This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

One-loop Correction to the AdS/BCFT Partition Function in the Three Dimensional Pure Gravity

Yu-ki Suzuki [email protected] Center for Gravitational Physics, Yukawa Institute for Theoretical Physics,
Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto University, Kyoto 606-8502, Japan
Abstract

We calculate the tree-level partition function of an Euclidean BTZ black hole in the presence of an end of the world branes (ETW branes) and the one-loop partition function of an Euclidean thermal AdS3AdS_{3} in the presence of an ETW brane. At the tree level, our results match with the previous ones for static BTZ black holes. Interestingly, at the one-loop level, our results contain novel terms, which reflect the existence of an ETW brane. The ETW brane has a consistent profile for a static thermal AdS and in this case we showed that the spectrum obtained from the one-loop partition function takes a physically sensible form.

I Introduction

The one-loop partition function in gravity was calculated almost half a century ago in the famous work (tHooft:1974toh, ). In the context of the AdS/CFT correspondence (Maldacena:1997re, ), there have been several works toward deriving the full quantum gravity partition function of pure gravity at a finite temperature (Giombi:2008vd, ; Maloney:2007ud, ; Yin:2007gv, ). At the one-loop level, they deduced the result from the CFT path integral calculation (Maloney:2007ud, ), and later this was directly proved using the heat kernel method (Giombi:2008vd, ), summarized into the formula:

Zgravity=m=21|1qm|2,Z_{gravity}=\prod^{\infty}_{m=2}\frac{1}{\left|1-q^{m}\right|^{2}}, (1)

where qq describes the moduli of the boundary torus.

Our goal is to extend this calculation to the AdS/BCFT case. The AdS/BCFT correspondence is an extension of the AdS/CFT correspondence to the case where a CFT lives on a manifold with boundaries (called boundary conformal field theory, or BCFT) (Karch:2000gx, ; Takayanagi:2011zk, ; Fujita:2011fp, ; Nozaki:2012qd, ). The basic idea of the AdS/BCFT is to extend the boundary of the manifold where the CFT is defined, to a codimension one surface in the AdS, called the end of the world brane (ETW brane). The gravity in the spacetime surrounded by this ETW brane, provides the gravity dual of the BCFT. In this paper, first, we will calculate the tree-level partition function of a rotating Euclidean BTZ black hole in the presence of ETW branes with an arbitrary tension, which is summarized as the result:

ZBTZtree=exp[πR+8G+18G(log(1+Tπ1Tπ)log(1+T01T0))].Z_{BTZ-tree}=\exp\left[\frac{\pi R_{+}}{8G}+\frac{1}{8G}\left(\log\left(\frac{1+T_{\pi}}{1-T_{\pi}}\right)-\log\left(\frac{1+T_{0}}{1-T_{0}}\right)\right)\right]. (2)

In the static (i.e. non-rotating) case, this matches with the previous calculation (Fujita:2011fp, ). Secondly, we will calculate the one-loop partition function of a thermal AdS3 in the presence of a tensionless ETW brane with the Neumann boundary condition (for earlier discussions of the boundary conditions in gravity refer to (Moss:1996ip, ; vanNieuwenhuizen:2005kg, )). Our final result is given by

Zgravity=m=21|1qm|l=01ql+2q¯l+11ql+1q¯l+21ql+2q¯l1qlq¯l+2.Z_{gravity}=\prod_{m=2}^{\infty}\frac{1}{\left|1-q^{m}\right|}\cdot\prod_{l=0}^{\infty}\frac{\sqrt{1-q^{l+2}\overline{q}^{l+1}}\sqrt{1-q^{l+1}\overline{q}^{l+2}}}{\sqrt{1-q^{l+2}\overline{q}^{l}}\sqrt{1-q^{l}\overline{q}^{l+2}}}. (3)

There are two contributions: the first term corresponds to a square root of the original result, which comes from the bulk modes, and the second term is the new effect due to the ETW brane. The second term represents the contributions from a massive ghost vector field, due to the BRST quantization of gravity, and the massless spin-2 field. However, as we consider later, if we set q=q¯q=\overline{q} to have a consistent configuration of ETW brane, then we have a physically sensible partition function with non-negative coefficients in the qq expansion like (1).

One might wonder if we can impose the Dirichlet boundary condition on the ETW brane (Miao:2018qkc, ). At the tree level, both the Neumann and the Dirichlet boundary condition lead to an identical partition function for a tensionless ETW brane. On the other hand, at the one-loop level, the resulting partition function for the Dirichlet boundary condition is different from that for the Neumann one. However, as we will see later, we find that the Dirichlet boundary condition is in tension with the BRST invariance.

Finally, we will discuss summing over the modular transformation. The boundary CFT lives on the conformal boundary of a half of the solid torus (Kraus:2006wn, ) in our AdS/BCFT setup. We expect that it still admits modularity even if we insert branes because from the boundary torus perspective it still admits modular invariance and then we consider how to locate the position of the brane in the bulk. To derive the full partition function, we must sum over the SL(2,)SL(2,\mathbb{Z}) transformation of the thermal AdS contribution (Dijkgraaf:2000fq, ; Maloney:2007ud, ).

This paper is organized as follows. In section 2 we directly calculate the partition function of a rotating BTZ black hole with ETW branes. There are already earlier works on this calculation in the no boundary case (Banados:1992gq, ; Carlip:1994gc, ; Gibbons:1976ue, ; Maldacena:1998bw, ). In section 3, we review the heat kernel method for calculating a 1-loop partition function (David:2009xg, ; Gopakumar:2011qs, ; Mann:1996ze, ; Vassilevich:2003xt, ) and then we apply this to the computation of a 1-loop partition function of the scalar, the vector, and the spin-2 fields using a method of images in the AdS/BCFT. In section 4, we discuss the physical interpretation of the partition function and the consistency of the boundary conditions. In section 5 we discuss our conclusions and present some future directions. In appendix A we give the detailed calculation of derivatives of chordal distance uu. In appendix B, we present the calculation of a partition function in the Dirichlet case.

II A tree-Level Partition Function of a BTZ black hole with ETW branes

II.1 BTZ with tensionless ETW branes

Let us consider an Euclidean rotating BTZ black hole in three dimension (Banados:1992gq, ). The metric is given by

ds2\displaystyle ds^{2} =\displaystyle= (r2R+2)(r2+R2)r2dt2+r2(r2R+2)(r2+R2)dr2\displaystyle\frac{(r^{2}-R_{+}^{2})(r^{2}+R_{-}^{2})}{r^{2}}dt^{2}+\frac{r^{2}}{(r^{2}-R_{+}^{2})(r^{2}+R_{-}^{2})}dr^{2} (4)
+\displaystyle+ r2(dϕR+Rr2dt)2.\displaystyle r^{2}(d\phi-\frac{R_{+}R_{-}}{r^{2}}dt)^{2}.

Here RR_{-} is a real valued parameter and R+R_{+} is the horizon radius. The absence of a conical singularity constrains the periodicity of time and rotational angle:

(t,ϕ)(t+β,ϕ+θ),\left(t,\phi\right)\sim\left(t+\beta,\phi+\theta\right), (5)

where β=2πR+R+2+R2\beta=\frac{2\pi R_{+}}{R_{+}^{2}+R_{-}^{2}} and θ=2πRR+2+R2\theta=\frac{2\pi R_{-}}{R_{+}^{2}+R_{-}^{2}}. If we define new coordinate as ϕϕθβt\phi^{\prime}\equiv\phi-\frac{\theta}{\beta}t , the periodicity can be recast as (t,ϕ)(t+β,ϕ)\left(t,\phi^{\prime}\right)\sim\left(t+\beta,\phi^{\prime}\right) (Carlip:1994gc, ). We also rewrite the metric in terms of this coordinate as

gab=(A0B0C0D0E),g_{ab}=\left(\begin{array}[]{ccc}A&0&B\\ 0&C&0\\ D&0&E\end{array}\right), (6)

where

A\displaystyle A =\displaystyle= (r2R+2)(r2+R2)r2+r2(RR+R+Rr2)2,\displaystyle\frac{(r^{2}-R_{+}^{2})(r^{2}+R_{-}^{2})}{r^{2}}+r^{2}\left(\frac{R_{-}}{R_{+}}-\frac{R_{+}R_{-}}{r^{2}}\right)^{2},
B\displaystyle B =\displaystyle= RR+r2R+R,\displaystyle\frac{R_{-}}{R_{+}}r^{2}-R_{+}R_{-},
C\displaystyle C =\displaystyle= r2(r2R+2)(r2+R2),\displaystyle\frac{r^{2}}{(r^{2}-R_{+}^{2})(r^{2}+R_{-}^{2})},
D\displaystyle D =\displaystyle= RR+r2R+R,\displaystyle\frac{R_{-}}{R_{+}}r^{2}-R_{+}R_{-},
E\displaystyle E =\displaystyle= r2.\displaystyle r^{2}. (7)

Note that det(gij)=r2.(g_{ij})=r^{2}. To identify the location of an ETW brane we use the map to the Poincare coordinate:

η=(r2R+2r2+R2)12cos(R+2+R2R+t+Rϕ)exp(R+ϕ),x=(r2R+2r2+R2)12sin(R+2+R2R+t+Rϕ)exp(R+ϕ),z=(R+2+R2r2+R2)12exp(R+ϕ),\begin{array}[]{cc}\eta=\left(\frac{r^{2}-R_{+}^{2}}{r^{2}+R_{-}^{2}}\right)^{\frac{1}{2}}\cos\left(\frac{R_{+}^{2}+R_{-}^{2}}{R_{+}}t+R_{-}\phi^{\prime}\right)\exp\left(R_{+}\phi^{\prime}\right),\\ x=\left(\frac{r^{2}-R_{+}^{2}}{r^{2}+R_{-}^{2}}\right)^{\frac{1}{2}}\sin\left(\frac{R_{+}^{2}+R_{-}^{2}}{R_{+}}t+R_{-}\phi^{\prime}\right)\exp\left(R_{+}\phi^{\prime}\right),\\ z=\left(\frac{R_{+}^{2}+R_{-}^{2}}{r^{2}+R_{-}^{2}}\right)^{\frac{1}{2}}\exp\left(R_{+}\phi^{\prime}\right),\end{array} (8)

which leads to the familiar metric

ds2=dz2+dx2+dη2z2.ds^{2}=\frac{dz^{2}+dx^{2}+d\eta^{2}}{z^{2}}. (9)

In this coordinate the identification (t,ϕ)(t+β,ϕ)(t,\phi^{\prime})\sim(t+\beta,\phi^{\prime}) is trivial, but the identification (t,ϕ)(t,ϕ+2π)(t,\phi^{\prime})\sim(t,\phi^{\prime}+2\pi) is non-trivial. If we define the following complexified coordinate w=η+ixw=\eta+ix, then the identification is translated into (w,z)(we,2π(R++iR)ze2πR+)(w,z)\sim(we{}^{2\pi(R_{+}+iR_{-})},ze^{2\pi R_{+}}). From this perspective, we can take the fundamental region as 1|w|2+z2e2πR+1\leq\left|w\right|^{2}+z^{2}\leq e^{2\pi R_{+}} and the horizon r=R+r=R_{+} is mapped to w=0w=0 and 1ze2πR+1\leq z\leq e{}^{2\pi R_{+}}.

Let us insert the ETW branes in this setup. The position of ETW branes with a tension TT is determined by the Neumann boundary condition in the AdS/BCFT:

KabKhab=Thab.K_{ab}-Kh_{ab}=-Th_{ab}. (10)

In the Poincare coordinate, the solution to the boundary condition (10) is solved as follows (Akal:2020wfl, ):

(zα)2+(xp)2+(ηq)2=β2,(z-\alpha)^{2}+(x-p)^{2}+(\eta-q)^{2}=\beta^{2}, (11)

where the tension is given by T=αβT=\frac{\alpha}{\beta}. Here ETW branes, where ϕ\phi^{\prime} is constant, are just a sphere of radius 1 for ϕ=0\phi^{\prime}=0 and eπR+e^{\pi R_{+}} for ϕ=π\phi^{\prime}=\pi. Next, we calculate the action

S\displaystyle S =\displaystyle= 116πGNg(R+2)d3x18πGQh(KT)d2x\displaystyle-\frac{1}{16\pi G}\int_{N}\sqrt{g}(R+2)d^{3}x-\frac{1}{8\pi G}\int_{Q}\sqrt{h}(K-T)d^{2}x (12)
\displaystyle- 18πGMhKd2x+k8πGSct,\displaystyle\frac{1}{8\pi G}\int_{M}\sqrt{h}Kd^{2}x+\frac{k}{8\pi G}S_{ct},

where NN is the three-dimensional bulk region, QQ is the ETW brane and MM is the conformal boundary placed at r=Rr=R, which we later take RR\rightarrow\infty. Sct=MhS_{ct}=\int_{M}\sqrt{h} is a counter-term constructed only from induced geometric quantities (Balasubramanian:1999re, ).

Consider computing the induced metric and the extrinsic curvature at r=Rr=R surface. After some algebras, we get

hab=(A0B000B0C),h_{ab}=\left(\begin{array}[]{ccc}A^{\prime}&0&B^{\prime}\\ 0&0&0\\ B&0&C^{\prime}\end{array}\right), (13)

where

A\displaystyle A^{\prime} =\displaystyle= =(r2R+2)(r2+R2)R2+R2(RR+R+RR2)2,\displaystyle=\frac{(r^{2}-R_{+}^{2})(r^{2}+R_{-}^{2})}{R^{2}}+R^{2}\left(\frac{R_{-}}{R_{+}}-\frac{R_{+}R_{-}}{R^{2}}\right)^{2},
B\displaystyle B^{\prime} =\displaystyle= RR+R2R+R,\displaystyle\frac{R_{-}}{R_{+}}R^{2}-R_{+}R_{-},
C\displaystyle C^{\prime} =\displaystyle= R2,\displaystyle R^{2}, (14)

and the extrinsic curvature reads

Kab=(R+2+R2R+2RR+RR+1)(R2R+2)(r2+R2).K_{ab}=\left(\begin{array}[]{cc}\frac{R_{+}^{2}+R_{-}^{2}}{R_{+}^{2}}&\frac{R_{-}}{R_{+}}\\ \frac{R_{-}}{R_{+}}&1\end{array}\right)\sqrt{\left(R^{2}-R_{+}^{2}\right)\left(r^{2}+R_{-}^{2}\right)}. (15)

From this we find

det(hab)=(R2R+2)(R2+R2),K=2R2R+2+R2(R2R+2)(R2+R2).\begin{array}[]{cc}\det(h_{ab})=(R^{2}-R_{+}^{2})(R^{2}+R_{-}^{2}),\\ K=\frac{2R^{2}-R_{+}^{2}+R_{-}^{2}}{\sqrt{(R^{2}-R_{+}^{2})(R^{2}+R_{-}^{2})}}.\end{array} (16)

Now, the Einstein-Hilbert action is just the volume integral:

116πGR+R𝑑r0β𝑑t0π𝑑ϕ(4r)=4πβ16πG(R2R+22).-\frac{1}{16\pi G}\int_{R_{+}}^{R}dr\int_{0}^{\beta}dt\int_{0}^{\pi}d\phi^{\prime}(-4r)=\frac{4\pi\beta}{16\pi G}\left(\frac{R^{2}-R_{+}^{2}}{2}\right). (17)

We can also evaluate the GHY term at r=Rr=R:

18πG0βdt2πβ(1tβ)2πβ(1tβ)+πdϕ[(R2R+2)(R2+R2)\displaystyle-\frac{1}{8\pi G}\int_{0}^{\beta}\!dt\int_{\frac{2\pi}{\beta}\left(1-\frac{t}{\beta}\right)}^{\frac{2\pi}{\beta}\left(1-\frac{t}{\beta}\right)+\pi}\!d\phi^{\prime}\left[\sqrt{(R^{2}-R_{+}^{2})(R^{2}+R_{-}^{2})}\right.
(2R2R+2+R2(R2R+2)(R2+R2))]=β8G(2R2R+2+R2).\displaystyle\left.\left(\frac{2R^{2}-R_{+}^{2}+R_{-}^{2}}{(R^{2}-R_{+}^{2})(R^{2}+R_{-}^{2})}\!\right)\!\right]\!=\!-\frac{\beta}{8G}(2R^{2}-R_{+}^{2}+R_{-}^{2}).

Then, we determine the counterterm. That should be constructed from a geometric quantity of the boundary surface. Here as the most simple one (k=1)k=1) we take

Sct=Md2xh=βπ(R2R+2)(R2+R2).S_{ct}=\int_{M}d^{2}x\sqrt{h}=\beta\pi\sqrt{(R^{2}-R_{+}^{2})(R^{2}+R_{-}^{2})}. (19)

We combine the above results altogether and we get:

S=β8G(R2+R2(R2R+2)(R2+R2)).S=-\frac{\beta}{8G}\left(R^{2}+R_{-}^{2}-\sqrt{(R^{2}-R_{+}^{2})(R^{2}+R_{-}^{2})}\right). (20)

If we take RR\rightarrow\infty limit this becomes

Sβ(R+2+R2)16G=πR+8G=π2β4G(β2+θ2).S\simeq-\frac{\beta\left(R_{+}^{2}+R_{-}^{2}\right)}{16G}=-\frac{\pi R_{+}}{8G}=-\frac{\pi^{2}\beta}{4G(\beta^{2}+\theta^{2})}. (21)

This is what we expected because we chose the position of the ETW branes so that the volume of the bulk space becomes a half of the original volume. In the full AdS case, this is done in (Maldacena:1998bw, ), which is just twice of the action in our calculation.

II.2 BTZ with ETW branes for general values of tension TT

Next, we consider the general case with non-vanishing TT. It is natural to assume the rotational symmetry i.e. setting p=q=0p=q=0 in (11). Therefore, we will consider the following equation

((R+2+R2r2+R2)12eR+ϕα)2+(r2R+2r2+R2)e2R+ϕ=β2.\left(\!\left(\!\frac{R_{+}^{2}+R_{-}^{2}}{r^{2}+R_{-}^{2}}\right)^{\frac{1}{2}}e^{R_{+}\phi^{\prime}}-\alpha\right)^{2}\!+\!\left(\!\frac{r^{2}-R_{+}^{2}}{r^{2}+R_{-}^{2}}\!\right)e^{2R_{+}\phi^{\prime}}=\beta^{2}. (22)

Since the brane is anchored at ϕ=0\phi^{\prime}=0 and π\pi, if we take rr\rightarrow\infty, then the brane equation becomes

α2+1=β2\displaystyle\alpha^{2}+1=\beta^{2} (ϕ=0),\displaystyle\ \ (\phi^{\prime}=0),
α2+exp(2πR+)=β2\displaystyle\alpha^{2}+\exp(2\pi R_{+})=\beta^{2} (ϕ=π).\displaystyle\ \ (\phi^{\prime}=\pi). (23)

We note that TT has range 1<T<1-1<T<1 from the above constraint. Using this we can determine the brane configuration: in the case where the brane is anchored at ϕ=0\phi^{\prime}=0, the equation becomes

ϕ\displaystyle\phi^{\prime} =\displaystyle= 1R+log(T1T2R+2+R2r2+R2\displaystyle\frac{1}{R_{+}}\log\left(\frac{T}{\sqrt{1-T^{2}}}\sqrt{\frac{R_{+}^{2}+R_{-}^{2}}{r^{2}+R_{-}^{2}}}\right. (24)
+\displaystyle+ T21T2(R+2+R2r2+R2)+1)\displaystyle\left.\sqrt{\frac{T^{2}}{1-T^{2}}(\frac{R_{+}^{2}+R_{-}^{2}}{r^{2}+R_{-}^{2}})+1}\right)

and in the case where the brane is anchored at ϕ=π\phi^{\prime}=\pi, we have

ϕ\displaystyle\phi^{\prime} =\displaystyle= 1R+log{eπR+(T1T2R+2+R2r2+R2\displaystyle\frac{1}{R_{+}}\log\left\{e^{\pi R_{+}}\left(\frac{T}{\sqrt{1-T^{2}}}\sqrt{\frac{R_{+}^{2}+R_{-}^{2}}{r^{2}+R_{-}^{2}}}\right.\right. (25)
+\displaystyle+ T21T2(R+2+R2r2+R2)+1)}.\displaystyle\left.\left.\sqrt{\frac{T^{2}}{1-T^{2}}(\frac{R_{+}^{2}+R_{-}^{2}}{r^{2}+R_{-}^{2}})+1}\right)\right\}.

Then the Einstein-Hilbert action can be calculated directly:

SEH\displaystyle S_{EH} =\displaystyle= 116πGR+Rreg𝑑r0β𝑑t𝑑ϕ(4r)\displaystyle-\frac{1}{16\pi G}\int_{R_{+}}^{R_{reg}}dr\int_{0}^{\beta}dt\int d\phi^{\prime}(-4r) (26)
=\displaystyle= β8G(Rreg2R+2).\displaystyle\frac{\beta}{8G}(R_{reg}^{2}-R_{+}^{2}).

This is the same result as T=0T=0 case.

Next, we evaluate the brane action. In three dimensions, the extrinsic curvature satisfies K=2TK=2T. For the brane anchored at ϕ=0\phi^{\prime}=0, the induced metric reads:

hrr\displaystyle h_{rr} =\displaystyle= r4T2(R+2+R2)R+2(r2+R2)2(T2R+2+R2r2(T21))\displaystyle\frac{r^{4}T^{2}(R_{+}^{2}+R_{-}^{2})}{R_{+}^{2}(r^{2}+R_{-}^{2})^{2}(T^{2}R_{+}^{2}+R_{-}^{2}-r^{2}(T^{2}-1))} (27)
+\displaystyle+ r2(r2R+2)(r2+R2),\displaystyle\frac{r^{2}}{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}+R_{-}^{2}\right)},
htr\displaystyle h_{tr}\! =\displaystyle= RTr(R+2r2)R+2+R2R+2(r2+R2)r2(1T2)+R+2T2+R2,\displaystyle\!\!\frac{R_{-}Tr(R_{+}^{2}-r^{2})\sqrt{R_{+}^{2}+R_{-}^{2}}}{\!R_{+}^{2}\!(r^{2}+R_{-}^{2})\!\sqrt{\!r^{2}(1-T^{2})\!+R_{+}^{2}T^{2}+R_{-}^{2}}}, (28)
htt\displaystyle h_{tt} =\displaystyle= (r2R+2)(r2+R2)r2+(RR+R+Rr2)2r2.\displaystyle\!\frac{\left(r^{2}-R_{+}^{2}\right)\left(r^{2}+R_{-}^{2}\right)}{r^{2}}\!+\!\left(\frac{R_{-}}{R_{+}}-\frac{R_{+}R_{-}}{r^{2}}\right)^{2}\!r^{2}.

From this we find

det(hab)=r2(R+2+R2)R+2(r2(1T2)+R+2T2+R2).\det(h_{ab})=\frac{r^{2}(R_{+}^{2}+R_{-}^{2})}{R_{+}^{2}(r^{2}(1-T^{2})+R_{+}^{2}T^{2}+R_{-}^{2})}. (30)

On the other hand, in the case where the brane is anchored at ϕ=π\phi^{\prime}=\pi , we can repeat the same thing and the result is the same as above. The brane action can be written as

Sbrane\displaystyle S_{brane}
=\displaystyle= T8πGR+Rreg𝑑r0β𝑑tr2(R+2+R2)R+2(r2(1T2)+R+2T2+R2).\displaystyle\frac{T}{8\pi G}\int_{R_{+}}^{R_{reg}}dr\int_{0}^{\beta}dt\sqrt{\frac{r^{2}(R_{+}^{2}+R_{-}^{2})}{R_{+}^{2}(r^{2}(1-T^{2})+R_{+}^{2}T^{2}+R_{-}^{2})}}.

However, the brane contribution for ϕ=0\phi^{\prime}=0 and ϕ=π\phi^{\prime}=\pi is canceled as we note in the calculation of the Einstein-Hilbert action; the brane is curved in the opposite direction with respect to the bulk space. For the other terms on the conformal boundary, we have just the same term as in T=0T=0 case because in rr\rightarrow\infty limit ϕ\phi^{\prime} goes to 0 and π\pi.

Combining them, we obtain

S\displaystyle S =\displaystyle= β8G(Rreg2R+2)\displaystyle\frac{\beta}{8G}(R_{reg}^{2}-R_{+}^{2}) (32)
\displaystyle- β8G(2Rreg2R+2+R2)\displaystyle\frac{\beta}{8G}(2R_{reg}^{2}-R_{+}^{2}+R_{-}^{2})
+\displaystyle+ kβ8G(Rreg2R+2)(Rreg2+R2)\displaystyle\frac{k\beta}{8G}\sqrt{(R_{reg}^{2}-R_{+}^{2})(R_{reg}^{2}+R_{-}^{2})}
\displaystyle\rightarrow β(R+2+R2)16G,\displaystyle-\frac{\beta\left(R_{+}^{2}+R_{-}^{2}\right)}{16G},

where we take RregR_{reg}\rightarrow\infty.

If we assume the tensions of the two branes take different values: T0T_{0} and TπT_{\pi}, where the branes are anchored at ϕ=0,π\phi^{\prime}=0,\pi. For the Einstein-Hilbert action part the integral becomes

SEH\displaystyle S_{EH} =\displaystyle= 116GR+Rreg𝑑r0β𝑑t(4r)\displaystyle-\frac{1}{16G}\int_{R_{+}}^{R_{reg}}dr\int_{0}^{\beta}dt(-4r)
log[(Tπ1Tπ2R+2+R2r2+R2+Tπ21Tπ2(R+2+R2r2+R2)+1)(T01T02R+2+R2r2+R2+T021T02(R+2+R2r2+R2)+1)].\displaystyle\cdot\log\!\left[\!\frac{\!\left(\!\frac{T_{\pi}}{\sqrt{1-T_{\pi}^{2}}}\!\sqrt{\frac{R_{+}^{2}+R_{-}^{2}}{r^{2}+R_{-}^{2}}}\!+\!\sqrt{\frac{T_{\pi}^{2}}{1-T_{\pi}^{2}}(\frac{R_{+}^{2}+R_{-}^{2}}{r^{2}+R_{-}^{2}})\!+\!1}\right)}{\left(\!\frac{T_{0}}{\sqrt{1-T_{0}^{2}}}\!\sqrt{\frac{R_{+}^{2}+R_{-}^{2}}{r^{2}+R_{-}^{2}}}\!+\!\sqrt{\frac{T_{0}^{2}}{1-T_{0}^{2}}(\frac{R_{+}^{2}+R_{-}^{2}}{r^{2}+R_{-}^{2}})\!+\!1}\right)\!}\!\right].

After performing the integral, we finally obtain

S\displaystyle S =\displaystyle= β(R+2+R2)16G\displaystyle-\frac{\beta\left(R_{+}^{2}+R_{-}^{2}\right)}{16G}
\displaystyle- β(R+2+R2)16πGR+(log(1+Tπ1Tπ)log(1+T01T0)),\displaystyle\frac{\beta\left(R_{+}^{2}+R_{-}^{2}\right)}{16\pi GR_{+}}\!\left(\log\left(\frac{1+T_{\pi}}{1-T_{\pi}}\right)\!-\!\log\left(\frac{1+T_{0}}{1-T_{0}}\!\right)\!\right),

where we omit the divergent term, which is proportional to RregR_{reg}. For the non-rotating BTZ, this result matches with that in (Fujita:2011fp, ).

III A One-loop partition function in the thermal AdS with a tensionless ETW brane

In this section, we will use the explicit form of the heat kernel presented in (Giombi:2008vd, ), though our presentation will be brief. Please refer to the original paper if necessary.

III.1 A review of the heat kernel method

The heat kernel method is a convenient way of calculating a one-loop partition function. We follow the analysis in (David:2009xg, ; Giombi:2008vd, ; Gopakumar:2011qs, ; Mann:1996ze, ; Vassilevich:2003xt, ). Let us consider calculating the partition function of a free scalar ϕ\phi:

Z=DϕeS(ϕ).Z=\int D\phi\,e^{-S(\phi)}. (35)

The action of the scalar field can be rewritten as

S(ϕ)=Md3xgϕΔϕ,S(\phi)=\int_{M}d^{3}x\,\sqrt{g}\phi\Delta\phi, (36)

where we omit indices of tensorial structure. Since we are considering a compact space, Δ\Delta has a discrete set of eigenvalues λn\lambda_{n}. The one-loop partition function is expressed as follows:

S(1)=12logdet(Δ)=12𝑛logλn.S^{(1)}=-\frac{1}{2}\log\det(\Delta)=-\frac{1}{2}\underset{n}{\sum}\log\lambda_{n}. (37)

If we consider a non-compact space, the spectrum becomes continuous and the one-loop partition function is divergent, which is proportional to the volume. This divergence can be absorbed by the renormalization of the Newton constant.

The heat kernel is defined as

K(t,x,y)=𝑛eλntψn(x)ψn(y),K(t,x,y)=\underset{n}{\sum}e^{-\lambda_{n}t}\psi_{n}(x)\psi_{n}(y), (38)

which we usually call a propagator. We can normalize the eigenfunctions as

𝑛ψn(x)ψn(y)=δ3(xy),Md3x𝑛gψn(x)ψm(x)=δnm.\begin{array}[]{cc}\underset{n}{\sum}\psi_{n}(x)\psi_{n}(y)=\delta^{3}(x-y),\\ \int_{M}d^{3}x\underset{n}{\sum}\sqrt{g}\psi_{n}(x)\psi_{m}(x)=\delta_{nm}.\end{array} (39)

The trace of the heat kernel is given by

Md3x𝑛gK(t,x,x)=𝑛eλnt.\int_{M}d^{3}x\underset{n}{\sum}\sqrt{g}K(t,x,x)=\underset{n}{\sum}e^{-\lambda_{n}t}. (40)

Using this we can compute the 1-loop partition function as an integral over tt:

S(1)=12𝑛logλn=12+0dttMd3x𝑛gK(t,x,x).S^{(1)}=-\frac{1}{2}\underset{n}{\sum}\log\lambda_{n}=\frac{1}{2}\int_{+0}^{\infty}\frac{dt}{t}\int_{M}d^{3}x\underset{n}{\sum}\sqrt{g}K(t,x,x). (41)

We can show the above equation by differentiating with respect to λn\lambda_{n}. Note that it is an identity up to an infinite constant. The point is that KK satisfies the heat conduction equation

(t+Δx)K(t,x,y)=0,\left(\partial_{t}+\Delta_{x}\right)K(t,x,y)=0, (42)

with a boundary condition at t=0t=0

K(0,x,y)=δ(x,y).K(0,x,y)=\delta(x,y). (43)

III.2 A One-loop partition function in thermal AdS with ETW brane

In this section, we apply the calculation in (Giombi:2008vd, ) to our ETW brane setup. Now consider Poincare AdS3AdS_{3} whose metric is given by

ds2=dy2+dzdz¯y2.ds^{2}=\frac{dy^{2}+dzd\overline{z}}{y^{2}}. (44)

Here an ETW brane is placed at (z)=0\Re(z)=0 and the bulk region is defined as (z)>0\Re(z)>0. We note that the ETW brane is connected in the bulk. Since the AdS space is maximally isometric, the geodesic distance r(x,x)r(x,x^{\prime}) depends only on the chordal distance u(x,x)u(x,x^{\prime}):

r(x,x)=arccosh(1+u(x,x)),\begin{array}[]{cc}r(x,x^{\prime})=\mbox{arccosh}\left(1+u(x,x^{\prime})\right),\\ \\ \end{array} (45)

where

u(x,x)=(yy)2+|zz|22yy.u(x,x^{\prime})=\frac{\left(y-y^{\prime}\right)^{2}+\left|z-z^{\prime}\right|^{2}}{2yy^{\prime}}. (46)

A thermal AdS can be obtained from an AdS space using the following identification

(y,z)(|q|1y,q1z),\left(y,z\right)\sim\left(\left|q\right|^{-1}y,q^{-1}z\right), (47)

where q=e2πiτq=e^{2\pi i\tau} and τ=τ1+iτ2\tau=\tau_{1}+i\tau_{2}. In the non-zero τ1\tau_{1} case, the boundary of the BCFT wraps around the torus for many times and in this case the region on which BCFT lives, is not clear because the region is not surrounded by the boundaries. To cure this problem later we will restrict to the special case q=q¯q=\overline{q}. Now we consider applying the method of images to the heat kernel method. The tensionless ETW brane is inserted at (z)=0\Re(z)=0. Then, if we consider a mirror position, zz and z¯\overline{z} are mapped to z¯-\overline{z} and z-z, respectively. Then, one-loop partition function becomes

S(1)\displaystyle S^{(1)} =\displaystyle= 12+0dttthermalAdSd3x𝑛g(K/(t,x,x)\displaystyle\frac{1}{2}\int_{+0}^{\infty}\frac{dt}{t}\int_{thermal\,AdS}d^{3}x\underset{n}{\sum}\sqrt{g}\left(K^{\mathbb{\mathbb{H}}/\mathbb{Z}}(t,x,x)\right. (48)
+\displaystyle+ K/(t,xmirror,x)).\displaystyle\left.K^{\mathbb{\mathbb{H}}/\mathbb{Z}}(t,x^{mirror},x)\right).

In the tensionless case the boundary condition for the metric is given by Kab=0K_{ab}=0. We note that we treat this condition as an off-shell boundary condition. This means that we must impose the following boundary condition for the perturbation of the metric:

xhij=0.\partial_{x}h_{ij}=0. (49)

Since the heat kernel on a thermal AdS can be obtained using the method of images from that of an AdS space, we get

S(1)\displaystyle S^{(1)} =\displaystyle= 12+0dttthermalAdSd3x𝑛g(K(t,x,γnx)\displaystyle\frac{1}{2}\int_{+0}^{\infty}\frac{dt}{t}\int_{thermal\,AdS}d^{3}x\underset{n}{\sum}\sqrt{g}\left(K^{\mathbb{\mathbb{H}}}(t,x,\gamma^{n}x)\right. (50)
+\displaystyle+ K(t,xmirror,γnx)).\displaystyle\left.K^{\mathbb{\mathbb{H}}}(t,x^{mirror},\gamma^{n}x)\right).

For a later convenience we will use a different coordinate:

y=ρsinθ,z=ρcosθeiϕ,y=\rho\sin\theta,\ \ \ z=\rho\cos\theta e^{i\phi}, (51)

where 1ρe2πτ21\leq\rho\leq e^{2\pi\tau_{2}} , 0θπ20\leq\theta\leq\frac{\pi}{2} and π2ϕπ2-\frac{\pi}{2}\leq\phi\leq\frac{\pi}{2} . In terms of this coordinate the geodesic distances are given by

r(x,γnx)=arccosh(coshβsin2θcosαtan2θ),r(xmirror,γnx)=arccosh(coshβsin2θ+cos(2ϕα)tan2θ),\begin{array}[]{cc}r(x,\gamma^{n}x)=\mbox{arccosh}\left(\frac{\cosh\,\beta}{\sin^{2}\theta}-\frac{\cos\,\alpha}{\tan^{2}\theta}\right),\\ r(x^{mirror},\gamma^{n}x)=\mbox{arccosh}\left(\frac{\cosh\,\beta}{\sin^{2}\theta}+\frac{\cos(2\phi-\alpha)}{\tan^{2}\theta}\right),\end{array} (52)

where we defined α=2πnτ1\alpha=2\pi n\tau_{1} and β=2πnτ2\beta=2\pi n\tau_{2}.

III.3 A One-loop partition function of a scalar field

The heat kernel of a scalar field on an AdS3AdS_{3} space is given by

KH3(t,r(x,x))=e(m2+1)tr24t(4πt)32rsinh(r).K^{H_{3}}(t,r(x,x^{\prime}))=\frac{e^{-(m^{2}+1)t-\frac{r^{2}}{4t}}}{(4\pi t)^{\frac{3}{2}}}\frac{r}{\sinh(r)}. (53)

Let us consider calculating the ordinary (not the mirror) part. A one-loop determinant can be recast as an integral

logdetΔ=Vol(H3/)0dtte(m2+1)t(4πt)32+n00dttdρdθdϕcosθρsin3θe(m2+1)tr24t(4πt)32rsinh(r),\begin{array}[]{cc}-\log\det\Delta=Vol(H_{3}/\mathbb{Z})\int_{0}^{\infty}\frac{dt}{t}\frac{e^{-(m^{2}+1)t}}{(4\pi t)^{\frac{3}{2}}}\\ +\underset{n\neq 0}{\sum}\int_{0}^{\infty}\frac{dt}{t}\int\frac{d\rho d\theta d\phi\cos\theta}{\rho\sin^{3}\theta}\frac{e^{-(m^{2}+1)t-\frac{r^{2}}{4t}}}{(4\pi t)^{\frac{3}{2}}}\frac{r}{\sinh(r)},\end{array} (54)

where we split into the zero mode part and non-zero mode n0n\neq 0. The first term can be easily regularized:

0dtte(m2+1)t(4πt)32=(m2+1)328π320𝑑kk52ek=(m2+1)326π.\int_{0}^{\infty}\frac{dt}{t}\frac{e^{-(m^{2}+1)t}}{(4\pi t)^{\frac{3}{2}}}=\frac{\left(m^{2}+1\right)^{\frac{3}{2}}}{8\pi^{\frac{3}{2}}}\int_{0}^{\infty}dkk^{-\frac{5}{2}}e^{-k}=\frac{\left(m^{2}+1\right)^{\frac{3}{2}}}{6\pi}. (55)

The second term can be calculated directly. Firstly, we change the variable from θ\theta to rr and we get

n00dttdρdθdϕcosθρsin3θe(m2+1)tr24t(4πt)32rsinh(r)=n00dttdρdrdϕρe(m2+1)tr24t(4πt)32r2(coshβcosα).\begin{array}[]{cc}\underset{n\neq 0}{\sum}\int_{0}^{\infty}\frac{dt}{t}\int\frac{d\rho d\theta d\phi\cos\theta}{\rho\sin^{3}\theta}\frac{e^{-(m^{2}+1)t-\frac{r^{2}}{4t}}}{(4\pi t)^{\frac{3}{2}}}\frac{r}{\sinh(r)}\\ =\underset{n\neq 0}{\sum}\int_{0}^{\infty}\frac{dt}{t}\int\frac{d\rho drd\phi}{\rho}\frac{e^{-(m^{2}+1)t-\frac{r^{2}}{4t}}}{(4\pi t)^{\frac{3}{2}}}\frac{r}{2\left(\cosh\beta-\cos\alpha\right)}.\end{array} (56)

Integrating over rr, ϕ\phi and tt in order, we can reach the final answer:

n00dttdρdrdϕρe(m2+1)tr24t(4πt)32r2(coshβcosα)=n0πτ24(coshβcosα)0dtte(m2+1)t(2πnτ2)24tt32=n0e2πnτ2m2+14n(coshβcosα)=n=1|q|n(1+m2+1)n|1qn|2.\begin{array}[]{cc}\underset{n\neq 0}{\sum}\int_{0}^{\infty}\frac{dt}{t}\int\frac{d\rho drd\phi}{\rho}\frac{e^{-(m^{2}+1)t-\frac{r^{2}}{4t}}}{(4\pi t)^{\frac{3}{2}}}\frac{r}{2\left(\cosh\beta-\cos\alpha\right)}\\ =\underset{n\neq 0}{\sum}\frac{\sqrt{\pi}\tau_{2}}{4\left(\cosh\beta-\cos\alpha\right)}\int_{0}^{\infty}\frac{dt}{t}\frac{e^{-(m^{2}+1)t-\frac{\left(2\pi n\tau_{2}\right)^{2}}{4t}}}{t^{\frac{3}{2}}}\\ =\underset{n\neq 0}{\sum}\frac{e^{-2\pi n\tau_{2}\sqrt{m^{2}+1}}}{4n\left(\cosh\beta-\cos\alpha\right)}\\ =\sum_{n=1}^{\infty}\frac{\left|q\right|^{n\left(1+\sqrt{m^{2}+1}\right)}}{n\left|1-q^{n}\right|^{2}}.\end{array} (57)

Now let us consider the mirror part. Firstly, we consider the n=0n=0 case. The strategy is that we firstly fix ϕ\phi and integrate θ\theta or rr and then integrate over other variables. This leads to the divergent result even though we use a regularization by a gamma function:

0dttdρdθdϕcosθρsin3θe(m2+1)tr24t(4πt)32rsinh(r)=τ2m2+12π2π2dϕ1+cos(2ϕ).\begin{array}[]{cc}\int_{0}^{\infty}\frac{dt}{t}\int\frac{d\rho d\theta d\phi\cos\theta}{\rho\sin^{3}\theta}\frac{e^{-(m^{2}+1)t-\frac{r^{2}}{4t}}}{(4\pi t)^{\frac{3}{2}}}\frac{r}{\sinh(r)}\\ =-\frac{\tau_{2}\sqrt{m^{2}+1}}{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{d\phi}{1+\cos(2\phi)}.\end{array} (58)

However, this divergence can be eliminated by the renormalization of Newton constant, so we will ignore this term.

Next consider the n0n\neq 0 case. The trick is almost the same, but the situation is slightly changed. The integral over ϕ\phi yields

n00𝑑t2πτ2e(m2+1)t(2πnτ2)24t(4πt)32π2π2dϕ|cos(2ϕα)+cosh(β)|=n00𝑑t 2πτ2e(m2+1)t(2πnτ2)24t(4πt)32πsinh(β)=n=1|q|n(1+m2+1)n(1|q|2n).\begin{array}[]{cc}\underset{n\neq 0}{\sum}\int_{0}^{\infty}dt2\pi\tau_{2}\frac{e^{-(m^{2}+1)t-\frac{\left(2\pi n\tau_{2}\right)^{2}}{4t}}}{(4\pi t)^{\frac{3}{2}}}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{d\phi}{\left|\cos\left(2\phi-\alpha\right)+\cosh\left(\beta\right)\right|}\\ =\underset{n\neq 0}{\sum}\int_{0}^{\infty}dt\,2\pi\tau_{2}\frac{e^{-(m^{2}+1)t-\frac{\left(2\pi n\tau_{2}\right)^{2}}{4t}}}{(4\pi t)^{\frac{3}{2}}}\frac{\pi}{\sinh(\beta)}\\ =\sum_{n=1}^{\infty}\frac{\left|q\right|^{n\left(1+\sqrt{m^{2}+1}\right)}}{n\left(1-\left|q\right|^{2n}\right)}.\end{array} (59)

III.4 A one-loop partition function for a vector field

In this section we consider the vector field contribution to the partition function. For a later convenience we define a set of new real coordinates:

x=(z)=ρcosθcosϕ,η=(z)=ρcosθsinϕ.\begin{array}[]{cc}x=\Re(z)=\rho\cos\theta\cos\phi,\\ \eta=\Im(z)=\rho\cos\theta\sin\phi.\end{array} (60)

The propagator has two indices and is invariant under an exchange of those indices. Thus we can expand the kernel by the basis of (1,1) symmetric bi-tensor (DHoker:1999bve, ):

Kμν(t,x,x)=F(t,u)μνu+μνS(t,u),K_{\mu\nu^{\prime}}(t,x,x^{\prime})=F(t,u)\partial_{\mu}\partial_{\nu^{\prime}}u+\partial_{\mu}\partial_{\nu^{\prime}}S(t,u), (61)

where

F(t,r)=er24t(4πt)32rsinhr,S(t,r)=4(4π)32er24tsinhrt01𝑑ξet(1ξ)2sinh(rξ).\begin{array}[]{cc}F(t,r)=-\frac{e^{-\frac{r^{2}}{4t}}}{(4\pi t)^{\frac{3}{2}}}\frac{r}{\sinh r},\\ S(t,r)=\frac{4}{(4\pi)^{\frac{3}{2}}}\frac{e^{-\frac{r^{2}}{4t}}}{\sinh r}\sqrt{t}\int_{0}^{1}d\xi e^{-t(1-\xi)^{2}}\sinh(r\xi).\end{array} (62)

The next step is to calculate the derivatives of uu. In the Poincare coordinate it can be explicitly given by

μνu\displaystyle\partial_{\mu}\partial_{\nu^{\prime}}u
=\displaystyle= 1z0w0{δμν+(zw)μw0δν0+(wz)νz0δμ0uδμ0δν0}.\displaystyle-\frac{1}{z_{0}w_{0}}\left\{\delta_{\mu\nu^{\prime}}\!+\!\frac{(z-w)_{\mu}}{w_{0}}\delta_{\nu^{\prime}0}+\frac{(w-z)_{\nu^{\prime}}}{z_{0}}\delta_{\mu 0}\!-\!u\delta_{\mu 0}\delta_{\nu^{\prime}0}\right\}.

Here we note that z=xz=x or z=xmirrorz=x^{mirror}, and w=γnxw=\gamma^{n}x . We will present a detailed calculation of these derivatives in the appendix A. Let us consider the ordinary (not the mirror image) contribution. Using those results, we can compute the kernel:

0dttd3xgngμρ(γnx)νxρKμν(t,r(x,γnx))\displaystyle\int_{0}^{\infty}\frac{dt}{t}\int d^{3}x\sqrt{g}\sum_{n}g^{\mu\rho}\frac{\partial(\gamma^{n}x)^{\nu^{\prime}}}{\partial x^{\rho}}K_{\mu\nu^{\prime}}^{\mathbb{\mathbb{H}}}(t,r(x,\gamma^{n}x))
=\displaystyle= 0dttd3xg𝑛{d2Sdu2{(eβcoshr)(eβcoshr)\displaystyle\int_{0}^{\infty}\frac{dt}{t}\int d^{3}x\sqrt{g}\underset{n}{\sum}\left\{\frac{d^{2}}{S}{du^{2}}\left\{(e^{\beta}-\cosh r)(e^{-\beta}\cosh r)\right.\right.
\displaystyle- 2cosα(coshrcoshβ)}\displaystyle\left.\left.2\cos\alpha(\cosh r-\cosh\beta)\right\}\right.
+\displaystyle+ (F+(dSdu))(coshr2coshβ2cosα)}\displaystyle\left.(F+(\frac{dS}{du}))\left(\cosh r-2\cosh\beta-2\cos\alpha\right)\right\}
=\displaystyle= Vol(/)0dtt(et+2+4t)(4πt)32\displaystyle Vol(\mathbb{H}/\mathbb{Z})\int_{0}^{\infty}\frac{dt}{t}\frac{(e^{-t}+2+4t)}{(4\pi t)^{\frac{3}{2}}}
+\displaystyle+ n=00dtt2π2τ2(coshβcosα)eβ24t4π32t(2cosα+et).\displaystyle\sum_{n=0}^{\infty}\int_{0}^{\infty}\frac{dt}{t}\frac{2\pi^{2}\tau_{2}}{(\cosh\beta-\cos\alpha)}\frac{e^{-\frac{\beta^{2}}{4t}}}{4\pi^{\frac{3}{2}}\sqrt{t}}(2\cos\alpha+e^{-t}).

The first term can be regularized by considering a massless limit of a massive field:

Vol(/)0dtt(et+2+4t)(4πt)32\displaystyle Vol(\mathbb{H}/\mathbb{Z})\int_{0}^{\infty}\frac{dt}{t}\frac{(e^{-t}+2+4t)}{(4\pi t)^{\frac{3}{2}}}
=\displaystyle= limm0Vol(/)0dttem2t(et+2+4t)(4πt)32\displaystyle\underset{m\rightarrow 0}{lim}Vol(\mathbb{H}/\mathbb{Z})\int_{0}^{\infty}\frac{dt}{t}\frac{e^{-m^{2}t}(e^{-t}+2+4t)}{(4\pi t)^{\frac{3}{2}}}
=\displaystyle= Vol(/)1(4π)32(4π38π)=56πVol(/).\displaystyle Vol(\mathbb{H}/\mathbb{Z})\frac{1}{(4\pi)^{\frac{3}{2}}}(\frac{4\sqrt{\pi}}{3}-8\sqrt{\pi})=-\frac{5}{6\pi}Vol(\mathbb{H}/\mathbb{Z}).

The second term can be calculated straightforwardly:

n=10dtt2π2τ2(coshβcosα)eβ24t4π32t(2cosα+et)=n=12cosα+eβ2n(coshβcosα)=n=1qn+q¯n+|q|2nn|1qn|2.\begin{array}[]{cc}\sum_{n=1}^{\infty}\int_{0}^{\infty}\frac{dt}{t}\frac{2\pi^{2}\tau_{2}}{(\cosh\beta-\cos\alpha)}\frac{e^{-\frac{\beta^{2}}{4t}}}{4\pi^{\frac{3}{2}}\sqrt{t}}(2\cos\alpha+e^{-t})\\ =\sum_{n=1}^{\infty}\frac{2\cos\alpha+e^{-\beta}}{2n(\cosh\beta-\cos\alpha)}\\ =\sum_{n=1}^{\infty}\frac{q^{n}+\overline{q}^{n}+\left|q\right|^{2n}}{n\left|1-q^{n}\right|^{2}}.\end{array} (66)

If we omit the term, which is proportional to the volume, the answer is just a half of the original result as we expected.

Next, we consider the mirror image part. Since the brane is inserted at x=0x=0, we have xmirror=xx_{mirror}=-x, ηmirror=η\eta_{mirror}=\eta and y=mirrory{}_{mirror}=y. The derivatives of uu are also slightly modified and we present the results in the appendix A. Computations analogous to the previous ones lead to

0dttd3xg𝑛gμρ(γnx)νxρKμν(t,r(xmirror,γnx))\displaystyle\int_{0}^{\infty}\frac{dt}{t}\int d^{3}x\sqrt{g}\underset{n}{\sum}g^{\mu\rho}\frac{\partial(\gamma^{n}x)^{\nu^{\prime}}}{\partial x^{\rho}}K_{\mu\nu^{\prime}}^{\mathbb{\mathbb{H}}}(t,r(x_{mirror},\gamma^{n}x)) (67)
=\displaystyle= 0dttd3xgn[(d2Sdu2){(eβcoshr)(eβcoshr)\displaystyle\int_{0}^{\infty}\!\frac{dt}{t}\!\int\!d^{3}x\!\sqrt{g}\!\sum_{n}\left[\left(\frac{d^{2}S}{du^{2}}\right)\left\{(e^{\beta}-\cosh r)(e^{-\beta}-\cosh r)\right.\right.
\displaystyle- 2cosα(coshrcoshβ)}\displaystyle\left.\left.2\cos\alpha(\cosh r-\cosh\beta)\right\}\right.
+\displaystyle+ (F+(dSdu))(coshr2coshβ2cosα)].\displaystyle\left.(F+(\frac{dS}{du}))(\cosh r-2\cosh\beta-2\cos\alpha)\right].

The above form is the same as the previous result, except that we have different geodesic distances:

r=arccosh(coshβsin2θ+cos(2ϕα)tan2θ).r=arccosh\left(\frac{\cosh\beta}{\sin^{2}\theta}+\frac{\cos(2\phi-\alpha)}{\tan^{2}\theta}\right). (68)

This distance rr depends not only θ\theta , but also ϕ\phi . To proceed, we fix ϕ\phi and integrate θ\theta (or rr) firstly. The integral over rr gives the same as the original calculation because it is independent of ϕ\phi :

0dttd3xgn[(d2Sdu2)\displaystyle\int_{0}^{\infty}\frac{dt}{t}\int d^{3}x\sqrt{g}\sum_{n}\Biggl{[}\left(\frac{d^{2}S}{du^{2}}\right) (69)
{(eβcoshr)(eβcoshr)2cosα(coshrcoshβ)}\displaystyle\left\{(e^{\beta}-\cosh r)(e^{-\beta}-\cosh r)-2\cos\alpha(\cosh r-\cosh\beta)\right\}
+\displaystyle+ (F+(dSdu))(coshr2coshβ2cosα)]\displaystyle\left.(F+(\frac{dS}{du}))(\cosh r-2\cosh\beta-2\cos\alpha)\right]
=\displaystyle= 0dttn2πτ2π2π2dϕ[12(coshβ+cos(2ϕα))\displaystyle\int_{0}^{\infty}\!\frac{dt}{t}\!\sum_{n}\!2\pi\tau_{2}\!\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\!d\phi\!\left[\frac{1}{2(\cosh\beta+\cos(2\phi-\alpha))}\right.
eβ24t4π32t(2cosα+et)].\displaystyle\frac{e^{-\frac{\beta^{2}}{4t}}}{4\pi^{\frac{3}{2}}\sqrt{t}}(2\cos\alpha+e^{-t})\Biggr{]}.

The integral over ϕ\phi can also be evaluated:

π2π2𝑑ϕ1(coshβ+cos(2ϕα))=πsinhβ.\begin{array}[]{cc}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\phi\frac{1}{(\cosh\beta+\cos(2\phi-\alpha))}=\frac{\pi}{\sinh\beta}.\end{array} (70)

The mirror image contribution finally becomes

0dttd3xg𝑛gμρ(γnx)νxρKμν(t,r(xmirror,γnx))=n=12cosα+eβ2nsinhβ=n=1qn+q¯n+|q|2nn(1|q|2n).\begin{array}[]{cc}\int_{0}^{\infty}\frac{dt}{t}\int d^{3}x\sqrt{g}\underset{n}{\sum}g^{\mu\rho}\frac{\partial(\gamma^{n}x)^{\nu^{\prime}}}{\partial x^{\rho}}K_{\mu\nu^{\prime}}^{\mathbb{\mathbb{H}}}(t,r(x_{mirror},\gamma^{n}x))\\ =\sum_{n=1}^{\infty}\frac{2\cos\alpha+e^{-\beta}}{2n\sinh\beta}\\ =\sum_{n=1}^{\infty}\frac{q^{n}+\overline{q}^{n}+\left|q\right|^{2n}}{n(1-\left|q\right|^{2n})}.\end{array} (71)

III.5 A one-loop partition function of a symmetric spin-2 field

In the calculation of the vector field one-loop partition function we see that the trace of the kernel in the mirror part is the same as that in the ordinary part. This seems to be somewhat miraculous at a first sight. However this is not surprising because the trace of the kernel can only depend on geodesic distance rr.

The kernel of the symmetric spin-2 field can be expanded by the basis of (2,2) symmetric tensors (DHoker:1999bve, ; Giombi:2008vd, ). Since they are complicated, we do not want to write explicitly here.

The one-loop determinant of a symmetric traceless tensor is given by

logdetΔ=0dttd3xgn{gμρ(γnx)μxρgνσ(γnx)νxσ(Kμμ,νν(t,r(x,γnx))+Kμμ,νν(t,r(xmirror,γnx)))}.\begin{array}[]{cc}-\log\det\Delta=\int_{0}^{\infty}\frac{dt}{t}\int d^{3}x\sqrt{g}\sum_{n}\left\{g^{\mu\rho}\frac{\partial(\gamma^{n}x)^{\mu^{\prime}}}{\partial x^{\rho}}g^{\nu\sigma}\frac{\partial(\gamma^{n}x)^{\nu^{\prime}}}{\partial x^{\sigma}}\right.\\ \left.\left(K_{\mu\mu^{\prime},\nu\nu^{\prime}}^{\mathbb{\mathbb{H}}}(t,r(x,\gamma^{n}x))+K_{\mu\mu^{\prime},\nu\nu^{\prime}}^{\mathbb{\mathbb{H}}}(t,r(x_{mirror},\gamma^{n}x))\right)\right\}.\end{array}

Let us consider the calculation of the first term. The integral over rr gives

0dttd3xg𝑛gμρ(γnx)μxρgνσ(γnx)νxσKμμ,νν(t,r(x,γnx))=0dtt2π2τ22(coshβcosα)eβ24t2π32t(etcos2α+e4tcosα+e5t2)=n=11n(coshβcosα)(eβcos2α+e2βcosα+e5β2),\begin{array}[]{cc}\!\int_{0}^{\infty}\!\frac{dt}{t}\!\int d^{3}x\!\sqrt{g}\!\underset{n}{\sum}\!g^{\mu\rho}\!\frac{\partial(\gamma^{n}x)^{\mu^{\prime}}}{\partial x^{\rho}}\!g^{\nu\sigma}\!\frac{\partial(\gamma^{n}x)^{\nu^{\prime}}}{\partial x^{\sigma}}\!K_{\!\mu\!\mu\!^{\prime}\!,\!\nu\!\nu\!^{\prime}}^{\mathbb{\mathbb{H}}}\!(t,r(x,\gamma^{n}x))\\ =\sum\!\int_{0}^{\infty}\!\frac{dt}{t}\!\frac{2\pi^{2}\tau_{2}}{2(\cosh\beta-\cos\alpha)}\!\frac{e^{-\frac{\beta^{2}}{4t}}}{2\pi^{\frac{3}{2}}\sqrt{t}}\!(e^{-t}\!\cos 2\alpha\!+\!e^{-4t}\!\cos\alpha\!+\!\frac{e^{-5t}}{2})\!\\ =\sum_{n=1}^{\infty}\frac{1}{n(\cosh\beta-\cos\alpha)}(e^{-\beta}\cos 2\alpha+e^{-2\beta}\cos\alpha+\frac{e^{-\sqrt{5}\beta}}{2}),\end{array} (72)

where we omit an n=0n=0 term because it is proportional to the volume. Next, we consider the second term. We can perform the integration similarly:

0dttd3xg𝑛{gμρ(γnx)μxρgνσ(γnx)νxσ\displaystyle\int_{0}^{\infty}\frac{dt}{t}\int d^{3}x\sqrt{g}\underset{n}{\sum}\left\{g^{\mu\rho}\frac{\partial(\gamma^{n}x)^{\mu^{\prime}}}{\partial x^{\rho}}g^{\nu\sigma}\frac{\partial(\gamma^{n}x)^{\nu^{\prime}}}{\partial x^{\sigma}}\right.
Kμμ,νν(t,r(xmirror,γnx))}\displaystyle\left.K_{\mu\mu^{\prime},\nu\nu^{\prime}}^{\mathbb{\mathbb{H}}}(t,r(x_{mirror},\gamma^{n}x))\right\}
=n0dtt2πτ2π2π2dϕ{12(coshβ+cos(2ϕα))\displaystyle=\sum_{n}\int_{0}^{\infty}\frac{dt}{t}2\pi\tau_{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\phi\left\{\frac{1}{2(\cosh\beta+\cos(2\phi-\alpha))}\right.
eβ24t2π32t(etcos2α+e4tcosα+e5t2)}\displaystyle\left.\frac{e^{-\frac{\beta^{2}}{4t}}}{2\pi^{\frac{3}{2}}\sqrt{t}}(e^{-t}\cos 2\alpha+e^{-4t}\cos\alpha+\frac{e^{-5t}}{2})\right\}
=\displaystyle= 0dtt2πτ2π2π2𝑑ϕ12(1+cos(2ϕ))12π32t(et+e4t+e5t2)\displaystyle\!\int_{0}^{\infty}\!\frac{dt}{t}\!2\pi\tau_{2}\!\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\!d\phi\!\frac{1}{2(1+\cos(2\phi))}\!\frac{1}{2\pi^{\frac{3}{2}}\sqrt{t}}\!(e^{-t}\!+\!e^{-4t}\!+\!\frac{e^{-5t}}{2}\!)
+\displaystyle+ n0dtt2πτ2πsinhβeβ24t2π32t(etcos2α+e4tcosα+e5t2).\displaystyle\sum_{n}\!\int_{0}^{\infty}\!\frac{dt}{t}\!2\!\pi\!\tau_{2}\!\frac{\pi}{\sinh\beta}\!\frac{\!e^{-\frac{\beta^{2}}{4t}}}{2\pi^{\frac{3}{2}}\sqrt{t}}\!(e^{-t}\!\cos 2\alpha\!+\!e^{-4t}\cos\alpha\!+\!\frac{e^{-5t}}{2}\!).

The first term contains a divergent integral and here we will ignore it. The second term can be simplified as follows:

n0dtt2πτ2πsinhβeβ24t2π32t(etcos2α+e4tcosα+e5t2)=n=11nsinhβ(eβcos2α+e2βcosα+e5β2).\begin{array}[]{cc}\sum_{n}\int_{0}^{\infty}\frac{dt}{t}2\pi\tau_{2}\frac{\pi}{\sinh\beta}\frac{e^{-\frac{\beta^{2}}{4t}}}{2\pi^{\frac{3}{2}}\sqrt{t}}(e^{-t}\cos 2\alpha+e^{-4t}\cos\alpha+\frac{e^{-5t}}{2})\\ =\sum_{n=1}^{\infty}\frac{1}{n\sinh\beta}(e^{-\beta}\cos 2\alpha+e^{-2\beta}\cos\alpha+\frac{e^{-\sqrt{5}\beta}}{2}).\end{array} (74)

III.6 A one-loop partition function for gravity

We will consider a linearized graviton perturbation hμνh_{\mu\nu} around the AdS background gμνg_{\mu\nu}. The Einstein-Hilbert action in the three dimensions with a negative cosmological constant is given by

SGR=116πGd3x(R+2)g.S_{GR}=-\frac{1}{16\pi G}\int d^{3}x(R+2)\sqrt{g}. (75)

We will use the gauge of (tHooft:1974toh, ), where we add the gauge-fixing term to (75):

SGF=132πGd3xgμ(hμσ12gμσh)ν(hνσ12δνσh).S_{GF}=\frac{1}{32\pi G}\int d^{3}x\sqrt{g}\nabla^{\mu}(h_{\mu\sigma}-\frac{1}{2}g_{\mu\sigma}h)\nabla^{\nu}(h_{\nu}^{\sigma}-\frac{1}{2}\delta_{\nu}^{\sigma}h). (76)

It is convenient to define the traceless part and the trace part:

ϕμν=hμν13gμνhρρϕ=hρρ.\begin{array}[]{cc}\phi_{\mu\nu}=h_{\mu\nu}-\frac{1}{3}g_{\mu\nu}h_{\rho}^{\rho}\\ \phi=h_{\rho}^{\rho}.\end{array} (77)

The gauge-fixed action is given by (Giombi:2008vd, )

S\displaystyle S =\displaystyle= 132πGd3xg{12ϕμν(gμρgνσ2+2Rμρνσ)ϕρσ\displaystyle-\frac{1}{32\pi G}\int d^{3}x\sqrt{g}\left\{\frac{1}{2}\phi_{\mu\nu}(g^{\mu\rho}g^{\nu\sigma}\nabla^{2}+2R^{\mu\rho\nu\sigma})\phi_{\rho\sigma}\right. (78)
\displaystyle- 112ϕ(24)ϕ}.\displaystyle\left.\frac{1}{12}\phi(\nabla^{2}-4)\phi\right\}.

We will wick-rotate ϕiϕ\phi\rightarrow i\phi in order to make the kinetic term positive definite. The gauge-fixing term introduces a Fadeev-Popov field, which is a Grassmann-odd vector field:

Sghost=132πGd3xgημ¯(gμν2Rμν)ην.S_{ghost}=\frac{1}{32\pi G}\int d^{3}x\sqrt{g}\overline{\eta_{\mu}}(-g^{\mu\nu}\nabla^{2}-R^{\mu\nu})\eta^{\nu}. (79)

Therefore, the gravity partition function can be obtained by subtracting the contribution of the vector ghost field with m2=4m^{2}=4 and the scalar field with m2=4m^{2}=4, which corresponds to the trace part of the fluctuation:

logZgravity1loop\displaystyle\log Z_{gravity}^{1-loop} (80)
=\displaystyle= 12logdetΔgraviton+logdetΔvector12logdetΔscalar\displaystyle-\frac{1}{2}\log\det\Delta^{graviton}+\log\det\Delta^{vector}-\frac{1}{2}\log\det\Delta^{scalar}
=\displaystyle= n=2log|1qn|22\displaystyle\sum_{n=2}^{\infty}-\frac{\log\left|1-q^{n}\right|^{2}}{2}
+\displaystyle+ n=112n11|q|2n(q2n(1q¯n)+q¯2n(1qn)).\displaystyle\sum_{n=1}^{\infty}\frac{1}{2n}\frac{1}{1-\left|q\right|^{2n}}(q^{2n}(1-\overline{q}^{n})+\overline{q}^{2n}(1-q^{n})).

The first term is just a half of the contribution in the original theory and the second term comes from the mirror contribution.

IV A physical Interpretation

IV.1 A BCFT interpretation of the partition function

In this section we summarize the results of the partition functions in the previous section and give a physical interpretation from the BCFT viewpoint. Before we move on, let us review our strategy of the calculation. We calculated the partition function using the method of images. In our calculation we approximate the ETW brane as the hard wall in the bulk geometry, which means that the location of the ETW brane is determined by solving the Neumann boundary condition for the tensionless ETW brane Kab=0K_{ab}=0. Then, we apply the method of images to the background AdS metric and evaluate the fluctuation of the metric around the solution. Because the brane is tensionless and the action is proportional to the tension, here we obtain the contributions from the ETW brane only through the method of images.

Let us summarize our result. We firstly consider the scalar part. The partition function of the free scalar field with Neumann boundary condition on the ETW brane is given by

ZScalar=(l=0l=011ql+hq¯l+h)\displaystyle Z_{Scalar}=\left(\prod_{l=0}^{\infty}\prod_{l^{\prime}=0}^{\infty}\frac{1}{\sqrt{1-q^{l+h}\overline{q}^{l^{\prime}+h}}}\right)
(m=011qm+hq¯m+h).\displaystyle\cdot\left(\prod_{m=0}^{\infty}\frac{1}{\sqrt{1-q^{m+h}\overline{q}^{m+h}}}\right). (81)

The first term describes the ordinary contribution and the second one does the mirror image one. The former has a clear interpretation: it comes from a primary field with conformal dimension hh and a summation over its descendants. The square root is present because we take the volume of the space to be a half of the original AdS space. The second term is coming from the mirror image effect of the original field. However, because in the AdS/BCFT case, the rotational symmetry of the torus is broken due to the ETW brane , we have only one real parameter β\beta. Therefore we expect that we should set q=q¯q=\overline{q} physically. In this case the expression gets simplified:

ZScalar=(l=0l=011ql+l+2h)\displaystyle Z_{Scalar}=\left(\prod_{l=0}^{\infty}\prod_{l^{\prime}=0}^{\infty}\frac{1}{\sqrt{1-q^{l+l^{\prime}+2h}}}\right)
(m=011q2(m+h)).\displaystyle\cdot\left(\prod_{m=0}^{\infty}\frac{1}{\sqrt{1-q^{2(m+h)}}}\right). (82)

Next, the vector field partition function is expressed as follows:

Zvector=(l,l=011ql+1q¯l1qlq¯l+111ql+hq¯l+h)\displaystyle Z_{\!vector\!}\!=\!\left(\!\prod_{l,l^{\prime}=0}^{\infty}\!\frac{1}{\sqrt{\!1-q^{l+1}\overline{q}^{l^{\prime}}\!}\!\sqrt{\!1\!-\!q^{l}\overline{q}^{l^{\prime}+1}\!}}\!\frac{1}{\sqrt{\!1\!-\!q^{l+h}\overline{q}^{l^{\prime}+h}}\!}\!\right)
([l=011ql+1q¯l1qlq¯l+111ql+hq¯l+h).\displaystyle\cdot\!\left(\!\prod_{[l=0}^{\infty}\!\frac{1}{\sqrt{1-q^{l+1}\overline{q}^{l}}\sqrt{1-q^{l}\overline{q}^{l+1}}}\!\frac{1}{\sqrt{1-q^{l+h}\overline{q}^{l+h}}}\!\right).

As is the case before the first term describes the ordinary contribution and the second one does the mirror effect. In both lines, the second factor is due to the contribution from the longitudinal scalar mode. The rest is coming from the transverse vector mode. The summation is over L1L_{-1} and L¯1\overline{L}_{-1} plus descendants contribution, which represents a massless spin-1 particle. For a massive vector field we can replace the powers of qq, i.e. 1+l1+l with 1+l+h1+l+h. By setting q=q¯q=\overline{q} as before for the consistent profile of ETW brane, the partition function takes the simplified form:

Zvector=(l,l=011ql+l+111ql+l+2h)\displaystyle Z_{vector}=\left(\!\prod_{l,l^{\prime}=0}^{\infty}\frac{1}{1-q^{l+l^{\prime}+1}}\frac{1}{\sqrt{1-q^{l+l^{\prime}+2h}}}\right)
(l=011q2l+111q2(l+h)).\displaystyle\cdot\left(\!\prod_{l=0}^{\infty}\frac{1}{1-q^{2l+1}}\frac{1}{\sqrt{1-q^{2(l+h)}}}\right). (84)

Finally, let us consider the gravity partition function. After some algebras, we reach the expression

Zgravity\displaystyle Z_{gravity} =\displaystyle= (m=21|1qm|)\displaystyle\left(\!\prod_{m=2}^{\infty}\frac{1}{\left|1-q^{m}\right|}\right)
(l=01ql+2q¯l+11ql+1q¯l+21ql+2q¯l1qlq¯l+2).\displaystyle\cdot\left(\!\prod_{l=0}^{\infty}\frac{\sqrt{1-q^{l+2}\overline{q}^{l+1}}\sqrt{1-q^{l+1}\overline{q}^{l+2}}}{\sqrt{1-q^{l+2}\overline{q}^{l}}\sqrt{1-q^{l}\overline{q}^{l+2}}}\right).

The first part gives the summation over vacuum and its chiral Virasoro descendants. The second term looks complicated, but it has important physical meaning: the numerator represents the massive vector field with h=1h=1 and the denominator represents a massless spin-2 field. In AdS3/CFT2AdS_{3}/CFT_{2}, the bulk field with a spin ll and a mass MM is dual to an operator with a conformal dimension 2h2h:

M2=Δ(Δ2)+l2Δ=2h+l.\begin{array}[]{cc}M^{2}=\Delta(\Delta-2)+l^{2}\\ \Delta=2h+l.\end{array} (86)

Therefore, the h=1h=1 massive vector field has a mass M2=4M^{2}=4 in the bulk, which exactly matches what appears as a ghost vector field when we fix the gauge redundancy of gravity. We will revisit this point in sub-section 4-C.

Finally, by setting q=q¯q=\bar{q} again for a consistent profile of the ETW brane, we obtain

Zgravity=l=01(1q2l+2)2.Z_{gravity}=\!\prod_{l=0}^{\infty}\frac{1}{\left(1-q^{2l+2}\right)^{2}}. (87)

This has a peculiar exponent 2l+22l+2 when compared with the original result (1) without ETW branes (Giombi:2008vd, ). We note that even though taking into the ghost contribution this partition function seems to be physical in a sense that the coefficients of the expansion in powers of qq, i,e, the numbers of states at that conformal dimension, are non-negative. Interestingly, the ghost contribution goes away.

IV.2 A one-loop partition function with the Dirichlet boundary condition

So far we impose the Neumann boundary condition on the ETW brane, following the standard prescription of AdS/BCFT. However, it is also interesting to consider more general boundary conditions. Therefore, in this section we repeat the similar calculation now for the Dirichlet boundary condition on the ETW brane. Refer to (Miao:2018qkc, ) which suggests a possibility of using the Dirichlet boundary condition in related holographic computations. In this section we only present the results briefly, leaving the details in the appendix B.

The procedure to find results in the Dirichlet case is very simple: just flip the sign of the mirror image contribution. This leads to

ZScalar=(m=011qm+hq¯m+h)(l,l=011ql+hq¯l+h),Z_{Scalar}=\frac{\left(\!\prod_{m=0}^{\infty}\frac{1}{\sqrt{1-q^{m+h}\overline{q}^{m+h}}}\right)}{\left(\!\prod_{l,l^{\prime}=0}^{\infty}\frac{1}{\sqrt{1-q^{l+h}\overline{q}^{l^{\prime}+h}}}\right)}, (88)
Zvector=l=011ql+1q¯l1qlq¯l+111ql+hq¯l+hl,l=011ql+1q¯l1qlq¯l+111ql+hq¯l+h,Z_{vector}=\frac{\prod_{l=0}^{\infty}\frac{1}{\sqrt{1-q^{l+1}\overline{q}^{l}}\sqrt{1-q^{l}\overline{q}^{l+1}}}\frac{1}{\sqrt{1-q^{l+h}\overline{q}^{l+h}}}}{\prod_{l,l^{\prime}=0}^{\infty}\frac{1}{\sqrt{1-q^{l+1}\overline{q}^{l^{\prime}}}\sqrt{1-q^{l}\overline{q}^{l^{\prime}+1}}}\frac{1}{\sqrt{1-q^{l+h}\overline{q}^{l^{\prime}+h}}}}, (89)
Zgravity\displaystyle Z_{gravity} =\displaystyle= (m=21|1qm|)\displaystyle\left(\!\prod_{m=2}^{\infty}\frac{1}{\left|1-q^{m}\right|}\right)
(l=01ql+2q¯l1qlq¯l+21ql+2q¯l+11ql+1q¯l+2).\displaystyle\cdot\left(\!\prod_{l=0}^{\infty}\frac{\sqrt{1-q^{l+2}\overline{q}^{l}}\sqrt{1-q^{l}\overline{q}^{l+2}}}{\sqrt{1-q^{l+2}\overline{q}^{l+1}}\sqrt{1-q^{l+1}\overline{q}^{l+2}}}\right).

When we set q=q¯q=\overline{q} to have a consistent profile of ETW branes, we obtain

ZScalar=l,l=011ql+l+2h,Z_{Scalar}=\!\prod_{l,l^{\prime}=0}^{\infty}\frac{1}{\sqrt{1-q^{l+l^{\prime}+2h}}}, (91)
Zvectortransverse=l,l=011ql+l+1,Z_{vector}^{transverse}=\!\prod_{l,l^{\prime}=0}^{\infty}\frac{1}{1-q^{l+l^{\prime}+1}}, (92)
Zgravity=l=01(1q2l+3)2,Z_{gravity}=\!\prod_{l=0}^{\infty}\frac{1}{(1-q^{2l+3})^{2}}, (93)

where we omit the longitudinal modes in the vector field partition function. The multiples of non-diagonal contributions lead to the gravity partition function which includes only the odd integer modes unlike the Neumann case.

IV.3 A consistency of the boundary condition

In this section we will be more careful about the boundary conditions. Refer to (vanNieuwenhuizen:2005kg, ; Vassilevich:2003xt, ; Witten:2018lgb, ; Moss:1996ip, ) for a list of early works. Usually, in gravity we impose the Neumann or the Dirichlet boundary condition (B.C.) on a boundary. At the tree-level, these conditions harm nothing in calculating physical quantities such as the partition function. However, the situation changes when we consider quantities at the one-loop level. At the linearized level of the metric, we need a gauge-fixing term and a ghost field. The boundary conditions for these fields affect the one-loop partition function and what is more, the gauge transformation for the metric may not be compatible with a given boundary condition. Thus, the boundary operator BB defines a consistent gauge-invariant boundary condition

BϕM=0,B\phi\mid_{\partial M}=0, (94)

if and only if there exist boundary conditions for the corresponding a gauge parameter ξ\xi

Bξξ=0,B_{\xi}\xi=0, (95)

such that

Bδξϕ=0.B\delta_{\xi}\phi=0. (96)

This condition ensures the validity of the one-loop calculation of the gauge invariance with the Faddeev-Popov trick. Now we revisit our problem. In our calculation we impose the Neumann or the Dirichlet conditions for all fields including ghost fields. Let us check if this is reasonable or not. Firstly, we consider the Neumann case. Note that we now split the metric into the background AdS Poincare metric gμνg_{\mu\nu} and the metric fluctuation hμνh_{\mu\nu}. We impose the Neumann B.C. on hijh_{ij}:

xhijx=0=0,\partial_{x}h_{ij}\mid_{x=0}=0, (97)

where i,ji,j represents the tangential direction along the brane. This comes from the original condition Kab=0.K_{ab}=0. The symmetric traceless tensor ϕμν\phi_{\mu\nu} and trace part ϕ\phi are given by

ϕμν=hμν13gμνϕ,ϕ=hρρ.\begin{array}[]{cc}\phi_{\mu\nu}=h_{\mu\nu}-\frac{1}{3}g_{\mu\nu}\phi,\\ \phi=h_{\rho}^{\rho}.\end{array} (98)

Therefore, we should also impose the Neumann B.C. for these fields:

xϕijx=0=0,xϕx=0=0.\begin{array}[]{cc}\partial_{x}\phi_{ij}\mid_{x=0}=0,\\ \partial_{x}\phi\mid_{x=0}=0.\end{array} (99)

To see the condition for the ghost field we remember that it generates a gauge transformation for the metric:

hμνhμν+μην+νημ.h_{\mu\nu}\rightarrow h_{\mu\nu}+\nabla_{\mu}\eta_{\nu}+\nabla_{\nu}\eta_{\mu}. (100)

Let us check the gauge invariance of the Neumann B.C. The condition for the ghost field is

x(iηj+jηi)=0.\partial_{x}(\nabla_{i}\eta_{j}+\nabla_{j}\eta_{i})=0. (101)

Since the Christoffel symbols are functions of yy, we can satisfy this equation if we impose the Neumann B.C. for the ghost vector field ηi\eta_{i} and the anti-ghost vector field ηi¯\overline{\eta_{i}}.

Next, we move to the components in the normal direction. If we allow the boundary to fluctuate infinitesimally along the xx-direction, then we should impose the Neumann boundary condition for ηx\eta_{x} and ηx¯\overline{\eta_{x}}:

xηxx=0=0,xηx¯x=0=0.\begin{array}[]{cc}\partial_{x}\eta_{x}\mid_{x=0}=0,\\ \partial_{x}\overline{\eta_{x}}\mid_{x=0}=0.\end{array} (102)

Additionally, the BRST variation for ημ¯\overline{\eta_{\mu}} is given by

δημ¯=νhμν12μϕ.\delta\overline{\eta_{\mu}}=\nabla^{\nu}h_{\mu\nu}-\frac{1}{2}\partial_{\mu}\phi. (103)

This variation should also satisfy (102). Thus we can get the boundary condition of the metric along the normal direction:

xνhμνx=0=0.\partial_{x}\nabla_{\nu}h^{\mu\nu}\mid_{x=0}=0. (104)

Since the Christoffel symbols are only functions of yy, we can satisfy the above equation if we impose

xhμνx=0=0.\partial_{x}h_{\mu\nu}\mid_{x=0}=0. (105)

This is what we explicitly assumed in section 3. However, we can consider one more possible boundary condition. If we strictly fix the boundary to be on x=0x=0, then we should impose the Dirichlet boundary condition for ηx\eta_{x} and ηx¯\overline{\eta_{x}}:

ηxx=0=0,ηx¯x=0=0.\begin{array}[]{cc}\eta_{x}\mid_{x=0}=0,\\ \overline{\eta_{x}}\mid_{x=0}=0.\end{array} (106)

Correspondingly the BRST variation of the ghost field changes as

δημ¯=νhμν12μϕ=0,\delta\overline{\eta_{\mu}}=\nabla^{\nu}h_{\mu\nu}-\frac{1}{2}\partial_{\mu}\phi=0, (107)

at the boundary x=0x=0. This equation determines the boundary condition for the metric along xx direction.

Next, we consider the Dirichlet case. For the tangential direction we should impose the Dirichlet B.C.

hij=0,ϕij=ϕ=0,ηi=ηi¯=0,\begin{array}[]{cc}h_{ij}=0,\\ \phi_{ij}=\phi=0,\\ \eta_{i}=\overline{\eta_{i}}=0,\end{array} (108)

at the boundary x=0x=0. If we require that the gauge transformation should vanish at x=0x=0, then we get

ηxx=0=0,ηx¯x=0=0.\begin{array}[]{cc}\eta_{x}\mid_{x=0}=0,\\ \overline{\eta_{x}}\mid_{x=0}=0.\end{array} (109)

The BRST variation gives additional constraints on the metric

δημ¯=νhμν12μϕ=0.\delta\overline{\eta_{\mu}}=\nabla^{\nu}h_{\mu\nu}-\frac{1}{2}\partial_{\mu}\phi=0. (110)

This result is previously discussed in (Witten:2018lgb, ) and is somewhat remarkable; in the Neumann case we show that we can impose the Neumann condition for all fields along the xx-direction at the boundary. However, in the Dirichlet case we must impose the Neumann like boundary condition for the metric as in (110). Therefore, our calculation in section 3 in the Dirichlet case is not BRST invariant because we previously imposed the Dirichlet boundary condition for all the fields and all the components at the boundary. For the completion of classifying the boundary condition we consider one more case. If we allow the boundary to fluctuate along the xx direction, we get

xηx=xηx¯=0,\partial_{x}\eta_{x}=\partial_{x}\overline{\eta_{x}}=0, (111)

at the boundary. Then, BRST variation gives

x(νhμν12νϕ)=0,\partial_{x}\left(\nabla_{\nu}h^{\mu\nu}-\frac{1}{2}\partial^{\nu}\phi\right)=0, (112)

at the boundary. However, in the Dirichlet case we should consider one more problem: the ellipticity of the differential operators. In (Witten:2018lgb, ), the author discussed that Euclidean linearized gravity with purely the Dirichlet B.C. is not elliptic and hence perturbatively ill-defined. We note that in the AdS/CFT case we can allow the Dirichlet B.C. up to the Weyl transformation of the metric and this B.C. is elliptic (Witten:2018lgb, ). As a consistency check let us consider the ellipticity of the Neumann B.C. at the level of (Witten:2018lgb, ). Now we impose the Neumann B.C. on all the components of the metric. Then the metric can be written as

hμν=ζμνcos(kxx)exp(ikixi).h_{\mu\nu}=\zeta_{\mu\nu}\cos\left(k_{x}x\right)\exp\left(ik_{i}x^{i}\right). (113)

If we differentiate with respect to the xx, then at the boundary it vanishes automatically.

In the Dirichlet case, we did not notice any pathology in our calculation of the partition function. However, we already know that this boundary condition is not elliptic. Indeed, we can see the breakdown of the ellipticity in a similar way to the above case. We can take the Fourier transformation of the kernel and xx dependence comes from exp(ikx)\exp\left(ikx\right). Then, the above argument shows that in the Dirichlet case the B.C. is not elliptic. We expect that in our calculation the infinitely many zero-modes are hidden in our regularization by the zeta function.

We summarize the above discussion. Firstly in both the Neumann and the Dirichlet case we have two sets of boundary conditions for the normal component of the vector fields like in (102) and (106). We found that our calculation in section 3 will be consistent with BRST invariance for the Neumann boundary condition on all the fields and all the components. On the other hand, if we impose the Dirichlet B.C. on all the components of the metric, then the differential operator is not elliptic, and thus it is perturbatively ill-defined. However, in the Neumann case we can check that the differential operator is elliptic at the level of (Witten:2018lgb, ).

IV.4 SL(2,)SL(2,\mathbb{Z}) summation of the partition function

Since we derived the one-loop partition function in section 3, here we would like to consider taking SL(2,)SL(2,\mathbb{Z}) summation as in (Dijkgraaf:2000fq, ; Maloney:2007ud, ). At first sight this seems to be hard because the first term in (LABEL:4.5) cannot be expanded as a polynomial of qq and q¯\overline{q}. However, physically we remember that we can set q=q¯q=\overline{q} , so we will use (87) and (93).

Firstly, let us consider the Neumann case. In section 1 we calculated the tree-level partition function of the BTZ black hole. To derive the tree-level partition function of the thermal AdS, we can change the modular parameter as τ1τ\tau\rightarrow-\frac{1}{\tau}. Therefore, partition function of the thermal AdS is given by

Z0,1(τ)\displaystyle Z_{0,1}(\tau) =\displaystyle= |qq¯|k2(m=21|1qm|)\displaystyle\left|q\overline{q}\right|^{-\frac{k}{2}}\left(\!\prod_{m=2}^{\infty}\frac{1}{\left|1-q^{m}\right|}\right) (114)
(l=01ql+2q¯l+11ql+1q¯l+21ql+2q¯l1qlq¯l+2)\displaystyle\cdot\left(\!\prod_{l=0}^{\infty}\frac{\sqrt{1-q^{l+2}\overline{q}^{l+1}}\sqrt{1-q^{l+1}\overline{q}^{l+2}}}{\sqrt{1-q^{l+2}\overline{q}^{l}}\sqrt{1-q^{l}\overline{q}^{l+2}}}\right)
=\displaystyle= qkl=01(1q2l+2)2,\displaystyle q^{-k}\prod_{l=0}^{\infty}\frac{1}{\left(1-q^{2l+2}\right)^{2}},

where k=116Gk=\frac{1}{16G}. The whole classical Einstein solution with the boundary torus is obtained by implementing the modular transformation:

τγτ=aτ+bcτ+d,\tau\rightarrow\gamma\tau=\frac{a\tau+b}{c\tau+d}, (115)

where γSL(2,)/{±1}\gamma\in SL(2,\mathbb{Z})/\{\pm 1\}. Hence, here we can take c>0c>0 and sum over (c,d)\left(c,d\right), which are relatively prime integers. The full partition function can be written as

Z(τ)\displaystyle Z(\tau) =\displaystyle= (c,d)qkl=01(1q2l+2)2\displaystyle\underset{(c,d)}{\sum}q^{-k}\prod_{l=0}^{\infty}\frac{1}{\left(1-q^{2l+2}\right)^{2}} (116)
=\displaystyle= (c,d)qk+16η(2τ)2\displaystyle\underset{(c,d)}{\sum}\frac{q^{-k+\frac{1}{6}}}{\eta(2\tau)^{2}}
=\displaystyle= 1(2τ)η(2τ)2(c,d)((2τ)qk+16)γ\displaystyle\frac{1}{\sqrt{\Im(2\tau)}\eta(2\tau)^{2}}\underset{(c,d)}{\sum}\left(\sqrt{\Im(2\tau)}q^{-k+\frac{1}{6}}\right)\mid_{\gamma}
=\displaystyle= E(τ;k2112,0)(2τ)η(2τ)2,\displaystyle\frac{E(\tau;\frac{k}{2}-\frac{1}{12},0)}{\sqrt{\Im(2\tau)}\eta(2\tau)^{2}},

where we define E(τ;n,m)=(c,d)((2τ)qnq¯m)E(\tau;n,m)=\underset{(c,d)}{\sum}(\sqrt{\Im(2\tau)}q^{n}\overline{q}^{m}). Here we use the modular invariance of (2τ)η(2τ)2\sqrt{\Im(2\tau)}\eta(2\tau)^{2}.

Next, we consider the Dirichlet case. As in the Neumann case, the partition function becomes

Z(τ)\displaystyle Z(\tau) =\displaystyle= (c,d)qk112η(2τ)2η(τ)2(1q)2\displaystyle\underset{(c,d)}{\sum}q^{-k-\frac{1}{12}}\frac{\eta(2\tau)^{2}}{\eta(\tau)^{2}}(1-q)^{2}
=\displaystyle= η(2τ)2(2τ)η(τ)2(τ)(c,d)(qk112(1q)2(τ)(2τ))γ.\displaystyle\frac{\eta(2\tau)^{2}\sqrt{\Im(2\tau)}}{\eta(\tau)^{2}\sqrt{\Im(\tau)}}\underset{(c,d)}{\sum}(q^{-k-\frac{1}{12}}(1-q)^{2}\frac{\sqrt{\Im(\tau)}}{\sqrt{\Im(2\tau)}})\mid_{\gamma}.

Though we can continue the calculation as in (Maloney:2007ud, ), we stop here and briefly discuss how to treat this partition function. Firstly, this Poincare series is divergent, so we need some regularization. One possible way is that we consider the following convergent series

(c,d)((2τ))sqk+16.\underset{(c,d)}{\sum}\left(\Im(2\tau)\right)^{s}q^{-k+\frac{1}{6}}. (118)

This series is convergent for (s)>1\Re(s)>1. However, as is presented in (Maloney:2007ud, ), we can take an analytic continuation to (s)1\Re(s)\leq 1 and especially at s=12s=\frac{1}{2} this series gets regular. We expect that the spectrum has a negative density of states as is the case in pure gravity (Benjamin:2019stq, ; Benjamin:2020mfz, ). It will be an interesting future direction to specify the black-hole microstates using the modularity of the theory.

IV.5 One-loop exactness of the partition function

One-loop exactness of the partition function is an important problem as in any other theory. Pure gravity in three dimensions is known to be one-loop exact because the bulk diffeomorphism is governed by the Virasoro symmetry, hence the partition function does not suffer any quantum correction other than the Virasoro descendants. We expect the same property in this study, though we have not explicitly shown it. In the two-dimensional BCFT cases, we can use the double trick as explained in (Polchinski:1998rq, ), which leads to the identification

Ln=Ln¯.L_{n}=\overline{L_{-n}}. (119)

Therefore, a half of the Virasoro symmetry or only the chiral mode survives. This also guarantees that if we can properly calculate, respecting the BRST invariance, then the partition function of our case will be one-loop exact.

V Conclusions and Discussions

In this paper we studied the partition function in the three dimensional AdS/BCFT model with one loop quantum corrections. First we calculated the tree-level partition function of the BTZ black hole in the presence of the end of the world brane with arbitrary tension. The result matches with the previous results in the non-rotating case. At the one-loop level, we calculated the thermal AdS partition function with a tensionless brane. We found that the result depends heavily on the choice of sets of boundary conditions. We explicitly calculated the partition function in the case where all the components of all the fields satisfy the Neumann boundary condition and also in another case where all the components of all the fields satisfy the Dirichlet boundary condition. In the Neumann case, we expect that the system will be consistent with the BRST quantization. We found that the partition function actually contains remnants of ghost fields. Note that this ghost mode does not arise from a wrong sign of kinetic terms but does from a fermionic spin one field of the BRST ghost. However if we consider the physically sensible profile of end of the world branes, we need to set q=q¯q=\overline{q}. This leads to a partition function with a healthy spectrum such that the number of states at each energy level is non-negative. This suggests that the AdS/BCFT formulation with the Neumann boundary condition is consistent at the one-loop level.

In the Dirichlet case, on the other hand, we also encounter unphysical modes. There are other possible sets of boundary conditions, namely, mixed boundary conditions for each component. However, in this paper we have not calculated them due to its computational difficulty. This will be one of our future problems. It is also possible that there might be sensible models of the gravity with boundaries by adding a suitable set of matter fields. For example, refer to (vanNieuwenhuizen:2005kg, ) for an argument using supersymmetry transformations. Therefore, it will be interesting to specify the minimal set of boundary conditions and matter fields to make the theory well-defined. For another future direction it will be important to specify what kind of mode localizes on the brane or decouples from the bulk. As another route to gravity, it may be interesting to understand our problem in the Chern-Simons formulation. We expect that in this setup we can understand the edge modes more clearly because we can only consider the boundary conditions for gauge fields.

In order to derive the full partition function, we should sum over all possible geometries with a given boundary condition (Maldacena:2004rf, ). In this work, the bulk geometry is a half of the solid torus, therefore we can sum over the torus moduli SL(2,)SL(2,\mathbb{Z}). As we discussed briefly in section 4, the computation is similar to the one in (Maloney:2007ud, ). It will be an interesting direction to develop this calculation further and analyze the spectrum using modular bootstrap in BCFTs as in the pure gravity case (Benjamin:2020mfz, ; Benjamin:2019stq, ).

Acknowledgements.
We thank T.Takayanagi for correcting some errors in manuscripts and encouraging me. We are also grateful to T.Nishioka, T.Ugajin, and D.Vassilevich for valuable comments and discussions.

Appendix A: Derivatives of a geodesic distance

Here we present the calculation of the derivatives of uu. Ordinary contributions are given as follows:

yxu=cos(θ)(eβcos(ϕα)cos(ϕ))ρ2eβsin3(θ),yηu=cos(θ)(eβsin(ϕα)sin(ϕ))ρ2eβsin3(θ),xyu=cos(θ)(eβcos(ϕα)+cos(ϕ))ρ2e2βsin3(θ),ηyu=cos(θ)(eβsin(ϕα)+sin(ϕ))ρ2e2βsin3(θ),yyu=(2coshβcoshr)ρ2eβsin2(θ),xxu=1ρ2eβsin2(θ),ηηu=1ρ2eβsin2(θ),xηu=ηxu=0,yu=1ρsinθ(eβcoshr),xu=cos(θ)(eβcos(ϕα)cos(ϕ))ρeβsin2(θ),ηu=cos(θ)(eβsin(ϕα)sin(ϕ))ρeβsin2(θ),yu=1ρsinθeβ(eβcoshr),xu=cos(θ)(eβcos(ϕα)cos(ϕ))ρeβsin2(θ),ηu=cos(θ)(eβsin(ϕα)sin(ϕ))ρeβsin2(θ).\begin{array}[]{cc}\partial_{y}\partial_{x^{\prime}}u=-\frac{\cos(\theta)(e^{\beta}\cos(\phi-\alpha)-\cos(\phi))}{\rho^{2}e^{\beta}\sin^{3}(\theta)},\\ \partial_{y}\partial_{\eta^{\prime}}u=-\frac{\cos(\theta)(e^{\beta}\sin(\phi-\alpha)-\sin(\phi))}{\rho^{2}e^{\beta}\sin^{3}(\theta)},\\ \partial_{x}\partial_{y^{\prime}}u=-\frac{\cos(\theta)(-e^{\beta}\cos(\phi-\alpha)+\cos(\phi))}{\rho^{2}e^{2\beta}\sin^{3}(\theta)},\\ \partial_{\eta}\partial_{y^{\prime}}u=-\frac{\cos(\theta)(-e^{\beta}\sin(\phi-\alpha)+\sin(\phi))}{\rho^{2}e^{2\beta}\sin^{3}(\theta)},\\ \partial_{y}\partial_{y^{\prime}}u=-\frac{(2\cosh\beta-\cosh r)}{\rho^{2}e^{\beta}\sin^{2}(\theta)},\\ \partial_{x}\partial_{x^{\prime}}u=-\frac{1}{\rho^{2}e^{\beta}\sin^{2}(\theta)},\\ \partial_{\eta}\partial_{\eta^{\prime}}u=-\frac{1}{\rho^{2}e^{\beta}\sin^{2}(\theta)},\\ \partial_{x}\partial_{\eta^{\prime}}u=\partial_{\eta}\partial_{x^{\prime}}u=0,\\ \partial_{y}u=\frac{1}{\rho\sin\theta}(e^{-\beta}-\cosh r),\\ \partial_{x}u=-\frac{\cos(\theta)(e^{\beta}\cos(\phi-\alpha)-\cos(\phi))}{\rho e^{\beta}\sin^{2}(\theta)},\\ \partial_{\eta}u=-\frac{\cos(\theta)(e^{\beta}\sin(\phi-\alpha)-\sin(\phi))}{\rho e^{\beta}\sin^{2}(\theta)},\\ \partial_{y^{\prime}}u=\frac{1}{\rho\sin\theta e^{\beta}}(e^{\beta}-\cosh r),\\ \partial_{x^{\prime}}u=\frac{\cos(\theta)(e^{\beta}\cos(\phi-\alpha)-\cos(\phi))}{\rho e^{\beta}\sin^{2}(\theta)},\\ \partial_{\eta^{\prime}}u=\frac{\cos(\theta)(e^{\beta}\sin(\phi-\alpha)-\sin(\phi))}{\rho e^{\beta}\sin^{2}(\theta)}.\end{array} (120)

The mirror image contributions are given by

yxu=cos(θ)(eβcos(ϕα)+cos(ϕ))ρ2eβsin3(θ),yηu=cos(θ)(eβsin(ϕα)sin(ϕ))ρ2eβsin3(θ),xyu=cos(θ)(eβcos(ϕα)+cos(ϕ))ρ2e2βsin3(θ),ηyu=cos(θ)(eβsin(ϕα)+sin(ϕ))ρ2e2βsin3(θ),yyu=(2coshβcoshr)ρ2eβsin2(θ),xxu=1ρ2eβsin2(θ),ηηu=1ρ2eβsin2(θ),xηu=ηxu=0,yu=1ρsinθ(eβcoshr),xu=cos(θ)(eβcos(ϕα)+cos(ϕ))ρeβsin2(θ),ηu=cos(θ)(eβsin(ϕα)sin(ϕ))ρeβsin2(θ),yu=1ρsinθeβ(eβcoshr),xu=cos(θ)(eβcos(ϕα)+cos(ϕ))ρeβsin2(θ),ηu=cos(θ)(eβsin(ϕα)sin(ϕ))ρeβsin2(θ).\begin{array}[]{cc}\partial_{y}\partial_{x^{\prime}}u=-\frac{\cos(\theta)(e^{\beta}\cos(\phi-\alpha)+\cos(\phi))}{\rho^{2}e^{\beta}\sin^{3}(\theta)},\\ \partial_{y}\partial_{\eta^{\prime}}u=-\frac{\cos(\theta)(e^{\beta}\sin(\phi-\alpha)-\sin(\phi))}{\rho^{2}e^{\beta}\sin^{3}(\theta)},\\ \partial_{x}\partial_{y^{\prime}}u=\frac{\cos(\theta)(e^{\beta}\cos(\phi-\alpha)+\cos(\phi))}{\rho^{2}e^{2\beta}\sin^{3}(\theta)},\\ \partial_{\eta}\partial_{y^{\prime}}u=-\frac{\cos(\theta)(-e^{\beta}\sin(\phi-\alpha)+\sin(\phi))}{\rho^{2}e^{2\beta}\sin^{3}(\theta)},\\ \partial_{y}\partial_{y^{\prime}}u=-\frac{(2\cosh\beta-\cosh r)}{\rho^{2}e^{\beta}\sin^{2}(\theta)},\\ \partial_{x}\partial_{x^{\prime}}u=-\frac{1}{\rho^{2}e^{\beta}\sin^{2}(\theta)},\\ \partial_{\eta}\partial_{\eta^{\prime}}u=-\frac{1}{\rho^{2}e^{\beta}\sin^{2}(\theta)},\\ \partial_{x}\partial_{\eta^{\prime}}u=\partial_{\eta}\partial_{x^{\prime}}u=0,\\ \partial_{y}u=\frac{1}{\rho\sin\theta}(e^{-\beta}-\cosh r),\\ \partial_{x}u=-\frac{\cos(\theta)(e^{\beta}\cos(\phi-\alpha)+\cos(\phi))}{\rho e^{\beta}\sin^{2}(\theta)},\\ \partial_{\eta}u=-\frac{\cos(\theta)(e^{\beta}\sin(\phi-\alpha)-\sin(\phi))}{\rho e^{\beta}\sin^{2}(\theta)},\\ \partial_{y^{\prime}}u=\frac{1}{\rho\sin\theta e^{\beta}}(e^{\beta}-\cosh r),\\ \partial_{x^{\prime}}u=\frac{\cos(\theta)(e^{\beta}\cos(\phi-\alpha)+\cos(\phi))}{\rho e^{\beta}\sin^{2}(\theta)},\\ \partial_{\eta^{\prime}}u=\frac{\cos(\theta)(e^{\beta}\sin(\phi-\alpha)-\sin(\phi))}{\rho e^{\beta}\sin^{2}(\theta)}.\end{array} (121)

Appendix B: Calculation in the Dirichlet case

Let us consider the case where we impose the Dirichlet B.C. on all the components of all the fields. In this case we can flip the sign of the mirror image contributions in the calculation of the heat kernel. For the scalar part, we get

Sscalar(1)\displaystyle S_{scalar}^{(1)} =\displaystyle= 12+0dttthermalAdSd3x𝑛g\displaystyle\frac{1}{2}\int_{+0}^{\infty}\frac{dt}{t}\int_{thermal\,AdS}d^{3}x\underset{n}{\sum}\sqrt{g} (122)
(K(t,x,γnx)K(t,xmirror,γnx))\displaystyle\cdot\left(K^{\mathbb{\mathbb{H}}}(t,x,\gamma^{n}x)-K^{\mathbb{\mathbb{H}}}(t,x^{mirror},\gamma^{n}x)\right)
=\displaystyle= n=1|q|n(1+m2+1)n|1qn|2n=1|q|n(1+m2+1)n(1|q|2n).\displaystyle\sum_{n=1}^{\infty}\frac{\left|q\right|^{n\left(1+\sqrt{m^{2}+1}\right)}}{n\left|1-q^{n}\right|^{2}}-\sum_{n=1}^{\infty}\frac{\left|q\right|^{n\left(1+\sqrt{m^{2}+1}\right)}}{n\left(1-\left|q\right|^{2n}\right)}.

The vector and symmetric traceless part can also be calculated

Svector(1)\displaystyle S_{vector}^{(1)} =\displaystyle= 0dttd3xg𝑛gμρ(γnx)νxρ\displaystyle\int_{0}^{\infty}\frac{dt}{t}\int d^{3}x\sqrt{g}\underset{n}{\sum}g^{\mu\rho}\frac{\partial(\gamma^{n}x)^{\nu^{\prime}}}{\partial x^{\rho}} (123)
(Kμν(t,r(x,γnx))Kμν(t,r(xmirror,γnx)))\displaystyle\cdot\left(K_{\mu\nu^{\prime}}^{\mathbb{\mathbb{H}}}(t,r(x,\gamma^{n}x))-K_{\mu\nu^{\prime}}^{\mathbb{\mathbb{H}}}(t,r(x_{mirror},\gamma^{n}x))\right)
=\displaystyle= n=1qn+q¯n+|q|2nn|1qn|2n=1qn+q¯n+|q|2nn(1|q|2n),\displaystyle\sum_{n=1}^{\infty}\frac{q^{n}+\overline{q}^{n}+\left|q\right|^{2n}}{n\left|1-q^{n}\right|^{2}}-\sum_{n=1}^{\infty}\frac{q^{n}+\overline{q}^{n}+\left|q\right|^{2n}}{n(1-\left|q\right|^{2n})},

and

Sspin2(1)\displaystyle S_{spin-2}^{(1)} =\displaystyle= 0dttd3xg𝑛gμρ(γnx)μxρgνσ(γnx)νxσ\displaystyle\int_{0}^{\infty}\frac{dt}{t}\int d^{3}x\sqrt{g}\underset{n}{\sum}g^{\mu\rho}\frac{\partial(\gamma^{n}x)^{\mu^{\prime}}}{\partial x^{\rho}}g^{\nu\sigma}\frac{\partial(\gamma^{n}x)^{\nu^{\prime}}}{\partial x^{\sigma}} (124)
(Kμμ,νν(t,r(x,γnx))Kμμ,νν(t,r(xmirror,γnx)))\displaystyle\cdot\left(\!K_{\mu\mu^{\prime},\nu\nu^{\prime}}^{\mathbb{\mathbb{H}}}(t,r(x,\gamma^{n}x))\!-\!K_{\mu\mu^{\prime},\nu\nu^{\prime}}^{\mathbb{\mathbb{H}}}\!(t,r(x_{mirror},\gamma^{n}x))\!\right)
=\displaystyle= n=1(1n(coshβcosα)1nsinhβ)\displaystyle\sum_{n=1}^{\infty}\left(\frac{1}{n(\cosh\beta-\cos\alpha)}-\frac{1}{n\sinh\beta}\right)
(eβcos2α+e2βcosα+e5β2).\displaystyle\cdot\left(e^{-\beta}\cos 2\alpha+e^{-2\beta}\cos\alpha+\frac{e^{-\sqrt{5}\beta}}{2}\right).

Finally the gravity partition function becomes

logZgravity1loop\displaystyle logZ_{gravity}^{1-loop} =\displaystyle= logdetΔgravitondetΔscalardetΔvector\displaystyle-\log\frac{\sqrt{\det\Delta^{graviton}\det\Delta^{scalar}}}{\det\Delta^{vector}}
=\displaystyle= n=2log|1qn|22\displaystyle-\sum_{n=2}^{\infty}\frac{\log\left|1-q^{n}\right|^{2}}{2}
\displaystyle- n=112n11|q|2n(q2n(1q¯n)+q¯2n(1qn)).\displaystyle\sum_{n=1}^{\infty}\frac{1}{2n}\frac{1}{1-\left|q\right|^{2n}}(q^{2n}(1-\overline{q}^{n})+\overline{q}^{2n}(1-q^{n})).

References