This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

One more time on the helicity decomposition of spin and orbital optical currents

Andrea Aiello Max Planck Institute for the Science of Light, Staudtstrasse 2, 91058 Erlangen, Germany [email protected]
Abstract

The helicity representation of the linear momentum density of a light wave is well understood for monochromatic optical fields in both paraxial and non-paraxial regimes of propagation. In this note we generalize such representation to nonmonochromatic optical fields. We find that, differently from the monochromatic case, the linear momentum density, aka the Poynting vector divided by c2c^{2}, does not separate into the sum of right-handed and left-handed terms, even when the so-called electric-magnetic democracy in enforced by averaging the electric and magnetic contributions. However, for quasimonochromatic light, such a separation is approximately restored after time-averaging. This paper is dedicated to Sir Michael Berry on the occasion of his 8080th birthday.

: \jpa

Keywords: Helicity, non-monochromatic light, Poynting vector, spin and orbital angular momentum of light

1 Introduction

Exciting ideas of Michael Berry have often inspired my work over the last two decades. On one occasion I had the privilege of working with him on a little problem concerning the helicity decomposition of spin and orbital optical currents of monochromatic light. It therefore seems appropriate to present here the natural extension of that work to the more general case of non monochromatic light waves.

Light is a complicated physical phenomenon. As Berry had shown in 2009, even the very familiar concept of energy flow, or current, becomes problematic when it comes to optical fields [1]. In this work we choose the familiar Poynting vector, which is proportional to the linear momentum density of the electromagnetic field [2], to represent the optical current. In 20072007 Bekshaev and Soskin described the decomposition of the Poynting vector of paraxial optical fields, into orbital and spin currents [3]. Shortly afterwards, Berry could generalize such decomposition to nonparaxial monochromatic fields, by enforcing the so-called electric-magnetic democracy [1]. In the same work, elaborating on an old argument by Wolf [4], Berry also showed that the monochromatic Poynting vector separates into positive and negative helicity contributions. Subsequently, other authors have explored the subject in great detail [5, 6, 7, 8], so that today we can safely say that the problem has been largely understood for monochromatic light.

However, in this rather clear landscape a small landmark is still missing, namely the helicity decomposition of spin and orbital optical currents for nonmonochromatic optical fields. The purpose of this paper is to remedy this minor shortcoming by providing a perfectly general theory for the separation of the linear momentum density of nonmonochromatic light waves, into orbital and spin parts, and into positive and negative helicities. We find that for nonmonochromatic light waves the latter separation cannot be achieved and cross-helicity terms are always present, although they become negligible for narrow-linewidth light. To obtain our results, we use the well-known Helmholtz decomposition theorem [9], to obtain the gauge-invariant spin and orbital parts of optical linear momentum in real space. Then, we switch to reciprocal (Fourier) space to illustrate and clarify the role of electric-magnetic democracy for the cancellation of the cross-helicity terms occurring in the monochromatic case.

2 Maxwell’s equations in real and reciprocal spaces

In this section we briefly review some textbooks results about Maxwell’s equations and helicity (circular polarization) basis, mainly to set the working scenario and to fix an appropriate notation [10, 11]. Maxwell’s equations in empty space are [12],

𝐄(𝐫,t)\displaystyle\bm{\nabla}\cdot\mathbf{E}(\mathbf{r},t) =0,\displaystyle=0, (1a)
𝐁(𝐫,t)\displaystyle\bm{\nabla}\cdot\mathbf{B}(\mathbf{r},t) =0,\displaystyle=0, (1b)
×𝐄(𝐫,t)\displaystyle\bm{\nabla}\times\mathbf{E}(\mathbf{r},t) =t𝐁(𝐫,t),\displaystyle=-\frac{\partial}{\partial t}\mathbf{B}(\mathbf{r},t), (1c)
×𝐁(𝐫,t)\displaystyle\bm{\nabla}\times\mathbf{B}(\mathbf{r},t) =1c2t𝐄(𝐫,t),\displaystyle=\frac{1}{c^{2}}\frac{\partial}{\partial t}\mathbf{E}(\mathbf{r},t), (1d)

where 𝐄(𝐫,t)\mathbf{E}(\mathbf{r},t) and 𝐁(𝐫,t)\mathbf{B}(\mathbf{r},t) are the electric and magnetic fields, respectively, and cc is the speed of light in vacuum. Throughout this paper, we will denote real-valued three-vectors with upright bold characters like 𝐄\mathbf{E} or 𝐫\mathbf{r}, while we will use bold Italic characters like A\bi{A} or ϵ\bm{\epsilon}, to signify complex-valued three-vectors. Unit vectors will be distinguished from ordinary vectors by a caret, like 𝐞^3\hat{\mathbf{e}}\in\mathbb{R}^{3} or ϵ^3\hat{\bm{\epsilon}}\in\mathbb{C}^{3}, so that 𝐞^𝐞^=1\hat{\mathbf{e}}\cdot\hat{\mathbf{e}}=1 and ϵ^ϵ^=1\hat{\bm{\epsilon}}^{*}\cdot\hat{\bm{\epsilon}}=1.

For the sake of definiteness, consider now the electric field only. Taking the curl of (1c) and using the vector identity

×(×𝐀)=(𝐀)2𝐀,\displaystyle\bm{\nabla}\times\left(\bm{\nabla}\times\mathbf{A}\right)\,=\,\bm{\nabla}\left(\bm{\nabla}{\cdot}\mathbf{A}\right)\,-\,\nabla^{2}\mathbf{A}, (1b)

together with (1a), we obtain the electromagnetic wave equation

2𝐄(𝐫,t)1c22t2𝐄(𝐫,t)=0.\displaystyle\nabla^{2}\mathbf{E}(\mathbf{r},t)-\frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\,\mathbf{E}(\mathbf{r},t)=0. (1c)

Let E~(𝐤,t)\tilde{\bi{E}}(\mathbf{k},t) be the spatial Fourier transform of 𝐄(𝐫,t)\mathbf{E}(\mathbf{r},t). Then, by definition 𝐄(𝐫,t)\mathbf{E}(\mathbf{r},t) and E~(𝐤,t)\tilde{\bi{E}}(\mathbf{k},t) satisfy the equations [10],

𝐄(𝐫,t)\displaystyle\mathbf{E}(\mathbf{r},t) =3k(2π)3/2E~(𝐤,t)exp(i𝐤𝐫),\displaystyle=\int\frac{\rmd^{3}k}{\left(2\pi\right)^{3/2}}\,\tilde{\bi{E}}(\mathbf{k},t)\exp\left(i\mathbf{k}\cdot\mathbf{r}\right), (1da)
E~(𝐤,t)\displaystyle\tilde{\bi{E}}(\mathbf{k},t) =3r(2π)3/2𝐄(𝐫,t)exp(i𝐤𝐫),\displaystyle=\int\frac{\rmd^{3}r}{\left(2\pi\right)^{3/2}}\,\mathbf{E}(\mathbf{r},t)\exp\left(-i\mathbf{k}\cdot\mathbf{r}\right), (1db)

where 𝐄(𝐫,t)3\mathbf{E}(\mathbf{r},t)\in\mathbb{R}^{3} implies E~(𝐤,t)=E~(𝐤,t)\tilde{\bi{E}}(\mathbf{-k},t)=\tilde{\bi{E}}^{*}(\mathbf{k},t), and from (1a) it follows that 𝐤E~(𝐤,t)=0\mathbf{k}\cdot\tilde{\bi{E}}(\mathbf{k},t)=0. Throughout this paper, it is understood that integrals in both real and reciprocal space are taken over the whole 3\mathbb{R}^{3}-space. Substituting (1da) into (1c), we obtain

(2t2+ω2)E~(𝐤,t)=0,\left(\frac{\partial^{2}}{\partial t^{2}}+\omega^{2}\right)\tilde{\bi{E}}(\mathbf{k},t)=0, (1de)

where here and hereafter ω=c|𝐤|=ck\omega=c|\mathbf{k}|=c\,k, being k=2π/λk=2\pi/\lambda the wavenumber of the light of wavelength λ\lambda. The solution of the second-order differential equation (1de) is

E~(𝐤,t)=a(𝐤)𝐞𝐱𝐩(i𝝎t)+a(𝐤)𝐞𝐱𝐩(i𝝎t),\tilde{\bi{E}}(\mathbf{k},t)=\bi{a}(\mathbf{k})\exp\left(-i\omega t\right)+\bi{a}^{*}(-\mathbf{k})\exp\left(i\omega t\right), (1df)

where the vector amplitude a(𝐤)\bi{a}(\mathbf{k}) is determined by the value of the field and of its time derivative at t=0t=0, as follows:

a(𝐤)\displaystyle\bi{a}(\mathbf{k}) =12[E~(𝐤,t)+iωtE~(𝐤,t)]t=0\displaystyle=\frac{1}{2}\left[\tilde{\bi{E}}(\mathbf{k},t)+\frac{i}{\omega}\frac{\partial}{\partial t}\tilde{\bi{E}}(\mathbf{k},t)\right]_{t=0} (1dg)
=123r(2π)3/2[𝐄(𝐫,t)+iωt𝐄(𝐫,t)]t=0exp(i𝐤𝐫),\displaystyle=\frac{1}{2}\int\frac{\rmd^{3}r}{\left(2\pi\right)^{3/2}}\left[\mathbf{E}(\mathbf{r},t)+\frac{i}{\omega}\frac{\partial}{\partial t}\,\mathbf{E}(\mathbf{r},t)\right]_{t=0}\exp\left(-i\mathbf{k}\cdot\mathbf{r}\right),

where (1db) has been used. However, for reasons that will be soon clear, it is more convenient to rewrite a(𝐤)\bi{a}(\mathbf{k}) in terms of time-dependent fields, as

a(𝐤)\displaystyle\bi{a}(\mathbf{k}) =123r(2π)3/2[𝐄(𝐫,t)+iωt𝐄(𝐫,t)]exp(i𝐤𝐫+iωt).\displaystyle=\frac{1}{2}\int\frac{\rmd^{3}r}{\left(2\pi\right)^{3/2}}\left[\mathbf{E}(\mathbf{r},t)+\frac{i}{\omega}\frac{\partial}{\partial t}\,\mathbf{E}(\mathbf{r},t)\right]\exp\left(-i\mathbf{k}\cdot\mathbf{r}+i\omega t\right)\,. (1dh)

It is not difficult to show (see A), that a(𝐤)\bi{a}(\mathbf{k}) defined by (1dh) is actually time-independent, so that it coincides with the definition (1dg). Then, substituting (1df) into (1da), we obtain

𝐄(𝐫,t)=Re{23k(2π)3/2a(𝐤)𝐞𝐱𝐩[i(𝐤𝐫𝝎t)]}.\displaystyle\mathbf{E}(\mathbf{r},t)=\mathrm{Re}\left\{2\int\frac{\rmd^{3}k}{\left(2\pi\right)^{3/2}}\,\bi{a}(\mathbf{k})\exp\left[i\left(\mathbf{k}\cdot\mathbf{r}-\omega t\right)\right]\right\}. (1di)

All the results above following (1b) apply, mutatis mutandis, to the magnetic field 𝐁(𝐫,t)\mathbf{B}(\mathbf{r},t) and its spatial Fourier transform B~(𝐤,t)\tilde{\bi{B}}(\mathbf{k},t). Therefore, we can write

𝐁(𝐫,t)\displaystyle\mathbf{B}(\mathbf{r},t) =3k(2π)3/2B~(𝐤,t)exp(i𝐤𝐫),\displaystyle=\int\frac{\rmd^{3}k}{\left(2\pi\right)^{3/2}}\,\tilde{\bi{B}}(\mathbf{k},t)\exp\left(i\mathbf{k}\cdot\mathbf{r}\right), (1dj)

where

B~(𝐤,t)=1c[b(𝐤)𝐞𝐱𝐩(i𝝎t)+b(𝐤)𝐞𝐱𝐩(i𝝎t)],\tilde{\bi{B}}(\mathbf{k},t)=\frac{1}{c}\Bigl{[}\bi{b}(\mathbf{k})\exp\left(-i\omega t\right)+\bi{b}^{*}(-\mathbf{k})\exp\left(i\omega t\right)\Bigr{]}, (1dk)

with

b(𝐤)\displaystyle\bi{b}(\mathbf{k}) =c23r(2π)3/2[𝐁(𝐫,t)+iωt𝐁(𝐫,t)]exp(i𝐤𝐫+iωt).\displaystyle=\frac{c}{2}\int\frac{\rmd^{3}r}{\left(2\pi\right)^{3/2}}\left[\mathbf{B}(\mathbf{r},t)+\frac{i}{\omega}\frac{\partial}{\partial t}\,\mathbf{B}(\mathbf{r},t)\right]\exp\left(-i\mathbf{k}\cdot\mathbf{r}+i\omega t\right)\,. (1dl)

Finally, substituting (1dk) into (1dj), we obtain

𝐁(𝐫,t)=Re{2c3k(2π)3/2b(𝐤)𝐞𝐱𝐩[i(𝐤𝐫𝝎t)]}.\displaystyle\mathbf{B}(\mathbf{r},t)=\mathrm{Re}\left\{\frac{2}{c}\int\frac{\rmd^{3}k}{\left(2\pi\right)^{3/2}}\,\bi{b}(\mathbf{k})\exp\left[i\left(\mathbf{k}\cdot\mathbf{r}-\omega t\right)\right]\right\}. (1dm)

The reciprocal-space vector amplitudes a(𝐤)\bi{a}(\mathbf{k}) and b(𝐤)\bi{b}(\mathbf{k}) of the electric and magnetic fields, respectively, are not independent because of (1c) and (1d). Substituting (1di) and (1dm) into (1c) and (1d) we find the two equivalent equations

𝐤^×a(𝐤)b(𝐤)\displaystyle\hat{\mathbf{k}}\times\bi{a}(\mathbf{k})-\bi{b}(\mathbf{k}) =0,\displaystyle=0, (1dna)
a(𝐤)+𝐤^×b(𝐤)\displaystyle\bi{a}(\mathbf{k})+\hat{\mathbf{k}}\times\bi{b}(\mathbf{k}) =0,\displaystyle=0, (1dnb)

where 𝐤^=𝐤/|𝐤|\hat{\mathbf{k}}=\mathbf{k}/|\mathbf{k}|. From (1a) and (1b) it follows that

𝐤a(𝐤)= 0=𝐤b(𝐤),\displaystyle\mathbf{k}\cdot\bi{a}(\mathbf{k})=\,0\,=\mathbf{k}\cdot\bi{b}(\mathbf{k})\,, (1dno)

and (1dna) and (1dnb) imply

|a(𝐤)|2=|b(𝐤)|2.\displaystyle\bigl{|}\bi{a}(\mathbf{k})\bigr{|}^{2}=\bigl{|}\bi{b}(\mathbf{k})\bigr{|}^{2}\,. (1dnp)

Using (1dna-1dnb) and (1dnp), we can calculate the total energy UU of the electromagnetic field:

U\displaystyle U =ε023r[𝐄(𝐫,t)𝐄(𝐫,t)+c2𝐁(𝐫,t)𝐁(𝐫,t)],\displaystyle=\frac{\varepsilon_{0}}{2}\int\rmd^{3}r\left[\mathbf{E}(\mathbf{r},t)\cdot\mathbf{E}(\mathbf{r},t)+c^{2}\mathbf{B}(\mathbf{r},t)\cdot\mathbf{B}(\mathbf{r},t)\right], (1dnq)
=ε03k{|a(𝐤)|2+|b(𝐤)|2}.\displaystyle=\varepsilon_{0}\int\rmd^{3}k\,\Bigl{\{}\left|\bi{a}(\mathbf{k})\right|^{2}+\left|\bi{b}(\mathbf{k})\right|^{2}\Bigr{\}}.

It is often convenient rewriting (1dna) and (1dnb) in a Cartesian coordinate system with the three perpendicular axes parallel to the unit vectors 𝐞^1(𝐤^),𝐞^2(𝐤^)\hat{\mathbf{e}}_{1}(\hat{\mathbf{k}}),\hat{\mathbf{e}}_{2}(\hat{\mathbf{k}}) and 𝐞^3(𝐤^)=𝐤^\hat{\mathbf{e}}_{3}(\hat{\mathbf{k}})=\hat{\mathbf{k}}, such that

𝐞^a(𝐤^)𝐞^b(𝐤^)=δab,and𝐞^a(𝐤^)×𝐞^b(𝐤^)=εabc𝐞^c(𝐤^),\displaystyle\hat{\mathbf{e}}_{a}(\hat{\mathbf{k}})\cdot\hat{\mathbf{e}}_{b}(\hat{\mathbf{k}})=\delta_{ab},\qquad\mathrm{and}\qquad\hat{\mathbf{e}}_{a}(\hat{\mathbf{k}})\times\hat{\mathbf{e}}_{b}(\hat{\mathbf{k}})=\varepsilon_{abc}\,\hat{\mathbf{e}}_{c}(\hat{\mathbf{k}}), (1dnr)

where εabc\varepsilon_{abc} denotes the Levi-Civita symbol with a,b,c{1,2,3}a,b,c\in\{1,2,3\}, and summation over repeated indices (Einstein’s summation convention), is understood. Without loss of generality, we may choose

𝐞^2(𝐤^)=𝐧^×𝐤^|𝐧^×𝐤^|,and𝐞^1(𝐤^)=𝐞^2(𝐤^)×𝐞^3(𝐤^),\displaystyle\hat{\mathbf{e}}_{2}(\hat{\mathbf{k}})=\frac{\hat{\mathbf{n}}\times\hat{\mathbf{k}}}{\bigl{|}\hat{\mathbf{n}}\times\hat{\mathbf{k}}\bigr{|}},\qquad\mathrm{and}\qquad\hat{\mathbf{e}}_{1}(\hat{\mathbf{k}})=\hat{\mathbf{e}}_{2}(\hat{\mathbf{k}})\times\hat{\mathbf{e}}_{3}(\hat{\mathbf{k}}), (1dns)

where 𝐧^\hat{\mathbf{n}} is an arbitrary real unit vector in reciprocal space. From this choice it follows that

𝐞^1(𝐤^)=𝐞^1(𝐤^),𝐞^2(𝐤^)=𝐞^2(𝐤^),and𝐞^3(𝐤^)=𝐞^3(𝐤^).\displaystyle\hat{\mathbf{e}}_{1}(-\hat{\mathbf{k}})=\hat{\mathbf{e}}_{1}(\hat{\mathbf{k}}),\quad\hat{\mathbf{e}}_{2}(-\hat{\mathbf{k}})=-\,\hat{\mathbf{e}}_{2}(\hat{\mathbf{k}}),\quad\mathrm{and}\quad\hat{\mathbf{e}}_{3}(-\hat{\mathbf{k}})=-\,\hat{\mathbf{e}}_{3}(\hat{\mathbf{k}}). (1dnt)

Then, from (1dno) it follows that we can always write

a(𝐤)\displaystyle\bi{a}(\mathbf{k}) =a1(𝐤)𝐞^1(𝐤^)+a2(𝐤)𝐞^2(𝐤^),\displaystyle=a_{1}(\mathbf{k})\,\hat{\mathbf{e}}_{1}(\hat{\mathbf{k}})+a_{2}(\mathbf{k})\,\hat{\mathbf{e}}_{2}(\hat{\mathbf{k}}), (1dnua)
b(𝐤)\displaystyle\bi{b}(\mathbf{k}) =b1(𝐤)𝐞^1(𝐤^)+b2(𝐤)𝐞^2(𝐤^),\displaystyle=b_{1}(\mathbf{k})\,\hat{\mathbf{e}}_{1}(\hat{\mathbf{k}})+b_{2}(\mathbf{k})\,\hat{\mathbf{e}}_{2}(\hat{\mathbf{k}}), (1dnub)

where ac(𝐤)=𝐞^c(𝐤^)a(𝐤)a_{c}(\mathbf{k})=\hat{\mathbf{e}}_{c}(\hat{\mathbf{k}})\cdot\bi{a}(\mathbf{k}) and bc(𝐤)=𝐞^c(𝐤^)b(𝐤)b_{c}(\mathbf{k})=\hat{\mathbf{e}}_{c}(\hat{\mathbf{k}})\cdot\bi{b}(\mathbf{k}), with c=1,2c=1,2. Substituting (1dnua) and (1dnub) into (1dna) and (1dnb), and using (1dnr) we obtain, after a straightforward manipulation,

a1(𝐤)b2(𝐤)\displaystyle a_{1}(\mathbf{k})-b_{2}(\mathbf{k}) =0,\displaystyle=0, (1dnuva)
a2(𝐤)+b1(𝐤)\displaystyle a_{2}(\mathbf{k})+b_{1}(\mathbf{k}) =0.\displaystyle=0. (1dnuvb)

These two equations can be suggestively rewritten in matrix notation as

(a1a2)+M(b1b2)=0,\displaystyle\left(\begin{array}[]{c}a_{1}\\ a_{2}\\ \end{array}\right)+M\left(\begin{array}[]{c}b_{1}\\ b_{2}\\ \end{array}\right)=0, (1dnuvaa)

where

M=(0110).\displaystyle M=\left(\begin{array}[]{cc}0&-1\\ 1&0\\ \end{array}\right). (1dnuvad)

This suggests that by diagonalizing MM it is possible to find a new vector basis, say {ϵ^+(𝐤^),ϵ^(𝐤^)}\{\hat{\bm{\epsilon}}_{+}(\hat{\mathbf{k}}),\hat{\bm{\epsilon}}_{-}(\hat{\mathbf{k}})\}, where

a(𝐤)\displaystyle\bi{a}(\mathbf{k}) =a+(𝐤)ϵ^+(𝐤^)+a(𝐤)ϵ^(𝐤^),\displaystyle=a_{+}(\mathbf{k})\,\hat{\bm{\epsilon}}_{+}(\hat{\mathbf{k}})+a_{-}(\mathbf{k})\,\hat{\bm{\epsilon}}_{-}(\hat{\mathbf{k}}), (1dnuvaea)
b(𝐤)\displaystyle\bi{b}(\mathbf{k}) =b+(𝐤)ϵ^+(𝐤^)+b(𝐤)ϵ^(𝐤^),\displaystyle=b_{+}(\mathbf{k})\,\hat{\bm{\epsilon}}_{+}(\hat{\mathbf{k}})+b_{-}(\mathbf{k})\,\hat{\bm{\epsilon}}_{-}(\hat{\mathbf{k}}), (1dnuvaeb)

and such that the new components

aσ(𝐤)\displaystyle a_{\sigma}(\mathbf{k}) =ϵ^σ(𝐤^)a(𝐤),\displaystyle=\hat{\bm{\epsilon}}_{\sigma}^{*}(\hat{\mathbf{k}})\cdot\bi{a}(\mathbf{k}), (1dnuvaeafa)
bσ(𝐤)\displaystyle b_{\sigma}(\mathbf{k}) =ϵ^σ(𝐤^)b(𝐤),\displaystyle=\hat{\bm{\epsilon}}_{\sigma}^{*}(\hat{\mathbf{k}})\cdot\bi{b}(\mathbf{k}), (1dnuvaeafb)

with σ=±1\sigma=\pm 1, are uncoupled and satisfy the equation

aσ(𝐤)+λσbσ(𝐤)=0,(σ=±1).\displaystyle a_{\sigma}(\mathbf{k})+\lambda_{\sigma}\,b_{\sigma}(\mathbf{k})=0,\qquad(\sigma=\pm 1). (1dnuvaeafag)

Here, λσ=iσ\lambda_{\sigma}=i\,\sigma are the eigenvalues of MM associated with the eigenvectors

ϵ^σ(𝐤^)=𝐞^1(𝐤^)iσ𝐞^2(𝐤^)2,(σ=±1).\displaystyle\hat{\bm{\epsilon}}_{\sigma}(\hat{\mathbf{k}})=\frac{\hat{\mathbf{e}}_{1}(\hat{\mathbf{k}})-i\,\sigma\,\hat{\mathbf{e}}_{2}(\hat{\mathbf{k}})}{\sqrt{2}},\qquad(\sigma=\pm 1). (1dnuvaeafah)

These two orthogonal unit complex vectors form the so-called helicity (or, circular) polarization basis [1], and have the following properties:

𝐤^ϵ^σ(𝐤^)\displaystyle\hat{\mathbf{k}}\cdot\hat{\bm{\epsilon}}_{\sigma}(\hat{\mathbf{k}}) =0,\displaystyle=0, (1dnuvaeafaia)
𝐤^×ϵ^σ(𝐤^)\displaystyle\hat{\mathbf{k}}\times\hat{\bm{\epsilon}}_{\sigma}(\hat{\mathbf{k}}) =iσϵ^σ(𝐤^),\displaystyle=i\,\sigma\,\hat{\bm{\epsilon}}_{\sigma}(\hat{\mathbf{k}}), (1dnuvaeafaib)
ϵ^σ(𝐤^)ϵ^σ(𝐤^)\displaystyle\hat{\bm{\epsilon}}_{\sigma}^{*}(\hat{\mathbf{k}})\cdot\hat{\bm{\epsilon}}_{\sigma^{\prime}}(\hat{\mathbf{k}}) =δσσ,\displaystyle=\delta_{\sigma\sigma^{\prime}}, (1dnuvaeafaic)
ϵ^σ(𝐤^)\displaystyle\hat{\bm{\epsilon}}_{\sigma}^{*}(-\hat{\mathbf{k}}) =ϵ^σ(𝐤^),\displaystyle=\hat{\bm{\epsilon}}_{\sigma}(\hat{\mathbf{k}}), (1dnuvaeafaid)

where σ,σ=±1\sigma,\sigma^{\prime}=\pm 1, and (1dnr-1dnt) and (1dnuvaeafah) have been used. It should be noticed that in the definition of the circular polarization basis (1dnuvaeafah), we use an opposite-sign notation with respect to Eq. (3.22) in [1]. The connection between the two notations is simply: ϵ^+(𝐤^)=𝒆\hat{\bm{\epsilon}}_{+}(\hat{\mathbf{k}})=\bm{e}_{-} and ϵ^(𝐤^)=𝒆+\hat{\bm{\epsilon}}_{-}(\hat{\mathbf{k}})=\bm{e}_{+}.

3 Helicity decomposition of the fields

In this section, we extend the well-known helicity decomposition for monochromatic optical fields in empty space [1], to perfectly general fields. It is worth noting that the more general concept of optical helicity and its connections with the angular momentum of light and with the symmetry properties of electromagnetic fields, have been studied extensively in recent years [13, 14, 15, 16, 17, 18, 19].

3.1 Local and nonlocal helicity decomposition

To begin with, let us rewrite (1di) with respect to the helicity basis {ϵ^+(𝐤),ϵ^(𝐤)}\{\hat{\bm{\epsilon}}_{+}(\mathbf{k}),\hat{\bm{\epsilon}}_{-}(\mathbf{k})\}, as

𝐄(𝐫,t)\displaystyle\mathbf{E}(\mathbf{r},t) =σ=±1Re{23k(2π)3/2ϵ^σ(𝐤^)aσ(𝐤)exp[i(𝐤𝐫ωt)]}\displaystyle=\sum_{\sigma=\pm 1}\mathrm{Re}\left\{2\int\frac{\rmd^{3}k}{\left(2\pi\right)^{3/2}}\,\,\hat{\bm{\epsilon}}_{\sigma}(\hat{\mathbf{k}})\,a_{\sigma}(\mathbf{k})\exp\left[i\left(\mathbf{k}\cdot\mathbf{r}-\omega t\right)\right]\right\} (1dnuvaeafaiaj)
𝐄+(𝐫,t)+𝐄(𝐫,t),\displaystyle\equiv\mathbf{E}_{+}(\mathbf{r},t)+\mathbf{E}_{-}(\mathbf{r},t),

where (1dnuvaea) has been used. Using (1da) and (1db) we can also rewrite

𝐄σ(𝐫,t)\displaystyle\mathbf{E}_{\sigma}(\mathbf{r},t) =3k(2π)3/2E~σ(𝐤,t)exp(i𝐤𝐫),\displaystyle=\int\frac{\rmd^{3}k}{\left(2\pi\right)^{3/2}}\,\tilde{\bi{E}}_{\sigma}(\mathbf{k},t)\exp\left(i\mathbf{k}\cdot\mathbf{r}\right), (1dnuvaeafaiak)

where

E~σ(𝐤,t)=a𝝈(𝐤)𝐞𝐱𝐩(i𝝎t)+a𝝈(𝐤)𝐞𝐱𝐩(i𝝎t),\displaystyle\tilde{\bi{E}}_{\sigma}(\mathbf{k},t)=\bi{a}_{\sigma}(\mathbf{k})\exp(-i\omega t)+\bi{a}_{\sigma}^{*}(-\mathbf{k})\exp(i\omega t), (1dnuvaeafaial)

with

a𝝈(𝐤)=a𝝈(𝐤)ϵ^𝝈(𝐤^)=12[a(𝐤)i𝝈b(𝐤)],\displaystyle\bi{a}_{\sigma}(\mathbf{k})=a_{\sigma}(\mathbf{k})\,\hat{\bm{\epsilon}}_{\sigma}(\hat{\mathbf{k}})=\frac{1}{2}\left[\bi{a}(\mathbf{k})-i\,\sigma\,\bi{b}(\mathbf{k})\right], (1dnuvaeafaiam)

(no summation over repeated σ\sigma).

Equations (1dnuvaeafaiaj-1dnuvaeafaiam) show that the helicity decomposition is local in reciprocal space. Therefore, we expect that the corresponding decomposition in real space will have a nonlocal (convolution) form, as emphasized by the Bialynicki-Birulas [20, 21]. To demonstrate this, we use (1dh) and (1dnuvaeafa) to rewrite 𝐄σ(𝐫,t)\mathbf{E}_{\sigma}(\mathbf{r},t) as

𝐄σ(𝐫,t)=\displaystyle\mathbf{E}_{\sigma}(\mathbf{r},t)= Re{3r[3k(2π)3Θ~σ(𝐤^)exp[i𝐤(𝐫𝐫)]]𝐄(𝐫,t)\displaystyle\mathrm{Re}\left\{\vphantom{\frac{\widetilde{\Theta}_{\sigma}(\hat{\mathbf{k}})}{c\left|\mathbf{k}\right|}}\int\rmd^{3}r^{\prime}\!\left[\int\frac{\rmd^{3}k}{\left(2\pi\right)^{3}}\,\widetilde{\Theta}_{\sigma}(\hat{\mathbf{k}})\exp\left[i\mathbf{k}\cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right]\right]\mathbf{E}(\mathbf{r}^{\prime},t)\right. (1dnuvaeafaian)
+i3r[3k(2π)3Θ~σ(𝐤^)c|𝐤|exp[i𝐤(𝐫𝐫)]]t𝐄(𝐫,t)},\displaystyle\left.+\,i\!\int\rmd^{3}r^{\prime}\left[\int\frac{\rmd^{3}k}{\left(2\pi\right)^{3}}\,\frac{\widetilde{\Theta}_{\sigma}(\hat{\mathbf{k}})}{c\left|\mathbf{k}\right|}\exp\left[i\mathbf{k}\cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right]\right]\frac{\partial}{\partial t}\mathbf{E}(\mathbf{r}^{\prime},t)\right\},

where we have defined the dyad (3×33\times 3 matrix) Θ~σ(𝐤^)\widetilde{\Theta}_{\sigma}(\hat{\mathbf{k}}), as

Θ~σ(𝐤^)ϵ^σ(𝐤^)ϵ^σ(𝐤^),(σ=±1).\displaystyle\widetilde{\Theta}_{\sigma}(\hat{\mathbf{k}})\equiv\hat{\bm{\epsilon}}_{\sigma}(\hat{\mathbf{k}})\hat{\bm{\epsilon}}_{\sigma}^{*}(\hat{\mathbf{k}}),\qquad(\sigma=\pm 1). (1dnuvaeafaiao)

Next, we notice that from (1dnuvaeafaid) it follows that

Θ~σ(𝐤^)=Θ~σ(𝐤^).\displaystyle\widetilde{\Theta}_{\sigma}^{*}(-\hat{\mathbf{k}})=\widetilde{\Theta}_{\sigma}(\hat{\mathbf{k}}). (1dnuvaeafaiap)

This implies that both integrals with respect to 3k\rmd^{3}k in (1dnuvaeafaian), are real-valued so that the second term is identically zero and we can write

𝐄σ(𝐫,t)=3rΘσ(𝐫𝐫)𝐄(𝐫,t),\displaystyle\mathbf{E}_{\sigma}(\mathbf{r},t)=\int\rmd^{3}r^{\prime}\,\Theta_{\sigma}(\mathbf{r}-\mathbf{r}^{\prime})\mathbf{E}(\mathbf{r}^{\prime},t), (1dnuvaeafaiaq)

where we have defined

Θσ(𝐫𝐫)\displaystyle\Theta_{\sigma}(\mathbf{r}-\mathbf{r}^{\prime})\equiv 3k(2π)3Θ~σ(𝐤^)exp[i𝐤(𝐫𝐫)].\displaystyle\int\frac{\rmd^{3}k}{\left(2\pi\right)^{3}}\,\widetilde{\Theta}_{\sigma}(\hat{\mathbf{k}})\exp\left[i\mathbf{k}\cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right]. (1dnuvaeafaiar)

Equation (1dnuvaeafaiaq) gives the sought (nonlocal) helicity decomposition directly in real space. We remark that Θσ(𝐫𝐫)\Theta_{\sigma}(\mathbf{r}-\mathbf{r}^{\prime}) is not a causal propagator, so that (1dnuvaeafaiaq) simply expresses a convolution operation.

3.2 Formal developments

From the definition (1dnuvaeafaiao) it follows that

Θ~σϵ^σϵ^σ=12(𝐞^1𝐞^1+𝐞^2𝐞^2)+iσ2(𝐞^1𝐞^2𝐞^2𝐞^1),\displaystyle\widetilde{\Theta}_{\sigma}\equiv\hat{\bm{\epsilon}}_{\sigma}\hat{\bm{\epsilon}}_{\sigma}^{*}=\frac{1}{2}\left(\hat{\mathbf{e}}_{1}\hat{\mathbf{e}}_{1}+\hat{\mathbf{e}}_{2}\hat{\mathbf{e}}_{2}\right)+\frac{i\sigma}{2}\left(\hat{\mathbf{e}}_{1}\hat{\mathbf{e}}_{2}-\hat{\mathbf{e}}_{2}\hat{\mathbf{e}}_{1}\right), (1dnuvaeafaias)

where the explicit dependence on 𝐤^\hat{\mathbf{k}} has been omitted for clarity. The completeness of the basis {𝐞^1,𝐞^2,𝐞^3}\{\hat{\mathbf{e}}_{1},\hat{\mathbf{e}}_{2},\hat{\mathbf{e}}_{3}\} implies (𝐞^1𝐞^1+𝐞^2𝐞^2)ab=δabkakb/k2\left(\hat{\mathbf{e}}_{1}\hat{\mathbf{e}}_{1}+\hat{\mathbf{e}}_{2}\hat{\mathbf{e}}_{2}\right)_{ab}=\delta_{ab}-k_{a}k_{b}/k^{2}, with a,b=1,2a,b=1,2. The second quantity Θ𝐞^1𝐞^2𝐞^2𝐞^1\Theta\equiv\hat{\mathbf{e}}_{1}\hat{\mathbf{e}}_{2}-\hat{\mathbf{e}}_{2}\hat{\mathbf{e}}_{1} is an antisymmetric second order tensor, which is a function of the components of 𝐤^\hat{\mathbf{k}}. The only antisymmetric second order tensor of this kind that one can build with the components of 𝐤^\hat{\mathbf{k}} has necessarily the form [Θ]ab=f(k)εabckc/k[\Theta]_{ab}=f(k)\varepsilon_{abc}k_{c}/k, where f(k)f(k) is an arbitrary function of k=|𝐤|k=|\mathbf{k}|, which is uniquely fixed by the requirements

Θ𝐞^1=𝐞^2,Θ𝐞^2=𝐞^1,f(k)=1.\displaystyle\Theta\,\hat{\mathbf{e}}_{1}=-\hat{\mathbf{e}}_{2},\qquad\Theta\,\hat{\mathbf{e}}_{2}=\hat{\mathbf{e}}_{1},\qquad\Rightarrow\qquad f(k)=1\,. (1dnuvaeafaiat)

Therefore, we can eventually write

[Θ~σ]ab=12(δabkakbk2)+iσ2εabckck,(a,b,c{1,2,3}).\displaystyle\bigl{[}\widetilde{\Theta}_{\sigma}\bigr{]}_{ab}=\frac{1}{2}\left(\delta_{ab}-\frac{k_{a}k_{b}}{k^{2}}\right)+\frac{i\sigma}{2}\varepsilon_{abc}\frac{k_{c}}{k}\;,\qquad(a,b,c\in\{1,2,3\}). (1dnuvaeafaiau)

This result can also be found via a direct calculation using the model (1dns) for the triad {𝐞^1,𝐞^2,𝐞^3}\{\hat{\mathbf{e}}_{1},\hat{\mathbf{e}}_{2},\hat{\mathbf{e}}_{3}\}. Now, substituting (1dnuvaeafaiau) into (1dnuvaeafaiar) we obtain

[Θσ(𝐫𝐫)]ab\displaystyle\bigl{[}\Theta_{\sigma}(\mathbf{r}-\mathbf{r}^{\prime})\bigr{]}_{ab} =12δTab(𝐫𝐫)\displaystyle=\frac{1}{2}\,\delta_{\mathrm{T}ab}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) (1dnuvaeafaiav)
+iσ23k(2π)3(εabckck)exp[i𝐤(𝐫𝐫)],\displaystyle\quad+\frac{i\sigma}{2}\int\frac{\rmd^{3}k}{(2\pi)^{3}}\,\left(\varepsilon_{abc}\frac{k_{c}}{k}\right)\exp\left[i\mathbf{k}\cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right],

where δTab(𝐫𝐫)\delta_{\mathrm{T}ab}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) denotes the transverse delta-function [22]. The second term in (1dnuvaeafaiav) can be calculated as

3k(2π)3(εabckck)exp[i𝐤(𝐫𝐫)]=1iεabcxc3k(2π)3exp[i𝐤(𝐫𝐫)]k.\displaystyle\qquad\int\frac{\rmd^{3}k}{(2\pi)^{3}}\left(\varepsilon_{abc}\frac{k_{c}}{k}\right)\exp\left[i\mathbf{k}\cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right]=\frac{1}{i}\varepsilon_{abc}\frac{\partial}{\partial x_{c}}\int\frac{\rmd^{3}k}{(2\pi)^{3}}\,\frac{\exp\left[i\mathbf{k}\cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right]}{k}\,. (1dnuvaeafaiaw)

Recalling that

3kexp[i𝐤(𝐫𝐫)]k=4π|𝐫𝐫|2,\displaystyle\int\rmd^{3}k\,\frac{\exp\left[i\mathbf{k}\cdot\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right]}{k}=\frac{4\pi}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}}\,, (1dnuvaeafaiax)

and that the transverse delta-function acts on the transverse field 𝐄(𝐫,t)\mathbf{E}(\mathbf{r}^{\prime},t) as an ordinary delta-function, we can rewrite (1dnuvaeafaiaq) as,

𝐄σ(𝐫,t)=\displaystyle\mathbf{E}_{\sigma}(\mathbf{r},t)= 12𝐄(𝐫,t)σ(2π)2×3r𝐄(𝐫,t)|𝐫𝐫|2\displaystyle\frac{1}{2}\,\mathbf{E}(\mathbf{r},t)-\frac{\sigma}{(2\pi)^{2}}\bm{\nabla}\times\int\rmd^{3}r^{\prime}\,\frac{\mathbf{E}(\mathbf{r}^{\prime},t)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}} (1dnuvaeafaiay)
=12𝐄(𝐫,t)2σ(2π)23r𝐫×𝐄(𝐫𝐫,t)|𝐫|4.\displaystyle=\frac{1}{2}\,\mathbf{E}(\mathbf{r},t)-\frac{2\sigma}{(2\pi)^{2}}\int\rmd^{3}r^{\prime}\,\frac{\mathbf{r}^{\prime}\times\mathbf{E}(\mathbf{r}-\mathbf{r}^{\prime},t)}{\left|\mathbf{r}^{\prime}\right|^{4}}\,.

This equation displays the non-local character of the helicity decomposition for non-monochromatic light. It is worth noticing that (1dnuvaeafaiay) can be also written as 𝐄±(𝐫,t)=P±𝐄(𝐫,t)\mathbf{E}_{\pm}(\mathbf{r},t)=P_{\pm}\mathbf{E}(\mathbf{r},t), where P±P_{\pm} are the projector operators defined by Eq. (8) in [20]. The expression in the second line of (1dnuvaeafaiay) shows that, notwithstanding the singularity at |𝐫|=0|\mathbf{r}^{\prime}|=0, the integral with respect to 3r=r2rsinθθϕ\rmd^{3}r^{\prime}={r^{\prime}}^{2}\rmd r^{\prime}\sin\theta^{\prime}\rmd\theta^{\prime}\rmd\phi^{\prime} is actually finite with the proviso of performing integration over the angular variables (θ,ϕ)(\theta^{\prime},\phi^{\prime}) before integration over the radial one rr^{\prime}, where 𝐫=r𝐫^=r(sinθcosϕ,sinθsinϕ,cosθ)\mathbf{r^{\prime}}=r^{\prime}\hat{\mathbf{r}}^{\prime}=r^{\prime}(\sin\theta^{\prime}\cos\phi^{\prime},\sin\theta^{\prime}\sin\phi^{\prime},\cos\theta^{\prime}) in spherical coordinates. This follows from the Taylor expansion of 𝐄(𝐫𝐫,t)\mathbf{E}(\mathbf{r}-\mathbf{r}^{\prime},t) around |𝐫|=0|\mathbf{r}^{\prime}|=0,

𝐫×𝐄(𝐫𝐫,t)|𝐫|4\displaystyle\frac{\mathbf{r}^{\prime}\times\mathbf{E}(\mathbf{r}-\mathbf{r}^{\prime},t)}{\left|\mathbf{r}^{\prime}\right|^{4}}\approx 1|𝐫|3𝐫^×𝐄(𝐫,t)+O(|𝐫|2),\displaystyle\frac{1}{\left|\mathbf{r}^{\prime}\right|^{3}}\,\hat{\mathbf{r}}^{\prime}\times\mathbf{E}(\mathbf{r},t)+O\left(\left|\mathbf{r}^{\prime}\right|^{-2}\right), (1dnuvaeafaiaz)

and from

3r1|𝐫|3𝐫^×𝐄(𝐫,t)=\displaystyle\int\rmd^{3}r^{\prime}\,\frac{1}{\left|\mathbf{r}^{\prime}\right|^{3}}\,\hat{\mathbf{r}}^{\prime}\times\mathbf{E}(\mathbf{r},t)= 0r1r0πθsinθ02πϕ𝐫^×𝐄(𝐫,t)= 0.\displaystyle\int\limits_{0}^{\infty}\rmd r^{\prime}\,\frac{1}{r^{\prime}}\underbrace{\int\limits_{0}^{\pi}\rmd\theta^{\prime}\sin\theta^{\prime}\int\limits_{0}^{2\pi}\rmd\phi^{\prime}\,\hat{\mathbf{r}}^{\prime}\times\mathbf{E}(\mathbf{r},t)}_{=\,0}. (1dnuvaeafaiba)

The integral of the remaining terms O(|𝐫|2)O\left(\left|\mathbf{r}^{\prime}\right|^{-2}\right) is automatically finite.

3.3 Discussion

Equation (1dnuvaeafaiay) is the straightforward generalization of the correspondent equation for monochromatic light given, for example, in Sec. 3 of [8]. However, differently from the monochromatic case, here we have

×𝐄σ(𝐫,t)=σ3k(2π)3/2kE~σ(𝐤,t)exp(i𝐤𝐫).\displaystyle\bm{\nabla}\times\mathbf{E}_{\sigma}(\mathbf{r},t)=-\,\sigma\int\frac{\rmd^{3}k}{(2\pi)^{3/2}}\,k\,\tilde{\bi{E}}_{\sigma}(\mathbf{k},t)\exp\left(i\mathbf{k}\cdot\mathbf{r}\right). (1dnuvaeafaibb)

By simply rearranging terms, we can suggestively rewrite (1dnuvaeafaibb) as

×𝐄σ(𝐫,t)=\displaystyle\bm{\nabla}\times\mathbf{E}_{\sigma}(\mathbf{r},t)= σk0𝐄σ(𝐫,t)\displaystyle-\sigma\,k_{0}\,\mathbf{E}_{\sigma}(\mathbf{r},t) (1dnuvaeafaibc)
σk03k(2π)3/2(kk0k0)E~σ(𝐤,t)exp(i𝐤𝐫),\displaystyle-\sigma\,k_{0}\int\frac{\rmd^{3}k}{\left(2\pi\right)^{3/2}}\left(\frac{k-k_{0}}{k_{0}}\right)\tilde{\bi{E}}_{\sigma}(\mathbf{k},t)\exp\left(i\mathbf{k}\cdot\mathbf{r}\right),

where k0>0k_{0}>0 is an arbitrarily chosen wavenumber. This discordance with the monochromatic case (see, e.g., Eqs. (3.2) in [8]), is not surprising because the eigenfunctions of the curl operator are simple plane waves,

×[ϵ^σ(𝐤)exp(i𝐤𝐫)]=kσ[ϵ^σ(𝐤)exp(i𝐤𝐫)],\displaystyle\bm{\nabla}\times\left[\hat{\bm{\epsilon}}_{\sigma}(\mathbf{k})\exp\left(i\mathbf{k}\cdot\mathbf{r}\right)\right]=-k\,\sigma\left[\hat{\bm{\epsilon}}_{\sigma}(\mathbf{k})\exp\left(i\mathbf{k}\cdot\mathbf{r}\right)\right], (1dnuvaeafaibd)

with eigenvalues proportional to the wavenumber kk, as extensively studied by Moses [23]. Therefore, only superpositions of monochromatic plane waves can yield eigenfunctions of the curl operator. However, when |E~σ(𝐤,t)|\bigl{|}\tilde{\bi{E}}_{\sigma}(\mathbf{k},t)\bigr{|} is sharply peaked at k=k0k=k_{0}, the second term inside the integral (1dnuvaeafaibc) is O((kk0)/k0)O\left((k-k_{0})/{k_{0}}\right) and it becomes negligible with respect to the first one, so that (1dnuvaeafaibc) reduces to the approximate expression

×𝐄σ(𝐫,t)σk0𝐄σ(𝐫,t),\displaystyle\bm{\nabla}\times\mathbf{E}_{\sigma}(\mathbf{r},t)\approx-\sigma\,k_{0}\,\mathbf{E}_{\sigma}(\mathbf{r},t), (1dnuvaeafaibe)

which becomes exact for monochromatic light of frequency ω0=ck0\omega_{0}=ck_{0}.

Finally, we notice that the connection between the helicity decomposition and the Riemann-Silberstein vectors [24, 25, 26] survives in the non-monochromatic case, as already suggested by (1dnuvaeafaiam) in reciprocal space. In fact, substituting (1dh) and (1dl) into (1dnuvaeafaiam), we obtain

a𝝈(𝐤)=123r(2𝝅)3/2[F𝝈(𝐫,t)+i𝝎tF𝝈(𝐫,t)]𝐞𝐱𝐩[i(𝐤𝐫𝝎t)],\displaystyle\bi{a}_{\sigma}(\mathbf{k})=\frac{1}{2}\int\frac{\rmd^{3}r}{\left(2\pi\right)^{3/2}}\left[\bi{F}_{\sigma}(\mathbf{r},t)+\frac{i}{\omega}\,\frac{\partial}{\partial t}\,\bi{F}_{\sigma}(\mathbf{r},t)\right]\exp\left[-i\left(\mathbf{k}\cdot\mathbf{r}-\omega t\right)\right], (1dnuvaeafaibf)

where we have defined

F𝝈(𝐫,t)=12[𝐄(𝐫,t)i𝝈c𝐁(𝐫,t)].\displaystyle\bi{F}_{\sigma}(\mathbf{r},t)=\frac{1}{2}\Bigl{[}\mathbf{E}(\mathbf{r},t)-i\,\sigma\,c\,\mathbf{B}(\mathbf{r},t)\Bigr{]}. (1dnuvaeafaibg)

The results presented in this section, although interesting, are hardly surprising because we simply performed some linear operations upon the fields, so that there cannot be a profound difference between the monochromatic and the general cases. The only significant change is illustrated by (1dnuvaeafaibc). However, when considering physical quantities represented by bilinear forms of the fields, like the linear momentum, we expect significative differences between the two cases, especially because time-averaging is required to build observable quantities for monochromatic light. This will be the subject of the next section.

4 Helicity representation of the linear momentum

4.1 Spin and orbital linear momentum density in real space

The total linear momentum 𝐏\mathbf{P} of the electromagnetic field is given by

𝐏=ε03r𝐄(𝐫,t)×𝐁(𝐫,t),\displaystyle\mathbf{P}=\varepsilon_{0}\int\rmd^{3}r\,\mathbf{E}(\mathbf{r},t)\times\mathbf{B}(\mathbf{r},t), (1dnuvaeafaibh)

and is connected to the Poynting vector 𝐒\mathbf{S} by the simple relation 𝐒=c2𝐏\mathbf{S}=c^{2}\mathbf{P} [2]. The linear momentum density 𝐩(𝐫,t)\mathbf{p}(\mathbf{r},t) is defined by

𝐩(𝐫,t)=ε0𝐄(𝐫,t)×𝐁(𝐫,t).\displaystyle\mathbf{p}(\mathbf{r},t)=\varepsilon_{0}\,\mathbf{E}(\mathbf{r},t)\times\mathbf{B}(\mathbf{r},t). (1dnuvaeafaibi)

Substituting (1di) and (1dm) into (1dnuvaeafaibh) we obtain,

𝐏\displaystyle\mathbf{P} =2ε0c3k𝐤^|a(𝐤)|2,\displaystyle=\frac{2\,\varepsilon_{0}}{c}\int\rmd^{3}k\,\hat{\mathbf{k}}\left|\bi{a}(\mathbf{k})\right|^{2}, (1dnuvaeafaibj)

where (1dna) has been used, and

|a(𝐤)|2=|a1(𝐤)|2+|a2(𝐤)|2=|a+(𝐤)|2+|a(𝐤)|2.\displaystyle\left|\bi{a}(\mathbf{k})\right|^{2}=\left|a_{1}(\mathbf{k})\right|^{2}+\left|a_{2}(\mathbf{k})\right|^{2}=\left|a_{+}(\mathbf{k})\right|^{2}+\left|a_{-}(\mathbf{k})\right|^{2}. (1dnuvaeafaibk)

This equation shows that the total linear momentum 𝐏\mathbf{P} trivially separates into the sum of the two polarization components, irrespective of the polarization basis one chooses, namely 𝐏=𝐏1+𝐏2=𝐏++𝐏\mathbf{P}=\mathbf{P}_{1}+\mathbf{P}_{2}=\mathbf{P}_{+}+\mathbf{P}_{-}. However, for the linear momentum density 𝐩(𝐫,t)\mathbf{p}(\mathbf{r},t) things are not so simple, because such separation occurs only in the circular polarization basis and when the light is paraxial or monochromatic [3, 1]. An open question is whether this feature will also apply to the linear momentum density of non-paraxial and non-monochromatic light or not.

To answer this question, we begin by writing 𝐩(𝐫,t)\mathbf{p}(\mathbf{r},t) in the equivalent but more symmetric form

𝐩(𝐫,t)=ε02[𝐄(𝐫,t)×𝐁(𝐫,t)𝐁(𝐫,t)×𝐄(𝐫,t)].\displaystyle\mathbf{p}(\mathbf{r},t)=\frac{\varepsilon_{0}}{2}\left[\mathbf{E}(\mathbf{r},t)\times\mathbf{B}(\mathbf{r},t)-\mathbf{B}(\mathbf{r},t)\times\mathbf{E}(\mathbf{r},t)\right]. (1dnuvaeafaibl)

In the realm of classical physics, this is just restyling, because the two terms of the sum in (1dnuvaeafaibl) are actually identical. However, in quantum physics this symmetrization is necessary to obtain the linear momentum density operator in a Hermitian form [2]. Assuming that the fields and their spatial derivatives vanish at infinity, we can use the Helmholtz decomposition theorem [9] and Maxwell’s equations (1c) and (1d) to write the electric and magnetic fields as

𝐄(𝐫,t)\displaystyle\mathbf{E}(\mathbf{r},t) =14πct3r×c𝐁(𝐫,t)|𝐫𝐫|,\displaystyle=-\frac{1}{4\pi c}\,\frac{\partial}{\partial t}\int\rmd^{3}r^{\prime}\,\frac{\bm{\nabla}^{\prime}\times c\,\mathbf{B}(\mathbf{r}^{\prime},t)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}, (1dnuvaeafaibma)
c𝐁(𝐫,t)\displaystyle c\,\mathbf{B}(\mathbf{r},t) =14πct3r×𝐄(𝐫,t)|𝐫𝐫|,\displaystyle=\frac{1}{4\pi c}\,\frac{\partial}{\partial t}\int\rmd^{3}r^{\prime}\,\frac{\bm{\nabla}^{\prime}\times\mathbf{E}(\mathbf{r}^{\prime},t)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}, (1dnuvaeafaibmb)

where here and hereafter \bm{\nabla}^{\prime} denotes the gradient with respect to the primed coordinates 𝐫=(x,y,z)\mathbf{r}^{\prime}=(x^{\prime},y^{\prime},z^{\prime}). These equations are correct, as it can be easily verified substituting (1di) and (1dm) into both sides of (1dnuvaeafaibma) and (1dnuvaeafaibmb), and using (1dna) and (1dnb). Then, substituting (1dnuvaeafaibma) and (1dnuvaeafaibmb) into (1dnuvaeafaibl) we obtain

𝐩(𝐫,t)=\displaystyle\mathbf{p}(\mathbf{r},t)= ε0214πc2{3r1|𝐫𝐫|𝐄(𝐫,t)×[×t𝐄(𝐫,t)]\displaystyle\frac{\varepsilon_{0}}{2}\frac{1}{4\pi c^{2}}\left\{\int\rmd^{3}r^{\prime}\,\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\,\mathbf{E}(\mathbf{r},t)\times\left[\bm{\nabla}^{\prime}\times\frac{\partial}{\partial t}\,\mathbf{E}(\mathbf{r}^{\prime},t)\right]\right. (1dnuvaeafaibmbn)
+c23r1|𝐫𝐫|𝐁(𝐫,t)×[×t𝐁(𝐫,t)]}.\displaystyle\left.+\,c^{2}\int\rmd^{3}r^{\prime}\,\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\,\mathbf{B}(\mathbf{r},t)\times\left[\bm{\nabla}^{\prime}\times\frac{\partial}{\partial t}\,\mathbf{B}(\mathbf{r}^{\prime},t)\right]\right\}.

Now we recall the vector identity

𝐀(𝐫)×[×𝐁(𝐫)]=\displaystyle\mathbf{A}(\mathbf{r})\times\left[\bm{\nabla}^{\prime}\times\mathbf{B}(\mathbf{r}^{\prime})\right]= 𝐀(𝐫)()𝐁(𝐫)+×[𝐀(𝐫)×𝐁(𝐫)]\displaystyle\mathbf{A}(\mathbf{r})\cdot\left(\bm{\nabla}^{\prime}\right)\mathbf{B}(\mathbf{r}^{\prime})+\bm{\nabla}^{\prime}\times\left[\mathbf{A}(\mathbf{r})\times\mathbf{B}(\mathbf{r}^{\prime})\right] (1dnuvaeafaibmbo)
𝐀(𝐫)[𝐁(𝐫)],\displaystyle-\mathbf{A}(\mathbf{r})\left[\bm{\nabla}^{\prime}\cdot\mathbf{B}(\mathbf{r}^{\prime})\right],

where here and hereafter we use the suggestive notation [1],

𝐀()𝐁=a=13Aa(Ba).\displaystyle\mathbf{A}\cdot\left(\bm{\nabla}\right)\mathbf{B}=\sum_{a=1}^{3}A_{a}\left(\bm{\nabla}B_{a}\right). (1dnuvaeafaibmbp)

Using (1dnuvaeafaibmbo) with 𝐁(𝐫)=0\bm{\nabla}^{\prime}\cdot\mathbf{B}(\mathbf{r}^{\prime})=0, we can rewrite (1dnuvaeafaibmbn) as

𝐩(𝐫,t)\displaystyle\mathbf{p}(\mathbf{r},t) =𝐩orb(𝐫,t)+𝐩sp(𝐫,t)\displaystyle=\mathbf{p}_{\mathrm{orb}}(\mathbf{r},t)+\mathbf{p}_{\mathrm{sp}}(\mathbf{r},t) (1dnuvaeafaibmbq)
=12[𝐩orbE(𝐫,t)+𝐩orbB(𝐫,t)]+12[𝐩spE(𝐫,t)+𝐩spB(𝐫,t)],\displaystyle=\frac{1}{2}\Bigl{[}\mathbf{p}_{\mathrm{orb}E}(\mathbf{r},t)+\mathbf{p}_{\mathrm{orb}B}(\mathbf{r},t)\Bigr{]}+\frac{1}{2}\Bigl{[}\mathbf{p}_{\mathrm{sp}E}(\mathbf{r},t)+\mathbf{p}_{\mathrm{sp}B}(\mathbf{r},t)\Bigr{]},

where

𝐩orbE(𝐫,t)\displaystyle\mathbf{p}_{\mathrm{orb}E}(\mathbf{r},t) =ε04πc23r1|𝐫𝐫|𝐄(𝐫,t)()t𝐄(𝐫,t),\displaystyle=\frac{\varepsilon_{0}}{4\pi c^{2}}\int\rmd^{3}r^{\prime}\,\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\,\mathbf{E}(\mathbf{r},t)\cdot\left(\bm{\nabla}^{\prime}\right)\frac{\partial}{\partial t}\,\mathbf{E}(\mathbf{r}^{\prime},t)\,, (1dnuvaeafaibmbra)
𝐩spE(𝐫,t)\displaystyle\mathbf{p}_{\mathrm{sp}E}(\mathbf{r},t) =ε04πc23r1|𝐫𝐫|×[𝐄(𝐫,t)×t𝐄(𝐫,t)].\displaystyle=\frac{\varepsilon_{0}}{4\pi c^{2}}\int\rmd^{3}r^{\prime}\,\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\,\bm{\nabla}^{\prime}\times\left[\mathbf{E}(\mathbf{r},t)\times\frac{\partial}{\partial t}\,\mathbf{E}(\mathbf{r}^{\prime},t)\right]\,. (1dnuvaeafaibmbrb)

The magnetic densities 𝐩orbB(𝐫,t)\mathbf{p}_{\mathrm{orb}B}(\mathbf{r},t) and 𝐩spB(𝐫,t)\mathbf{p}_{\mathrm{sp}B}(\mathbf{r},t) are obtained from (1dnuvaeafaibmbra) and (1dnuvaeafaibmbrb), respectively, replacing 𝐄\mathbf{E} with c𝐁c\mathbf{B} everywhere. We make four remarks.

  1. 1.

    An explicit expression in the reciprocal space for the decomposition 𝐩(𝐫,t)=𝐩orbE(𝐫,t)+𝐩spE(𝐫,t)\mathbf{p}(\mathbf{r},t)=\mathbf{p}_{\mathrm{orb}E}(\mathbf{r},t)+\mathbf{p}_{\mathrm{sp}E}(\mathbf{r},t) has been given by Chun-Fang Li [5, 27], following Darwin’s analogous derivation for the angular momentum of light, which is based on the Fourier transform of the electromagnetic field [28]. Our derivation in real space has the advantage to make clear the similarity with the monochromatic case. Moreover, our results are manifestly gauge-invariant, because the separation of the linear momentum density into its orbital and spin parts is achieved directly in terms of the measurable electric and magnetic fields.

  2. 2.

    The product 𝐄(𝐫,t)×t𝐄(𝐫,t)\mathbf{E}(\mathbf{r},t)\times\frac{\partial}{\partial t}\,\mathbf{E}(\mathbf{r}^{\prime},t) in (1dnuvaeafaibmbrb) reveals the spin nature of this term (cf. with Eq. (5) in [29]).

  3. 3.

    Equations (1dnuvaeafaibmbra) and (1dnuvaeafaibmbrb) display clearly the nonlocal nature of the orbital-spin decomposition, as pointed out in [20, 21, 30]. However, the whole issue of locality is, in my opinion, a bit tricky. I will give a simple example to illustrate how potentially complicated is the situation. In the Coulomb gauge, the electric field in vacuum in absence of free charges and free currents, can be written in terms of the transverse vector potential 𝐀(𝐫,t)\mathbf{A}(\mathbf{r},t) as 𝐄(𝐫,t)=𝐀(𝐫,t)/t\mathbf{E}(\mathbf{r},t)=-\partial\mathbf{A}(\mathbf{r},t)/\partial t [22]. By definition, the electric field is a local physical observable. Since 𝐁=×𝐀\mathbf{B}=\bm{\nabla}\times\mathbf{A}, we can use the Helmholtz theorem to write

    𝐀(𝐫,t)\displaystyle\mathbf{A}(\mathbf{r},t) =14π3r×𝐁(𝐫,t)|𝐫𝐫|,\displaystyle=\frac{1}{4\pi}\int\rmd^{3}r^{\prime}\,\frac{\bm{\nabla}^{\prime}\times\mathbf{B}(\mathbf{r}^{\prime},t)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}, (1dnuvaeafaibmbrbs)

    and this quantity is apparently nonlocal, according to Bialynicki-Birula&Bialynicka-Birula (see the end of Sec. 4 in [30]). However, tacking minus the time derivative of both sides of the (nonlocal) equation (1dnuvaeafaibmbrbs), we obtain the (local) electric field, as given by (1dnuvaeafaibma). Thus, we arrived at an apparent paradox. How to solve this paradox (if there is a paradox at all), is not clear to me.

  4. 4.

    It is worth noting that the pair of equations (1dnuvaeafaibma) and (1dnuvaeafaibmb), gives an additional reason for considering the Riemann-Silberstein vector F𝝈(𝐫,t)=[𝐄(𝐫,t)i𝝈c𝐁(𝐫,t)]/2\bi{F}_{\sigma}(\mathbf{r},t)=[\mathbf{E}(\mathbf{r},t)-i\,\sigma\,c\,\mathbf{B}(\mathbf{r},t)]/2 defined by (1dnuvaeafaibg). Multiplying (1dnuvaeafaibmb) by iσ-i\sigma, with σ=±1\sigma=\pm 1, and summing to (1dnuvaeafaibma), we obtain the eigenvalue equation

    14πct3r1|𝐫𝐫|×F𝝈(𝐫,t)\displaystyle\frac{1}{4\pi c}\,\frac{\partial}{\partial t}\int\rmd^{3}r^{\prime}\,\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\bm{\nabla}^{\prime}\times\bi{F}_{\sigma}(\mathbf{r}^{\prime},t) =iσF𝝈(𝐫,t),\displaystyle=i\,\sigma\,\bi{F}_{\sigma}(\mathbf{r},t)\,, (1dnuvaeafaibmbrbt)

    which shows that F𝝈(𝐫,t)\bi{F}_{\sigma}(\mathbf{r},t) is an eigenvector of the integro-differential operator

    14πct3r1|𝐫𝐫|×,\displaystyle\frac{1}{4\pi c}\,\frac{\partial}{\partial t}\int\rmd^{3}r^{\prime}\,\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\,\bm{\nabla}^{\prime}\times\,, (1dnuvaeafaibmbrbu)

    associated with the eigenvalue λσ=iσ\lambda_{\sigma}=i\sigma defined by (1dnuvaeafag). This operator admits a very simple interpretation: it is the time derivative of the inverse curl operator, here denoted by (×)1(\bm{\nabla}\times)^{-1}. Such meaning comes from the fact that, by definition, F𝝈(𝐫,t)\bi{F}_{\sigma}(\mathbf{r},t) satisfies Maxwell’s equations, namely

    1ctF𝝈(𝐫,t)=i𝝈×F𝝈(𝐫,t).\displaystyle\frac{1}{c}\,\frac{\partial}{\partial t}\bi{F}_{\sigma}(\mathbf{r},t)=i\,\sigma\,\bm{\nabla}\times\bi{F}_{\sigma}(\mathbf{r},t)\,. (1dnuvaeafaibmbrbv)

    Applying on both sides of this equation (×)1(\bm{\nabla}\times)^{-1}, we obtain again (1dnuvaeafaibmbrbt). See also [31] and [32] for other interesting uses of the Riemann-Silberstein vector in optics.

4.2 Helicity decomposition of spin and orbital linear momentum density in reciprocal space

The helicity decomposition of the optical currents 𝐩orb(𝐫,t)\mathbf{p}_{\mathrm{orb}}(\mathbf{r},t) and 𝐩sp(𝐫,t)\mathbf{p}_{\mathrm{sp}}(\mathbf{r},t) is straightforwardly achieved in reciprocal space. Substituting (1di) and (1dm) into (1dnuvaeafaibmbq), we obtain after a little calculation,

𝐩orb(𝐫,t)\displaystyle\!\!\!\!\!\mathbf{p}_{\mathrm{orb}}(\mathbf{r},t) =\displaystyle= 12[𝐩orbE(𝐫,t)+𝐩orbB(𝐫,t)]\displaystyle\frac{1}{2}\Bigl{[}\mathbf{p}_{\mathrm{orb}E}(\mathbf{r},t)+\mathbf{p}_{\mathrm{orb}B}(\mathbf{r},t)\Bigr{]} (1dnuvaeafaibmbrbw)
=\displaystyle= ϵ0c(2π)3σ,σ=±13k3kexp[i(𝐤𝐤)𝐫]𝐤^\displaystyle-\frac{\epsilon_{0}}{c\,(2\pi)^{3}}\sum_{\sigma,\sigma^{\prime}=\pm 1}\int\rmd^{3}k\int\rmd^{3}k^{\prime}\,\exp\left[i\left(\mathbf{k}-\mathbf{k}^{\prime}\right)\cdot\mathbf{r}\right]\hat{\mathbf{k}}^{\prime}
×a𝝈(𝐤){a𝝈(𝐤)(1𝝈𝝈2)𝐞𝐱𝐩[i(𝝎+𝝎)t]\displaystyle\times\bi{a}_{\sigma}(\mathbf{k})\cdot\Biggl{\{}\bi{a}_{\sigma^{\prime}}(-\mathbf{k}^{\prime})\left(\frac{1-\sigma\sigma^{\prime}}{2}\right)\exp\left[-i\left(\omega+\omega^{\prime}\right)t\right]
a𝝈(𝐤)(1+𝝈𝝈2)𝐞𝐱𝐩[i(𝝎𝝎)t]}+𝐜.𝐜.,\displaystyle\phantom{\times\bi{a}_{\sigma}(\mathbf{k})\cdot\Biggl{\{}}-\bi{a}_{\sigma^{\prime}}^{*}(\mathbf{k}^{\prime})\left(\frac{1+\sigma\sigma^{\prime}}{2}\right)\exp\left[-i\left(\omega-\omega^{\prime}\right)t\right]\Biggr{\}}+\mathrm{c.c.}\,,

and

𝐩sp(𝐫,t)\displaystyle\!\!\!\!\!\!\!\!\mathbf{p}_{\mathrm{sp}}(\mathbf{r},t) =\displaystyle= 12[𝐩spE(𝐫,t)+𝐩spB(𝐫,t)]\displaystyle\frac{1}{2}\Bigl{[}\mathbf{p}_{\mathrm{sp}E}(\mathbf{r},t)+\mathbf{p}_{\mathrm{sp}B}(\mathbf{r},t)\Bigr{]} (1dnuvaeafaibmbrbx)
=\displaystyle= ϵ0c(2π)3σ,σ=±13k3kexp[i(𝐤𝐤)𝐫]\displaystyle\frac{\epsilon_{0}}{c\,(2\pi)^{3}}\sum_{\sigma,\sigma^{\prime}=\pm 1}\int\rmd^{3}k\int\rmd^{3}k^{\prime}\,\exp\left[i\left(\mathbf{k}-\mathbf{k}^{\prime}\right)\cdot\mathbf{r}\right]
×𝐤^a𝝈(𝐤){a𝝈(𝐤)(1𝝈𝝈2)𝐞𝐱𝐩[i(𝝎+𝝎)t]\displaystyle\times\hat{\mathbf{k}}^{\prime}\cdot\bi{a}_{\sigma}(\mathbf{k})\Biggl{\{}\bi{a}_{\sigma^{\prime}}(-\mathbf{k}^{\prime})\left(\frac{1-\sigma\sigma^{\prime}}{2}\right)\exp\left[-i\left(\omega+\omega^{\prime}\right)t\right]
a𝝈(𝐤)(1+𝝈𝝈2)𝐞𝐱𝐩[i(𝝎𝝎)t]}+𝐜.𝐜.,\displaystyle\phantom{\times\hat{\mathbf{k}}^{\prime}\cdot\bi{a}_{\sigma}(\mathbf{k})\Biggl{\{}}-\bi{a}_{\sigma^{\prime}}^{*}(\mathbf{k}^{\prime})\left(\frac{1+\sigma\sigma^{\prime}}{2}\right)\exp\left[-i\left(\omega-\omega^{\prime}\right)t\right]\Biggr{\}}+\mathrm{c.c.}\,,

where (1dnuvaeafaiam) and (1dnuvaeafag) have been used, ω=c|𝐤|\omega^{\prime}=c|\mathbf{k}^{\prime}|, and c.c.\mathrm{c.c.} stands for complex conjugate. Notice that the term between curly brackets is the same in both (1dnuvaeafaibmbrbw) and (1dnuvaeafaibmbrbx). Moreover, we have used the Fourier transform relation

3rexp(i𝐤𝐫)|𝐫𝐫|=exp(i𝐤𝐫)4π|𝐤|2.\displaystyle\int\rmd^{3}r^{\prime}\,\frac{\exp\left(i\mathbf{k}^{\prime}\cdot\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\exp\left(i\mathbf{k}^{\prime}\cdot\mathbf{r}\right)\frac{4\pi}{\left|\mathbf{k}^{\prime}\right|^{2}}\,. (1dnuvaeafaibmbrby)

There are several aspects of (1dnuvaeafaibmbrbw) and (1dnuvaeafaibmbrbx) that are worth highlighting.

  1. 1.

    Differently from the monochromatic case the cross terms, which are proportional to 1σσ1-\sigma\sigma^{\prime}, do not cancel because

    1σσ2={0,σ=σ,1,σσ.\displaystyle\frac{1-\sigma\sigma^{\prime}}{2}=\left\{\begin{array}[]{ll}0,&\sigma=\sigma^{\prime},\\[6.0pt] 1,&\sigma\neq\sigma^{\prime}.\end{array}\right. (1dnuvaeafaibmbrcb)

    Vice versa, the diagonal terms are proportional to 1+σσ1+\sigma\sigma^{\prime}, so that

    1+σσ2={1,σ=σ,0,σσ.\displaystyle\frac{1+\sigma\sigma^{\prime}}{2}=\left\{\begin{array}[]{ll}1,&\sigma=\sigma^{\prime},\\[6.0pt] 0,&\sigma\neq\sigma^{\prime}.\end{array}\right. (1dnuvaeafaibmbrce)

    In both expressions of 𝐩orb(𝐫,t)\mathbf{p}_{\mathrm{orb}}(\mathbf{r},t) and 𝐩sp(𝐫,t)\mathbf{p}_{\mathrm{sp}}(\mathbf{r},t), the cross terms always multiply exp[±i(ω+ω)t]\exp\left[\pm i\left(\omega+\omega^{\prime}\right)t\right], while the diagonal terms always multiply exp[±i(ωω)t]\exp\left[\pm i\left(\omega-\omega^{\prime}\right)t\right]. This means that cross terms oscillate faster than the diagonal ones, so that we can neglect them when the light is nearly monochromatic.

  2. 2.

    Using the results from B, we find that for monochromatic light of frequency ω0\omega_{0}, the linear momentum densities 𝐩orb(𝐫)𝐩orb(𝐫,t)¯\mathbf{p}_{\mathrm{orb}}(\mathbf{r})\equiv\overline{\mathbf{p}_{\mathrm{orb}}(\mathbf{r},t)} and 𝐩sp(𝐫)𝐩sp(𝐫,t)¯\mathbf{p}_{\mathrm{sp}}(\mathbf{r})\equiv\overline{\mathbf{p}_{\mathrm{sp}}(\mathbf{r},t)}, averaged over one period T0=2π/ω0T_{0}=2\pi/\omega_{0}, are given by

    𝐩orb(𝐫)\displaystyle\mathbf{p}_{\mathrm{orb}}(\mathbf{r}) =\displaystyle= ϵ0c(2π)3σ=±13k3kexp[i(𝐤𝐤)𝐫]\displaystyle\frac{\epsilon_{0}}{c\,(2\pi)^{3}}\sum_{\sigma=\pm 1}\int\rmd^{3}k\int\rmd^{3}k^{\prime}\,\exp\left[i\left(\mathbf{k}-\mathbf{k}^{\prime}\right)\cdot\mathbf{r}\right] (1dnuvaeafaibmbrcf)
    ×E~σ(𝐤)E~σ(𝐤)(𝐤^+𝐤^),\displaystyle\times\tilde{\bi{E}}_{\sigma}(\mathbf{k})\cdot\tilde{\bi{E}}_{\sigma}^{*}(\mathbf{k}^{\prime})(\hat{\mathbf{k}}+\hat{\mathbf{k}}^{\prime})\,,

    and

    𝐩sp(𝐫)\displaystyle\mathbf{p}_{\mathrm{sp}}(\mathbf{r}) =\displaystyle= ϵ0c(2π)3σ=±13k3kexp[i(𝐤𝐤)𝐫]\displaystyle\frac{\epsilon_{0}}{c\,(2\pi)^{3}}\sum_{\sigma=\pm 1}\int\rmd^{3}k\int\rmd^{3}k^{\prime}\,\exp\left[i\left(\mathbf{k}-\mathbf{k}^{\prime}\right)\cdot\mathbf{r}\right] (1dnuvaeafaibmbrcg)
    ×[E~σ(𝐤)×E~σ(𝐤)]×(𝐤^𝐤^),\displaystyle\times[\tilde{\bi{E}}_{\sigma}(\mathbf{k})\times\tilde{\bi{E}}_{\sigma}^{*}(\mathbf{k}^{\prime})]\times(\hat{\mathbf{k}}-\hat{\mathbf{k}}^{\prime})\,,

    where E~σ(𝐤)=ϵ^σ(𝐤^)[ϵ^σ(𝐤^)E~(𝐤)]\tilde{\bi{E}}_{\sigma}(\mathbf{k})=\hat{\bm{\epsilon}}_{\sigma}(\hat{\mathbf{k}})\left[\hat{\bm{\epsilon}}_{\sigma}^{*}(\hat{\mathbf{k}})\cdot\tilde{\bi{E}}(\mathbf{k})\right], with E~(𝐤)=𝜶(𝐤)δ(kk0)\tilde{\bi{E}}(\mathbf{k})=\bm{\alpha}(\mathbf{k})\delta\left(k-k_{0}\right) given by (1dnuvaeafaibmbrdb). Similar expressions for 𝐩orb(𝐫)\mathbf{p}_{\mathrm{orb}}(\mathbf{r}) and 𝐩sp(𝐫)\mathbf{p}_{\mathrm{sp}}(\mathbf{r}) in two-dimensional (transverse) reciprocal space, were obtained in [6, 7], but neglecting the contribution of evanescent waves. Conversely, the results (1dnuvaeafaibmbrcf) and (1dnuvaeafaibmbrcg) are based on three-dimensional Fourier transform and are exact.

  3. 3.

    The origin of the factors (1σσ)/2=1δσσ(1-\sigma\sigma^{\prime})/2=1-\delta_{\sigma\sigma^{\prime}} and (1+σσ)/2=δσσ(1+\sigma\sigma^{\prime})/2=\delta_{\sigma\sigma^{\prime}}, key to the separation into the sum of the two helicities in the monochromatic case, is the electric-magnetic democracy [1, 8]. It is not difficult to see that the first term “11” in (1±σσ)/2(1\pm\sigma\sigma^{\prime})/2, comes from the electric field only, while the second term “±σσ\pm\sigma\sigma^{\prime}”, is due to the magnetic field, because from (1dnuvaeafag) it follows that,

    bσ(𝐤)bσ(𝐤)=σσaσ(𝐤)aσ(𝐤)andbσ(𝐤)bσ(𝐤)=σσaσ(𝐤)aσ(𝐤).\displaystyle b_{\sigma}(\mathbf{k})b_{\sigma^{\prime}}(\mathbf{k}^{\prime})=-\sigma\sigma^{\prime}a_{\sigma}(\mathbf{k})a_{\sigma^{\prime}}(\mathbf{k}^{\prime})\quad\mathrm{and}\quad b_{\sigma}(\mathbf{k})b_{\sigma^{\prime}}^{*}(\mathbf{k}^{\prime})=\sigma\sigma^{\prime}a_{\sigma}(\mathbf{k})a_{\sigma^{\prime}}^{*}(\mathbf{k}^{\prime})\,. (1dnuvaeafaibmbrch)
  4. 4.

    It is straightforward to show that

    3r𝐩orb(𝐫,t)=2ε0c3k𝐤^{|a+(𝐤)|2+|a(𝐤)|2}=𝐏,\displaystyle\int\rmd^{3}r\,\mathbf{p}_{\mathrm{orb}}(\mathbf{r},t)=\frac{2\,\varepsilon_{0}}{c}\int\rmd^{3}k\,\hat{\mathbf{k}}\left\{\left|\bi{a}_{+}(\mathbf{k})\right|^{2}+\left|\bi{a}_{-}(\mathbf{k})\right|^{2}\right\}=\mathbf{P}\,, (1dnuvaeafaibmbrci)

    and that

    3r𝐩sp(𝐫,t)=0,\displaystyle\int\rmd^{3}r\,\mathbf{p}_{\mathrm{sp}}(\mathbf{r},t)=0\,, (1dnuvaeafaibmbrcj)

    as it should be. The cancellation of the cross terms in (1dnuvaeafaibmbrci) is due to the fact that spatial integration generates the three-dimensional delta function δ(𝐤𝐤)\delta(\mathbf{k}-\mathbf{k}^{\prime}), such that

    δ(𝐤𝐤)a𝝈(𝐤)a𝝈(𝐤)(1𝝈𝝈2)\displaystyle\delta(\mathbf{k}-\mathbf{k}^{\prime})\,\bi{a}_{\sigma}(\mathbf{k})\cdot\bi{a}_{\sigma^{\prime}}(-\mathbf{k}^{\prime})\left(\frac{1-\sigma\sigma^{\prime}}{2}\right) =δ(𝐤𝐤)aσ(𝐤)aσ(𝐤)δσσ(1σσ2)\displaystyle=\delta(\mathbf{k}-\mathbf{k}^{\prime})\,a_{\sigma}(\mathbf{k})a_{\sigma^{\prime}}(-\mathbf{k})\,\delta_{\sigma\sigma^{\prime}}\left(\frac{1-\sigma\sigma^{\prime}}{2}\right) (1dnuvaeafaibmbrck)
    =0,\displaystyle=0\,,

    where (1dnuvaeafaic) and (1dnuvaeafaid) have been used. The spin part in (1dnuvaeafaibmbrcj) trivially cancels because of the transverse nature of the electromagnetic field, namely

    δ(𝐤𝐤)𝐤^a𝝈(𝐤)=0.\displaystyle\delta(\mathbf{k}-\mathbf{k}^{\prime})\,\hat{\mathbf{k}}^{\prime}\cdot\bi{a}_{\sigma}(\mathbf{k})=0\,. (1dnuvaeafaibmbrcl)

4.3 Helicity decomposition of total linear momentum density in reciprocal space

The last step required to complete our investigation is to see whether the linear momentum density 𝐩(𝐫,t)\mathbf{p}(\mathbf{r},t) calculated using either the electric or magnetic field, separates into right-handed and left-handed helicity contributions, or not. A lengthy but straightforward calculation gives

𝐩(𝐫,t)\displaystyle\mathbf{p}(\mathbf{r},t) =\displaystyle= 𝐩orbE(𝐫,t)+𝐩spE(𝐫,t)\displaystyle\mathbf{p}_{\mathrm{orb}E}(\mathbf{r},t)+\mathbf{p}_{\mathrm{sp}E}(\mathbf{r},t) (1dnuvaeafaibmbrcm)
=\displaystyle= iϵ0c(2π)3σ,σ=±13k3kexp[i(𝐤𝐤)𝐫]a𝝈(𝐤)\displaystyle\frac{i\,\epsilon_{0}}{c\,(2\pi)^{3}}\sum_{\sigma,\sigma^{\prime}=\pm 1}\int\rmd^{3}k\int\rmd^{3}k^{\prime}\,\exp\left[i\left(\mathbf{k}-\mathbf{k}^{\prime}\right)\cdot\mathbf{r}\right]\bi{a}_{\sigma}(\mathbf{k})
×{a𝝈(𝐤)(𝝈𝝈2)𝐞𝐱𝐩[i(𝝎+𝝎)t]\displaystyle\times\Biggl{\{}\bi{a}_{\sigma^{\prime}}(-\mathbf{k}^{\prime})\left(\frac{\sigma^{\prime}-\sigma}{2}\right)\exp\left[-i\left(\omega+\omega^{\prime}\right)t\right]
a𝝈(𝐤)(𝝈+𝝈2)𝐞𝐱𝐩[i(𝝎𝝎)t]}+𝐜.𝐜.,\displaystyle\phantom{\times\Biggl{\{}}-\bi{a}_{\sigma^{\prime}}^{*}(\mathbf{k}^{\prime})\left(\frac{\sigma^{\prime}+\sigma}{2}\right)\exp\left[-i\left(\omega-\omega^{\prime}\right)t\right]\Biggr{\}}+\mathrm{c.c.}\,,

where (1dnuvaeafaib) and (1dnuvaeafaid) have been used. A few things are worth noticing.

  1. 1.

    The cross-helicity terms do not cancel. They are proportional to

    σσ2=σ(1δσσ),\displaystyle\frac{\sigma^{\prime}-\sigma}{2}=\sigma^{\prime}\left(1-\delta_{\sigma\sigma^{\prime}}\right)\,, (1dnuvaeafaibmbrcn)

    and multiply the rapidly oscillating factors exp[±i(ω+ω)t]\exp\left[\pm i\left(\omega+\omega^{\prime}\right)t\right], which average out only in the monochromatic limit (see previous discussion). Vice versa, the diagonal terms are proportional to

    σ+σ2=σδσσ,\displaystyle\frac{\sigma^{\prime}+\sigma}{2}=\sigma^{\prime}\,\delta_{\sigma\sigma^{\prime}}\,, (1dnuvaeafaibmbrco)

    and survive in the monochromatic limit because they are slowly varying in time.

  2. 2.

    Replacing a𝝈(𝐤)\bi{a}_{\sigma}(\mathbf{k}) with b𝝈(𝐤)\bi{b}_{\sigma}(\mathbf{k}) and the like in (1dnuvaeafaibmbrcm), we obtain 𝐩orb(𝐫,t)=𝐩orbB(𝐫,t)+𝐩spB(𝐫,t)\mathbf{p}_{\mathrm{orb}}(\mathbf{r},t)=\mathbf{p}_{\mathrm{orb}B}(\mathbf{r},t)+\mathbf{p}_{\mathrm{sp}B}(\mathbf{r},t). Then, using (1dnuvaeafaibmbrch) and noticing that

    ±σσ(σ±σ2)=σ±σ2,\displaystyle\pm\,\sigma\sigma^{\prime}\left(\frac{\sigma^{\prime}\pm\sigma}{2}\right)=\frac{\sigma^{\prime}\pm\sigma}{2}\,, (1dnuvaeafaibmbrcp)

    we find that 𝐩orbB(𝐫,t)+𝐩spB(𝐫,t)=𝐩orbE(𝐫,t)+𝐩spE(𝐫,t)\mathbf{p}_{\mathrm{orb}B}(\mathbf{r},t)+\mathbf{p}_{\mathrm{sp}B}(\mathbf{r},t)=\mathbf{p}_{\mathrm{orb}E}(\mathbf{r},t)+\mathbf{p}_{\mathrm{sp}E}(\mathbf{r},t). This simply means that electric-magnetic democracy is spontaneously accomplished.

  3. 3.

    Spatial integration of (1dnuvaeafaibmbrcm) gives again (1dnuvaeafaibj), as it should be, so the result is trivial. However, it is worth highlighting the mechanism leading to the cancellation of the cross-helicity terms. In this case, differently from (1dnuvaeafaibmbrck), the key step is

    ϵ^σ(𝐤^)×ϵ^σ(𝐤^)=ϵ^σ(𝐤^)×ϵ^σ(𝐤^)=i𝐤^(σ+σ2),\displaystyle\hat{\bm{\epsilon}}_{\sigma}(\hat{\mathbf{k}})\times\hat{\bm{\epsilon}}_{\sigma^{\prime}}(-\hat{\mathbf{k}})=\hat{\bm{\epsilon}}_{\sigma}(\hat{\mathbf{k}})\times\hat{\bm{\epsilon}}_{\sigma^{\prime}}^{*}(\hat{\mathbf{k}})=i\,\hat{\mathbf{k}}\left(\frac{\sigma^{\prime}+\sigma}{2}\right)\,, (1dnuvaeafaibmbrcq)

    so that

    (σ+σ2)(σ±σ2)=δσσ,\displaystyle\left(\frac{\sigma^{\prime}+\sigma}{2}\right)\left(\frac{\sigma^{\prime}\pm\sigma}{2}\right)=\delta_{\sigma\sigma^{\prime}}\,, (1dnuvaeafaibmbrcr)

    and the cross terms disappear.

5 Concluding remarks

The helicity decomposition of spin and orbital optical currents of a monochromatic optical field in empty space, is a well-established fact since more than a decade [3, 1]. The aim of this paper has been to fill a small gap still existing in the current literature, by presenting in a coherent fashion the separation of the linear momentum density of a nonmonochromatic electromagnetic field, into orbital and spin parts, and into positive and negative helicities. The three main results of this work can be summarized as follows.

  1. 1.

    I have shown that the Helmholtz theorem (1dnuvaeafaibma-1dnuvaeafaibmb) permits to obtain the orbital-spin separation of the linear momentum density of a light beam directly in real space (1dnuvaeafaibmbra-1dnuvaeafaibmbrb), without using the Fourier representation. This makes evident both the gauge invariance and the similarity with the monochromatic case.

  2. 2.

    I have clarified the connection between electric-magnetic democracy and rapidly- and slowly-oscillating terms in the helicity decomposition of 𝐩orb(𝐫,t)\mathbf{p}_{\mathrm{orb}}(\mathbf{r},t) and 𝐩sp(𝐫,t)\mathbf{p}_{\mathrm{sp}}(\mathbf{r},t), see (1dnuvaeafaibmbrbw-1dnuvaeafaibmbrbx) and (1dnuvaeafaibmbrcb-1dnuvaeafaibmbrce). For non-monochromatic light, cross-helicity terms do not cancel but becomes negligible for narrow-linewidth light, (e.g., lasers).

  3. 3.

    I have demonstrated that for the total linear momentum density 𝐩(𝐫,t)\mathbf{p}(\mathbf{r},t), the electric-magnetic democracy is automatically fulfilled because 𝐩(𝐫,t)=𝐩orbB(𝐫,t)+𝐩spB(𝐫,t)=𝐩orbE(𝐫,t)+𝐩spE(𝐫,t)\mathbf{p}(\mathbf{r},t)=\mathbf{p}_{\mathrm{orb}B}(\mathbf{r},t)+\mathbf{p}_{\mathrm{sp}B}(\mathbf{r},t)=\mathbf{p}_{\mathrm{orb}E}(\mathbf{r},t)+\mathbf{p}_{\mathrm{sp}E}(\mathbf{r},t). As in point (ii), cross-helicity terms do not cancel but becomes negligible for narrow-linewidth light after time average.

Finally, it is worth noting that all our results about the linear momentum density 𝐩(𝐫,t)\mathbf{p}(\mathbf{r},t) can be straightforwardly extended to the total angular momentum density 𝐣(𝐫,t)=(𝐫𝐫0)×𝐩(𝐫,t)\mathbf{j}(\mathbf{r},t)=\left(\mathbf{r}-\mathbf{r}_{0}\right)\times\mathbf{p}(\mathbf{r},t) of the electromagnetic field with respect to the point 𝐫0\mathbf{r}_{0}.

I acknowledge support from the Deutsche Forschungsgemeinschaft Project No. 429529648- TRR 306 QuCoLiMa (“Quantum Cooperativity of Light and Matter”).

Appendix A Time-independent vector field amplitude in reciprocal space

We show that the vector field amplitude a(𝐤)\bi{a}(\mathbf{k}) defined by (1dh), namely

a(𝐤)=123r(2𝝅)3/2[𝐄(𝐫,t)+i𝝎t𝐄(𝐫,t)]𝐞𝐱𝐩(i𝐤𝐫+i𝝎t),\displaystyle\bi{a}(\mathbf{k})=\frac{1}{2}\int\frac{\rmd^{3}r}{\left(2\pi\right)^{3/2}}\left[\mathbf{E}(\mathbf{r},t)+\frac{i}{\omega}\frac{\partial}{\partial t}\,\mathbf{E}(\mathbf{r},t)\right]\exp\left(-i\mathbf{k}\cdot\mathbf{r}+i\omega t\right)\,, (1dnuvaeafaibmbrcs)

is time-independent, that is

ta(𝐤)=0.\displaystyle\frac{\partial}{\partial t}\,\bi{a}(\mathbf{k})=0\,. (1dnuvaeafaibmbrct)

This follows directly from (1de), because

ta(𝐤)\displaystyle\frac{\partial}{\partial t}\,\bi{a}(\mathbf{k}) =\displaystyle= exp(iωt)23r(2π)3/2exp(i𝐤𝐫){[t𝐄(𝐫,t)+iω2t2𝐄(𝐫,t)]\displaystyle\frac{\exp\left(i\omega t\right)}{2}\int\frac{\rmd^{3}r}{\left(2\pi\right)^{3/2}}\exp\left(-i\mathbf{k}\cdot\mathbf{r}\right)\Biggl{\{}\left[\cancel{\frac{\partial}{\partial t}\mathbf{E}(\mathbf{r},t)}+\frac{i}{\omega}\frac{\partial^{2}}{\partial t^{2}}\,\mathbf{E}(\mathbf{r},t)\right] (1dnuvaeafaibmbrcu)
+iω[𝐄(𝐫,t)+iωt𝐄(𝐫,t)]}\displaystyle+i\omega\left[\mathbf{E}(\mathbf{r},t)+\cancel{\frac{i}{\omega}\frac{\partial}{\partial t}\,\mathbf{E}(\mathbf{r},t)}\right]\Biggr{\}}
=\displaystyle= iexp(iωt)2ω{2t23r(2π)3/2exp(i𝐤𝐫)𝐄(𝐫,t)\displaystyle\frac{i\exp\left(i\omega t\right)}{2\,\omega}\Biggl{\{}\frac{\partial^{2}}{\partial t^{2}}\int\frac{\rmd^{3}r}{\left(2\pi\right)^{3/2}}\exp\left(-i\mathbf{k}\cdot\mathbf{r}\right)\mathbf{E}(\mathbf{r},t)
+ω23r(2π)3/2exp(i𝐤𝐫)𝐄(𝐫,t)}\displaystyle+\omega^{2}\int\frac{\rmd^{3}r}{\left(2\pi\right)^{3/2}}\exp\left(-i\mathbf{k}\cdot\mathbf{r}\right)\mathbf{E}(\mathbf{r},t)\Biggr{\}}
=\displaystyle= iexp(iωt)2ω[2t2E~(𝐤,t)+ω2E~(𝐤,t)]\displaystyle\frac{i\exp\left(i\omega t\right)}{2\,\omega}\left[\frac{\partial^{2}}{\partial t^{2}}\,\tilde{\bi{E}}(\mathbf{k},t)+\omega^{2}\tilde{\bi{E}}(\mathbf{k},t)\right]
=\displaystyle= 0.\displaystyle 0\,.

Appendix B Monochromatic light

The electric field of monochromatic light with frequency ω0>0\omega_{0}>0 and wavenumber k0=ω0/ck_{0}=\omega_{0}/c, can be written as

𝐄(𝐫,t)=E(𝐫)𝐞𝐱𝐩(i𝝎0t)+E(𝐫)𝐞𝐱𝐩(i𝝎0t),\displaystyle\mathbf{E}(\mathbf{r},t)=\bi{E}(\mathbf{r})\exp\left(-i\omega_{0}t\right)+\bi{E}^{*}(\mathbf{r})\exp\left(i\omega_{0}t\right), (1dnuvaeafaibmbrcv)

where E(𝐫)\bi{E}(\mathbf{r}) fulfills the Helmholtz equation:

(2+k02)E(𝐫)=0.\displaystyle\left(\nabla^{2}+k_{0}^{2}\right)\bi{E}(\mathbf{r})=0. (1dnuvaeafaibmbrcw)

Allowing for generalized functions, we can write E(𝐫)\bi{E}(\mathbf{r}) in terms of its spatial Fourier transform E~(𝐤)\tilde{\bi{E}}(\mathbf{k}), as follows:

E(𝐫)=3k(2𝝅)3/2E~(𝐤)𝐞𝐱𝐩(i𝐤𝐫).\displaystyle\bi{E}(\mathbf{r})=\int\frac{\rmd^{3}k}{\left(2\pi\right)^{3/2}}\,\tilde{\bi{E}}(\mathbf{k})\exp\left(i\mathbf{k}\cdot\mathbf{r}\right). (1dnuvaeafaibmbrcx)

Substituting (1dnuvaeafaibmbrcx) into (1dnuvaeafaibmbrcw), we find that E~(𝐤)\tilde{\bi{E}}(\mathbf{k}) satisfies the equation

E~(𝐤)(k2k02)=0,(k|𝐤|),\displaystyle\tilde{\bi{E}}(\mathbf{k})\left(k^{2}-k_{0}^{2}\right)=0,\qquad(k\equiv|\mathbf{k}|)\,, (1dnuvaeafaibmbrcy)

and it may therefore be written in the form [33],

E~(𝐤)=E(𝐤)𝜹(k2k02),\displaystyle\tilde{\bi{E}}(\mathbf{k})=\bi{E}(\mathbf{k})\,\delta\left(k^{2}-k_{0}^{2}\right)\,, (1dnuvaeafaibmbrcz)

where E(𝐤)\bi{E}(\mathbf{k}) is a smooth vector field in reciprocal space. Since

δ(k2k02)=12k0δ(kk0),\displaystyle\delta\left(k^{2}-k_{0}^{2}\right)=\frac{1}{2k_{0}}\,\delta\left(k-k_{0}\right)\,, (1dnuvaeafaibmbrda)

for k,k00k,k_{0}\geq 0 [34], we can rewrite (1dnuvaeafaibmbrcz) as

E~(𝐤)\displaystyle\tilde{\bi{E}}(\mathbf{k}) =E(𝐤)2k0δ(kk0)\displaystyle=\frac{\bi{E}(\mathbf{k})}{2k_{0}}\,\delta\left(k-k_{0}\right) (1dnuvaeafaibmbrdb)
𝜶(𝐤)δ(kk0).\displaystyle\equiv\bm{\alpha}(\mathbf{k})\,\delta\left(k-k_{0}\right)\,.

Substituting (1dnuvaeafaibmbrcx) with (1dnuvaeafaibmbrdb) into (1dnuvaeafaibmbrcv), we obtain

𝐄(𝐫,t)=1(2π)3/23k𝜶(𝐤)δ(kk0)exp[i(𝐤𝐫ωt)]+c.c.,\displaystyle\mathbf{E}(\mathbf{r},t)=\frac{1}{\left(2\pi\right)^{3/2}}\int\rmd^{3}k\,\bm{\alpha}(\mathbf{k})\,\delta\left(k-k_{0}\right)\exp\left[i\left(\mathbf{k}\cdot\mathbf{r}-\omega t\right)\right]+\mathrm{c.c.}\,, (1dnuvaeafaibmbrdc)

where c.c.\mathrm{c.c.} stands for complex conjugate. Comparing (1di) with (1dnuvaeafaibmbrdc) we find

a(𝐤)=𝜶(𝐤)𝜹(kk0).\displaystyle\bi{a}(\mathbf{k})=\bm{\alpha}(\mathbf{k})\,\delta\left(k-k_{0}\right)\,. (1dnuvaeafaibmbrdd)

Similarly, the magnetic field associated with the monochromatic electric field (1dnuvaeafaibmbrcv), can be written as

𝐁(𝐫,t)\displaystyle\mathbf{B}(\mathbf{r},t) =B(𝐫)𝐞𝐱𝐩(i𝝎0t)+B(𝐫)𝐞𝐱𝐩(i𝝎0t)\displaystyle=\bi{B}(\mathbf{r})\exp\left(-i\omega_{0}t\right)+\bi{B}^{*}(\mathbf{r})\exp\left(i\omega_{0}t\right) (1dnuvaeafaibmbrde)
=1(2π)3/23k1cb(𝐤)𝐞𝐱𝐩[i(𝐤𝐫𝝎t)]+𝐜.𝐜.,\displaystyle=\frac{1}{\left(2\pi\right)^{3/2}}\int\rmd^{3}k\,\frac{1}{c}\,\bi{b}(\mathbf{k})\exp\left[i\left(\mathbf{k}\cdot\mathbf{r}-\omega t\right)\right]+\mathrm{c.c.}\,,

where

b(𝐤)=𝜷(𝐤)𝜹(kk0),\displaystyle\bi{b}(\mathbf{k})=\bm{\beta}(\mathbf{k})\,\delta\left(k-k_{0}\right)\,, (1dnuvaeafaibmbrdf)

with

𝜷(𝐤)=𝐤^×𝜶(𝐤).\displaystyle\bm{\beta}(\mathbf{k})=\hat{\mathbf{k}}\times\bm{\alpha}(\mathbf{k})\,. (1dnuvaeafaibmbrdg)

Equations (1dnuvaeafaibmbrdd) and (1dnuvaeafaibmbrdf) show that monochromatic waves are physically unrealistic because they would carry an infinite amount of energy. Indeed, substituting (1dnuvaeafaibmbrdd) and (1dnuvaeafaibmbrdf) into (1dnq), we would obtain

U=ε03k[δ(kk0)]2{|𝜶(𝐤)|2+|𝜷(𝐤)|2},\displaystyle U=\varepsilon_{0}\,\int\rmd^{3}k\,\left[\delta\left(k-k_{0}\right)\right]^{2}\Bigl{\{}\left|\bm{\alpha}(\mathbf{k})\right|^{2}+\left|\bm{\beta}(\mathbf{k})\right|^{2}\Bigr{\}}\,, (1dnuvaeafaibmbrdh)

which is ill-defined because of the square of the delta function. To make sense of this expression and the like, we follow a standard regularization procedure from quantum field theory (see, e.g., §64\S 64 of [35]), to write

[δ(kk0)]2\displaystyle\left[\delta\left(k-k_{0}\right)\right]^{2} =cδ(kk0)δ(ωω0)\displaystyle=c\,\delta\left(k-k_{0}\right)\delta\left(\omega-\omega_{0}\right) (1dnuvaeafaibmbrdi)
cδ(kk0)T/2T/2t2πexp[i(ωω0)t]\displaystyle\to c\,\delta\left(k-k_{0}\right)\,\int\limits_{-T/2}^{T/2}\frac{\rmd t}{2\pi}\,\exp\left[i\left(\omega-\omega_{0}\right)t\right]
=δ(kk0)cT2π,\displaystyle=\delta\left(k-k_{0}\right)\frac{c\,T}{2\pi}\,,

where T>0T>0. Then, we define the total energy per unit of time (power) PP of the light field, as

P\displaystyle P =limTUT\displaystyle=\lim_{T\to\infty}\,\frac{U}{T} (1dnuvaeafaibmbrdj)
=ε0c2π3kδ(kk0){|𝜶(𝐤)|2+|𝜷(𝐤)|2},\displaystyle=\frac{\varepsilon_{0}\,c}{2\pi}\,\int\rmd^{3}k\,\delta\left(k-k_{0}\right)\Bigl{\{}\left|\bm{\alpha}(\mathbf{k})\right|^{2}+\left|\bm{\beta}(\mathbf{k})\right|^{2}\Bigr{\}},

which is a finite quantity even in the limit TT\to\infty, which is understood to be taken at the end of the calculation.

References

References

  • [1] Berry M V 2009 Journal of Optics A: Pure and Applied Optics 11 094001 URL https://doi.org/10.1088/1464-4258/11/9/094001
  • [2] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) ISBN 9780521417112 URL https://doi.org/10.1017/CBO9781139644105
  • [3] Bekshaev A and Soskin M 2007 Optics Communications 271 332–348 ISSN 0030-4018 URL https://www.sciencedirect.com/science/article/pii/S0030401806011618
  • [4] Wolf E 1959 Proceedings of the Physical Society 74 269–280 URL https://doi.org/10.1088/0370-1328/74/3/305
  • [5] Li C F 2009 Phys. Rev. A 80(6) 063814 URL https://link.aps.org/doi/10.1103/PhysRevA.80.063814
  • [6] Bliokh K Y, Alonso M A, Ostrovskaya E A and Aiello A 2010 Phys. Rev. A 82(6) 063825 URL https://link.aps.org/doi/10.1103/PhysRevA.82.063825
  • [7] Bekshaev A, Bliokh K Y and Soskin M 2011 Journal of Optics 13 053001 URL https://doi.org/10.1088/2040-8978/13/5/053001
  • [8] Aiello A and Berry M V 2015 Journal of Optics 17 062001 URL https://doi.org/10.1088/2040-8978/17/6/062001
  • [9] Panofsky W K H and Phillips M 2005 Classical electricity and magnetism 2nd ed (Mineola, New York: Dover Publications, Inc.) ISBN 978-0-486-43924-2
  • [10] Claude Cohen-Tannoudji, Jacques Dupont-Roc and Gilbert Grynberg 2004 Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley-VCH Verlag GmbH & Co. KGaA) ISBN 978-0-471-18433-1
  • [11] Zangwill A 2012 Modern Electrodynamics (Cambridge: Cambridge University Press) ISBN 9780521896979 URL https://doi.org/10.1017/CBO9781139034777
  • [12] Jackson J D 2001 Classical Electrodynamics 3rd ed (New York: John Wiley & Sons, Inc.)
  • [13] Barnett S M 2010 Journal of Modern Optics 57 1339–1343 pMID: 24808629 URL https://doi.org/10.1080/09500341003654427
  • [14] Bliokh K Y and Nori F 2011 Phys. Rev. A 83(2) 021803 URL https://link.aps.org/doi/10.1103/PhysRevA.83.021803
  • [15] Coles M M and Andrews D L 2012 Phys. Rev. A 85(6) 063810 URL https://link.aps.org/doi/10.1103/PhysRevA.85.063810
  • [16] Cameron R P, Barnett S M and Yao A M 2012 New Journal of Physics 14 053050 URL https://doi.org/10.1088/1367-2630/14/5/053050
  • [17] Fernandez-Corbaton I, Zambrana-Puyalto X and Molina-Terriza G 2012 Phys. Rev. A 86(4) 042103 URL https://link.aps.org/doi/10.1103/PhysRevA.86.042103
  • [18] Barnett S M, Allen L, Cameron R P, Gilson C R, Padgett M J, Speirits F C and Yao A M 2016 Journal of Optics 18 064004 URL https://doi.org/10.1088/2040-8978/18/6/064004
  • [19] Forbes K A 2022 Phys. Rev. A 105(2) 023524 URL https://link.aps.org/doi/10.1103/PhysRevA.105.023524
  • [20] Bialynicki-Birula I and Bialynicka-Birula Z 2009 Phys. Rev. A 79(3) 032112 URL https://link.aps.org/doi/10.1103/PhysRevA.79.032112
  • [21] Bialynicki-Birula I 2014 New Journal of Physics 16 113056 URL https://doi.org/10.1088/1367-2630/16/11/113056
  • [22] Loudon R 2000 The Quantum Theory of Light (Oxford: Oxford University Press) ISBN 0 19 850176 5
  • [23] Moses H E 1971 SIAM Journal on Applied Mathematics 21 114–144 ISSN 00361399 URL http://www.jstor.org/stable/2099848
  • [24] Bialynicki-Birula I and Bialynicka-Birula Z 2003 Phys. Rev. A 67(6) 062114 URL https://link.aps.org/doi/10.1103/PhysRevA.67.062114
  • [25] Kaiser G 2004 Journal of Optics A: Pure and Applied Optics 6 S243–S245 URL https://doi.org/10.1088/1464-4258/6/5/018
  • [26] Bialynicki-Birula I and Bialynicka-Birula Z 2013 Journal of Physics A: Mathematical and Theoretical 46 053001 URL https://doi.org/10.1088/1751-8113/46/5/053001
  • [27] Li C F 2016 Phys. Rev. A 93(4) 049902 URL https://link.aps.org/doi/10.1103/PhysRevA.93.049902
  • [28] Darwin C G 1932 Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 136 36–52 URL https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1932.0065
  • [29] Uehara M 1988 American Journal of Physics 56 942–943 URL https://doi.org/10.1119/1.15366
  • [30] Bialynicki-Birula I and Bialynicka-Birula Z 2011 Journal of Optics 13 064014 URL https://doi.org/10.1088/2040-8978/13/6/064014
  • [31] Tamburini F and Vicino D 2008 Phys. Rev. A 78(5) 052116 URL https://link.aps.org/doi/10.1103/PhysRevA.78.052116
  • [32] Barnett S M 2014 New Journal of Physics 16 093008 URL https://doi.org/10.1088/1367-2630/16/9/093008
  • [33] Bogoliubov N N and Shirkov D V 1980 Introduction to the theory of Quantized Fields 3rd ed (New York: John Wiley & Sons, Inc.)
  • [34] Hanson G W and Yakovlev A B 2002 Operator Theory for Electromagnetics (New York: Springer Science++Business Media) ISBN 978-1-4419-2934-1
  • [35] Berestetskii V B, Lifshitz E M and Pitaevskii L P 2013 Quantum Electrodynamics 2nd ed (Course of Theoretical Physics vol 4) (Oxford, UK: Butterworth-Heinemann) ISBN 978-0-7506-3371-0