This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Operator product expansion coefficients in the exact renormalization group formalism

C. Pagani [email protected] Université Grenoble Alpes, CNRS, LPMMC, 25 avenue des Martyrs, 38000 Grenoble, France Institute für Physik (WA THEP) Johannes-Gutenberg-Universität
Staudingerweg 7, 55099 Mainz, Germany
   H. Sonoda [email protected] Physics Department, Kobe University, Kobe 657-8501, Japan
Abstract

We study how to compute the operator product expansion coefficients in the exact renormalization group formalism. After discussing possible strategies, we consider some examples explicitly, within the ϵ\epsilon-expansions, for the Wilson-Fisher fixed points of the real scalar theory in d=4ϵd=4-\epsilon dimensions and the Lee-Yang model in d=6ϵd=6-\epsilon dimensions. Finally we discuss how our formalism may be extended beyond perturbation theory.

pacs:
preprint: KOBE-TH-20-01

I Introduction

The exact renormalization group (ERG) provides a framework to study the fundamental aspects of quantum field theories (QFT). For instance, it allows one to give a non-perturbative definition of renormalizable theories Wilson:1973jj and to discuss the realization of symmetries at the quantum level Igarashi:2009tj . On top of being a conceptual framework, ERG offers a framework for practical computations. It has been used as a computational tool for the universal quantities such as critical exponents in statistical field theory (see e.g. Berges:2000ew ; Delamotte:2007pf ), and also as an exploratory tool in a wide range of subjects including quantum gravity R96PaReut2018 .

Besides ERG, the operator product expansion (OPE) offers important insights into non-perturbative aspects of QFTs Wilson:1969zs . Let us denote composite operators as [𝒪a]\left[\mathcal{O}_{a}\right] and the product of two composite operators as [𝒪a𝒪b]\left[\mathcal{O}_{a}\mathcal{O}_{b}\right]. OPE states the validity of

[𝒪a(x)𝒪b(y)]\displaystyle\left[\mathcal{O}_{a}\left(x\right)\mathcal{O}_{b}\left(y\right)\right] =cCabc(xy)[𝒪c(x+y2)]\displaystyle=\sum_{c}C_{abc}\left(x-y\right)\left[\mathcal{O}_{c}\left(\frac{x+y}{2}\right)\right] (1)

inserted into any correlation functions for small |xy||x-y|. The existence of OPE has been proved perturbatively by Zimmermann Zimmermann:1972tv and plays a fundamental role in the study of conformal field theories (CFTs). Since both ERG and OPE offer non-perturbative insights into QFT, it is natural to study the relation between the two.

ERG was used to provide a perturbative proof of the existence of OPE Hughes:1988cp ; Keller:1991bz ; Keller:1992by ; Hollands:2011gf ; Holland:2014ifa ; Holland:2014pna , but little effort had been made to explore OPE within ERG beyond perturbation theory. In Pagani:2017tdr a non-perturbative definition of operator products was given, and simple examples of OPE were constructed in the Wilson action framework. Recently, composite operators have been constructed explicitly in the ERG formalism to make contact with various physical observables Becchi:1996an ; Igarashi:2009tj ; Rose:2015bma ; Rose:2016elj ; Daviet:2018lfy ; Pagani:2015hna ; Pagani:2016dof ; Becker:2018quq ; Becker2019Frank2020 .

In the present work we construct explicit examples of OPEs within the effective average action (EAA) framework Wetterich:1992yh . We identify two possible strategies to compute OPEs via ERG. One is based on the construction of operator products and their expansions in composite operators, and the other is based on the computation of three-point functions for theories with conformal invariance. We study explicit solutions of the ERG equations perturbatively with the ϵ\epsilon-expansions, and compare our results with those obtained via the conformal bootstrap Gaiotto:2013nva ; Hasegawa:2016piv ; Gopakumar:2016wkt ; Gopakumar:2016cpb ; Gopakumar:2018xqi . We also comment on how we may extend our strategies to non-perturbative approximation schemes available within the ERG formalism.

The paper is organized as follows. In section II we define composite operators and their products in the ERG formalism. We then consider the expansion of an operator product in composite operators and outline two possible strategies for the calculation of such an expansion. In section III we give technical remarks to explain how to construct operators at the Wilson-Fisher fixed point. Discussions of a fixed point require fixing a momentum cutoff, and we augment the technical outline given in section II where the momentum cutoff flows. Section IV is a long technical section, where we construct some composite operators explicitly and normalize them appropriately. In section V we apply the results obtained above to extract OPE coefficients and discuss our findings. We summarize our results in section VI and discuss the future perspectives.

II Operator product expansion in the ERG formalism

II.1 Operator products in the ERG

We extend the usual ERG formalism by introducing external sources that couple to composite operators so that the correlation functions of composite operators can be retrieved directly from the Wilson action. In this paper we actually prefer to discuss the 1PI counterpart of the Wilson action, known as the effective average action (EAA), so that we only need to deal with the 1PI part of the correlation functions which are relevant to the short distance singularities. A fully analogous construction applies to the Wilson action; see Pagani:2017tdr for example. For an overview regarding composite operators in the ERG formalism, we refer the reader to Becchi:1996an ; Pawlowski:2005xe ; Igarashi:2009tj ; Pagani:2016pad ; Pagani:2017tdr .

Let us consider the following modified generating functional of connected correlation functions:

Zk[J,ε]\displaystyle Z_{k}\left[J,\varepsilon\right] =eWk[J,ε]\displaystyle=e^{W_{k}\left[J,\varepsilon\right]}
𝒵𝒟χexp[S[χ]+ddxJ(x)χ(x)ddxεi(x)𝒪i(x)ΔSk[χ]],\displaystyle\equiv{\cal Z}\int{\cal D}\chi\,\exp\left[-S\left[\chi\right]+\int d^{d}x\,J\left(x\right)\chi\left(x\right)-\int d^{d}x\,\varepsilon_{i}\left(x\right)\mathcal{O}_{i}\left(x\right)-\Delta S_{k}\left[\chi\right]\right]\,,

where S[χ]S[\chi] is the bare action, and we have introduced the sources J(x),εi(x)J(x),\varepsilon_{i}(x) to the elementary field χ(x)\chi(x) and the composite operator 𝒪i(x)\mathcal{O}_{i}\left(x\right). The momentum kk is an IR cutoff, introduced via the IR cutoff action ΔSk[χ]\Delta S_{k}\left[\chi\right] defined by

ΔSk[χ]ddx12χk(2)χ.\Delta S_{k}\left[\chi\right]\equiv\int d^{d}x\,\frac{1}{2}\chi\,{\cal R}_{k}\left(-\partial^{2}\right)\chi\,.

The kernel k(2)k2R(2/k2)\mathcal{R}_{k}\left(-\partial^{2}\right)\equiv k^{2}R\left(-\partial^{2}/k^{2}\right) suppresses the integration over the low momentum modes of χ\chi.

The EAA is then defined by the Legendre transform of Wk[J,ε]W_{k}\left[J,\varepsilon\right]:

Γk[φ,ε]+ΔSk[φ]=ddxJ(x)φ(x)Wk[J,ε],\Gamma_{k}\left[\varphi,\varepsilon\right]+\Delta S_{k}\left[\varphi\right]=\int d^{d}x\,J\left(x\right)\varphi\left(x\right)-W_{k}\left[J,\varepsilon\right]\,,

where

φ(x)=δWk[J,ε]δJ(x),\varphi(x)=\frac{\delta W_{k}[J,\varepsilon]}{\delta J(x)}\,,

and no Legendre transform is performed over ε\varepsilon. A composite operator [𝒪a](x)\left[\mathcal{O}_{a}\right]\left(x\right) is defined by

[𝒪a](x)δΓk[φ,ε]δεa(x)|ε=0.\left[\mathcal{O}_{a}\right]\left(x\right)\equiv\frac{\delta\Gamma_{k}\left[\varphi,\varepsilon\right]}{\delta\varepsilon_{a}\left(x\right)}\Bigr{|}_{\varepsilon=0}\,. (2)

This is motivated by its correspondence with δδεZk\frac{\delta}{\delta\varepsilon}Z_{k} at fixed source JJ. As a functional of φ\varphi, [𝒪a](x)\left[\mathcal{O}_{a}\right](x) gives the 1PI part of the correlation functions

[𝒪a](x)χ(x1)χ(xn)S\left\langle\left[\mathcal{O}_{a}\right](x)\chi(x_{1})\cdots\chi(x_{n})\right\rangle_{S}

in the limit k0k\to 0.

The product [𝒪a𝒪b](x,y)\left[\mathcal{O}_{a}\mathcal{O}_{b}\right]\left(x,y\right) of two operators [𝒪a](x),[𝒪b](y)\left[\mathcal{O}_{a}\right](x),\left[\mathcal{O}_{b}\right](y) is defined by

[𝒪a𝒪b](x,y)\displaystyle\left[\mathcal{O}_{a}\mathcal{O}_{b}\right]\left(x,y\right) δ2Γk[φ,ε]δεa(x)δεb(y)|ε=0+z1,z2δ2Γk[φ,ε]δεb(x)δφ(z1)|ε=0Gk(z1,z2)δ2Γk[φ,ε]δφ(z2)δεb(y)|ε=0\displaystyle\equiv-\frac{\delta^{2}\Gamma_{k}\left[\varphi,\varepsilon\right]}{\delta\varepsilon_{a}\left(x\right)\delta\varepsilon_{b}\left(y\right)}\Bigr{|}_{\varepsilon=0}+\int_{z_{1},z_{2}}\frac{\delta^{2}\Gamma_{k}[\varphi,\varepsilon]}{\delta\varepsilon_{b}\left(x\right)\delta\varphi\left(z_{1}\right)}\Bigr{|}_{\varepsilon=0}\cdot G_{k}\left(z_{1},z_{2}\right)\cdot\frac{\delta^{2}\Gamma_{k}[\varphi,\varepsilon]}{\delta\varphi\left(z_{2}\right)\delta\varepsilon_{b}\left(y\right)}\Bigr{|}_{\varepsilon=0}
+δΓk[φ,ε]δεa(x)|ε=0δΓk[φ,ε]δεb(y)|ε=0,\displaystyle\quad+\frac{\delta\Gamma_{k}[\varphi,\varepsilon]}{\delta\varepsilon_{a}\left(x\right)}\Bigr{|}_{\varepsilon=0}\frac{\delta\Gamma_{k}[\varphi,\varepsilon]}{\delta\varepsilon_{b}\left(y\right)}\Bigr{|}_{\varepsilon=0}\,, (3)

where Gk(z1,z2)[φ]G_{k}\left(z_{1},z_{2}\right)[\varphi] is the field dependent high-momentum propagator defined by

ddxδ2Γk[φ,0]δφ(z1)δφ(x)Gk(x,z2)+k(z12)Gk(z1,z2)=δ(z1z2).\int d^{d}x\,\frac{\delta^{2}\Gamma_{k}[\varphi,0]}{\delta\varphi(z_{1})\delta\varphi(x)}G_{k}\left(x,z_{2}\right)+\mathcal{R}_{k}\left(-\partial_{z_{1}}^{2}\right)G_{k}\left(z_{1},z_{2}\right)=\delta(z_{1}-z_{2})\,. (4)

The product [𝒪a𝒪b](x,y)\left[\mathcal{O}_{a}\mathcal{O}_{b}\right]\left(x,y\right) can be represented diagrammatically as in Fig. 1 which is motivated by its correspondence with δ2δεaδεbZk\frac{\delta^{2}}{\delta\varepsilon_{a}\delta\varepsilon_{b}}Z_{k} at fixed source JJ.111The connected part of the product is given by δ2δεb(xb)δεa(xa)|JW=δ2Γ[φ,ε]δεa(xa)δεb(xb)+x,yδ2Γ[φ,ε]δεb(xb)δφ(x)Gk(x,y)δ2Γ[φ,ε]δφ(y)δεa(xa),\frac{\delta^{2}}{\delta\varepsilon_{b}\left(x_{b}\right)\delta\varepsilon_{a}\left(x_{a}\right)}\Bigr{|}_{J}W=-\frac{\delta^{2}\Gamma\left[\varphi,\varepsilon\right]}{\delta\varepsilon_{a}\left(x_{a}\right)\delta\varepsilon_{b}\left(x_{b}\right)}+\int_{x,y}\frac{\delta^{2}\Gamma[\varphi,\varepsilon]}{\delta\varepsilon_{b}\left(x_{b}\right)\delta\varphi\left(x\right)}G_{k}\left(x,y\right)\frac{\delta^{2}\Gamma\left[\varphi,\varepsilon\right]}{\delta\varphi\left(y\right)\delta\varepsilon_{a}\left(x_{a}\right)}\,, where we have used δδεc(xc)|J=δδεc(xc)|φx,yδ2Γ[φ,ε]δεc(xc)δφ(x)G(x,y)δδφ(y).\frac{\delta}{\delta\varepsilon_{c}\left(x_{c}\right)}\Bigr{|}_{J}=\frac{\delta}{\delta\varepsilon_{c}\left(x_{c}\right)}\Bigr{|}_{\varphi}-\int_{x,y}\frac{\delta^{2}\Gamma[\varphi,\varepsilon]}{\delta\varepsilon_{c}\left(x_{c}\right)\delta\varphi\left(x\right)}G\left(x,y\right)\frac{\delta}{\delta\varphi\left(y\right)}\,. See also Rose:2015bma .

Refer to caption
Figure 1: Diagrammatic representation of the full correlation function [𝒪a𝒪b]\left[\mathcal{O}_{a}\mathcal{O}_{b}\right] in the EAA formalism. The black dots denote composite operators [𝒪a],[𝒪b]\left[\mathcal{O}_{a}\right],\left[\mathcal{O}_{b}\right], i.e., the terms linear in the sources ε\varepsilon. The black square is the quadratic term δ2Γδεaδεb|ε=0\frac{\delta^{2}\Gamma}{\delta\varepsilon_{a}\delta\varepsilon_{b}}\Bigr{|}_{\varepsilon=0}.

Both [𝒪a]\left[\mathcal{O}_{a}\right] and [𝒪a𝒪b]\left[\mathcal{O}_{a}\mathcal{O}_{b}\right] can be constructed from the associated ERG, as summarized below. The EAA Γk[φ,ε]\Gamma_{k}\left[\varphi,\varepsilon\right] satisfies the ERG differential equation Wetterich:1992yh ; Ellwanger:1993mw ; Morris:1993qb ; Reuter:1993kw

tΓk[φ,ε]=12Tr[(Γk(2)[φ,ε]+k)1tk],\partial_{t}\Gamma_{k}\left[\varphi,\varepsilon\right]=\frac{1}{2}\mbox{Tr}\left[\left(\Gamma_{k}^{\left(2\right)}\left[\varphi,\varepsilon\right]+{\cal R}_{k}\right)^{-1}\partial_{t}{\cal R}_{k}\right]\,, (5)

where

tkk,\partial_{t}\equiv-k\frac{\partial}{\partial k}\,, (6)

and Γk(2)[φ,ε]=δ2Γkδφδφ\Gamma_{k}^{\left(2\right)}\left[\varphi,\varepsilon\right]=\frac{\delta^{2}\Gamma_{k}}{\delta\varphi\delta\varphi} is the Hessian of the EAA with respect to the average field. By taking the functional derivative of Eq. (5) we can derive the flow equations for composite operators and for the 1PI contributions to the operator products (3). More precisely, we obtain Pawlowski:2005xe ; Igarashi:2009tj ; Pagani:2016pad

t[𝒪a](x)=12Tr[(Γk(2)+k)1[𝒪a](2)(x)(Γk(2)+k)1tk],\partial_{t}\left[\mathcal{O}_{a}\right]\left(x\right)=-\frac{1}{2}\mbox{Tr}\left[\left(\Gamma_{k}^{\left(2\right)}+{\cal R}_{k}\right)^{-1}\left[\mathcal{O}_{a}\right]^{\left(2\right)}\left(x\right)\left(\Gamma_{k}^{\left(2\right)}+{\cal R}_{k}\right)^{-1}\partial_{t}{\cal R}_{k}\right]\,, (7)

where [𝒪a](2)=δ2δφδφ[𝒪a]\left[\mathcal{O}_{a}\right]^{\left(2\right)}=\frac{\delta^{2}}{\delta\varphi\delta\varphi}\left[\mathcal{O}_{a}\right] is the Hessian of the composite operator. For the products, we obtain

tδ2Γk[φ,ε]δεa(x)δεb(y)|ε=0=12Tr[(Γk(2)+k)1δ2Γk(2)[φ,0]δεa(x)δεb(y)(Γk(2)+k)1tk]\displaystyle\partial_{t}\frac{\delta^{2}\Gamma_{k}\left[\varphi,\varepsilon\right]}{\delta\varepsilon_{a}\left(x\right)\delta\varepsilon_{b}\left(y\right)}\Bigr{|}_{\varepsilon=0}=-\frac{1}{2}\mbox{Tr}\left[\left(\Gamma_{k}^{\left(2\right)}+{\cal R}_{k}\right)^{-1}\frac{\delta^{2}\Gamma_{k}^{\left(2\right)}\left[\varphi,0\right]}{\delta\varepsilon_{a}\left(x\right)\delta\varepsilon_{b}\left(y\right)}\left(\Gamma_{k}^{\left(2\right)}+{\cal R}_{k}\right)^{-1}\partial_{t}{\cal R}_{k}\right] (8)
+Tr[(Γk(2)+k)1δΓk(2)[φ,0]δεa(x)(Γk(2)+k)1δΓk(2)[φ,0]δεb(y)(Γk(2)+k)1tk].\displaystyle\quad+\mbox{Tr}\left[\left(\Gamma_{k}^{\left(2\right)}+{\cal R}_{k}\right)^{-1}\frac{\delta\Gamma_{k}^{\left(2\right)}\left[\varphi,0\right]}{\delta\varepsilon_{a}\left(x\right)}\left(\Gamma_{k}^{\left(2\right)}+{\cal R}_{k}\right)^{-1}\frac{\delta\Gamma_{k}^{\left(2\right)}\left[\varphi,0\right]}{\delta\varepsilon_{b}\left(y\right)}\left(\Gamma_{k}^{\left(2\right)}+{\cal R}_{k}\right)^{-1}\partial_{t}{\cal R}_{k}\right]\,.

By solving Eqs. (7) and (8), we can construct the operator product [𝒪a𝒪b]\left[\mathcal{O}_{a}\mathcal{O}_{b}\right] as in (3).

II.2 Operator product expansion coefficients in the ERG formalism

The operator product expansion (1) and its connection to ERG has already been studied in the literature Hughes:1988cp ; Keller:1991bz ; Keller:1992by ; Hollands:2011gf ; Holland:2014ifa ; Holland:2014pna ; Pagani:2017tdr . The ERG framework provides a further perturbative proof of the existence of the OPE Hughes:1988cp ; Keller:1991bz ; Keller:1992by ; Hollands:2011gf ; Holland:2014ifa ; Holland:2014pna . Actually, in the ERG formalism, the OPE (1) amounts to expressing the operator product [𝒪a𝒪b](x,y)\left[\mathcal{O}_{a}\mathcal{O}_{b}\right]\left(x,y\right), given by (3), as an expansion in a basis of composite operators, given by (2). Thanks to the built-in locality, it has been argued that such an expansion is natural in the ERG formalism Pagani:2017tdr .

Let us emphasize that Eq. (1) is expected to hold along the entire RG trajectory. When the theory is at criticality, however, we expect

[𝒪a](x)[𝒪a](0)=1|xy|2Δa\Bigr{\langle}\left[\mathcal{O}_{a}\right]\left(x\right)\left[\mathcal{O}_{a}\right]\left(0\right)\Bigr{\rangle}=\frac{1}{\left|x-y\right|^{2\Delta_{a}}} (9)

to be valid at large distances if the operators are normalized properly. Then, the OPE coefficients in (1) are given by

Cabc(xy)=cabc|xy|Δa+ΔbΔc,C_{abc}\left(x-y\right)=\frac{c_{abc}}{\left|x-y\right|^{\Delta_{a}+\Delta_{b}-\Delta_{c}}}\,, (10)

where Δa\Delta_{a} is the scale dimension of the operator [𝒪a]\left[\mathcal{O}_{a}\right], and cabcc_{abc} is a numerical factor. We refer to this numerical factor cabcc_{abc} as an OPE coefficient. Theories with conformal symmetry are the IR limit of such critical theories, and the OPE coefficient cabcc_{abc} appears as the overall coefficient of the three-point function

[𝒪a](x1)[𝒪b](x2)[𝒪c](x3)=cabc(x122)d/2νc(x232)d/2νa(x122)d/2νb,\Bigr{\langle}\left[\mathcal{O}_{a}\right]\left(x_{1}\right)\left[\mathcal{O}_{b}\right]\left(x_{2}\right)\left[\mathcal{O}_{c}\right]\left(x_{3}\right)\Bigr{\rangle}=\frac{c_{abc}}{\left(x_{12}^{2}\right)^{d/2-\nu_{c}}\left(x_{23}^{2}\right)^{d/2-\nu_{a}}\left(x_{12}^{2}\right)^{d/2-\nu_{b}}}\,, (11)

where xij2=|xixj|2x_{ij}^{2}=\left|x_{i}-x_{j}\right|^{2}, cabcc_{abc} is fully symmetric in its indices, and νa=12(d+ΔaΔbΔc)\nu_{a}=\frac{1}{2}\left(d+\Delta_{a}-\Delta_{b}-\Delta_{c}\right), etc.

The main aim of this paper is to lay down a possible strategy for computing the OPE coefficients cijkc_{ijk} within the ERG framework. We can consider the following two possibilities.

A)

Construct the full operator product [𝒪a𝒪b]\left[\mathcal{O}_{a}\mathcal{O}_{b}\right] first, and expand it in a basis of composite operators [𝒪c]\left[\mathcal{O}_{c}\right].

B)

Assuming conformal symmetry, extract the coefficient cabcc_{abc} directly from the three-point function given by (11).

The strategy A) has been followed in Pagani:2017tdr to provide simple examples around the Gaussian fixed point. Although available in principle, this strategy is cumbersome in practice. Since one usually works in momentum space, it is easier to construct the most singular (i.e., non-integrable) part of the OPE rather than the full (i.e., including the finite part) OPE.

In this paper we will consider the approach B) in detail within the ERG formalism. We will extract OPE coefficients from the associated three-point functions. We calculate in momentum space rather than in coordinate space. In subsection II.3 below we recall a few basic features of conformal invariance in momentum space and explain the main points of our recipe. As a side note, we point out that ERG is a very efficient framework to discuss the presence of conformal invariance Delamotte:2015aaa ; Delamotte:2018fnz ; DePolsi:2018vxc ; DePolsi:2019owi ; Rosten:2016nmc ; Rosten:2017urs ; Sonoda:2017zgl .

We apply the strategy outlined above to compute some examples of the OPE coefficients. We solve the ERG differential equations perturbatively and express the results via the ϵ\epsilon-expansion. This allows us to compare our results with others that have been obtained in the literature by means of the analytic conformal bootstrap approach Gaiotto:2013nva ; Hasegawa:2016piv ; Gopakumar:2016wkt ; Gopakumar:2016cpb ; Gopakumar:2018xqi . In particular, we will compute the coefficients “c112c_{112}” and “c114c_{114}” to the first order in ϵ\epsilon for the critical Ising model in d=4ϵd=4-\epsilon dimensions, and the coefficient “c111c_{111}” to the first order in ϵ\sqrt{\epsilon} for the critical Lee-Yang model in d=6ϵd=6-\epsilon dimensions. Our results agree with those obtained by other approaches.

II.3 Operator product expansion coefficients in momentum space

Calculations in quantum field theory often rely on momentum space, where the loop corrections are most easily expressed and computed. On the other hand, formulas regarding OPE are often most naturally expressed in real (coordinate) space, especially in the case of CFTs. In this subsection we briefly describe the connection between expressions in real space and those in momentum space.

Conformal symmetry in momentum space has been analyzed in the literature in some detail; see Coriano:2013jba ; Maglio:2019grh ; Bzowski:2013sza ; Bzowski:2015pba ; Bzowski:2015yxv ; Bzowski:2019kwd ; Isono:2019ihz ; Gillioz:2018mto and references therein. We only need a few very basic formulas, which we review below (a few more technical details are provided in Appendix A). We refer the interested reader to the literature given above for more details regarding the constraint imposed by conformal symmetry in momentum space.

Let us consider a set of primary operators ϕi\phi_{i}, normalized by the two-point functions

ϕi(x)ϕj(0)=1xΔi+Δjδij.\left\langle\phi_{i}\left(x\right)\phi_{j}\left(0\right)\right\rangle=\frac{1}{x^{\Delta_{i}+\Delta_{j}}}\delta_{ij}\,. (12)

In momentum space this normalization gives

ϕi(p)ϕi(q)=(2π)dδ(p+q)πd/2Γ(d2Δi)Γ(Δi)(4p2)d2Δi,\left\langle\phi_{i}\left(p\right)\phi_{i}\left(q\right)\right\rangle=(2\pi)^{d}\delta(p+q)\cdot\pi^{d/2}\frac{\Gamma\left(\frac{d}{2}-\Delta_{i}\right)}{\Gamma(\Delta_{i})}\left(\frac{4}{p^{2}}\right)^{\frac{d}{2}-\Delta_{i}}\,, (13)

where we have used (119) given in Appendix A.

The Fourier transform of the three-point function

ϕ1(x1)ϕ2(x2)ϕ3(x3)=c123(x122)d/2ν3(x232)d/2ν1(x122)d/2ν2\left\langle\phi_{1}(x_{1})\phi_{2}(x_{2})\phi_{3}(x_{3})\right\rangle=\frac{c_{123}}{(x_{12}^{2})^{d/2-\nu_{3}}(x^{2}_{23})^{d/2-\nu_{1}}(x^{2}_{12})^{d/2-\nu_{2}}} (14)

(the same as (11)) is given by a somewhat complicated expression either as a momentum integral or via special functions. To avoid such complications, we consider the limit p1p2p_{1}\gg p_{2}, where we find

ϕ1(p1)ϕ2(p2)ϕ3(p)p1p2(2π)dδ(p1+p2p)c123p1d+Δ2Δ1Δ3p2d2Δ2\displaystyle\left\langle\phi_{1}\left(p_{1}\right)\phi_{2}\left(p_{2}\right)\phi_{3}\left(-p\right)\right\rangle\overset{p_{1}\gg p_{2}}{\longrightarrow}(2\pi)^{d}\delta(p_{1}+p_{2}-p)\cdot\frac{c_{123}}{p_{1}^{d+\Delta_{2}-\Delta_{1}-\Delta_{3}}p_{2}^{d-2\Delta_{2}}}
×(4π)d412(Δ1+Δ2+Δ3)Γ(12(d+Δ2Δ1Δ3))Γ(12(Δ1+Δ3Δ2))Γ(d2Δ2)Γ(Δ2).\displaystyle\quad\times\left(4\pi\right)^{d}4^{-\frac{1}{2}\left(\Delta_{1}+\Delta_{2}+\Delta_{3}\right)}\frac{\Gamma\left(\frac{1}{2}\left(d+\Delta_{2}-\Delta_{1}-\Delta_{3}\right)\right)}{\Gamma\left(\frac{1}{2}\left(\Delta_{1}+\Delta_{3}-\Delta_{2}\right)\right)}\frac{\Gamma\left(\frac{d}{2}-\Delta_{2}\right)}{\Gamma\left(\Delta_{2}\right)}\,. (15)

To extract the coefficient c123c_{123}, it is enough to know this asymptotic behavior . We provide a little more details of this formula in Appendix A.

III Wilson-Fisher fixed point

In this section we wish to discuss technicalities that are quite important for our calculations. In the main part of this paper we consider a real scalar theory at its criticality in d=4ϵd=4-\epsilon dimensions. In doing so with ERG, we have two alternatives:

C)

We start from a bare theory SB[χ]S_{B}[\chi] with a large but finite cutoff k0k_{0}. We tune the bare parameters to make the theory critical. We then construct the EAA Γk[φ,ε]\Gamma_{k}[\varphi,\varepsilon] whose kk-dependence is determined by ERG. In the limit k0k\to 0, Γk\Gamma_{k} becomes the 1PI generating functional of the correlation functions. A conformal field theory is obtained as the IR limit of the critical theory, i.e., we must look at the correlation functions for the momenta much smaller than the bare cutoff k0k_{0}.

D)

We adopt the dimensionless convention by measuring all dimensionful quantities in appropriate powers of the cutoff kk. The resulting 1PI EAA Γ¯t[φ¯,ε¯]\bar{\Gamma}_{t}[\bar{\varphi},\bar{\varepsilon}] has a fixed cutoff of order 11, and satisfies an ERG differential equation with the Gaussian and Wilson-Fisher fixed-point solutions. Γ¯[φ¯,ε¯]\bar{\Gamma}_{*}[\bar{\varphi},\bar{\varepsilon}] at the Wilson-Fisher fixed point gives the correlation functions of a conformal field theory, but only for the momenta much larger than the fixed cutoff.Sonoda:2017rro

We prefer D) because it is easier to construct a fixed point than to tune a bare theory for criticality. For completeness and the convenience of the reader, let us rewrite the relevant ERG differential equations in the dimensionless convention.

We first introduce dimensionless fields by

φ¯(p)\displaystyle\bar{\varphi}(p) kd+22φ(pk),\displaystyle\equiv k^{\frac{d+2}{2}}\varphi(pk)\,, (16a)
[𝒪¯i](p)\displaystyle\left[\bar{\mathcal{O}}_{i}\right](p) kddi[𝒪i](pk),\displaystyle\equiv k^{d-d_{i}}\left[\mathcal{O}_{i}\right](pk)\,, (16b)
ε¯i(p)\displaystyle\bar{\varepsilon}_{i}(p) kdiεi(pk),\displaystyle\equiv k^{d_{i}}\varepsilon_{i}(pk)\,, (16c)

where did_{i} is the scale dimension of [𝒪i](x)=peipx[𝒪i](p)\left[\mathcal{O}_{i}\right](x)=\int_{p}e^{ipx}\left[\mathcal{O}_{i}\right](p) in the coordinate space at the Gaussian fixed point. It is sometimes called the engineering dimension.

We then define

Γ¯t[φ¯,ε¯]Γk[φ,ε],\bar{\Gamma}_{t}[\bar{\varphi},\bar{\varepsilon}]\equiv\Gamma_{k}[\varphi,\varepsilon]\,, (17)

where we have traded the momentum cutoff kk for the logarithmic flow time tt, given by (6). The ERG differential equation for Γ¯t[φ¯,ε¯]\bar{\Gamma}_{t}[\bar{\varphi},\bar{\varepsilon}] is given by

tΓ¯t[φ¯,ε¯]\displaystyle\partial_{t}\bar{\Gamma}_{t}[\bar{\varphi},\bar{\varepsilon}] =p(d+22+pp)φ¯(p)δΓ¯t[φ¯,ε¯]δφ¯(p)+p(di+pp)ε¯i(p)δΓ¯t[φ¯,ε¯]δε¯i(p)\displaystyle=\int_{p}\left(\frac{d+2}{2}+p\cdot\partial_{p}\right)\bar{\varphi}(p)\cdot\frac{\delta\bar{\Gamma}_{t}[\bar{\varphi},\bar{\varepsilon}]}{\delta\bar{\varphi}(p)}+\int_{p}\left(d_{i}+p\cdot\partial_{p}\right)\bar{\varepsilon}_{i}(p)\cdot\frac{\delta\bar{\Gamma}_{t}[\bar{\varphi},\bar{\varepsilon}]}{\delta\bar{\varepsilon}_{i}(p)}
p(2pp)R(p)12Gt;p,p[φ¯,ε¯],\displaystyle\quad-\int_{p}\left(2-p\cdot\partial_{p}\right)R(p)\cdot\frac{1}{2}G_{t;p,-p}[\bar{\varphi},\bar{\varepsilon}]\,, (18)

where Gt;p,q[φ¯,ε¯]G_{t;p,-q}[\bar{\varphi},\bar{\varepsilon}] is defined by

qGt;p,q[φ¯,ε¯](δ2Γ¯t[φ¯,ε¯]δφ¯(q)δφ¯(r)+R(q)(2π)dδ(qr))=(2π)dδ(pr).\int_{q}G_{t;p,-q}[\bar{\varphi},\bar{\varepsilon}]\left(\frac{\delta^{2}\bar{\Gamma}_{t}[\bar{\varphi},\bar{\varepsilon}]}{\delta\bar{\varphi}(q)\delta\bar{\varphi}(-r)}+R(q)\,(2\pi)^{d}\delta(q-r)\right)=(2\pi)^{d}\delta(p-r)\,. (19)

The cutoff function R(q)R(q) is a fixed function.

We are interested in the ERG flow from the Gaussian fixed point to the Wilson-Fisher fixed point. We parametrize the flow by gg so that the Gaussian fixed point is at g=0g=0, and the Wilson-Fisher fixed point is at g=gg=g_{*}. We can then replace t\partial_{t} by

(ϵg+β(g))g\left(\epsilon g+\beta(g)\right)\partial_{g}

where ϵ\epsilon is the scale dimension of gg at g=0g=0. Accordingly, Γ¯(g)[φ¯]=Γ¯t[φ¯,0]\bar{\Gamma}(g)[\bar{\varphi}]=\bar{\Gamma}_{t}[\bar{\varphi},0] satisfies the ERG equation

{(ϵg+β(g))g+Δφ¯}Γ¯(g)[φ¯]=p(2pp)R(p)12G(g)p,p[φ¯],\left\{\left(\epsilon g+\beta(g)\right)\partial_{g}+\Delta_{\bar{\varphi}}\right\}\bar{\Gamma}(g)[\bar{\varphi}]=-\int_{p}\left(2-p\cdot\partial_{p}\right)R(p)\cdot\frac{1}{2}G(g)_{p,-p}[\bar{\varphi}]\,, (20)

where we define Δφ¯\Delta_{\bar{\varphi}} and G(g)p,q[φ¯]G(g)_{p,-q}[\bar{\varphi}] by

Δφ¯p(d+22pp)φ¯(p)δδφ¯(p),\Delta_{\bar{\varphi}}\equiv\int_{p}\left(-\frac{d+2}{2}-p\cdot\partial_{p}\right)\bar{\varphi}(p)\cdot\frac{\delta}{\delta\bar{\varphi}(p)}\,, (21)

and

qG(g)p,q[φ¯](δ2Γ¯(g)[φ¯]δφ¯(q)δφ¯(r)+R(q)(2π)dδ(qr))=(2π)dδ(pr).\int_{q}G(g)_{p,-q}[\bar{\varphi}]\left(\frac{\delta^{2}\bar{\Gamma}(g)[\bar{\varphi}]}{\delta\bar{\varphi}(q)\delta\bar{\varphi}(-r)}+R(q)\,(2\pi)^{d}\delta(q-r)\right)=(2\pi)^{d}\delta(p-r)\,. (22)

Actually, for the Wilson-Fisher fixed point to exist at g=g=O(ϵ)g=g_{*}=\mathrm{O}(\epsilon), we need to introduce an anomalous dimension 12η(g)=O(g2)\frac{1}{2}\eta(g)=\mathrm{O}(g^{2}) of φ¯\bar{\varphi}. Since we are only interested in the corrections of order ϵ\epsilon to the OPE coefficients, we can ignore it. In Appendix B we obtain β(g)\beta(g) to order g2g^{2} to determine the fixed-point value

g=(4π)23ϵ+O(ϵ2).g_{*}=\frac{(4\pi)^{2}}{3}\epsilon+\mathrm{O}(\epsilon^{2})\,. (23)

Similarly, differentiating (18) with respect to ϵ¯i\bar{\epsilon}_{i}, we obtain the ERG equation for [𝒪¯i]\left[\bar{\mathcal{O}}_{i}\right] as

{(ϵg+β(g))g+ddi+pp+Δφ¯}[𝒪¯i](p)jγij(g)[𝒪¯j](p)\displaystyle\left\{\left(\epsilon g+\beta(g)\right)\partial_{g}+d-d_{i}+p\cdot\partial_{p}+\Delta_{\bar{\varphi}}\right\}\left[\bar{\mathcal{O}}_{i}\right](p)-\sum_{j}\gamma_{ij}(g)\left[\bar{\mathcal{O}}_{j}\right](p)
=q(2qq)R(q)12r,sG(g)q,r[φ¯]δ2[𝒪¯i](p)δφ¯(r)δφ¯(s)G(g)s,q[φ¯].\displaystyle=\int_{q}(2-q\cdot\partial_{q})R(q)\,\frac{1}{2}\int_{r,s}G(g)_{q,-r}[\bar{\varphi}]\frac{\delta^{2}\left[\bar{\mathcal{O}}_{i}\right](p)}{\delta\bar{\varphi}(r)\delta\bar{\varphi}(s)}G(g)_{-s,-q}[\bar{\varphi}]\,. (24)

The mixing matrix γij(g)\gamma_{ij}(g) results from appropriate boundary conditions imposed at p=0p=0. Differentiating (18) once more, we obtain the ERG equation for

𝒬ij(p1,p2)δ2Γ¯(g)[φ¯,ε¯]δε¯i(p1)δε¯j(p2)|ε=0\mathcal{Q}_{ij}(p_{1},p_{2})\equiv-\frac{\delta^{2}\bar{\Gamma}(g)[\bar{\varphi},\bar{\varepsilon}]}{\delta\bar{\varepsilon}_{i}(-p_{1})\delta\bar{\varepsilon}_{j}(-p_{2})}\Bigr{|}_{\varepsilon=0} (25)

as

{(ϵg+β(g))g+2ddidj+p1p1+p2p2+Δφ¯}𝒬ij(p1,p2)\displaystyle\left\{\left(\epsilon g+\beta(g)\right)\partial_{g}+2d-d_{i}-d_{j}+p_{1}\cdot\partial_{p_{1}}+p_{2}\cdot\partial_{p_{2}}+\Delta_{\bar{\varphi}}\right\}\mathcal{Q}_{ij}(p_{1},p_{2})
k(γik(g)𝒬kj(p1,p2)+γjk(g)𝒬ik(p1,p2)+γij,k(g)[𝒪¯k](p1+p2))\displaystyle\quad-\sum_{k}\left(\gamma_{ik}(g)\mathcal{Q}_{kj}(p_{1},p_{2})+\gamma_{jk}(g)\mathcal{Q}_{ik}(p_{1},p_{2})+\gamma_{ij,k}(g)\left[\bar{\mathcal{O}}_{k}\right](p_{1}+p_{2})\right)
=q(2qq)R(q)r,sG(g)q,r[φ¯]G(g)s,q[φ¯]\displaystyle=\int_{q}\left(2-q\cdot\partial_{q}\right)R(q)\,\int_{r,s}G(g)_{q,-r}[\bar{\varphi}]G(g)_{s,-q}[\bar{\varphi}]
×(12δ2𝒬ij(p1,p2)δφ¯(r)δφ¯(s)+u,vδ2[𝒪¯i](p1)δφ¯(r)δφ¯(u)G(g)u,v[φ¯]δ2[𝒪¯j](p2)δφ¯(v)δφ¯(s)),\displaystyle\quad\times\left(\frac{1}{2}\frac{\delta^{2}\mathcal{Q}_{ij}(p_{1},p_{2})}{\delta\bar{\varphi}(r)\delta\bar{\varphi}(-s)}+\int_{u,v}\frac{\delta^{2}\left[\bar{\mathcal{O}}_{i}\right](p_{1})}{\delta\bar{\varphi}(r)\delta\bar{\varphi}(-u)}G(g)_{u,-v}[\bar{\varphi}]\frac{\delta^{2}\left[\bar{\mathcal{O}}_{j}\right](p_{2})}{\delta\bar{\varphi}(v)\delta\bar{\varphi}(-s)}\right)\,, (26)

where the mixing γij,k(g)\gamma_{ij,k}(g) is due to appropriate boundary conditions imposed at p1=p2=0p_{1}=p_{2}=0.222 Eqs. (24) and (III) are derived by employing renormalized sources.

We have thus given the defining ERG differential equations for Γ¯(g)[φ¯]\bar{\Gamma}(g)[\bar{\varphi}], [𝒪¯i](g;p)\left[\bar{\mathcal{O}}_{i}\right](g;p), and 𝒬ij(g;p1,p2)\mathcal{Q}_{ij}(g;p_{1},p_{2}). We end this section by summarizing how to extract the two- and three-point functions out of these Sonoda:2017rro . We first set gg to the fixed-point value gg_{*} to go to the Wilson-Fisher fixed point. To extract the two-point function of the elementary scalar field, we expand

Γ¯(g)[φ¯]=12p1,p2φ¯(p1)φ¯(p2)(2π)dδ(p1+p2)Γ¯(2)(p1)+\bar{\Gamma}(g_{*})[\bar{\varphi}]=\frac{1}{2}\int_{p_{1},p_{2}}\bar{\varphi}(p_{1})\bar{\varphi}(p_{2})\,(2\pi)^{d}\delta(p_{1}+p_{2})\,\bar{\Gamma}^{(2)}(p_{1})+\cdots (27)

in powers of fields. For p1p\gg 1, we obtain the two-point function as

φ¯(p)φ¯(q)=1Γ¯(2)(p)(2π)dδ(p+q).\left\langle\bar{\varphi}(p)\bar{\varphi}(q)\right\rangle=\frac{1}{\bar{\Gamma}^{(2)}(p)}\,(2\pi)^{d}\delta(p+q)\,. (28)

Similarly, the field independent part of

[𝒪¯i𝒪¯j](g;p1,p2)=[𝒪¯i𝒪¯j](0)(p1)(2π)dδ(p1+p2)+\left[\bar{\mathcal{O}}_{i}\bar{\mathcal{O}}_{j}\right](g_{*};p_{1},p_{2})=\left[\bar{\mathcal{O}}_{i}\bar{\mathcal{O}}_{j}\right]^{(0)}(p_{1})\,(2\pi)^{d}\delta(p_{1}+p_{2})+\cdots (29)

gives, for p1,p21p_{1},p_{2}\gg 1, the two-point function as

𝒪¯i(p1)𝒪¯j(p2)=[𝒪¯i𝒪¯j](0)(p1)(2π)dδ(p1+p2).\left\langle\bar{\mathcal{O}}_{i}(p_{1})\bar{\mathcal{O}}_{j}(p_{2})\right\rangle=\left[\bar{\mathcal{O}}_{i}\bar{\mathcal{O}}_{j}\right]^{(0)}(p_{1})\,(2\pi)^{d}\delta(p_{1}+p_{2})\,. (30)

Finally, the part quadratic in fields of

[𝒪¯i](g;p)=12p1,p2φ¯(p1)φ¯(p2)(2π)dδ(p1+p2p)[𝒪¯i](2)(p1,p2)+\left[\bar{\mathcal{O}}_{i}\right](g_{*};p)=\frac{1}{2}\int_{p_{1},p_{2}}\bar{\varphi}(p_{1})\bar{\varphi}(p_{2})\,(2\pi)^{d}\delta(p_{1}+p_{2}-p)\,\left[\bar{\mathcal{O}}_{i}\right]^{(2)}(p_{1},p_{2})+\cdots (31)

gives, for p1,p21p_{1},p_{2}\gg 1, the three-point function as

φ¯(p1)φ¯(p2)𝒪¯i(p)=[𝒪¯i](2)(p1,p2)1Γ¯(2)(p1)Γ¯(2)(p2)(2π)dδ(p1+p2p)\left\langle\bar{\varphi}(-p_{1})\bar{\varphi}(-p_{2})\bar{\mathcal{O}}_{i}(p)\right\rangle=\left[\bar{\mathcal{O}}_{i}\right]^{(2)}(p_{1},p_{2})\frac{1}{\bar{\Gamma}^{(2)}(p_{1})\bar{\Gamma}^{(2)}(p_{2})}\,(2\pi)^{d}\delta(p_{1}+p_{2}-p) (32)

for 2\mathbb{Z}_{2}-invariant operators [𝒪¯i]\left[\bar{\mathcal{O}}_{i}\right]. This equation needs to be modified as (115) if the fixed point has no 2\mathbb{Z}_{2} invariance.

In the remaining part of the paper we work only in the dimensionless convention. Hence, we omit the bars above the symbols altogether.

IV Scaling operators from ERG

In this section we construct explicitly scaling composite operators ϕi\phi_{i} at the Wilson-Fisher fixed point in d=4ϵd=4-\epsilon dimensions by solving the ERG. Composite operators are solutions of (24), which we write again as

(pp+Δφ)[𝒪i](p)+(dδijΔij)[𝒪j](p)\displaystyle\left(p\cdot\partial_{p}+\Delta_{\varphi}\right)\left[\mathcal{O}_{i}\right](p)+\left(d\,\delta_{ij}-\Delta_{ij}\right)\left[\mathcal{O}_{j}\right](p)
=12q(2qq)R(q)r,sGq,r[Φ]Gq,s[Φ]δ2[𝒪i](p)δφ(r)δφ(s),\displaystyle=\frac{1}{2}\int_{q}(2-q\cdot\partial_{q})R(q)\int_{r,s}G_{q,-r}[\Phi]G_{-q,-s}[\Phi]\frac{\delta^{2}\left[\mathcal{O}_{i}\right](p)}{\delta\varphi(r)\delta\varphi(s)}\,, (33)

where Gp,q[Φ]G_{p,q}[\Phi] is defined by

qGp,q[Φ](δ2Γ[φ]δφ(q)δφ(r)+R(q)(2π)dδ(qr))=(2π)dδ(pr),\int_{q}G_{p,q}[\Phi]\left(\frac{\delta^{2}\Gamma_{*}[\varphi]}{\delta\varphi(-q)\delta\varphi(r)}+R(q)(2\pi)^{d}\delta(q-r)\right)=(2\pi)^{d}\delta(p-r)\,,

and

Δφq(d+22qq)φ(q)δδφ(q).\Delta_{\varphi}\equiv\int_{q}\left(-\frac{d+2}{2}-q\cdot\partial_{q}\right)\varphi(q)\cdot\frac{\delta}{\delta\varphi(q)}\,.

Δij\Delta_{ij} is the matrix of scale dimensions, and it is not diagonal in general:

Δij=diδij+γij,\Delta_{ij}=d_{i}\,\delta_{ij}+\gamma_{ij}\,,

where did_{i} is the engineering (mass) dimension of 𝒪i\mathcal{O}_{i} in coordinate space, and γij\gamma_{ij} is the mixing matrix.

The scaling composite operators ϕi\phi_{i} are suitable linear combinations of composite operators that diagonalize the mixing matrix Δij\Delta_{ij}. The scaling operators [Φi]\left[\Phi_{i}\right] for the eigenvalue Δi\Delta_{i} satisfy

(pp+dΔi+Δφ)[Φi](p)\displaystyle\left(p\cdot\partial_{p}+d-\Delta_{i}+\Delta_{\varphi}\right)\left[\Phi_{i}\right](p)
=12q(2qq)R(q)r,sGq,r[φ]Gq,s[φ]δ2[Φi](p)δφ(r)δφ(s).\displaystyle=\frac{1}{2}\int_{q}(2-q\cdot\partial_{q})R(q)\int_{r,s}G_{q,-r}[\varphi]G_{-q,-s}[\varphi]\frac{\delta^{2}\left[\Phi_{i}\right](p)}{\delta\varphi(r)\delta\varphi(s)}\,. (34)

We can then introduce a normalization constant 𝒩i\mathcal{N}_{i} so that ϕi𝒩i[Φi]\phi_{i}\equiv{\cal N}_{i}\left[\Phi_{i}\right] satisfies the normalization (12). Note that the coefficient 𝒩i{\cal N}_{i} depends on the space dimension dd, and therefore on ϵ\epsilon. Possibly, the simplest example along this line is given by the field ϕ1𝒩1φ\phi_{1}\equiv{\cal N}_{1}\varphi, which we describe in section IV.1.

Of course, before solving the ERG for the composite operators and their products, we need to solve the ERG equation to obtain Γ[φ]\Gamma_{*}[\varphi] at the fixed point. In this work we use perturbation theory to solve the ERG explicitly. Since solving for Γ[φ]\Gamma_{*}\left[\varphi\right] is not the main focus of this paper, we give the first order derivation of Γ[φ]\Gamma_{*}[\varphi] in Appendix B. For the present purposes, it suffices to say that the EAA parametrized by gg is expressed as

Γ(g)[φ]\displaystyle\Gamma(g)[\varphi] =12pφ(p)φ(p)v(2)(g;p)\displaystyle=\frac{1}{2}\int_{p}\varphi(p)\varphi(-p)v^{(2)}(g;p)
+14!p1,,p4i=14φ(pi)(2π)dδ(i=14pip)v(4)(g;p1,,p4),\displaystyle\quad+\frac{1}{4!}\int_{p_{1},\cdots,p_{4}}\prod_{i=1}^{4}\varphi(p_{i})\,(2\pi)^{d}\delta\left(\sum_{i=1}^{4}p_{i}-p\right)\,v^{(4)}(g;p_{1},\cdots,p_{4})\,, (35)

where

v(2)(g;p)\displaystyle v^{(2)}(g;p) =p2+gv1(2),\displaystyle=p^{2}+gv_{1}^{(2)}\,, (36a)
v(4)(g;p1,,p4)\displaystyle v^{(4)}(g;p_{1},\cdots,p_{4}) =g+g2v2(4)(p1,,p4).\displaystyle=g+g^{2}v_{2}^{(4)}(p_{1},\cdots,p_{4})\,. (36b)

v1(2)v_{1}^{(2)} is a constant given by (140), and the momentum dependent v2(4)v_{2}^{(4)} is given by (144). The Wilson-Fisher fixed point corresponds to g=g=(4π)23ϵg=g_{*}=\frac{(4\pi)^{2}}{3}\epsilon up to order ϵ\epsilon. We introduce the high momentum propagator and its derivative by

h(p)\displaystyle h(p) 1p2+R(p),\displaystyle\equiv\frac{1}{p^{2}+R(p)}\,, (37a)
f(p)\displaystyle f(p) (pp+2)h(p)=(2pp)R(p)(p2+R(p))2.\displaystyle\equiv(p\cdot\partial_{p}+2)h(p)=\frac{(2-p\cdot\partial_{p})R(p)}{\left(p^{2}+R(p)\right)^{2}}\,. (37b)

Both R(p)R(p) and f(p)f(p) decay rapidly at p1p\gg 1. To second order in gg the beta function is given by

β(g)=β2g2=(3qf(q)h(q))g2,\beta(g)=\beta_{2}\,g^{2}=\left(-3\int_{q}f(q)h(q)\right)g^{2}\,, (38)

where

qf(q)h(q)=1(4π)2+O(ϵ).\int_{q}f(q)h(q)=\frac{1}{(4\pi)^{2}}+\mathrm{O}(\epsilon)\,. (39)

Using this result, calculated in Appendix C, we obtain gg_{*} given in (23).

IV.1 The scaling field ϕ1\phi_{1}

To first order in gg, we obtain

Γ(2)(g;p,p)=p2+gv1(2)\Gamma^{(2)}(g;p,-p)=p^{2}+gv_{1}^{(2)} (40)

where

v1(2)=12ϵqf(q)v_{1}^{(2)}=\frac{1}{2-\epsilon}\int_{q}f(q) (41)

is a constant. As pp\to\infty, we obtain

Γ(2)(g;p,p)pp2.\Gamma^{(2)}(g;p,-p)\overset{p\to\infty}{\longrightarrow}p^{2}\,. (42)

Hence, to first order in gg, the two-point function is the same as the Gaussian theory:

φ(p)φ(q)=1p2(2π)dδ(p+q).\left\langle\varphi(p)\varphi(q)\right\rangle=\frac{1}{p^{2}}\,(2\pi)^{d}\delta(p+q)\,. (43)

Taking the inverse Fourier transform, we obtain

φ(r)φ(0)=1𝒩121rd2,\left\langle\varphi(r)\varphi(0)\right\rangle=\frac{1}{\mathcal{N}_{1}^{2}}\frac{1}{r^{d-2}}\,, (44)

where

1𝒩1214πd2Γ(d22).\frac{1}{\mathcal{N}_{1}^{2}}\equiv\frac{1}{4\pi^{\frac{d}{2}}}\Gamma\left(\frac{d-2}{2}\right)\,. (45)

(See Appendix A.) Thus, ϕ1=𝒩1φ\phi_{1}=\mathcal{N}_{1}\varphi has the normalization of (12).

IV.2 The composite operator [φ2/2]\left[\varphi^{2}/2\right]

In this subsection we construct the composite operator [φ2/2]\left[\varphi^{2}/2\right]. This satisfies the ERG equation

{(ϵg+β(g))g+pp+2+Δφ}[12φ2](p)=γ2(g)[12φ2](p)\displaystyle\left\{\left(\epsilon g+\beta(g)\right)\partial_{g}+p\cdot\partial_{p}+2+\Delta_{\varphi}\right\}\left[\frac{1}{2}\varphi^{2}\right](p)=\gamma_{2}(g)\left[\frac{1}{2}\varphi^{2}\right](p)
+q(2qq)R(q)12r,sG(g)q,rG(g)s,qδ2δφ(r)δφ(s)[12φ2](p),\displaystyle\quad+\int_{q}(2-q\cdot\partial_{q})R(q)\frac{1}{2}\int_{r,s}G(g)_{q,-r}G(g)_{-s,-q}\frac{\delta^{2}}{\delta\varphi(r)\delta\varphi(s)}\left[\frac{1}{2}\varphi^{2}\right](p)\,, (46)

where γ2(g)\gamma_{2}(g) is the anomalous dimension. To solve this, we expand the operator in powers of φ\varphi:

[12φ2](p)=n=01(2n)!p1,,p2ni=12nφ(pi)(2π)dδ(i=12npip)c(2n)(g;p1,,p2n).\left[\frac{1}{2}\varphi^{2}\right](p)=\sum_{n=0}^{\infty}\frac{1}{(2n)!}\int_{p_{1},\cdots,p_{2n}}\prod_{i=1}^{2n}\varphi(p_{i})\cdot(2\pi)^{d}\delta\left(\sum_{i=1}^{2n}p_{i}-p\right)\,c^{(2n)}(g;p_{1},\cdots,p_{2n})\,. (47)

We normalize the operator by the condition

c(2)(g;0,0)=1.c^{(2)}(g;0,0)=1\,. (48)

This determines γ2(g)\gamma_{2}(g). To order gg, we only need the first two terms n=0,1n=0,1. We expand

c(2)(g;p1,p2)\displaystyle c^{(2)}(g;p_{1},p_{2}) =c0(2)(p1,p2)+gc1(2)(p1,p2),\displaystyle=c^{(2)}_{0}(p_{1},p_{2})+g\,c^{(2)}_{1}(p_{1},p_{2})\,, (49a)
c(0)(g)\displaystyle c^{(0)}(g) =c0(0)+gc1(0)\displaystyle=c^{(0)}_{0}+g\,c^{(0)}_{1}\, (49b)
γ2(g)\displaystyle\gamma_{2}(g) =gγ2,1.\displaystyle=g\,\gamma_{2,1}\,. (49c)

IV.2.1 Order g0g^{0}

(48) gives

c0(2)(p1,p2)=1,c^{(2)}_{0}(p_{1},p_{2})=1\,, (50)

independent of momenta. For n=0n=0, the ERG equation gives

c0(0)=12ϵ12qf(q)=v1(2).c^{(0)}_{0}=-\frac{1}{2-\epsilon}\frac{1}{2}\int_{q}f(q)=v^{(2)}_{1}\,. (51)

IV.2.2 Order g1g^{1}

For n=1n=1, the ERG equation gives

(i=1,2pipi+ϵ)c1(2)(p1,p2)=γ2,1qf(q)h(q+p).\left(\sum_{i=1,2}p_{i}\cdot\partial_{p_{i}}+\epsilon\right)c^{(2)}_{1}(p_{1},p_{2})=\gamma_{2,1}-\int_{q}f(q)h(q+p)\,. (52)

(48) gives

γ2,1=qf(q)h(q)=13β2ϵ0+1(4π)2.\gamma_{2,1}=\int_{q}f(q)h(q)=-\frac{1}{3}\beta_{2}\overset{\epsilon\to 0+}{\longrightarrow}\frac{1}{(4\pi)^{2}}\,. (53)

Hence, the equation becomes

(i=1,2pipi+ϵ)c1(2)(p1,p2)=qf(q)(h(q+p)h(q)).\left(\sum_{i=1,2}p_{i}\cdot\partial_{p_{i}}+\epsilon\right)c^{(2)}_{1}(p_{1},p_{2})=-\int_{q}f(q)\left(h(q+p)-h(q)\right)\,. (54)

This has no homogeneous solution analytic at p1=p2=0p_{1}=p_{2}=0. Hence, the solution is given uniquely by

c1(2)(p1,p2)=F(p),c^{(2)}_{1}(p_{1},p_{2})=-F(p)\,, (55)

where we define

F(p)12qh(q)(h(q+p)h(q)).F(p)\equiv\frac{1}{2}\int_{q}h(q)\left(h(q+p)-h(q)\right)\,. (56)

For n=0n=0, the ERG equation gives

(2+2ϵ)c1(0)=0.\left(-2+2\epsilon\right)c^{(0)}_{1}=0\,. (57)

We have thus obtained

[12φ2](p)\displaystyle\left[\frac{1}{2}\varphi^{2}\right](p) =12p1,p2φ(p1)φ(p2)δ(p1+p2p){1gF(p)}\displaystyle=\frac{1}{2}\int_{p_{1},p_{2}}\varphi(p_{1})\varphi(p_{2})\delta(p_{1}+p_{2}-p)\left\{1-gF(p)\right\}
+v1(2)(2π)dδ(p).\displaystyle\quad+v^{(2)}_{1}\,(2\pi)^{d}\delta(p)\,. (58)

The anomalous dimension is

γ2(g)γ2,1g=13ϵ+O(ϵ2).\gamma_{2}(g_{*})\simeq\gamma_{2,1}g_{*}=\frac{1}{3}\epsilon+\mathrm{O}(\epsilon^{2})\,. (59)

IV.3 The scaling field ϕ2\phi_{2}

To determine the normalization

ϕ2(p)=𝒩2[12φ2](p),\phi_{2}(p)=\mathcal{N}_{2}\left[\frac{1}{2}\varphi^{2}\right](p)\,, (60)

we need to compute the two-point function of [12φ2]\left[\frac{1}{2}\varphi^{2}\right].

Let

[12φ212φ2](p,q)=[12φ2](p)[12φ2](q)\displaystyle\left[\frac{1}{2}\varphi^{2}\frac{1}{2}\varphi^{2}\right](p,q)=\left[\frac{1}{2}\varphi^{2}\right](p)\left[\frac{1}{2}\varphi^{2}\right](q)
+r,sδδφ(r)[12φ2](p)G(g)r,s[φ]δδφ(s)[12φ2](q)+𝒬22(g;p,q).\displaystyle\quad+\int_{r,s}\frac{\delta}{\delta\varphi(r)}\left[\frac{1}{2}\varphi^{2}\right](p)\cdot G(g)_{-r,-s}[\varphi]\cdot\frac{\delta}{\delta\varphi(s)}\left[\frac{1}{2}\varphi^{2}\right](q)+\mathcal{Q}_{22}(g;p,q)\,. (61)

The 1PI part is determined by the ERG equation

{(ϵg+β(g))g+pp+qq+4+Δφ}𝒬22(g;p,q)\displaystyle\left\{\left(\epsilon g+\beta(g)\right)\partial_{g}+p\cdot\partial_{p}+q\cdot\partial_{q}+4+\Delta_{\varphi}\right\}\mathcal{Q}_{22}(g;p,q)
=2γ2(g)𝒬22(g;p,q)+γ22,0(g)(2π)dδ(p+q)\displaystyle=2\gamma_{2}(g)\mathcal{Q}_{22}(g;p,q)+\gamma_{22,0}(g)(2\pi)^{d}\delta(p+q)
+r(2rr)R(r)s,tG(g)r,sG(g)t,r(12δ2δφ(s)δφ(t)𝒬22(g;p,q)\displaystyle\quad+\int_{r}(2-r\cdot\partial_{r})R(r)\int_{s,t}G(g)_{r,s}G(g)_{t,-r}\left(\frac{1}{2}\frac{\delta^{2}}{\delta\varphi(-s)\delta\varphi(-t)}\mathcal{Q}_{22}(g;p,q)\right.
+u,vδ2δφ(s)δφ(u)[12φ2](p)G(g)u,vδ2δφ(v)δφ(r)[12φ2(q)]).\displaystyle\qquad\left.+\int_{u,v}\frac{\delta^{2}}{\delta\varphi(-s)\delta\varphi(u)}\left[\frac{1}{2}\varphi^{2}\right](p)G(g)_{-u,v}\frac{\delta^{2}}{\delta\varphi(-v)\delta\varphi(r)}\left[\frac{1}{2}\varphi^{2}(q)\right]\right)\,. (62)

We expand

𝒬22(g;p,q)=n=01(2n)!p1,,p2ni=12nφ(pi)(2π)dδ(i=12npipq)d(2n)(g;p,q;p1,,p2n).\mathcal{Q}_{22}(g;p,q)=\sum_{n=0}^{\infty}\frac{1}{(2n)!}\int_{p_{1},\cdots,p_{2n}}\prod_{i=1}^{2n}\varphi(p_{i})\,(2\pi)^{d}\delta\left(\sum_{i=1}^{2n}p_{i}-p-q\right)\,d^{(2n)}(g;p,q;p_{1},\cdots,p_{2n})\,. (63)

The mixing γ22,0(g)\gamma_{22,0}(g) is determined by the normalization condition

d(0)(g;0,0)=0.d^{(0)}(g;0,0)=0\,. (64)

To first order in gg, only d(0)d^{(0)} and d(2)d^{(2)} are non-vanishing. We expand

d(2)(g;p,q;p1,p2)\displaystyle d^{(2)}(g;p,q;p_{1},p_{2}) =gd1(2)(p,q;p1,p2),\displaystyle=g\,d_{1}^{(2)}(p,q;p_{1},p_{2})\,, (65a)
d(0)(g;p,p)\displaystyle d^{(0)}(g;p,-p) =d0(0)(p,p)+gd1(0)(p,p),\displaystyle=d_{0}^{(0)}(p,-p)+g\,d_{1}^{(0)}(p,-p)\,, (65b)
γ22,1(g)\displaystyle\gamma_{22,1}(g) =γ22,1;0+gγ22,1;1.\displaystyle=\gamma_{22,1;0}+g\,\gamma_{22,1;1}\,. (65c)

IV.3.1 Order g0g^{0}

The ERG equation is

(pp+ϵ)d0(0)(p,p)=γ22,0;0+rf(r)h(r+p).\left(p\cdot\partial_{p}+\epsilon\right)d^{(0)}_{0}(p,-p)=\gamma_{22,0;0}+\int_{r}f(r)h(r+p)\,. (66)

(64) gives

γ22,0;0=rf(r)h(r)=13β2.\gamma_{22,0;0}=-\int_{r}f(r)h(r)=\frac{1}{3}\beta_{2}\,. (67)

Hence, we obtain

d0(0)(p,p)=F(p).d^{(0)}_{0}(p,-p)=F(p)\,. (68)

IV.3.2 Order g1g^{1}

For n=1n=1, the ERG equation is

(i=12pipi+pp+qq+2+ϵ)d1(2)(p,q;p1,p2)\displaystyle\left(\sum_{i=1}^{2}p_{i}\cdot\partial_{p_{i}}+p\cdot\partial_{p}+q\cdot\partial_{q}+2+\epsilon\right)d^{(2)}_{1}(p,q;p_{1},p_{2}) (69)
=()q(f(r)h(r+p)h(r+p+q)+h(r)f(r+p)h(r+p+q)+h(r)h(r+p)f(r+p+q)).\displaystyle=(-)\int_{q}\left(f(r)h(r+p)h(r+p+q)+h(r)f(r+p)h(r+p+q)+h(r)h(r+p)f(r+p+q)\right)\,.

The solution, analytic at zero momenta, is given uniquely as

d1(2)(p,q;p1,p2)=()rh(r)h(r+p)h(r+p+q).d^{(2)}_{1}(p,q;p_{1},p_{2})=(-)\int_{r}h(r)h(r+p)h(r+p+q)\,. (70)

For n=0n=0, the ERG equation is

(pp+2ϵ)d1(0)(p,p)=γ22,0;112qf(q)rh(r)2h(r+p)\displaystyle\left(p\cdot\partial_{p}+2\epsilon\right)d^{(0)}_{1}(p,-p)=\gamma_{22,0;1}-\frac{1}{2}\int_{q}f(q)\int_{r}h(r)^{2}h(r+p)
v1(2)r(2f(r)h(r)h(r+p)+h(r)2f(r+p))2rf(r)h(r+p)F(p).\displaystyle\quad-v_{1}^{(2)}\int_{r}\left(2f(r)h(r)h(r+p)+h(r)^{2}f(r+p)\right)-2\int_{r}f(r)h(r+p)\,F(p)\,. (71)

(64) determines

γ22,0;1=2ϵv1(2)ph(p)3.\gamma_{22,0;1}=2\epsilon v^{(2)}_{1}\int_{p}h(p)^{3}\,. (72)

The solution is

d1(0)(p,p)=v1(2)rh(r)2(h(r+p)h(r))F(p)2.d^{(0)}_{1}(p,-p)=-v_{1}^{(2)}\int_{r}h(r)^{2}\left(h(r+p)-h(r)\right)-F(p)^{2}\,. (73)

Thus, we obtain

d(0)(g;p,p)=F(p)+g{v1(2)rh(r)2(h(r+p)h(r))F(p)2}.d^{(0)}(g_{*};p,-p)=F(p)+g_{*}\left\{-v^{(2)}_{1}\int_{r}h(r)^{2}\left(h(r+p)-h(r)\right)-F(p)^{2}\right\}\,. (74)

For large pp, this gives the two-point function of [12φ2]\left[\frac{1}{2}\varphi^{2}\right]. The asymptotic behavior of F(p)F(p) for large momentum is obtained in (158). We then obtain the two-point function as

φ22(p)φ22(q)\displaystyle\left\langle\frac{\varphi^{2}}{2}(p)\frac{\varphi^{2}}{2}(q)\right\rangle =(2π)dδ(p+q)(Fasymp(p)gFasymp(p)2)\displaystyle=(2\pi)^{d}\delta(p+q)\,\left(F_{\mathrm{asymp}}(p)-g_{*}F_{\mathrm{asymp}}(p)^{2}\right)
=(2π)dδ(p+q)12(4π)2[lnp24+const\displaystyle=(2\pi)^{d}\delta(p+q)\,\frac{1}{2(4\pi)^{2}}\left[-\ln\frac{p^{2}}{4}+\mathrm{const}\right.
+ϵ{112(lnp24)2+lnp2416(γ2lnπ+43(4π)2β2(0))}].\displaystyle\left.\quad+\epsilon\left\{\frac{1}{12}\left(\ln\frac{p^{2}}{4}\right)^{2}+\ln\frac{p^{2}}{4}\cdot\frac{1}{6}\left(\gamma-2-\ln\pi+\frac{4}{3}(4\pi)^{2}\beta^{\prime}_{2}(0)\right)\right\}\right]\,. (75)

IV.3.3 Normalization for ϕ2\phi_{2}

We wish to determine the constant 𝒩2{\cal N}_{2} so that ϕ2=𝒩2[φ2/2]\phi_{2}={\cal N}_{2}\left[\varphi^{2}/2\right] is normalized as in (12). We expect 𝒩2\mathcal{N}_{2} to differ from the value at the Gaussian fixed point at order ϵ\epsilon, and we parametrize it as

1𝒩22=12(14πd2Γ(d22))2(1+Aϵ).\frac{1}{\mathcal{N}_{2}^{2}}=\frac{1}{2}\left(\frac{1}{4\pi^{\frac{d}{2}}}\Gamma\left(\frac{d-2}{2}\right)\right)^{2}\left(1+A\,\epsilon\right)\,. (76)

Since the scale dimension of ϕ2\phi_{2} (in coordinate space) is

Δ2=d2+γ2(g)223ϵ\Delta_{2}=d-2+\gamma_{2}(g_{*})\simeq 2-\frac{2}{3}\epsilon (77)

we expect, from (13),

12φ2(p)12φ2(q)\displaystyle\left\langle\frac{1}{2}\varphi^{2}(p)\frac{1}{2}\varphi^{2}(q)\right\rangle =1𝒩22ϕ2(p)ϕ2(q)\displaystyle=\frac{1}{\mathcal{N}_{2}^{2}}\left\langle\phi_{2}(p)\phi_{2}(q)\right\rangle
=(2π)dδ(p+q)1𝒩22πd2Γ(d24+43ϵ)Γ(223ϵ)(4p2)d22+23ϵ\displaystyle=(2\pi)^{d}\delta(p+q)\,\frac{1}{\mathcal{N}_{2}^{2}}\pi^{\frac{d}{2}}\frac{\Gamma\left(\frac{d}{2}-4+\frac{4}{3}\epsilon\right)}{\Gamma\left(2-\frac{2}{3}\epsilon\right)}\left(\frac{4}{p^{2}}\right)^{\frac{d}{2}-2+\frac{2}{3}\epsilon}
=(2π)dδ(p+q)132π2+ϵ2Γ(1ϵ2)2Γ(ϵ6)Γ(223ϵ)(4p2)ϵ6(1+Aϵ)\displaystyle=(2\pi)^{d}\delta(p+q)\,\frac{1}{32}\pi^{-2+\frac{\epsilon}{2}}\frac{\Gamma\left(1-\frac{\epsilon}{2}\right)^{2}\Gamma\left(\frac{\epsilon}{6}\right)}{\Gamma\left(2-\frac{2}{3}\epsilon\right)}\left(\frac{4}{p^{2}}\right)^{\frac{\epsilon}{6}}\cdot(1+A\,\epsilon)
(2π)dδ(p+q)12(4π)2[lnp24+const\displaystyle\simeq(2\pi)^{d}\delta(p+q)\,\frac{1}{2(4\pi)^{2}}\left[-\ln\frac{p^{2}}{4}+\mathrm{const}\right.
+ϵ{112(lnp24)2+lnp2416(6A4γ3lnπ)}]\displaystyle\left.\quad+\epsilon\left\{\frac{1}{12}\left(\ln\frac{p^{2}}{4}\right)^{2}+\ln\frac{p^{2}}{4}\cdot\frac{1}{6}\left(-6A-4-\gamma-3\ln\pi\right)\right\}\right] (78)

Comparing this with (75), we obtain

A=13(1+γ+lnπ+23(4π)2β2(0)).A=-\frac{1}{3}\left(1+\gamma+\ln\pi+\frac{2}{3}(4\pi)^{2}\beta^{\prime}_{2}(0)\right)\,. (79)

IV.4 The composite operators [φ4/4!]\left[\varphi^{4}/4!\right] and ϕ4\phi_{4}

In this subsection we construct the composite operator [φ4/4!]\left[\varphi^{4}/4!\right]. This satisfies the ERG equation

{(ϵg+β(g))g+pp+ϵ+Δφ}[14!φ4](p)=γ4(g)[14!φ4](p)\displaystyle\left\{\left(\epsilon g+\beta(g)\right)\partial_{g}+p\cdot\partial_{p}+\epsilon+\Delta_{\varphi}\right\}\left[\frac{1}{4!}\varphi^{4}\right](p)=\gamma_{4}(g)\left[\frac{1}{4!}\varphi^{4}\right](p)
+γ4,ϕ2ϕ[φ2φ](p)+γ4,2φ2/2(p2)[12φ2](p)\displaystyle+\gamma_{4,\phi\partial^{2}\phi}\left[\varphi\partial^{2}\varphi\right](p)+\gamma_{4,\partial^{2}\varphi^{2}/2}(-p^{2})\left[\frac{1}{2}\varphi^{2}\right](p)
+q(2qq)R(q)12r,sG(g)q,rG(g)s,qδ2δφ(r)δφ(s)[14!φ4](p),\displaystyle+\int_{q}(2-q\cdot\partial_{q})R(q)\,\frac{1}{2}\int_{r,s}G(g)_{q,-r}G(g)_{-s,-q}\frac{\delta^{2}}{\delta\varphi(r)\delta\varphi(s)}\left[\frac{1}{4!}\varphi^{4}\right](p)\,, (80)

where γ4(g)\gamma_{4}(g) is the anomalous dimension. To solve this, we expand

[14!φ4](p)=n=01(2n)!p1,,p2ni=12nφ(pi)(2π)dδ(i=12npip)c(2n)(g;p)1,,p2n).\left[\frac{1}{4!}\varphi^{4}\right](p)=\sum_{n=0}^{\infty}\frac{1}{(2n)!}\int_{p_{1},\cdots,p_{2n}}\prod_{i=1}^{2n}\varphi(p_{i})\cdot(2\pi)^{d}\delta\left(\sum_{i=1}^{2n}p_{i}-p\right)c^{(2n)}(g;p)_{1},\cdots,p_{2n})\,. (81)

We normalize the operator by the condition

c(4)(g;0,0,0,0)=1.c^{(4)}(g;0,0,0,0)=1\,. (82)

This determines γ4(g)\gamma_{4}(g). The mixing is determined by the additional boundary conditions at p1=p2=0p_{1}=p_{2}=0:

c2(g;p1,p2)c2(g;0,0)=O(p4).c_{2}(g;p_{1},p_{2})-c_{2}(g;0,0)=\mathrm{O}(p^{4})\,. (83)

To order gg, we only need the first three terms n=0,1,2n=0,1,2. We expand

c(4)(g;p1,,p4)\displaystyle c^{(4)}(g;p_{1},\cdots,p_{4}) =c0(4)+gc1(4)(p1,,p4),\displaystyle=c^{(4)}_{0}+g\,c^{(4)}_{1}(p_{1},\cdots,p_{4})\,, (84a)
c(2)(g;p1,p2)\displaystyle c^{(2)}(g;p_{1},p_{2}) =c0(2)+gc1(2)(p1,p2),\displaystyle=c^{(2)}_{0}+g\,c^{(2)}_{1}(p_{1},p_{2})\,, (84b)
c(0)(g)\displaystyle c^{(0)}(g) =c0(0)+gc1(0),\displaystyle=c^{(0)}_{0}+g\,c^{(0)}_{1}\,, (84c)
γ4(g)\displaystyle\gamma_{4}(g) =gγ4,1.\displaystyle=g\,\gamma_{4,1}\,. (84d)

We do not need to calculate c(0)c^{(0)}.

IV.4.1 Order g0g^{0}

For n=2n=2, (82) gives

c0(4)=1.c^{(4)}_{0}=1\,. (85)

For n=1n=1, the ERG equation gives

c0(2)=12ϵ12qf(q)=v1(2).c^{(2)}_{0}=-\frac{1}{2-\epsilon}\frac{1}{2}\int_{q}f(q)=v^{(2)}_{1}\,. (86)

IV.4.2 Order g1g^{1}

For n=2n=2, the ERG equation gives

(i=14pipi+ϵ)c1(4)(p1,,p4)\displaystyle\left(\sum_{i=1}^{4}p_{i}\cdot\partial_{p_{i}}+\epsilon\right)c^{(4)}_{1}(p_{1},\cdots,p_{4})
=γ4,1qf(q)(h(q+p1+p2)+h(q+p3+p4)+(t-, u-channels)).\displaystyle=\gamma_{4,1}-\int_{q}f(q)\left(h(q+p_{1}+p_{2})+h(q+p_{3}+p_{4})+(\textrm{t-, u-channels})\right)\,. (87)

The normalization condition (82) at pi=0p_{i}=0 requires

γ4,1=6qf(q)h(q)=2β2.\gamma_{4,1}=6\int_{q}f(q)h(q)=-2\beta_{2}\,. (88)

We then obtain

c1(4)(p1,,p4)=F(p1+p2)F(p3+p4)(t-, u-channels).c^{(4)}_{1}(p_{1},\cdots,p_{4})=-F(p_{1}+p_{2})-F(p_{3}+p_{4})-(\textrm{t-, u-channels})\,. (89)

For n=1n=1, the ERG equation gives

(i=12pipi+2ϵ2)c1(2)(p1,p2)\displaystyle\left(\sum_{i=1}^{2}p_{i}\cdot\partial_{p_{i}}+2\epsilon-2\right)c^{(2)}_{1}(p_{1},p_{2})
=2β2v1(2)+γ4,φ2φ()(p12+p22)+γ4,2φ2/2(p2)\displaystyle=-2\beta_{2}v^{(2)}_{1}+\gamma_{4,\varphi\partial^{2}\varphi}(-)(p_{1}^{2}+p_{2}^{2})+\gamma_{4,\partial^{2}\varphi^{2}/2}(-p^{2})
v1(2)qf(q)h(q+p)12qf(q)F(p)\displaystyle\quad-v^{(2)}_{1}\int_{q}f(q)h(q+p)-\frac{1}{2}\int_{q}f(q)\cdot F(p)
v1(2)qf(q)h(q)qf(q)(F(q+p1)+F(q+p2)).\displaystyle\quad-v^{(2)}_{1}\int_{q}f(q)h(q)-\int_{q}f(q)\left(F(q+p_{1})+F(q+p_{2})\right)\,. (90)

The boundary conditions (83) at p1=p2=0p_{1}=p_{2}=0 demand

γ4,φ2φ\displaystyle\gamma_{4,\varphi\partial^{2}\varphi} =η2,\displaystyle=\eta_{2}\,, (91a)
γ4,2φ2/2\displaystyle\gamma_{4,\partial^{2}\varphi^{2}/2} =2ϵv1(2)ddp2F(p=0),\displaystyle=-2\epsilon v^{(2)}_{1}\frac{d}{dp^{2}}F(p=0)\,, (91b)

where

η2ddp2qf(q)F(q+p)|p=0.\eta_{2}\equiv-\frac{d}{dp^{2}}\int_{q}f(q)F(q+p)\Big{|}_{p=0}\,. (92)

The solution is given by

c1(2)(p1,p2)=v1(2)(F(p)p2ddp2F(p=0))G(p1)G(p2).c^{(2)}_{1}(p_{1},p_{2})=-v^{(2)}_{1}\left(F(p)-p^{2}\frac{d}{dp^{2}}F(p=0)\right)-G(p_{1})-G(p_{2})\,. (93)

The function G(p)G(p) is defined by

(pp2+2ϵ)G(p)=qf(q)F(q+p)+v1(2)23β2+η2p2,\left(p\cdot\partial_{p}-2+2\epsilon\right)G(p)=\int_{q}f(q)F(q+p)+v^{(2)}_{1}\frac{2}{3}\beta_{2}+\eta_{2}\,p^{2}\,, (94)

and the condition

ddp2G(p)|p=0=0.\frac{d}{dp^{2}}G(p)\Big{|}_{p=0}=0\,. (95)

We have thus obtained

[14!φ4](p)\displaystyle\left[\frac{1}{4!}\varphi^{4}\right](p) =14!p1,,p4i=14φ(pi)(2π)dδ(i=14pip)(1g(F(p1+p2)+F(p3+p4)+))\displaystyle=\frac{1}{4!}\int_{p_{1},\cdots,p_{4}}\prod_{i=1}^{4}\varphi(p_{i})\,(2\pi)^{d}\delta\left(\sum_{i=1}^{4}p_{i}-p\right)\,\left(1-g\left(F(p_{1}+p_{2})+F(p_{3}+p_{4})+\cdots\right)\right)
+12p1,p2φ(p1)φ(p2)(2π)dδ(p1+p2p)\displaystyle\quad+\frac{1}{2}\int_{p_{1},p_{2}}\varphi(p_{1})\varphi(p_{2})\,(2\pi)^{d}\delta(p_{1}+p_{2}-p)
×{v1(2)(1g(F(p)p2ddp2F(0)))g(G(p1)+G(p2))}.\displaystyle\qquad\times\left\{v^{(2)}_{1}\left(1-g\left(F(p)-p^{2}\frac{d}{dp^{2}}F(0)\right)\right)-g\left(G(p_{1})+G(p_{2})\right)\right\}\,. (96)

IV.4.3 The normalization 𝒩4{\cal N}_{4}

Before discussing the normalization of the scaling operator ϕ4\phi_{4}, let us recall that ϕ4\phi_{4} is actually a linear combination of [φ4/4!](x)\left[\varphi^{4}/4!\right]\left(x\right), φ2φ\varphi\partial^{2}\varphi, and the total derivative 2φ2/2\partial^{2}\varphi^{2}/2. The operator φ2φ\varphi\partial^{2}\varphi is an equation of motion operator whose correlation functions vanish at separate points (the equation of motion operator contributes to correlation functions only via delta functions). Hence, the mixing with φ2φ\varphi\partial^{2}\varphi is totally harmless. Thus, the mixing with the total derivative and the equation of motion operator can be neglected for our present purposes.333 Note that, since we are interested at the OPE coefficient at the Wilson-Fisher fixed point, we could solve directly the fixed point equation for the scaling composite operators and their products. This leads to the same final OPE coefficient but the calculations are somewhat more cumbersome.

We determine the normalization factor 𝒩4{\cal N}_{4} to the leading order in ϵ\epsilon, i.e., O(ϵ0)\left(\epsilon^{0}\right). Since c114c_{114} vanishes in the Gaussian theory, we have c114ϵc_{114}\sim\epsilon, and the O(ϵ)\left(\epsilon\right) correction to 𝒩4\mathcal{N}_{4} is relevant only for the OPE coefficient to higher orders. Therefore, we can take the Gaussian value of 𝒩4\mathcal{N}_{4} given in (126):

1𝒩42=14!1𝒩18=14!28π2dΓ(d22)4.\frac{1}{\mathcal{N}_{4}^{2}}=\frac{1}{4!}\frac{1}{\mathcal{N}_{1}^{8}}=\frac{1}{4!2^{8}\pi^{2d}}\Gamma\left(\frac{d-2}{2}\right)^{4}\,. (97)

It is also possible to obtain this result directly in the ERG framework. The computation in momentum space requires three-loop calculations, and we do not display it here.

V OPE coefficients from ERG

As mentioned in section II.2 we will deduce the OPE coefficients from the three-point functions of the associated operators. In this section we compute the coefficients c112c_{112} and c114c_{114} to order ϵ\epsilon at the Wilson-Fisher fixed point. The three-point functions involved are respectively ϕ1ϕ1ϕ2\langle\phi_{1}\phi_{1}\phi_{2}\rangle and ϕ1ϕ1ϕ4\langle\phi_{1}\phi_{1}\phi_{4}\rangle. We have already explained how to compute these within the EAA formalism in section III.

Using (32), we obtain

1𝒩12𝒩2ϕ1(p1)ϕ1(p2)ϕ2(p)\displaystyle\frac{1}{\mathcal{N}_{1}^{2}\mathcal{N}_{2}}\left\langle\phi_{1}\left(-p_{1}\right)\phi_{1}\left(-p_{2}\right)\phi_{2}\left(p\right)\right\rangle =φ(p1)φ(p2)[φ22](p).\displaystyle=\Bigr{\langle}\varphi\left(-p_{1}\right)\varphi\left(-p_{2}\right)\left[\frac{\varphi^{2}}{2}\right]\left(p\right)\Bigr{\rangle}\,.
=1p12p22[12φ2](2)(p1,p2)(2π)dδ(p1+p2p),\displaystyle=\frac{1}{p_{1}^{2}p_{2}^{2}}\left[\frac{1}{2}\varphi^{2}\right]^{(2)}(p_{1},p_{2})\,(2\pi)^{d}\delta(p_{1}+p_{2}-p)\,, (98a)
1𝒩12𝒩4ϕ1(p1)ϕ1(p2)ϕ4(p)\displaystyle\frac{1}{\mathcal{N}_{1}^{2}\mathcal{N}_{4}}\left\langle\phi_{1}(-p_{1})\phi_{1}(-p_{2})\phi_{4}(p)\right\rangle =φ(p1)φ(p2)[14!φ4](p)\displaystyle=\left\langle\varphi(-p_{1})\varphi(-p_{2})\left[\frac{1}{4!}\varphi^{4}\right](p)\right\rangle
=1p12p22[14!φ4](2)(p1,p2)(2π)dδ(p1+p2p),\displaystyle=\frac{1}{p_{1}^{2}p_{2}^{2}}\,\left[\frac{1}{4!}\varphi^{4}\right]^{(2)}(p_{1},p_{2})\,(2\pi)^{d}\delta(p_{1}+p_{2}-p)\,, (98b)

where we have to take the momenta much larger than the fixed cutoff of order 11.

We now have all the ingredients to compute the three-point functions of the normalized fields. In section IV we have determined the normalization constants 𝒩i{\cal N}_{i} and the composite operator vertex functions [𝒪](2)\left[\mathcal{O}\right]^{(2)} entering (98).

To finally read off the OPE coefficient we compare the limit p1p2p_{1}\gg p_{2} of (98) with the expectation from CFT (15) with an unknown OPE coefficient c11ic_{11i}. It is interesting to note that taking either one of p1p_{1} or p2p_{2} much larger than the other corresponds to taking an OPE in the three-point function. For instance, if we take p1p2p_{1}\gg p_{2} we are effectively taking the short distance limit of the product ϕ1(p1)ϕi(p1+p2)\phi_{1}\left(-p_{1}\right)\phi_{i}\left(p_{1}+p_{2}\right). Of course, if one applies the same reasoning to the case p2p1p_{2}\gg p_{1} one can read off the same OPE coefficient. This is manifest in our vertices since they are symmetric under p1p2p_{1}\leftrightarrow p_{2}. Taking one of the momenta much larger than the other corresponds to a short distance limit, and the comparison of the two limits p1p2p_{1}\gg p_{2} and p2p1p_{2}\gg p_{1} reminds us of the bootstrap associativity requirements.

V.1 The OPE coefficient c112c_{112}

We expand the OPE coefficient

c112=2(1+Bϵ)c_{112}=\sqrt{2}\left(1+B\,\epsilon\right) (99)

to first order in ϵ\epsilon, where 2\sqrt{2} is the value for the Gaussian theory. We compute BB by comparing the result obtained from the ERG with that expected from CFT. For completeness, we also sketch an alternative method by constructing the operator product [ϕ1ϕ2]\left[\phi_{1}\phi_{2}\right] and expanding it up to the operator ϕ1\phi_{1}.

V.1.1 From the three point function

Using a result (15) from CFT, we obtain

ϕ1(p1)ϕ1(p2)ϕ2(p)\displaystyle\left\langle\phi_{1}(-p_{1})\phi_{1}(-p_{2})\phi_{2}(p)\right\rangle p1p2(2π)dδ(pp1p2)c112p1dΔ2p22\displaystyle\overset{p_{1}\gg p_{2}}{\longrightarrow}(2\pi)^{d}\delta(p-p_{1}-p_{2})\frac{c_{112}}{p_{1}^{d-\Delta_{2}}p_{2}^{2}}
×(4π)d4d2+12Δ2Γ(12(dΔ2))Γ(12Δ2)Γ(12(d2)),\displaystyle\quad\times\frac{(4\pi)^{d}}{4^{d-2+\frac{1}{2}\Delta_{2}}}\frac{\Gamma\left(\frac{1}{2}(d-\Delta_{2})\right)}{\Gamma\left(\frac{1}{2}\Delta_{2}\right)\Gamma\left(\frac{1}{2}(d-2)\right)}\,, (100)

where we have substituted the Gaussian value Δ1=12(d2)\Delta_{1}=\frac{1}{2}(d-2). Now, using the results from section IV, i.e., Δ2\Delta_{2} (77), 𝒩1\mathcal{N}_{1} (45), and 𝒩2\mathcal{N}_{2} (76, 79), we obtain

φ(p1)φ(p2)[12φ2](p)=1𝒩12𝒩2ϕ1(p1)ϕ1(p2)ϕ2(p)\displaystyle\left\langle\varphi(-p_{1})\varphi(-p_{2})\left[\frac{1}{2}\varphi^{2}\right](p)\right\rangle=\frac{1}{\mathcal{N}_{1}^{2}\mathcal{N}_{2}}\left\langle\phi_{1}(-p_{1})\phi_{1}(-p_{2})\phi_{2}(p)\right\rangle
p1p2(1+Bϵ)(1+12Aϵ)Γ(1ϵ2)Γ(1ϵ6)Γ(1ϵ3)1p12p22(p124)ϵ6\displaystyle\overset{p_{1}\gg p_{2}}{\longrightarrow}\left(1+B\epsilon\right)\left(1+\frac{1}{2}A\epsilon\right)\frac{\Gamma\left(1-\frac{\epsilon}{2}\right)\Gamma\left(1-\frac{\epsilon}{6}\right)}{\Gamma\left(1-\frac{\epsilon}{3}\right)}\frac{1}{p_{1}^{2}p_{2}^{2}}\left(\frac{p_{1}^{2}}{4}\right)^{\frac{\epsilon}{6}}
=1p12p22[1+ϵ{B+16(lnp124+γlnπ123(4π)2β2(0))}].\displaystyle\quad=\frac{1}{p_{1}^{2}p_{2}^{2}}\left[1+\epsilon\left\{B+\frac{1}{6}\left(\ln\frac{p_{1}^{2}}{4}+\gamma-\ln\pi-1-\frac{2}{3}(4\pi)^{2}\beta^{\prime}_{2}(0)\right)\right\}\right]\,. (101)

(We have omitted (2π)dδ(p1+p2p)(2\pi)^{d}\delta(p_{1}+p_{2}-p) for simplicity.)

We compare this with the result from (58):

[12φ2](2)(p1,p2)\displaystyle\left[\frac{1}{2}\varphi^{2}\right]^{(2)}(p_{1},p_{2}) p11gFasymp(p1)\displaystyle\overset{p_{1}\to\infty}{\longrightarrow}1-g_{*}F_{\mathrm{asymp}}(p_{1})
=1+ϵ6[lnp124+γlnπ223(4π)2β2(0)].\displaystyle=1+\frac{\epsilon}{6}\left[\ln\frac{p_{1}^{2}}{4}+\gamma-\ln\pi-2-\frac{2}{3}(4\pi)^{2}\beta_{2}^{\prime}(0)\right]\,. (102)

Hence, we obtain

B=16.B=-\frac{1}{6}\,. (103)

In conclusion we have obtained

c112=2(116ϵ)c_{112}=\sqrt{2}\left(1-\frac{1}{6}\epsilon\right) (104)

to order ϵ\epsilon, in agreement with the results in the literature Gopakumar:2018xqi .

Finally, it is interesting to note that the final result (104) is independent of the form of the cutoff kernel R(p)R(p). This signals the physical nature of the OPE coefficients. In the present case, this is achieved by a cancellation of cutoff dependent factors present in 𝒩2{\cal N}_{2} and [φ22](2)\left[\frac{\varphi^{2}}{2}\right]^{\left(2\right)}.

V.1.2 From the operator product

We consider the operator product [φ[φ2/2]]\left[\varphi\left[\varphi^{2}/2\right]\right] and expand it up to a term linear in the fields:

[φ(p1)[φ22](p2)]=1𝒩2C121(p1p22)φ(p1+p2)+.\left[\varphi\left(p_{1}\right)\left[\frac{\varphi^{2}}{2}\right]\left(p_{2}\right)\right]=\frac{1}{\mathcal{N}_{2}}C_{121}\left(\frac{p_{1}-p_{2}}{2}\right)\varphi\left(p_{1}+p_{2}\right)+\cdots\,. (105)

Let us first consider what is expected for the Wilson coefficient in momentum space. We recall that C121xΔ2C_{121}\sim x^{-\Delta_{2}}, and Δ2223ϵ\Delta_{2}\simeq 2-\frac{2}{3}\epsilon. To linear order in ϵ\epsilon one has

C121(P)=24π2P2[1+ϵ(Bγ6+16lnP212lnπln23)].C_{121}(P)=\sqrt{2}\,\frac{4\pi^{2}}{P^{2}}\left[1+\epsilon\left(B-\frac{\gamma}{6}+\frac{1}{6}\ln P^{2}-\frac{1}{2}\ln\pi-\frac{\ln 2}{3}\right)\right]\,. (106)

On the other hand, ERG gives

[φ(p)[12φ2](q)]\displaystyle\left[\varphi(p)\left[\frac{1}{2}\varphi^{2}\right](q)\right] p1p2[12φ2](2)(p,q+p)φ(q+p)\displaystyle\overset{p\to\infty}{\longrightarrow}\frac{1}{p^{2}}\left[\frac{1}{2}\varphi^{2}\right]^{(2)}(-p,q+p)\varphi(q+p)
=1p2(1gFasymp(q))φ(q+p).\displaystyle=\frac{1}{p^{2}}\left(1-g_{*}F_{\mathrm{asymp}}(q)\right)\varphi(q+p)\,. (107)

The comparison reproduces

c1122(1ϵ6).c_{112}\simeq\sqrt{2}\left(1-\frac{\epsilon}{6}\right)\,.

V.2 The OPE coefficient c114c_{114}

At order O(g0)O\left(g^{0}\right) the theory is Gaussian so that c114=0c_{114}=0 to order ϵ0\epsilon^{0}. We then expect

c114=Cϵ+O(ϵ2).c_{114}=C\epsilon+\mathrm{O}(\epsilon^{2})\,. (108)

Hence, we can use the Gaussian values for the scale dimension

Δ4=2(d2)=42ϵ\Delta_{4}=2(d-2)=4-2\epsilon (109)

and 𝒩4\mathcal{N}_{4} (97).

Hence, from (15), we expect

φ(p1)φ(p2)[14!φ4](p)=1𝒩12𝒩4ϕ1(p1)ϕ1(p2)ϕ4(p)\displaystyle\left\langle\varphi(-p_{1})\varphi(-p_{2})\left[\frac{1}{4!}\varphi^{4}\right](p)\right\rangle=\frac{1}{\mathcal{N}_{1}^{2}\mathcal{N}_{4}}\left\langle\phi_{1}(-p_{1})\phi_{1}(-p_{2})\phi_{4}(p)\right\rangle
p1(2π)dδ(p1+p2p)c114p1ϵp2214!1(4π)2ϵ2Γ(1ϵ2)2Γ(ϵ2)Γ(2ϵ)\displaystyle\overset{p_{1}\to\infty}{\longrightarrow}(2\pi)^{d}\delta(p_{1}+p_{2}-p)\frac{c_{114}}{p_{1}^{\epsilon}p_{2}^{2}}\,\frac{1}{\sqrt{4!}}\frac{1}{(4\pi)^{2-\frac{\epsilon}{2}}}\Gamma\left(1-\frac{\epsilon}{2}\right)^{2}\frac{\Gamma\left(\frac{\epsilon}{2}\right)}{\Gamma(2-\epsilon)}
=(2π)dδ(p1+p2p)1p12p22Cϵ14!(4π)2p12(lnp124+const).\displaystyle\qquad=(2\pi)^{d}\delta(p_{1}+p_{2}-p)\,\frac{1}{p_{1}^{2}p_{2}^{2}}\,C\epsilon\,\frac{1}{\sqrt{4!}(4\pi)^{2}}p_{1}^{2}\left(-\ln\frac{p_{1}^{2}}{4}+\mathrm{const}\right)\,. (110)

We compare this with the result from (96):

[14!φ4](2)(p1,p2)\displaystyle\left[\frac{1}{4!}\varphi^{4}\right]^{(2)}(p_{1},p_{2}) p1gGasymp(p1)\displaystyle\overset{p_{1}\to\infty}{\longrightarrow}-g_{*}G_{\mathrm{asymp}}(p_{1})
=ϵ(4π)23123!1(4π)4p12(lnp12+const),\displaystyle=\epsilon\,\frac{(4\pi)^{2}}{3}\frac{1}{2\cdot 3!}\frac{1}{(4\pi)^{4}}p_{1}^{2}\left(-\ln p_{1}^{2}+\mathrm{const}\right)\,, (111)

where we have used the asymptotic form Gasymp(p)G_{\mathrm{asymp}}(p) obtained in (166). Hence, we obtain

C=4!63!=154.C=\frac{\sqrt{4!}}{6\cdot 3!}=\frac{1}{\sqrt{54}}\,. (112)

In conclusion we have obtained

c114=ϵ54c_{114}=\frac{\epsilon}{\sqrt{54}} (113)

in agreement with the results in the literature Gopakumar:2018xqi .

V.3 Extension to other systems

Let us mention that the strategy developed in this work is rather general, and it applies to a wide variety of models. For instance, unitarity is not an essential ingredient, and we can as well compute the OPE coefficients of non-unitary theories. In order to see this explicitly, in this subsection we compute the OPE coefficient c111c_{111} in the Lee-Yang model in d=6ϵd=6-\epsilon dimensions.

The Lee-Yang model has been studied via ERG even beyond the perturbative regime An:2016lni ; Zambelli:2016cbw . Here, we limit ourselves to computing the leading perturbative correction to c111c_{111}, which vanishes in the non-interacting theory. Let us consider the action Fisher:1978pf

S[χ]={12μχμχ+ig3!χ3}.S\left[\chi\right]=\int\left\{\frac{1}{2}\partial_{\mu}\chi\partial_{\mu}\chi+i\frac{g}{3!}\chi^{3}\right\}\,. (114)

In the one-loop approximation, it is possible to compute the wave function renormalization and the beta function of the coupling gg. We do not reproduce these computations here, and merely report the fixed-point value of the coupling, i.e., g82π33ϵg_{*}\simeq 8\sqrt{\frac{2\pi^{3}}{3}}\sqrt{\epsilon}. The coefficient is cutoff independent.

We read off the OPE coefficient from the three-point function ϕ1ϕ1ϕ1\langle\phi_{1}\phi_{1}\phi_{1}\rangle. In general one has

χ(x1)χ(x2)𝒪(x)conn=z1,z2G(x1,z1)(δΓδε(x)δφ(z1)δφ(z2))G(z2,x1)\displaystyle\langle\chi\left(x_{1}\right)\chi\left(x_{2}\right)\mathcal{O}\left(x\right)\rangle_{{\rm conn}}=\int_{z_{1},z_{2}}G\left(x_{1},z_{1}\right)\left(\frac{\delta\Gamma}{\delta\varepsilon\left(x\right)\delta\varphi\left(z_{1}\right)\delta\varphi\left(z_{2}\right)}\right)G\left(z_{2},x_{1}\right)
z1,z2,u1,u2δ2Γδε(x)δφ(z1)G(z1,z2)δ3Γδφ(z2)δφ(u1)δφ(u2)G(u1,x1)G(u1,x2).\displaystyle\quad-\int_{z_{1},z_{2},u_{1},u_{2}}\frac{\delta^{2}\Gamma}{\delta\varepsilon\left(x\right)\delta\varphi\left({z_{1}}\right)}G\left(z_{1},z_{2}\right)\frac{\delta^{3}\Gamma}{\delta\varphi\left(z_{2}\right)\delta\varphi\left(u_{1}\right)\delta\varphi\left(u_{2}\right)}G\left(u_{1},x_{1}\right)G\left(u_{1},x_{2}\right)\,. (115)

To the first order in gg_{*}, we have

ϕ1ϕ1ϕ1\displaystyle\langle\phi_{1}\phi_{1}\phi_{1}\rangle =ig𝒩13G(p1)G(p2)G(p1+p2)\displaystyle=-ig_{*}{\cal N}_{1}^{3}G\left(p_{1}\right)G\left(p_{2}\right)G\left(p_{1}+p_{2}\right)
i23ϵ(64π6)1p14p22,\displaystyle\approx-i\sqrt{\frac{2}{3}}\sqrt{\epsilon}\left(64\pi^{6}\right)\frac{1}{p_{1}^{4}p_{2}^{2}}\,, (116)

where 𝒩1=4π3{\cal N}_{1}=\sqrt{4\pi^{3}} is the normalization of the field. A straightforward comparison with the expectation from CFT gives

c111i23ϵ,c_{111}\simeq-i\sqrt{\frac{2}{3}}\sqrt{\epsilon}\,, (117)

which agrees with other results in the literature Gopakumar:2016cpb ; Hasegawa:2016piv . Note that the imaginary factor in c111c_{111} is a clear sign of the non-unitarity of the model. This does not prevent us from using our framework to compute the OPE coefficients.

Let us note that in the present computation the anomalous dimension of the operators involved was not necessary, only the O(ϵ0)O\left(\epsilon^{0}\right)-scaling dimensions enter the calculation. This is because the OPE coefficient is trivial at leading order, i.e., at order O(ϵ0)O\left(\epsilon^{0}\right). As a consequence the O(ϵ)O\left(\sqrt{\epsilon}\right)-coefficient is determined by the leading order composite operator and the EAA at order O(ϵ)O\left(\sqrt{\epsilon}\right). Generically, however, in order to compute an OPE coefficient to a certain order it is necessary to compute the anomalous dimension of all the operators involved to the same order. Indeed the anomalous dimensions enter the determination of the normalizations 𝒩i{\cal N}_{i} and in the construction of the relevant 1PI composite operator vertices, as in the examples of sections V.1 and V.2.

V.4 On non-perturbative approximation schemes

In this work we solved the ERG equations perturbatively. However, ERG is known to provide a framework for non-perturbative approximation schemes, which allows one to provide also precise results. See, e.g., Canet:2003qd ; Balog:2019rrg . It is natural then to ask if any of such approximation schemes can be naturally employed within the strategy outlined in this work.

The most widely employed approximation schemes are the derivative expansion and the BMW scheme.Blaizot:2005wd In the derivative expansion one retains the full field dependence of the operators appearing in the EAA up to a certain number of derivatives: Γk[φ]=V(φ)+K(φ)φφ+\Gamma_{k}\left[\varphi\right]=\int V\left(\varphi\right)+\int K\left(\varphi\right)\partial\varphi\partial\varphi+\cdots. In the BMW scheme, instead, one does not retain such a general field dependence but aims to keep full momentum dependence with the use of background fields. We refer to Blaizot:2005wd for a detailed presentation.

The strategy outlined in section II.2 clearly relies on having control over the momentum dependence of the composite operator vertices. It follows that a derivative expansion type of scheme is not suitable for our purposes. An ideal scheme may be the BMW since it retains the momentum dependence. Recently, the BMW has been applied to compute the two-point function of the operator φ2/2\varphi^{2}/2 in relation to the “Higgs amplitude mode” Rose:2015bma . Such a study shows that it is indeed possible to keep track of the momentum dependence of the composite operator vertices in non-perturbative approximation schemes. It may thus be possible to apply our strategy even beyond perturbation theory. Note that a crucial ingredient in the BMW scheme is the use of large external, i.e., non-loop, momenta. This fits well with the recipe of looking at large momenta in order to read off the OPE coefficients.

Finally let us mention a different approach studied in the literature. Cardy proposed a formula that relates the second order expansion of the beta function around a fixed point with the OPE coefficients cardy1996scaling . Such a formula has been employed to obtain leading order corrections to the OPE coefficients in the ϵ\epsilon-expansions Codello:2017hhh . In its original formulation, however, the proposed relation displays scheme dependent OPE coefficients. It is possible, however, to define scheme independent coefficients in the expansions of the beta functions around a fixed point by introducing a connection on the theory space Pagani:2017gnd . This may lead to a possible further strategy that tackles the computation of the OPE coefficients via a geometric viewpoint of the RG flow. However, it must be emphasized that, strictly speaking, the argument by Cardy applies only to the coefficients related to non-integrable singularities. For this reason, the strategy outlined in this paper gives access to even less singular OPE coefficients.

VI Summary and outlook

In this work we studied OPE within the ERG formalism and showed by explicit computation that ERG can be employed to compute the OPE coefficients. Such OPE coefficients are independent of the RG scheme employed once one fixes a normalization convention for the operator content of the theory.

In section II we introduced the ERG framework for composite operators and outlined our strategy for the computation of the OPE coefficients. In section III we introduced a version of the ERG framework suitable for discussions of a fixed point. In section IV we studied explicitly some examples of composite operators, for which we computed OPE coefficients within the ϵ\epsilon-expansion in section V. Interestingly, as mentioned in section V.4, our strategy does not rely on the use of perturbation theory. Perturbation theory has been used as a way to provide an actual approximate solution to the ERG equations of interest. However, by employing non-perturbative approximation schemes it may be possible to go beyond perturbative results, and we hope our work paves the way in this direction.

It must be said that the strategy employed in this work is not expected to be as efficient as other methods in the literature to compute the CFT data, in particular with respect to the bootstrap approach. However, besides its conceptual relevance, the ERG framework allows one to easily extend the methodology studied in this work to very different systems, possibly even in the absence of conformal symmetry or out of equilibrium. For this reason we think it worthwhile studying OPE further within the ERG formalism.

Acknowledgments

This work was supported by the DFG grant PA 3040/3-1. C.P. and H.S. would like to thank Kobe University and Johaness Gutenberg Universität, respectively, for hospitality while part of this work was done.

Appendix A Two- and three-point functions in momentum space

In this section we derive the most important formulas used in the main text. We adopt the following notation:

xddx,pddp(2π)d.\int_{x}\equiv\int d^{d}x\,,\quad\int_{p}\equiv\int\frac{d^{d}p}{\left(2\pi\right)^{d}}\,.

We denote by g~(p)\tilde{g}(p) the Fourier transform of g(x)g(x):

g~(p)xeipxg(x)so thatg(x)=peipxg~(p).\tilde{g}\left(p\right)\equiv\int_{x}e^{-ipx}g\left(x\right)\quad\textrm{so that}\quad g\left(x\right)=\int_{p}e^{ipx}\tilde{g}\left(p\right)\,.

A.1 Two-point functions

The Fourier transform of the two-point function

f2(x)1x2αf_{2}(x)\equiv\frac{1}{x^{2\alpha}} (118)

is obtained as

f~2(p)xeipx1x2α=πd/2Γ(d2α)Γ(α)(4p2)d2α.\tilde{f}_{2}(p)\equiv\int_{x}e^{ipx}\frac{1}{x^{2\alpha}}=\pi^{d/2}\frac{\Gamma\left(\frac{d}{2}-\alpha\right)}{\Gamma(\alpha)}\left(\frac{4}{p^{2}}\right)^{\frac{d}{2}-\alpha}\,. (119)

Using the above results we can calculate the normalization constants 𝒩1\mathcal{N}_{1}, 𝒩2\mathcal{N}_{2}, and 𝒩4\mathcal{N}_{4} at the Gaussian fixed point. The standard normalization of φ\varphi is given by the propagator in the momentum space:

φ(p)φ(q)G=1p2(2π)dδ(p+q).\left\langle\varphi(p)\varphi(q)\right\rangle_{G}=\frac{1}{p^{2}}\,(2\pi)^{d}\delta(p+q)\,. (120)

This corresponds to α=d22\alpha=\frac{d-2}{2} above. Hence, the propagator in the coordinate space is given by

φ(r)φ(0)G=1𝒩121rd2,\left\langle\varphi(r)\varphi(0)\right\rangle_{G}=\frac{1}{\mathcal{N}_{1}^{2}}\frac{1}{r^{d-2}}\,, (121)

where

1𝒩12=14πd2Γ(d22).\frac{1}{\mathcal{N}_{1}^{2}}=\frac{1}{4\pi^{\frac{d}{2}}}\Gamma\left(\frac{d-2}{2}\right)\,. (122)

(121) implies

12φ2(r)12φ2(0)G=12φ(r)φ(0)G2=12𝒩141r2(d2).\left\langle\frac{1}{2}\varphi^{2}(r)\frac{1}{2}\varphi^{2}(0)\right\rangle_{G}=\frac{1}{2}\left\langle\varphi(r)\varphi(0)\right\rangle_{G}^{2}=\frac{1}{2\mathcal{N}_{1}^{4}}\frac{1}{r^{2(d-2)}}\,. (123)

Hence, we obtain

1𝒩22=12𝒩14=132πdΓ(d22)2.\frac{1}{\mathcal{N}_{2}^{2}}=\frac{1}{2\mathcal{N}_{1}^{4}}=\frac{1}{32\pi^{d}}\Gamma\left(\frac{d-2}{2}\right)^{2}\,. (124)

Similarly,

14!φ4(r)14!φ4(0)G=14!φ(r)φ(0)G4=14!𝒩181r4(d2)\left\langle\frac{1}{4!}\varphi^{4}(r)\frac{1}{4!}\varphi^{4}(0)\right\rangle_{G}=\frac{1}{4!}\left\langle\varphi(r)\varphi(0)\right\rangle_{G}^{4}=\frac{1}{4!\,\mathcal{N}_{1}^{8}}\frac{1}{r^{4(d-2)}} (125)

implies

1𝒩42=14!𝒩18=14!28π2dΓ(d22)4.\frac{1}{\mathcal{N}_{4}^{2}}=\frac{1}{4!\mathcal{N}_{1}^{8}}=\frac{1}{4!2^{8}\pi^{2d}}\Gamma\left(\frac{d-2}{2}\right)^{4}\,. (126)

A.2 Three-point functions

Let us denote xij2=|xixj|2x_{ij}^{2}=\left|x_{i}-x_{j}\right|^{2}, and consider the three-point function

f3(x1,x2,x3)1(x122)d/2ν3(x232)d/2ν1(x132)d/2ν2f_{3}\left(x_{1},x_{2},x_{3}\right)\equiv\frac{1}{\left(x_{12}^{2}\right)^{d/2-\nu_{3}}\left(x_{23}^{2}\right)^{d/2-\nu_{1}}\left(x_{13}^{2}\right)^{d/2-\nu_{2}}} (127)

appearing in the three-point function (11) of a CFT. We denote by f~3\tilde{f}_{3} the Fourier transform of f3f_{3}:

f3(x1,x2,x3)=p1p2p3eip1x1ip2x2ip3x3(2π)dδ(p1+p2+p3)f~3(p1,p2,p3).f_{3}\left(x_{1},x_{2},x_{3}\right)=\int_{p_{1}p_{2}p_{3}}e^{-ip_{1}x_{1}-ip_{2}x_{2}-ip_{3}x_{3}}\left(2\pi\right)^{d}\delta\left(p_{1}+p_{2}+p_{3}\right)\tilde{f}_{3}\left(p_{1},p_{2},p_{3}\right)\,.

Since f3f_{3} depends only on the differences x1x3,x1x2x_{1}-x_{3},x_{1}-x_{2}, we obtain

f~3(p1,p2,p1p2)\displaystyle\tilde{f}_{3}\left(p_{1},p_{2},-p_{1}-p_{2}\right) =x1,x2eip1x1+ip2x2f3(x1,x2,0)\displaystyle=\int_{x_{1},x_{2}}\,e^{ip_{1}x_{1}+ip_{2}x_{2}}f_{3}\left(x_{1},x_{2},0\right)
=x1,x2eip1x1+ip2x21(x122)d/2ν3(x22)d/2ν1(x12)d/2ν2.\displaystyle=\int_{x_{1},x_{2}}\,e^{ip_{1}x_{1}+ip_{2}x_{2}}\frac{1}{\left(x_{12}^{2}\right)^{d/2-\nu_{3}}\left(x_{2}^{2}\right)^{d/2-\nu_{1}}\left(x_{1}^{2}\right)^{d/2-\nu_{2}}}\,. (128)

We can express 1/(x122)d/2ν31/\left(x_{12}^{2}\right)^{d/2-\nu_{3}} by using (119). This gives

f~3(p1,p2,p1p2)=4ν1+ν2+ν3π3d/2Γ(ν3)Γ(ν1)Γ(ν2)Γ(d2ν3)Γ(d2ν1)Γ(d2ν2)Jν1ν2ν3(p1,p2)\tilde{f}_{3}\left(p_{1},p_{2},-p_{1}-p_{2}\right)=4^{\nu_{1}+\nu_{2}+\nu_{3}}\pi^{3d/2}\frac{\Gamma\left(\nu_{3}\right)\Gamma\left(\nu_{1}\right)\Gamma\left(\nu_{2}\right)}{\Gamma\left(\frac{d}{2}-\nu_{3}\right)\Gamma\left(\frac{d}{2}-\nu_{1}\right)\Gamma\left(\frac{d}{2}-\nu_{2}\right)}J_{\nu_{1}\nu_{2}\nu_{3}}(p_{1},p_{2})

where

Jν1ν2ν3(p1,p2)=q1(q2)ν3((q+p1)2)ν2((qp2)2)ν1.J_{\nu_{1}\nu_{2}\nu_{3}}\left(p_{1},p_{2}\right)=\int_{q}\frac{1}{\left(q^{2}\right)^{\nu_{3}}\left(\left(q+p_{1}\right)^{2}\right)^{\nu_{2}}\left(\left(q-p_{2}\right)^{2}\right)^{\nu_{1}}}\,.

Hence, we obtain

f3(x1,x2,x3)\displaystyle f_{3}(x_{1},x_{2},x_{3}) =4ν1+ν2+ν3π3d/2Γ(ν1)Γ(ν2)Γ(ν3)Γ(d2ν1)Γ(d2ν2)Γ(d2ν3)\displaystyle=4^{\nu_{1}+\nu_{2}+\nu_{3}}\pi^{3d/2}\frac{\Gamma\left(\nu_{1}\right)\Gamma\left(\nu_{2}\right)\Gamma\left(\nu_{3}\right)}{\Gamma\left(\frac{d}{2}-\nu_{1}\right)\Gamma\left(\frac{d}{2}-\nu_{2}\right)\Gamma\left(\frac{d}{2}-\nu_{3}\right)}
×p1p2p3(2π)dδ(p1+p2+p3)ei(p1x1+p2x2+p3x3)Jν1ν2ν3(p1,p2),\displaystyle\quad\times\int_{p_{1}p_{2}p_{3}}\left(2\pi\right)^{d}\delta\left(p_{1}+p_{2}+p_{3}\right)e^{i\left(p_{1}x_{1}+p_{2}x_{2}+p_{3}x_{3}\right)}J_{\nu_{1}\nu_{2}\nu_{3}}\left(p_{1},p_{2}\right)\,,

We now consider the limit p1p2p_{1}\gg p_{2}. We obtain

Jν1ν2ν3(p1,p2)\displaystyle J_{\nu_{1}\nu_{2}\nu_{3}}\left(p_{1},p_{2}\right) p1p2(p12)ν2q1(q2)ν3((qp2)2)ν1\displaystyle\overset{p_{1}\gg p_{2}}{\longrightarrow}\left(p_{1}^{2}\right)^{-\nu_{2}}\int_{q}\frac{1}{\left(q^{2}\right)^{\nu_{3}}\left(\left(q-p_{2}\right)^{2}\right)^{\nu_{1}}}
=1p1d+Δ2Δ1Δ31p2d2Δ21(4π)d/2Γ(ν1+ν3d2)Γ(ν1)Γ(ν3)Γ(d2ν1)Γ(d2ν3)Γ(dν1ν3).\displaystyle=\frac{1}{p_{1}^{d+\Delta_{2}-\Delta_{1}-\Delta_{3}}}\frac{1}{p_{2}^{d-2\Delta_{2}}}\frac{1}{\left(4\pi\right)^{d/2}}\frac{\Gamma\left(\nu_{1}+\nu_{3}-\frac{d}{2}\right)}{\Gamma\left(\nu_{1}\right)\Gamma\left(\nu_{3}\right)}\frac{\Gamma\left(\frac{d}{2}-\nu_{1}\right)\Gamma\left(\frac{d}{2}-\nu_{3}\right)}{\Gamma\left(d-\nu_{1}-\nu_{3}\right)}\,.

Hence, in the same limit the Fourier transform f~3\tilde{f}_{3} is obtained as

f~3(p1,p2,p1p2)\displaystyle\tilde{f}_{3}\left(p_{1},p_{2},-p_{1}-p_{2}\right) p1p2(4π)d412(Δ1+Δ2+Δ3)Γ(12(d+Δ2Δ1Δ3))Γ(12(Δ1+Δ3Δ2))Γ(d2Δ2)Γ(Δ2)\displaystyle\overset{p_{1}\gg p_{2}}{\longrightarrow}\left(4\pi\right)^{d}4^{-\frac{1}{2}\left(\Delta_{1}+\Delta_{2}+\Delta_{3}\right)}\frac{\Gamma\left(\frac{1}{2}\left(d+\Delta_{2}-\Delta_{1}-\Delta_{3}\right)\right)}{\Gamma\left(\frac{1}{2}\left(\Delta_{1}+\Delta_{3}-\Delta_{2}\right)\right)}\frac{\Gamma\left(\frac{d}{2}-\Delta_{2}\right)}{\Gamma\left(\Delta_{2}\right)}
×1p1d+Δ2Δ1Δ31p2d2Δ2.\displaystyle\qquad\times\frac{1}{p_{1}^{d+\Delta_{2}-\Delta_{1}-\Delta_{3}}}\frac{1}{p_{2}^{d-2\Delta_{2}}}\,. (129)

Appendix B The fixed point effective average action to the first order in ϵ\epsilon

We wish to construct an ERG trajectory parametrized by gg along which the Gaussian fixed point at g=0g=0 is connected to the Wilson-Fisher fixed point at g=gg=g_{*}. (Please see Dutta:2020vqo for more detailed discussions of the fixed point in ϵ\epsilon expansions.) The ERG differential equation in the dimensionless framework is given by

(ϵg+β(g))gΓ(g)[φ]\displaystyle\left(\epsilon g+\beta(g)\right)\partial_{g}\Gamma(g)[\varphi] =p(pp+d+22η(g)2)φ(p)δΓ(g)[φ]δφ(p)\displaystyle=\int_{p}\left(p\cdot\partial_{p}+\frac{d+2}{2}-\frac{\eta(g)}{2}\right)\varphi(p)\frac{\delta\Gamma(g)[\varphi]}{\delta\varphi(p)}
p(2ppη(g))R(p)12G(g)p,p[φ],\displaystyle\quad-\int_{p}\left(2-p\cdot\partial_{p}-\eta(g)\right)R(p)\,\frac{1}{2}G(g)_{p,-p}[\varphi]\,, (130)

where G(g)p,q[φ]G(g)_{p,-q}[\varphi] is defined by

q(δ2Γ(g)[φ]δφ(p)δφ(q)+R(p)(2π)dδ(pq))G(g)q,r[φ]=(2π)dδ(pr).\int_{q}\left(\frac{\delta^{2}\Gamma(g)[\varphi]}{\delta\varphi(p)\delta\varphi(-q)}+R(p)(2\pi)^{d}\delta(p-q)\right)G(g)_{q,-r}[\varphi]=(2\pi)^{d}\delta(p-r)\,. (131)

We expand Γ(g)\Gamma(g) in powers of φ\varphi as

Γ(g)[φ]\displaystyle\Gamma(g)[\varphi] =12pφ(p)φ(p)v(2)(g;p)\displaystyle=\frac{1}{2}\int_{p}\varphi(p)\varphi(-p)\,v^{(2)}(g;p)
+14!p1,,p4i=14φ(pi)(2π)dδ(i=14pi)v(4)(g;p1,,p4)+.\displaystyle\quad+\frac{1}{4!}\int_{p_{1},\cdots,p_{4}}\prod_{i=1}^{4}\varphi(p_{i})(2\pi)^{d}\delta\left(\sum_{i=1}^{4}p_{i}\right)\,v^{(4)}(g;p_{1},\cdots,p_{4})+\cdots\,. (132)

The anomalous dimension 12η(g)\frac{1}{2}\eta(g) of φ\varphi in (130) is determined by the condition

p2v(2)(g;p)|p2=0=1.\frac{\partial}{\partial p^{2}}v^{(2)}(g;p)\Big{|}_{p^{2}=0}=1\,. (133)

The beta function β(g)\beta(g) is determined by the boundary condition

v(4)(g;0,0,0,0)=g.v^{(4)}(g;0,0,0,0)=g\,. (134)

The Gaussian fixed point is given by

Γ(0)[φ]=12pφ(p)φ(p)p2.\Gamma(0)[\varphi]=\frac{1}{2}\int_{p}\varphi(p)\varphi(-p)\,p^{2}\,. (135)

In the main text we only need the first order approximation to Γ(g)\Gamma(g):

v(2)(g;p)\displaystyle v^{(2)}(g;p) p2+gv1(2)(p),\displaystyle\simeq p^{2}+g\,v_{1}^{(2)}(p)\,, (136a)
v(4)(g;p1,p2,p3,p4)\displaystyle v^{(4)}(g;p_{1},p_{2},p_{3},p_{4}) g(1+gv2(4)(p1,p2,p3,p4)),\displaystyle\simeq g\left(1+g\,v_{2}^{(4)}(p_{1},p_{2},p_{3},p_{4})\right)\,, (136b)
v(2n6)(g;p1,,p2n)\displaystyle v^{(2n\geq 6)}(g;p_{1},\cdots,p_{2n}) O(gn).\displaystyle\simeq\mathrm{O}(g^{n})\,. (136c)

We expand

β(g)\displaystyle\beta(g) =β2g2+,\displaystyle=\beta_{2}g^{2}+\cdots\,, (137a)
η(g)\displaystyle\eta(g) =η1g+.\displaystyle=\eta_{1}g+\cdots\,. (137b)

v1(2)(p)v_{1}^{(2)}(p) satisfies

(2+ϵ)v1(2)(p)=12qf(q)12η1p2,\left(-2+\epsilon\right)v_{1}^{(2)}(p)=\frac{1}{2}\int_{q}f(q)-\frac{1}{2}\eta_{1}p^{2}\,, (138)

where

f(q)(2qq)R(q)(q2+R(q))2.f(q)\equiv\frac{(2-q\cdot\partial_{q})R(q)}{\left(q^{2}+R(q)\right)^{2}}\,. (139)

(133) gives η1=0\eta_{1}=0, and we obtain

v1(2)=12ϵ12qf(q),v_{1}^{(2)}=-\frac{1}{2-\epsilon}\frac{1}{2}\int_{q}f(q)\,, (140)

which is a mass term independent of pp. v2(4)v_{2}^{(4)} satisfies

(i=14pipi+ϵ)v2(4)(p1,p2,p3,p4)\displaystyle\left(\sum_{i=1}^{4}p_{i}\cdot\partial_{p_{i}}+\epsilon\right)v_{2}^{(4)}(p_{1},p_{2},p_{3},p_{4})
=β2qf(q)(h(q+p1+p2)+h(q+p1+p3)+h(q+p1+p4)),\displaystyle=-\beta_{2}-\int_{q}f(q)\left(h(q+p_{1}+p_{2})+h(q+p_{1}+p_{3})+h(q+p_{1}+p_{4})\right)\,, (141)

where

h(q)1q2+R(q).h(q)\equiv\frac{1}{q^{2}+R(q)}\,. (142)

(134) gives

β2=3qf(q)h(q).\beta_{2}=-3\int_{q}f(q)h(q)\,. (143)

We then obtain

v2(4)(p1,p2,p3,p4)={F(p1+p2)+F(p1+p3)+F(p1+p4)},v_{2}^{(4)}(p_{1},p_{2},p_{3},p_{4})=-\left\{F(p_{1}+p_{2})+F(p_{1}+p_{3})+F(p_{1}+p_{4})\right\}\,, (144)

where F(p)F(p) is defined by

F(p)12qh(q)(h(q+p)h(q)).F(p)\equiv\frac{1}{2}\int_{q}h(q)\left(h(q+p)-h(q)\right)\,. (145)

The fixed point value gg_{*} is obtained from

0=ϵg+β(g)ϵg+β2g20=\epsilon g_{*}+\beta(g_{*})\simeq\epsilon g_{*}+\beta_{2}g_{*}^{2} (146)

as

gϵβ2=ϵ3qf(q)h(q)(4π)23ϵ.g_{*}\simeq-\frac{\epsilon}{\beta_{2}}=\frac{\epsilon}{3\int_{q}f(q)h(q)}\simeq\frac{(4\pi)^{2}}{3}\epsilon\,. (147)

The value of β2\beta_{2} at ϵ=0\epsilon=0 is calculated in (156).

Appendix C Asymptotic behaviors of F(p)F(p) and G(p)G(p)

C.1 F(p)F(p)

F(p)F(p) is defined by

(pp+ϵ)F(p)=qf(q)(h(q+p)h(q)).\left(p\cdot\partial_{p}+\epsilon\right)F(p)=\int_{q}f(q)\left(h(q+p)-h(q)\right)\,. (148)

Since f(q)f(q) vanishes rapidly for qq beyond the cutoff scale (order 11), the above gives, for p1p\gg 1,

(pp+ϵ)F(p)=13β2+O(1p2),\left(p\cdot\partial_{p}+\epsilon\right)F(p)=\frac{1}{3}\beta_{2}+\mathrm{O}\left(\frac{1}{p^{2}}\right)\,, (149)

where β2\beta_{2} is given by (143).

This implies the asymptotic behavior

F(p)p1Fasymp(p)1ϵ13β2(ϵ)+CF(ϵ)pϵ,F(p)\overset{p\gg 1}{\longrightarrow}F_{\mathrm{asymp}}(p)\equiv\frac{1}{\epsilon}\frac{1}{3}\beta_{2}(\epsilon)+C_{F}(\epsilon)p^{-\epsilon}\,, (150)

where we have indicated the ϵ\epsilon-dependence of β2\beta_{2}. Since F(p)F(p) is finite as ϵ0+\epsilon\to 0+, we must find

CF(ϵ)ϵ0+1ϵ13β2(ϵ=0)+O(ϵ0).C_{F}(\epsilon)\overset{\epsilon\to 0+}{\longrightarrow}-\frac{1}{\epsilon}\frac{1}{3}\beta_{2}(\epsilon=0)+\mathrm{O}(\epsilon^{0})\,. (151)

To compute CF(ϵ)C_{F}(\epsilon) exactly, we recall the high momentum propagator has the same short-distance singularity in coordinate space as the Gaussian two-point function:

h~(r)peiprh(p)r0peiprp2=φ(r)φ(0)G=14πd2Γ(d22)1rd2.\tilde{h}(r)\equiv\int_{p}e^{ipr}h(p)\overset{r\to 0}{\longrightarrow}\int_{p}\frac{e^{ipr}}{p^{2}}=\left\langle\varphi(r)\varphi(0)\right\rangle_{G}=\frac{1}{4\pi^{\frac{d}{2}}}\Gamma\left(\frac{d-2}{2}\right)\frac{1}{r^{d-2}}\,. (152)

Since

F(p)=12qh(q)(h(q+p)h(q)),F(p)=\frac{1}{2}\int_{q}h(q)\left(h(q+p)-h(q)\right)\,, (153)

we obtain

F~(r)pF(p)eipr=12h~(r)2r012φ(r)φ(0)G2.\tilde{F}(r)\equiv\int_{p}F(p)e^{ipr}=\frac{1}{2}\tilde{h}(r)^{2}\overset{r\to 0}{\longrightarrow}\frac{1}{2}\left\langle\varphi(r)\varphi(0)\right\rangle_{G}^{2}\,. (154)

Thus, the pp-dependent part of the asymptotic behavior of F(p)F(p) is the same as the Fourier transform of the squared Gaussian propagator. Hence, using (119), we obtain

CF(ϵ)=121(4π)d2Γ(d22)2Γ(2d2)Γ(d2)ϵ01ϵ1(4π)2.C_{F}(\epsilon)=\frac{1}{2}\frac{1}{(4\pi)^{\frac{d}{2}}}\frac{\Gamma\left(\frac{d-2}{2}\right)^{2}\Gamma\left(2-\frac{d}{2}\right)}{\Gamma(d-2)}\overset{\epsilon\to 0}{\longrightarrow}\frac{1}{\epsilon}\frac{1}{(4\pi)^{2}}\,. (155)

This implies

13β2(0)=1(4π)2.\frac{1}{3}\beta_{2}(0)=-\frac{1}{(4\pi)^{2}}\,. (156)

In the main text we need the expansion of the asymptotic behavior to order ϵ\epsilon:

Fasymp(p)\displaystyle F_{\mathrm{asymp}}(p) =12(4π)2[lnp24+lnπγ+2+23(4π)2β2(0)\displaystyle=\frac{1}{2(4\pi)^{2}}\left[-\ln\frac{p^{2}}{4}+\ln\pi-\gamma+2+\frac{2}{3}(4\pi)^{2}\beta_{2}^{\prime}(0)\right. (157)
+ϵ{14(lnp24π)2+(γ2112lnπ)lnp24+const}].\displaystyle\quad\left.+\epsilon\left\{\frac{1}{4}\left(\ln\frac{p^{2}}{4\pi}\right)^{2}+\left(\frac{\gamma}{2}-1-\frac{1}{2}\ln\pi\right)\ln\frac{p^{2}}{4}+\mathrm{const}\right\}\right]\,. (158)

β2(ϵ=0)\beta^{\prime}_{2}(\epsilon=0) depends on the choice of the cutoff function R(p)R(p).

C.2 G(p)G(p)

Similarly, we can obtain the asymptotic behavior of G(p)G(p), which is defined by

(pp2+2ϵ)G(p)\displaystyle\left(p\cdot\partial_{p}-2+2\epsilon\right)G(p) =qf(q)F(q+p)+v1(2)23β2+η2p2\displaystyle=\int_{q}f(q)F(q+p)+v^{(2)}_{1}\frac{2}{3}\beta_{2}+\eta_{2}\,p^{2}
pη2p2+O(p0),\displaystyle\overset{p\to\infty}{\longrightarrow}\eta_{2}\,p^{2}+\mathrm{O}(p^{0})\,, (159)

where

v1(2)\displaystyle v^{(2)}_{1} =12ϵ12qf(q),\displaystyle=-\frac{1}{2-\epsilon}\frac{1}{2}\int_{q}f(q)\,, (160a)
η2\displaystyle\eta_{2} =ddp2qf(q)F(q+p)|p=0.\displaystyle=-\frac{d}{dp^{2}}\int_{q}f(q)F(q+p)\Big{|}_{p=0}\,. (160b)

The equation gives the asymptotic behavior

G(p)p1Gasymp(p)12ϵη2(ϵ)p2+CG(ϵ)p22ϵ.G(p)\overset{p\gg 1}{\longrightarrow}G_{\mathrm{asymp}}(p)\equiv\frac{1}{2\epsilon}\eta_{2}(\epsilon)p^{2}+C_{G}(\epsilon)p^{2-2\epsilon}\,. (161)

Since G(p)G(p) is finite as ϵ0+\epsilon\to 0+, this implies

CG(ϵ)ϵ0+η2(ϵ=0)2ϵ.C_{G}(\epsilon)\overset{\epsilon\to 0+}{\longrightarrow}-\frac{\eta_{2}(\epsilon=0)}{2\epsilon}\,. (162)

We can calculate CG(ϵ)C_{G}(\epsilon) exactly from

G~(r)pG(p)eipr=13!h~(r)3r013!φ(r)φ(0)G3.\tilde{G}(r)\equiv\int_{p}G(p)e^{ipr}=\frac{1}{3!}\tilde{h}(r)^{3}\overset{r\to 0}{\longrightarrow}\frac{1}{3!}\left\langle\varphi(r)\varphi(0)\right\rangle_{G}^{3}\,. (163)

Using (119), we obtain

CG(ϵ)=13!1(4π)dΓ(d23)3Γ(3d)Γ(32(d2))ϵ01ϵ112(4π)4.C_{G}(\epsilon)=\frac{1}{3!}\frac{1}{(4\pi)^{d}}\frac{\Gamma\left(\frac{d-2}{3}\right)^{3}\Gamma(3-d)}{\Gamma\left(\frac{3}{2}(d-2)\right)}\overset{\epsilon\to 0}{\longrightarrow}-\frac{1}{\epsilon}\frac{1}{12(4\pi)^{4}}\,. (164)

Hence,

η2(0)=161(4π)4.\eta_{2}(0)=\frac{1}{6}\frac{1}{(4\pi)^{4}}\,. (165)

In the main text we need Gasymp(p)G_{\mathrm{asymp}}(p) to order ϵ0\epsilon^{0}:

Gasymp(p)=p2(123!1(4π)4lnp2+const).G_{\mathrm{asymp}}(p)=p^{2}\left(\frac{1}{2\cdot 3!}\frac{1}{(4\pi)^{4}}\ln p^{2}+\textrm{const}\right)\,. (166)

References

  • (1) K. Wilson and J. B. Kogut, Phys. Rept.  12, 75-199 (1974).
  • (2) Y. Igarashi, K. Itoh and H. Sonoda, Prog. Theor. Phys. Suppl.  181, 1-166 (2010) [arXiv:0909.0327 [hep-th]].
  • (3) J. Berges, N. Tetradis and C. Wetterich, Phys. Rept.  363, 223-386 (2002) [arXiv:hep-ph/0005122 [hep-ph]].
  • (4) B. Delamotte, Lect. Notes Phys.  852, 49-132 (2012) [arXiv:cond-mat/0702365 [cond-mat.stat-mech]].
  • (5) M. Reuter, Phys. Rev. D 57, 971-985 (1998) [arXiv:hep-th/9605030 [hep-th]]; C. Pagani and M. Reuter, JHEP 07, 039 (2018) [arXiv:1804.02162 [gr-qc]].
  • (6) K. G. Wilson, Phys. Rev.  179, 1499-1512 (1969).
  • (7) W. Zimmermann, Annals Phys.  77, 570-601 (1973).
  • (8) J. Hughes, Nucl. Phys. B 312, 125-154 (1989).
  • (9) G. Keller and C. Kopper, Commun. Math. Phys.  148, 445-468 (1992).
  • (10) G. Keller and C. Kopper, Commun. Math. Phys.  153, 245-276 (1993).
  • (11) S. Hollands and C. Kopper, Commun. Math. Phys.  313, 257-290 (2012) [arXiv:1105.3375 [hep-th]].
  • (12) J. Holland and S. Hollands, Commun. Math. Phys.  336, no.3, 1555-1606 (2015) [arXiv:1401.3144 [math-ph]].
  • (13) J. Holland, S. Hollands and C. Kopper, Commun. Math. Phys.  342, no.2, 385-440 (2016) [arXiv:1411.1785 [hep-th]].
  • (14) C. Pagani and H. Sonoda, PTEP 2018, no.2, 023B02 (2018) [arXiv:1707.09138 [hep-th]].
  • (15) C. Becchi, [arXiv:hep-th/9607188 [hep-th]].
  • (16) F. Rose, F. Léonard and N. Dupuis, Phys. Rev. B 91, 224501 (2015) [arXiv:1503.08688 [cond-mat.quant-gas]].
  • (17) F. Rose and N. Dupuis, Phys. Rev. B 95, no.1, 014513 (2017) [arXiv:1610.06476 [cond-mat.str-el]].
  • (18) R. Daviet and N. Dupuis, Phys. Rev. Lett.  122, no.15, 155301 (2019) [arXiv:1812.01908 [cond-mat.stat-mech]].
  • (19) C. Pagani, Phys. Rev. E 92, no.3, 033016 (2015) [arXiv:1505.01293 [cond-mat.stat-mech]].
  • (20) C. Pagani and M. Reuter, Phys. Rev. D 95, no.6, 066002 (2017) [arXiv:1611.06522 [gr-qc]].
  • (21) M. Becker and C. Pagani, Phys. Rev. D 99, no.6, 066002 (2019) [arXiv:1810.11816 [gr-qc]].
  • (22) M. Becker and C. Pagani, Universe 5, no.3, 75 (2019); W. Houthoff, A. Kurov and F. Saueressig, [arXiv:2002.00256 [hep-th]].
  • (23) C. Wetterich, Phys. Lett. B 301, 90-94 (1993) [arXiv:1710.05815 [hep-th]].
  • (24) D. Gaiotto, D. Mazac and M. F. Paulos, JHEP 03, 100 (2014) [arXiv:1310.5078 [hep-th]].
  • (25) C. Hasegawa and Y. Nakayama, Mod. Phys. Lett. A 32, no.07, 1750045 (2017) [arXiv:1611.06373 [hep-th]].
  • (26) R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Phys. Rev. Lett.  118, no.8, 081601 (2017) [arXiv:1609.00572 [hep-th]].
  • (27) R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, JHEP 05, 027 (2017) [arXiv:1611.08407 [hep-th]].
  • (28) R. Gopakumar and A. Sinha, JHEP 12, 040 (2018) [arXiv:1809.10975 [hep-th]].
  • (29) J. M. Pawlowski, Annals Phys.  322, 2831-2915 (2007) [arXiv:hep-th/0512261 [hep-th]].
  • (30) C. Pagani, Phys. Rev. D 94, no.4, 045001 (2016) [arXiv:1603.07250 [hep-th]].
  • (31) U. Ellwanger, Proceedings, Workshop on Quantum field theoretical aspects of high energy physics: Bad Frankenhausen, Germany, September 20-24, 1993, Z. Phys. C 62, 503–510 (1994), [arXiv:hep-ph/9308260 [hep-ph]].
  • (32) T. R. Morris, Int. J. Mod. Phys. A 9, 2411-2450 (1994) [arXiv:hep-ph/9308265 [hep-ph]].
  • (33) M. Reuter and C. Wetterich, Nucl. Phys. B 417, 181-214 (1994).
  • (34) B. Delamotte, M. Tissier and N. Wschebor, Phys. Rev. E 93, no.1, 012144 (2016) [arXiv:1501.01776 [cond-mat.stat-mech]].
  • (35) B. Delamotte, M. Tissier and N. Wschebor, [arXiv:1802.07157 [hep-th]].
  • (36) G. De Polsi, M. Tissier and N. Wschebor, [arXiv:1804.08374 [hep-th]].
  • (37) G. De Polsi, M. Tissier and N. Wschebor, J. Statist. Phys.  177, 1089 (2019) [arXiv:1907.09981 [cond-mat.stat-mech]].
  • (38) O. J. Rosten, Eur. Phys. J. C 78, no.4, 312 (2018) [arXiv:1605.01055 [hep-th]].
  • (39) O. J. Rosten, Eur. Phys. J. C 79, no.2, 176 (2019) [arXiv:1705.05837 [hep-th]].
  • (40) H. Sonoda, PTEP 2017, no.8, 083B05 (2017) [arXiv:1705.01239 [hep-th]].
  • (41) C. Coriano, L. Delle Rose, E. Mottola and M. Serino, JHEP 07, 011 (2013) [arXiv:1304.6944 [hep-th]].
  • (42) C. Corianò and M. M. Maglio, JHEP 09, 107 (2019) [arXiv:1903.05047 [hep-th]].
  • (43) A. Bzowski, P. McFadden and K. Skenderis, JHEP 03, 111 (2014) [arXiv:1304.7760 [hep-th]].
  • (44) A. Bzowski, P. McFadden and K. Skenderis, JHEP 03, 066 (2016) [arXiv:1510.08442 [hep-th]].
  • (45) A. Bzowski, P. McFadden and K. Skenderis, JHEP 02, 068 (2016) [arXiv:1511.02357 [hep-th]].
  • (46) A. Bzowski, P. McFadden and K. Skenderis, Phys. Rev. Lett.  124, no.13, 131602 (2020) [arXiv:1910.10162 [hep-th]].
  • (47) H. Isono, T. Noumi and T. Takeuchi, JHEP 05, 057 (2019) [arXiv:1903.01110 [hep-th]].
  • (48) M. Gillioz, JHEP 10, 125 (2018) [arXiv:1807.07003 [hep-th]].
  • (49) H. Sonoda, PTEP 2017, no.12, 123B01 (2017) [arXiv:1706.00198 [hep-th]].
  • (50) X. An, D. Mesterházy and M. A. Stephanov, JHEP 07, 041 (2016) [arXiv:1605.06039 [hep-th]].
  • (51) L. Zambelli and O. Zanusso, Phys. Rev. D 95, no.8, 085001 (2017) [arXiv:1612.08739 [hep-th]].
  • (52) M. Fisher, Phys. Rev. Lett.  40, 1610-1613 (1978).
  • (53) L. Canet, B. Delamotte, D. Mouhanna and J. Vidal, Phys. Rev. B 68, 064421 (2003) [arXiv:hep-th/0302227 [hep-th]].
  • (54) I. Balog, H. Chaté, B. Delamotte, M. Marohnic and N. Wschebor, Phys. Rev. Lett.  123, no.24, 240604 (2019) [arXiv:1907.01829 [cond-mat.stat-mech]].
  • (55) J. Blaizot, R. Mendez-Galain and N. Wschebor, Phys. Rev. E 74, 051116 (2006) [arXiv:hep-th/0512317 [hep-th]].
  • (56) J. L. Cardy, Scaling and renormalization in statistical physics, Cambridge lecture notes in physics (Cambridge University Press, 1996).
  • (57) A. Codello, M. Safari, G. P. Vacca and O. Zanusso, Eur. Phys. J. C 78, no.1, 30 (2018) [arXiv:1705.05558 [hep-th]].
  • (58) C. Pagani and H. Sonoda, Phys. Rev. D 97, no.2, 025015 (2018) [arXiv:1710.10409 [hep-th]].
  • (59) S. Dutta, B. Sathiapalan and H. Sonoda, [arXiv:2003.02773 [hep-th]].