This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On well-posedness and singularity formation
for the Euler–Riesz system

Young-Pil Choi Department of Mathematics, Yonsei University, Seoul 03722, Republic of Korea. E-mail: [email protected]    In-Jee Jeong Department of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea. E-mail: [email protected]
Abstract

In this paper, we investigate the initial value problem for the Euler–Riesz system, where the interaction forcing is given by (Δ)sρ\nabla(-\Delta)^{s}\rho for some 1<s<0-1<s<0, with s=1s=-1 corresponding to the classical Euler–Poisson system. We develop a functional framework to establish local-in-time existence and uniqueness of classical solutions for the Euler–Riesz system. In this framework, the fluid density could decay fast at infinity, and the Euler–Poisson system can be covered as a special case. Moreover, we prove local well-posedness for the pressureless Euler–Riesz system when the potential is repulsive, by observing hyperbolic nature of the system. Finally, we present sufficient conditions on the finite-time blowup of classical solutions for the isentropic/isothermal Euler–Riesz system with either attractive or repulsive interaction forces. The proof, which is based on estimates of several physical quantities, establishes finite-time blowup for a large class of initial data; in particular, it is not required that the density is of compact support.

1 Introduction

1.1 Derivation of the system

This paper is devoted to the study of the well-posedness theory for the Euler–Riesz system

{tρ+x(ρu)=0,t(ρu)+x(ρuu)+cpx(ργ)=cKρxΛαdρ\left\{\begin{aligned} &\partial_{t}\rho+\nabla_{x}\cdot(\rho u)=0,\\ &\partial_{t}(\rho u)+\nabla_{x}\cdot(\rho u\otimes u)+c_{p}\nabla_{x}(\rho^{\gamma})=c_{K}\rho\nabla_{x}\Lambda^{\alpha-d}\rho\end{aligned}\right. (1.1)

either in Ω=d\Omega=\mathbb{R}^{d} or 𝕋d\mathbb{T}^{d}, where ρ(t,):Ω+\rho(t,\cdot):\Omega\rightarrow\mathbb{R}_{+} and u(t,):Ωdu(t,\cdot):\Omega\rightarrow\mathbb{R}^{d} denote the density and the velocity of the fluid, respectively. Here, the Riesz operator Λs\Lambda^{s} is defined by (Δx)s2(-\Delta_{x})^{\frac{s}{2}} and we shall consider the range d2<α<dd-2<\alpha<d. We take cp0c_{p}\geq 0 and γ1\gamma\geq 1, with cp=0c_{p}=0 corresponding to the pressureless Euler–Riesz system. The case cK>0c_{K}>0 and cK<0c_{K}<0 correspond to attractive and repulsive potentials, respectively. In the following, we shall always assume that ρ>0\rho>0, which allows to rewrite the equation for ρu\rho u in (1.1) as

tu+uxu+cpγργ2xρ=cKxΛαdρ.\partial_{t}u+u\cdot\nabla_{x}u+c_{p}\gamma\rho^{\gamma-2}\nabla_{x}\rho=c_{K}\nabla_{x}\Lambda^{\alpha-d}\rho.

The Euler–Riesz system (1.1) can be derived from the second-order particle system corresponding to Newton’s law. More precisely, let xi(t)x_{i}(t) and vi(t)v_{i}(t) be the position and velocity of the ii-th particle at time t>0t>0. Then the dynamics of interacting point particles through the interaction force xK\nabla_{x}K can be described by

{dxi(t)dt=vi(t),i=1,,N,t>0,dvi(t)dt=cKNjixK(xi(t)xj(t)),\displaystyle\left\{\begin{aligned} \frac{dx_{i}(t)}{dt}&=v_{i}(t),\quad i=1,\dots,N,\quad t>0,\cr\frac{dv_{i}(t)}{dt}&=\frac{c_{K}}{N}\sum_{j\neq i}\nabla_{x}K(x_{i}(t)-x_{j}(t)),\end{aligned}\right. (1.2)

where the interaction potential KK is given by the Riesz kernel111KρK\star\rho can be given as an inverse fractional Laplacian with an appropriate positive constant cα,dc_{\alpha,d}, i.e., cα,dKρ=(Δx)αd2ρ=Λαdρ.c_{\alpha,d}K\star\rho=(-\Delta_{x})^{\frac{\alpha-d}{2}}\rho=\Lambda^{\alpha-d}\rho. However, for simplicity, we set cα,d=1c_{\alpha,d}=1 throughout this paper.:

K(x)=|x|α,d2<α<d.K(x)=|x|^{-\alpha},\quad d-2<\alpha<d. (1.3)

Note that the case α=d2\alpha=d-2 corresponds to the Coulombian kernel when d3d\geq 3, which is the classical model for for the plasma dynamics when cK<0c_{K}<0 and for astrophysics problems when cK>0c_{K}>0.

When the number of particles NN is sufficiently large, it is reasonable to consider the corresponding continuum model in order to reduce the complexity of the particle system, which is important in any practical applications. The classical way is to introduce the number density function f=f(t,x,v)f=f(t,x,v) in the phase space (x,v)d×d(x,v)\in\mathbb{R}^{d}\times\mathbb{R}^{d}. To be more specific, at the formal level, as the number of NN goes to infinity, by means of BBGKY hierarchies or mean-field limits [6, 8, 21, 22, 23, 24, 26, 32, 38], we can derive the following Vlasov equation with Riesz interaction forces from the particle system (1.2):

tf+vxf+(cKxKρ)vf=0,(x,v)d,t>0,\partial_{t}f+v\cdot\nabla_{x}f+(c_{K}\nabla_{x}K\star\rho)\cdot\nabla_{v}f=0,\quad(x,v)\in\mathbb{R}^{d},\quad t>0, (1.4)

where ρ=ρ(t,x)\rho=\rho(t,x) is the local particle density given by ρ=df𝑑v\rho=\int_{\mathbb{R}^{d}}f\,dv. For the Coulomb kernal, which corresponds to the case α=d2\alpha=d-2 in (1.3) when d3d\geq 3, the kinetic equation (1.4) is called the Vlasov–Poisson equation, and for α=d1\alpha=d-1 it is called the Vlasov–Manev equation [25]. We refer to [18, 36] for the general kinetic theory.

Since the kinetic model (1.2) is posed in 2d+12d+1 dimensions, it is still computationally expensive. For that reason, the kinetic equations are usually being reduced to hydrodynamic equations by suitable asymptotic limits. We consider the local moment estimates in vv: multiplying the equation (1.4) by 11 and vv, respectively, and integrating the resulting equations with respect to vv, we can derive the following local conservation laws222One may also derive the equation for the local energy ρE=d|v|2f𝑑v\rho E=\int_{\mathbb{R}^{d}}|v|^{2}f\,dv, however, it is not necessarily required in this formal derivation.:

{tρ+x(ρu)=0,xd,t>0,t(ρu)+x(ρuu)+x(d(vu)(vu)f𝑑v)=cKρxKρ.\displaystyle\left\{\begin{aligned} &\partial_{t}\rho+\nabla_{x}\cdot(\rho u)=0,\quad x\in\mathbb{R}^{d},\quad t>0,\cr&\partial_{t}(\rho u)+\nabla_{x}\cdot(\rho u\otimes u)+\nabla_{x}\cdot\left(\int_{\mathbb{R}^{d}}(v-u)\otimes(v-u)f\,dv\right)=c_{K}\rho\nabla_{x}K\star\rho.\end{aligned}\right. (1.5)

Here, uu denotes the local particle velocity given by u=dvf𝑑v/ρu=\int_{\mathbb{R}^{d}}vf\,dv/\rho. Although the momentum equations in the above are not closed due to the third term on the left hand side, we can formally take the mono-kinetic f(x,v)=ρ(x)δu(x)(v)f(x,v)=\rho(x)\otimes\delta_{u(x)}(v) or the local Maxwellian ansatz f(x,v)=ρ(x)exp(|vu(x)|2/2)f(x,v)=\rho(x)\exp(-|v-u(x)|^{2}/2) in (1.5). These different choices of ansätze lead to the pressureless and the isothermal Euler–Riesz system, respectively. Recently, rigorous derivations of hydrodynamic models from kinetic models have been studied in [5, 7, 17, 28, 29]. The mono-kinetic ansatz can be justified by adding the strong local alignment force (1/ε)v((vu)f)(1/\varepsilon)\nabla_{v}\cdot((v-u)f) on the right hand side of (1.4) and considering the limit ε0\varepsilon\to 0. On the other hand, the isothermal Euler-type system can be rigorously derived by taking into account the strong local alignment and diffusive forces, (1/ε)v(vf+(vu)f)(1/\varepsilon)\nabla_{v}\cdot(\nabla_{v}f+(v-u)f). More recently, the rigorous derivation of the pressureless Euler–Riesz system has been established in [38]. Under certain regularity assumptions on solutions to (1.1), the system (1.1) with cp=0c_{p}=0 can be rigorously derived from the particle system (1.2) in the case of mono-kinetic data. We also refer to [4] for the rigorous derivation of hydrodynamic collective behavior models from many interacting particle systems.

Here we introduce several notations used throughout this paper. For simplicity, we omit xx-dependence of differential operators, for instances, f:=xf\partial f:=\partial_{x}f, f:=xf\nabla f:=\nabla_{x}f, and Δf:=Δxf\Delta f:=\Delta_{x}f, etc. We denote by CC a generic positive constant and it may differ from line to line. Finally, fα,β,gf\lesssim_{\alpha,\beta,\cdots}g represents that there exists a positive constant C=C(α,β,)>0C=C(\alpha,\beta,\cdots)>0 such that fCgf\leq Cg.

1.2 Main Results

The first main result of this work is the local well-posedenss of classical solutions for the Euler–Riesz system. In particular, derivation of (1.1) from the particle dynamics is justified [38, Appendix A]. The study of the well-posedness theory for the Euler–Poisson system with either attractive or repulsive force, i.e., the case α=d2\alpha=d-2 is by now well-established. The existence theory and sticky dynamics of solutions for the pressureless Euler-type system are discussed in [2, 3, 14, 34, 35]. For the Euler–Poisson system, the local/global-in-time existence of strong solutions is studied in [1, 19, 20, 37]. In particular, in a recent work [1], the local-in-time existence and uniqueness of strong solutions for the Euler–Poisson system with γ(1,5/3)\gamma\in(1,5/3) in three dimensions are obtained in a weighted Sobolev spaces of fractional order. In particular, in that work, the constructed local-in-time solutions can contain vacuum in some region, i.e., there is no strictly positive lower bound for the density. We point out that although the functional framework developed in this work cannot treat vacuum (region where ρ\rho vanishes), it does cover the Euler–Poisson case without any difficulty, and therefore provides an alternative way of proving well-posedness of classical solutions to the Euler–Poisson system with density decaying fast at infinity.

Let us state our main well-posedness result in a somewhat rough manner; the precise statements are given in Theorems 3.1 (pressureless and repulsive case) and 4.1 (pressure case), respectively.

Theorem A (Local well-posedness).

Consider the system (1.1) on Ω=d\Omega=\mathbb{R}^{d} or 𝕋d\mathbb{T}^{d} with d1d\geq 1 and d2α<dd-2\leq\alpha<d. We have the following local well-posedness results.

  1. 1.

    (pressureless and repulsive case) In the case cp=0c_{p}=0 and cK<0c_{K}<0, for any m>d2+2m>\frac{d}{2}+2 there exists a space Xm(Ω)X^{m}(\Omega) such that the Euler–Riesz system is locally well-posed: for any (u0,ρ0)Xm(u_{0},\rho_{0})\in X^{m}, there exists T>0T>0 and a unique solution (u,ρ)(u,\rho) satisfying the initial condition and belonging to L([0,T);Xm)L^{\infty}([0,T);X^{m}). In the case Ω=𝕋d\Omega=\mathbb{T}^{d}, XmX^{m} can be identified with a Sobolev space; we can take (u,ρ)Xm=ρHm+uHm+dα2\|(u,\rho)\|_{X^{m}}=\|\rho\|_{H^{m}}+\|u\|_{H^{m+\frac{d-\alpha}{2}}}.

  2. 2.

    (pressure case) When cp>0c_{p}>0 and 1γ531\leq\gamma\leq\frac{5}{3}, there is a space Ym(Ω)Y^{m}(\Omega) for any m>d2+1m>\frac{d}{2}+1 such that the Euler–Riesz system with any cKc_{K}\in\mathbb{R} is locally well-posed: for any (u0,ρ0)Ym(u_{0},\rho_{0})\in Y^{m}, there exists T>0T>0 and a unique solution (u,ρ)(u,\rho) satisfying the initial condition and belonging to L([0,T);Ym)L^{\infty}([0,T);Y^{m}). The YmY^{m}-norm is given by uHm+ργ12Hm+lnρL\|u\|_{H^{m}}+\|\rho^{\frac{\gamma-1}{2}}\|_{H^{m}}+\|\nabla\ln\rho\|_{L^{\infty}} for γ>1\gamma>1 and in the case γ=1\gamma=1, ργ12\rho^{\frac{\gamma-1}{2}} should be replaced with lnρ\ln\rho.

A detailed discussion involving the statements will be given below in Subsection 1.3 and further in Section 2. For now, let us just briefly comment on the spaces used in Theorem A: in the pressureless case, we can prove local well-posedness simply using the norm ρHm+uHm+dα2\|\rho\|_{H^{m}}+\|u\|_{H^{m+\frac{d-\alpha}{2}}} when either the domain is bounded (e.g. 𝕋d\mathbb{T}^{d}) or ρ\rho attains a uniform positive lower bound in space. Possible decay of ρ\rho at spatial infinity brings some technical difficulties, which is handled by suitably modifying the HmH^{m} norm for ρ\rho, in a way that additional decay of the derivatives for ρ\rho is encoded. In the case with pressure, the quantity lnρL\|\nabla\ln\rho\|_{L^{\infty}} plays a similar role.

Our second main result concerns finite-time singularity formation for the Euler–Riesz system, within the framework of local well-posedness established in Theorem A. Finite-time blow-up of smooth solutions for the compressible Euler or Navier–Stokes system is shown in [11, 33, 39, 41] based on the finite propagation speed of the supports of solutions. For the one dimensional Euler–Poisson system, the singularity formation is discussed in [15]. Critical thresholds between the subcritical region with global-in-time regularity and the supercritical region with finite-time blowup of classical solutions are also analyzed in one dimension [9, 16]. For the multi-dimensional isentropic Euler–Poisson system without radial symmetry, a priori estimate of the finite-time blow-up of solutions is obtained in [40]. We refer to [12, 13] and references therein for the general survey on the Euler-type equations and related mathematical problems.

In the theorem below, we briefly state our second main result on the finite-time singularity formation for the system (1.1) in the presence of pressure. For the precise statements, see Theorems 5.4 and 5.7 (isentropic pressure case) and 5.9 (isothermal pressure case) in Section 5.

Theorem B (Singularity formation).

We consider (1.1) in the following cases.

  1. 1.

    (isentropic pressure case: γ>1\gamma>1) In the attractive case (cK>0c_{K}>0), we assume αmax{2,d(γ1)}\alpha\geq\max\{2,d(\gamma-1)\}. On the other hand, in the repulsive case (cK<0c_{K}<0), we suppose

    1<γ1+2dandαd(γ1).1<\gamma\leq 1+\frac{2}{d}\quad\mbox{and}\quad\alpha\geq d(\gamma-1).
  2. 2.

    (isothermal pressure case: γ=1\gamma=1) In the attractive case, we assume α2\alpha\geq 2. We do not require any restriction on α\alpha in the repulsive case.

Then, in both cases, there exist initial data (ρ0,u0)(\rho_{0},u_{0}) which generate a finite-time singularity for the system (1.1).

In the attractive case, our strategy does not require any restriction on γ1\gamma\geq 1. On the other hand, in the repulsive and isentropic pressure case, we need the condition γ1+2d\gamma\leq 1+\frac{2}{d}. However, in this case the restriction γ53\gamma\leq\frac{5}{3} in Theorem A.2 can be dropped (see Section 1.3 and Remark 4.3). Thus, restrictions on α\alpha and γ\gamma for singularity formation are stronger than those for local well-posedness. It is also worth noticing that α>0\alpha>0 is required for the proof of singularity formation in the isentropic pressure case, but our proof of blow-up in the isothermal case covers the range α<0\alpha<0.

1.3 Ideas of the proof

Let us give some technical ideas involved in the proofs of main results.


Local well-posedness for pressureless case (Theorem 3.1). Note that when the pressure term is absent (cp=0c_{p}=0), local well-posedness does not follow from a simple energy estimate for ρ\rho and uu. This can be seen as follows: propagating the HsH^{s}-norm of ρ\rho requires uHs\nabla\cdot u\in H^{s}, while propagating u\nabla\cdot u in HsH^{s} requires ΛαdΔρHs\Lambda^{\alpha-d}\Delta\rho\in H^{s}. Since αd>2\alpha-d>-2, we do not have ΛαdΔρHsρHs\|\Lambda^{\alpha-d}\Delta\rho\|_{H^{s}}\lesssim\|\rho\|_{H^{s}}, unlike the Euler–Poisson case where αd=2\alpha-d=-2. To overcome this difficulty, one needs essentially rewrite the system in terms of Λdα2u\Lambda^{\frac{d-\alpha}{2}}u and ρ\rho. This choice is motivated from linear analysis presented in Section 2. Indeed, in the nonlinear system, one can show that there is a cancellation of top order terms in the sum ρ12||s+dα2uL22+||sρL22\|\rho^{\frac{1}{2}}|\nabla|^{s+\frac{d-\alpha}{2}}u\|_{L^{2}}^{2}+\||\nabla|^{s}\rho\|_{L^{2}}^{2}, when the potential is repulsive (cK<0c_{K}<0), which allows for the estimate

|ddtdρ|||s+dα2u|2cK|||sρ|2dx|C(uHs+dα2+ρHs)3.\begin{split}\left|\frac{d}{dt}\int_{\mathbb{R}^{d}}\rho||\nabla|^{s+\frac{d-\alpha}{2}}u|^{2}-c_{K}||\nabla|^{s}\rho|^{2}\,dx\right|\leq C(\|u\|_{H^{s+\frac{d-\alpha}{2}}}+\|\rho\|_{H^{s}})^{3}.\end{split} (1.6)

On the contrary, when the potential is attractive, the system must be ill-posed. This is hinted in the linear analysis provided in Section 2, and we expect that a rigorous proof of nonlinear ill-posedness could be given along the lines of [31]. Now, in the proof of (1.6), the key tool is a sharp commutator estimate for [Λϵ,v][\Lambda^{\epsilon},v\cdot\nabla] which was derived in [10]; for vv smooth, we have

[Λϵ,v]fL2fHϵ,\begin{split}\|[\Lambda^{\epsilon},v\cdot\nabla]f\|_{L^{2}}\lesssim\|f\|_{H^{\epsilon}},\end{split}

see Lemma 3.3 for a precise statement. The authors in [10] used this estimate to prove local well-posedness of the active scalar system

tθ+Λα[θ]θ=0\begin{split}\partial_{t}\theta+\nabla^{\perp}\Lambda^{-\alpha}[\theta]\cdot\nabla\theta=0\end{split} (1.7)

defined for θ:[0,T]×𝕋2\theta:[0,T]\times\mathbb{T}^{2}\rightarrow\mathbb{R} for some α>0\alpha>0. Indeed, the equation (1.7) has some similarities with our pressureless and repulsive system. In this regard, we emphasize that the parity of the symbol is crucial in well-posedness for these models; when Λα\nabla^{\perp}\Lambda^{-\alpha} in (1.7) is replaced with some even symbol of the same order, the equation can be shown to be ill-posed in Sobolev spaces [31]. In the case of (1.1), when cp=0c_{p}=0 and Λαdρ\nabla\Lambda^{\alpha-d}\rho is replaced with Λ1+αd\Lambda^{1+\alpha-d} (which is of the same order), the system becomes ill-posed; see linear analysis in the following section. Returning to (1.6), we can close an a priori estimate immediately if ρ>0\rho>0 attains a uniform positive lower bound, since then ρ12||s+dα2uL2\|\rho^{\frac{1}{2}}|\nabla|^{s+\frac{d-\alpha}{2}}u\|_{L^{2}} is equivalent with uH˙s+dα2\|u\|_{\dot{H}^{s+\frac{d-\alpha}{2}}}. To handle the general case of ρ\rho vanishing at infinity, we are forced to use the modified sum ||s+dα2uL22+ρ12||sρL22\||\nabla|^{s+\frac{d-\alpha}{2}}u\|_{L^{2}}^{2}+\|\rho^{-\frac{1}{2}}|\nabla|^{s}\rho\|_{L^{2}}^{2}. This requires the use of weighted Gagliardo–Nirenberg–Sobolev inequalities to control nonlinearity, which is given in Lemma 3.2.


Local well-posedness with pressure (Theorem 4.1). When the system has pressure (cp>0c_{p}>0), at least on formal grounds the potential term is of lower order, which suggests local well-posedness regardless of the sign of cKc_{K}. We show rigorously that this is indeed the case. We emphasize that especially when α\alpha approaches dd, the potential term is of only “slightly” lower order than the other terms, and therefore cannot be handled by a simple energy estimate as in the Euler–Poisson case. The basic strategy of the local well-posedness proof is as follows. We first rewrite the system in terms of uu and q=ργ~/γ~q=\rho^{\tilde{\gamma}}/\tilde{\gamma} with γ~=(γ1)/2\tilde{\gamma}=(\gamma-1)/2 so that the system (1.1) becomes symmetric in the leading order. For the resulting equation, we observe a cancellation structure for the time derivative of the quantity

uHm2+qHm2CcKq12γ~1|Λαd2mq|L22.\begin{split}\|u\|_{H^{m}}^{2}+\|q\|_{H^{m}}^{2}-Cc_{K}\|q^{\frac{1}{2\tilde{\gamma}}-1}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|\|_{L^{2}}^{2}.\end{split}

Inclusion of the last quantity is essential, to handle the loss of derivative coming from the potential term. Then, one can close an HmH^{m} a priori estimate for the solution after bounding q12γ~1|Λαd2mq|L2\|q^{\frac{1}{2\tilde{\gamma}}-1}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|\|_{L^{2}} in terms of qHm\|q\|_{H^{m}}. Again, the sharp commutator estimate involving Λϵ\Lambda^{\epsilon} and a weighted Gagliardo–Nirenberg–Sobolev type inequality is crucial in this step. The unfortunate restriction γ53\gamma\leq\frac{5}{3} stems from this procedure, since the commutator estimate requires certain smoothness of the coefficient, which is given by q12γ~1q^{\frac{1}{2\tilde{\gamma}}-1}. One can expect that even in this case with pressure, local well-posedness proof simplify when either (i) ρ\rho attains a uniform positive lower bound or (ii) cK<0c_{K}<0. Indeed, when either of these assumptions is satisfied, the restriction γ53\gamma\leq\frac{5}{3} can be dropped. This issue discussed in some more detail in Remark 4.3 below.


Finite-time singularity formation (Theorems 5.4, 5.7, and 5.9). The strategy for the formation of finite-time singularity relies on some energy estimates (cf. [33, 39, 40, 41]). Note that the Euler–Riesz system (1.1) conserves the mass, momentum, and total energy; see Lemma 5.2. By employing these physical quantities, we investigate the time evolution of the moment of inertia or the internal energy for the Euler–Riesz system. When γ>1\gamma>1 and cK>0c_{K}>0 (with some assumption on the range of α\alpha), the total energy can be negative, which is preserved in time. We use this observation to show that under the hypothesis that a strong solution exists globally in time, the moment of inertia can be strictly negative in finite time, which is a contradiction. On the other hand, when γ>1\gamma>1 and cK<0c_{K}<0, the total energy is always positive, thus the previous argument cannot be applied to this case. In this case, roughly speaking, we estimate the lower and upper bound of the internal energy as follows:

Cl,1(1+Cl,2t2)d(γ1)21γ1dργ(t,x)𝑑xCu(1+t)d(γ1)\frac{C_{l,1}}{(1+C_{l,2}t^{2})^{\frac{d(\gamma-1)}{2}}}\leq\frac{1}{\gamma-1}\int_{\mathbb{R}^{d}}\rho^{\gamma}(t,x)\,dx\leq\frac{C_{u}}{(1+t)^{d(\gamma-1)}}

for some positive constants Cl,1C_{l,1}, Cl,2C_{l,2}, and CuC_{u} and all t0t\geq 0. This asserts that if Cl,1>CuCl,2C_{l,1}>C_{u}C_{l,2}, the life-span TT of the solution should be finite. In the isothermal pressure case, γ=1\gamma=1, the internal energy becomes dρlnρdx\int_{\mathbb{R}^{d}}\rho\ln\rho\,dx, thus the total energy can be negative. However, we cannot use a similar argument as in the attractive case since ρlnρ\rho\ln\rho is non-positive when ρ[0,1]\rho\in[0,1]. We show that the non-negative part of the internal energy can be controlled by the moment of inertia, and derive a second-order differential inequality for the moment of inertia. From the inequality, we obtain an explicit upper bound of the moment of inertia. This enables us to find some class of initial data leading to a formation of finite-time singularity. Our methods can be directly applied to the Coulomb case, α=d2\alpha=d-2, and we also would like to emphasize that the analysis of finite-time singularity formation for the multidimensional isothermal Euler–Poisson system with repulsive forces (without radially symmetry) has not been addressed so far, to the best of our knowledge.

1.4 Organization of the paper

The rest of this paper is organized as follows. In Section 2, we perform a formal linear analysis around a constant state to observe hyperbolic nature of the Euler–Poisson system, which suggests local well-posedness. Then in Sections 3 and 4, we establish local well-posedness of classical solutions to the Euler–Riesz system without and with pressure, respectively. Finally, in Section 5 we establish finite-time singularity formation for a class of large initial data.

2 Linear analysis

As we mentioned earlier, a straightforward energy estimate does not close for the Euler–Riesz system (1.1). To see whether this system has a chance to be well-posed, we take the linearization approach. Formally, (ρ,u)=(1,0)(\rho,u)=(1,0) defines a steady state to (1.1). Linearization around this steady state gives

{tρ=u,tu=cKΛαdρcpρ.\left\{\begin{aligned} &\partial_{t}\rho=-\nabla\cdot u,\\ &\partial_{t}u=c_{K}\Lambda^{\alpha-d}\nabla\rho-c_{p}\nabla\rho.\end{aligned}\right. (2.1)

Assuming for simplicity that Ω=𝕋d\Omega=\mathbb{T}^{d} and taking the Fourier transform gives

{ddtρ^(t,k)=iku^(t,k),ddtu^(t,k)=ik(cKCα,d|k|αd+cp)ρ^(t,k),\left\{\begin{aligned} \frac{d}{dt}\widehat{\rho}(t,k)&=-ik\cdot\widehat{u}(t,k),\\ \frac{d}{dt}\widehat{u}(t,k)&=-ik(-c_{K}C_{\alpha,d}|k|^{\alpha-d}+c_{p})\widehat{\rho}(t,k),\end{aligned}\right. (2.2)

with some constant Cα,d>0C_{\alpha,d}>0. One sees from (2.2) the following conservation law:

12ddt((cKCα,d|k|αd+cp)|ρ^(t,k)|2+|u^(t,k)|2)=0.\begin{split}\frac{1}{2}\frac{d}{dt}\left((-c_{K}C_{\alpha,d}|k|^{\alpha-d}+c_{p})|\widehat{\rho}(t,k)|^{2}+|\widehat{u}(t,k)|^{2}\right)=0.\end{split}

This shows that

  • If cp0c_{p}\geq 0 and cK0c_{K}\leq 0, then the system (2.1) is well-posed in HsH^{s}-spaces for any α\alpha.

We now consider the case cK>0c_{K}>0. Then,

d2dt2ρ^(t,k)=|k|2(cKCα,d|k|αdcp)ρ^(t,k).\begin{split}\frac{d^{2}}{dt^{2}}\widehat{\rho}(t,k)=|k|^{2}\left(c_{K}C_{\alpha,d}|k|^{\alpha-d}-c_{p}\right)\widehat{\rho}(t,k).\end{split}

Since we assume that αd<0\alpha-d<0, for |k||k| sufficiently large, we have that cKCα,d|k|αdcp<0c_{K}C_{\alpha,d}|k|^{\alpha-d}-c_{p}<0 as long as cp>0c_{p}>0. When cp=0c_{p}=0, |k|αd+2+|k|^{\alpha-d+2}\rightarrow+\infty from 2<αd-2<\alpha-d. Therefore, we conclude that

  • If cK>0c_{K}>0 and cp>0c_{p}>0, the system (2.1) is still well-posed for αd<0\alpha-d<0.

  • However, when cK>0c_{K}>0 and cp=0c_{p}=0, the system (2.1) is ill-posed for αd>2\alpha-d>-2.

In conclusion, assuming 2<αd<0-2<\alpha-d<0, linear analysis suggests local well-posedness when either cp>0c_{p}>0 regardless of the sign of cKc_{K} or cp=0c_{p}=0 and cK0c_{K}\leq 0. Moreover, ill-posedness is expected when cp=0c_{p}=0 and cK>0c_{K}>0. Similarly, even when cp>0c_{p}>0, if xΛαd\nabla_{x}\Lambda^{\alpha-d} is replaced with Λα+1d\Lambda^{\alpha+1-d} (which is of the same order), ill-posedness should occur. In the following sections, we rigorously prove local well-posedness for the nonlinear system. We would like to emphasize that our proofs of well-posedness carry over (with minor modifications) to the case when the Riesz kernel (1.3) is generalized to some kernel KK which satisfies the asymptotics K(z)|z|αK(z)\simeq|z|^{-\alpha} in the limit |z|0|z|\rightarrow 0, together with some differentiability properties.

3 Well-posedness for the pressureless Euler–Riesz system

In this section, we assume that the domain is given by d\mathbb{R}^{d}, where some delicate issues involving decay of ρ\rho at infinity appears. Modifying the proofs to the case of 𝕋d\mathbb{T}^{d} is straightforward. Moreover, we always assume that ρ\rho is a strictly positive function in d\mathbb{R}^{d}.

We define the modified HmH^{m} “norm” for ρ\rho, as follows:

ρH~m2:=0<|k|mρ12kρL22.\begin{split}\|\rho\|_{\widetilde{H}^{m}}^{2}:=\sum_{0<|k|\leq m}\|\rho^{-\frac{1}{2}}\partial^{k}\rho\|_{L^{2}}^{2}.\end{split} (3.1)

Together with ρL\rho\in L^{\infty}, the quantity H~m\widetilde{H}^{m} controls the usual Sobolev norm:

ρHm1ρL12ρH~m.\begin{split}\|\nabla\rho\|_{H^{m-1}}\leq\|\rho\|_{L^{\infty}}^{\frac{1}{2}}\|\rho\|_{\widetilde{H}^{m}}.\end{split}

Since ρ\rho may decay at infinity, H~m\widetilde{H}^{m} encodes some extra decay of derivatives at infinity. Note that in (3.1), the term with k=0k=0 is omitted. While we could have included this term in the definition of H~m\widetilde{H}^{m}, doing so enforces that ρL1(d)\rho\in L^{1}(\mathbb{R}^{d}). On the other hand, our well-posedness result is able to treat the data for which ρ\rho converges to some positive constant at infinity. Once d2<α<dd-2<\alpha<d is fixed, we define the control quantity as

(u,ρ)Xm:=uHm+dα2+ρH~m+ρL+(lnρ)L.\begin{split}\|(u,\rho)\|_{X^{m}}:=\|u\|_{H^{m+\frac{d-\alpha}{2}}}+\|\rho\|_{\widetilde{H}^{m}}+\|\rho\|_{L^{\infty}}+\|\nabla(\ln\rho)\|_{L^{\infty}}.\end{split}

We say that (u,ρ)Xm(u,\rho)\in X^{m} if (u,ρ)Xm<+\|(u,\rho)\|_{X^{m}}<+\infty.

Theorem 3.1 (Local well-posedness of the pressureless and repulsive system).

Assume that d2<α<dd-2<\alpha<d. Then the system (1.1) in the pressureless and repulsive case is locally well-posed in the space XmX^{m} for any m>d2+2m>\frac{d}{2}+2. More precisely, given any initial data satisfying

(u0,ρ0)Xm=u0Hm+dα2+ρ0L+ρ0H~m+(lnρ0)L<+,\begin{split}\|(u_{0},\rho_{0})\|_{X^{m}}=\|u_{0}\|_{H^{m+\frac{d-\alpha}{2}}}+\|\rho_{0}\|_{L^{\infty}}+\|\rho_{0}\|_{\widetilde{H}^{m}}+\|\nabla(\ln\rho_{0})\|_{L^{\infty}}<+\infty,\end{split}

there exist T>0T>0 and a unique solution (u,ρ)(u,\rho) to the system (1.1) with cp=0c_{p}=0 and cK<0c_{K}<0 defined on [0,T)[0,T), satisfying the initial condition and (u,ρ)L(0,T;Xm)(u,\rho)\in L^{\infty}(0,T;X^{m}); that is,

u(t)Hm+dα2+ρ(t)L+ρ(t)H~m+(lnρ(t))L<+,t<T.\begin{split}\|u(t)\|_{H^{m+\frac{d-\alpha}{2}}}+\|\rho(t)\|_{L^{\infty}}+\|\rho(t)\|_{\widetilde{H}^{m}}+\|\nabla(\ln\rho(t))\|_{L^{\infty}}<+\infty,\quad t<T.\end{split}

We will need a few technical lemmas.

Lemma 3.2 ([27]).

Let g>0g>0 on d\mathbb{R}^{d}. Given an integer m1m\geq 1 and a kk-tuple (1,,k)(\ell_{1},\cdots,\ell_{k}) of dd-vectors satisfying m=|1|++|k|m=|\ell_{1}|+\cdots+|\ell_{k}|, we have that

d1g2k11ik|ig|2dxm,dd|mg|2g𝑑x+d|g|2mg2m1𝑑x.\begin{split}\int_{\mathbb{R}^{d}}\frac{1}{g^{2k-1}}\prod_{1\leq i\leq k}|\partial^{\ell_{i}}g|^{2}\,dx\lesssim_{m,d}\int_{\mathbb{R}^{d}}\frac{|\nabla^{m}g|^{2}}{g}\,dx+\int_{\mathbb{R}^{d}}\frac{|\nabla g|^{2m}}{g^{2m-1}}\,dx.\end{split} (3.2)

In particular, we obtain that

n(mngg)L22m,dd|mg|2g𝑑x+d|g|2mg2m1𝑑x\begin{split}\|\nabla^{n}(\frac{\nabla^{m-n}g}{\sqrt{g}})\|_{L^{2}}^{2}\lesssim_{m,d}\int_{\mathbb{R}^{d}}\frac{|\nabla^{m}g|^{2}}{g}\,dx+\int_{\mathbb{R}^{d}}\frac{|\nabla g|^{2m}}{g^{2m-1}}\,dx\end{split}

for any integer 0nm0\leq n\leq m.

Sketch of the proof.

First, observe that it suffices to prove the inequality

d|g|2mg2m1𝑑xm,dd|mg|2g𝑑x+d|g|2mg2m1𝑑x\begin{split}\int_{\mathbb{R}^{d}}\frac{|\nabla^{\ell}g|^{\frac{2m}{\ell}}}{g^{\frac{2m}{\ell}-1}}\,dx\lesssim_{m,d}\int_{\mathbb{R}^{d}}\frac{|\nabla^{m}g|^{2}}{g}\,dx+\int_{\mathbb{R}^{d}}\frac{|\nabla g|^{2m}}{g^{2m-1}}\,dx\end{split} (3.3)

for all integer 1<<m1<\ell<m. Once (3.3) is proved, we then deduce (3.2) using Hölder’s inequality:

d1g2k11ik|ig|2dx1ik(d||i|g|2m|i|g2m|i|1𝑑x)|i|mm,dd|mg|2g𝑑x+d|g|2mg2m1𝑑x.\begin{split}\int_{\mathbb{R}^{d}}\frac{1}{g^{2k-1}}\prod_{1\leq i\leq k}|\partial^{\ell_{i}}g|^{2}\,dx\leq\prod_{1\leq i\leq k}\left(\int_{\mathbb{R}^{d}}\frac{|\nabla^{|\ell_{i}|}g|^{\frac{2m}{|\ell_{i}|}}}{g^{\frac{2m}{|\ell_{i}|}-1}}\,dx\right)^{\frac{|\ell_{i}|}{m}}\lesssim_{m,d}\int_{\mathbb{R}^{d}}\frac{|\nabla^{m}g|^{2}}{g}\,dx+\int_{\mathbb{R}^{d}}\frac{|\nabla g|^{2m}}{g^{2m-1}}\,dx.\end{split}

We show how to prove (3.3) in the case m=5m=5. Then, we need to prove that

Im,dI0+I5\begin{split}I_{\ell}\lesssim_{m,d}I_{0}+I_{5}\end{split} (3.4)

for all 1<<51<\ell<5, where

I:=d|g|10g101𝑑x.\begin{split}I_{\ell}:=\int_{\mathbb{R}^{d}}\frac{|\nabla^{\ell}g|^{\frac{10}{\ell}}}{g^{\frac{10}{\ell}-1}}\,dx.\end{split}

We fix some partial derivative \partial^{\ell} of order \ell and compute

d|g|101g101sgn(g)gdx=(101)d|g|102g1011g+1gdx+(101)d|g|101g10g1gsgn(g)dx.\begin{split}&\int_{\mathbb{R}^{d}}\frac{|\partial^{\ell}g|^{\frac{10}{\ell}-1}}{g^{{}^{\frac{10}{\ell}-1}}}\mathrm{sgn}(\partial^{\ell}g)\partial^{\ell}g\,dx\cr&\quad=-({\frac{10}{\ell}-1})\int_{\mathbb{R}^{d}}\frac{|\partial^{\ell}g|^{\frac{10}{\ell}-2}}{g^{\frac{10}{\ell}-1}}\,\partial^{\ell-1}g\,\partial^{\ell+1}g\,dx+({\frac{10}{\ell}-1})\int_{\mathbb{R}^{d}}\frac{|\partial^{\ell}g|^{\frac{10}{\ell}-1}}{g^{\frac{10}{\ell}}}\,\partial g\,\partial^{\ell-1}g\,\mathrm{sgn}(\partial^{\ell}g)\,dx.\end{split}

Note that 2.51052.5\leq\frac{10}{\ell}\leq 5. Using Hölder’s inequality to the right hand side, we obtain that

II1110I15I+1+110+I1110I1110I110.\begin{split}I_{\ell}\lesssim I_{\ell-1}^{\frac{\ell-1}{10}}I_{\ell}^{1-\frac{\ell}{5}}I_{\ell+1}^{\frac{\ell+1}{10}}+I_{1}^{\frac{1}{10}}I_{\ell-1}^{\frac{\ell-1}{10}}I_{\ell}^{1-\frac{\ell}{10}}.\end{split}

With ϵ\epsilon-Young inequality, we obtain

IϵI+Cϵ(I1+I1+I+1).\begin{split}I_{\ell}\leq\epsilon I_{\ell}+C_{\epsilon}(I_{1}+I_{\ell-1}+I_{\ell+1}).\end{split}

Combining this inequality in the cases =2,3,4\ell=2,3,4, it is straightforward to obtain (3.4). We omit the details. ∎

Lemma 3.3.

Let s0s\geq 0. For a vector field v(Hd2+1+s+ϵ(d))dv\in(H^{\frac{d}{2}+1+s+\epsilon}(\mathbb{R}^{d}))^{d} and fHs(d)f\in H^{s}(\mathbb{R}^{d}), we have the commutator estimate

[Λs,v]fL2s,d,ϵvHd2+1+s+ϵfHs.\begin{split}\|[\Lambda^{s},v\cdot\nabla]f\|_{L^{2}}\lesssim_{s,d,\epsilon}\|v\|_{H^{\frac{d}{2}+1+s+\epsilon}}\|f\|_{H^{s}}.\end{split}
Proof.

We recall the following commutator estimate from [10]:

Proposition 3.4 ([10, Proposition 2.1]).

For ss\in\mathbb{R} and any ϵ>0\epsilon>0, there exists Cs,ϵ>0C_{s,\epsilon}>0 depending only on s,ϵs,\epsilon such that

[Λsxi,g]fL2Cs,ϵ(gHd2+1+ϵΛsfL2+gHd2+1+s+ϵfL2)\begin{split}\|[\Lambda^{s}\partial_{x_{i}},g]f\|_{L^{2}}\leq C_{s,\epsilon}\left(\|g\|_{H^{\frac{d}{2}+1+\epsilon}}\|\Lambda^{s}f\|_{L^{2}}+\|g\|_{H^{\frac{d}{2}+1+s+\epsilon}}\|f\|_{L^{2}}\right)\end{split}

for any i=1,,di=1,\cdots,d.

Strictly speaking in [10], the proof is provided only in the case of d=2d=2, but the proof readily extends to any d1d\geq 1. Now, observing

[Λsxi,g]f=[Λs,gxi]f+Λs(fxig),\begin{split}[\Lambda^{s}\partial_{x_{i}},g]f=[\Lambda^{s},g\partial_{x_{i}}]f+\Lambda^{s}(f\partial_{x_{i}}g),\end{split}

taking g=vig=v_{i} for each i=1,,di=1,\cdots,d, and summing up in ii, we obtain the identity

[Λs,v]f=[Λs,v]f+Λs(fv).\begin{split}[\Lambda^{s}\nabla,v]f=[\Lambda^{s},v\cdot\nabla]f+\Lambda^{s}(f\nabla\cdot v).\end{split}

Using the Fourier transform, it is not difficult to show that

Λs(fv)L2Cs,ϵ(vHd2+1+ϵΛsfL2+vHd2+1+s+ϵfL2)\begin{split}\|\Lambda^{s}(f\nabla\cdot v)\|_{L^{2}}\leq C_{s,\epsilon}\left(\|v\|_{H^{\frac{d}{2}+1+\epsilon}}\|\Lambda^{s}f\|_{L^{2}}+\|v\|_{H^{\frac{d}{2}+1+s+\epsilon}}\|f\|_{L^{2}}\right)\end{split}

holds (cf. [10, proof of Proposition 2.1]). Applying the above proposition, the estimate

[Λs,v]fL2Cs,ϵ(vHd2+1+ϵΛsfL2+vHd2+1+s+ϵfL2)Cs,ϵvHd2+1+s+ϵfHs\begin{split}\|[\Lambda^{s},v\cdot\nabla]f\|_{L^{2}}\leq C_{s,\epsilon}\left(\|v\|_{H^{\frac{d}{2}+1+\epsilon}}\|\Lambda^{s}f\|_{L^{2}}+\|v\|_{H^{\frac{d}{2}+1+s+\epsilon}}\|f\|_{L^{2}}\right)\leq C_{s,\epsilon}\|v\|_{H^{\frac{d}{2}+1+s+\epsilon}}\|f\|_{H^{s}}\end{split}

follows for s0s\geq 0. ∎

Proof of Theorem 3.1.

In the proof, the constants may depend on d,d, mm, and α\alpha but not on the solution. We divide the proof into a few steps.

(i) a priori estimates

Fix some derivative m\partial^{m} of order mm and we obtain

t(mu)+umu+[m,u]u=Λαdmρ.\begin{split}\partial_{t}(\partial^{m}u)+u\cdot\nabla\partial^{m}u+[\partial^{m},u\cdot\nabla]u=-\Lambda^{\alpha-d}\nabla\partial^{m}\rho.\end{split}

We now apply Λdα2\Lambda^{\frac{d-\alpha}{2}} to both sides:

t(Λdα2mu)+u(Λdα2mu)+[Λdα2,u]mu+Λdα2([m,u]u)=Λαd2mρ.\begin{split}\partial_{t}(\Lambda^{\frac{d-\alpha}{2}}\partial^{m}u)+u\cdot\nabla(\Lambda^{\frac{d-\alpha}{2}}\partial^{m}u)+[\Lambda^{\frac{d-\alpha}{2}},u\cdot\nabla]\partial^{m}u+\Lambda^{\frac{d-\alpha}{2}}([\partial^{m},u\cdot\nabla]u)=-\Lambda^{\frac{\alpha-d}{2}}\nabla\partial^{m}\rho.\end{split}

Then, we have that

[Λdα2,u]muL2CuHm+dα22\begin{split}\|[\Lambda^{\frac{d-\alpha}{2}},u\cdot\nabla]\partial^{m}u\|_{L^{2}}\leq C\|u\|_{H^{m+\frac{d-\alpha}{2}}}^{2}\end{split}

by Lemma 3.3, since m>d2+2m>\frac{d}{2}+2. To handle the term Λdα2([m,u]u)\Lambda^{\frac{d-\alpha}{2}}([\partial^{m},u\cdot\nabla]u), it suffices to estimate expressions of the form Λdα2(kumku)\Lambda^{\frac{d-\alpha}{2}}(\partial^{k}u\cdot\nabla\partial^{m-k}u) where 1|k|m1\leq|k|\leq m and k\partial^{k} and mk\partial^{m-k} denote some derivatives of order |k||k| and m|k|m-|k|, respectively. In the extreme cases |k|=1|k|=1 and |k|=m|k|=m, we bound

Λdα2(um1u)L2+Λdα2(muu)L2Cum1uHdα2+muuHdα2Cu^Lξ1uHm+dα2+C|ξ|dα2u^Lξ1uHmCuHm+dα22\begin{split}\|\Lambda^{\frac{d-\alpha}{2}}(\partial u\cdot\nabla\partial^{m-1}u)\|_{L^{2}}+\|\Lambda^{\frac{d-\alpha}{2}}(\partial^{m}u\cdot\nabla u)\|_{L^{2}}&\leq C\|\partial u\cdot\nabla\partial^{m-1}u\|_{H^{\frac{d-\alpha}{2}}}+\|\partial^{m}u\cdot\nabla u\|_{H^{\frac{d-\alpha}{2}}}\\ &\leq C\|\widehat{\nabla u}\|_{L^{1}_{\xi}}\|u\|_{H^{m+\frac{d-\alpha}{2}}}+C\||\xi|^{\frac{d-\alpha}{2}}\widehat{\nabla u}\|_{L^{1}_{\xi}}\|u\|_{H^{m}}\\ &\leq C\|u\|_{H^{m+\frac{d-\alpha}{2}}}^{2}\end{split}

using the elementary product estimate in the Fourier space. For 1<|k|<m1<|k|<m, one can simply estimate

Λdα2(kumku)L2CkumkuH1CuHm+dα22\begin{split}\|\Lambda^{\frac{d-\alpha}{2}}(\partial^{k}u\cdot\nabla\partial^{m-k}u)\|_{L^{2}}\leq C\|\partial^{k}u\cdot\nabla\partial^{m-k}u\|_{H^{1}}\leq C\|u\|_{H^{m+\frac{d-\alpha}{2}}}^{2}\end{split}

using the Gagliardo–Nirenberg–Sobolev inequality. Here it was used that m>d2+2m>\frac{d}{2}+2. Collecting the estimates, we obtain with Um:=Λdα2muU_{m}:=\Lambda^{\frac{d-\alpha}{2}}\partial^{m}u and Rm:=mρR_{m}:=\partial^{m}\rho that

|12ddtUmL22+dUmΛαd2Rmdx|CuHm+dα23.\begin{split}\left|\frac{1}{2}\frac{d}{dt}\|U_{m}\|_{L^{2}}^{2}+\int_{\mathbb{R}^{d}}U_{m}\cdot\Lambda^{\frac{\alpha-d}{2}}\nabla R_{m}\,dx\right|\leq C\|u\|_{H^{m+\frac{d-\alpha}{2}}}^{3}.\end{split} (3.5)

On the other hand, the equation for RmR_{m} is given by

tRm+uRm+[m,u]ρ=ρΛαd2Um[m,ρ]u.\begin{split}\partial_{t}R_{m}+u\cdot\nabla R_{m}+[\partial^{m},u\cdot\nabla]\rho=-\rho\nabla\cdot\Lambda^{\frac{\alpha-d}{2}}U_{m}-[\partial^{m},\rho\nabla\cdot]u.\end{split}

Let us estimate

12ddtd1ρRm2𝑑x=12dtρρ2Rm2dx+d1ρRmtRmdx=:I+J.\begin{split}\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}\frac{1}{\rho}R_{m}^{2}\,dx&=-\frac{1}{2}\int_{\mathbb{R}^{d}}\frac{\partial_{t}\rho}{\rho^{2}}R_{m}^{2}\,dx+\int_{\mathbb{R}^{d}}\frac{1}{\rho}R_{m}\partial_{t}R_{m}\,dx=:I+J.\end{split}

First, II can be easily estimated by

I12tlnρLd1ρRm2𝑑x.I\leq\frac{1}{2}\|\partial_{t}\ln\rho\|_{L^{\infty}}\int_{\mathbb{R}^{d}}\frac{1}{\rho}R_{m}^{2}\,dx.

Since

tlnρ=ulnρu,\partial_{t}\ln\rho=-u\cdot\nabla\ln\rho-\nabla\cdot u,

we get

I12(uLlnρL+uL)d1ρRm2𝑑xCuHm(1+lnρL)d1ρRm2𝑑x.I\leq\frac{1}{2}\left(\|u\|_{L^{\infty}}\|\nabla\ln\rho\|_{L^{\infty}}+\|\nabla u\|_{L^{\infty}}\right)\int_{\mathbb{R}^{d}}\frac{1}{\rho}R_{m}^{2}\,dx\leq C\|u\|_{H^{m}}\left(1+\|\nabla\ln\rho\|_{L^{\infty}}\right)\int_{\mathbb{R}^{d}}\frac{1}{\rho}R_{m}^{2}\,dx.

Next, we write J=J1+J2+J3+J4J=J_{1}+J_{2}+J_{3}+J_{4} where

J1=d1ρRmuRmdx,J2=d1ρRm([m,u]ρ)𝑑x,\begin{split}J_{1}=-\int_{\mathbb{R}^{d}}\frac{1}{\rho}R_{m}u\cdot\nabla R_{m}\,dx,\quad J_{2}=-\int_{\mathbb{R}^{d}}\frac{1}{\rho}R_{m}([\partial^{m},u\cdot\nabla]\rho)\,dx,\end{split}
J3=dRmΛαd2Umdx,andJ4=d1ρRm[m,ρ]udx.\begin{split}J_{3}=-\int_{\mathbb{R}^{d}}R_{m}\nabla\cdot\Lambda^{\frac{\alpha-d}{2}}U_{m}\,dx,\quad\mbox{and}\quad J_{4}=-\int_{\mathbb{R}^{d}}\frac{1}{\rho}R_{m}[\partial^{m},\rho\nabla\cdot]u\,dx.\end{split}

We shall estimate J1,J2,J_{1},J_{2}, and J4J_{4}. To begin with,

J1=12d(uρ)Rm2𝑑x=12d(uulnρ)1ρRm2𝑑xCuHm(1+lnρL)d1ρRm2𝑑x.\begin{split}J_{1}&=\frac{1}{2}\int_{\mathbb{R}^{d}}\nabla\cdot\left(\frac{u}{\rho}\right)R_{m}^{2}\,dx=\frac{1}{2}\int_{\mathbb{R}^{d}}(\nabla\cdot u-u\nabla\ln\rho)\frac{1}{\rho}R_{m}^{2}\,dx\cr&\leq C\|u\|_{H^{m}}\left(1+\|\nabla\ln\rho\|_{L^{\infty}}\right)\int_{\mathbb{R}^{d}}\frac{1}{\rho}R_{m}^{2}\,dx.\end{split}

To handle J2J_{2}, we need to estimate

d1ρ(mρ)umρdx,0<m.\begin{split}\int_{\mathbb{R}^{d}}\frac{1}{\rho}(\partial^{m}\rho)\partial^{\ell}u\cdot\nabla\partial^{m-\ell}\rho\,dx,\quad 0<\ell\leq m.\end{split}

We consider two cases: if <md2\ell<m-\frac{d}{2}, then we simply estimate

|d1ρ(mρ)umρdx|CuLmρρL2m+1ρρL2CuHmmρρL2m+1ρρL2\begin{split}\left|\int_{\mathbb{R}^{d}}\frac{1}{\rho}(\partial^{m}\rho)\partial^{\ell}u\cdot\nabla\partial^{m-\ell}\rho\,dx\right|\leq C\|\partial^{\ell}u\|_{L^{\infty}}\|\frac{\partial^{m}\rho}{\sqrt{\rho}}\|_{L^{2}}\|\frac{\partial^{m-\ell+1}\rho}{\sqrt{\rho}}\|_{L^{2}}\leq C\|u\|_{H^{m}}\|\frac{\partial^{m}\rho}{\sqrt{\rho}}\|_{L^{2}}\|\frac{\partial^{m-\ell+1}\rho}{\sqrt{\rho}}\|_{L^{2}}\end{split}

with Sobolev embedding. Next, when md2\ell\geq m-\frac{d}{2}, we define ss to be the smallest integer satisfying sd2+ms\geq\frac{d}{2}+\ell-m. Setting 1<p,q<1<p,q<\infty to satisfy

m=d2(11p)=d2q,\begin{split}m-\ell=\frac{d}{2}(1-\frac{1}{p})=\frac{d}{2q},\end{split}

we have first by Hölder inequality that

|d1ρ(mρ)umρdx|CmρρL2uL2p1ρm+1ρL2q,\begin{split}\left|\int_{\mathbb{R}^{d}}\frac{1}{\rho}(\partial^{m}\rho)\partial^{\ell}u\cdot\nabla\partial^{m-\ell}\rho\,dx\right|\leq C\|\frac{\partial^{m}\rho}{\sqrt{\rho}}\|_{L^{2}}\|\partial^{\ell}u\|_{L^{2p}}\|\frac{1}{\sqrt{\rho}}\partial^{m+1-\ell}\rho\|_{L^{2q}},\end{split}

and then using Gagliardo-Nirenberg-Sobolev inequality and Lemma 3.2, we have

uL2p1ρm+1ρL2qCuHm(i=0si(1ρm+1ρ)L2)CuHm(j=1s+m+1(d|jρ|2ρ𝑑x+d|ρ|2jρ2j1𝑑x)12).\begin{split}\|\partial^{\ell}u\|_{L^{2p}}\|\frac{1}{\sqrt{\rho}}\partial^{m+1-\ell}\rho\|_{L^{2q}}&\leq C\|u\|_{H^{m}}\left(\sum_{i=0}^{s}\|\partial^{i}(\frac{1}{\sqrt{\rho}}\partial^{m+1-\ell}\rho)\|_{L^{2}}\right)\\ &\leq C\|u\|_{H^{m}}\left(\sum_{j=1}^{s+m+1-\ell}\left(\int_{\mathbb{R}^{d}}\frac{|\nabla^{j}\rho|^{2}}{\rho}\,dx+\int_{\mathbb{R}^{d}}\frac{|\nabla\rho|^{2j}}{\rho^{2j-1}}\,dx\right)^{\frac{1}{2}}\right).\end{split}

Note that s+m+1<d2+2s+m+1-\ell<\frac{d}{2}+2. Moreover, we can bound

d|ρ|2jρ2j1𝑑xC(lnρ)L2(j1)d|ρ|2ρ𝑑x.\begin{split}\int_{\mathbb{R}^{d}}\frac{|\nabla\rho|^{2j}}{\rho^{2j-1}}\,dx\leq C\|\nabla(\ln\rho)\|_{L^{\infty}}^{2(j-1)}\int_{\mathbb{R}^{d}}\frac{|\nabla\rho|^{2}}{\rho}\,dx.\end{split}

Therefore, we obtain that

|J2|CuHm(0<km(1ρRkL22+(lnρ)L2(k1)1ρR1L22))C(1+(lnρ)L)2(m1)uHm0<km1ρRkL22.\begin{split}|J_{2}|&\leq C\|u\|_{H^{m}}\left(\sum_{0<k\leq m}(\|\frac{1}{\sqrt{\rho}}R_{k}\|_{L^{2}}^{2}+\|\nabla(\ln\rho)\|_{L^{\infty}}^{2(k-1)}\|\frac{1}{\sqrt{\rho}}R_{1}\|_{L^{2}}^{2})\right)\\ &\leq C(1+\|\nabla(\ln\rho)\|_{L^{\infty}})^{2(m-1)}\|u\|_{H^{m}}\sum_{0<k\leq m}\|\frac{1}{\sqrt{\rho}}R_{k}\|_{L^{2}}^{2}.\end{split}

Now, we observe that to estimate J4J_{4}, it suffices to treat terms of the form

d1ρRmρmudx\begin{split}\int_{\mathbb{R}^{d}}\frac{1}{\rho}R_{m}\partial^{\ell}\rho\partial^{m-\ell}\nabla\cdot u\,dx\end{split}

for >0\ell>0, but it can be estimated exactly the same way with J2J_{2}. We conclude that

|12ddtd1ρRm2𝑑x+dRmΛαd2Um𝑑x|CuHm(1+lnρL)2(m1)0<km1ρRkL22.\begin{split}\left|\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}\frac{1}{\rho}R_{m}^{2}\,dx+\int_{\mathbb{R}^{d}}R_{m}\nabla\cdot\Lambda^{\frac{\alpha-d}{2}}U_{m}\,dx\right|\leq C\|u\|_{H^{m}}\left(1+\|\nabla\ln\rho\|_{L^{\infty}}\right)^{2(m-1)}\sum_{0<k\leq m}\|\frac{1}{\sqrt{\rho}}R_{k}\|_{L^{2}}^{2}.\end{split} (3.6)

Using (3.6) together with (3.5), we obtain with

dUmΛαd2RmdxdRmΛαd2Um𝑑x=0\begin{split}-\int_{\mathbb{R}^{d}}U_{m}\cdot\Lambda^{\frac{\alpha-d}{2}}\nabla R_{m}\,dx-\int_{\mathbb{R}^{d}}R_{m}\nabla\cdot\Lambda^{\frac{\alpha-d}{2}}U_{m}\,dx=0\end{split}

that

|12ddtdUm2𝑑x+1ρRm2dx|C(1+lnρL)2(m1)uHm+dα2(uHm+dα22+0<km1ρRkL22).\begin{split}\left|\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}U_{m}^{2}\,dx+\frac{1}{\rho}R_{m}^{2}\,dx\right|\leq C\left(1+\|\nabla\ln\rho\|_{L^{\infty}}\right)^{2(m-1)}\|u\|_{H^{m+\frac{d-\alpha}{2}}}\left(\|u\|_{H^{m+\frac{d-\alpha}{2}}}^{2}+\sum_{0<k\leq m}\|\frac{1}{\sqrt{\rho}}R_{k}\|_{L^{2}}^{2}\right).\end{split}

Repeating the argument for all possible partial derivatives of order m\leq m, we obtain

|ddt(uHm+dα22+ρH~m2)|C(1+lnρL)2(m1)uHm+dα2(uHm+dα22+ρH~m2).\begin{split}\left|\frac{d}{dt}\left(\|u\|^{2}_{H^{m+\frac{d-\alpha}{2}}}+\|\rho\|_{\widetilde{H}^{m}}^{2}\right)\right|\leq C\left(1+\|\nabla\ln\rho\|_{L^{\infty}}\right)^{2(m-1)}\|u\|_{H^{m+\frac{d-\alpha}{2}}}\left(\|u\|^{2}_{H^{m+\frac{d-\alpha}{2}}}+\|\rho\|^{2}_{\widetilde{H}^{m}}\right).\end{split} (3.7)

Now, from the equation for ρ\rho

tρ+uρ=ρu,\begin{split}\partial_{t}\rho+u\cdot\nabla\rho=-\rho\nabla\cdot u,\end{split}

we see that

t(lnρ)+u(lnρ)=(u)T(lnρ)(u).\begin{split}\partial_{t}\nabla(\ln\rho)+u\cdot\nabla\nabla(\ln\rho)=-(\nabla u)^{T}\nabla(\ln\rho)-\nabla(\nabla\cdot u).\end{split}

Evaluating the previous equation along the flow generated by uu, we see that

ddt(lnρ)LC(uL(lnρ)L+2uL)CuHm+dα2(1+(lnρ)L).\begin{split}\frac{d}{dt}\|\nabla(\ln\rho)\|_{L^{\infty}}\leq C\left(\|\nabla u\|_{L^{\infty}}\|\nabla(\ln\rho)\|_{L^{\infty}}+\|\nabla^{2}u\|_{L^{\infty}}\right)\leq C\|u\|_{H^{m+\frac{d-\alpha}{2}}}(1+\|\nabla(\ln\rho)\|_{L^{\infty}}).\end{split} (3.8)

On the other hand, from the equation for ρ\rho, we have

ddtρLCuLρLCuHm+dα2ρL.\begin{split}\frac{d}{dt}\|\rho\|_{L^{\infty}}\leq C\|\nabla u\|_{L^{\infty}}\|\rho\|_{L^{\infty}}\leq C\|u\|_{H^{m+\frac{d-\alpha}{2}}}\|\rho\|_{L^{\infty}}.\end{split} (3.9)

We now recall the definition of the XmX^{m}-norm:

(u(t),ρ(t))Xm=u(t)Hm+dα2+ρ(t)L+ρ(t)H~m+(lnρ(t))L.\begin{split}\|(u(t),\rho(t))\|_{X^{m}}=\|u(t)\|_{H^{m+\frac{d-\alpha}{2}}}+\|\rho(t)\|_{L^{\infty}}+\|\rho(t)\|_{\widetilde{H}^{m}}+\|\nabla(\ln\rho(t))\|_{L^{\infty}}.\end{split}

Combining (3.7), (3.8), and (3.9), we obtain that

|ddt(u(t),ρ(t))Xm2|C(1+(u(t),ρ(t))Xm)2m+1.\begin{split}\left|\frac{d}{dt}\|(u(t),\rho(t))\|_{X^{m}}^{2}\right|\leq C(1+\|(u(t),\rho(t))\|_{X^{m}})^{2m+1}.\end{split}

This gives an a priori estimate for the solution of (1.1) in the pressureless and repulsive case.

(ii) uniqueness

Assume that for some interval of time [0,T][0,T], there exist two solutions (ρ1,u1)(\rho_{1},u_{1}) and (ρ2,u2)(\rho_{2},u_{2}) of (1.1) with the same initial data (ρ0,u0)Xm(\rho_{0},u_{0})\in X^{m}, satisfying

maxi=1,2supt[0,T](ui(t)Hm+dα2+ρi(t)L+ρi(t)H~m+(lnρi(t))L)=M<+.\begin{split}\max_{i=1,2}\sup_{t\in[0,T]}(\|u_{i}(t)\|_{H^{m+\frac{d-\alpha}{2}}}+\|\rho_{i}(t)\|_{L^{\infty}}+\|\rho_{i}(t)\|_{\widetilde{H}^{m}}+\|\nabla(\ln\rho_{i}(t))\|_{L^{\infty}})=M<+\infty.\end{split}

In the estimates below, the constant CC may depend on MM as well. We define ρ~=ρ1ρ2\tilde{\rho}=\rho_{1}-\rho_{2} and u~=u1u2\tilde{u}=u_{1}-u_{2}. Then, the equations for ρ~\tilde{\rho} and u~\tilde{u} read

tρ~+u1ρ~+u~ρ2=ρ~u1ρ2u~\begin{split}\partial_{t}\tilde{\rho}+u_{1}\cdot\nabla\tilde{\rho}+\tilde{u}\cdot\nabla\rho_{2}=-\tilde{\rho}\nabla\cdot u_{1}-{\rho_{2}\nabla\cdot\tilde{u}}\end{split} (3.10)

and

tu~+u1u~+u~u2=Λαdρ~.\begin{split}\partial_{t}\tilde{u}+u_{1}\cdot\nabla\tilde{u}+\tilde{u}\cdot\nabla u_{2}=-\nabla\Lambda^{\alpha-d}\tilde{\rho}.\end{split} (3.11)

Before we proceed, let us observe that the ratio ρ1/ρ2\rho_{1}/\rho_{2} remains bounded from above and below. To prove this, we simply compute using the equations for ρ1\rho_{1} and ρ2\rho_{2} that

ddt(ρ1ρ2)=(u1ρ1ρ1+u1+tρ2ρ2)(ρ1ρ2).\begin{split}\frac{d}{dt}\left(\frac{\rho_{1}}{\rho_{2}}\right)=-{\left(\frac{u_{1}\cdot\nabla\rho_{1}}{\rho_{1}}+\nabla\cdot u_{1}+\frac{\partial_{t}\rho_{2}}{\rho_{2}}\right)\left(\frac{\rho_{1}}{\rho_{2}}\right)}.\end{split}

Since we have a uniform pointwise estimate

|u1ρ1ρ1+u1+tρ2ρ2|(t,x)C,\begin{split}\left|\frac{u_{1}\cdot\nabla\rho_{1}}{\rho_{1}}+\nabla\cdot u_{1}+\frac{\partial_{t}\rho_{2}}{\rho_{2}}\right|(t,x)\leq C,\end{split}

we obtain that

exp(Ct)(ρ1ρ2)(t,x)exp(Ct)\begin{split}\exp(-Ct)\leq\left(\frac{\rho_{1}}{\rho_{2}}\right)(t,x)\leq\exp(Ct)\end{split}

uniformly for all xdx\in\mathbb{R}^{d}, recalling that ρ1=ρ2\rho_{1}=\rho_{2} at t=0t=0. Assuming for simplicity that ρ0L1(d)\rho_{0}\in L^{1}(\mathbb{R}^{d})333To drop this assumption, one could either perform a suitably weighted L2L^{2} estimate for ρ~\tilde{\rho} or carry out higher norm estimate for (ρ~,u~)(\tilde{\rho},\tilde{u}). (this property propagates in time), we obtain in particular that, the quantity ρ21|ρ~|2\rho_{2}^{-1}|\tilde{\rho}|^{2} is integrable. For simplicity, we set ϵ=(dα)/2>0\epsilon=(d-\alpha)/2>0. From (3.10), we compute that

12ddtd1ρ2|ρ~|2𝑑x=12dtρ2ρ21ρ2|ρ~|2𝑑x12du11ρ2|ρ~|2𝑑x12du1ρ2ρ21ρ2|ρ~|2𝑑x+dρ2ρ2u~ρ~𝑑xdρ~u~𝑑x.\begin{split}\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}\frac{1}{\rho_{2}}|\tilde{\rho}|^{2}\,dx&=\frac{1}{2}\int_{\mathbb{R}^{d}}\frac{\partial_{t}\rho_{2}}{\rho_{2}}\frac{1}{\rho_{2}}|\tilde{\rho}|^{2}\,dx-\frac{1}{2}\int_{\mathbb{R}^{d}}\nabla\cdot u_{1}\frac{1}{\rho_{2}}|\tilde{\rho}|^{2}\,dx-\frac{1}{2}\int_{\mathbb{R}^{d}}\frac{u_{1}\cdot\nabla\rho_{2}}{\rho_{2}}\frac{1}{\rho_{2}}|\tilde{\rho}|^{2}\,dx\cr&\quad+\int_{\mathbb{R}^{d}}\frac{\nabla\rho_{2}}{\rho_{2}}\cdot\tilde{u}\tilde{\rho}\,dx-{\int_{\mathbb{R}^{d}}\tilde{\rho}\nabla\cdot\tilde{u}}\,dx.\end{split} (3.12)

Similarly, using (3.11), we compute

12ddtd|Λϵu~|2𝑑x=d12u1|Λϵu~|2𝑑xdΛϵu~[Λϵ,u1]u~𝑑xdΛϵu~Λϵ(u~u2)𝑑xdΛϵu~Λϵρ~dx.\begin{split}\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}|\Lambda^{\epsilon}\tilde{u}|^{2}\,dx&=-\int_{\mathbb{R}^{d}}\frac{1}{2}\nabla\cdot u_{1}|\Lambda^{\epsilon}\tilde{u}|^{2}\,dx-\int_{\mathbb{R}^{d}}\Lambda^{\epsilon}\tilde{u}\cdot[\Lambda^{\epsilon},u_{1}\cdot\nabla]\tilde{u}\,dx\cr&\quad-{\int_{\mathbb{R}^{d}}\Lambda^{\epsilon}\tilde{u}\cdot\Lambda^{\epsilon}(\tilde{u}\cdot\nabla u_{2})}\,dx-\int_{\mathbb{R}^{d}}\Lambda^{\epsilon}\tilde{u}\cdot\nabla\Lambda^{-\epsilon}\tilde{\rho}\,dx.\end{split} (3.13)

We rewrite the last terms on the right hand sides of (3.12) and (3.13) as follows:

du~ρ~𝑑x=du~ρ~dxanddΛϵu~Λϵρ~dx=du~ρ~dx.\begin{split}-\int_{\mathbb{R}^{d}}\nabla\cdot\tilde{u}\tilde{\rho}\,dx=\int_{\mathbb{R}^{d}}\tilde{u}\cdot\nabla\tilde{\rho}\,dx\quad\mbox{and}\quad-\int_{\mathbb{R}^{d}}\Lambda^{\epsilon}\tilde{u}\cdot\nabla\Lambda^{-\epsilon}\tilde{\rho}\,dx=-\int_{\mathbb{R}^{d}}\tilde{u}\cdot\nabla\tilde{\rho}\,dx.\end{split}

Then, we obtain

|12ddtd1ρ2|ρ~|2𝑑xdu~ρ~dx|Cρ212ρ~L2(ρ212ρ~L2+u~L2)\begin{split}\left|\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}\frac{1}{\rho_{2}}|\tilde{\rho}|^{2}\,dx-\int_{\mathbb{R}^{d}}\tilde{u}\cdot\nabla\tilde{\rho}\,dx\right|\leq C\|\rho_{2}^{-\frac{1}{2}}\tilde{\rho}\|_{L^{2}}(\|\rho_{2}^{-\frac{1}{2}}\tilde{\rho}\|_{L^{2}}+\|\tilde{u}\|_{L^{2}})\end{split} (3.14)

and estimating the second to last term in (3.13) by

|dΛϵu~Λϵ(u~u2)𝑑x|Λϵu~L2Λϵ(u~u2)L2CΛϵu~L2(Λϵu~L2+u~L2)\begin{split}\left|\int_{\mathbb{R}^{d}}\Lambda^{\epsilon}\tilde{u}\cdot\Lambda^{\epsilon}(\tilde{u}\cdot\nabla u_{2})\,dx\right|\leq\|\Lambda^{\epsilon}\tilde{u}\|_{L^{2}}\|\Lambda^{\epsilon}(\tilde{u}\cdot\nabla u_{2})\|_{L^{2}}\leq C\|\Lambda^{\epsilon}\tilde{u}\|_{L^{2}}\left(\|\Lambda^{\epsilon}\tilde{u}\|_{L^{2}}+\|\tilde{u}\|_{L^{2}}\right)\end{split}

(using Lemma 3.3), we obtain

|12ddtd|Λϵu~|2𝑑x+du~ρ~dx|CΛϵu~L22.\begin{split}\left|\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^{d}}|\Lambda^{\epsilon}\tilde{u}|^{2}\,dx+\int_{\mathbb{R}^{d}}\tilde{u}\cdot\nabla\tilde{\rho}\,dx\right|\leq C\|\Lambda^{\epsilon}\tilde{u}\|_{L^{2}}^{2}.\end{split} (3.15)

Adding the inequalities (3.14) and (3.15), we obtain

|ddt(ρ212ρ~L2+Λϵu~L2)|C(ρ212ρ~L2+u~L2+Λϵu~L2).\begin{split}\left|\frac{d}{dt}(\|\rho_{2}^{-\frac{1}{2}}\tilde{\rho}\|_{L^{2}}+\|\Lambda^{\epsilon}\tilde{u}\|_{L^{2}})\right|\leq C(\|\rho_{2}^{-\frac{1}{2}}\tilde{\rho}\|_{L^{2}}+\|\tilde{u}\|_{L^{2}}+\|\Lambda^{\epsilon}\tilde{u}\|_{L^{2}}).\end{split}

Proceeding similarly for the equations for ρ~\nabla\tilde{\rho} and Λϵu~\Lambda^{\epsilon}\nabla\tilde{u}, we can obtain

|ddt(ρ212ρ~L2+Λϵu~L2)|C(ρ212ρ~L2+ρ212ρ~L2+u~L2+Λϵu~L2+Λϵu~L2).\begin{split}\left|\frac{d}{dt}(\|\rho_{2}^{-\frac{1}{2}}\nabla\tilde{\rho}\|_{L^{2}}+\|\Lambda^{\epsilon}\nabla\tilde{u}\|_{L^{2}})\right|\leq C(\|\rho_{2}^{-\frac{1}{2}}\tilde{\rho}\|_{L^{2}}+\|\rho_{2}^{-\frac{1}{2}}\nabla\tilde{\rho}\|_{L^{2}}+\|\tilde{u}\|_{L^{2}}+\|\Lambda^{\epsilon}\tilde{u}\|_{L^{2}}+\|\Lambda^{\epsilon}\nabla\tilde{u}\|_{L^{2}}).\end{split}

Finally, from the equation for u~\tilde{u}, it follows that

|ddtu~L2|C(u~L2+Λαdρ~L2)C(u~L2+ρ~H1)C(u~L2+ρ212ρ~L2+ρ212ρ~L2).\begin{split}\left|\frac{d}{dt}\|\tilde{u}\|_{L^{2}}\right|\leq C(\|\tilde{u}\|_{L^{2}}+\|\Lambda^{\alpha-d}\nabla\tilde{\rho}\|_{L^{2}})\leq C(\|\tilde{u}\|_{L^{2}}+\|\tilde{\rho}\|_{H^{1}})\leq C(\|\tilde{u}\|_{L^{2}}+\|\rho_{2}^{-\frac{1}{2}}\tilde{\rho}\|_{L^{2}}+\|\rho_{2}^{-\frac{1}{2}}\nabla\tilde{\rho}\|_{L^{2}}).\end{split}

Here, Λαdρ~L2Cρ~H1\|\Lambda^{\alpha-d}\nabla\tilde{\rho}\|_{L^{2}}\leq C\|\tilde{\rho}\|_{H^{1}} follows from αd<0\alpha-d<0. Hence, for the quantity

X=ρ212ρ~L2+ρ212ρ~L2+u~L2+Λϵu~L2+Λϵu~L2,\begin{split}X=\|\rho_{2}^{-\frac{1}{2}}\tilde{\rho}\|_{L^{2}}+\|\rho_{2}^{-\frac{1}{2}}\nabla\tilde{\rho}\|_{L^{2}}+\|\tilde{u}\|_{L^{2}}+\|\Lambda^{\epsilon}\tilde{u}\|_{L^{2}}+\|\Lambda^{\epsilon}\nabla\tilde{u}\|_{L^{2}},\end{split}

we obtain the differential inequality

|ddtX|CX,\begin{split}\left|\frac{d}{dt}X\right|\leq CX,\end{split}

which guarantees that if X(t=0)=0X(t=0)=0, then X=0X=0 for t[0,T]t\in[0,T]. This shows that u1=u2u_{1}=u_{2} and ρ1=ρ2\rho_{1}=\rho_{2}.

(iii) existence

It only remains to prove existence of a solution to (1.1) satisfying the above a priori estimates. For this purpose we fix some small time interval [0,T1][0,T_{1}] on which we have Xm(t)2Xm(0)X_{m}(t)\leq 2X_{m}(0). Once existence is shown in [0,T1][0,T_{1}], one can extend the time interval for existence as long as the a priori estimate does not blow up.

To show existence, we fix some initial data (u0,ρ0)(u_{0},\rho_{0}) satisfying the assumptions of Theorem 3.1 and consider the following viscous system: given a parameter ϵ>0\epsilon>0, we consider

tρ(ϵ)+u(ϵ)ρ(ϵ)=ρ(ϵ)u(ϵ)+ϵΔρ(ϵ),tu(ϵ)+u(ϵ)u(ϵ)=Λαdρ(ϵ)+ϵΔu(ϵ)\begin{split}&\partial_{t}\rho^{(\epsilon)}+u^{(\epsilon)}\cdot\nabla\rho^{(\epsilon)}=-\rho^{(\epsilon)}\nabla\cdot u^{(\epsilon)}+\epsilon\Delta\rho^{(\epsilon)},\\ &\partial_{t}u^{(\epsilon)}+u^{(\epsilon)}\cdot\nabla u^{(\epsilon)}=-\nabla\Lambda^{\alpha-d}\rho^{(\epsilon)}+\epsilon\Delta u^{(\epsilon)}\end{split} (3.16)

with CC^{\infty} initial data

u0(ϵ)=φϵu0,ρ0(ϵ)=φϵρ0.\begin{split}u_{0}^{(\epsilon)}=\varphi_{\epsilon}*u_{0},\quad\rho_{0}^{(\epsilon)}=\varphi_{\epsilon}*\rho_{0}.\end{split} (3.17)

Here, φϵ(x)=ϵdφ(ϵ1x)\varphi_{\epsilon}(x)=\epsilon^{-d}\varphi(\epsilon^{-1}x) is a smooth approximation of the identity. Existence of a local in time smooth solution to the system (3.16)–(3.17) follows from a standard contraction mapping argument ([30]), using the mild formulation and estimates for the heat semigroup. To be more precise, one can rewrite (3.16) as

ρ(ϵ)(t)=eϵtΔρ0(ϵ)0teϵ(ts)Δ(ρ(ϵ)u(ϵ))𝑑s,u(ϵ)(t)=eϵtΔu0(ϵ)0teϵ(ts)Δ(u(ϵ)u(ϵ)+Λαdρ(ϵ))𝑑s\begin{split}\rho^{(\epsilon)}(t)&=e^{\epsilon t\Delta}\rho_{0}^{(\epsilon)}-\int_{0}^{t}e^{\epsilon(t-s)\Delta}\nabla\cdot(\rho^{(\epsilon)}u^{(\epsilon)})\,ds,\\ u^{(\epsilon)}(t)&=e^{\epsilon t\Delta}u_{0}^{(\epsilon)}-\int_{0}^{t}e^{\epsilon(t-s)\Delta}(u^{(\epsilon)}\cdot\nabla u^{(\epsilon)}+\nabla\Lambda^{\alpha-d}\rho^{(\epsilon)})\,ds\end{split}

and prove that there exist T=T(ϵ,d,ρ0,u0)>0T=T(\epsilon,d,\rho_{0},u_{0})>0 such that the operator

(ρ(ϵ),u(ϵ))(eϵtΔρ0(ϵ)0teϵ(ts)Δ(ρ(ϵ)u(ϵ))𝑑s,eϵtΔu0(ϵ)0teϵ(ts)Δ(u(ϵ)u(ϵ)+Λαdρ(ϵ))𝑑s)\begin{split}(\rho^{(\epsilon)},u^{(\epsilon)})\mapsto\left(e^{\epsilon t\Delta}\rho_{0}^{(\epsilon)}-\int_{0}^{t}e^{\epsilon(t-s)\Delta}\nabla\cdot(\rho^{(\epsilon)}u^{(\epsilon)})\,ds,e^{\epsilon t\Delta}u_{0}^{(\epsilon)}-\int_{0}^{t}e^{\epsilon(t-s)\Delta}(u^{(\epsilon)}\cdot\nabla u^{(\epsilon)}+\nabla\Lambda^{\alpha-d}\rho^{(\epsilon)})\,ds\right)\end{split}

is a contraction mapping on the space L([0,T];BH1(2(u0H1+ρ0H1)))L^{\infty}([0,T];B_{H^{1}}(2(\|u_{0}\|_{H^{1}}+\|\rho_{0}\|_{H^{1}}))). Here, BH1(R)B_{H^{1}}(R) denotes the open ball of radius RR in the space H1(d)H^{1}(\mathbb{R}^{d}).

While a priori the time of existence becomes small as ϵ0\epsilon\to 0, one can show that the a priori estimates for the inviscid equation proved above are satisfied for the viscous solutions as well. This guarantees uniform time of existence for the viscous solutions (ρ(ϵ),u(ϵ))(\rho^{(\epsilon)},u^{(\epsilon)}). To see this for the case of (lnρ(ϵ))L\|\nabla(\ln\rho^{(\epsilon)})\|_{L^{\infty}}, we consider the equation for lnρ(ϵ)\ln\rho^{(\epsilon)}:

tlnρ(ϵ)+u(ϵ)lnρ(ϵ)=u(ϵ)+ϵ(Δlnρ(ϵ)+|lnρ(ϵ)|2).\begin{split}\partial_{t}\ln\rho^{(\epsilon)}+u^{(\epsilon)}\cdot\nabla\ln\rho^{(\epsilon)}=-\nabla\cdot u^{(\epsilon)}+\epsilon\left(\Delta\ln\rho^{(\epsilon)}+|\nabla\ln\rho^{(\epsilon)}|^{2}\right).\end{split}

Taking a partial derivative xi\partial_{x_{i}} for i{1,,d}i\in\{1,\cdots,d\}, we find

txilnρ(ϵ)+u(ϵ)xilnρ(ϵ)=xiu(ϵ)xiu(ϵ)lnρ(ϵ)+ϵ(Δxilnρ(ϵ)+2xilnρ(ϵ)lnρ(ϵ)).\begin{split}\partial_{t}\partial_{x_{i}}\ln\rho^{(\epsilon)}+u^{(\epsilon)}\cdot\nabla\partial_{x_{i}}\ln\rho^{(\epsilon)}&=-\nabla\cdot\partial_{x_{i}}u^{(\epsilon)}-\partial_{x_{i}}u^{(\epsilon)}\cdot\nabla\ln\rho^{(\epsilon)}\cr&\quad+\epsilon\left(\Delta\partial_{x_{i}}\ln\rho^{(\epsilon)}+2\nabla\partial_{x_{i}}\ln\rho^{(\epsilon)}\cdot\nabla\ln\rho^{(\epsilon)}\right).\end{split}

Given some tt, at any local maximum point of xilnρ(ϵ)\partial_{x_{i}}\ln\rho^{(\epsilon)}, we have

Δxilnρ(ϵ)0,xilnρ(ϵ)=0.\begin{split}\Delta\partial_{x_{i}}\ln\rho^{(\epsilon)}\leq 0,\quad\nabla\partial_{x_{i}}\ln\rho^{(\epsilon)}=0.\end{split}

Arguing similarly for local minima of xilnρ(ϵ)\partial_{x_{i}}\ln\rho^{(\epsilon)}, we can deduce the estimate

ddtxilnρ(ϵ)LC2u(ϵ)L+Cu(ϵ)Llnρ(ϵ)L\begin{split}\frac{d}{dt}\|\partial_{x_{i}}\ln\rho^{(\epsilon)}\|_{L^{\infty}}\leq C\|\nabla^{2}u^{(\epsilon)}\|_{L^{\infty}}+C\|\nabla u^{(\epsilon)}\|_{L^{\infty}}\|\nabla\ln\rho^{(\epsilon)}\|_{L^{\infty}}\end{split}

for each i=1,,di=1,\cdots,d. This gives the a priori estimate for (lnρ(ϵ))L\|\nabla(\ln\rho^{(\epsilon)})\|_{L^{\infty}} which is uniform in the limit ϵ0\epsilon\to 0. Repeating a similar argument for the other quantities, one obtains a sequence of solutions (u(ϵ),ρ(ϵ))(u^{(\epsilon)},\rho^{(\epsilon)}) defined on [0,T1][0,T_{1}], with

(u(ϵ),ρ(ϵ))L(0,T1;Xm)=supt[0,T1](u(ϵ)(t)Hm+dα2+ρ(ϵ)(t)L+ρ(ϵ)(t)H~m+(lnρ(ϵ)(t))L)\begin{split}\|(u^{(\epsilon)},\rho^{(\epsilon)})\|_{L^{\infty}(0,T_{1};X^{m})}=\sup_{t\in[0,T_{1}]}\left(\|u^{(\epsilon)}(t)\|_{H^{m+\frac{d-\alpha}{2}}}+\|\rho^{(\epsilon)}(t)\|_{L^{\infty}}+\|\rho^{(\epsilon)}(t)\|_{\widetilde{H}^{m}}+\|\nabla(\ln\rho^{(\epsilon)}(t))\|_{L^{\infty}}\right)\end{split}

uniformly bounded in ϵ\epsilon. Therefore, one can pass to a weakly convergent subsequence as ϵ0\epsilon\to 0, with some limit (u,ρ)(u,\rho) satisfying

supt[0,T1](u(t)Hm+dα2+ρ(t)L+ρ(t)H~m+(lnρ(t))L)<.\begin{split}\sup_{t\in[0,T_{1}]}\left(\|u(t)\|_{H^{m+\frac{d-\alpha}{2}}}+\|\rho(t)\|_{L^{\infty}}+\|\rho(t)\|_{\widetilde{H}^{m}}+\|\nabla(\ln\rho(t))\|_{L^{\infty}}\right)<\infty.\end{split}

It is not difficult to show that (u,ρ)(t=0)=(u0,ρ0)(u,\rho)(t=0)=(u_{0},\rho_{0}) and that (u,ρ)(u,\rho) is a solution to (1.1). We omit the details. ∎

4 Well-posedness for the Euler–Riesz system

In this section, we consider the system (1.1) with pressure; given some γ1\gamma\geq 1, we fix without loss of generality that cp=1/γc_{p}=1/\gamma. In the case γ>1\gamma>1, by introducing the variable

q=1γ~ργ~,γ~=γ12,\begin{split}q=\frac{1}{\tilde{\gamma}}\rho^{\tilde{\gamma}},\quad\tilde{\gamma}=\frac{\gamma-1}{2},\end{split}

we have that (1.1) turns into

{tq+uq=γ~qu,tu+uu=γ~qq+c~KΛαd(q1γ~)\left\{\begin{aligned} &\partial_{t}q+u\cdot\nabla q=-\tilde{\gamma}q\nabla\cdot u,\\ &\partial_{t}u+u\cdot\nabla u=-\tilde{\gamma}q\nabla q+\tilde{c}_{K}\nabla\Lambda^{\alpha-d}(q^{\frac{1}{\tilde{\gamma}}})\end{aligned}\right. (4.1)

with c~K=cK(γ~)1γ~.\tilde{c}_{K}=c_{K}(\tilde{\gamma})^{\frac{1}{\tilde{\gamma}}}. Let us now consider the case γ=1\gamma=1, which corresponds to the isothermal pressure law. In this case, we reformulate the system (1.1) by introducing q=lnρq=\ln\rho (and c~K=cK\tilde{c}_{K}=c_{K}) as

{tq+uq=u,tu+uu=q+c~KΛαd(eq).\left\{\begin{aligned} &\partial_{t}q+u\cdot\nabla q=-\nabla\cdot u,\\ &\partial_{t}u+u\cdot\nabla u=-\nabla q+\tilde{c}_{K}\nabla\Lambda^{\alpha-d}(e^{q}).\end{aligned}\right. (4.2)
Theorem 4.1.

Assume that 1<γ531<\gamma\leq\frac{5}{3}. For any c~K\tilde{c}_{K}\in\mathbb{R}, the system (4.1) is locally well-posed; for any initial data (u0,q0)(u_{0},q_{0}) belonging to Hm(d)H^{m}(\mathbb{R}^{d}) with m>d2+1m>\frac{d}{2}+1 and (lnq0)L(d)\nabla(\ln q_{0})\in L^{\infty}(\mathbb{R}^{d}), there exist T>0T>0 and a unique solution (u,q)(u,q) to (4.1) satisfying the initial condition and the bounds

u(t)Hm+q(t)Hm+(lnq(t))L<+\begin{split}\|u(t)\|_{H^{m}}+\|q(t)\|_{H^{m}}+\|\nabla(\ln q(t))\|_{L^{\infty}}<+\infty\end{split}

for t<Tt<T. In the case γ=1\gamma=1, the system (4.2) is locally well-posed with (u,q)(u,q) belonging to Hm(d)H^{m}(\mathbb{R}^{d}) (m>d2+1m>\frac{d}{2}+1). That is, the assumption (lnq0)L(d)\nabla(\ln q_{0})\in L^{\infty}(\mathbb{R}^{d}) is not necessary in this case.

We need a lemma whose proof is completely parallel to that of Lemma 3.2.

Lemma 4.2 ([27]).

Let g>0g>0 on d\mathbb{R}^{d} and β>0\beta>0. Then for any integer k1k\geq 1,

gβH˙k2β,d,kgβ1|kg|L22+g(1βk)|g|L2k.\begin{split}\|g^{\beta}\|_{\dot{H}^{k}}^{2}\lesssim_{\beta,d,k}\|g^{\beta-1}|\nabla^{k}g|\|_{L^{2}}^{2}+\|g^{-(1-\frac{\beta}{k})}|\nabla g|\|_{L^{2k}}.\end{split}

In particular, for gg satisfying |g1g|1|g^{-1}\nabla g|\lesssim 1 and gβL2g^{\beta}\in L^{2}, we have

gβH˙k2β,d,kgβ1|kg|L22+(lng)L2kgβL22.\begin{split}\|g^{\beta}\|_{\dot{H}^{k}}^{2}\lesssim_{\beta,d,k}\|g^{\beta-1}|\nabla^{k}g|\|_{L^{2}}^{2}+\|\nabla(\ln g)\|_{L^{\infty}}^{2k}\|g^{\beta}\|_{L^{2}}^{2}.\end{split}
Proof of Theorem 4.1.

We first consider the case γ>1\gamma>1. Let us establish a priori estimates for a solution (u,q)(u,q) to (4.1). Straightforward computation yields

ddt(12d|mu|2+|mq|2dx)c~KdmumΛαd(q1γ~)dx=12d(u)(|mq|2+|mu|2)𝑑x+γ~d(mu)qmqdxdmq[m,u]qdxdmu[m,u]udxγ~dmq[m,q]udxγ~dmu[m,q]qdx.\begin{split}&\frac{d}{dt}\left(\frac{1}{2}\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}\,dx\right)-\tilde{c}_{K}\int_{\mathbb{R}^{d}}\partial^{m}u\cdot\partial^{m}\nabla\Lambda^{\alpha-d}(q^{\frac{1}{\tilde{\gamma}}})\,dx\cr&\quad=\frac{1}{2}\int_{\mathbb{R}^{d}}(\nabla\cdot u)(|\partial^{m}q|^{2}+|\partial^{m}u|^{2})\,dx+\tilde{\gamma}\int_{\mathbb{R}^{d}}(\partial^{m}u)\nabla q\cdot\partial^{m}q\,dx\cr&\qquad-\int_{\mathbb{R}^{d}}\partial^{m}q\cdot[\partial^{m},u\cdot\nabla]q\,dx-\int_{\mathbb{R}^{d}}\partial^{m}u\cdot[\partial^{m},u\cdot\nabla]u\,dx\cr&\qquad-\tilde{\gamma}\int_{\mathbb{R}^{d}}\partial^{m}q\cdot[\partial^{m},q\nabla\cdot]u\,dx-\tilde{\gamma}\int_{\mathbb{R}^{d}}\partial^{m}u\cdot[\partial^{m},q\nabla]q\,dx.\end{split}

We then estimate using Gagliardo–Nirenberg–Sobolev inequality that

|ddt(12d|mu|2+|mq|2dx)c~KdmumΛαd(qN)dx|C(uHm+qHm)(d|mu|2+|mq|2dx),\begin{split}&\left|\frac{d}{dt}\left(\frac{1}{2}\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}\,dx\right)-\tilde{c}_{K}\int_{\mathbb{R}^{d}}\partial^{m}u\cdot\partial^{m}\nabla\Lambda^{\alpha-d}(q^{N})\,dx\right|\cr&\quad\leq C(\|u\|_{H^{m}}+\|q\|_{H^{m}})\left(\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}\,dx\right),\end{split}

where we set N=1γ~N=\frac{1}{\tilde{\gamma}}. Let us write

dmumΛαd(qN)dx=NdmumΛαd(qN1q)dx=NdmuΛαd(qN1mq)dx+R,\begin{split}\int_{\mathbb{R}^{d}}\partial^{m}u\cdot\partial^{m}\nabla\Lambda^{\alpha-d}(q^{N})\,dx&=N\int_{\mathbb{R}^{d}}\partial^{m}u\cdot\partial^{m}\Lambda^{\alpha-d}(q^{N-1}\nabla q)\,dx\cr&=N\int_{\mathbb{R}^{d}}\partial^{m}u\cdot\Lambda^{\alpha-d}(q^{N-1}\nabla\partial^{m}q)\,dx+R,\end{split}

where

|R|C0<|k|m|dmuΛαd(k(qN1)mkq)dx|CuHmqN1HmqHm.\begin{split}|R|\leq C\sum_{0<|k|\leq m}\left|\int_{\mathbb{R}^{d}}\partial^{m}u\cdot\Lambda^{\alpha-d}(\partial^{k}(q^{N-1})\nabla\partial^{m-k}q)\,dx\right|\leq C\|u\|_{H^{m}}\|q^{N-1}\|_{H^{m}}\|q\|_{H^{m}}.\end{split}

Thus we obtain

|ddt(12d|mu|2+|mq|2dx)Nc~KdmuΛαd(qN1mq)dx|C(uHm+qHm)(uHm2+qHm(qHm+qN1Hm)).\begin{split}&\left|\frac{d}{dt}\left(\frac{1}{2}\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}\,dx\right)-N\tilde{c}_{K}\int_{\mathbb{R}^{d}}\partial^{m}u\cdot\Lambda^{\alpha-d}(q^{N-1}\nabla\partial^{m}q)\,dx\right|\\ &\qquad\leq C(\|u\|_{H^{m}}+\|q\|_{H^{m}})(\|u\|_{H^{m}}^{2}+\|q\|_{H^{m}}(\|q\|_{H^{m}}+\|q^{N-1}\|_{H^{m}})).\end{split} (4.3)

On the other hand, we find

dmuΛαd(qN1mq)dx=dmuqN1Λαdmqdx+dmu[Λαd,qN1]mqdx=d(m1u)qN1(Λαd(mq))dx+d(m1u)(qN1)(Λαd(mq))dxdmu(qN1)Λαdmqdx+dmu[Λαd,qN1]mqdx.\begin{split}&\int_{\mathbb{R}^{d}}\partial^{m}u\cdot\Lambda^{\alpha-d}(q^{N-1}\nabla\partial^{m}q)\,dx\cr&\quad=\int_{\mathbb{R}^{d}}\partial^{m}u\cdot q^{N-1}\Lambda^{\alpha-d}\nabla\partial^{m}q\,dx+\int_{\mathbb{R}^{d}}\partial^{m}u\cdot[\Lambda^{\alpha-d},q^{N-1}\nabla]\partial^{m}q\,dx\cr&\quad=\int_{\mathbb{R}^{d}}(\partial^{m-1}\nabla\cdot u)\,q^{N-1}\partial(\Lambda^{\alpha-d}(\partial^{m}q))\,dx+\int_{\mathbb{R}^{d}}(\partial^{m-1}\nabla\cdot u)\,\partial(q^{N-1})(\Lambda^{\alpha-d}(\partial^{m}q))\,dx\cr&\qquad-\int_{\mathbb{R}^{d}}\partial^{m}u\cdot\nabla(q^{N-1})\Lambda^{\alpha-d}\partial^{m}q\,dx+\int_{\mathbb{R}^{d}}\partial^{m}u\cdot[\Lambda^{\alpha-d},q^{N-1}\nabla]\partial^{m}q\,dx.\end{split}

Note that the second, third, and fourth terms on the right hand side of the above equality can be bounded from above by

CuHmqN1HmqHmC\|u\|_{H^{m}}\|q^{N-1}\|_{H^{m}}\|q\|_{H^{m}}

for some C>0C>0. Thus we combine this with (4.3) to have

|ddt(12d|mu|2+|mq|2dx)Nc~Kd(m1u)qN1(Λαd(mq))dx|C(uHm+qHm)(uHm2+qHm(qHm+qN1Hm)).\begin{split}&\left|\frac{d}{dt}\left(\frac{1}{2}\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}\,dx\right)-N\tilde{c}_{K}\int_{\mathbb{R}^{d}}(\partial^{m-1}\nabla\cdot u)\,q^{N-1}\partial(\Lambda^{\alpha-d}(\partial^{m}q))\,dx\right|\\ &\qquad\leq C(\|u\|_{H^{m}}+\|q\|_{H^{m}})(\|u\|_{H^{m}}^{2}+\|q\|_{H^{m}}(\|q\|_{H^{m}}+\|q^{N-1}\|_{H^{m}})).\end{split} (4.4)

Let us now compute that

ddt12dqN2|Λαd2mq|2𝑑x=12dt(qN2)|Λαd2mq|2dx+dqN2Λαd2(mq)Λαd2m(uqγ~qu)dx=:I+J,\begin{split}&\frac{d}{dt}\frac{1}{2}\int_{\mathbb{R}^{d}}q^{N-2}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx\cr&\quad=\frac{1}{2}\int_{\mathbb{R}^{d}}\partial_{t}(q^{N-2})|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx+\int_{\mathbb{R}^{d}}q^{N-2}\Lambda^{\frac{\alpha-d}{2}}(\partial^{m}q)\Lambda^{\frac{\alpha-d}{2}}\partial^{m}(-u\cdot\nabla q-\tilde{\gamma}q\nabla\cdot u)\,dx\\ &\quad=:I+J,\end{split}

and II is easily estimated as follows:

|I|C(uL(qN2)L+uLqN2L)d|Λαd2mq|2𝑑x.\begin{split}|I|\leq C\left(\|u\|_{L^{\infty}}\|\nabla(q^{N-2})\|_{L^{\infty}}+\|\nabla u\|_{L^{\infty}}\|q^{N-2}\|_{L^{\infty}}\right)\int_{\mathbb{R}^{d}}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx.\end{split}

Defining

J1:=γ~dqN2Λαd2(mq)Λαd2((qm1u))𝑑x,\begin{split}J_{1}:=-\tilde{\gamma}\int_{\mathbb{R}^{d}}q^{N-2}\Lambda^{\frac{\alpha-d}{2}}(\partial^{m}q)\Lambda^{\frac{\alpha-d}{2}}(\partial(q\,\partial^{m-1}\nabla\cdot u))\,dx,\end{split}

it is not difficult to see that

|JJ1|CqN2LuHmqHm2.\begin{split}\left|J-J_{1}\right|\leq C\|q^{N-2}\|_{L^{\infty}}\|u\|_{H^{m}}\|q\|_{H^{m}}^{2}.\end{split}

Integrating by parts, we obtain that

J1=γ~dΛαd2(qN2Λαd2(mq))(qm1u)dx\begin{split}J_{1}=\tilde{\gamma}\int_{\mathbb{R}^{d}}\Lambda^{\frac{\alpha-d}{2}}\partial(q^{N-2}\Lambda^{\frac{\alpha-d}{2}}(\partial^{m}q))(q\,\partial^{m-1}\nabla\cdot u)\,dx\end{split}

and writing Λαd2(qN2)=qN2Λαd2()+[Λαd2,qN2]()\Lambda^{\frac{\alpha-d}{2}}\partial(q^{N-2}\cdot)=q^{N-2}\Lambda^{\frac{\alpha-d}{2}}\partial(\cdot)+[\Lambda^{\frac{\alpha-d}{2}}\partial,q^{N-2}](\cdot),

J1=γ~dqN1(Λαd(mq))m1udx+γ~d[Λαd2,qN2](Λαd2(mq))(qm1u)𝑑x=:J11+J12.\begin{split}J_{1}&=\tilde{\gamma}\int_{\mathbb{R}^{d}}q^{N-1}\partial(\Lambda^{\alpha-d}(\partial^{m}q))\,\partial^{m-1}\nabla\cdot u\,dx+\tilde{\gamma}\int_{\mathbb{R}^{d}}[\Lambda^{\frac{\alpha-d}{2}}\partial,q^{N-2}](\Lambda^{\frac{\alpha-d}{2}}(\partial^{m}q))\,(q\,\partial^{m-1}\nabla\cdot u)\,dx\cr&=:J_{11}+J_{12}.\end{split}

Using Proposition 3.4 with 0<ϵ<dα2(md21)0<\epsilon<\frac{d-\alpha}{2}\wedge(m-\frac{d}{2}-1), we get

|J12|CqN2HmqHmqLuHm.\begin{split}\left|J_{12}\right|\leq C\|q^{N-2}\|_{H^{m}}\|q\|_{H^{m}}\|q\|_{L^{\infty}}\|u\|_{H^{m}}.\end{split}

We obtain that

|ddt12dqN2|Λαd2mq|2𝑑xγ~dqN1(Λαd(mq))m1udx|CqN2HmuHmqHm2.\begin{split}&\left|\frac{d}{dt}\frac{1}{2}\int_{\mathbb{R}^{d}}q^{N-2}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx-\tilde{\gamma}\int_{\mathbb{R}^{d}}q^{N-1}\partial(\Lambda^{\alpha-d}(\partial^{m}q))\,\partial^{m-1}\nabla\cdot u\,dx\right|\cr&\qquad\leq C\|q^{N-2}\|_{H^{m}}\|u\|_{H^{m}}\|q\|_{H^{m}}^{2}.\end{split} (4.5)

Combining (4.4) and (4.5) implies

|ddt(12d|mu|2+|mq|2N2c~KqN2|Λαd2mq|2dx)|C(uHm+qHm)(1+qN2Hm)(uHm2+qHm(qHm+qN1Hm)).\begin{split}&\left|\frac{d}{dt}\left(\frac{1}{2}\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}-N^{2}\tilde{c}_{K}q^{N-2}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx\right)\right|\\ &\qquad\leq C(\|u\|_{H^{m}}+\|q\|_{H^{m}})(1+\|q^{N-2}\|_{H^{m}})(\|u\|_{H^{m}}^{2}+\|q\|_{H^{m}}(\|q\|_{H^{m}}+\|q^{N-1}\|_{H^{m}})).\end{split}

Applying Lemma 4.2, we find

qN2Hm2CqN3L2qHm2+C(1+(lnq)L)2mqN2L22CqHm2(N2)+C(1+(lnq)L)2mqL2(N2)2(N2)\begin{split}\|q^{N-2}\|^{2}_{H^{m}}&\leq C\|q^{N-3}\|^{2}_{L^{\infty}}\|q\|_{H^{m}}^{2}+C(1+\|\nabla(\ln q)\|_{L^{\infty}})^{2m}\|q^{N-2}\|_{L^{2}}^{2}\\ &\leq C\|q\|_{H^{m}}^{2(N-2)}+C(1+\|\nabla(\ln q)\|_{L^{\infty}})^{2m}\|q\|_{L^{2(N-2)}}^{2(N-2)}\end{split}

and then using the algebra property of HmH^{m} with qL2(N2)CqHm\|q\|_{L^{2(N-2)}}\leq C\|q\|_{H^{m}},

qN1HmCqN2HmqHmC(1+(lnq)L)mqHmN1.\begin{split}\|q^{N-1}\|_{H^{m}}\leq C\|q^{N-2}\|_{H^{m}}\|q\|_{H^{m}}\leq C(1+\|\nabla(\ln q)\|_{L^{\infty}})^{m}\|q\|_{H^{m}}^{N-1}.\end{split}

This gives

|ddt(12d|mu|2+|mq|2N2c~KqN2|Λαd2mq|2dx)|C(1+(lnq)L)3m(1+uHm2+qHm2+qHm2(N1))4.\begin{split}&\left|\frac{d}{dt}\left(\frac{1}{2}\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}-N^{2}\tilde{c}_{K}q^{N-2}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx\right)\right|\\ &\qquad\leq C(1+\|\nabla(\ln q)\|_{L^{\infty}})^{3m}(1+\|u\|_{H^{m}}^{2}+\|q\|_{H^{m}}^{2}+\|q\|_{H^{m}}^{2(N-1)})^{4}.\end{split}

In the case c~K>0\tilde{c}_{K}>0, we now estimate using the Plancherel theorem, with some ξ0>0\xi_{0}>0 to be determined,

dqN2|Λαd2mq|2𝑑xCqLN2(ξ02m+αdqL22+ξ0αdmqL22).\begin{split}\int_{\mathbb{R}^{d}}q^{N-2}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx\leq C\|q\|_{L^{\infty}}^{N-2}\left(\xi_{0}^{2m+\alpha-d}\|q\|_{L^{2}}^{2}+\xi_{0}^{\alpha-d}\|\partial^{m}q\|_{L^{2}}^{2}\right).\end{split}

Hence, by taking ξ01\xi_{0}\gg 1 sufficiently large (note that it does not depend on mm), we can guarantee that

N2c~KdqN2|Λαd2mq|2𝑑x110mqL22+CqLMqL22.\begin{split}N^{2}\tilde{c}_{K}\int_{\mathbb{R}^{d}}q^{N-2}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx\leq\frac{1}{10}\|\partial^{m}q\|_{L^{2}}^{2}+C\|q\|_{L^{\infty}}^{M}\|q\|_{L^{2}}^{2}.\end{split}

Here M=M(N,α,d)>0M=M(N,\alpha,d)>0 is some large power. In conclusion, we have the control

(u,q)X˙m2:=d|mu|2+|mq|2N2c~KqN2|Λαd2mq|2dx+CqLMqL2212d|mu|2+|mq|2dx.\begin{split}\|(u,q)\|_{\dot{X}^{m}}^{2}&:=\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}-N^{2}\tilde{c}_{K}q^{N-2}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx+C\|q\|_{L^{\infty}}^{M}\|q\|_{L^{2}}^{2}\cr&\geq\frac{1}{2}\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}\,dx.\end{split}

This control is available a fortiori for derivatives of order lower than mm. Defining

(u,q)Xm2:=uL22+qL22+=1m(u,q)X˙2,\begin{split}\|(u,q)\|_{{X}^{m}}^{2}:=\|u\|_{L^{2}}^{2}+\|q\|_{L^{2}}^{2}+\sum_{\ell=1}^{m}\|(u,q)\|_{\dot{X}^{\ell}}^{2},\end{split}

we have that

(u,q)Xm212(uHm2+qHm2).\begin{split}\|(u,q)\|_{{X}^{m}}^{2}\geq\frac{1}{2}(\|u\|_{H^{m}}^{2}+\|q\|_{H^{m}}^{2}).\end{split}

Hence, there exists some power M~>0\tilde{M}>0 such that

ddt((u,q)Xm+(lnq)L)(1+(u,q)Xm+(lnq)L)M~.\begin{split}\frac{d}{dt}\left(\|(u,q)\|_{X^{m}}+\|\nabla(\ln q)\|_{L^{\infty}}\right)\lesssim\left(1+\|(u,q)\|_{X^{m}}+\|\nabla(\ln q)\|_{L^{\infty}}\right)^{\tilde{M}}.\end{split}

This finishes the proof of an a priori estimate.

We now treat the case γ=1\gamma=1; the equation is now given by (4.2). Similarly as in the above proof, we find that

|ddt(12d|mu|2+|mq|2dx)cKdmumΛαd(eq)dx|C(uHm+qHm)(uHm2+qHm2).\begin{split}&\left|\frac{d}{dt}\left(\frac{1}{2}\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}\,dx\right)-c_{K}\int_{\mathbb{R}^{d}}\partial^{m}u\cdot\partial^{m}\nabla\Lambda^{\alpha-d}(e^{q})\,dx\right|\\ &\qquad\leq C(\|u\|_{H^{m}}+\|q\|_{H^{m}})(\|u\|_{H^{m}}^{2}+\|q\|_{H^{m}}^{2}).\end{split}

Again by using a similar argument as in the proof of Theorem 4.1, we obtain

|ddt(12d|mu|2+|mq|2dx)cKdeq(Λαd(mq))m1udx|C(uHm+qHm)(uHm2+qHm2)+CeqHmuHmqHm2.\begin{split}&\left|\frac{d}{dt}\left(\frac{1}{2}\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}\,dx\right)-c_{K}\int_{\mathbb{R}^{d}}e^{q}\partial(\Lambda^{\alpha-d}(\partial^{m}q))\,\partial^{m-1}\nabla\cdot u\,dx\right|\\ &\qquad\leq C(\|u\|_{H^{m}}+\|q\|_{H^{m}})(\|u\|_{H^{m}}^{2}+\|q\|_{H^{m}}^{2})+Ce^{\|q\|_{H^{m}}}\|u\|_{H^{m}}\|q\|_{H^{m}}^{2}.\end{split}

Similarly, we also estimate

|ddt12deq|Λαd2mq|2𝑑xdeq(Λαd(mq))m1udx|CeqHmuHmqHm2.\left|\frac{d}{dt}\frac{1}{2}\int_{\mathbb{R}^{d}}e^{q}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx-\int_{\mathbb{R}^{d}}e^{q}\partial(\Lambda^{\alpha-d}(\partial^{m}q))\,\partial^{m-1}\nabla\cdot u\,dx\right|\leq Ce^{\|q\|_{H^{m}}}\|u\|_{H^{m}}\|q\|_{H^{m}}^{2}.

Combining the above two estimates implies

|ddt(12d|mu|2+|mq|2cKeq|Λαd2mq|2dx)|C(uHm+qHm)(uHm2+qHm2)+CeqHmuHmqHm2.\begin{split}&\left|\frac{d}{dt}\left(\frac{1}{2}\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}-c_{K}e^{q}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx\right)\right|\\ &\qquad\leq C(\|u\|_{H^{m}}+\|q\|_{H^{m}})(\|u\|_{H^{m}}^{2}+\|q\|_{H^{m}}^{2})+Ce^{\|q\|_{H^{m}}}\|u\|_{H^{m}}\|q\|_{H^{m}}^{2}.\end{split}

On the other hand, we get

|cK|deq|Λαd2mq|2𝑑x|cK|eqHmd|Λαd2mq|2𝑑x110mqL22+CeMqHmqL22.|c_{K}|\int_{\mathbb{R}^{d}}e^{q}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx\leq|c_{K}|e^{\|q\|_{H^{m}}}\int_{\mathbb{R}^{d}}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx\leq\frac{1}{10}\|\partial^{m}q\|_{L^{2}}^{2}+Ce^{M\|q\|_{H^{m}}}\|q\|_{L^{2}}^{2}.

This yields

(u,q)Y˙m2:=d|mu|2+|mq|2cKeq|Λαd2mq|2dx+CeMqHmqL2212d|mu|2+|mq|2dx,\|(u,q)\|_{\dot{Y}^{m}}^{2}:=\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}-c_{K}e^{q}|\Lambda^{\frac{\alpha-d}{2}}\partial^{m}q|^{2}\,dx+Ce^{M\|q\|_{H^{m}}}\|q\|_{L^{2}}^{2}\geq\frac{1}{2}\int_{\mathbb{R}^{d}}|\partial^{m}u|^{2}+|\partial^{m}q|^{2}\,dx,

and thus

(u,q)Ym2:=uL22+qL22+=1m(u,q)Y˙212(uHm2+qHm2).\|(u,q)\|_{Y^{m}}^{2}:=\|u\|_{L^{2}}^{2}+\|q\|_{L^{2}}^{2}+\sum_{\ell=1}^{m}\|(u,q)\|_{\dot{Y}^{\ell}}^{2}\geq\frac{1}{2}(\|u\|_{H^{m}}^{2}+\|q\|_{H^{m}}^{2}).

Hence we have

ddt(u,q)YmeM~(u,q)Ym\frac{d}{dt}\|(u,q)\|_{Y^{m}}\lesssim e^{\tilde{M}\|(u,q)\|_{Y^{m}}}

for some M~>0\tilde{M}>0. This completes the proof of an a priori estimate.

Let us just briefly comment on the proof of uniqueness and existence. Uniqueness can be proved easily along the lines of the uniqueness proof for Theorem 3.1; essentially, one can perform a simple L2L^{2} estimate for the difference of two hypothetical solutions associated with the same initial data. Existence of a solution follows from viscous approximations. ∎

Remark 4.3.

Observe that in the statement of Theorem 4.1, the range of γ\gamma is restricted to [1,53][1,\frac{5}{3}]. In any of the following situations, such a restriction can be dropped:

  • Either there exists r>0r>0 such that ρ0(x)r\rho_{0}(x)\geq r (in particular, when the domain is given by 𝕋d\mathbb{T}^{d}), or

  • the potential is repulsive (cK0c_{K}\leq 0), or

  • 2<αd1-2<\alpha-d\leq-1.

In other words, the most difficult case is when ρ0\rho_{0} decays at infinity, cK>0c_{K}>0, and 1<αd<0-1<\alpha-d<0. Indeed, when 2<αd1-2<\alpha-d\leq-1, the problematic term can be handled as follows:

|mumΛαd(qN)|CmuL2qNHm,\begin{split}\left|\partial^{m}u\cdot\partial^{m}\nabla\Lambda^{\alpha-d}(q^{N})\right|\leq C\|\partial^{m}u\|_{L^{2}}\|q^{N}\|_{H^{m}},\end{split}

and it is easy to propagate HmH^{m} regularity of qNq^{N} with uHmu\in H^{m}. Next, when ρ0>0\rho_{0}>0 admits a uniform lower bound, one can perform weighted energy estimates in the spirit of Theorem 3.1. To be more precise, one can close an a priori estimate in terms of

0m(ρ12ρL22cKΛαd2(ρ)L22+ρ12uL22)\begin{split}\sum_{0\leq\ell\leq m}\left(\|\rho^{-\frac{1}{2}}\partial^{\ell}\rho\|_{L^{2}}^{2}-c_{K}\|\Lambda^{\frac{\alpha-d}{2}}(\partial^{\ell}\rho)\|_{L^{2}}^{2}+\|\rho^{\frac{1}{2}}\partial^{\ell}u\|_{L^{2}}^{2}\right)\end{split}

when mm is large enough. Here, ρ12uL2\|\rho^{\frac{1}{2}}\partial^{\ell}u\|_{L^{2}} is equivalent with uL2\|\partial^{\ell}u\|_{L^{2}} thanks to the lower bound of ρ\rho. When ρ\rho decays at infinity, one can still try to propagate the modified quantity

0m(ρ1ρL22cKρ12Λαd2(ρ)L22+uL22).\begin{split}\sum_{0\leq\ell\leq m}\left(\|\rho^{-1}\partial^{\ell}\rho\|_{L^{2}}^{2}-c_{K}\|\rho^{-\frac{1}{2}}\Lambda^{\frac{\alpha-d}{2}}(\partial^{\ell}\rho)\|_{L^{2}}^{2}+\|\partial^{\ell}u\|_{L^{2}}^{2}\right).\end{split}

This can be done with some additional work (there is a problem with the quantity ρ1ρL2\|\rho^{-1}\partial^{\ell}\rho\|_{L^{2}} for small 0\ell\geq 0) when cK0c_{K}\leq 0. When cK>0c_{K}>0, it seems like that there is some serious problem in controlling the second quantity in terms of the weighted norm ρ1ρL2\|\rho^{-1}\partial^{\ell}\rho\|_{L^{2}}.

5 Finite-time singularity formation

In this section, we analyze a finite-time singularity formation for the system (1.1) in the presence of pressure. For this, inspired by [33, 39, 40, 41], we introduce some physical quantities. I=I(t)I=I(t) and W=W(t)W=W(t) denote the moment of inertia and weighted momentum

I:=12dρ|x|2𝑑xandW:=dρux𝑑x,I:=\frac{1}{2}\int_{\mathbb{R}^{d}}\rho|x|^{2}\,dx\quad\mbox{and}\quad W:=\int_{\mathbb{R}^{d}}\rho u\cdot x\,dx,

respectively. We also set a total energy Eγ=Eγ(t)E_{\gamma}=E_{\gamma}(t)

Eγ:=Eu+cpEρ,γcKEK,E_{\gamma}:=E_{u}+c_{p}E_{\rho,\gamma}-c_{K}E_{K},

where

Eu:=12dρ|u|2𝑑x,EK:=12dρΛαdρ𝑑x,E_{u}:=\frac{1}{2}\int_{\mathbb{R}^{d}}\rho|u|^{2}\,dx,\quad E_{K}:=\frac{1}{2}\int_{\mathbb{R}^{d}}\rho\Lambda^{\alpha-d}\rho\,dx,

and

Eρ,γ:={1γ1dργ𝑑xif γ>1dρlnρdxif γ=1.E_{\rho,\gamma}:=\left\{\begin{array}[]{ll}\displaystyle\frac{1}{\gamma-1}\int_{\mathbb{R}^{d}}\rho^{\gamma}\,dx&\textrm{if $\gamma>1$}\\[11.38109pt] \displaystyle\int_{\mathbb{R}^{d}}\rho\ln\rho\,dx&\textrm{if $\gamma=1$}\end{array}\right..

Before we proceed, we first define a solution space 𝒵\mathcal{Z} as follows.

Definition 5.1.

For a given T>0T>0, we call (ρ,u)𝒵(T)(\rho,u)\in\mathcal{Z}(T) if (ρ,u)(\rho,u) is a classical solution to the Cauchy problem (1.1) on the time interval [0,T][0,T] satisfying the following conditions of decay at far fields:

ρ|u||x|2+(|u|+|x|)(ρ|u|2+p(ρ)+ρ|Λαdρ|)0\rho|u||x|^{2}+(|u|+|x|)\left(\rho|u|^{2}+p(\rho)+\rho|\nabla\Lambda^{\alpha-d}\rho|\right)\to 0

as |x|+|x|\to+\infty for all t[0,T]t\in[0,T].

The decay conditions for solutions allow us to do the integration by parts in our estimates. We emphasize that all the estimates in this section are rigorous due to the existence theory in the previous section. More precisely, we can find a solution to the system (1.1) which satisfies the assumptions in Theorem 4.1 and the decay conditions in Definition (5.1); note that our local well-posedness result covers ρ\rho which decays exponentially fast in space. Our strategy does not require that either the initial density ρ0\rho_{0} contains vacuum or has compact support in any finite region. Moreover, it can be directly applied to the case of Coulombian interaction potentials, i.e. α=d2\alpha=d-2.

We begin with the estimates of conservation laws for the system (1.1). Since its proofs are by now standard, we omit it here.

Lemma 5.2.

Let (ρ,u)(\rho,u) be a solution to the system (1.1) satisfying (ρ,u)𝒵(T)(\rho,u)\in\mathcal{Z}(T). Then we have

ddtdρ𝑑x=0,ddtdρu𝑑x=0,andddtEγ=0.\frac{d}{dt}\int_{\mathbb{R}^{d}}\rho\,dx=0,\quad\frac{d}{dt}\int_{\mathbb{R}^{d}}\rho u\,dx=0,\quad\mbox{and}\quad\frac{d}{dt}E_{\gamma}=0.

In the lemma below, we provide some useful estimates giving relationships among the physical quantities defined as above.

Lemma 5.3.

Let (ρ,u)(\rho,u) be a solution to the system (1.1) satisfying (ρ,u)𝒵(T)(\rho,u)\in\mathcal{Z}(T). Then we have

ddtI(t)=W(t),W(t)24Eu(t)I(t),\frac{d}{dt}I(t)=W(t),\quad W(t)^{2}\leq 4E_{u}(t)I(t),

and

ddtW(t)=2Eu(t)+cpd(γ1)Eρ,γ(t)+cpdδγ,1dρ(t,x)𝑑xαcKEK(t),\frac{d}{dt}W(t)=2E_{u}(t)+c_{p}d(\gamma-1)E_{\rho,\gamma}(t)+c_{p}d\delta_{\gamma,1}\int_{\mathbb{R}^{d}}\rho(t,x)\,dx-\alpha c_{K}E_{K}(t),

where δγ,1\delta_{\gamma,1} denotes the Kronecker delta.

Proof.

We only prove the third assertion since the others are clear. A straightforward computation gives

ddtW=dρ|u|2𝑑x+cpddργ𝑑x+cKdρxΛαdρdx.\frac{d}{dt}W=\int_{\mathbb{R}^{d}}\rho|u|^{2}\,dx+c_{p}d\int_{\mathbb{R}^{d}}\rho^{\gamma}\,dx+c_{K}\int_{\mathbb{R}^{d}}\rho x\cdot\nabla\Lambda^{\alpha-d}\rho\,dx.

On the other hand, the third term on the right hand side of the above can be estimated as

dρxΛαdρdx\displaystyle\int_{\mathbb{R}^{d}}\rho x\cdot\nabla\Lambda^{\alpha-d}\rho\,dx =αd×dρ(x)xxy|xy|α+2ρ(y)𝑑x𝑑y\displaystyle=-\alpha\iint_{\mathbb{R}^{d}\times\mathbb{R}^{d}}\rho(x)x\cdot\frac{x-y}{|x-y|^{\alpha+2}}\rho(y)\,dxdy
=αd×dρ(y)yxy|xy|α+2ρ(x)𝑑x𝑑y\displaystyle=\alpha\iint_{\mathbb{R}^{d}\times\mathbb{R}^{d}}\rho(y)y\cdot\frac{x-y}{|x-y|^{\alpha+2}}\rho(x)\,dxdy
=α2d×dρ(x)1|xy|αρ(y)𝑑x𝑑y\displaystyle=-\frac{\alpha}{2}\iint_{\mathbb{R}^{d}\times\mathbb{R}^{d}}\rho(x)\frac{1}{|x-y|^{\alpha}}\rho(y)\,dxdy
=α2dρΛαdρ𝑑x\displaystyle=-\frac{\alpha}{2}\int_{\mathbb{R}^{d}}\rho\Lambda^{\alpha-d}\rho\,dx
=αEK.\displaystyle=-\alpha E_{K}.

This concludes the desired result. ∎

In the following two subsections, we present the finite-time singularity formation for our main system (1.1) in the presence of pressure. For simplicity of presentation, without loss of generality, we set cp=1c_{p}=1.

5.1 Isentropic pressure case

5.1.1 Attractive case

In this part, we consider the attractive interaction case, i.e., cK>0c_{K}>0. Without loss of generality, we set cK=1c_{K}=1.

Theorem 5.4 (Attractive case).

Let T>0T>0, γ>1\gamma>1, and (ρ,u)(\rho,u) be a solution to the system (1.1) satisfying (ρ,u)𝒵(T)(\rho,u)\in\mathcal{Z}(T). Suppose that α>0\alpha>0 is large enough such that

αmax{2,d(γ1)}\alpha\geq\max\{2,d(\gamma-1)\} (5.1)

and

I(0),W(0),Eγ(0)<.I(0),\ W(0),\ E_{\gamma}(0)<\infty.

If the initial data (ρ0,u0)(\rho_{0},u_{0}) satisfies

12dρ0|u0|2𝑑x+1γ1dρ0γ𝑑x<12dρ0Λαdρ0𝑑x,\frac{1}{2}\int_{\mathbb{R}^{d}}\rho_{0}|u_{0}|^{2}\,dx+\frac{1}{\gamma-1}\int_{\mathbb{R}^{d}}\rho_{0}^{\gamma}\,dx<\frac{1}{2}\int_{\mathbb{R}^{d}}\rho_{0}\Lambda^{\alpha-d}\rho_{0}\,dx, (5.2)

then the life-span TT of the solution is finite.

Proof of Theorem 5.4.

It follows from Lemma 5.3 and (5.1) that

ddtW(t)\displaystyle\frac{d}{dt}W(t) =2Eu(t)+d(γ1)Eρ,γ(t)αEK(t)\displaystyle=2E_{u}(t)+d(\gamma-1)E_{\rho,\gamma}(t)-\alpha E_{K}(t)
max{2,d(γ1)}(Eu(t)+Eρ,γ(t))αEK(t)\displaystyle\leq\max\{2,d(\gamma-1)\}\left(E_{u}(t)+E_{\rho,\gamma}(t)\right)-\alpha E_{K}(t)
=max{2,d(γ1)}(Eγ(t)+EK(t))αEK(t)\displaystyle=\max\{2,d(\gamma-1)\}\left(E_{\gamma}(t)+E_{K}(t)\right)-\alpha E_{K}(t)
=max{2,d(γ1)}Eγ(t)+(max{2,d(γ1)}α)EK(t)\displaystyle=\max\{2,d(\gamma-1)\}E_{\gamma}(t)+\left(\max\{2,d(\gamma-1)\}-\alpha\right)E_{K}(t)
max{2,d(γ1)}Eγ(t).\displaystyle\leq\max\{2,d(\gamma-1)\}E_{\gamma}(t).

We then use Lemma (5.2) to get

ddtW(t)cd,γEγ(t),\frac{d}{dt}W(t)\leq c_{d,\gamma}E_{\gamma}(t),

where cd,γ:=max{2,d(γ1)}c_{d,\gamma}:=\max\{2,d(\gamma-1)\}. We now integrate the above differential inequality over [0,t][0,t] twice to find

I(t)I(0)+W(0)t+12cd,γEγ(0)t2.I(t)\leq I(0)+W(0)t+\frac{1}{2}c_{d,\gamma}E_{\gamma}(0)t^{2}.

Since our assumption (5.2) implies E0<0E_{0}<0, the right hand side is negative for sufficiently large tt, while the left hand side remains nonnegative. This yields that the life-span TT of the solution should be finite. ∎

5.1.2 Repulsive case

We next consider the case cK<0c_{K}<0. Again, for simplicity, we set cK=1c_{K}=-1. Note that in this case we cannot use the strategy used in the previous subsection since the initial total energy is always nonnegative. In order to overcome this, we need to get the more detailed information on the upper bound of II. More precisely, we obtain from Lemma 5.3 that

ddtW(t)=2Eu(t)+d(γ1)Eρ,γ(t)+αEK(t)max{2,d(γ1),α}Eγ(t)=max{2,d(γ1),α}Eγ(0).\frac{d}{dt}W(t)=2E_{u}(t)+d(\gamma-1)E_{\rho,\gamma}(t)+\alpha E_{K}(t)\leq\max\{2,d(\gamma-1),\alpha\}E_{\gamma}(t)=\max\{2,d(\gamma-1),\alpha\}E_{\gamma}(0).

This implies

I(t)I(0)+W(0)t+cd,γ,α2Eγ(0)t2,I(t)\leq I(0)+W(0)t+\frac{c_{d,\gamma,\alpha}}{2}E_{\gamma}(0)t^{2}, (5.3)

where cd,γ,α:=max{2,d(γ1),α}>0c_{d,\gamma,\alpha}:=\max\{2,d(\gamma-1),\alpha\}>0.

Using the time-growth estimate of II, we show the lower bound estimate of Eρ,γE_{\rho,\gamma} in the lemma below.

Lemma 5.5.

Let (ρ,u)(\rho,u) be a solution to the system (1.1) satisfying (ρ,u)𝒵(T)(\rho,u)\in\mathcal{Z}(T). Then we have

Eρ,γ(t)c0(I(0)+W(0)t+cd,γ,α2Eγ(0)t2)d(γ1)2,E_{\rho,\gamma}(t)\geq\frac{c_{0}}{\left(I(0)+W(0)t+\frac{c_{d,\gamma,\alpha}}{2}E_{\gamma}(0)t^{2}\right)^{\frac{d(\gamma-1)}{2}}},

where c0>0c_{0}>0 is given by

c0:=(πd/2Γ(d/2+1))1γρ0L1(d+2)γd22(d+2)γd2(γ1).c_{0}:=\left(\frac{\pi^{d/2}}{\Gamma(d/2+1)}\right)^{1-\gamma}\frac{\|\rho_{0}\|_{L^{1}}^{\frac{(d+2)\gamma-d}{2}}}{2^{\frac{(d+2)\gamma-d}{2}(\gamma-1)}}.

Here Γ\Gamma is the gamma function.

Proof.

For any R>0R>0, we estimate

dρ𝑑x=(|x|R+|x|R)ρdx|B(0,R)|11γ(dργ𝑑x)1γ+1R2dρ|x|2𝑑x,\int_{\mathbb{R}^{d}}\rho\,dx=\left(\int_{|x|\leq R}+\int_{|x|\geq R}\right)\rho\,dx\leq|B(0,R)|^{1-\frac{1}{\gamma}}\left(\int_{\mathbb{R}^{d}}\rho^{\gamma}\,dx\right)^{\frac{1}{\gamma}}+\frac{1}{R^{2}}\int_{\mathbb{R}^{d}}\rho|x|^{2}\,dx,

where B(0,R):={xd:|x|R}B(0,R):=\{x\in\mathbb{R}^{d}:|x|\leq R\} and |A||A| denotes the Lebesgue measure of a set AA in d\mathbb{R}^{d}. We then choose RR so that the right hand side of the above inequality is minimized, i.e.,

R=(dρ|x|2𝑑xρLγ|B(0,1)|11γ)γ(d+2)γd.R=\left(\frac{\int_{\mathbb{R}^{d}}\rho|x|^{2}\,dx}{\|\rho\|_{L^{\gamma}}|B(0,1)|^{1-\frac{1}{\gamma}}}\right)^{\frac{\gamma}{(d+2)\gamma-d}}.

This yields

Eρ,γ(t)c0I(t)d(γ1)2.E_{\rho,\gamma}(t)\geq\frac{c_{0}}{I(t)^{\frac{d(\gamma-1)}{2}}}.

We finally combine this with (5.3) to complete the proof. ∎

Our next goal is to estimate the upper bound on Eρ,γE_{\rho,\gamma}. For this, we set

J(t)=Eγ(t)(t+1)2W(t)(t+1)+I(t).J(t)=E_{\gamma}(t)(t+1)^{2}-W(t)(t+1)+I(t). (5.4)

Then by the second assertion in Lemma 5.3 we get

J(t)(t+1)2(Eρ,γ(t)+EK(t)).J(t)\geq(t+1)^{2}(E_{\rho,\gamma}(t)+E_{K}(t)). (5.5)

On the other hand, differentiating (5.4) with respect to tt yields

J(t)=(t+1)W(t)+2(t+1)Eγ(t)=(t+1)(2d(γ1))Eρ,γ(t)+(t+1)(2α)EK(t)J^{\prime}(t)=-(t+1)W^{\prime}(t)+2(t+1)E_{\gamma}(t)=(t+1)(2-d(\gamma-1))E_{\rho,\gamma}(t)+(t+1)(2-\alpha)E_{K}(t)

due to Lemmas 5.2 and 5.3. We now assume

2α2d(γ1),i.e.,d(γ1)α2-\alpha\leq 2-d(\gamma-1),\quad\mbox{i.e.,}\quad d(\gamma-1)\leq\alpha

and

1<γ1+2d.1<\gamma\leq 1+\frac{2}{d}.

Then we have

J(t)(t+1)(2d(γ1))(Eρ,γ(t)+EK(t)),J^{\prime}(t)\leq(t+1)(2-d(\gamma-1))(E_{\rho,\gamma}(t)+E_{K}(t)),

and this together with (5.5) gives

J(t)2d(γ1)(t+1)J(t).J^{\prime}(t)\leq\frac{2-d(\gamma-1)}{(t+1)}J(t).

We finally solve the above differential inequality to have the following lemma.

Lemma 5.6.

Let (ρ,u)(\rho,u) be a solution to the system (1.1) satisfying (ρ,u)𝒵(T)(\rho,u)\in\mathcal{Z}(T). Assume

1<γ1+2dandd(γ1)α.1<\gamma\leq 1+\frac{2}{d}\quad\mbox{and}\quad d(\gamma-1)\leq\alpha.

Then we have

J(t)J(0)(t+1)d(γ1)2.J(t)\leq\frac{J(0)}{(t+1)^{d(\gamma-1)-2}}.

We now state our result on the finite-time singularity formation in the repulsive interaction potential case.

Theorem 5.7 (Repulsive case).

Let T>0T>0 and (ρ,u)(\rho,u) be a solution to the system (1.1) satisfying (ρ,u)𝒵(T)(\rho,u)\in\mathcal{Z}(T). Suppose that γ\gamma and α>0\alpha>0 satisfy

1<γ1+2dandαd(γ1),1<\gamma\leq 1+\frac{2}{d}\quad\mbox{and}\quad\alpha\geq d(\gamma-1),

respectively. Moreover, we assume

I(0),W(0),Eγ(0),andρ0L1<.I(0),\ W(0),\ E_{\gamma}(0),\ \mbox{and}\ \|\rho_{0}\|_{L^{1}}<\infty.

If the initial data (ρ0,u0)(\rho_{0},u_{0}) satisfies

J(0)=Eγ(0)W(0)+I(0)<2c0cd,γ,αEγ(0),J(0)=E_{\gamma}(0)-W(0)+I(0)<\frac{2c_{0}}{c_{d,\gamma,\alpha}E_{\gamma}(0)}, (5.6)

where c0c_{0} is given in Lemma 5.5, then the life-span TT of the solution is finite.

Proof.

We first estimate the lower bound on JJ. Since EK0E_{K}\geq 0, we get from (5.5)

J(t)(t+1)2Eρ,γ(t).J(t)\geq(t+1)^{2}E_{\rho,\gamma}(t).

We further use Lemma 5.5 to obtain

J(t)c0(t+1)2(I(0)+W(0)t+cd,γ,α2Eγ(0)t2)d(γ1)2.J(t)\geq\frac{c_{0}(t+1)^{2}}{\left(I(0)+W(0)t+\frac{c_{d,\gamma,\alpha}}{2}E_{\gamma}(0)t^{2}\right)^{\frac{d(\gamma-1)}{2}}}.

This and Lemma 5.6 yield

J(0)(t+1)d(γ1)2c0(t+1)2(I(0)+W(0)t+cd,γ,α2Eγ(0)t2)d(γ1)2.\frac{J(0)}{(t+1)^{d(\gamma-1)-2}}\geq\frac{c_{0}(t+1)^{2}}{\left(I(0)+W(0)t+\frac{c_{d,\gamma,\alpha}}{2}E_{\gamma}(0)t^{2}\right)^{\frac{d(\gamma-1)}{2}}}.

Note that as tt tends to infinity the above inequality implies

J(0)2c0cd,γ,αEγ(0),J(0)\geq\frac{2c_{0}}{c_{d,\gamma,\alpha}E_{\gamma}(0)},

and this contradicts (5.6). Hence the life-span TT of the solution should be finite. ∎

5.2 Isothermal pressure case

In this subsection, we deal with the isothermal pressure law, i.e., p(ρ)=ρp(\rho)=\rho in the system (1.1).

As a direct application of Lemma 5.3, we first find

d2dt2I(t)=ddtW(t)=2Eu+ddρ𝑑xαcKEK=2E1+(2α)cKEK+dρL12Eρ,1,\frac{d^{2}}{dt^{2}}I(t)=\frac{d}{dt}W(t)=2E_{u}+d\int_{\mathbb{R}^{d}}\rho\,dx-\alpha c_{K}E_{K}=2E_{1}+(2-\alpha)c_{K}E_{K}+d\|\rho\|_{L^{1}}-2E_{\rho,1}, (5.7)

where E1E_{1} is the total energy for the system (1.1) with γ=1\gamma=1, i.e., E1=Eu+Eρ,1cKEKE_{1}=E_{u}+E_{\rho,1}-c_{K}E_{K}. It is worth noticing that the last term on right hand side of the above inequality does not have the definite sign. This requires the control of the negative part of Eρ,1E_{\rho,1}. For this, we provide the auxiliary lemma below.

Lemma 5.8.

For a given ϵ>0\epsilon>0, there exists a C0>0C_{0}>0 independent of ρ\rho such that

ϵdρ(lnρ)χ0ρ1𝑑x12dρ|x|2𝑑x+Cϵ.-\epsilon\int_{\mathbb{R}^{d}}\rho(\ln\rho)\chi_{0\leq\rho\leq 1}\,dx\leq\frac{1}{2}\int_{\mathbb{R}^{d}}\rho|x|^{2}\,dx+C_{\epsilon}.
Proof.

Note that the following holds for any s,σ0s,\sigma\geq 0:

sln(s)χ0s1\displaystyle-s\ln(s)\chi_{0\leq s\leq 1} =sln(s)χeσs1sln(s)χeσs\displaystyle=-s\ln(s)\chi_{e^{-\sigma}\leq s\leq 1}-s\ln(s)\chi_{e^{-\sigma}\geq s}
sσ+Csχeσs\displaystyle\leq s\sigma+C\sqrt{s}\chi_{e^{-\sigma}\geq s}
sσ+Ceσ2/2\displaystyle\leq s\sigma+Ce^{-\sigma^{2}/2}

for some C>0C>0 independent of ss and σ\sigma. This together with taking s=ρs=\rho and σ=|x|2/2ϵ\sigma=|x|^{2}/{2\epsilon} asserts

ϵdρ(lnρ)χ0ρ1𝑑x12dρ|x|2𝑑x+Cϵ-\epsilon\int_{\mathbb{R}^{d}}\rho(\ln\rho)\chi_{0\leq\rho\leq 1}\,dx\leq\frac{1}{2}\int_{\mathbb{R}^{d}}\rho|x|^{2}\,dx+C_{\epsilon}

for some Cϵ>0C_{\epsilon}>0. ∎

We now state our result on the finite-time singularity formation for the isothermal pressure case.

Theorem 5.9.

Let T>0T>0, γ=1\gamma=1, and (ρ,u)(\rho,u) be a solution to the system (1.1) satisfying (ρ,u)𝒵(T)(\rho,u)\in\mathcal{Z}(T). Suppose

I(0),W(0),Eγ(0),andρ0L1<.I(0),\ W(0),\ E_{\gamma}(0),\ \mbox{and}\ \|\rho_{0}\|_{L^{1}}<\infty.

If cK=1c_{K}=1, i.e., in the attractive case, then we assume that α2\alpha\geq 2 and the initial data (ρ0,u0)(\rho_{0},u_{0}) satisfies

W(0)+I(0)+2E1(0)+dρ0L1+C2<0.W(0)+I(0)+2E_{1}(0)+d\|\rho_{0}\|_{L^{1}}+C_{2}<0.

On the other hand, if cK=1c_{K}=-1, i.e., in the repulsive case, we suppose that the initial data (ρ0,u0)(\rho_{0},u_{0}) satisfies

W(0)+I(0)+max{2,α}E1(0)+dρ0L1+Cmax{2,α}<0W(0)+I(0)+\max\{2,\alpha\}E_{1}(0)+d\|\rho_{0}\|_{L^{1}}+C_{\max\{2,\alpha\}}<0

for α0\alpha\geq 0 and

W(0)+I(0)+2E1(0)+dρ0L1+C2<0W(0)+I(0)+2E_{1}(0)+d\|\rho_{0}\|_{L^{1}}+C_{2}<0

for α<0\alpha<0. Here C2C_{2} and Cmax{2,α}C_{\max\{2,\alpha\}} are positive constants given as in Lemma 5.8. Then the life-span TT of the solution is finite.

Remark 5.10.

Note that either W0W_{0} or E0E_{0} should be chosen to be negative to make our assumptions in Theorem 5.9 valid.

Proof of Theorem 5.9.

We first derive a second-order differential inequality for I(t)I(t). If cK=1c_{K}=1, i.e., in the attractive case, then by choosing α\alpha large enough so that α2\alpha\geq 2, we obtain from (5.7) that

d2dt2I(t)2E1(t)+dρ0L12Eρ,1(t).\frac{d^{2}}{dt^{2}}I(t)\leq 2E_{1}(t)+d\|\rho_{0}\|_{L^{1}}-2E_{\rho,1}(t).

Then this together with Lemma 5.8 and total energy estimate gives

d2dt2I(t)\displaystyle\frac{d^{2}}{dt^{2}}I(t) 2E1(0)+dρ0L12dρ(t,x)(lnρ(t,x))χ0ρ(t,x)1𝑑x\displaystyle\leq 2E_{1}(0)+d\|\rho_{0}\|_{L^{1}}-2\int_{\mathbb{R}^{d}}\rho(t,x)(\ln\rho(t,x))\chi_{0\leq\rho(t,x)\leq 1}\,dx
2E1(0)+dρ0L1+C2+I(t),\displaystyle\leq 2E_{1}(0)+d\|\rho_{0}\|_{L^{1}}+C_{2}+I(t),

where C2C_{2} is given in Lemma 5.8.

For the repulsive case, i.e., cK=1c_{K}=-1, we estimate

d2dt2I(t)=2Eu+dρL1+αEKmax{2,α}E1(t)+dρL1max{2,α}Eρ,1(t)\frac{d^{2}}{dt^{2}}I(t)=2E_{u}+d\|\rho\|_{L^{1}}+\alpha E_{K}\leq\max\{2,\alpha\}E_{1}(t)+d\|\rho\|_{L^{1}}-\max\{2,\alpha\}E_{\rho,1}(t)

for α0\alpha\geq 0. Then similarly as before we deduce

d2dt2I(t)max{2,α}E1(0)+dρ0L1+Cmax{2,α}+I(t).\frac{d^{2}}{dt^{2}}I(t)\leq\max\{2,\alpha\}E_{1}(0)+d\|\rho_{0}\|_{L^{1}}+C_{\max\{2,\alpha\}}+I(t).

On the other hand, if α<0\alpha<0, then we get

d2dt2I(t)2Eu+dρL12E1(t)+dρ0L12Eρ,1(t)2E1(0)+dρ0L1+C2+I(t).\frac{d^{2}}{dt^{2}}I(t)\leq 2E_{u}+d\|\rho\|_{L^{1}}\leq 2E_{1}(t)+d\|\rho_{0}\|_{L^{1}}-2E_{\rho,1}(t)\leq 2E_{1}(0)+d\|\rho_{0}\|_{L^{1}}+C_{2}+I(t).

Thus for both cases we have the following form of second-order differential inequality:

d2dt2I(t)C~+I(t),\frac{d^{2}}{dt^{2}}I(t)\leq\tilde{C}+I(t), (5.8)

with the initial data I(0)I(0) and I(0)=W(0)I^{\prime}(0)=W(0), where C~>0\tilde{C}>0 is given by

C~={2E1(0)+dρ0L1+C2if cK=1max{2,α}E1(0)+dρ0L1+Cmax{2,α}if cK=1 and α02E1(0)+dρ0L1+C2if cK=1 and α<0.\tilde{C}=\left\{\begin{array}[]{ll}2E_{1}(0)+d\|\rho_{0}\|_{L^{1}}+C_{2}&\textrm{if $c_{K}=1$}\\[5.69054pt] \max\{2,\alpha\}E_{1}(0)+d\|\rho_{0}\|_{L^{1}}+C_{\max\{2,\alpha\}}&\textrm{if $c_{K}=-1$ and $\alpha\geq 0$}\\[5.69054pt] 2E_{1}(0)+d\|\rho_{0}\|_{L^{1}}+C_{2}&\textrm{if $c_{K}=-1$ and $\alpha<0$}\end{array}\right..

In order to solve the second-order differential inequality (5.8), by introducing

I~(t):=ddtI(t)I(t),\tilde{I}(t):=\frac{d}{dt}I(t)-I(t),

we first reduce it to the first-order differential inequality:

ddtI~(t)+I~(t)C~,\frac{d}{dt}\tilde{I}(t)+\tilde{I}(t)\leq\tilde{C},

subject to the initial data I~(0)=W(0)I(0)\tilde{I}(0)=W(0)-I(0). We then apply Grönwall’s lemma twice to obtain

I(t)(I(0)+C~)et+12(etet)(W(0)I(0)C~)C~.I(t)\leq(I(0)+\tilde{C})e^{t}+\frac{1}{2}\left(e^{t}-e^{-t}\right)(W(0)-I(0)-\tilde{C})-\tilde{C}.

Note that our assumptions on the initial data give W(0)+I(0)+C~<0W(0)+I(0)+\tilde{C}<0 and thus the right hand side is negative for t>0t>0 large enough. This is contradiction that I(t)I(t) is always nonnegative. Hence the life-span TT of solution should be finite. ∎

6 Conclusion

In this paper, we initiated the analysis of the Euler–Riesz system. We established a local well-posedness theory for the Euler–Riesz system (with pressure) and pressureless and repulsive Euler–Riesz system. This well-posedness result makes the mean-field limit [38, Appendix A] from the Newton’s second-order particle system (1.2) to the pressureless Euler–Riesz system (1.1) fully rigorous. Our framework for well-posedness allows the fluid density to decay fast at infinity, and it covers the Euler–Poison system. Finally, we investigated the problem of finite-time singularity formation for classical solutions for the Euler–Riesz system with γ1\gamma\geq 1. We provided sufficient conditions on the initial data, γ\gamma, α\alpha, and dd which lead to the finite-time breakdown of smoothness of solutions. Unfortunately, the strategy used for Theorem 5.7 cannot be applied to the pressureless case since the internal energy, which appears due to the presence of pressure, plays a crucial role in the analysis of blow-up of solutions. We would like to stress that the finite-time singularity for the pressureless Euler–Poisson with repulsive forces is still a challenging open problem. We would like to investigate this question in the future.

Acknowledgement

We thank Bongsuk Kwon for helpful conversations regarding the Euler–Poisson system. YPC has been supported by NRF grant (No. 2017R1C1B2012918), POSCO Science Fellowship of POSCO TJ Park Foundation, and Yonsei University Research Fund of 2019-22-021. IJJ has been supported by a KIAS Individual Grant MG066202 at Korea Institute for Advanced Study, the Science Fellowship of POSCO TJ Park Foundation, and the National Research Foundation of Korea grant (No. 2019R1F1A1058486).

References

  • [1] Uwe Brauer and Lavi Karp, Local existence of solutions to the Euler-Poisson system, including densities without compact support, J. Differential Equations 264 (2018), no. 2, 755–785. MR 3720829
  • [2] Y. Brenier, W. Gangbo, G. Savaré, and M. Westdickenberg, Sticky particle dynamics with interactions, J. Math. Pures Appl. (9) 99 (2013), no. 5, 577–617. MR 3039208
  • [3] Yann Brenier and Emmanuel Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal. 35 (1998), no. 6, 2317–2328. MR 1655848
  • [4] José A. Carrillo and Young-Pil Choi, Mean-field limits: from particle descriptions to macroscopic equations, preprint.
  • [5]  , Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces, Ann. Inst. H. Poincaré Anal. Non Linéaire 37 (2020), no. 4, 925–954. MR 4104830
  • [6] José A. Carrillo, Young-Pil Choi, Maxime Hauray, and Samir Salem, Mean-field limit for collective behavior models with sharp sensitivity regions, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 1, 121–161. MR 3880206
  • [7] José A. Carrillo, Young-Pil Choi, and Jinwwok Jung, Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces, preprint.
  • [8] José A. Carrillo, Young-Pil Choi, and Samir Salem, Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off, Commun. Contemp. Math. 21 (2019), no. 4, 1850039, 28. MR 3957154
  • [9] José A. Carrillo, Young-Pil Choi, and Ewelina Zatorska, On the pressureless damped Euler-Poisson equations with quadratic confinement: critical thresholds and large-time behavior, Math. Models Methods Appl. Sci. 26 (2016), no. 12, 2311–2340. MR 3564592
  • [10] Dongho Chae, Peter Constantin, Diego Córdoba, Francisco Gancedo, and Jiahong Wu, Generalized surface quasi-geostrophic equations with singular velocities, Comm. Pure Appl. Math. 65 (2012), no. 8, 1037–1066. MR 2928091
  • [11] Dongho Chae and Seung-Yeal Ha, On the formation of shocks to the compressible Euler equations, Commun. Math. Sci. 7 (2009), no. 3, 627–634. MR 2569026
  • [12] Dongho Chae and Eitan Tadmor, On the finite time blow-up of the Euler-Poisson equations in n\mathbb{R}^{n}, Commun. Math. Sci. 6 (2008), no. 3, 785–789. MR 2455476
  • [13] Gui-Qiang Chen, Euler equations and related hyperbolic conservation laws, Evolutionary equations. Vol. II, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005, pp. 1–104. MR 2182827
  • [14] Weinan E, Yu. G. Rykov, and Ya. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys. 177 (1996), no. 2, 349–380. MR 1384139
  • [15] Shlomo Engelberg, Formation of singularities in the Euler and Euler-Poisson equations, Phys. D 98 (1996), no. 1, 67–74. MR 1416291
  • [16] Shlomo Engelberg, Hailiang Liu, and Eitan Tadmor, Critical thresholds in Euler-Poisson equations, vol. 50, 2001, Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000), pp. 109–157. MR 1855666
  • [17] Alessio Figalli and Moon-Jin Kang, A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE 12 (2019), no. 3, 843–866. MR 3864212
  • [18] Robert T. Glassey, The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1379589
  • [19] Yan Guo, Smooth irrotational flows in the large to the Euler-Poisson system in 3+1\mathbb{R}^{3+1}, Comm. Math. Phys. 195 (1998), no. 2, 249–265. MR 1637856
  • [20] Yan Guo and Benoit Pausader, Global smooth ion dynamics in the Euler-Poisson system, Comm. Math. Phys. 303 (2011), no. 1, 89–125. MR 2775116
  • [21] Maxime Hauray, Mean field limit for the one dimensional Vlasov-Poisson equation, Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2012–2013, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2014, pp. Exp. No. XXI, 16. MR 3381008
  • [22] Maxime Hauray and Pierre-Emmanuel Jabin, NN-particles approximation of the Vlasov equations with singular potential, Arch. Ration. Mech. Anal. 183 (2007), no. 3, 489–524. MR 2278413
  • [23]  , Particle approximation of Vlasov equations with singular forces: propagation of chaos, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 4, 891–940. MR 3377068
  • [24] Maxime Hauray and Samir Salem, Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D, Kinet. Relat. Models 12 (2019), no. 2, 269–302. MR 3918268
  • [25] R. Illner, H. D. Victory, P. Dukes, and A. V. Bobylev, On Vlasov-Manev equations. II. Local existence and uniqueness, J. Statist. Phys. 91 (1998), no. 3-4, 625–654. MR 1632718
  • [26] Pierre-Emmanuel Jabin and Zhenfu Wang, Quantitative estimates of propagation of chaos for stochastic systems with W1,W^{-1,\infty} kernels, Invent. Math. 214 (2018), no. 1, 523–591. MR 3858403
  • [27] In-Jee Jeong and Kyungkeun Kang, Well-posedness and singularity formation for inviscid Keller-Segel system of consumption type, preprint.
  • [28] Moon-Jin Kang, From the Vlasov-Poisson equation with strong local alignment to the pressureless Euler-Poisson system, Appl. Math. Lett. 79 (2018), 85–91. MR 3748615
  • [29] Trygve K. Karper, Antoine Mellet, and Konstantina Trivisa, Hydrodynamic limit of the kinetic Cucker-Smale flocking model, Math. Models Methods Appl. Sci. 25 (2015), no. 1, 131–163. MR 3277287
  • [30] Tosio Kato, Remarks on the Euler and Navier-Stokes equations in 𝐑2{\bf R}^{2}, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983), Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 1–7. MR 843590
  • [31] Igor Kukavica, Vlad Vicol, and Fei Wang, On the ill-posedness of active scalar equations with odd singular kernels, New trends in differential equations, control theory and optimization, World Sci. Publ., Hackensack, NJ, 2016, pp. 185–200. MR 3587427
  • [32] Dustin Lazarovici and Peter Pickl, A mean field limit for the Vlasov-Poisson system, Arch. Ration. Mech. Anal. 225 (2017), no. 3, 1201–1231. MR 3667287
  • [33] Yachun Li, Ronghua Pan, and Shengguo Zhu, On classical solutions for viscous polytropic fluids with degenerate viscosities and vacuum, Arch. Ration. Mech. Anal. 234 (2019), no. 3, 1281–1334. MR 4011697
  • [34] Luca Natile and Giuseppe Savaré, A Wasserstein approach to the one-dimensional sticky particle system, SIAM J. Math. Anal. 41 (2009), no. 4, 1340–1365. MR 2540269
  • [35] Truyen Nguyen and Adrian Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws, SIAM J. Math. Anal. 40 (2008), no. 2, 754–775. MR 2438785
  • [36] Benoît Perthame, Mathematical tools for kinetic equations, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 2, 205–244. MR 2043752
  • [37] F. Poupaud, M. Rascle, and J.-P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrarily large data, J. Differential Equations 123 (1995), no. 1, 93–121. MR 1359913
  • [38] Sylvia Serfaty, Mean field limit for Coulomb-type flows, to appear in Duke Math. J.
  • [39] Thomas C. Sideris, Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys. 101 (1985), no. 4, 475–485. MR 815196
  • [40] Yuexun Wang, Formation of singularities to the Euler-Poisson equations, Nonlinear Anal. 109 (2014), 136–147. MR 3247298
  • [41] Zhouping Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math. 51 (1998), no. 3, 229–240. MR 1488513