This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

One vanishing minor in neutrino mass matrix using trimaximal mixing

Iffat Ara Mazumder [email protected]    Rupak Dutta [email protected] National Institute of Technology Silchar, Silchar 788010, India
Abstract

We investigate the implications of one vanishing minor in neutrino mass matrix using trimaximal mixing matrix. In this context, we analyse all six patterns of one vanishing minor zero in neutrino mass matrix and present correlations of the neutrino oscillation parameters. All the six patterns are found to be phenomenologically viable with the present neutrino oscillation data. We also predict the values of effective Majorana mass, the effective electron anti-neutrino mass and the total neutrino mass for all the patterns. The value obtained for the effective neutrino mass is within the reach future neutrinoless double β\beta decay experiments. We also propose a flavor model where such patterns can be generated within the seesaw model.

pacs:
14.60.Pq, 14.60.St, 23.40.−s

I Introduction

Evidence of neutrino oscillations observed in multitude of experiments confirms that neutrinos mix with each other and have non zero mass Super-Kamiokande:1998kpq . Neutrino oscillation phenomena can be parametrized in terms of six independent parameters, namely three mixing angles (θ13,θ12,θ23)(\theta_{13},\theta_{12},\theta_{23}), one Dirac CP violating phase (δCP)(\delta_{\rm CP}), and two mass squared differences (Δm212,Δm312)(\Delta m_{21}^{2}\,,\Delta m_{31}^{2}). Although we have very precise values of the mixing angles and the absolute value of the mass squared differences, there are still some unknowns such as the octant of θ23\theta_{23}, δCP\delta_{\rm CP} and the sign of Δm312\Delta m_{31}^{2}. There are two possible mass ordering of the neutrino mass spectrum: normal mass ordering (NO) m1<m2<<m3m_{1}<m_{2}<<m_{3} and inverted mass ordering (IO) m3<<m1<m2m_{3}<<m_{1}<m_{2} depending on the sign of Δm312\Delta m_{31}^{2}.

Neutrino oscillation experiments are sensitive only to the mass squared differences. They can not provide any information regarding the absolute mass scale of neutrinos which is one of the most sought after questions in particle physics today. Knowledge of the absolute mass scale of neutrinos is of great importance not only in particle physics but also in understanding the large scale structure of our universe. Neutrinos possess very tiny mass and unlike all other fermions in the Standard Model (SM), they do not seem to get their mass through Higgs mechanism. Hence, it may, in principle, help shape our understanding of the origin of particle mass which is still one of the most fundamental questions of particle physics. Unlike all other fermions in the SM, we observe only left handed neutrinos and right handed anti-neutrinos. We have not found any right handed neutrino and left handed anti-neutrino so far in experiments. This brings us to the next relevant question whether neutrino is a Dirac particle or a Majorana particle. Neutrino interactions could violate CP as well which will be crucial in explaining the matter antimatter asymmetry in the universe. Moreover, there could be additional sterile neutrinos.

There are several experimental efforts to find the absolute mass of the neutrino. The β\beta decay experiment performed at KATRIN can, in principle, measure the effective electron anti-neutrino mass by studying the end point region of the β\beta decay spectrum. This is completely model independent determination, i.e, it depends neither on any cosmological models nor on the nature of neutrinos. At present, the improved upper bound on the effective electron anti-neutrino mass is reported to be mν<0.8eVm_{\nu}<0.8\,{\rm eV} at 90%90\% confidence level. The KATRIN experiment will continue to take data over the next several years and it is expected that the mass sensitivity will reach up to 0.2eV0.2\,{\rm eV}. Future experiments like Project 88 Project8:2022wqh , designed to measure the absolute mass scale of the neutrino, hopes to reach a goal of 40meV/c240\,{\rm meV/c^{2}} neutrino mass sensitivity. Indirectly, one can have information on neutrino mass from cosmological observations. These cosmological observations are sensitive to the total neutrino mass and to the number of neutrino species. There are several results related to the total neutrino mass coming from various cosmological observations. Most of these indirect methods put a limit on the total neutrino mass to be less than 0.2eV0.2\,{\rm eV}. These results are, however, model dependent. They rely heavily on several cosmological assumptions. Current upper bound on the total neutrino mass is reported by the Planck satellite to be mi<0.12eV\sum\,m_{i}<0.12\,{\rm eV} at 95%95\% confidence level combining BAO data with CMB data  Zhang:2020mox . If KATRIN’s mass sensitivity reach up to 0.2eV0.2\,{\rm eV} in future, it can put severe constraint on several cosmological models. Rare double β\beta decay process with two anti neutrinos in the final state is allowed in the SM. In general double beta decay processes are powerful probes of beyond the SM physics. More specifically, if one observes neutrinoless double β\beta decay in experiments, it would confirm that neutrinos are Majorana in nature. One can determine the effective Majorana mass MeeM_{ee} by studying neutrinoless double beta decay. There exists several limits on the value of MeeM_{ee} using different isotopes. At present, the best limits are reported to be mee<(0.0790.18)eVm_{ee}<(0.079-0.18)\,{\rm eV}, mee<(0.0750.35)eVm_{ee}<(0.075-0.35)\,{\rm eV} and mee<(0.0610.165)eVm_{ee}<(0.061-0.165)\,{\rm eV} GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx , respectively.

There are several theoretical efforts in explaining the origin of neutrino mass. The most natural way to understand neutrino mass is through seesaw mechanism. The neutrino mass matrix in the framework of Type-I seesaw mechanism is given by Mν=MDMR1MDTM_{\nu}=-M_{D}M_{R}^{-1}M_{D}^{T}, where MDM_{D} is the Dirac neutrino mass matrix and MRM_{R} is the Majorana mass matrix of the right handed neutrinos. Phenomenology of Majorana neutrino mass matrix has been studied extensively assuming zero textures of the neutrino mass matrix which may be realised from the zeros in MDM_{D} or MRM_{R}. In literature, there have been phenomenological studies with texture one-zero  Lashin:2011dn ; Singh:2018tqu ; Gautam:2018izb , two-zeros Frampton:2002yf ; Xing:2002ta ; Xing:2002ap ; Lavoura:2004tu ; Dev:2006qe ; Kumar:2011vf ; Fritzsch:2011qv ; Ludl:2011vv ; Meloni:2012sx ; Grimus:2012zm ; Dev:2014dla ; Gautam:2016qyw ; Channey:2018cfj ; Singh:2019baq and more within the context of Pontecorvo Maki Nakagawa Sakata (PMNS), tribimaximal (TB) and trimaximal (TM) mixing matrix. Similarly, in Ref. Lashin:2007dm ; Lashin:2009yd ; Dev:2010if ; Dev:2010pf ; Tavartkiladze:2022pzf ; Araki:2012ip , the authors have studied the phenomenological implication of vanishing minors in the neutrino mass matrix. Moreover, in Ref. Liao:2013saa ; Dev:2013xca ; Wang:2013woa ; Whisnant:2015ovx ; Dev:2015lya ; Wang:2016tkm and Ref. Goswami:2008uv ; Dev:2009he ; Dev:2010pe ; Liu:2013oxa ; Dev:2013nua , the authors have explored the implication of cofactor zero and hybrid texture of the neutrino mass matrix. In case of zero textures, it is found that three or more zeros in neutrino mass matrix can not accommodate the current neutrino oscillation data. In Ref. Frampton:2002yf , the authors have found that out of fifteen possible two texture zeros cases only seven cases with PMNS mixing are allowed experimentally. Also out of fifteen possible two cofactors zero patterns only seven patterns are acceptable Lashin:2007dm . In case of TM mixing along with magic symmetry Gautam:2016qyw , the authors have found that only two cases are valid for two texture zero. TM mixing with one texture zero was studied in Ref. Gautam:2018izb and found that all six patterns are compatible with current neutrino oscillation data. For TB mixing along with the condition of texture zeros or vanishing minor Dev:2010pf only five patterns are allowed. In this work we study the implication of one vanishing minor in the neutrino mass matrix using trimaximal mixing.

Our paper is organized as follows. In Section. II, we briefly discuss the neutrino mass matrix using trimaximal mixing matrix. We find all the mixing parameters such as θ13\theta_{13}, θ23\theta_{23}, θ12\theta_{12} and the CP violating parameter δCP\delta_{CP} in terms of the unknown parameters θ\theta and ϕ\phi of the trimaximal mixing matrix. In Section. III, we describe the formalism of one vanishing minor in neutrino mass matrix and identify all the possible patterns of one vanishing minor. We provide all the detail numerical analysis and discussion of each pattern in Sections. IV and  V. The fine-tuning of neutrino mass matrix is presented in Section. VI. In Section. VII, we present the symmetry realization and conclude in Section. VIII.

II neutrino mass matrix

The most widely studied lepton flavor mixing is TB mixing pattern Harrison:2002er ; Harrison:2002kp ; Xing:2002sw ; Harrison:2003aw introduced by Harrison, Perkins and Scott. TB mixing pattern provides remarkable agreement with the atmospheric and solar neutrino oscillation data. The TB mixing pattern is given by

UTB=(23130161312161312).U_{TB}=\begin{pmatrix}\sqrt{\frac{2}{3}}&\sqrt{\frac{1}{3}}&0\\ -\sqrt{\frac{1}{6}}&\sqrt{\frac{1}{3}}&\sqrt{\frac{1}{2}}\\ -\sqrt{\frac{1}{6}}&\sqrt{\frac{1}{3}}&-\sqrt{\frac{1}{2}}\end{pmatrix}. (1)

The TB mixing matrix possesses two types of symmetries: μτ\mu-\tau symmetry and magic symmetry. Although TB mixing matrix correctly predicted the value of atmospheric mixing angle θ23\theta_{23} and the solar mixing angle θ12\theta_{12}, it, however, failed to explain a non zero value of the reactor mixing angle θ13\theta_{13} that was experimentally confirmed by T2K T2K:2011ypd , MINOS MINOS:2011amj , Double Chooz DoubleChooz:2011ymz , Daya Bay DayaBay:2012fng and RENO RENO:2012mkc experiments. The possibility of an exact μτ\mu-\tau symmetry in the mass matrix was completely ruled out by a relatively large value of θ13\theta_{13}. Modifications in the TB mixing pattern Kumar:2010qz ; He:2011gb ; Grimus:2008tt was made to accommodate the present data. The TM mixing matrix was constructed by multiplying the TB mixing matrix by an unitary matrix and can be written as

UTM1=(2313cosθ13sinθ16cosθ3eiϕsinθ2sinθ3+eiϕcosθ216cosθ3+eiϕsinθ2sinθ3eiϕcosθ2).U_{TM_{1}}=\begin{pmatrix}\sqrt{\frac{2}{3}}&\frac{1}{\sqrt{3}}\cos\theta&\frac{1}{\sqrt{3}}\sin\theta\\ -\frac{1}{\sqrt{6}}&\frac{\cos\theta}{\sqrt{3}}-\frac{e^{i\phi}\sin\theta}{\sqrt{2}}&\frac{\sin\theta}{\sqrt{3}}+\frac{e^{i\phi}\cos\theta}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}}&\frac{\cos\theta}{\sqrt{3}}+\frac{e^{i\phi}\sin\theta}{\sqrt{2}}&\frac{\sin\theta}{\sqrt{3}}-\frac{e^{i\phi}\cos\theta}{\sqrt{2}}\,\end{pmatrix}. (2)

and

UTM2=(23cosθ1323sinθcosθ6+eiϕsinθ213sinθ6eiϕcosθ2cosθ6eiϕsinθ213sinθ6+eiϕcosθ2).U_{TM_{2}}=\begin{pmatrix}\sqrt{\frac{2}{3}}\cos\theta&\frac{1}{\sqrt{3}}&\sqrt{\frac{2}{3}}\sin\theta\\ -\frac{\cos\theta}{\sqrt{6}}+\frac{e^{-i\phi}\sin\theta}{\sqrt{2}}&\frac{1}{\sqrt{3}}&-\frac{\sin\theta}{\sqrt{6}}-\frac{e^{-i\phi}\cos\theta}{\sqrt{2}}\\ -\frac{\cos\theta}{\sqrt{6}}-\frac{e^{-i\phi}\sin\theta}{\sqrt{2}}&\frac{1}{\sqrt{3}}&-\frac{\sin\theta}{\sqrt{6}}+\frac{e^{-i\phi}\cos\theta}{\sqrt{2}}\,\end{pmatrix}. (3)

where θ\theta and ϕ\phi are two free parameters. The neutrino mass matrix corresponding to TM mixing matrix can be written as

Mρσ=(VMdiagVT)ρσwithρ,σ=e,μ,τ,M_{\rho\sigma}=(VM_{diag}V^{T})_{\rho\sigma}\,\,{\rm with}\,\,\rho\,,\sigma=e\,,\mu\,,\tau\,, (4)

where Mdiag=diag(m1,m2,m3)M_{diag}={\rm diag}(m_{1},m_{2},m_{3}) is the diagonal matrix containing three mass state, V=UTMPV=U_{TM}P and PP is the phase matrix written as

P=(1000eiα000eiβ).P=\begin{pmatrix}1&0&0\\ 0&e^{i\alpha}&0\\ 0&0&e^{i\beta}\ \end{pmatrix}\,. (5)

Here α\alpha and β\beta are the two CP violating Majorana phases.

II.1 TM1 Mixing matrix

With TM1 mixing matrix, the elements of neutrino mass matrix can be written as

Mee=23m1+13cos2θm2e2iα+13sin2θm3e2iβ,\displaystyle M_{ee}=\frac{2}{3}\,m_{1}+\frac{1}{3}\cos^{2}\theta\,m_{2}\,e^{2i\alpha}+\frac{1}{3}\sin^{2}\theta\,m_{3}\,e^{2\,i\,\beta},
Meμ=(13)m1+(13cos2θ16sinθcosθeiϕ)m2e2iα+(13sin2θ+16sinθcosθeiϕ)m3e2iβ,\displaystyle M_{e\mu}=(-\frac{1}{3})m_{1}+(\frac{1}{3}\cos^{2}\theta-\frac{1}{\sqrt{6}}\sin\theta\cos\theta e^{i\phi})m_{2}e^{2i\alpha}+(\frac{1}{3}\sin^{2}\theta+\frac{1}{\sqrt{6}}\sin\theta\cos\theta e^{i\phi})m_{3}e^{2i\beta},
Meτ=(13)m1+(13cos2θ+16sinθcosθeiϕ)m2e2iα+(13sin2θ16sinθcosθeiϕ)m3e2iβ,\displaystyle M_{e\tau}=(-\frac{1}{3})m_{1}+(\frac{1}{3}\cos^{2}\theta+\frac{1}{\sqrt{6}}\sin\theta\cos\theta e^{i\phi})m_{2}e^{2i\alpha}+(\frac{1}{3}\sin^{2}\theta-\frac{1}{\sqrt{6}}\sin\theta\cos\theta e^{i\phi})m_{3}e^{2i\beta},
Mμμ=16m1+(13cosθ12sinθeiϕ)2m2e2iα+(13sinθ+12cosθeiϕ)2m3e2iβ,\displaystyle M_{\mu\mu}=\frac{1}{6}m_{1}+(\frac{1}{\sqrt{3}}\cos\theta-\frac{1}{\sqrt{2}}\sin\theta e^{i\phi})^{2}m_{2}e^{2i\alpha}+(\frac{1}{\sqrt{3}}\sin\theta+\frac{1}{\sqrt{2}}\cos\theta e^{i\phi})^{2}m_{3}e^{2i\beta},
Mμτ=16m1+(13cos2θ12sin2θe2iϕ)m2e2iα+(13sin2θ12cos2θe2iϕ)m3e2iβ,\displaystyle M_{\mu\tau}=\frac{1}{6}m_{1}+(\frac{1}{3}\cos^{2}\theta-\frac{1}{2}\sin^{2}\theta e^{2i\phi})m_{2}e^{2i\alpha}+(\frac{1}{3}\sin^{2}\theta-\frac{1}{2}\cos^{2}\theta e^{2i\phi})m_{3}e^{2i\beta},
Mττ=16m1+(13cosθ+12sinθeiϕ)2e2iα+(13sinθ12cosθeiϕ)2m3e2iβ.\displaystyle M_{\tau\tau}=\frac{1}{6}m_{1}+(\frac{1}{\sqrt{3}}\cos\theta+\frac{1}{\sqrt{2}}\sin\theta e^{i\phi})^{2}e^{2i\alpha}+(\frac{1}{\sqrt{3}}\sin\theta-\frac{1}{\sqrt{2}}\cos\theta e^{i\phi})^{2}m_{3}e^{2i\beta}. (6)

The three neutrino mixing angles θ12\theta_{12}, θ23\theta_{23} and θ13\theta_{13} can be expressed in terms of θ\theta and ϕ\phi, the free parameters of the TM1 matrix, as

s122=|(U12)TM1|21|(U13)TM1|2=123sin2θ,\displaystyle s_{12}^{2}=\frac{|(U_{12})_{TM_{1}}|^{2}}{1-|(U_{13})_{TM_{1}}|^{2}}=1-\frac{2}{3-\sin^{2}\theta}\,, (7)
s232=|(U23)TM1|21|(U13)TM1|2=12(1+6sin2θcosϕ3sin2θ),\displaystyle s_{23}^{2}=\frac{|(U_{23})_{TM_{1}}|^{2}}{1-|(U_{13})_{TM_{1}}|^{2}}=\frac{1}{2}\Big{(}1+\frac{\sqrt{6}\sin 2\theta\cos\phi}{3-\sin^{2}\theta}\Big{)}\,,
s132=|(U13)TM1|2=13sin2θ,\displaystyle s_{13}^{2}=|(U_{13})_{TM_{1}}|^{2}=\frac{1}{3}\sin^{2}\theta\,,

where sij=sinθijs_{ij}=\sin\theta_{ij} and cij=cosθijc_{ij}=\cos\theta_{ij} for i,j=1,2,3i,j=1,2,3. Using the standard parametrization of the PMNS matrix, the Jarlskog invariant, a measure of CP violation, is defined as Jarlskog:1985ht

J\displaystyle J =\displaystyle= s12s13s23c12c132c23sinδ.\displaystyle s_{12}s_{13}s_{23}c_{12}c_{13}^{2}c_{23}\sin\delta. (8)

Again, using the elements from TM1 mixing matrix, the Jarlskog invariant can be expressed as

J=166sin2θsinϕ.J=\frac{1}{6\sqrt{6}}\sin 2\theta\sin\phi. (9)

Combining Eq. 8 and Eq. 9, we can write δ\delta in terms of θ\theta and ϕ\phi as

csc2δ=csc2ϕ6sin22θcot2ϕ(3sin2θ)2.\csc^{2}\delta=\csc^{2}\phi-\frac{6\sin^{2}2\theta\cot^{2}\phi}{(3-\sin^{2}\theta)^{2}}. (10)

The nature of neutrino can be determined from the effective Majorana mass term. It also measures the rate of neutrinoless double beta decay. The effective Majorana mass |Mee||M_{ee}| for the TM1 mixing matrix can be written as

|Mee|=|13(2m1+m2cos2θe2iα+m3sin2θe2iβ)|.|M_{ee}|=\Big{|}\frac{1}{3}(2m_{1}+m_{2}\cos^{2}\theta e^{2i\alpha}+m_{3}\sin^{2}\theta e^{2i\beta})\Big{|}. (11)

Similarly, the effective electron anti-neutrino mass can be expressed as

Mν2=i=13Uie2=13(2m12+m22cos2θ+m32sin2θ).M_{\nu}^{2}=\sum\limits_{i=1}^{3}U_{ie}^{2}=\frac{1}{3}(2m_{1}^{2}+m_{2}^{2}\cos^{2}\theta+m_{3}^{2}\sin^{2}\theta). (12)

II.2 TM2 Mixing matrix

Using TM2 mixing matrix, we can write the elements of neutrino mass matrix as

Mee=(23cos2θ)m1+13m2e2iα+(23sin2θ)m3e2iβ,\displaystyle M_{ee}=(\frac{2}{3}\cos^{2}\theta)\,m_{1}+\frac{1}{3}\,m_{2}\,e^{2i\alpha}+(\frac{2}{3}\sin^{2}\theta)\,m_{3}\,e^{2\,i\,\beta},
Meμ=(13cos2θ+13sinθcosθeiϕ)m1+13m2e2iα+(13sin2θ13sinθcosθeiϕ)m3e2iβ,\displaystyle M_{e\mu}=(-\frac{1}{3}\cos^{2}\theta+\frac{1}{\sqrt{3}}\sin\theta\cos\theta e^{-i\phi})m_{1}+\frac{1}{3}m_{2}e^{2i\alpha}+(-\frac{1}{3}\sin^{2}\theta-\frac{1}{\sqrt{3}}\sin\theta\cos\theta e^{-i\phi})m_{3}e^{2i\beta},
Meτ=(13cos2θ13sinθcosθeiϕ)m1+13m2e2iα+(13sin2θ+13sinθcosθeiϕ)m3e2iβ,\displaystyle M_{e\tau}=(-\frac{1}{3}\cos^{2}\theta-\frac{1}{\sqrt{3}}\sin\theta\cos\theta e^{-i\phi})m_{1}+\frac{1}{3}m_{2}e^{2i\alpha}+(-\frac{1}{3}\sin^{2}\theta+\frac{1}{\sqrt{3}}\sin\theta\cos\theta e^{-i\phi})m_{3}e^{2i\beta},
Mμμ=(16cosθ+12sinθeiϕ)2m1+13m2e2iα+(16sinθ+12cosθeiϕ)2m3e2iβ,\displaystyle M_{\mu\mu}=(-\frac{1}{\sqrt{6}}\cos\theta+\frac{1}{\sqrt{2}}\sin\theta e^{-i\phi})^{2}m_{1}+\frac{1}{3}m_{2}e^{2i\alpha}+(\frac{1}{\sqrt{6}}\sin\theta+\frac{1}{\sqrt{2}}\cos\theta e^{-i\phi})^{2}m_{3}e^{2i\beta},
Mμτ=(16cos2θ12sin2θe2iϕ)m1+13m2e2iα+(16sin2θ12cos2θe2iϕ)m3e2iβ,\displaystyle M_{\mu\tau}=(\frac{1}{6}\cos^{2}\theta-\frac{1}{2}\sin^{2}\theta e^{-2i\phi})m_{1}+\frac{1}{3}m_{2}e^{2i\alpha}+(\frac{1}{6}\sin^{2}\theta-\frac{1}{2}\cos^{2}\theta e^{-2i\phi})m_{3}e^{2i\beta},
Mττ=(16cosθ+12sinθeiϕ)2m1+13m2e2iα+(16sinθ+12cosθeiϕ)2m3e2iβ.\displaystyle M_{\tau\tau}=(\frac{1}{\sqrt{6}}\cos\theta+\frac{1}{\sqrt{2}}\sin\theta e^{-i\phi})^{2}m_{1}+\frac{1}{3}m_{2}e^{2i\alpha}+(-\frac{1}{\sqrt{6}}\sin\theta+\frac{1}{\sqrt{2}}\cos\theta e^{-i\phi})^{2}m_{3}e^{2i\beta}. (13)

The three neutrino mixing angles θ12\theta_{12}, θ23\theta_{23} and θ13\theta_{13} can be expressed as

s122=132sin2θ,\displaystyle s_{12}^{2}=\frac{1}{3-2\sin^{2}\theta}\,,
s232=12(1+3sin2θcosϕ32sin2θ),\displaystyle s_{23}^{2}=\frac{1}{2}\Big{(}1+\frac{\sqrt{3}\sin 2\theta\cos\phi}{3-2\sin^{2}\theta}\Big{)}\,,
s132=23sin2θ.\displaystyle s_{13}^{2}=\frac{2}{3}\sin^{2}\theta\,. (14)

Again, using the elements from TM2 mixing matrix, the Jarlskog invariant can be expressed as

J=163sin2θsinϕ.J=\frac{1}{6\sqrt{3}}\sin 2\theta\sin\phi. (15)

We can express the Dirac CP violating parameter δCP\delta_{CP} in terms of θ\theta and ϕ\phi as

csc2δ=csc2ϕ3sin22θcot2ϕ(32sin2θ)2.\csc^{2}\delta=\csc^{2}\phi-\frac{3\sin^{2}2\theta\cot^{2}\phi}{(3-2\sin^{2}\theta)^{2}}. (16)

The effective Majorana mass |Mee||M_{ee}| for the TM2 mixing matrix can be written as

|Mee|=|13(2m1cos2θ+m2e2iα+2m3sin2θe2iβ)|.|M_{ee}|=\Big{|}\frac{1}{3}(2m_{1}\cos^{2}\theta+m_{2}e^{2i\alpha}+2m_{3}\sin^{2}\theta e^{2i\beta})\Big{|}. (17)

The effective electron anti-neutrino mass can be expressed as

Mν2=13(2m12+m22cos2θ+2m32sin2θ).M_{\nu}^{2}=\frac{1}{3}(2m_{1}^{2}+m_{2}^{2}\cos^{2}\theta+2m_{3}^{2}\sin^{2}\theta). (18)

III One vanishing minor in neutrino mass matrix

There are six independent minors corresponding to six independent elements in the neutrino mass matrix. We denote the minor corresponding to ijthij^{th} element of MijM_{ij} as CijC_{ij}. The six possible patterns of one minor zero in neutrino mass matrix are listed in Table. 1.

Pattern Constraining equation
I C33=0C_{33}=0
II C22=0C_{22}=0
III C31=0C_{31}=0
IV C21=0C_{21}=0
V C32=0C_{32}=0
VI C11=0C_{11}=0
Table 1: one minor zero patterns.

The condition for one vanishing minor can be written as

MabMcdMuvMwx=0.M_{a\,b}M_{c\,d}-M_{u\,v}M_{w\,x}=0\,. (19)

More specifically, we can write Eq. 19 in terms of a complex equation as

m1m2X3e2iα+m2m3X1e2i(α+β)+m3m1X2e2iβ=0,m_{1}m_{2}X_{3}e^{2i\alpha}+m_{2}m_{3}X_{1}e^{2i(\alpha+\beta)}+m_{3}m_{1}X_{2}e^{2i\beta}=0\,, (20)

where

Xk=(UaiUbiUcjUdjUuiUviUwjUxj)+(ij),X_{k}=(U_{ai}U_{bi}U_{cj}U_{dj}-U_{ui}U_{vi}U_{wj}U_{xj})+(i\leftrightarrow j)\,, (21)

with (i,j,k)(i,j,k) as the cyclic permutation of (1,2,3)(1,2,3). Using Eq. 20, one can write the two mass ratios as

m1m2=(X3e2iα)(X1e2i(α+β))(X1e2i(α+β))(X3e2iα)(X2e2iβ)(X3e2iα)(X3e2iα)(X2e2iβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{\Re(X_{3}e^{2i\alpha})\Im(X_{1}e^{2i(\alpha+\beta)})-\Re(X_{1}e^{2i(\alpha+\beta)})\Im(X_{3}e^{2i\alpha})}{\Re(X_{2}e^{2i\beta})\Im(X_{3}e^{2i\alpha})-\Re(X_{3}e^{2i\alpha})\Im(X_{2}e^{2i\beta})}\,,
m3m2=(X3e2iα)(X1e2i(α+β))(X1e2i(α+β))(X3e2iα)(X1e2i(α+β))(X2e2iβ)(X2e2iβ)(X1e2i(α+β)).\displaystyle\frac{m_{3}}{m_{2}}=\frac{\Re(X_{3}e^{2i\alpha})\Im(X_{1}e^{2i(\alpha+\beta)})-\Re(X_{1}e^{2i(\alpha+\beta)})\Im(X_{3}e^{2i\alpha})}{\Re(X_{1}e^{2i(\alpha+\beta)})\Im(X_{2}e^{2i\beta})-\Re(X_{2}e^{2i\beta})\Im(X_{1}e^{2i(\alpha+\beta)})}. (22)

The value of m1m_{1}, m2m_{2} and m3m_{3} can be calculated using Eq. III and mass square difference Δm212\Delta m_{21}^{2}. That is

m1=Δm212(m1m2)2|1(m1m2)2|,\displaystyle m_{1}=\sqrt{\Delta m_{21}^{2}}\sqrt{\frac{(\frac{m_{1}}{m_{2}})^{2}}{|1-(\frac{m_{1}}{m_{2}})^{2}|}},
m2=Δm2121|1(m1m2)2|,\displaystyle m_{2}=\sqrt{\Delta m_{21}^{2}}\sqrt{\frac{1}{|1-(\frac{m_{1}}{m_{2}})^{2}|}}\,,
m3=Δm212(m3m2)2|1(m1m2)2|.\displaystyle m_{3}=\sqrt{\Delta m_{21}^{2}}\sqrt{\frac{(\frac{m_{3}}{m_{2}})^{2}}{|1-(\frac{m_{1}}{m_{2}})^{2}|}}\,. (23)

Similarly, the ratio of squared mass difference is defined as

r|Δm212Δm322|=|1(m1m2)2(m3m2)21|,r\equiv\Big{|}\frac{\Delta m_{21}^{2}}{\Delta m_{32}^{2}}\Big{|}=\Big{|}\frac{1-(\frac{m_{1}}{m_{2}})^{2}}{(\frac{m_{3}}{m_{2}})^{2}-1}\Big{|}\,, (24)

where Δm212\Delta m_{21}^{2} and Δm322\Delta m_{32}^{2} represent solar and atmospheric mass squared difference, respectively. Value of r=(2.950±0.08)×102r=(2.950\pm 0.08)\times 10^{-2} is determined by using the measured values of Δm212\Delta m_{21}^{2} and Δm322\Delta m_{32}^{2} reported in Ref. Esteban:2020cvm .

IV Results and discussion

For our numerical analysis, we use the measured values of the oscillation parameters reported in Ref. Esteban:2020cvm . For completeness, we report them in Table. 2.

parameter Normal ordering(best fit) inverted ordering (Δχ2=7.1)\Delta\chi^{2}=7.1)
bfp±1σ\pm 1\sigma               3σ3\sigma ranges bfp±1σ\pm 1\sigma               3σ3\sigma ranges
θ12\theta_{12}^{\circ} 33.440.74+0.7733.44^{+0.77}_{-0.74}               31.27\rightarrow 35.86 33.450.74+0.7733.45^{+0.77}_{-0.74}              31.27\rightarrow 35.87
θ23\theta_{23}^{\circ} 49.21.3+1.049.2^{+1.0}_{-1.3}               39.5\rightarrow 52.0 49.51.2+1.049.5^{+1.0}_{-1.2}              39.8\rightarrow 52.1
θ13\theta_{13}^{\circ} 8.570.12+0.138.57^{+0.13}_{-0.12}               8.20\rightarrow 8.97 8.600.12+0.128.60^{+0.12}_{-0.12}               8.24\rightarrow 8.98
δ\delta^{\circ} 19425+52194^{+52}_{-25}               105\rightarrow 405 28732+27287^{+27}_{-32}               192\rightarrow 361
Δm212105eV2\frac{\Delta m^{2}_{21}}{10^{-5}eV^{2}} 7.420.20+0.217.42^{+0.21}_{-0.20}               6.82\rightarrow 8.04 7.420.20+0.217.42^{+0.21}_{-0.20}               6.82\rightarrow 8.04
Δm3l2103eV2\frac{\Delta m^{2}_{3l}}{10^{-3}eV^{2}} +2.5150.028+0.028+2.515^{+0.028}_{-0.028}               +2.431\rightarrow +2.599 2.4980.029+0.028-2.498^{+0.028}_{-0.029}               -2.584\rightarrow -2.413
Table 2: neutrino oscillation parameters from NuFIT Esteban:2020cvm .

We wish to find the value of the unknown parameters θ\theta and ϕ\phi. It is evident from Eq. 7 and Eq. II.2 that the neutrino oscillation parameters θ12\theta_{12} and θ13\theta_{13} depend only on θ\theta. To find the best fit value of θ\theta, we perform a naive χ2\chi^{2} analysis. The relevant χ2\chi^{2} is defined as

χ2(θ)=i=12(θicalθiexp)2(σiexp)2,\chi^{2}(\theta)=\sum\limits_{i=1}^{2}\frac{\Big{(}\theta_{i}^{cal}-\theta_{i}^{exp}\Big{)}^{2}}{(\sigma_{i}^{exp})^{2}}\,, (25)

where θi=(θ12,θ13)\theta_{i}=(\theta_{12},\theta_{13}). Here θical\theta_{i}^{cal} represents the theoretical value of θi\theta_{i} and θiexp\theta_{i}^{exp} represents measured central value of θi\theta_{i}. The corresponding uncertainties in the measured value of θi\theta_{i} is represented by σiexp\sigma_{i}^{exp}.

For the TM1 mixing matrix, the best fit value of θ\theta is obtained to be 14.9614.96^{\circ}. The corresponding best fit values of θ12\theta_{12} and θ13\theta_{13} are 34.3334.33^{\circ} and 8.578.57^{\circ}, respectively. The 3σ3\sigma allowed range of θ\theta is found to be (14.2615.64)(14.26^{\circ}-15.64^{\circ}). Using the allowed range of θ\theta, we obtain the allowed ranges of θ12\theta_{12} and θ23\theta_{23} to be (34.2534.42)(34.25^{\circ}-34.42^{\circ}) and (32.1157.88)(32.11^{\circ}-57.88^{\circ}), respectively. We show in Fig. 1(a) the correlation of θ13\theta_{13} and θ12\theta_{12} for the TM1 mixing matrix. To see the variation of θ23\theta_{23} with ϕ\phi, we use the allowed range of θ\theta and vary ϕ\phi within its full range from 00^{\circ} to 360360^{\circ}. We show in Fig. 1(b) the variation of θ23\theta_{23} as a function of the unknown parameter ϕ\phi. We also obtain the best fit value of ϕ\phi by using the measured best fit value of θ23\theta_{23}. The best fit value is shown with a ’*’ mark in Fig. 1(b). The best fit values of ϕ\phi corresponding to the best fit value of θ23=49.2\theta_{23}=49.2^{\circ} are 69.4369.43^{\circ} and 290.57290.57^{\circ}, respectively. We show the variation of JJ and δ\delta as a function of ϕ\phi in Fig. 1(c) and Fig. 1(d), respectively. It is observed that the Jarlskog rephasing invariant JJ and the Dirac CP violating phase δ\delta are restricted to two regions. The corresponding best fit values of JJ and δ\delta are [3.184×102,3.185×102][-3.184\times 10^{-2},3.185\times 10^{-2}] and [71.11,288.98][71.11^{\circ},288.98^{\circ}], respectively. We also obtain the 3σ3\sigma allowed ranges of JJ and δ\delta to be [0,±3.53×102][0,\pm 3.53\times 10^{-2}] and [(55.05,124.95),(235.05,304.95)][(55.05,124.95)^{\circ},\,(235.05,304.95)^{\circ}], respectively.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Figure 1: Various correlation plots for TM1 mixing matrix.

For TM2 mixing matrix, the best fit value of θ\theta is obtained to be 10.5010.50^{\circ}. The corresponding best fit values of θ12\theta_{12} and θ13\theta_{13} are 35.7235.72^{\circ} and 8.568.56^{\circ}, respectively. The 3σ3\sigma allowed range of θ\theta is found to be (10.0310.99)(10.03^{\circ}-10.99^{\circ}). Using the allowed range of θ\theta, we obtain the allowed ranges of θ12\theta_{12} and θ23\theta_{23} to be (35.6835.76)(35.68^{\circ}-35.76^{\circ}) and (39.5051.40)(39.50^{\circ}-51.40^{\circ}), respectively. It should be noted that although the allowed range of θ12\theta_{12} obtained with TM2 mixing matrix is consistent with the 3σ3\sigma experimental range, the best fit value obtained for θ12\theta_{12}, however, deviates from the experimental best fit value at more than 2σ2\sigma significance. This is quite a generic feature of TM2 mixing matrix because, by default, value of θ12\theta_{12} will be greater than or equal to the value obtained in case of TB mixing matrix. We show in Fig. 2(a) the correlation of θ13\theta_{13} and θ12\theta_{12} for the TM2 mixing matrix.

To see the variation of θ23\theta_{23} with ϕ\phi, we use the allowed range of θ\theta and vary ϕ\phi within its full range from 00^{\circ} to 360360^{\circ}. We show in Fig. 2(b) the variation of θ23\theta_{23} as a function of the unknown parameter ϕ\phi. The best fit value is shown with a ’*’ mark in Fig. 2(b). We obtain the best fit value of ϕ\phi by using the measured best fit value of θ23\theta_{23}. The best fit values of ϕ\phi corresponding to the best fit value of θ23=49.2\theta_{23}=49.2^{\circ} are 44.8644.86^{\circ} and 315.19315.19^{\circ}, respectively. We get two best fit values of ϕ\phi because θ23\theta_{23} is invariant under the transformation ϕ(2πϕ)\phi\to(2\pi-\phi) which is evident from Eq. 7 and Eq. II.2. We also show the variation of JJ and δ\delta as a function of ϕ\phi in Fig. 2(c) and Fig. 2(d), respectively. It is observed that the Jarlskog rephasing invariant JJ and the Dirac CP violating phase δ\delta are restricted to two regions. The corresponding best fit values of JJ and δ\delta are [2.37×102,2.50×102][2.37\times 10^{-2},-2.50\times 10^{-2}] and [45.48,314.44][45.48^{\circ},314.44^{\circ}], respectively. We also obtain the 3σ3\sigma allowed ranges of JJ and δ\delta to be [0,±3.60×102][0,\pm 3.60\times 10^{-2}] and [(0,90),(270,360)][(0,90)^{\circ},\,(270,360)^{\circ}], respectively.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Figure 2: Various correlation plots for TM2 mixing matrix.

In case of inverted mass ordering the 3σ3\sigma allowed range of θ\theta are found to be (14.3715.64)(14.37^{\circ}-15.64^{\circ}) and (10.1010.99)(10.10^{\circ}-10.99^{\circ}) for both TM1 and TM2 mixing matrix, respectively. Using the 3σ3\sigma allowed range of θ\theta, we obtain the 3σ3\sigma allowed ranges of θ12\theta_{12} to be (34.2534.41)(34.25^{\circ}-34.41^{\circ}) and (35.6835.76)(35.68^{\circ}-35.76^{\circ}), respectively for both TM1 and TM2 mixing matrix. The 3σ3\sigma allowed ranges of θ23\theta_{23} to be (32.1257.87)(32.12^{\circ}-57.87^{\circ}) and (38.6051.39)(38.60^{\circ}-51.39^{\circ}), respectively for both TM1 and TM2 mixing matrix. It is to be noted that the mixing angles are almost similar for both the normal and inverted mass ordering. So for our later discussion we will use the values of mixing angles for the normal mass ordering reported in Ref. Esteban:2020cvm .

V Phenomenology of one vanishing minor

We wish to investigate the phenomenological implication of one vanishing minor in the neutrino mass matrix on the total neutrino mass, the effective Majorana mass term and the electron anti-neutrino mass. It is evident from Eq. III that neutrino mass mim_{i} depends on θ\theta, ϕ\phi, α\alpha, β\beta and the mass squared difference Δm212\Delta m_{21}^{2}. We use the best fit value and the 3σ3\sigma allowed range of θ\theta and ϕ\phi of section. IV that are determined by the measured values of the mixing angles θ13\theta_{13}, θ12\theta_{12} and θ23\theta_{23}. The two unknown Majorana phases α\alpha and β\beta are varied within their full range from 00^{\circ} to 360360^{\circ}. Moreover, we use the 3σ3\sigma allowed ranges of Δm212\Delta m_{21}^{2} and rr to constrain the values of the neutrino masses. Now we proceed to analyse all the six patterns of one vanishing minor one by one.

V.1 Pattern I: C𝟑𝟑=𝟎\boldsymbol{C_{33}=0}

let us first consider minor zero for the (3,3)(3,3) element of the neutrino mass matrix. The equation corresponding to this pattern can be expressed in terms of the elements of the neutrino mass matrix as

(Mν)ee(Mν)μμ(Mν)eμ(Mν)eμ=0.(M_{\nu})_{ee}(M_{\nu})_{\mu\mu}-(M_{\nu})_{e\mu}(M_{\nu})_{e\mu}=0\,. (26)

Using Eq. III, the two mass ratios for TM1 can be expressed as

m1m2=𝒜1sin2β+𝒜2cos2β(𝒜3+𝒜4)sin2(αβ)+(𝒜5𝒜6)cos2(αβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{\mathcal{A}_{1}\sin 2\beta+\mathcal{A}_{2}\cos 2\beta}{(\mathcal{A}_{3}+\mathcal{A}_{4})\sin 2(\alpha-\beta)+(\mathcal{A}_{5}-\mathcal{A}_{6})\cos 2(\alpha-\beta)}\,,
m3m2=𝒜1sin2β+𝒜2cos2β𝒜7sin2α+𝒜8cos2α,\displaystyle\frac{m_{3}}{m_{2}}=\frac{\mathcal{A}_{1}\sin 2\beta+\mathcal{A}_{2}\cos 2\beta}{\mathcal{A}_{7}\sin 2\alpha+\mathcal{A}_{8}\cos 2\alpha}\,, (27)

Similarly, for TM2 mixing matrix, the mass ratios can be expressed as

m1m2=(𝒜~1+𝒜~2)sin2(βϕ)+(𝒜~3+𝒜~4)cos2(βϕ)𝒜~5sin2(αβ)𝒜~6cos2(αβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{(\mathcal{\tilde{A}}_{1}+\mathcal{\tilde{A}}_{2})\sin 2(\beta-\phi)+(\mathcal{\tilde{A}}_{3}+\mathcal{\tilde{A}}_{4})\cos 2(\beta-\phi)}{\mathcal{\tilde{A}}_{5}\sin 2(\alpha-\beta)-\mathcal{\tilde{A}}_{6}\cos 2(\alpha-\beta)}\,,
m3m2=(𝒜~1+𝒜~2)sin2(βϕ)+(𝒜~3+𝒜~4)cos2(βϕ)𝒜~7sin2(ϕα)𝒜~8cos2(ϕα).\displaystyle\frac{m_{3}}{m_{2}}=\frac{(\mathcal{\tilde{A}}_{1}+\mathcal{\tilde{A}}_{2})\sin 2(\beta-\phi)+(\mathcal{\tilde{A}}_{3}+\mathcal{\tilde{A}}_{4})\cos 2(\beta-\phi)}{\mathcal{\tilde{A}}_{7}\sin 2(\phi-\alpha)-\mathcal{\tilde{A}}_{8}\cos 2(\phi-\alpha)}\,. (28)

All the relevant expressions for 𝒜i\mathcal{A}_{i} and 𝒜~i\mathcal{\tilde{A}}_{i} are reported in Eq. A and Eq. A of appendix A, respectively. We show the variation of neutrino masses m1m_{1}, m2m_{2} and m3m_{3} as a function of ϕ\phi in Fig 3(a) and Fig. 4(a) for TM1 and TM2 mixing matrix, respectively. It shows normal mass ordering for TM1 mixing matrix while for TM2 mixing matrix, it shows both normal and inverted mass ordering. The correlation of MeeM_{ee} and mi\sum m_{i} for TM1 and TM2 mixing matrix are shown in Fig. 3(b) and Fig. 4(b), respectively. The vertical red line shows the upper bound of the total neutrino mass reported in Ref. Zhang:2020mox . The black, green and blue lines are the experimental upper bounds of the effective Majorana mass as reported in Ref. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx . In Fig. 3(c) and Fig. 4(c), we have shown the correlation of MνM_{\nu} with mi\sum m_{i} for TM1 and TM2 mixing matrix, respectively. It is observed that the total neutrino mass mi\sum m_{i} put severe constraint on effective Majorana mass and MνM_{\nu}.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 3: Various correlation plots for C33 pattern using TM1 mixing matrix. The vertical red line is the upper bound of the total neutrino mass reported in Ref. Zhang:2020mox . The black, green and blue lines are the experimental upper bounds of the effective Majorana mass reported in Ref. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx .
Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 4: Various correlation plots for C33 pattern using TM2 mixing matrix. The vertical red line represents the upper bound of mi\sum m_{i} reported in Ref. Zhang:2020mox . The black, green and blue lines are the experimental upper bounds of MeeM_{ee} obtained from Refs. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx .

The range of the absolute neutrino mass scale, the effective Majorana neutrino mass and the effective electron anti-neutrino mass obtained for both the mixing matrix are listed in Table. 3. The calculated upper bound of meem_{ee} is obtained to be of 𝒪(102)\mathcal{O}(10^{-2}) which is within the reach of neutrinoless double beta decay experiment. The calculated upper bound of mν<0.06eVm_{\nu}<0.06\,{\rm eV} may not be within the reach of KATRIN experiment. It may, however, be within the reach of next generation experiment such as Project 8. It should, however, be mentioned that once the total neutrino mass constraint is imposed, the calculated upper bound of meem_{ee} and mνm_{\nu} is found to be less than 0.04eV0.04\,{\rm eV}.

Mixing Mass mi(eV)\sum m_{i}\,{(\rm eV)} mee(eV)m_{ee}\,{(\rm eV)} mν(eV)m_{\nu}\,{(\rm eV)}
matrix ordering
TM1 NO [0.059,0.288][0.059,0.288] [1.955×105,0.048][1.955\times 10^{-5},0.048] [8.889×103,0.053][8.889\times 10^{-3},0.053]
TM2 NO [0.056,0.310][0.056,0.310] [1.462×105,0.057][1.462\times 10^{-5},0.057] [8.575×103,0.099][8.575\times 10^{-3},0.099]
IO [0.094,0.425][0.094,0.425] [0.014,0.116][0.014,0.116] [0.044,0.144][0.044,0.144]
Table 3: Allowed range of mi\sum m_{i}, meem_{ee} and mνm_{\nu} for C33 pattern.

V.2 Pattern II: C𝟐𝟐=𝟎\boldsymbol{C_{22}=0}

The vanishing minor condition for this pattern corresponding to element (2,2) is given by

(Mν)ee(Mν)ττ(Mν)eτ(Mν)eτ=0.(M_{\nu})_{ee}(M_{\nu})_{\tau\tau}-(M_{\nu})_{e\tau}(M_{\nu})_{e\tau}=0\,. (29)

The two mass ratios for TM1 and TM2 mixing matrix can be expressed as

m1m2=1sin2β+2cos2β(3+4)sin2(αβ)(56)cos2(αβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{\mathcal{B}_{1}\sin 2\beta+\mathcal{B}_{2}\cos 2\beta}{(\mathcal{B}_{3}+\mathcal{B}_{4})\sin 2(\alpha-\beta)-(\mathcal{B}_{5}-\mathcal{B}_{6})\cos 2(\alpha-\beta)}\,,
m3m2=1sin2β+2cos2β7sin2α+8cos2α,\displaystyle\frac{m_{3}}{m_{2}}=\frac{\mathcal{B}_{1}\sin 2\beta+\mathcal{B}_{2}\cos 2\beta}{\mathcal{B}_{7}\sin 2\alpha+\mathcal{B}_{8}\cos 2\alpha}\,, (30)

and

m1m2=(~1+~2)sin2(βϕ)+(~3+~4)cos2(βϕ)~5sin2(αβ)~6cos2(αβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{(\mathcal{\tilde{B}}_{1}+\mathcal{\tilde{B}}_{2})\sin 2(\beta-\phi)+(\mathcal{\tilde{B}}_{3}+\mathcal{\tilde{B}}_{4})\cos 2(\beta-\phi)}{\mathcal{\tilde{B}}_{5}\sin 2(\alpha-\beta)-\mathcal{\tilde{B}}_{6}\cos 2(\alpha-\beta)}\,,
m3m2=(~1+~2)sin2(βϕ)+(~3+~4)cos2(βϕ)~7sin2(ϕα)~8cos2(ϕα).\displaystyle\frac{m_{3}}{m_{2}}=\frac{(\mathcal{\tilde{B}}_{1}+\mathcal{\tilde{B}}_{2})\sin 2(\beta-\phi)+(\mathcal{\tilde{B}}_{3}+\mathcal{\tilde{B}}_{4})\cos 2(\beta-\phi)}{\mathcal{\tilde{B}}_{7}\sin 2(\phi-\alpha)-\mathcal{\tilde{B}}_{8}\cos 2(\phi-\alpha)}\,. (31)

All the relevant expressions for i\mathcal{B}_{i} and ~i\mathcal{\tilde{B}}_{i} are reported in Eq. A and Eq. A of appendix A. We show the variation of neutrino masses m1m_{1}, m2m_{2} and m3m_{3} as a function of ϕ\phi in Fig 5(a) and Fig. 6(a) for TM1 and TM2 mixing matrix, respectively. It shows normal mass ordering for TM1 mixing matrix while for TM2 mixing matrix, it shows both normal and inverted mass ordering. The correlation of MeeM_{ee} and mi\sum m_{i} for TM1 and TM2 mixing matrix are shown in Fig. 5(b) and Fig. 6(b), respectively. In Fig. 5(c) and Fig. 6(c), we have shown the correlation of MνM_{\nu} with mi\sum m_{i} for TM1 and TM2 mixing matrix, respectively. The phenomenology of this pattern is quite similar to C33.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 5: Various correlation plots for C22 pattern using TM1 mixing matrix. The vertical red line shows the upper bound of the total neutrino mass reported in Ref. Zhang:2020mox . The black, green and blue lines are the experimental upper bounds of the effective Majorana mass reported in Ref. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx .
Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 6: Various correlation plots for C22 pattern using TM2 mixing matrix. The vertical red line shows the upper bound of the total neutrino mass reported in Ref. Zhang:2020mox . The black, green and blue lines show the experimental upper bounds of the effective Majorana mass reported in Ref. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx .

The allowed range of the absolute neutrino mass scale, the effective Majorana mass and the effective electron anti-neutrino mass for this pattern are listed in Table. 4.

Mixing Mass mi(eV)\sum m_{i}\,{(\rm eV)} mee(eV)m_{ee}\,{(\rm eV)} mν(eV)m_{\nu}\,{(\rm eV)}
matrix ordering
TM1 NO [0.059,0.425][0.059,0.425] [2.097×105,0.127][2.097\times 10^{-5},0.127] [0.011,0.139][0.011,0.139]
TM2 NO [0.056,0.350][0.056,0.350] [4.185×106,0.081][4.185\times 10^{-6},0.081] [8.415×103,0.113][8.415\times 10^{-3},0.113]
IO [0.098,0.427][0.098,0.427] [0.015,0.082][0.015,0.082] [0.045,0.145][0.045,0.145]
Table 4: Allowed range of mi\sum m_{i}, meem_{ee} and mνm_{\nu} for C22 pattern.

It is evident from Fig. 5 and Fig. 6 that the upper bound of mi<1.2eV\sum m_{i}<1.2\,{\rm eV} put severe constraint on the value of the effective Majorana mass term meem_{ee} and the value of the effective electron anti-neutrino mass mνm_{\nu}. The estimated upper bound of meem_{ee} and mνm_{\nu} is found to be less than 0.04eV0.04\,{\rm eV}.

V.3 Pattern III: C𝟑𝟏=𝟎\boldsymbol{C_{31}=0}

This pattern corresponds to the matrix element (3,1) of the neutrino mass matrix. The vanishing minor condition is given by

(Mν)eμ(Mν)μτ(Mν)eτ(Mν)μμ=0.(M_{\nu})_{e\mu}(M_{\nu})_{\mu\tau}-(M_{\nu})_{e\tau}(M_{\nu})_{\mu\mu}=0\,. (32)

Using the elements from neutrino mass matrix, one can write the neutrino mass ratios for this pattern. With TM1 mixing matrix, we have

m1m2=𝒞1sin2β+𝒞2cos2β𝒞3sin2(αβ)𝒞4cos2(αβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{\mathcal{C}_{1}\sin 2\beta+\mathcal{C}_{2}\cos 2\beta}{\mathcal{C}_{3}\sin 2(\alpha-\beta)-\mathcal{C}_{4}\cos 2(\alpha-\beta)},
m3m2=𝒞1sin2β+𝒞2cos2β𝒞5sin2α+𝒞6cos2α,\displaystyle\frac{m_{3}}{m_{2}}=\frac{\mathcal{C}_{1}\sin 2\beta+\mathcal{C}_{2}\cos 2\beta}{\mathcal{C}_{5}\sin 2\alpha+\mathcal{C}_{6}\cos 2\alpha}\,, (33)

and for TM2 mixing matrix, we have

m1m2=𝒞~1sin2(βϕ)+𝒞~2cos2(βϕ)𝒞~3sin2(αβ)𝒞~4cos2(αβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{\mathcal{\tilde{C}}_{1}\sin 2(\beta-\phi)+\mathcal{\tilde{C}}_{2}\cos 2(\beta-\phi)}{\mathcal{\tilde{C}}_{3}\sin 2(\alpha-\beta)-\mathcal{\tilde{C}}_{4}\cos 2(\alpha-\beta)}\,,
m3m2=𝒞~1sin2(βϕ)+𝒞~2cos2(βϕ)𝒞~5sin2(ϕα)+𝒞~6cos2(ϕα),\displaystyle\frac{m_{3}}{m_{2}}=\frac{\mathcal{\tilde{C}}_{1}\sin 2(\beta-\phi)+\mathcal{\tilde{C}}_{2}\cos 2(\beta-\phi)}{\mathcal{\tilde{C}}_{5}\sin 2(\phi-\alpha)+\mathcal{\tilde{C}}_{6}\cos 2(\phi-\alpha)}\,, (34)

where all the relevant 𝒞i\mathcal{C}_{i} and 𝒞~i\mathcal{\tilde{C}}_{i} are reported in Eq. A and Eq. A of appendix A. We show in Fig. 7(a) and Fig. 8(a) the correlation of neutrino masses m1m_{1}, m2m_{2} and m3m_{3} with the unknown parameter ϕ\phi for TM1 and TM2 mixing matrix. It shows both normal and inverted mass ordering for TM1 and TM2 mixing matrix. Similarly, the correlation of MeeM_{ee} against mi\sum m_{i} for TM1 and TM2 mixing patterns are shown in Fig. 7(b) and Fig. 8(b),respectively. Moreover, in the Fig. 7(c) and Fig. 8(c), we have shown the correlation of MνM_{\nu} with mi\sum m_{i} for TM1 and TM2, respectively.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 7: Various correlation plots for C31 pattern using TM1 mixing matrix. The vertical red line is the upper bound of the total neutrino mass reported in Ref. Zhang:2020mox . The black, green and blue lines are the experimental upper bounds of the effective Majorana mass reported in Ref. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx .
Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 8: Various correlation plots for C31 pattern using TM2 mixing matrix. The vertical red line represents the upper bound of the total neutrino mass reported in Ref. Zhang:2020mox . The black, green and blue lines represent the experimental upper bounds of the effective Majorana mass reported in Ref. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx .

The allowed ranges of the absolute neutrino mass, the effective Majorana mass and the effective electron anti-neutrino mass for both the maxing matrix are listed in the Table. 5.

Mixing Mass mi(eV)\sum m_{i}\,{(\rm eV)} mee(eV)m_{ee}\,{(\rm eV)} mν(eV)m_{\nu}\,{(\rm eV)}
matrix ordering
TM1 NO [0.057,0.253][0.057,0.253] [1.003×104,0.073][1.003\times 10^{-4},0.073] [0.011,0.080[0.011,0.080
IO [0.096,0.329][0.096,0.329] [0.014,0.087][0.014,0.087] [0.044,0.112][0.044,0.112]
TM2 NO [0.057,0.294][0.057,0.294] [3.658×105,0.092][3.658\times 10^{-5},0.092] [8.624×103,0.094][8.624\times 10^{-3},0.094]
IO [0.092,0.548][0.092,0.548] [0.014,0.126][0.014,0.126] [0.045,0.185][0.045,0.185]
Table 5: Allowed range of mi\sum m_{i}, meem_{ee} and mνm_{\nu} for C31 pattern.

V.4 Pattern IV: C𝟐𝟏=𝟎\boldsymbol{C_{21}=0}

The vanishing minor condition for this pattern corresponding to element (2,1) of the neutrino mass matrix is given by

(Mν)μe(Mν)ττ(Mν)τe(Mν)μτ=0.(M_{\nu})_{\mu e}(M_{\nu})_{\tau\tau}-(M_{\nu})_{\tau e}(M_{\nu})_{\mu\tau}=0\,. (35)

The two neutrino mass ratios for this pattern for TM1 and TM2 mixing matrix are given by

m1m2=𝒟1sin2β+𝒟2cos2β𝒟3sin2(αβ)+𝒟4cos2(αβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{\mathcal{D}_{1}\sin 2\beta+\mathcal{D}_{2}\cos 2\beta}{\mathcal{D}_{3}\sin 2(\alpha-\beta)+\mathcal{D}_{4}\cos 2(\alpha-\beta)},
m3m2=𝒟1sin2β+𝒟2cos2β𝒟5sin2α+𝒟6cos2α,\displaystyle\frac{m_{3}}{m_{2}}=\frac{\mathcal{D}_{1}\sin 2\beta+\mathcal{D}_{2}\cos 2\beta}{\mathcal{D}_{5}\sin 2\alpha+\mathcal{D}_{6}\cos 2\alpha}\,, (36)

and

m1m2=𝒟~1sin2(βϕ)+𝒟~2cos2(βϕ)𝒟~3sin2(αβ)+𝒟~4cos2(αβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{\mathcal{\tilde{D}}_{1}\sin 2(\beta-\phi)+\mathcal{\tilde{D}}_{2}\cos 2(\beta-\phi)}{\mathcal{\tilde{D}}_{3}\sin 2(\alpha-\beta)+\mathcal{\tilde{D}}_{4}\cos 2(\alpha-\beta)}\,,
m3m2=𝒟~1sin2(βϕ)+𝒟~2cos2(βϕ)𝒟~5sin2(ϕα)𝒟~6cos2(ϕα),\displaystyle\frac{m_{3}}{m_{2}}=\frac{\mathcal{\tilde{D}}_{1}\sin 2(\beta-\phi)+\mathcal{\tilde{D}}_{2}\cos 2(\beta-\phi)}{\mathcal{\tilde{D}}_{5}\sin 2(\phi-\alpha)-\mathcal{\tilde{D}}_{6}\cos 2(\phi-\alpha)}\,, (37)

where all the relevant 𝒟i\mathcal{D}_{i} and 𝒟~i\mathcal{\tilde{D}}_{i} are reported in Eq. A and Eq. A of appendix A. In Fig. 9(a) and Fig. 10(a) we have shown the correlation of neutrino masses m1m_{1}, m2m_{2} and m3m_{3} with the unknown parameter ϕ\phi for TM1 and TM2 mixing matrix. It shows both normal and inverted mass ordering for TM1 and TM2 mixing matrix. The correlation of MeeM_{ee} against mi\sum m_{i} for TM1 and TM2 mixing patterns are shown in Fig. 9(b) and Fig. 10(b),respectively. In the Fig. 9(c) and Fig. 10(c), we have shown the correlation of MνM_{\nu} with mi\sum m_{i} for TM1 and TM2, respectively.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 9: Various correlation plots for C21 pattern using TM1 mixing matrix. The vertical red line is the upper bound of the total neutrino mass reported in Ref. Zhang:2020mox . The black, green and blue lines are the experimental upper bounds of the effective Majorana mass reported in Ref. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx .
Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 10: Various correlation plots for C21 pattern using TM2 mixing matrix. The vertical red line shows the upper bound of the total neutrino mass reported in Ref. Zhang:2020mox . The black, green and blue lines show the experimental upper bounds of the effective Majorana mass reported in Ref. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx .

We also report the allowed ranges of the absolute neutrino mass, the effective Majorana mass and the effective electron anti-neutrino mass for both the maxing matrix in Table. 6. The phenomenology of this pattern is very similar to that of C31C_{31}.

Mixing Mass mi(eV)\sum m_{i}\,{(\rm eV)} mee(eV)m_{ee}\,{(\rm eV)} mν(eV)m_{\nu}\,{(\rm eV)}
matrix ordering
TM1 NO [0.080,0.249][0.080,0.249] [2.213×103,0.076][2.213\times 10^{-3},0.076] [0.017,0.079][0.017,0.079]
IO [0.101,0.720][0.101,0.720] [0.014,0.125][0.014,0.125] [0.044,0.241][0.044,0.241]
TM2 NO [0.066,0.569][0.066,0.569] [1.655×104,0.095][1.655\times 10^{-4},0.095] [0.010,0.187][0.010,0.187]
IO [0.097,0.458][0.097,0.458] [0.015,0.137][0.015,0.137] [0.045,0.154][0.045,0.154]
Table 6: Allowed range of mi\sum m_{i}, meem_{ee} and mνm_{\nu} for C21 pattern.

V.5 Pattern V: C𝟑𝟐=𝟎\boldsymbol{C_{32}=0}

The condition of vanishing minor for this pattern is given by

(Mν)ee(Mν)μτ(Mν)μe(Mν)eτ=0.(M_{\nu})_{ee}(M_{\nu})_{\mu\tau}-(M_{\nu})_{\mu e}(M_{\nu})_{e\tau}=0. (38)

For this pattern, the two neutrino mass ratios for TM1 and TM2 mixing matrix are given by

m1m2=1sin2β+2cos2β3sin2(αβ)+4cos2(αβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{\mathcal{E}_{1}\sin 2\beta+\mathcal{E}_{2}\cos 2\beta}{\mathcal{E}_{3}\sin 2(\alpha-\beta)+\mathcal{E}_{4}\cos 2(\alpha-\beta)}\,,
m3m2=1sin2β+2cos2β5sin2α+6cos2α,\displaystyle\frac{m_{3}}{m_{2}}=\frac{\mathcal{E}_{1}\sin 2\beta+\mathcal{E}_{2}\cos 2\beta}{\mathcal{E}_{5}\sin 2\alpha+\mathcal{E}_{6}\cos 2\alpha}, (39)

and

m1m2=~1sin2(βϕ)+~2cos2(βϕ)~3sin2(αβ)+~4cos2(αβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{\mathcal{\tilde{E}}_{1}\sin 2(\beta-\phi)+\mathcal{\tilde{E}}_{2}\cos 2(\beta-\phi)}{\mathcal{\tilde{E}}_{3}\sin 2(\alpha-\beta)+\mathcal{\tilde{E}}_{4}\cos 2(\alpha-\beta)}\,,
m3m2=~1sin2(βϕ)+~2cos2(βϕ)~5sin2(ϕα)~6cos2(ϕα),\displaystyle\frac{m_{3}}{m_{2}}=\frac{\mathcal{\tilde{E}}_{1}\sin 2(\beta-\phi)+\mathcal{\tilde{E}}_{2}\cos 2(\beta-\phi)}{\mathcal{\tilde{E}}_{5}\sin 2(\phi-\alpha)-\mathcal{\tilde{E}}_{6}\cos 2(\phi-\alpha)}\,, (40)

respectively. The relevant expressions for i\mathcal{E}_{i} and ~i\mathcal{\tilde{E}}_{i} are are reported in Eq. A and Eq. A of appendix A. The correlation of neutrino masses m1m_{1}, m2m_{2} and m3m_{3} with the unknown parameter ϕ\phi are shown in Fig. 11(a) and Fig. 12(a), respectively for TM1 and TM2 mixing matrix. It is observed that, it shows normal mass ordering for TM1 mixing matrix, whereas, for TM2 mixing matrix, it shows both normal and inverted mass ordering. The correlation of MeeM_{ee} and mi\sum m_{i} are shown in Fig. 11(b) and Fig. 12(b), respectively using TM1 and TM2 mixing matrix. In Fig. 11(c) and Fig. 12(c), we have shown the correlation of MνM_{\nu} with mi\sum m_{i} using TM1 and TM2 mixing matrix, respectively.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 11: Various correlation plots for C32 pattern using TM1 mixing matrix. The vertical red line represents the upper bound of the total neutrino mass reported in Ref. Zhang:2020mox . The black, green and blue lines represent the experimental upper bounds of the effective Majorana mass reported in Ref. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx .
Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 12: Various correlation plots for C32 pattern using TM2 mixing matrix. The vertical red line is the upper bound of the total neutrino mass reported in Ref. Zhang:2020mox . The black, green and blue lines are the experimental upper bounds of the effective Majorana mass reported in Ref. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx .

The allowed ranges of all the relevant parameters such as the absolute neutrino mass, the effective Majorana mass and the effective electron anti-neutrino mass under normal and inverted ordering for both the mixing matrix are reported in Table. 7.

Mixing Mass mi(eV)\sum m_{i}\,{(\rm eV)} mee(eV)m_{ee}\,{(\rm eV)} mν(eV)m_{\nu}\,{(\rm eV)}
matrix ordering
TM1 NO [0.061,0.261][0.061,0.261] [1.309×104,0.063[1.309\times 10^{-4},0.063 [0.011,0.082][0.011,0.082]
TM2 NO [0.056,0.507][0.056,0.507] [6.054×105,0.164][6.054\times 10^{-5},0.164] [0.084,0.166][0.084,0.166]
IO [0.101,0.346][0.101,0.346] [0.017,0.078][0.017,0.078] [0.045,0.118][0.045,0.118]
Table 7: Allowed range of mi\sum m_{i}, meem_{ee} and mνm_{\nu} for C32 pattern.

V.6 Pattern VI: C𝟏𝟏=𝟎\boldsymbol{C_{11}=0}

The vanishing minor condition for this pattern is given by

(Mν)μμ(Mν)ττ(Mν)τμ(Mν)μτ=0.(M_{\nu})_{\mu\mu}(M_{\nu})_{\tau\tau}-(M_{\nu})_{\tau\mu}(M_{\nu})_{\mu\tau}=0\,. (41)

The two neutrino mass ratios can be obtained using the elements from neutrino mass matrix. For TM1 mixing matrix, we have

m1m2=2sin2βcos2θsin2(αβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{2\sin 2\beta}{\cos^{2}\theta\sin 2(\alpha-\beta)}\,, (42)
m3m2=tan2θsin2βsin2α,\displaystyle\frac{m_{3}}{m_{2}}=-\frac{\tan^{2}\theta\sin 2\beta}{\sin 2\alpha}\,,

and for TM2 mixing matrix, we have

m1m2=2cos2θsin2βsin2(αβ),\displaystyle\frac{m_{1}}{m_{2}}=\frac{2\cos^{2}\theta\sin 2\beta}{\sin 2(\alpha-\beta)}\,,
m3m2=2sin2θsin2βsin2α.\displaystyle\frac{m_{3}}{m_{2}}=-\frac{2\sin^{2}\theta\sin 2\beta}{\sin 2\alpha}\,. (43)

Using Eq. 42, we obtain the mass relation for TM1 mixing matrix as

m1sin2(αβ)2m2sin2β+m3sin2α=0\displaystyle m_{1}\sin 2(\alpha-\beta)-2m_{2}\sin 2\beta+m_{3}\sin 2\alpha=0\, (44)

and using Eq. V.6, we obtain the mass relation for TM2 mixing matrix as

m1sin2(αβ)2m2sin2βm3sin2α=0.\displaystyle m_{1}\sin 2(\alpha-\beta)-2m_{2}\sin 2\beta-m_{3}\sin 2\alpha=0\,. (45)

This pattern gives a clear inverted mass ordering for both TM1 and TM2 mixing matrix. The correlation of the neutrino masses m1m_{1}, m2m_{2} and m3m_{3} for both the mixing patterns with the unknown parameter ϕ\phi is shown in Fig. 13(a) and Fig. 14(a), respectively. The correlation of MeeM_{ee} with mi\sum m_{i} for TM1 and TM2 are shown in Fig. 13(b) and Fig. 14(b), respectively. In Fig. 13(c) and Fig. 14(c), we have shown the correlation of MνM_{\nu} with mi\sum m_{i} for TM1 and TM2 mixing matrix, respectively.

The allowed ranges of the absolute neutrino mass, the effective Majorana mass and the effective electron anti-neutrino mass obtained for both the mixing matrix are listed in the tables  8.

Mixing Mass mi(eV)\sum m_{i}\,{(\rm eV)} mee(eV)m_{ee}\,{(\rm eV)} mν(eV)m_{\nu}\,{(\rm eV)}
matrix ordering
TM1 IO [0.092,0.111][0.092,0.111] [0.013,0.050][0.013,0.050] [0.043,0.053][0.043,0.053]
TM2 IO [0.091,0.112][0.091,0.112] [0.014,0.052][0.014,0.052] [0.044,0.054[0.044,0.054
Table 8: Allowed range of mi\sum m_{i}, meem_{ee} and mνm_{\nu} for C11 pattern.
Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 13: Various correlation plots for C11 pattern using TM1 mixing matrix. The vertical red line represents the upper bound of the total neutrino mass reported in Ref. Zhang:2020mox . The black, green and blue lines represent the experimental upper bounds of the effective Majorana mass reported in Ref. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx .
Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 14: Various correlation plots for C11 pattern using TM2 mixing matrix. The vertical red line is the upper bound of the total neutrino mass reported in Ref. Zhang:2020mox . The black, green and blue lines are the experimental upper bounds of the effective Majorana mass reported in Ref. GERDA:2013vls ; CUORE:2015hsf ; EXO-200:2014ofj ; KamLAND-Zen:2012mmx .

VI Degree of Fine tuning in the neutrino mass matrix

In this section, we wish to determine whether the entries of the neutrino mass matrix are fine tuned or not. In order to determine the degree of fine tuning of the mass matrix elements, we define a parameter dFTd_{FT}  Altarelli:2010at ; Meloni:2012sx which is obtained as the sum of the absolute values of the ratios between each parameter and its error. We follow Ref. Altarelli:2010at ; Meloni:2012sx and define the fine tuning parameter as

dFT=|parierri|,d_{FT}=\sum\Big{|}\frac{par_{i}}{err_{i}}\Big{|}\,, (46)

where pari=(θ12,θ13,θ23,Δm212,Δm312)par_{i}=(\theta_{12},\theta_{13},\theta_{23},\Delta m_{21}^{2},\Delta m_{31}^{2}) is the best fit values of the parameters. The error errierr_{i} for each parameter is obtained from the shift of best fit value that changes the χmin2\chi^{2}_{min} value by one unit keeping all other parameters fixed at their best fit values. To determine the best fit values of all the parameters, we perform a χ2\chi^{2} analysis of all the classes of one minor zero and find the χmin2\chi^{2}_{min}. We define the χ2\chi^{2} as follows:

χ2=i=13(θicalθiexp)2(σiexp)2+j=21,3l(ΔmjcalΔmjexp)2(σjexp)2,\chi^{2}=\sum\limits_{i=1}^{3}\frac{\Big{(}\theta_{i}^{cal}-\theta_{i}^{exp}\Big{)}^{2}}{(\sigma_{i}^{exp})^{2}}+\sum\limits_{j=21,3l}\frac{\Big{(}\Delta m_{j}^{cal}-\Delta m_{j}^{exp}\Big{)}^{2}}{(\sigma_{j}^{exp})^{2}}\,, (47)

where θi=(θ12,θ13,θ23)\theta_{i}=(\theta_{12},\theta_{13},\theta_{23}) and Δmj=(Δm212,Δm312)\Delta m_{j}=(\Delta m_{21}^{2},\,\Delta m_{31}^{2}). Here θical\theta_{i}^{cal} and Δmjcal\Delta m_{j}^{cal} represent the theoretical value of θi\theta_{i} and Δmj\Delta m_{j}, respectively, whereas θiexp\theta_{i}^{exp} and Δmjexp\Delta m_{j}^{exp} represent measured central value of θi\theta_{i} and Δmj\Delta m_{j}, respectively. It should be noted that θical\theta_{i}^{cal} and Δmjcal\Delta m_{j}^{cal} depend on four unknown model parameters, namely θ\theta, ϕ\phi, α\alpha and β\beta. Similarly, the uncertainties in the measured value of θi\theta_{i} and Δmj\Delta m_{j} are represented by σiexp\sigma_{i}^{exp} and σjexp\sigma_{j}^{exp}, respectively. The central values and the corresponding uncertainties in each parameter are reported in Table. 2.

We first compute dDatad_{Data} which is defined as the sum of the absolute values of the ratios between the measured values of each parameter and its error from Table. 2. We obtain the value of dDatad_{Data} to be around 200200 for both normal and inverted ordering case. The degree of fine tuning can be roughly estimated from the value of dFTd_{FT} because if the dFTd_{FT} value is large then a minimal variation of the corresponding parameters give large difference on the value of χ2\chi^{2}. Hence a large value of dFTd_{FT} corresponds to a strong fine tuning of the mass matrix elements and vice versa. The χmin2\chi_{min}^{2} value and the corresponding best fit values of the unknown parameters of the neutrino mass matrix θ\theta, ϕ\phi, α\alpha, β\beta and the value of dFTd_{FT} parameter for each patterns are listed in the Table. 9 and Table. 10 for the TM1 and TM2 mixing matrix respectively. We also report the best fit values of several observables such as θ12\theta_{12}, θ13\theta_{13}, θ23\theta_{23}, Δm212\Delta m_{21}^{2} and Δm312\Delta m_{31}^{2} for each pattern. For the patterns C33,C22,C31,C32C_{33},C_{22},C_{31},C_{32} and C21C_{21}, the results are for NO case and for the pattern C11C_{11}, the results are for IO case. As the pattern C11C_{11} follows the IO, the χmin2\chi_{min}^{2} value obtained for this pattern is large for both TM1 and TM2 mixing matrix. The best fit values of the mixing angles θ23\theta_{23}, θ12\theta_{12}, θ13\theta_{13} and the mass squared differences Δm212\Delta m^{2}_{21}, Δm312\Delta m^{2}_{31} obtained for each pattern are compatible with the experimentally measured values reported in Table. 2.

Type χmin2\chi^{2}_{min} dFTd_{FT} θ13\theta_{13}^{\circ} θ12\theta_{12}^{\circ} θ23\theta_{23}^{\circ} θ\theta^{\circ} ϕ\phi^{\circ} α\alpha^{\circ} β\beta^{\circ} Δm212(105eV2)\Delta m^{2}_{21}\,{(10^{-5}\rm eV^{2})} Δm3l2(103eV2)\Delta m^{2}_{3l}\,{(10^{-3}\rm eV^{2})}
C33C_{33} 2.662.66 8.38×8.38\times10310^{3} 8.488.48 34.3534.35 48.5948.59 14.8014.80 287.67287.67 290.89290.89 320.72320.72 7.517.51 2.422.42
C22C_{22} 2.802.80 2.35×2.35\times10510^{5} 8.468.46 34.3634.36 48.7748.77 14.7714.77 251.38251.38 313.24313.24 74.3774.37 7.487.48 2.452.45
C31C_{31} 1.691.69 8.43×8.43\times10310^{3} 8.578.57 34.3334.33 48.8348.83 14.9614.96 108.69108.69 7.467.46 338.00338.00 7.477.47 2.442.44
C32C_{32} 1.691.69 83.7283.72 8.608.60 34.3334.33 49.5649.56 15.0215.02 76.6876.68 84.9584.95 357.14357.14 7.477.47 2.442.44
C21C_{21} 3.243.24 1.36×1.36\times10510^{5} 8.678.67 34.3134.31 50.0050.00 15.0715.07 63.5063.50 269.82269.82 216.81216.81 7.477.47 2.412.41
C11C_{11} 4.054.05 4.88×4.88\times10210^{2} 8.418.41 34.3734.37 49.3349.33 14.6814.68 291.60291.60 188.42188.42 83.2783.27 7.407.40 2.46-2.46
Table 9: The values of χmin2\chi_{min}^{2}, dFTd_{FT}, the best fit values of θ13\theta_{13}^{\circ}, θ12\theta_{12}^{\circ}, θ23\theta_{23}^{\circ}, θ\theta^{\circ}, ϕ\phi^{\circ},α\alpha^{\circ}, β\beta^{\circ}, Δm212(105eV2)\Delta m^{2}_{21}\,{(10^{-5}\rm eV^{2})} and Δm3l2(103eV2)\Delta m^{2}_{3l}\,{(10^{-3}\rm eV^{2})} for TM1 mixing matrix.
Type χmin2\chi^{2}_{min} dFTd_{FT} θ13\theta_{13}^{\circ} θ12\theta_{12}^{\circ} θ23\theta_{23}^{\circ} θ\theta^{\circ} ϕ\phi^{\circ} α\alpha^{\circ} β\beta^{\circ} Δm212(105eV2)\Delta m^{2}_{21}\,{(10^{-5}\rm eV^{2})} Δm3l2(103eV2)\Delta m^{2}_{3l}\,{(10^{-3}\rm eV^{2})}
C33C_{33} 8.878.87 5.86×5.86\times10210^{2} 8.578.57 35.7235.72 48.9548.95 10.5210.52 310.43310.43 178.66178.66 169.70169.70 7.427.42 2.432.43
C22C_{22} 9.089.08 4.31×4.31\times10210^{2} 8.598.59 35.7235.72 48.8548.85 10.5410.54 230.78230.78 63.7063.70 184.68184.68 7.377.37 4.434.43
C31C_{31} 9.239.23 4.78×4.78\times10410^{4} 8.558.55 35.7235.72 48.5048.50 10.4910.49 234.75234.75 185.56185.56 217.34217.34 7.377.37 2.442.44
C32C_{32} 9.299.29 1.09×1.09\times10210^{2} 8.568.56 35.7235.72 48.9448.94 10.5110.51 310.43310.43 355.65355.65 82.4882.48 7.507.50 2.442.44
C21C_{21} 9.129.12 2.07×2.07\times10310^{3} 8.548.54 35.7035.70 49.8049.80 10.4710.47 142.15142.15 279.77279.77 59.2359.23 7.407.40 2.432.43
C11C_{11} 9.829.82 2.29×2.29\times10210^{2} 8.658.65 35.7335.73 50.5550.55 10.6210.62 25.8125.81 341.08341.08 103.82103.82 7.427.42 2.49-2.49
Table 10: The values of χmin2\chi_{min}^{2}, dFTd_{FT}, the best fit values of θ13\theta_{13}^{\circ}, θ12\theta_{12}^{\circ}, θ23\theta_{23}^{\circ}, θ\theta^{\circ}, ϕ\phi^{\circ}, α\alpha^{\circ}, β\beta^{\circ}, Δm212(105eV2)\Delta m^{2}_{21}\,{(10^{-5}\rm eV^{2})} and Δm3l2(103eV2)\Delta m^{2}_{3l}\,{(10^{-3}\rm eV^{2})} for TM2 mixing matrix.

In case of TM1 mixing matrix, pattern C23C_{23} shows very good agreement with the data with a very small dFTd_{FT} value. Although, the pattern C31C_{31} also have same χ2\chi^{2} as pattern C23C_{23}, it, however, has a much larger dFTd_{FT} value compared to pattern C23C_{23}. It can be concluded that for the pattern C31C_{31}, there is a strong fine tuning among the elements of the mass matrix. Similarly, C22C_{22}, C21C_{21} and C33C_{33} have larger dFTd_{FT} value compared to C11C_{11} pattern, although they have less χ2\chi^{2} value than C11C_{11}. For C22C_{22}, C21C_{21} and C33C_{33} also the degree of fine tuning among the mass matrix elements is very strong. Moreover, it is very clear from Table. 9 that all these patterns prefer the atmospheric mixing angle θ23\theta_{23} to be greater than π/4\pi/4. Based on the dFTd_{FT} values, it is clear that it requires less fine tuning of the mass matrix elements for patterns C23C_{23} and C11C_{11}.

For the TM2 mixing matrix, the fine-tuned parameter dFTd_{FT} is small for the patterns C33C_{33}, C22C_{22}, C32C_{32} and C11C_{11}. Among all these patterns C32C_{32} has the lowest dFTd_{FT} value. However, for patterns C31C_{31} and C21C_{21}, dFTd_{FT} value is quite large and hence the degree of fine tuning among the elements of the mass matrix is quite strong for these patterns. All the patterns prefer the best fit value of θ23\theta_{23} to be larger than π/4\pi/4.

VII symmetry realization

The symmetry of one vanishing minor can be realized through type-I seesaw mechanism Minkowski:1977sc ; Mohapatra:1979ia along with Abelian symmetry. One vanishing minor in neutrino mass matrix can easily be obtained if one element in the Majorana matrix MRM_{R} is zero along with diagonal Dirac mass matrix MDM_{D}. In order to fulfil this condition, we need three right handed charged lepton lRpl_{Rp} (p=1,2,3)(p=1,2,3), three right handed neutrinos νRp\nu_{Rp} and three left handed lepton doublets DLpD_{Lp}. We present the symmetry realization of pattern V. The symmetry of this pattern can be realized through the Abelian symmetry group (Z12×Z2)(Z_{12}\times Z_{2}) that is discussed in Refs. Grimus:2004hf ; Dev:2010if .

The leptonic fields under Z12Z_{12} transform as

l¯R1ωl¯R1,ν¯R1ων¯R1,DL1ωD¯L1,\displaystyle\bar{l}_{R1}\rightarrow\omega\bar{l}_{R1}\,,\qquad\qquad\bar{\nu}_{R1}\rightarrow\omega\bar{\nu}_{R1}\,,\qquad\qquad D_{L1}\rightarrow\omega\bar{D}_{L1}\,,
l¯R2ω2l¯R2,ν¯R2ω2ν¯R2,DL2ω3D¯L2,\displaystyle\bar{l}_{R2}\rightarrow\omega^{2}\bar{l}_{R2}\,,\qquad\qquad\bar{\nu}_{R2}\rightarrow\omega^{2}\bar{\nu}_{R2}\,,\qquad\qquad D_{L2}\rightarrow\omega^{3}\bar{D}_{L2}\,,
l¯R3ω5l¯R3,ν¯R3ω5ν¯R3,DL3ω8D¯L3,\displaystyle\bar{l}_{R3}\rightarrow\omega^{5}\bar{l}_{R3}\,,\qquad\qquad\bar{\nu}_{R3}\rightarrow\omega^{5}\bar{\nu}_{R3}\,,\qquad\qquad D_{L3}\rightarrow\omega^{8}\bar{D}_{L3}\,, (48)

where ω\omega = exp(iπ6){\rm exp}(\frac{i\pi}{6}). The bilinears l¯RpDLq\bar{l}_{Rp}\,D_{Lq} and ν¯RpDLq\bar{\nu}_{Rp}\,D_{Lq}, where p,q=1,2,3p,q=1,2,3, relevant for (Ml)pq(M_{l})_{pq} and (MD)pq(M_{D})_{pq} transform as l¯RpDLqΩlRpDLq\bar{l}_{Rp}\,D_{Lq}\rightarrow\Omega\,l_{Rp}\,D_{Lq}, where

Ω=(ω2ω4ω9ω3ω5ω10ω6ω8ω)\Omega={\begin{pmatrix}\omega^{2}&\omega^{4}&\omega^{9}\\ \omega^{3}&\omega^{5}&\omega^{10}\\ \omega^{6}&\omega^{8}&\omega\end{pmatrix}}\, (49)

and the bilinears ν¯RpCν¯RqT\bar{\nu}_{Rp}C\bar{\nu}_{Rq}^{T} relevant for (MR)pq(M_{R})_{pq} transform as ν¯RpCν¯RqTΛν¯RpCν¯RqT\bar{\nu}_{Rp}C\bar{\nu}_{Rq}^{T}\rightarrow\Lambda\,\bar{\nu}_{Rp}C\bar{\nu}_{Rq}^{T}, where

Λ=(ω2ω3ω6ω3ω4ω7ω6ω7ω10).\Lambda={\begin{pmatrix}\omega^{2}&\omega^{3}&\omega^{6}\\ \omega^{3}&\omega^{4}&\omega^{7}\\ \omega^{6}&\omega^{7}&\omega^{10}\end{pmatrix}}\,. (50)

For each non zero element in MRM_{R}, we need a scalar singlet χpq\chi_{pq} and for each non zero element in (Ml)pq(M_{l})_{pq} or (MD)pq(M_{D})_{pq}, we need Higgs scalar ϕpq\phi_{pq} or ϕ~pq\tilde{\phi}_{pq}, respectively. The scalar singlets get the vacuum expectation values (vevs) at the seesaw scale, while Higgs doublets get vevs at the electroweak scale. Under Z2Z_{2} transformation, the sign of ϕ~pq\tilde{\phi}_{pq} and νRp\nu_{Rp} changes, while other multiplets remain invariant. The diagonal charged lepton mass matrix can be obtained by introducing only three Higgs doublets namely ϕ11\phi_{11}, ϕ22\phi_{22} and ϕ33\phi_{33}, similarly, the diagonal Dirac neutrino mass matrix can be obtained by introducing three Higgs doublets ϕ~11\tilde{\phi}_{11}, ϕ~22\tilde{\phi}_{22} and ϕ~33\tilde{\phi}_{33}. The non zero elements of MRM_{R} can be obtained by introducing scalar fields χ11\chi_{11}, χ12\chi_{12}, χ13\chi_{13}, χ22\chi_{22} and χ33\chi_{33} which under Z12Z_{12} transformation gets multiplied by ω10\omega^{10}, ω9\omega^{9}, ω6\omega^{6}, ω8\omega^{8} and ω2\omega^{2}, respectively. The Majorana mass matrix MRM_{R} can be written as

MR=(abcbd0c0e).M_{R}=\begin{pmatrix}a&b&c\\ b&d&0\\ c&0&e\end{pmatrix}\,. (51)

This provides minor zero corresponding to (3,2) element in the neutrino mass matrix. Other patterns can also be realised similarly for different MRM_{R}.

VIII conclusion

We explore the implication of one minor zero in the neutrino mass matrix obtained using trimaximal mixing matrix. There are total six possible patterns and all the patterns are found to be phenomenologically compatible with the present neutrino oscillation data. The two unknown parameters θ\theta and ϕ\phi of the trimaximal mixing matrix are determined by using the experimental values of the mixing angles θ12\theta_{12}, θ23\theta_{23} and θ13\theta_{13}. It is found that TM1 mixing matrix provides a better fit to the experimental results than TM2 mixing matrix. The Jarlskog invariant measure of CP violation is non zero for all the pattern, so they are necessarily CP violating. Patterns I, II and V show normal mass ordering for TM1 mixing matrix while these patterns show both normal and inverted mass ordering for TM2 mixing matrix. Patterns III and IV show both normal and inverted mass ordering for both TM1 and TM2 mixing matrix. Pattern VI predicts inverted mass ordering for both the mixing matrix. We predict the unknown parameters such as the absolute neutrino mass scale, the effective Majorana mass and the effective electron anti-neutrino mass using both TM1 and TM2 mixing matrix. The effective Majorana mass obtained for each pattern is within the reach of neutrinoless double beta decay experiment. Similarly, the value obtained for the effective electron anti-neutrino mass may be within the reach of future Project 8 experiment. We also discuss the fine tuning of the elements of the mass matrix for all the patterns by introducing a new parameter dFTd_{FT}. We observe that for the pattern C23C_{23}, the fine tuning among the elements of the mass matrix is small compared to other patterns. Moreover, we also discuss the symmetry realization of pattern V using Abelian symmetry group Z12×Z2Z_{12}\times Z_{2} in the framework of type-I seesaw model which can be easily generalized to all the other patterns as well.

Appendix A

The coefficients in the mass ratios for the TM1 mixing matrix can be expressed in terms of the two unknown parameters θ\theta and ϕ\phi as

𝒜1=16(13sin2θ+12cos2θcos2ϕ23sinθcosθcosϕ),\displaystyle\mathcal{A}_{1}=\frac{1}{6}(\frac{1}{3}\sin^{2}\theta+\frac{1}{2}\cos^{2}\theta\cos 2\phi-\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi),
𝒜2=16(12cos2θsin2ϕ23sinθcosθsinϕ),\displaystyle\mathcal{A}_{2}=\frac{1}{6}(\frac{1}{2}\cos^{2}\theta\sin 2\phi-\sqrt{\frac{2}{3}}\sin\theta\cos\theta\sin\phi),
𝒜3=(13cos2θ+12sin2θcos2ϕ+23sinθcosθcosϕ)(13sin2θ+12cos2θcos2ϕ23sinθcosθcosϕ),\displaystyle\mathcal{A}_{3}=(\frac{1}{3}\cos^{2}\theta+\frac{1}{2}\sin^{2}\theta\cos 2\phi+\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi)(\frac{1}{3}\sin^{2}\theta+\frac{1}{2}\cos^{2}\theta\cos 2\phi-\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi),
𝒜4=(12sin2θsin2ϕ+23sinθcosθsinϕ)(12cos2θsin2ϕ23sinθcosθcosϕ),\displaystyle\mathcal{A}_{4}=(\frac{1}{2}\sin^{2}\theta\sin 2\phi+\sqrt{\frac{2}{3}}\sin\theta\cos\theta\sin\phi)(\frac{1}{2}\cos^{2}\theta\sin 2\phi-\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi),
𝒜5=(12sin2θsin2ϕ+23sinθcosθsinϕ)(13sin2θ+12cos2θcos2ϕ23sinθcosθcosϕ),\displaystyle\mathcal{A}_{5}=(\frac{1}{2}\sin^{2}\theta\sin 2\phi+\sqrt{\frac{2}{3}}\sin\theta\cos\theta\sin\phi)(\frac{1}{3}\sin^{2}\theta+\frac{1}{2}\cos^{2}\theta\cos 2\phi-\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi),
𝒜6=(13cos2θ+12sin2θcos2ϕ+23sinθcosθcosϕ)(12cos2θsin2ϕ23sinθcosθsinϕ),\displaystyle\mathcal{A}_{6}=(\frac{1}{3}\cos^{2}\theta+\frac{1}{2}\sin^{2}\theta\cos 2\phi+\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi)(\frac{1}{2}\cos^{2}\theta\sin 2\phi-\sqrt{\frac{2}{3}}\sin\theta\cos\theta\sin\phi),
𝒜7=16(13cos2θ+12sin2θcos2ϕ+23sinθcosθcosϕ),\displaystyle\mathcal{A}_{7}=-\frac{1}{6}(\frac{1}{3}\cos^{2}\theta+\frac{1}{2}\sin^{2}\theta\cos 2\phi+\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi),
𝒜8=16(12sin2θsin2ϕ+23sinθcosθsinϕ).\displaystyle\mathcal{A}_{8}=-\frac{1}{6}(\frac{1}{2}\sin^{2}\theta\sin 2\phi+\sqrt{\frac{2}{3}}\sin\theta\cos\theta\sin\phi)\,. (52)
1=16(13sin2θ+12cos2θcos2ϕ+23sinθcosθcosϕ),\displaystyle\mathcal{B}_{1}=\frac{1}{6}(\frac{1}{3}\sin^{2}\theta+\frac{1}{2}\cos^{2}\theta\cos 2\phi+\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi),
2=16(12cos2θsin2ϕ+23sinθcosθsinϕ),\displaystyle\mathcal{B}_{2}=\frac{1}{6}(\frac{1}{2}\cos^{2}\theta\sin 2\phi+\sqrt{\frac{2}{3}}\sin\theta\cos\theta\sin\phi),
3=(13cos2θ+12sin2θcos2ϕ23sinθcosθcosϕ)(13sin2θ+12cos2θcos2ϕ+23sinθcosθcosϕ),\displaystyle\mathcal{B}_{3}=(\frac{1}{3}\cos^{2}\theta+\frac{1}{2}\sin^{2}\theta\cos 2\phi-\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi)(\frac{1}{3}\sin^{2}\theta+\frac{1}{2}\cos^{2}\theta\cos 2\phi+\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi),
4=(12sin2θsin2ϕ23sinθcosθsinϕ)(12cos2θsin2ϕ+23sinθcosθcosϕ),\displaystyle\mathcal{B}_{4}=(\frac{1}{2}\sin^{2}\theta\sin 2\phi-\sqrt{\frac{2}{3}}\sin\theta\cos\theta\sin\phi)(\frac{1}{2}\cos^{2}\theta\sin 2\phi+\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi),
5=(12cos2θsin2ϕ+23sinθcosθsinϕ)(13cos2θ+12sin2θcos2ϕ23sinθcosθcosϕ),\displaystyle\mathcal{B}_{5}=(\frac{1}{2}\cos^{2}\theta\sin 2\phi+\sqrt{\frac{2}{3}}\sin\theta\cos\theta\sin\phi)(\frac{1}{3}\cos^{2}\theta+\frac{1}{2}\sin^{2}\theta\cos 2\phi-\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi),
6=(13sin2θ+12cos2θcos2ϕ+23sinθcosθcosϕ)(12sin2θsin2ϕ23sinθcosθsinϕ),\displaystyle\mathcal{B}_{6}=(\frac{1}{3}\sin^{2}\theta+\frac{1}{2}\cos^{2}\theta\cos 2\phi+\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi)(\frac{1}{2}\sin^{2}\theta\sin 2\phi-\sqrt{\frac{2}{3}}\sin\theta\cos\theta\sin\phi),
7=16(13cos2θ+12sin2θcos2ϕ23sinθcosθcosϕ),\displaystyle\mathcal{B}_{7}=-\frac{1}{6}(\frac{1}{3}\cos^{2}\theta+\frac{1}{2}\sin^{2}\theta\cos 2\phi-\sqrt{\frac{2}{3}}\sin\theta\cos\theta\cos\phi),
8=16(12sin2θsin2ϕ23sinθcosθsinϕ).\displaystyle\mathcal{B}_{8}=-\frac{1}{6}(\frac{1}{2}\sin^{2}\theta\sin 2\phi-\sqrt{\frac{2}{3}}\sin\theta\cos\theta\sin\phi)\,. (53)
𝒞1=13(13sinθcosθ16cos2θcosϕ),\displaystyle\mathcal{C}_{1}=-\frac{1}{3}(\frac{1}{3}\sin\theta\cos\theta-\sqrt{\frac{1}{6}}\cos^{2}\theta\cos\phi),
𝒞2=136(cos2θsinϕ),\displaystyle\mathcal{C}_{2}=-\frac{1}{3\sqrt{6}}(\cos^{2}\theta\sin\phi),
𝒞3=(16sinθcos3θsin2ϕ)(13cos2θ+16sinθcosθsinϕ)(13sinθcosθ16cos2θcosϕ),\displaystyle\mathcal{C}_{3}=(\frac{1}{6}\sin\theta\cos^{3}\theta\sin^{2}\phi)-(\frac{1}{3}\cos^{2}\theta+\sqrt{\frac{1}{6}}\sin\theta\cos\theta\sin\phi)(\frac{1}{3}\sin\theta\cos\theta-\sqrt{\frac{1}{6}}\cos^{2}\theta\cos\phi),
𝒞4=16cos2θsinϕ(13cos2θ+16sinθcosθcosϕ)+16sinθcosθcosϕ(13sinθcosθ16cos2θcosϕ),\displaystyle\mathcal{C}_{4}=\sqrt{\frac{1}{6}}\cos^{2}\theta\sin\phi(\frac{1}{3}\cos^{2}\theta+\sqrt{\frac{1}{6}}\sin\theta\cos\theta\cos\phi)+\sqrt{\frac{1}{6}}\sin\theta\cos\theta\cos\phi(\frac{1}{3}\sin\theta\cos\theta-\sqrt{\frac{1}{6}}\cos^{2}\theta\cos\phi),
𝒞5=13(13cos2θ+16sinθcosθcosϕ),\displaystyle\mathcal{C}_{5}=\frac{1}{3}(\frac{1}{3}\cos^{2}\theta+\sqrt{\frac{1}{6}}\sin\theta\cos\theta\cos\phi),
𝒞6=136sinθcosθsinϕ.\displaystyle\mathcal{C}_{6}=\frac{1}{3\sqrt{6}}\sin\theta\cos\theta\sin\phi\,. (54)
𝒟1=13(13sin2θ16sinθcosθcosϕ),\displaystyle\mathcal{D}_{1}=-\frac{1}{3}(\frac{1}{3}\sin^{2}\theta-\sqrt{\frac{1}{6}}\sin\theta\cos\theta\cos\phi),
𝒟2=136(cosθsinϕ),\displaystyle\mathcal{D}_{2}=-\frac{1}{3\sqrt{6}}(\cos\theta\sin\phi),
𝒟3=(16sin2θcos2θsin2ϕ)+(13cos2θ16sinθcosθcosϕ)(13sin2θ16sinθcosθcosϕ),\displaystyle\mathcal{D}_{3}=(\frac{1}{6}\sin^{2}\theta\cos^{2}\theta\sin^{2}\phi)+(\frac{1}{3}\cos^{2}\theta-\sqrt{\frac{1}{6}}\sin\theta\cos\theta\cos\phi)(\frac{1}{3}\sin^{2}\theta-\sqrt{\frac{1}{6}}\sin\theta\cos\theta\cos\phi),
𝒟4=16sinθcosθsinϕ(13sin2θ+16sinθcosθcosϕ)16sinθcosθsinϕ(13cos2θ16sinθcosθcosϕ),\displaystyle\mathcal{D}_{4}=\sqrt{\frac{1}{6}}\sin\theta\cos\theta\sin\phi(\frac{1}{3}\sin^{2}\theta+\sqrt{\frac{1}{6}}\sin\theta\cos\theta\cos\phi)-\sqrt{\frac{1}{6}}\sin\theta\cos\theta\sin\phi(\frac{1}{3}\cos^{2}\theta-\sqrt{\frac{1}{6}}\sin\theta\cos\theta\cos\phi),
𝒟5=13(13cos2θ16sinθcosθcosϕ),\displaystyle\mathcal{D}_{5}=\frac{1}{3}(\frac{1}{3}\cos^{2}\theta-\sqrt{\frac{1}{6}}\sin\theta\cos\theta\cos\phi),
𝒟6=136sinθcosθsinϕ.\displaystyle\mathcal{D}_{6}=\frac{1}{3\sqrt{6}}\sin\theta\cos\theta\sin\phi\,. (55)
1=16(12cos2θsin2ϕ12sin2θ),\displaystyle\mathcal{E}_{1}=-\frac{1}{6}(\frac{1}{2}\cos^{2}\theta\sin 2\phi-\frac{1}{2}\sin^{2}\theta),
2=112(cos2θsin2ϕ),\displaystyle\mathcal{E}_{2}=-\frac{1}{12}(\cos^{2}\theta\sin 2\phi),
3=(14sin2θcos2θsin22ϕ)(13cos2θ12sin2θcos2ϕ)(12cos2θcos2ϕ13sin2θ),\displaystyle\mathcal{E}_{3}=(\frac{1}{4}\sin^{2}\theta\cos^{2}\theta\sin^{2}2\phi)-(\frac{1}{3}\cos^{2}\theta-\frac{1}{2}\sin^{2}\theta\cos 2\phi)(\frac{1}{2}\cos^{2}\theta\cos 2\phi-\frac{1}{3}\sin^{2}\theta),
4=12cos2θsin2ϕ(13cos2θ12sin2θcos2ϕ)+12sin2θsin2ϕ(12cos2θcos2ϕ13sin2θ),\displaystyle\mathcal{E}_{4}=\frac{1}{2}\cos^{2}\theta\sin 2\phi(\frac{1}{3}\cos^{2}\theta-\frac{1}{2}\sin^{2}\theta\cos 2\phi)+\frac{1}{2}\sin^{2}\theta\sin 2\phi(\frac{1}{2}\cos^{2}\theta\cos 2\phi-\frac{1}{3}\sin^{2}\theta),
5=16(13cos2θ12sin2θcos2ϕ),\displaystyle\mathcal{E}_{5}=-\frac{1}{6}(\frac{1}{3}\cos^{2}\theta-\frac{1}{2}\sin^{2}\theta\cos 2\phi),
6=112sin2θsin2ϕ.\displaystyle\mathcal{E}_{6}=\frac{1}{12}\sin^{2}\theta\sin 2\phi\,. (56)

Similarly, the coefficients in the mass ratios for the TM2 mixing can be written as

𝒜~1=1036sin2θcos2θcos2ϕ+112sin4θ163sin2θsin2θcosϕ+112cos4θ(cos22ϕsin22ϕ),\displaystyle\mathcal{\tilde{A}}_{1}=\frac{10}{36}\sin^{2}\theta\cos^{2}\theta\cos 2\phi+\frac{1}{12}\sin^{4}\theta-\frac{1}{6\sqrt{3}}\sin^{2}\theta\sin 2\theta\cos\phi+\frac{1}{12}\cos^{4}\theta(\cos^{2}2\phi-\sin^{2}2\phi),
𝒜~2=163cos2θsin2θcos3ϕ112sin22θcos2ϕ,\displaystyle\mathcal{\tilde{A}}_{2}=\frac{1}{6\sqrt{3}}\cos^{2}\theta\sin 2\theta\cos 3\phi-\frac{1}{12}\sin^{2}2\theta\cos 2\phi,
𝒜~3=1036sin2θcos2θsin2ϕ163sin2θsin2θsinϕ+16cos4θcos2ϕsin2ϕ,\displaystyle\mathcal{\tilde{A}}_{3}=\frac{10}{36}\sin^{2}\theta\cos^{2}\theta\sin 2\phi-\frac{1}{6\sqrt{3}}\sin^{2}\theta\sin 2\theta\sin\phi+\frac{1}{6}\cos^{4}\theta\cos 2\phi\sin 2\phi,
𝒜~4=163cos2θsin2θsin3ϕ112sin22θsin2ϕ,\displaystyle\mathcal{\tilde{A}}_{4}=\frac{1}{6\sqrt{3}}\cos^{2}\theta\sin 2\theta\sin 3\phi-\frac{1}{12}\sin^{2}2\theta\sin 2\phi,
𝒜~5=118sin2θ+16cos2θcos2ϕ163sin2θcosϕ,\displaystyle\mathcal{\tilde{A}}_{5}=\frac{1}{18}\sin^{2}\theta+\frac{1}{6}\cos^{2}\theta\cos 2\phi-\frac{1}{6\sqrt{3}}\sin 2\theta\cos\phi,
𝒜~6=16cos2θsin2ϕ163sin2θsinϕ,\displaystyle\mathcal{\tilde{A}}_{6}=\frac{1}{6}\cos^{2}\theta\sin 2\phi-\frac{1}{6\sqrt{3}}\sin 2\theta\sin\phi,
𝒜~7=16sin2θ+118cos2θcos2ϕ+163sin2θcosϕ,\displaystyle\mathcal{\tilde{A}}_{7}=\frac{1}{6}\sin^{2}\theta+\frac{1}{18}\cos^{2}\theta\cos 2\phi+\frac{1}{6\sqrt{3}}\sin 2\theta\cos\phi,
𝒜~8=118cos2θsin2ϕ+163sin2θsinϕ.\displaystyle\mathcal{\tilde{A}}_{8}=\frac{1}{18}\cos^{2}\theta\sin 2\phi+\frac{1}{6\sqrt{3}}\sin 2\theta\sin\phi\,. (57)
~1=1036sin2θcos2θcos2ϕ+112sin4θ+163sin2θsin2θcosϕ+112cos4θ(cos22ϕsin22ϕ),\displaystyle\mathcal{\tilde{B}}_{1}=\frac{10}{36}\sin^{2}\theta\cos^{2}\theta\cos 2\phi+\frac{1}{12}\sin^{4}\theta+\frac{1}{6\sqrt{3}}\sin^{2}\theta\sin 2\theta\cos\phi+\frac{1}{12}\cos^{4}\theta(\cos^{2}2\phi-\sin^{2}2\phi),
~2=163cos2θsin2θcos3ϕ112sin22θcos2ϕ,\displaystyle\mathcal{\tilde{B}}_{2}=-\frac{1}{6\sqrt{3}}\cos^{2}\theta\sin 2\theta\cos 3\phi-\frac{1}{12}\sin^{2}2\theta\cos 2\phi,
~3=1036sin2θcos2θsin2ϕ+163sin2θsin2θsinϕ+16cos4θcos2ϕsin2ϕ,\displaystyle\mathcal{\tilde{B}}_{3}=\frac{10}{36}\sin^{2}\theta\cos^{2}\theta\sin 2\phi+\frac{1}{6\sqrt{3}}\sin^{2}\theta\sin 2\theta\sin\phi+\frac{1}{6}\cos^{4}\theta\cos 2\phi\sin 2\phi,
~4=163cos2θsin2θsin3ϕ112sin22θsin2ϕ,\displaystyle\mathcal{\tilde{B}}_{4}=-\frac{1}{6\sqrt{3}}\cos^{2}\theta\sin 2\theta\sin 3\phi-\frac{1}{12}\sin^{2}2\theta\sin 2\phi,
~5=118sin2θ+16cos2θcos2ϕ+163sin2θsinϕ,\displaystyle\mathcal{\tilde{B}}_{5}=\frac{1}{18}\sin^{2}\theta+\frac{1}{6}\cos^{2}\theta\cos 2\phi+\frac{1}{6\sqrt{3}}\sin 2\theta\sin\phi,
~6=16cos2θsin2ϕ+163sin2θsinϕ,\displaystyle\mathcal{\tilde{B}}_{6}=\frac{1}{6}\cos^{2}\theta\sin 2\phi+\frac{1}{6\sqrt{3}}\sin 2\theta\sin\phi,
~7=16sin2θ+118cos2θcos2ϕ163sin2θcosϕ,\displaystyle\mathcal{\tilde{B}}_{7}=\frac{1}{6}\sin^{2}\theta+\frac{1}{18}\cos^{2}\theta\cos 2\phi-\frac{1}{6\sqrt{3}}\sin 2\theta\cos\phi,
~8=118cos2θsin2ϕ163sin2θsinϕ.\displaystyle\mathcal{\tilde{B}}_{8}=\frac{1}{18}\cos^{2}\theta\sin 2\phi-\frac{1}{6\sqrt{3}}\sin 2\theta\sin\phi\,. (58)
𝒞~1=19sin2θcos2θcos2ϕ163cos2θsin2θcos3ϕ+163sin2θsin2θcosϕ112sin22θcos2ϕ,\displaystyle\mathcal{\tilde{C}}_{1}=\frac{1}{9}\sin^{2}\theta\cos^{2}\theta\cos 2\phi-\frac{1}{6\sqrt{3}}\cos^{2}\theta\sin 2\theta\cos 3\phi+\frac{1}{6\sqrt{3}}\sin^{2}\theta\sin 2\theta\cos\phi-\frac{1}{12}\sin^{2}2\theta\cos 2\phi,
𝒞~2=19sin2θcos2θsin2ϕ163cos2θsin2θsin3ϕ+163sin2θsin2θsinϕ112sin2θsin2ϕ,\displaystyle\mathcal{\tilde{C}}_{2}=\frac{1}{9}\sin^{2}\theta\cos^{2}\theta\sin 2\phi-\frac{1}{6\sqrt{3}}\cos^{2}\theta\sin 2\theta\sin 3\phi+\frac{1}{6\sqrt{3}}\sin^{2}\theta\sin 2\theta\sin\phi-\frac{1}{12}\sin^{2}\theta\sin 2\phi,
𝒞~3=163sin2θcosϕ19sin2θ,\displaystyle\mathcal{\tilde{C}}_{3}=\frac{1}{6\sqrt{3}}\sin 2\theta\cos\phi-\frac{1}{9}\sin^{2}\theta,
𝒞~4=163sin2θsinϕ,\displaystyle\mathcal{\tilde{C}}_{4}=\frac{1}{6\sqrt{3}}\sin 2\theta\sin\phi,
𝒞~5=19cos2θcos2ϕ+163sin2θcosϕ,\displaystyle\mathcal{\tilde{C}}_{5}=\frac{1}{9}\cos^{2}\theta\cos 2\phi+\frac{1}{6\sqrt{3}}\sin 2\theta\cos\phi,
𝒞~6=19cos2θsin2ϕ+163sin2θsinϕ.\displaystyle\mathcal{\tilde{C}}_{6}=\frac{1}{9}\cos^{2}\theta\sin 2\phi+\frac{1}{6\sqrt{3}}\sin 2\theta\sin\phi\,. (59)
𝒟~1=19sin2θcos2θcos2ϕ163sin2θsin2θcos3ϕ+163cos2θsin2θcosϕ112sin22θcos2ϕ,\displaystyle\mathcal{\tilde{D}}_{1}=\frac{1}{9}\sin^{2}\theta\cos^{2}\theta\cos 2\phi-\frac{1}{6\sqrt{3}}\sin^{2}\theta\sin 2\theta\cos 3\phi+\frac{1}{6\sqrt{3}}\cos^{2}\theta\sin 2\theta\cos\phi-\frac{1}{12}\sin^{2}2\theta\cos 2\phi,
𝒟~2=19sin2θcos2θsin2ϕ163sin2θsin2θsinϕ+163cos2θsin2θsin3ϕ112sin2θsin2ϕ,\displaystyle\mathcal{\tilde{D}}_{2}=\frac{1}{9}\sin^{2}\theta\cos^{2}\theta\sin 2\phi-\frac{1}{6\sqrt{3}}\sin^{2}\theta\sin 2\theta\sin\phi+\frac{1}{6\sqrt{3}}\cos^{2}\theta\sin 2\theta\sin 3\phi-\frac{1}{12}\sin^{2}\theta\sin 2\phi,
𝒟~3=163sin2θcosϕ+19sin2θ,\displaystyle\mathcal{\tilde{D}}_{3}=\frac{1}{6\sqrt{3}}\sin 2\theta\cos\phi+\frac{1}{9}\sin^{2}\theta,
𝒟~4=163sin2θsinϕ,\displaystyle\mathcal{\tilde{D}}_{4}=\frac{1}{6\sqrt{3}}\sin 2\theta\sin\phi,
𝒟~5=19cos2θcos2ϕ163sin2θcosϕ,\displaystyle\mathcal{\tilde{D}}_{5}=\frac{1}{9}\cos^{2}\theta\cos 2\phi-\frac{1}{6\sqrt{3}}\sin 2\theta\cos\phi,
𝒟~6=163sin2θsinϕ19cos2θsin2ϕ.\displaystyle\mathcal{\tilde{D}}_{6}=\frac{1}{6\sqrt{3}}\sin 2\theta\sin\phi-\frac{1}{9}\cos^{2}\theta\sin 2\phi\,. (60)
~1=1036sin2θcos2θcos2ϕ112cos4θcos22ϕ112sin4θ+112cos4θsin22ϕ,\displaystyle\mathcal{\tilde{E}}_{1}=\frac{10}{36}\sin^{2}\theta\cos^{2}\theta\cos 2\phi-\frac{1}{12}\cos^{4}\theta\cos^{2}2\phi-\frac{1}{12}\sin^{4}\theta+\frac{1}{12}\cos^{4}\theta\sin^{2}2\phi,
~2=518sin2θcos2θsin2ϕ16cos4θsin2ϕcos2ϕ,\displaystyle\mathcal{\tilde{E}}_{2}=\frac{5}{18}\sin^{2}\theta\cos^{2}\theta\sin 2\phi-\frac{1}{6}\cos^{4}\theta\sin 2\phi\cos 2\phi,
~3=16cos2θcos2ϕ118sin2θ,\displaystyle\mathcal{\tilde{E}}_{3}=\frac{1}{6}\cos^{2}\theta\cos 2\phi-\frac{1}{18}\sin^{2}\theta,
~4=16cos2θsin2ϕ,\displaystyle\mathcal{\tilde{E}}_{4}=\frac{1}{6}\cos^{2}\theta\sin 2\phi,
~5=16sin2θ118cos2θcos2ϕ,\displaystyle\mathcal{\tilde{E}}_{5}=\frac{1}{6}\sin^{2}\theta-\frac{1}{18}\cos^{2}\theta\cos 2\phi,
~6=16cos2θsin2ϕ.\displaystyle\mathcal{\tilde{E}}_{6}=\frac{1}{6}\cos^{2}\theta\sin 2\phi\,. (61)

References

  • (1) Y. Fukuda et al. [Super-Kamiokande], Phys. Rev. Lett. 81, 1562-1567 (1998) doi:10.1103/PhysRevLett.81.1562 [arXiv:hep-ex/9807003 [hep-ex]].
  • (2) A. A. Esfahani et al. [Project 8],[arXiv:2203.07349 [nucl-ex]].
  • (3) M. Zhang, J. F. Zhang and X. Zhang, Commun. Theor. Phys. 72, no.12, 125402 (2020) [arXiv:2005.04647 [astro-ph.CO]].
  • (4) M. Agostini et al. [GERDA], Phys. Rev. Lett. 111, no.12, 122503 (2013) doi:10.1103/PhysRevLett.111.122503 [arXiv:1307.4720 [nucl-ex]].
  • (5) K. Alfonso et al. [CUORE], Phys. Rev. Lett. 115, no.10, 102502 (2015) doi:10.1103/PhysRevLett.115.102502 [arXiv:1504.02454 [nucl-ex]].
  • (6) J. B. Albert et al. [EXO-200], Nature 510, 229-234 (2014) doi:10.1038/nature13432 [arXiv:1402.6956 [nucl-ex]].
  • (7) A. Gando et al. [KamLAND-Zen], Phys. Rev. Lett. 110, no.6, 062502 (2013) doi:10.1103/PhysRevLett.110.062502 [arXiv:1211.3863 [hep-ex]].
  • (8) E. I. Lashin and N. Chamoun, Phys. Rev. D 85, 113011 (2012) doi:10.1103/PhysRevD.85.113011 [arXiv:1108.4010 [hep-ph]].
  • (9) M. Singh, Adv. High Energy Phys. 2018, 2863184 (2018) doi:10.1155/2018/2863184 [arXiv:1803.10735 [hep-ph]].
  • (10) R. R. Gautam, Phys. Rev. D 97, no.5, 055022 (2018) doi:10.1103/PhysRevD.97.055022 [arXiv:1802.00425 [hep-ph]].
  • (11) P. H. Frampton, S. L. Glashow and D. Marfatia, Phys. Lett. B 536, 79-82 (2002) doi:10.1016/S0370-2693(02)01817-8 [arXiv:hep-ph/0201008 [hep-ph]].
  • (12) Z. z. Xing, Phys. Lett. B 530, 159-166 (2002) doi:10.1016/S0370-2693(02)01354-0 [arXiv:hep-ph/0201151 [hep-ph]].
  • (13) Z. z. Xing, Phys. Lett. B 539, 85-90 (2002) doi:10.1016/S0370-2693(02)02062-2 [arXiv:hep-ph/0205032 [hep-ph]].
  • (14) L. Lavoura, Phys. Lett. B 609, 317-322 (2005) doi:10.1016/j.physletb.2005.01.047 [arXiv:hep-ph/0411232 [hep-ph]].
  • (15) S. Dev, S. Kumar, S. Verma and S. Gupta, Phys. Rev. D 76, 013002 (2007) doi:10.1103/PhysRevD.76.013002 [arXiv:hep-ph/0612102 [hep-ph]].
  • (16) S. Kumar, Phys. Rev. D 84, 077301 (2011) doi:10.1103/PhysRevD.84.077301 [arXiv:1108.2137 [hep-ph]].
  • (17) H. Fritzsch, Z. z. Xing and S. Zhou, JHEP 09, 083 (2011) doi:10.1007/JHEP09(2011)083 [arXiv:1108.4534 [hep-ph]].
  • (18) P. O. Ludl, S. Morisi and E. Peinado, Nucl. Phys. B 857, 411-423 (2012) doi:10.1016/j.nuclphysb.2011.12.017 [arXiv:1109.3393 [hep-ph]].
  • (19) D. Meloni and G. Blankenburg, Nucl. Phys. B 867, 749-762 (2013) doi:10.1016/j.nuclphysb.2012.10.011 [arXiv:1204.2706 [hep-ph]].
  • (20) W. Grimus and P. O. Ludl, J. Phys. G 40, 055003 (2013) doi:10.1088/0954-3899/40/5/055003 [arXiv:1208.4515 [hep-ph]].
    Dev:2015lya
  • (21) S. Dev, R. R. Gautam, L. Singh and M. Gupta, Phys. Rev. D 90, no.1, 013021 (2014) doi:10.1103/PhysRevD.90.013021 [arXiv:1405.0566 [hep-ph]].
  • (22) R. R. Gautam and S. Kumar, Phys. Rev. D 94, no.3, 036004 (2016) [erratum: Phys. Rev. D 100, no.3, 039902 (2019)] doi:10.1103/PhysRevD.94.036004 [arXiv:1607.08328 [hep-ph]].
  • (23) K. S. Channey and S. Kumar, J. Phys. G 46, no.1, 015001 (2019) doi:10.1088/1361-6471/aaf55e [arXiv:1812.10268 [hep-ph]].
  • (24) M. Singh, EPL 129, no.1, 1 (2020) doi:10.1209/0295-5075/129/11002 [arXiv:1909.01552 [hep-ph]].
  • (25) E. I. Lashin and N. Chamoun, Phys. Rev. D 78, 073002 (2008) doi:10.1103/PhysRevD.78.073002 [arXiv:0708.2423 [hep-ph]].
  • (26) E. I. Lashin and N. Chamoun, Phys. Rev. D 80, 093004 (2009) doi:10.1103/PhysRevD.80.093004 [arXiv:0909.2669 [hep-ph]].
  • (27) S. Dev, S. Verma, S. Gupta and R. R. Gautam,0 Phys. Rev. D 81, 053010 (2010) doi:10.1103/PhysRevD.81.053010 [arXiv:1003.1006 [hep-ph]].
  • (28) S. Dev, S. Gupta and R. R. Gautam, Mod. Phys. Lett. A 26, 501-514 (2011) doi:10.1142/S0217732311034906 [arXiv:1011.5587 [hep-ph]].
  • (29) Z. Tavartkiladze, Phys. Rev. D 106, no.11, 115002 (2022) doi:10.1103/PhysRevD.106.115002 [arXiv:2209.14404 [hep-ph]].
  • (30) T. Araki, J. Heeck and J. Kubo, JHEP 07, 083 (2012) doi:10.1007/JHEP07(2012)083 [arXiv:1203.4951 [hep-ph]].
  • (31) J. Liao, D. Marfatia and K. Whisnant, JHEP 09, 013 (2014) doi:10.1007/JHEP09(2014)013 [arXiv:1311.2639 [hep-ph]].
  • (32) S. Dev, R. R. Gautam and L. Singh, Phys. Rev. D 87, 073011 (2013) doi:10.1103/PhysRevD.87.073011 [arXiv:1303.3092 [hep-ph]].
  • (33) W. Wang, Eur. Phys. J. C 73, 2551 (2013) doi:10.1140/epjc/s10052-013-2551-2 [arXiv:1306.3556 [hep-ph]].
  • (34) K. Whisnant, J. Liao and D. Marfatia, AIP Conf. Proc. 1604, no.1, 273-278 (2015) doi:10.1063/1.4883441
  • (35) S. Dev, L. Singh and D. Raj, Eur. Phys. J. C 75, no.8, 394 (2015) doi:10.1140/epjc/s10052-015-3569-4 [arXiv:1506.04951 [hep-ph]].
  • (36) W. Wang, S. Y. Guo and Z. G. Wang, Mod. Phys. Lett. A 31, no.13, 1650080 (2016) doi:10.1142/S0217732316500802
  • (37) S. Goswami, S. Khan and A. Watanabe, Phys. Lett. B 693, 249-254 (2010) doi:10.1016/j.physletb.2010.08.033 [arXiv:0811.4744 [hep-ph]].
  • (38) S. Dev, S. Verma and S. Gupta, Phys. Lett. B 687, 53-60 (2010) doi:10.1016/j.physletb.2010.02.055 [arXiv:0909.3182 [hep-ph]].
  • (39) S. Dev, S. Gupta and R. R. Gautam, Phys. Rev. D 82, 073015 (2010) doi:10.1103/PhysRevD.82.073015 [arXiv:1009.5501 [hep-ph]].
  • (40) J. Y. Liu and S. Zhou, Phys. Rev. D 87, no.9, 093010 (2013) doi:10.1103/PhysRevD.87.093010 [arXiv:1304.2334 [hep-ph]].
  • (41) S. Dev, R. R. Gautam and L. Singh, Phys. Rev. D 88, 033008 (2013) doi:10.1103/PhysRevD.88.033008 [arXiv:1306.4281 [hep-ph]].
  • (42) P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530, 167 (2002) doi:10.1016/S0370-2693(02)01336-9 [arXiv:hep-ph/0202074 [hep-ph]].
  • (43) P. F. Harrison and W. G. Scott, Phys. Lett. B 535, 163-169 (2002) doi:10.1016/S0370-2693(02)01753-7 [arXiv:hep-ph/0203209 [hep-ph]].
  • (44) Z. z. Xing, Phys. Lett. B 533, 85-93 (2002) doi:10.1016/S0370-2693(02)01649-0 [arXiv:hep-ph/0204049 [hep-ph]].
  • (45) P. F. Harrison and W. G. Scott, Phys. Lett. B 557, 76 (2003) doi:10.1016/S0370-2693(03)00183-7 [arXiv:hep-ph/0302025 [hep-ph]].
  • (46) K. Abe et al. [T2K], Phys. Rev. Lett. 107, 041801 (2011) doi:10.1103/PhysRevLett.107.041801 [arXiv:1106.2822 [hep-ex]].
  • (47) P. Adamson et al. [MINOS], Phys. Rev. Lett. 107, 181802 (2011) doi:10.1103/PhysRevLett.107.181802 [arXiv:1108.0015 [hep-ex]].
  • (48) Y. Abe et al. [Double Chooz], Phys. Rev. Lett. 108, 131801 (2012) doi:10.1103/PhysRevLett.108.131801 [arXiv:1112.6353 [hep-ex]].
  • (49) F. P. An et al. [Daya Bay], Phys. Rev. Lett. 108, 171803 (2012) doi:10.1103/PhysRevLett.108.171803 [arXiv:1203.1669 [hep-ex]].
  • (50) J. K. Ahn et al. [RENO], Phys. Rev. Lett. 108, 191802 (2012) doi:10.1103/PhysRevLett.108.191802 [arXiv:1204.0626 [hep-ex]].
  • (51) S. Kumar, Phys. Rev. D 82, 013010 (2010) [erratum: Phys. Rev. D 85, 079904 (2012)] doi:10.1103/PhysRevD.82.013010 [arXiv:1007.0808 [hep-ph]].
  • (52) X. G. He and A. Zee, Phys. Rev. D 84, 053004 (2011) doi:10.1103/PhysRevD.84.053004 [arXiv:1106.4359 [hep-ph]].
  • (53) W. Grimus and L. Lavoura, JHEP 09, 106 (2008) doi:10.1088/1126-6708/2008/09/106 [arXiv:0809.0226 [hep-ph]].
  • (54) C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985) doi:10.1103/PhysRevLett.55.1039
  • (55) I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, JHEP 09, 178 (2020) doi:10.1007/JHEP09(2020)178 [arXiv:2007.14792 [hep-ph]].NuFIT 5.0(2020), http://www.nu-fit.org.
  • (56) G. Altarelli and G. Blankenburg, JHEP 03, 133 (2011) doi:10.1007/JHEP03(2011)133 [arXiv:1012.2697 [hep-ph]].
  • (57) P. Minkowski, Phys. Lett. B 67, 421-428 (1977) doi:10.1016/0370-2693(77)90435-X.
  • (58) R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980) doi:10.1103/PhysRevLett.44.912.
  • (59) W. Grimus, A. S. Joshipura, L. Lavoura and M. Tanimoto, Eur. Phys. J. C 36, 227-232 (2004) doi:10.1140/epjc/s2004-01896-y [arXiv:hep-ph/0405016 [hep-ph]].