤1++\varv𝐩1\varv𝐤1\varv𝐩1+)\displaystyle\mathrm{Im}\langle\left[{\bf{K}}_{1}(t),{\bf{K}}_{2}(0)\right]\rangle_{\omega}={4\pi e^{2}}\omega(1-e^{-\omega/T})\sum_{{\bf k}_{1}{\bf p}_{1}{\bf q}_{1}}\delta(\omega+\varepsilon_{{\bf k}_{1+}}+\varepsilon_{{\bf p}_{1-}}-\varepsilon_{{\bf p}_{1+}}-\varepsilon_{{\bf k}_{1-}})\left(\bm{\varv}_{{\bf k}{}_{1+}}+\bm{\varv}_{{\bf p}{}_{1-}}-\bm{\varv}_{{\bf k}{}_{1-}}-\bm{\varv}_{{\bf p}{}_{1+}}\right)
[(𝐤1+𝐩1)U(𝐤1,𝐩1,𝐪1)12(𝐤2+𝐩2)U(𝐤2,𝐩2,𝐩1𝐤1)|𝐤2=𝐤1+𝐩1+𝐪12,𝐩2=𝐤1+𝐩1𝐪12]U(𝐤1,𝐩1,𝐪1)\displaystyle\cdot\bigg{[}\left(\bm{\nabla}_{{\bf k}_{1}}+\bm{\nabla}_{{\bf p}_{1}}\right)U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})-\frac{1}{2}\left(\bm{\nabla}_{{\bf k}_{2}}+\bm{\nabla}_{{\bf p}_{2}}\right)U({\bf k}_{2},{\bf p}_{2},{\bf p}_{1}-{\bf k}_{1})\bigg{|}_{{\bf k}_{2}=\frac{{\bf k}_{1}+{\bf p}_{1}+{\bf q}_{1}}{2},{\bf p}_{2}=\frac{{\bf k}_{1}+{\bf p}_{1}-{\bf q}_{1}}{2}}\bigg{]}U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})
×nF(ε𝐤1+)nF(ε𝐩1)[1nF(ε𝐤1)][1nF(ε𝐩1+)],\displaystyle\times n_{F}(\varepsilon_{{\bf k}_{1+}})n_{F}(\varepsilon_{{\bf p}_{1-}})\left[1-n_{F}(\varepsilon_{{\bf k}_{1-}})\right]\left[1-n_{F}(\varepsilon_{{\bf p}_{1+}})\right], (105)

where we used the energy-conserving delta-function to express the energy difference in terms of ω\omega. Replacing ωω\omega\longrightarrow-\omega, relabeling 𝐤1𝐩1{\bf k}_{1}\leftrightarrow{\bf p}_{1}, and taking into account that U(𝐤,𝐩,𝐪)=U(𝐩,𝐤,𝐪)U({\bf k},{\bf p},{\bf q})=U({\bf p},{\bf k},{\bf q}), we find

Im[𝐊1(t),𝐊2(0)]ω=4πe2ω(1eω/T)𝐤1𝐩1𝐪1δ(ω+ε𝐤1++ε𝐩1ε𝐩1+ε𝐤1)(\varv𝐤1++\varv𝐩1\varv𝐤1\varv𝐩1+)\displaystyle\mathrm{Im}\langle\left[{\bf{K}}_{1}(t),{\bf{K}}_{2}(0)\right]\rangle_{\omega}={4\pi e^{2}}\omega(1-e^{\omega/T})\sum_{{\bf k}_{1}{\bf p}_{1}{\bf q}_{1}}\delta(\omega+\varepsilon_{{\bf k}_{1+}}+\varepsilon_{{\bf p}_{1-}}-\varepsilon_{{\bf p}_{1+}}-\varepsilon_{{\bf k}_{1-}})\left(\bm{\varv}_{{\bf k}{}_{1+}}+\bm{\varv}_{{\bf p}{}_{1-}}-\bm{\varv}_{{\bf k}{}_{1-}}-\bm{\varv}_{{\bf p}{}_{1+}}\right)
[(𝐤1+𝐩1)U(𝐤1,𝐩1,𝐪1)12(𝐤2+𝐩2)U(𝐤2,𝐩2,𝐩1𝐤1)|𝐤2=𝐤1+𝐩1+𝐪12,𝐩2=𝐤1+𝐩1𝐪12]U(𝐤1,𝐩1,𝐪1)\displaystyle\cdot\bigg{[}\left(\bm{\nabla}_{{\bf k}_{1}}+\bm{\nabla}_{{\bf p}_{1}}\right)U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})-\frac{1}{2}\left(\bm{\nabla}_{{\bf k}_{2}}+\bm{\nabla}_{{\bf p}_{2}}\right)U({\bf k}_{2},{\bf p}_{2},{\bf p}_{1}-{\bf k}_{1})\bigg{|}_{{\bf k}_{2}=\frac{{\bf k}_{1}+{\bf p}_{1}+{\bf q}_{1}}{2},{\bf p}_{2}=\frac{{\bf k}_{1}+{\bf p}_{1}-{\bf q}_{1}}{2}}\bigg{]}U({\bf k}_{1},{\bf p}_{1},{\bf q}_{1})
×nF(ε𝐩1+)nF(ε𝐤1)[1nF(ε𝐩1)][1nF(ε𝐤1+)].\displaystyle\times n_{F}(\varepsilon_{{\bf p}_{1+}})n_{F}(\varepsilon_{{\bf k}_{1-}})\left[1-n_{F}(\varepsilon_{{\bf p}_{1-}})\right]\left[1-n_{F}(\varepsilon_{{\bf k}_{1+}})\right]. (106)

Now we apply the identity

(1eω/T)nF(ε𝐤1+)nF(ε𝐩1)[1nF(ε𝐤1)][1nF(ε𝐩1+)]=(1eω/T)nF(ε𝐤1)nF(ε𝐩1+)[1nF(ε𝐤1+)][1nF(ε𝐩1)]\displaystyle\left(1-e^{\omega/T}\right)n_{F}(\varepsilon_{{\bf k}_{1+}})n_{F}(\varepsilon_{{\bf p}_{1-}})\left[1-n_{F}(\varepsilon_{{\bf k}_{1-}})\right]\left[1-n_{F}(\varepsilon_{{\bf p}_{1+}})\right]=-\left(1-e^{-\omega/T}\right)n_{F}(\varepsilon_{{\bf k}_{1-}})n_{F}(\varepsilon_{{\bf p}_{1+}})\left[1-n_{F}(\varepsilon_{{\bf k}_{1+}})\right]\left[1-n_{F}(\varepsilon_{{\bf p}_{1-}})\right] (107)

to get

Im[𝐊1(t),𝐊2(0)]ω=Im[𝐊1(t),𝐊2(0)]ω.\displaystyle\mathrm{Im}\langle\left[{\bf{K}}_{1}(t),{\bf{K}}_{2}(0)\right]\rangle_{\omega}=-\mathrm{Im}\langle\left[{\bf{K}}_{1}(t),{\bf{K}}_{2}(0)\right]\rangle_{-\omega}. (108)

According to Eq. (24c) we then have

σ12(ω,T)=g2ω3Im[𝐊1(t),𝐊2(0)]ω.\displaystyle\sigma^{\prime}_{12}(\omega,T)=\frac{g^{2}}{\omega^{3}}{\mathrm{Im}}\,\langle\left[{\bf K}_{1}(t)\stackrel{{\scriptstyle\cdot}}{{,}}{\bf K}_{2}(0)\right]\rangle_{\omega}. (109)

Substituting Eq. (105) into Eq. (109) and neglecting the exchange term, we obtain Eq. (28c) of the main text.

Appendix C Properties of σ12(ω,T)\sigma_{12}^{\prime}(\omega,T)

In Sec. V.1, we encountered the following expression for the cross-term in the optical conductivity [Eq. (63)]:

σ12(ω,T)=e2g2π(2π)4ω2(1eω/T)d2q(2π)2V2(𝐪)+𝑑ε𝐤+𝑑ε𝐩+𝑑Ωd𝐤\varv𝐤d𝐩\varv𝐩\displaystyle\sigma^{\prime}_{12}(\omega,T)=e^{2}g^{2}\frac{\pi}{(2\pi)^{4}\omega^{2}}(1-e^{-\omega/T})\int\frac{d^{2}q}{(2\pi)^{2}}V^{2}({\bf q})\int^{+\infty}_{-\infty}d\varepsilon_{\bf k}\int^{+\infty}_{-\infty}d\varepsilon_{\bf p}\int^{+\infty}_{-\infty}d\Omega\oint\frac{d\ell_{\bf k}}{\varv_{\bf k}}\oint\frac{d\ell_{\bf p}}{\varv_{\bf p}}
×(𝐰Δ\varv)nF(ε𝐤)nF(ε𝐩)[1nF(ε𝐤+Ω)][1nF(ε𝐩Ω+ω)]δ(Ωε𝐤𝐪+ε𝐤)δ(Ωω+ε𝐩+𝐪ε𝐩).\displaystyle\times({\bf w}\cdot\Delta\bm{\varv})n_{\mathrm{F}}(\varepsilon_{{\bf k}})n_{\mathrm{F}}(\varepsilon_{\bf p})\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf k}}+\Omega)\right]\left[1-n_{\mathrm{F}}(\varepsilon_{\bf p}-\Omega+\omega)\right]\delta(\Omega-\varepsilon_{{\bf k}-{\bf q}}+\varepsilon_{{\bf k}})\delta(\Omega-\omega+\varepsilon_{{\bf p}+{\bf q}}-\varepsilon_{{\bf p}}). (110)

To check that σ12(ω,T)\sigma_{12}^{\prime}(\omega,T) is even in ω\omega, we flip the sign of frequency (ωω\omega\to-\omega), and relabel 𝐤𝐪𝐩{\bf k}-{\bf q}\leftrightarrow{\bf p} and 𝐩+𝐪𝐤{\bf p}+{\bf q}\leftrightarrow{\bf k}. (Note that the last transformation results in Δ\varvΔ\varv\Delta\bm{\varv}\to-\Delta\bm{\varv}.) Therefore,

σ12(ω,T)=e2g2π(2π)4ω2(1eω/T)d2q(2π)2V2(𝐪)+𝑑ε𝐤+𝑑ε𝐩+𝑑Ωd𝐤\varv𝐤d𝐩\varv𝐩\displaystyle\sigma^{\prime}_{12}(-\omega,T)=-e^{2}g^{2}\frac{\pi}{(2\pi)^{4}\omega^{2}}(1-e^{\omega/T})\int\frac{d^{2}q}{(2\pi)^{2}}V^{2}({\bf q})\int^{+\infty}_{-\infty}d\varepsilon_{\bf k}\int^{+\infty}_{-\infty}d\varepsilon_{\bf p}\int^{+\infty}_{-\infty}d\Omega\oint\frac{d\ell_{\bf k}}{\varv_{\bf k}}\oint\frac{d\ell_{\bf p}}{\varv_{\bf p}}
×(𝐰Δ\varv)nF(ε𝐩+𝐪)nF(ε𝐤𝐪)[1nF(ε𝐩+𝐪+Ω)][1nF(ε𝐤𝐪Ωω)]δ(Ωε𝐩+ε𝐩+𝐪)δ(Ω+ω+ε𝐤ε𝐤𝐪).\displaystyle\times({\bf w}\cdot\Delta\bm{\varv})n_{\mathrm{F}}(\varepsilon_{{\bf p}+{\bf q}})n_{\mathrm{F}}(\varepsilon_{{\bf k}-{\bf q}})\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf p}+{\bf q}}+\Omega)\right]\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf k}-{\bf q}}-\Omega-\omega)\right]\delta(\Omega-\varepsilon_{{\bf p}}+\varepsilon_{{\bf p}+{\bf q}})\delta(\Omega+\omega+\varepsilon_{{\bf k}}-\varepsilon_{{\bf k}-{\bf q}}). (111)

Next, we shift the integration variable as Ω+ωΩ\Omega+\omega\to\Omega and eliminate ε𝐤𝐪\varepsilon_{{\bf k}-{\bf q}} and ε𝐩+𝐪\varepsilon_{{\bf p}+{\bf q}} in favor of ε𝐤\varepsilon_{\bf k} and ε𝐩\varepsilon_{\bf p}, using the delta-functions. This gives:

σ12(ω,T)=e2g2π(2π)4ω2(1eω/T)d2q(2π)2V2(𝐪)+𝑑ε𝐤+𝑑ε𝐩+𝑑Ωd𝐤\varv𝐤d𝐩\varv𝐩\displaystyle\sigma^{\prime}_{12}(-\omega,T)=-e^{2}g^{2}\frac{\pi}{(2\pi)^{4}\omega^{2}}(1-e^{\omega/T})\int\frac{d^{2}q}{(2\pi)^{2}}V^{2}({\bf q})\int^{+\infty}_{-\infty}d\varepsilon_{\bf k}\int^{+\infty}_{-\infty}d\varepsilon_{\bf p}\int^{+\infty}_{-\infty}d\Omega\oint\frac{d\ell_{\bf k}}{\varv_{\bf k}}\oint\frac{d\ell_{\bf p}}{\varv_{\bf p}}
×(𝐰Δ\varv)nF(ε𝐩Ω+ω)nF(ε𝐤+Ω)[1nF(ε𝐩)][1nF(ε𝐤)]δ(Ωωε𝐩+ε𝐩+𝐪)δ(Ω+ε𝐤ε𝐤𝐪).\displaystyle\times({\bf w}\cdot\Delta\bm{\varv})n_{\mathrm{F}}(\varepsilon_{{\bf p}}-\Omega+\omega)n_{\mathrm{F}}(\varepsilon_{{\bf k}}+\Omega)\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf p}})\right]\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf k}})\right]\delta(\Omega-\omega-\varepsilon_{{\bf p}}+\varepsilon_{{\bf p}+{\bf q}})\delta(\Omega+\varepsilon_{{\bf k}}-\varepsilon_{{\bf k}-{\bf q}}). (112)

Now the delta functions are the same as in Eq. (C). Further, we rewrite the product of the Fermi functions in the last equation as

nF(ε𝐩Ω+ω)nF(ε𝐤+Ω)[1nF(ε𝐩)][1nF(ε𝐤)]\displaystyle n_{\mathrm{F}}(\varepsilon_{{\bf p}}-\Omega+\omega)n_{\mathrm{F}}(\varepsilon_{{\bf k}}+\Omega)\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf p}})\right]\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf k}})\right]
=nF(ε𝐩Ω+ω)nF(ε𝐤+Ω)nF(ε𝐩)nF(ε𝐤)eβ(ε𝐩+ε𝐤)\displaystyle=n_{\mathrm{F}}(\varepsilon_{{\bf p}}-\Omega+\omega)n_{\mathrm{F}}(\varepsilon_{{\bf k}}+\Omega)n_{F}(\varepsilon_{\bf p})n_{F}(\varepsilon_{\bf k})e^{\beta(\varepsilon_{\bf p}+\varepsilon_{\bf k})}
=nF(ε𝐩Ω+ω)nF(ε𝐤+Ω)nF(ε𝐩)nF(ε𝐤)eβ(ε𝐩+ε𝐤)eβ(ε𝐩Ω+ω)eβ(ε𝐩Ω+ω)eβ(ε𝐤+Ω)eβ(ε𝐤+Ω)\displaystyle=n_{\mathrm{F}}(\varepsilon_{{\bf p}}-\Omega+\omega)n_{\mathrm{F}}(\varepsilon_{{\bf k}}+\Omega)n_{F}(\varepsilon_{\bf p})n_{F}(\varepsilon_{\bf k})e^{\beta(\varepsilon_{\bf p}+\varepsilon_{\bf k})}e^{\beta(\varepsilon_{\bf p}-\Omega+\omega)}e^{-\beta(\varepsilon_{\bf p}-\Omega+\omega)}e^{\beta(\varepsilon_{\bf k}+\Omega)}e^{-\beta(\varepsilon_{\bf k}+\Omega)}
=[1nF(ε𝐩Ω+ω)][1nF(ε𝐤+Ω)]nF(ε𝐩)nF(ε𝐤)eβω.\displaystyle=\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf p}}-\Omega+\omega)\right]\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf k}}+\Omega)\right]n_{F}(\varepsilon_{\bf p})n_{F}(\varepsilon_{\bf k})e^{-\beta\omega}. (113)

Substituting this back into Eq. (C), we see that indeed σ12(ω,T)=σ12(ω,T)\sigma_{12}^{\prime}(-\omega,T)=\sigma_{12}^{\prime}(\omega,T), as it should.

Nevertheless, if we neglect the frequencies in the delta functions and use Eq. (37) for the energy integrals, we get an odd function of frequency, i.e., σ12(ω,T)ω(1+4π2T2/ω2)\sigma^{\prime}_{12}(\omega,T)\propto\omega(1+4\pi^{2}T^{2}/\omega^{2}). Therefore, one cannot neglect the frequencies in this case. Note that σ12(ω,T)\sigma^{\prime}_{12}(\omega,T) is even only because Δ\varv\Delta\bm{\varv} changes sign on the transformations employed. Now, let’s expand the dispersions in the delta-functions in Eq. (C) to O(q)O(q) but keep the frequencies in there, and see if the evenness of σ12(ω,T)\sigma^{\prime}_{12}(\omega,T) is preserved by these simplifications. Performing the steps indicated above, we obtain

σ12(ω,T)=e2g2π(2π)4ω2(1eω/T)d2q(2π)2V2(𝐪)+𝑑ε𝐤+𝑑ε𝐩+𝑑Ωd𝐤\varv𝐤d𝐩\varv𝐩\displaystyle\sigma^{\prime}_{12}(\omega,T)=e^{2}g^{2}\frac{\pi}{(2\pi)^{4}\omega^{2}}(1-e^{-\omega/T})\int\frac{d^{2}q}{(2\pi)^{2}}V^{2}({\bf q})\int^{+\infty}_{-\infty}d\varepsilon_{\bf k}\int^{+\infty}_{-\infty}d\varepsilon_{\bf p}\int^{+\infty}_{-\infty}d\Omega\oint\frac{d\ell_{\bf k}}{\varv_{\bf k}}\oint\frac{d\ell_{\bf p}}{\varv_{\bf p}}
×(𝐰Δ\varv)nF(ε𝐤)nF(ε𝐩)[1nF(ε𝐤+Ω)][1nF(ε𝐩Ω+ω)]δ(Ω+\varv𝐤F𝐪)δ(Ωω+\varv𝐩F𝐪),\displaystyle\times({\bf w}\cdot\Delta\bm{\varv})n_{\mathrm{F}}(\varepsilon_{{\bf k}})n_{\mathrm{F}}(\varepsilon_{\bf p})\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf k}}+\Omega)\right]\left[1-n_{\mathrm{F}}(\varepsilon_{\bf p}-\Omega+\omega)\right]\delta(\Omega+\bm{\varv}^{F}_{\bf k}\cdot{\bf q})\delta(\Omega-\omega+\bm{\varv}^{F}_{\bf p}\cdot{\bf q}), (114)

where the subscript FF indicates that the velocities are taken right on the FS, i.e., they do not depend on ε𝐤\varepsilon_{\bf k} and ε𝐩\varepsilon_{\bf p}. On ωω\omega\to-\omega, the last expression becomes

σ12(ω,T)=e2g2π(2π)4ω2(1eω/T)d2q(2π)2V2(𝐪)+𝑑ε𝐤+𝑑ε𝐩+𝑑Ωd𝐤\varv𝐤d𝐩\varv𝐩\displaystyle\sigma^{\prime}_{12}(-\omega,T)=e^{2}g^{2}\frac{\pi}{(2\pi)^{4}\omega^{2}}(1-e^{\omega/T})\int\frac{d^{2}q}{(2\pi)^{2}}V^{2}({\bf q})\int^{+\infty}_{-\infty}d\varepsilon_{\bf k}\int^{+\infty}_{-\infty}d\varepsilon_{\bf p}\int^{+\infty}_{-\infty}d\Omega\oint\frac{d\ell_{\bf k}}{\varv_{\bf k}}\oint\frac{d\ell_{\bf p}}{\varv_{\bf p}}
×(𝐰Δ\varvF)nF(ε𝐤)nF(ε𝐩)[1nF(ε𝐤+Ω)][1nF(ε𝐩Ωω)]δ(Ω+\varv𝐤F𝐪)δ(Ω+ω+\varv𝐩F𝐪).\displaystyle\times({\bf w}\cdot\Delta\bm{\varv}^{F})n_{\mathrm{F}}(\varepsilon_{{\bf k}})n_{\mathrm{F}}(\varepsilon_{\bf p})\left[1-n_{\mathrm{F}}(\varepsilon_{{\bf k}}+\Omega)\right]\left[1-n_{\mathrm{F}}(\varepsilon_{\bf p}-\Omega-\omega)\right]\delta(\Omega+\bm{\varv}^{F}_{\bf k}\cdot{\bf q})\delta(\Omega+\omega+\bm{\varv}^{F}_{\bf p}\cdot{\bf q}). (115)

Now we perform the following sequence of transformations: relabel 𝐤𝐩{\bf k}\leftrightarrow{\bf p} (note that Δ\varv\Delta\bm{\varv} does not change its sign on this transformation), shift the variable as Ω+ωΩ\Omega+\omega\to\Omega, and replace ε𝐤,𝐩ε𝐤,𝐩\varepsilon_{{\bf k},{\bf p}}\to-\varepsilon_{{\bf k},{\bf p}} (note that the velocities are not affected by this transformation). Then we obtain

σ12(ω,T)=e2g2π(2π)4ω2(1eω/T)d2q(2π)2V2(𝐪)+𝑑ε𝐤+𝑑ε𝐩+𝑑Ωd𝐤\varv𝐤d𝐩\varv𝐩\displaystyle\sigma^{\prime}_{12}(-\omega,T)=e^{2}g^{2}\frac{\pi}{(2\pi)^{4}\omega^{2}}(1-e^{\omega/T})\int\frac{d^{2}q}{(2\pi)^{2}}V^{2}({\bf q})\int^{+\infty}_{-\infty}d\varepsilon_{\bf k}\int^{+\infty}_{-\infty}d\varepsilon_{\bf p}\int^{+\infty}_{-\infty}d\Omega\oint\frac{d\ell_{\bf k}}{\varv_{\bf k}}\oint\frac{d\ell_{\bf p}}{\varv_{\bf p}}
×(𝐰Δ\varvF)nF(ε𝐩)nF(ε𝐤)[1nF(ε𝐩+Ωω)][1nF(ε𝐤Ω)]δ(Ωω+\varv𝐩F𝐪)δ(Ω+\varv𝐤F𝐪).\displaystyle\times({\bf w}\cdot\Delta\bm{\varv}^{F})n_{\mathrm{F}}(-\varepsilon_{{\bf p}})n_{\mathrm{F}}(-\varepsilon_{\bf k})\left[1-n_{\mathrm{F}}(-\varepsilon_{{\bf p}}+\Omega-\omega)\right]\left[1-n_{\mathrm{F}}(-\varepsilon_{\bf k}-\Omega)\right]\delta(\Omega-\omega+\bm{\varv}^{F}_{\bf p}\cdot{\bf q})\delta(\Omega+\bm{\varv}^{F}_{\bf k}\cdot{\bf q}). (116)

The rest of the transformations affect only the Fermi functions:

nF(ε𝐩)nF(ε𝐤)[1nF(ε𝐩+Ωω)][1nF(ε𝐤Ω)]\displaystyle n_{\mathrm{F}}(-\varepsilon_{{\bf p}})n_{\mathrm{F}}(-\varepsilon_{\bf k})\left[1-n_{\mathrm{F}}(-\varepsilon_{{\bf p}}+\Omega-\omega)\right]\left[1-n_{\mathrm{F}}(-\varepsilon_{\bf k}-\Omega)\right]
=[1nF(ε𝐩)][1nF(ε𝐤)]nF(ε𝐩Ω+ω)nF(ε𝐤+Ω)\displaystyle=[1-n_{F}(\varepsilon_{\bf p})][1-n_{F}(\varepsilon_{\bf k})]n_{F}(\varepsilon_{\bf p}-\Omega+\omega)n_{F}(\varepsilon_{\bf k}+\Omega)
=nF(ε𝐩)nF(ε𝐤)eβ(ε𝐤+ε𝐩)nF(ε𝐩Ω+ω)eβ(ε𝐩Ω+ω)eβ(ε𝐩Ω+ω)nF(ε𝐤+Ω)eβ(ε𝐤+Ω)eβ(ε𝐤+Ω)\displaystyle=n_{F}(\varepsilon_{\bf p})n_{F}(\varepsilon_{\bf k})e^{\beta(\varepsilon_{\bf k}+\varepsilon_{\bf p})}n_{F}(\varepsilon_{\bf p}-\Omega+\omega)e^{\beta(\varepsilon_{\bf p}-\Omega+\omega)}e^{-\beta(\varepsilon_{\bf p}-\Omega+\omega)}n_{F}(\varepsilon_{\bf k}+\Omega)e^{\beta(\varepsilon_{\bf k}+\Omega)}e^{-\beta(\varepsilon_{\bf k}+\Omega)}
=nF(ε𝐩)nF(ε𝐤)[1nF(ε𝐩Ω+ω)][1nF(ε𝐤+Ω]eβω.\displaystyle=n_{F}(\varepsilon_{\bf p})n_{F}(\varepsilon_{\bf k})[1-n_{F}(\varepsilon_{\bf p}-\Omega+\omega)][1-n_{F}(\varepsilon_{\bf k}+\Omega]e^{-\beta\omega}. (117)

Substituting Eq. (117) into Eq. (C) yields σ12(ω,T)=σ12(ω,T)\sigma^{\prime}_{12}(-\omega,T)=-\sigma^{\prime}_{12}(\omega,T), which is incorrect.

Let’s summarize: projecting the momenta onto the FS yields σ12(ω,T)=Aω\sigma^{\prime}_{12}(\omega,T)=A\omega (at T=0T=0). However, such a term is not allowed by time-reversal symmetry; thus we must have A=0A=0, regardless of the shape of the FS. Therefore, even for a concave FS, one needs to expand Δ\varv\Delta\bm{\varv} in deviations from the FS, as done for the isotropic case. That should give σ12(ω,T)=Bω2\sigma^{\prime}_{12}(\omega,T)=B\omega^{2}, which is subleading to the σ1(ω,T)\sigma^{\prime}_{1}(\omega,T).

References

  • Basov and Timusk (2005) D. N. Basov and T. Timusk, “Electrodynamics of high-Tc{T}_{c} superconductors,” Rev. Mod. Phys. 77, 721–779 (2005).
  • Basov et al. (2011) D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel,  and K. Haule, “Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83, 471–542 (2011).
  • Maslov and Chubukov (2017) Dmitrii L. Maslov and Andrey V. Chubukov, “Optical response of correlated electron systems,” Rep. Prog. Phys. 80, 026503 (2017).
  • Armitage (2018) N. P. Armitage, “Electrodynamics of correlated electron systems,”  (2018), arXiv:0908.1126 .
  • Tanner (2019) D. B. Tanner, Optical Effects in Solids (Cambridge University Press, Cambridge, 2019).
  • Landau and Pomeranchuk (1936) L.D. Landau and I. Ya. Pomeranchuk, “On the properties of metals at very low temperatures,” Ph. Zs. Sowjet. 10, 649 (1936).
  • Ter-Haar (1965) D. Ter-Haar, ed., Collected Papers of L. D. Landau (Oxford,Pergamon, 1965).
  • Lifshitz and Pitaevskii (1981) E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics, v. X (Butterworth-Heinemann, Burlington, 1981).
  • Baber (1937) W. G. Baber, “The Contribution to the Electrical Resistance of Metals from Collisions between Electrons,” Proc. Royal Soc. London A 158, 383–396 (1937).
  • Gurzhi (1959) R. N. Gurzhi, “Mutual Electron Correlations in Metal Optics,” Sov. Phys.–JETP 35, 673 (1959).
  • Pal et al. (2012a) H. K. Pal, V. I. Yudson,  and D. L. Maslov, “Resistivity of non-Galilean-invariant Fermi- and non-Fermi liquids,” Lith. J. Phys. 52, 142 (2012a).
  • Sharma et al. (2021) Prachi Sharma, Alessandro Principi,  and Dmitrii L. Maslov, “Optical conductivity of a Dirac-Fermi liquid,” Phys. Rev. B 104, 045142 (2021).
  • Goyal et al. (2023) Adamya P. Goyal, Prachi Sharma,  and Dmitrii L. Maslov, “Intrinsic optical absorption in Dirac metals,” Annals of Physics , 169355 (2023).
  • Gurzhi et al. (1982) R.N. Gurzhi, A.I. Kopeliovich,  and S. B. Rutkevich, “Electric conductivity of two-dimensional metallic systems,” Sov. Phys.–JETP 56, 159 (1982).
  • Gurzhi et al. (1987) R. N. Gurzhi, A. I. Kopeliovich,  and S. B. Rutkevich, “Kinetic properties of two-dimensional metal systems,” Adv. Phys. 36, 221–270 (1987).
  • Gurzhi et al. (1995) R. N. Gurzhi, A. N. Kalinenko,  and A. I. Kopeliovich, “Electron-electron momentum relaxation in a two-dimensional electron gas,” Phys. Rev. B 52, 4744–4747 (1995).
  • Rosch and Howell (2005) A. Rosch and P. C. Howell, “Zero-temperature optical conductivity of ultraclean Fermi liquids and superconductors,” Phys. Rev. B 72, 104510 (2005).
  • Rosch (2006) A. Rosch, “Optical conductivity of clean metals,” Annalen der Physik 15, 526–534 (2006).
  • Briskot et al. (2015) U. Briskot, M. Schütt, I. V. Gornyi, M. Titov, B. N. Narozhny,  and A. D. Mirlin, “Collision-dominated nonlinear hydrodynamics in graphene,” Phys. Rev. B 92, 115426 (2015).
  • Ledwith et al. (2019) Patrick J. Ledwith, Haoyu Guo,  and Leonid Levitov, “The hierarchy of excitation lifetimes in two-dimensional Fermi gases,” Ann. Phys. 411, 167913 (2019).
  • Maslov et al. (2011) Dmitrii L. Maslov, Vladimir I. Yudson,  and Andrey V. Chubukov, “Resistivity of a Non-Galilean–Invariant Fermi Liquid near Pomeranchuk Quantum Criticality,” Phys. Rev. Lett. 106, 106403 (2011).
  • Guo et al. (2022) Haoyu Guo, Aavishkar A. Patel, Ilya Esterlis,  and Subir Sachdev, “Large-N{N} theory of critical fermi surfaces. ii. Conductivity,” Phys. Rev. B 106, 115151 (2022).
  • Shi et al. (2022) Zhengyan Darius Shi, Hart Goldman, Dominic V. Else,  and T. Senthil, “Gifts from anomalies: Exact results for Landau phase transitions in metals,” SciPost Phys. 13, 102 (2022).
  • Hertz (1976) John A. Hertz, “Quantum critical phenomena,” Phys. Rev. B 14, 1165–1184 (1976).
  • Millis (1993) A. J. Millis, “Effect of a nonzero temperature on quantum critical points in itinerant fermion systems,” Phys. Rev. B 48, 7183–7196 (1993).
  • Kim et al. (1994) Yong Baek Kim, Akira Furusaki, Xiao-Gang Wen,  and Patrick A. Lee, “Gauge-invariant response functions of fermions coupled to a gauge field,” Phys. Rev. B 50, 17917–17932 (1994).
  • Chubukov and Maslov (2017) Andrey V. Chubukov and Dmitrii L. Maslov, “Optical conductivity of a two-dimensional metal near a quantum critical point: The status of the extended Drude formula,” Phys. Rev. B 96, 205136 (2017).
  • Shi et al. (2023) Zhengyan Darius Shi, Dominic V. Else, Hart Goldman,  and T. Senthil, “Loop current fluctuations and quantum critical transport,” SciPost Phys. 14, 113 (2023).
  • Pal et al. (2012b) H. K. Pal, V. I. Yudson,  and D. L. Maslov, “Effect of electron-electron interaction on surface transport in the Bi2Te3 family of three-dimensional topological insulators,” Phys. Rev. B 85, 085439 (2012b).
  • Pimenov et al. (2022) Dimitri Pimenov, Alex Kamenev,  and Andrey V. Chubukov, “Quasiparticle scattering in a superconductor near a nematic critical point: Resonance mode and multiple attractive channels,” Phys. Rev. Lett. 128, 017001 (2022).