This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

One-level density of quadratic twists of LL-functions

Peng Gao and Liangyi Zhao
Abstract.

In this paper, we investigate the one-level density of low-lying zeros of quadratic twists of automorphic LL-functions under the generalized Riemann hypothesis and the Ramanujan-Petersson conjecture. We improve upon the known results using only functional equations for quadratic Dirichlet LL-functions.

Mathematics Subject Classification (2010): 11M26, 11M50, 11F66

Keywords: one-level density, low-lying zeros, quadratic twists, automorphic LL-function

1. Introduction

According to the Langlands program (see [Langlands]), the most general LL-function is that attached to an automorphic representation of GLN\text{GL}_{N} over a number field, which in turn can be written as products of the LL-functions attached to cuspidal automorphic representations of GLM\text{GL}_{M} over \mathbb{Q}.

Let L(s,π)L(s,\pi) be the LL-function attached to an automorphic cuspidal representation π\pi of GLM\text{GL}_{M} over \mathbb{Q}. For (s)\Re(s) large enough, L(s,π)L(s,\pi) can be expressed as an Euler product of the form

L(s,π)=pL(s,πp)=pj=1M(1απ(p,j)ps)1.\displaystyle L(s,\pi)=\prod_{p}L(s,\pi_{p})=\prod_{p}\prod^{M}_{j=1}(1-\alpha_{\pi}(p,j)p^{-s})^{-1}.

The order of vanishing of L(s,π)L(s,\pi) at the central point has rich arithmetic applications as can be seen from the Birch and Swinnerton-Dyer conjecture on the rank of an elliptic curve. One way to address the non-vanishing issue is to apply the density conjecture of N. Katz and P. Sarnak [KS1, K&S], which suggests that the distribution of zeros near the central point of a family of LL-functions is the same as that of eigenvalues near 11 of a corresponding classical compact group. The truth of the density conjecture would imply that L(12,χ)0L(\tfrac{1}{2},\chi)\neq 0 for almost all quadratic Dirichlet characters χ\chi.

In this direction, it was estbalished unconditionally by K. Soundararajan [sound1] that L(12,χ8d)0L(\tfrac{1}{2},\chi_{8d})\neq 0 for at least 87.5% of odd square-free d0d\geq 0. Here and after, χd=(d)\chi_{d}=\left(\frac{d}{\cdot}\right) stands for the Kronecker symbol. Conditionally under the truth of the generalized Riemann hypothesis (GRH), A. E. Özluk and C. Snyder [O&S] computed the one level density for the family of quadratic Dirichlet LL-functions. Their result implies that, after optimizing the test function involved as done in [B&F, ILS], we have L(1/2,χd)0L(1/2,\chi_{d})\neq 0 for at least (19cot14)/16=94.27%(19-\cot\frac{1}{4})/16=94.27\ldots\% of the fundamental discriminants |d|X|d|\leq X.

The work of A. E. Özluk and C. Snyder has been extended by M. O. Rubinstein [Ru] to all nn-level densities for families of quadratic twists of automorphic LL-functions. In [Gao], the first-named author computed the nn-level densities for the family of quadratic Dirichlet LL-functions under GRH. In [G&Zhao2], the authors studied the one-level density for the family for quadratic twists of modular LL-functions under GRH. In [ER-G&R], A. Entin, E. Roditty-Gershon and Z. Rudnick considered the nn-level densities for the family for quadratic Dirichlet LL-functions over function field. For other works on the nn-level densities of families of quadratic twists of LL-functions and their relations to the random matrix theory, see [A&B, BFK21-1, B&F, MS, MS1, Miller1, FPS, FPS1, FPS2, HMM, HKS, G&Zhao4, G&Zhao5, G&Zhao6, G&Zhao9].

The aim of this paper to compute the one-level density for the family for quadratic twists of automorphic LL-functions under GRH. For this, we fix a self-contragredient representation π\pi of GLM\text{GL}_{M} over \mathbb{Q} so that π=π~\pi=\tilde{\pi}. As the cases of M=1,2M=1,2 have been studied in [O&S, G&Zhao2], we assume that M3M\geq 3. We also assume the Ramanujan-Petersson conjecture, which implies that

(1.1) |απ(p,j)|1.|\alpha_{\pi}(p,j)|\leq 1.

The Rankin-Selberg symmetric square LL-function L(s,ππ)L(s,\pi\otimes\pi) factors as the product of the symmetric and exterior square LL-functions ( see [BG, p. 139]):

(1.2) L(s,ππ)=L(s,2)L(s,2),\displaystyle L(s,\pi\otimes\pi)=L(s,\vee^{2})L(s,\wedge^{2}),

and has a simple pole at s=1s=1 which is carried by one of the two factors. Write the order of the pole of L(s,2)L(s,\wedge^{2}) as (δ(π)+1)/2(\delta(\pi)+1)/2 so that δ(π)=±1\delta(\pi)=\pm 1. The order of the pole of L(s,2)L(s,\vee^{2}) then equals to (1δ(π))/2(1-\delta(\pi))/2. In this paper, we restrict our attention to those π\pi with δ(π)=1\delta(\pi)=-1. The case in which δ(π)=1\delta(\pi)=1 will be discussed later at the end of this section.

We are interested in the following family of quadratic twists of LL-functions given by

={L(s,πχ8d):d positive, odd and square-free}.\displaystyle\mathcal{F}=\big{\{}L(s,\pi\otimes\chi_{8d}):d\text{ positive, odd and square-free}\big{\}}.

Note that χ8d\chi_{8d} is a primitive quadratic Dirichlet character modulo 8d8d when dd is positive, odd and square-free. Any L(s,πχ8d)L(s,\pi\otimes\chi_{8d})\in\mathcal{F} has an Euler product given by (see [Ru, Section 3.6])

L(s,πχ8d)=pj=1M(1χ8d(p)απ(p,j)ps)1.\displaystyle L(s,\pi\otimes\chi_{8d})=\prod_{p}\prod^{M}_{j=1}(1-\chi_{8d}(p)\alpha_{\pi}(p,j)p^{-s})^{-1}.

As π=π~\pi=\tilde{\pi}, L(s,πχ8d)L(s,\pi\otimes\chi_{8d}) has a functional equation of the form

Λ(s,πχ8d):=\displaystyle\Lambda(s,\pi\otimes\chi_{8d}):= πMs/2j=1MΓ(s+μπχ8d(j)2)L(s,πχ8d)=ϵ(s,πχ8d)Λ(1s,πχ8d),\displaystyle\pi^{-Ms/2}\prod^{M}_{j=1}\Gamma\Big{(}\frac{s+\mu_{\pi\otimes\chi_{8d}}(j)}{2}\Big{)}L(s,\pi\otimes\chi_{8d})=\epsilon(s,\pi\otimes\chi_{8d})\Lambda(1-s,\pi\otimes\chi_{8d}),

where μπχ8d(j)\mu_{\pi\otimes\chi_{8d}}(j)\in\mathbb{C} and satisfies (μπχ8d(j))0\Re(\mu_{\pi\otimes\chi_{8d}}(j))\geq 0 since we are assuming GRH.

Moreover, as δ(π)=1\delta(\pi)=-1, we have

ϵ(s,πχ8d)=Qπχ8ds+1/2,\displaystyle\epsilon(s,\pi\otimes\chi_{8d})=Q^{-s+1/2}_{\pi\otimes\chi_{8d}},

where Qπχ8dQ_{\pi\otimes\chi_{8d}} is the conductor of L(s,πχ8d)L(s,\pi\otimes\chi_{8d}) and it is known (see [M&T-B, Section 2]) that

(1.3) Qπχ8ddM.\displaystyle Q_{\pi\otimes\chi_{8d}}\ll d^{M}.

As we assume GRH, we may write the zeros of Λ(s,πχ8d)\Lambda(s,\pi\otimes\chi_{8d}) as 12+iγπχ8d,j\tfrac{1}{2}+i\gamma_{\pi\otimes\chi_{8d},j} with γπχ8d,j\gamma_{\pi\otimes\chi_{8d},j}\in\mathbb{R} and we order them as

γπχ8d,2γπχ8d,1<0γπχ8d,1γπχ8d,2.\ldots\leq\gamma_{\pi\otimes\chi_{8d},-2}\leq\gamma_{\pi\otimes\chi_{8d},-1}<0\leq\gamma_{\pi\otimes\chi_{8d},1}\leq\gamma_{\pi\otimes\chi_{8d},2}\leq\ldots.

Let XX be a large real number and we normalize the zeros by defining

γ~πχ8d,j=Mγπχ8d,j2πlogX.\displaystyle\tilde{\gamma}_{\pi\otimes\chi_{8d},j}=\frac{M\gamma_{\pi\otimes\chi_{8d},j}}{2\pi}\log X.

We define for a fixed even Schwartz class function ϕ\phi,

S(χ8d;π,X,ϕ)=jϕ(γ~πχ8d,j).S(\chi_{8d};\pi,X,\phi)=\sum_{j}\phi(\tilde{\gamma}_{\pi\otimes\chi_{8d},j}).

We shall regard the function ϕ\phi in the above expression as a test function and we also fix a non-zero, non-negative function ww compactly supported on +\mathbb{R}^{+}, which we shall regard as a weight function. We then define the one-level density of the family \mathcal{F} with respect to ww by

(1.4) D(X;ϕ,w,):=1W(X)(d,2)=1w(dX)S(χ8d;π,X,ϕ),\displaystyle D(X;\phi,w,\mathcal{F}):=\frac{1}{W(X)}\sideset{}{{}^{*}}{\sum}_{(d,2)=1}w\left(\frac{d}{X}\right)S(\chi_{8d};\pi,X,\phi),

where we use \sum^{*} to denote a sum over square-free integers throughout the paper and W(X)W(X) is the total weight given by

W(X)=(d,2)=1w(dX).\displaystyle W(X)=\sideset{}{{}^{*}}{\sum}_{(d,2)=1}w\left(\frac{d}{X}\right).

We evaluate the one-level density D(X;ϕ,w,)D(X;\phi,w,\mathcal{F}) asymptotically in this paper and our result is as follows.

Theorem 1.1.

Suppose that GRH and the Ramanujan-Petersson conjecture are true. Let M2M\geq 2 and let π\pi be a fixed self-contragredient representation of GLM\text{GL}_{M} over \mathbb{Q} such that δ(π)=1\delta(\pi)=-1. Let ww be a non-negative function that is not identically zero and compactly supported on +\mathbb{R}^{+} and let ϕ(x)\phi(x) be an even Schwartz function whose Fourier transform ϕ^(u)\hat{\phi}(u) has compact support in (2/M,2/M)(-2/M,2/M). Then we have

(1.5) limX+D(X;ϕ,w,)=ϕ(x)WUSp(x)dx,whereWUSp(x)=1sin(2πx)2πx.\displaystyle\lim_{X\rightarrow+\infty}D(X;\phi,w,\mathcal{F})=\int\limits_{\mathbb{R}}\phi(x)W_{USp}(x)\mathrm{d}x,\quad\mbox{where}\quad W_{USp}(x)=1-\frac{\sin(2\pi x)}{2\pi x}.

Note that the kernel WUSpW_{USp} in the integral of (1.5) is the same one appearing on the random matrix theory side, when studying the eigenvalues of unitary symplectic matrices. This implies that the family \mathcal{F} of quadratic twists of LL-functions is a symplectic family and hence verifies the density conjecture of N. Katz and P. Sarnak for this family when the support of the Fourier transform of the test function ϕ\phi is contained in the interval (2/M,2/M)(-2/M,2/M). Our result improves upon a result of Rubinstein given in [Ru, Theorem 3.2] by doubling the size of the allowable support of ϕ^\hat{\phi} in the case of the one-level density.

Theorem 1.1 can be regarded as a generalization of the result of Özluk and Snyder [O&S] on the one-level density of the family of quadratic Dirichlet LL-functions and Theorem 1.1 of [G&Zhao2] on the one-level density of the family of quadratic twists of modular LL-functions. A key step in the proofs of all cases is to estimate certain character sums. The treatments in [O&S] and [G&Zhao2] use Poisson summations to convert the character sums into corresponding dual sums (see the work of K. Soundararajan [sound1] for a systematic development of this Poisson summation formula). Our proof of Theorem 1.1 is different as we only makes use of functional equations of the LL-functions involved, although we shall call this approach Poisson summation as well. In fact, our approach here is motivated by a Poisson summation formula over number fields established by L. Goldmakher and B. Louvel in [G&L, Lemma 3.2]. The equivalence of this version of Poisson summation formula and that developed by Soundararajan [sound1] over primitive Hecke character of the Gaussian filed (i)\mathbb{Q}(i) has already been pointed out in [Gao2, Section 2.6]. More generally, one may evaluate the expression for D(X;ϕ,w,)D(X;\phi,w,\mathcal{F}) in (1.4) by first applying the explicit formula given in Lemma 2.2 to convert the sum over zeros of LL-function into a sum over prime powers. The resulting double sum can then be viewed as a double Dirichlet series and the use of functional equations can be thought of as an effort to understand the analytical behavior of the double Dirichlet series. One may find in [DGH] a build-up of the theory of double Dirichlet series.

We remark here that Theorem 1.1 may be extended to the case in which δ(π)=1\delta(\pi)=1. This requires generalizing the Possion summation formula in Lemma 2.5 to smoothed character sums over arithmetic progressions. As noted in [Ru, pp. 173–176], the sign of the functional equation of L(s,πχd)L(s,\pi\otimes\chi_{d}) depends on dd lying in certain fixed arithmetic progressions.

2. Preliminaries

2.1. The Explicit Formula

Our approach in this paper relies on the following explicit formula given in [Ru, (3.65)], which essentially converts a sum over zeros of an LL-function to a sum over primes.

Lemma 2.2.

Let ϕ(x)\phi(x) be an even Schwartz function whose Fourier transform ϕ^(u)\hat{\phi}(u) has compact support. For any odd, positive and square-free integer dd, we have

(2.1) S(χ8d;π,X,ϕ)=ϕ(t)dt2MlogXm=1(Λ(m)aπ(m)mχ8d(m)ϕ^(logmMlogX))+O(1logX),\displaystyle S(\chi_{8d};\pi,X,\phi)=\int\limits^{\infty}_{-\infty}\phi(t)\mathrm{d}t-\frac{2}{M\log X}\sum^{\infty}_{m=1}\left(\frac{\Lambda(m)a_{\pi}(m)}{\sqrt{m}}\chi_{8d}(m)\hat{\phi}\left(\frac{\log m}{M\log X}\right)\right)+O\left(\frac{1}{\log X}\right),

where

aπ(pk)=j=1Mαπk(p,j).a_{\pi}(p^{k})=\sum^{M}_{j=1}\alpha^{k}_{\pi}(p,j).

Note that the Ramanujan-Petersson conjecture (1.1) implies that |aπ(pk)|M|a_{\pi}(p^{k})|\leq M for all pp and kk. It follows that the terms corresponding to m=pkm=p^{k} with k3k\geq 3 in (2.1) contributes O(1/(logX))O(1/(\log X)). Moreover, note that by [Levinson, Lemma 3.9],

p|8dlogpploglog(3d).\sum_{p|8d}\frac{\log p}{p}\ll\log\log(3d).

We then deduce that the terms corresponding to m=p2m=p^{2} in (2.1) can be written as

2MlogXpaπ(p2)logppϕ^(2logpMlogX)+O(loglog3dlogX).-\frac{2}{M\log X}\sum_{p}\frac{a_{\pi}(p^{2})\log p}{p}\hat{\phi}\left(\frac{2\log p}{M\log X}\right)+O\left(\frac{\log\log 3d}{\log X}\right).

To estimate the above sum, we note the Euler products for L(s,ππ)L(s,\pi\otimes\pi) and L(s,2)L(s,\vee^{2}) can be found in [R&S, (2.18)] and on [BG, p. 167], respectively. Thus, we see by (1.2) that if we write

(2.2) L(s,2)=pLp(s,2),andL(s,2)=pLp(s,2),\displaystyle L(s,\vee^{2})=\prod_{p}L_{p}(s,\vee^{2}),\quad\mbox{and}\quad L(s,\wedge^{2})=\prod_{p}L_{p}(s,\wedge^{2}),

then we have for unramified pp,

Lp(s,2)=\displaystyle L_{p}(s,\vee^{2})= 1ijM(1απ(p,i)απ(p,j)ps)1,and\displaystyle\prod_{1\leq i\leq j\leq M}(1-\alpha_{\pi}(p,i)\alpha_{\pi}(p,j)p^{-s})^{-1},\quad\mbox{and}
Lp(s,2)=\displaystyle L_{p}(s,\wedge^{2})= 1i<jM(1απ(p,i)απ(p,j)ps)1.\displaystyle\prod_{1\leq i<j\leq M}(1-\alpha_{\pi}(p,i)\alpha_{\pi}(p,j)p^{-s})^{-1}.

Upon taking the logarithmic derivatives on both sides of the expressions in (2.2) with the above in mind, we deduce from [iwakow, Theorem 5.15] that under GRH,

px1ijMαπ(p,i)απ(p,j)logp=\displaystyle\sum_{p\leq x}\sum_{1\leq i\leq j\leq M}\alpha_{\pi}(p,i)\alpha_{\pi}(p,j)\log p= 1δ(π)2x+O(x1/2log2x),and\displaystyle\frac{1-\delta(\pi)}{2}x+O(x^{1/2}\log^{2}x),\quad\mbox{and}
px1i<jMαπ(p,i)απ(p,j)logp=\displaystyle\sum_{p\leq x}\sum_{1\leq i<j\leq M}\alpha_{\pi}(p,i)\alpha_{\pi}(p,j)\log p= δ(π)+12x+O(x1/2log2x),\displaystyle\frac{\delta(\pi)+1}{2}x+O(x^{1/2}\log^{2}x),

where the implied constants depend on π\pi only.

Taking difference of the above expressions then implies that under GRH,

(2.3) pxaπ(p2)logp=px1jMαπ2(p,j)logp=\displaystyle\sum_{p\leq x}a_{\pi}(p^{2})\log p=\sum_{p\leq x}\sum_{1\leq j\leq M}\alpha^{2}_{\pi}(p,j)\log p= δ(π)x+O(x1/2log2x).\displaystyle-\delta(\pi)x+O(x^{1/2}\log^{2}x).

We now apply (2.3) (by noting that δ(π)=1\delta(\pi)=-1) and partial summation to get

2MlogX\displaystyle-\frac{2}{M\log X} paπ(p2)logppϕ^(2logpMlogX)\displaystyle\sum_{p}\frac{a_{\pi}(p^{2})\log p}{p}\hat{\phi}\left(\frac{2\log p}{M\log X}\right)
=\displaystyle= 2MlogX1ϕ^(2logtMlogX)dtt2MlogX1ϕ^(2logtMlogX)dO(t1/2log2t)t\displaystyle-\frac{2}{M\log X}\int\limits^{\infty}_{1}\hat{\phi}\left(\frac{2\log t}{M\log X}\right)\frac{\mathrm{d}t}{t}-\frac{2}{M\log X}\int\limits^{\infty}_{1}\hat{\phi}\left(\frac{2\log t}{M\log X}\right)\frac{\mathrm{d}O(t^{1/2}\log^{2}t)}{t}
=\displaystyle= 12ϕ^(t)dt+O(1logX).\displaystyle-\frac{1}{2}\int\limits^{\infty}_{-\infty}\hat{\phi}(t)\mathrm{d}t+O\Big{(}\frac{1}{\log X}\Big{)}.

Our discussions above allow us to simplify the expression for S(χ8d;π,X,ϕ)S(\chi_{8d};\pi,X,\phi) in (2.1) in the following way.

Lemma 2.3.

Let ϕ(x)\phi(x) be an even Schwartz function whose Fourier transform ϕ^(u)\hat{\phi}(u) has compact support. For any odd, positive and square-free integer dd, we have

(2.4) S(χ8d;π,X,ϕ)=ϕ(t)dt12ϕ^(u)duS1(χ8d;π,X,ϕ^)+O(loglog3XlogX),\displaystyle S(\chi_{8d};\pi,X,\phi)=\int\limits^{\infty}_{-\infty}\phi(t)\mathrm{d}t-\frac{1}{2}\int\limits^{\infty}_{-\infty}\hat{\phi}(u)\mathrm{d}u-S_{1}(\chi_{8d};\pi,X,\hat{\phi})+O\left(\frac{\log\log 3X}{\log X}\right),

where the implicit constant in the OO-term depends on ϕ\phi alone and

S1(χ8d;π,X,ϕ)=2MlogXpaπ(p)logppχ8d(p)ϕ^(logpMlogX).\displaystyle S_{1}(\chi_{8d};\pi,X,\phi)=\frac{2}{M\log X}\sum_{p}\frac{a_{\pi}(p)\log p}{\sqrt{p}}\chi_{8d}(p)\hat{\phi}\left(\frac{\log p}{M\log X}\right).

2.4. Poisson summation

In this section we develop a Poisson summation formula for a primitive quadratic Dirichlet character χ=(q)\chi=\left(\frac{\cdot}{q}\right), where qq is an odd prime. This is already contained in [G&L, Lemma 3.2] and we include the details here for the completeness. We let 𝔞=0\mathfrak{a}=0 or 11 be given by χ(1)=(1)𝔞\chi(-1)=(-1)^{\mathfrak{a}} and define

(2.5) Λ(s,χ)=(qπ)s/2Γ(s+𝔞2)L(s,χ).\displaystyle\Lambda(s,\chi)=\Big{(}\frac{q}{\pi}\Big{)}^{s/2}\Gamma\Big{(}\frac{s+\mathfrak{a}}{2}\Big{)}L(s,\chi).

Then we have the following functional equation (see [Da, §9, (14)])

(2.6) Λ(s,χ)=τ(χ)i𝔞qΛ(1s,χ¯),\displaystyle\Lambda(s,\chi)=\frac{\tau(\chi)}{i^{\mathfrak{a}}\sqrt{q}}\Lambda(1-s,\overline{\chi}),

where τ(χ)\tau(\chi) is the Gauss sum associated to χ\chi defined by

τ(χ)=1xqχ(x)e(xq),wheree(z)=exp(2πiz).\tau(\chi)=\sum_{1\leq x\leq q}\chi(x)e\left(\frac{x}{q}\right),\quad\mbox{where}\quad e(z)=\exp(2\pi iz).

Note that χ¯=χ\overline{\chi}=\chi and that τ(χ)=i𝔞q\tau(\chi)=i^{\mathfrak{a}}\sqrt{q} (see [Da, §2]), so that the functional equation given in (2.6) becomes

(2.7) Λ(s,χ)=Λ(1s,χ).\displaystyle\Lambda(s,\chi)=\Lambda(1-s,\chi).

We recall that the Mellin transform f\mathcal{M}f for any function ff is defined to be

f(s)=0f(t)tsdtt.\displaystyle\mathcal{M}f(s)=\int\limits^{\infty}_{0}f(t)t^{s}\frac{\mathrm{d}t}{t}.

Now, for any smooth function W:+W:\mathbb{R}^{+}\rightarrow\mathbb{R} of compact support, we further define for c>0c>0, 𝔟=0\mathfrak{b}=0 or 11,

(2.8) W~𝔟(x)=12πi(c)W(1u)xuπ(2u1)/2Γ(u+𝔟2)Γ1(1u+𝔟2)du.\displaystyle\begin{split}&\widetilde{W}_{\mathfrak{b}}(x)=\frac{1}{2\pi i}\int\limits\limits_{(c)}\mathcal{M}W(1-u)x^{-u}\pi^{-(2u-1)/2}\Gamma\Big{(}\frac{u+\mathfrak{b}}{2}\Big{)}\Gamma^{-1}\Big{(}\frac{1-u+\mathfrak{b}}{2}\Big{)}\mathrm{d}u.\end{split}

It goes without saying that π\pi appearing in this section denotes the number 3.143.14\ldots and not the self-contragredient representation under our consideration.

We note that integration by parts implies that for any integer E>0E>0 and any ss\in\mathbb{C},

W(s)(1+|s|)E.\displaystyle\begin{split}\mathcal{M}W(s)\ll(1+|s|)^{-E}.\end{split}

It follows from this and Stirling’s formula that the integration in (2.8) is convergent.

Moreover, by pairing together the uu and u¯\overline{u} values of the integrand in (2.8), we see that W~𝔟(x)\widetilde{W}_{\mathfrak{b}}(x) is real-valued for x+x\in\mathbb{R}^{+}. Upon shifting the contour of integration in (2.8) to the left and right according to whether x1x\geq 1 or not, and observing that Γ(s)\Gamma(s) has a pole at s=0s=0, we see that for any integer j0j\geq 0 and any real A>0A>0,

W~𝔟(j)(x)j,Amin(1,xA).\displaystyle\begin{split}&\widetilde{W}^{(j)}_{\mathfrak{b}}(x)\ll_{j,A}\min(1,x^{-A}).\end{split}

Our next result gives a Poisson summation formula for smoothed character sums over integers in \mathbb{Z}.

Lemma 2.5.

Let qq be an odd prime and let χ=(q)\chi=\left(\frac{\cdot}{q}\right). For any smooth function W:+W:\mathbb{R}^{+}\rightarrow\mathbb{R} of compact support, we have for X>0X>0,

(2.9) nχ(n)W(nX)=Xqm=1χ(m)W~𝔞(mXq).\displaystyle\sum_{n}\chi(n)W\left(\frac{n}{X}\right)=\frac{X}{\sqrt{q}}\sum^{\infty}_{m=1}\chi(m)\widetilde{W}_{\mathfrak{a}}\Big{(}\frac{mX}{q}\Big{)}.
Proof.

We apply the inverse Mellin transform to write W(t)W(t) as, for some cu>1c_{u}>1,

W(t)=12πi(cu)W(u)tudu.\displaystyle W\left(t\right)=\frac{1}{2\pi i}\int\limits\limits_{(c_{u})}\mathcal{M}W(u)t^{-u}\mathrm{d}u.

It follows that

(2.10) nχ(n)W(nX)=12πi(cu)W(u)Xu(nχ(n)nu)du=12πi(cu)W(u)XuL(u,χ)du.\displaystyle\sum_{n}\chi(n)W\left(\frac{n}{X}\right)=\frac{1}{2\pi i}\int\limits\limits_{(c_{u})}\mathcal{M}W(u)X^{u}\Big{(}\sum_{n}\frac{\chi(n)}{n^{u}}\Big{)}\mathrm{d}u=\frac{1}{2\pi i}\int\limits\limits_{(c_{u})}\mathcal{M}W(u)X^{u}L(u,\chi)\mathrm{d}u.

Applying the definition of Λ(s,χ)\Lambda(s,\chi) in (2.5) to (2.10) yields

nχ(n)W(nX)=12πi(cu)W^(u)Xu(qπ)u/2Γ1(u+𝔞2)Λ(u,χ)du.\displaystyle\sum_{n}\chi(n)W\left(\frac{n}{X}\right)=\frac{1}{2\pi i}\int\limits\limits_{(c_{u})}\widehat{W}(u)X^{u}\Big{(}\frac{q}{\pi}\Big{)}^{-u/2}\Gamma^{-1}\Big{(}\frac{u+\mathfrak{a}}{2}\Big{)}\Lambda(u,\chi)\mathrm{d}u.

We move the line of integration above to (u)=cu\Re(u)=c^{\prime}_{u} for some cu<0c^{\prime}_{u}<0, encountering no poles in the process. Thus, we obtain that

nχ(n)W(nX)=12πi(cu)W(u)Xu(qπ)u/2Γ1(u+𝔞2)Λ(u,χ)du.\displaystyle\sum_{n}\chi(n)W\left(\frac{n}{X}\right)=\frac{1}{2\pi i}\int\limits\limits_{(c^{\prime}_{u})}\mathcal{M}W(u)X^{u}\Big{(}\frac{q}{\pi}\Big{)}^{-u/2}\Gamma^{-1}\Big{(}\frac{u+\mathfrak{a}}{2}\Big{)}\Lambda(u,\chi)\mathrm{d}u.

We apply the functional equation given in (2.7) to recast the expression above as

nχ(n)W(nX)=12πi(cu)W(u)Xu(qπ)u/2Γ1(u+𝔞2)Λ(1u,χ)du=12πi(cu)W(u)Xu(qπ)(12u)/2Γ1(u+𝔞2)Γ(1u+𝔞2)L(1u,χ)du.\displaystyle\begin{split}\sum_{n}\chi(n)W\left(\frac{n}{X}\right)=&\frac{1}{2\pi i}\int\limits\limits_{(c^{\prime}_{u})}\mathcal{M}W(u)X^{u}\Big{(}\frac{q}{\pi}\Big{)}^{-u/2}\Gamma^{-1}\Big{(}\frac{u+\mathfrak{a}}{2}\Big{)}\Lambda(1-u,\chi)\mathrm{d}u\\ =&\frac{1}{2\pi i}\int\limits\limits_{(c^{\prime}_{u})}\mathcal{M}W(u)X^{u}\Big{(}\frac{q}{\pi}\Big{)}^{(1-2u)/2}\Gamma^{-1}\Big{(}\frac{u+\mathfrak{a}}{2}\Big{)}\Gamma\Big{(}\frac{1-u+\mathfrak{a}}{2}\Big{)}L(1-u,\chi)\mathrm{d}u.\end{split}

We make a change of variable u1uu\rightarrow 1-u in the last expression above to see that for some c>1c>1,

nχ(n)W(nX)=12πi(c)W(1u)X1u(qπ)(2u1)/2Γ(u+𝔞2)Γ1(1u+𝔞2)L(u,χ)du.\displaystyle\begin{split}&\sum_{n}\chi(n)W\left(\frac{n}{X}\right)=\frac{1}{2\pi i}\int\limits\limits_{(c)}\mathcal{M}W(1-u)X^{1-u}\Big{(}\frac{q}{\pi}\Big{)}^{(2u-1)/2}\Gamma\Big{(}\frac{u+\mathfrak{a}}{2}\Big{)}\Gamma^{-1}\Big{(}\frac{1-u+\mathfrak{a}}{2}\Big{)}L(u,\chi)\mathrm{d}u.\end{split}

Now substituting in the Dirichlet series for the LL-function, interchanging the sum and integral leads to (2.9). This completes the proof. ∎

3. Proof of Theorem 1.1

3.1. Setup

Applying the explicit formula (2.4) in (1.4) and using the Möbius function μ\mu to detect square-free dd’s, we get

(3.1) limX+D(X;ϕ,w,)=ϕ(t)dt12ϕ^(u)du2MlimXS(X;π,ϕ^,W)W(X)logX,\displaystyle\lim_{X\rightarrow+\infty}D(X;\phi,w,\mathcal{F})=\int\limits^{\infty}_{-\infty}\phi(t)\mathrm{d}t-\frac{1}{2}\int\limits^{\infty}_{-\infty}\hat{\phi}(u)\mathrm{d}u-\frac{2}{M}\lim_{X\rightarrow\infty}\frac{S(X;\pi,\hat{\phi},W)}{W(X)\log X},

where

(3.2) S(X;π,ϕ^,W):=(d,2)=1μ2(d)paπ(p)logpp(8dp)ϕ^(logpMlogX)W(dX).\displaystyle S(X;\pi,\hat{\phi},W):=\sum_{(d,2)=1}\mu^{2}(d)\sum_{p}\frac{a_{\pi}(p)\log p}{\sqrt{p}}\left(\frac{8d}{p}\right)\hat{\phi}\left(\frac{\log p}{M\log X}\right)W\left(\frac{d}{X}\right).

Note that we have by [FPS, (2.2)] that as XX\rightarrow\infty,

W(X)4Xπ2W^(1).W(X)\sim\frac{4X}{\pi^{2}}\widehat{W}(1).

Observe also that, M2M\geq 2 implies that the support of ϕ^\hat{\phi} is contained in (2/M,2/M)(1,1)(-2/M,2/M)\subset(-1,1). Thus we have

(3.3) ϕ(t)dt12ϕ^(u)du=ϕ(t)(1sin(2πt)2πt)dt.\displaystyle\int\limits^{\infty}_{-\infty}\phi(t)\mathrm{d}t-\frac{1}{2}\int\limits^{\infty}_{-\infty}\hat{\phi}(u)\mathrm{d}u=\int\limits^{\infty}_{-\infty}\phi(t)\left(1-\frac{\sin(2\pi t)}{2\pi t}\right)\mathrm{d}t.

We then deduce from (3.1) and (3.3) that in order to prove Theorem 1.1, it suffices to show that

(3.4) S(X;π,ϕ^,W)=o(XlogX),\displaystyle S(X;\pi,\hat{\phi},W)=o(X\log X),

as XX\to\infty.

To this end, we may assume that the support of ϕ^\hat{\phi} is contained in the interval (2/M+ε/M,2/Mε/M)(-2/M+\varepsilon/M,2/M-\varepsilon/M) for any ε>0\varepsilon>0. This then implies that we may also restrict the sum over pp in (3.2) to pYp\leq Y, where we set Y=X2εY=X^{2-\varepsilon}. Let Z>1Z>1 be a real parameter to be chosen later and we write μ2(d)=MZ(d)+RZ(d)\mu^{2}(d)=M_{Z}(d)+R_{Z}(d) where

MZ(d)=l2|dlZμ(l)andRZ(d)=l2|dl>Zμ(l).M_{Z}(d)=\sum_{\begin{subarray}{c}l^{2}|d\\ l\leq Z\end{subarray}}\mu(l)\quad\mbox{and}\quad R_{Z}(d)=\sum_{\begin{subarray}{c}l^{2}|d\\ l>Z\end{subarray}}\mu(l).

Now set

SM(X;π,ϕ^,W)=(d,2)=1MZ(d)paπ(p)logpp(8dp)ϕ^(logpMlogX)W(dX)S_{M}(X;\pi,\hat{\phi},W)=\sum_{(d,2)=1}M_{Z}(d)\sum_{p}\frac{a_{\pi}(p)\log p}{\sqrt{p}}\left(\frac{8d}{p}\right)\hat{\phi}\left(\frac{\log p}{M\log X}\right)W\left(\frac{d}{X}\right)

and

SR(X;π,ϕ^,W)=(d,2)=1RZ(d)paπ(p)logpp(8dp)ϕ^(logpMlogX)W(dX).S_{R}(X;\pi,\hat{\phi},W)=\sum_{(d,2)=1}R_{Z}(d)\sum_{p}\frac{a_{\pi}(p)\log p}{\sqrt{p}}\left(\frac{8d}{p}\right)\hat{\phi}\left(\frac{\log p}{M\log X}\right)W\left(\frac{d}{X}\right).

Thus S(X;π,ϕ^,W)=SM(X;π,ϕ^,W)+SR(X;π,ϕ^,W)S(X;\pi,\hat{\phi},W)=S_{M}(X;\pi,\hat{\phi},W)+S_{R}(X;\pi,\hat{\phi},W).

3.2. Estimation of SR(X;π,ϕ^,W)S_{R}(X;\pi,\hat{\phi},W)

For any odd, positive integer qq, we write q=q1q22q=q_{1}q^{2}_{2} with q1q_{1} square-free and apply the bound in (1.1) to obtain that for any real x1x\geq 1,

pxaπ(p)χ8q(p)logppxaπ(p)χ8q1(p)logpp|q|aπ(p)χ8q(q)|logplogq.\sum_{p\leq x}a_{\pi}(p)\chi_{8q}(p)\log p-\sum_{p\leq x}a_{\pi}(p)\chi_{8q_{1}}(p)\log p\ll\sum_{p|q}|a_{\pi}(p)\chi_{8q}(q)|\log p\ll\log q.

We further apply [iwakow, Theorem 5.15] and (1.3) to bound the sum

pxaπ(p)χ8q1(p)logp\sum_{p\leq x}a_{\pi}(p)\chi_{8q_{1}}(p)\log p

under GRH. The main term in [iwakow, (5.56)] equals to 0 in our case since we have M2M\geq 2 here. We thus arrive at the following.

Lemma 3.3.

Suppose that GRH and the Ramanujan-Petersson conjecture are true. For any odd, positive integer qq, we have for x1x\geq 1,

pxaπ(p)χ8q(p)logpx1/2log2(qx).\sum_{p\leq x}a_{\pi}(p)\chi_{8q}(p)\log p\ll x^{1/2}\log^{2}(qx).

We now define

E(V;π,χ8q,ϕ^):=pVaπ(p)logppχ8q(p)ϕ^(logpMlogX),E(V;\pi,\chi_{8q},\hat{\phi}):=\sum_{p\leq V}\frac{a_{\pi}(p)\log p}{\sqrt{p}}\chi_{8q}(p)\hat{\phi}\left(\frac{\log p}{M\log X}\right),

where VXBV\leq X^{B} for some bounded real number B>0B>0.

It follows from Lemma 3.3 and partial summation that

(3.5) E(V;π,χ8q,ϕ^)log3(qX).E(V;\pi,\chi_{8q},\hat{\phi})\ll\log^{3}(qX).

Now on writing d=l2md=l^{2}m, we see that

(3.6) SR(X;π,ϕ^,W)=l>Z(l,2)=1μ(l)(m,2)=1W(l2mX)E(Y;χ8l2m,ϕ^)l>ZX/l2m2X/l2log3(X)Xlog3XZ.\begin{split}S_{R}(X;\pi,\hat{\phi},W)&=\sum_{\begin{subarray}{c}l>Z\\ (l,2)=1\end{subarray}}\mu(l)\sum_{(m,2)=1}W\left(\frac{l^{2}m}{X}\right)E(Y;\chi_{8l^{2}m},\hat{\phi})\ll\sum_{l>Z}\sum_{X/l^{2}\leq m\leq 2X/l^{2}}\log^{3}(X)\ll\frac{X\log^{3}X}{Z}.\end{split}

3.4. Estimation of SM(X;π,ϕ^,W)S_{M}(X;\pi,\hat{\phi},W)

First note that we have, after interchanging sumations,

SM(X;π,ϕ^,W)=paπ(p)logppϕ^(logpMlogX)(2p)(d,2)=1MZ(d)(dp)W(dX).\displaystyle S_{M}(X;\pi,\hat{\phi},W)=\sum_{p}\frac{a_{\pi}(p)\log p}{\sqrt{p}}\hat{\phi}\left(\frac{\log p}{M\log X}\right)\left(\frac{2}{p}\right)\sum_{(d,2)=1}M_{Z}(d)\left(\frac{d}{p}\right)W\left(\frac{d}{X}\right).

Observe that

(d,2)=1MZ(d)(dp)W(dX)=αZ(α,2p)=1μ(α)(d,2)=1(dp)W(dα2X).\displaystyle\sum_{(d,2)=1}M_{Z}(d)\left(\frac{d}{p}\right)W\left(\frac{d}{X}\right)=\sum_{\begin{subarray}{c}\alpha\leq Z\\ (\alpha,2p)=1\end{subarray}}\mu(\alpha)\sum_{(d,2)=1}\left(\frac{d}{p}\right)W\left(\frac{d\alpha^{2}}{X}\right).

We recast the inner sum above as

(d,2)=1(dp)W(dα2X)=d(dp)W(dα2X)(2p)d(dp)W(2dα2X).\displaystyle\sum_{(d,2)=1}\left(\frac{d}{p}\right)W\left(\frac{d\alpha^{2}}{X}\right)=\sum_{d}\left(\frac{d}{p}\right)W\left(\frac{d\alpha^{2}}{X}\right)-\left(\frac{2}{p}\right)\sum_{d}\left(\frac{d}{p}\right)W\left(\frac{2d\alpha^{2}}{X}\right).

Now applying the Poisson summation formula in (2.9) renders the above as

(d,2)=1(dp)W(dα2X)=Xα2pm1(mp)W~𝔞(mXα2p)X2α2pm1(2mp)W~𝔞(mX2α2p).\displaystyle\sum_{(d,2)=1}\left(\frac{d}{p}\right)W\left(\frac{d\alpha^{2}}{X}\right)=\frac{X}{\alpha^{2}\sqrt{p}}\sum_{m\geq 1}\left(\frac{m}{p}\right)\widetilde{W}_{\mathfrak{a}}\left(\frac{mX}{\alpha^{2}p}\right)-\frac{X}{2\alpha^{2}\sqrt{p}}\sum_{m\geq 1}\left(\frac{2m}{p}\right)\widetilde{W}_{\mathfrak{a}}\left(\frac{mX}{2\alpha^{2}p}\right).

This enables us to write SM(X;π,ϕ^,W)S_{M}(X;\pi,\hat{\phi},W) as

SM(X;π,ϕ^,W)=\displaystyle S_{M}(X;\pi,\hat{\phi},W)= X(p,2)=1aπ(p)logppϕ^(logpMlogX)αZ(α,2p)=1μ(α)α2m1(2mp)W~𝔞(mXα2p)\displaystyle X\sum_{(p,2)=1}\frac{a_{\pi}(p)\log p}{p}\hat{\phi}\left(\frac{\log p}{M\log X}\right)\sum_{\begin{subarray}{c}\alpha\leq Z\\ (\alpha,2p)=1\end{subarray}}\frac{\mu(\alpha)}{\alpha^{2}}\sum_{m\geq 1}\left(\frac{2m}{p}\right)\widetilde{W}_{\mathfrak{a}}\left(\frac{mX}{\alpha^{2}p}\right)
X2(p,2)=1aπ(p)logppϕ^(logpMlogX)αZ(α,2p)=1μ(α)α2m1(mp)W~𝔞(mXα2p)\displaystyle\hskip 28.45274pt-\frac{X}{2}\sum_{(p,2)=1}\frac{a_{\pi}(p)\log p}{p}\hat{\phi}\left(\frac{\log p}{M\log X}\right)\sum_{\begin{subarray}{c}\alpha\leq Z\\ (\alpha,2p)=1\end{subarray}}\frac{\mu(\alpha)}{\alpha^{2}}\sum_{m\geq 1}\left(\frac{m}{p}\right)\widetilde{W}_{\mathfrak{a}}\left(\frac{mX}{\alpha^{2}p}\right)
:=\displaystyle:= S1S2.\displaystyle S_{1}-S_{2}.

As the estimations are similar, we only deal with S1S_{1} in what follows. We recast it as

S1=\displaystyle S_{1}= XαZ(α,2)=1μ(α)α2m1(p,2α)=1aπ(p)logppϕ^(logpMlogX)(2mp)W~𝔞(mXα2p)\displaystyle X\sum_{\begin{subarray}{c}\alpha\leq Z\\ (\alpha,2)=1\end{subarray}}\frac{\mu(\alpha)}{\alpha^{2}}\sum_{m\geq 1}\sum_{(p,2\alpha)=1}\frac{a_{\pi}(p)\log p}{p}\hat{\phi}\left(\frac{\log p}{M\log X}\right)\left(\frac{2m}{p}\right)\widetilde{W}_{\mathfrak{a}}\left(\frac{mX}{\alpha^{2}p}\right)
=\displaystyle= XαZ(α,2)=1μ(α)α2m1(p,α)=1p1(mod4)aπ(p)logppϕ^(logpMlogX)(2mp)W~0(mXα2p)\displaystyle X\sum_{\begin{subarray}{c}\alpha\leq Z\\ (\alpha,2)=1\end{subarray}}\frac{\mu(\alpha)}{\alpha^{2}}\sum_{m\geq 1}\sum_{\begin{subarray}{c}(p,\alpha)=1\\ p\equiv 1\negthickspace\negthickspace\negthickspace\pmod{4}\end{subarray}}\frac{a_{\pi}(p)\log p}{p}\hat{\phi}\left(\frac{\log p}{M\log X}\right)\left(\frac{2m}{p}\right)\widetilde{W}_{0}\left(\frac{mX}{\alpha^{2}p}\right)
+XαZ(α,2)=1μ(α)α2m1(p,α)=1p1(mod4)aπ(p)logppϕ^(logpMlogX)(2mp)W~1(mXα2p).\displaystyle\hskip 28.45274pt+X\sum_{\begin{subarray}{c}\alpha\leq Z\\ (\alpha,2)=1\end{subarray}}\frac{\mu(\alpha)}{\alpha^{2}}\sum_{m\geq 1}\sum_{\begin{subarray}{c}(p,\alpha)=1\\ p\equiv-1\negthickspace\negthickspace\negthickspace\pmod{4}\end{subarray}}\frac{a_{\pi}(p)\log p}{p}\hat{\phi}\left(\frac{\log p}{M\log X}\right)\left(\frac{2m}{p}\right)\widetilde{W}_{1}\left(\frac{mX}{\alpha^{2}p}\right).

We then use 12(1±χ1(p))\frac{1}{2}(1\pm\chi_{-1}(p)) to detect the conditions that p±1(mod4)p\equiv\pm 1\pmod{4}, thus further decomposing S1S_{1} as

S1=\displaystyle S_{1}= S0,1+S0,1+S1,1S1,1,\displaystyle S_{0,1}+S_{0,-1}+S_{1,1}-S_{1,-1},

where

Si,j=\displaystyle S_{i,j}= XαZ(α,2)=1μ(α)2α2m1(p,2α)=1aπ(p)logppϕ^(logpMlogX)(2jmp)W~i(mXα2p).\displaystyle X\sum_{\begin{subarray}{c}\alpha\leq Z\\ (\alpha,2)=1\end{subarray}}\frac{\mu(\alpha)}{2\alpha^{2}}\sum_{m\geq 1}\sum_{\begin{subarray}{c}(p,2\alpha)=1\end{subarray}}\frac{a_{\pi}(p)\log p}{p}\hat{\phi}\left(\frac{\log p}{M\log X}\right)\left(\frac{2jm}{p}\right)\widetilde{W}_{i}\left(\frac{mX}{\alpha^{2}p}\right).

In the above expression for Si,jS_{i,j}, we may assume that ZXZ\leq X (in fact, our later choice of ZZ is much smaller than XX). Again, as the estimations are similar, we only consider S0,1S_{0,1} in what follows. The condition (p,α)=1(p,\alpha)=1 is detected using χα2(p)\chi_{\alpha^{2}}(p) and we use (3.5) to estimate S0,1S_{0,1}. Mindful of the size of ZZ, we deduce via partial summation that

(p,2α)=1aπ(p)logppϕ^(logpMlogX)(2mp)W~0(mXα2p)=1Y1VW~0(mXα2V)dE(V;χ8α2m,π,ϕ^)log3(X(|m|+2))(1Y|W~(mXα2Y)|+1Y1V3/2|W~(mXα2V)|dV+1YXα2V5/2|mW~(mXα2V)|dV).\begin{split}\sum_{\begin{subarray}{c}(p,2\alpha)=1\end{subarray}}&\frac{a_{\pi}(p)\log p}{p}\hat{\phi}\left(\frac{\log p}{M\log X}\right)\left(\frac{2m}{p}\right)\widetilde{W}_{0}\left(\frac{mX}{\alpha^{2}p}\right)=\int\limits^{Y}_{1}\frac{1}{\sqrt{V}}\widetilde{W}_{0}\left(\frac{mX}{\alpha^{2}V}\right)\mathrm{d}E(V;\chi_{8\alpha^{2}m},\pi,\hat{\phi})\\ \ll&\log^{3}(X(|m|+2))\left(\frac{1}{\sqrt{Y}}\left|\widetilde{W}\left(\frac{mX}{\alpha^{2}Y}\right)\right|+\int\limits^{Y}_{1}\frac{1}{V^{3/2}}\left|\widetilde{W}\left(\frac{mX}{\alpha^{2}V}\right)\right|\mathrm{d}V\right.\left.+\int\limits^{Y}_{1}\frac{X}{\alpha^{2}V^{5/2}}\left|m\widetilde{W}^{\prime}\left(\frac{mX}{\alpha^{2}V}\right)\right|\mathrm{d}V\right).\end{split}

It follows that

S0,1XαZ1α2(R1+R2+R3),S_{0,1}\ll X\sum_{\alpha\leq Z}\frac{1}{\alpha^{2}}(R_{1}+R_{2}+R_{3}),

where

R1=1Ym0log3(X(|m|+2))|W~(mXα2Y)|,R2=1Y1V3/2m1log3(X(m+2))|W~(mXα2V)|dVR_{1}=\frac{1}{\sqrt{Y}}\sum_{m\neq 0}\log^{3}(X(|m|+2))\left|\widetilde{W}\left(\frac{mX}{\alpha^{2}Y}\right)\right|,\;R_{2}=\int\limits^{Y}_{1}\frac{1}{V^{3/2}}\sum_{m\geq 1}\log^{3}(X(m+2))\left|\widetilde{W}\left(\frac{mX}{\alpha^{2}V}\right)\right|\mathrm{d}V

and

R3=1YXα2V5/2m1log3(X(m+2))|mW~(mXα2V)|dV.R_{3}=\int\limits^{Y}_{1}\frac{X}{\alpha^{2}V^{5/2}}\sum_{m\geq 1}\log^{3}(X(m+2))\left|m\widetilde{W}^{\prime}\left(\frac{mX}{\alpha^{2}V}\right)\right|\mathrm{d}V.

Estimations for the above quantities can be found in [G&Zhao2, (3.4)] by setting U=1U=1 there. Hence we obtain that

(3.7) S0,1ZYlog7X.S_{0,1}\ll Z\sqrt{Y}\log^{7}X.

3.5. Conclusion

We now combine the bounds (3.6), (3.7) and take Z=log3XZ=\log^{3}X with any fixed ε>0\varepsilon>0 to conclude that the estimation given in (3.4) holds. This completes the proof of Theorem 1.1.

Acknowledgments. P. G. is supported in part by NSFC grant 11871082 and L. Z. by the Faculty Silverstar Grant PS65447 at the University of New South Wales (UNSW). The authors would also like to thank the anonymous referee of his/her careful inspection of the paper and many helpful comments and suggestions.

References

School of Mathematical Sciences School of Mathematics and Statistics
Beihang University University of New South Wales
Beijing 100191 China Sydney NSW 2052 Australia
Email: [email protected] Email: [email protected]