This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On uniqueness of submaximally symmetric
parabolic geometries

Dennis The Department of Mathematics & Statistics, UiT The Arctic University of Norway, N-9037, Tromsø, Norway [email protected]
Abstract.

Among (regular, normal) parabolic geometries of type (G,P)(G,P), there is a locally unique maximally symmetric structure and it has symmetry dimension dim(G){\rm dim}(G). The symmetry gap problem concerns the determination of the next realizable (submaximal) symmetry dimension. When GG is a complex or split-real simple Lie group of rank at least three or when (G,P)=(G2,P2)(G,P)=(G_{2},P_{2}), we establish a local uniqueness result for submaximally symmetric structures of type (G,P)(G,P).

Key words and phrases:
Submaximal symmetry, parabolic geometry, harmonic curvature, Tanaka theory
2010 Mathematics Subject Classification:
Primary 58J70, Secondary 53B99, 22E46, 17B70

1. Introduction

For a given (local) differential geometric structure, our interest here will be on the dimension of its Lie algebra of infinitesimal symmetries. Many types of structures (e.g. Riemannian metrics on manifolds of fixed dimension) admit a finite maximal symmetry dimension 𝔐{\mathfrak{M}}, and there is broad interest to (locally) classify all such maximally symmetric structures. Letting 𝔖{\mathfrak{S}} denote the next possible realizable (submaximal) symmetry dimension, there is often a significant gap arising between 𝔐{\mathfrak{M}} and 𝔖{\mathfrak{S}}. The symmetry gap problem refers to the determination of 𝔖{\mathfrak{S}} and in doing so the task of exhibiting (local) models realizing this submaximal symmetry dimension. With this goal in mind, one can make a detailed case-by-case study of the PDE determining the symmetry vector fields for a given structure, but in many situations such a direct investigation using analytic tools becomes cumbersome. Our approach here is to draw upon strong algebraic tools that are present for an important broad class of structures that admit an equivalent reformulation as Cartan geometries.

Parabolic geometries [6] admit such a reformulation – they are a diverse and interesting class of geometries whose underlying structures include conformal, projective, CR, 2nd order ODE systems, and many classes of generic distributions, e.g. (2,3,5)(2,3,5)-distributions. Their description as parabolic geometries (see §2.1) gives a solution to the equivalence problem for such structures in the sense of Élie Cartan. Briefly, such a geometric structure on MM (henceforth, always assumed connected) admits a categorically equivalent description as a (regular, normal) Cartan geometry (𝒢M,ω)({\mathcal{G}}\to M,\omega) of type (G,P)(G,P), where GG is a semisimple Lie group and PP is a parabolic subgroup. (For more details on the passage from MM to the “upstairs” Cartan perspective, we refer the reader to [6, 4].) The Cartan connection ω\omega provides a canonical coframing on 𝒢{\mathcal{G}} and its symmetry algebra inf(𝒢,ω)\inf({\mathcal{G}},\omega) is isomorphic to the symmetry algebra of the underlying structure on MM. We have 𝔐=dim(G){\mathfrak{M}}={\rm dim}(G) for such structures, and there is a (locally) unique maximally symmetric model, namely the flat model (GG/P,ωG)(G\to G/P,\omega_{G}) of type (G,P)(G,P), where ωG\omega_{G} is the Maurer–Cartan form of GG. Any Cartan geometry of type (G,P)(G,P) can be viewed as a curved version of this flat model, and our starting point is to take the (normalized) Cartan geometry as the basic input to the problem.

Substantial progress was made on the symmetry gap problem for parabolic geometries in [16]. In that joint work with Kruglikov, we proved that 𝔖𝔘{\mathfrak{S}}\leq{\mathfrak{U}} for any (G,P)(G,P) in terms of a universal (algebraically-defined) upper bound 𝔘{\mathfrak{U}}. Moreover, when GG is complex or split-real simple:

  1. (i)

    𝔘{\mathfrak{U}} can be efficiently calculated via Dynkin diagram combinatorics, and

  2. (ii)

    𝔖=𝔘{\mathfrak{S}}={\mathfrak{U}} almost always, with some exceptions when rank(G)=2\mathrm{rank}(G)=2.

We uniformly proved 𝔖=𝔘{\mathfrak{S}}={\mathfrak{U}} by exhibiting a particular homogeneous structure, encoded “Cartan-theoretically” by what we refer to here as an algebraic model (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}) (see §2.4). We remark that for more general real forms, the determination of 𝔘{\mathfrak{U}} and sharpness of 𝔖𝔘{\mathfrak{S}}\leq{\mathfrak{U}} is still largely open, although numerous interesting cases have been resolved – see for example [9, 13, 14, 15].

Not addressed in [16] was the broader classification problem for submaximally symmetric structures, and our goal in this article is to resolve this. In order to formulate our main result, we briefly recall some notions here. (Precise definitions will be given later.) For any (regular, normal) parabolic geometry, there is a fundamental quantity called harmonic curvature κH:𝒢H2(𝔭+,𝔤)1\kappa_{H}:{\mathcal{G}}\to H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}})^{1}, which completely obstructs local equivalence to the flat model. The codomain of κH\kappa_{H} is a filtrand of a certain Lie algebra homology group, which is a completely reducible PP-representation, so only the action on it by the (reductive) Levi factor G0PG_{0}\subsetneq P is relevant. Consider a G0G_{0}-irrep 𝕍H2(𝔭+,𝔤)1{\mathbb{V}}\subseteq H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}})^{1}. We say that (𝒢M,ω)({\mathcal{G}}\to M,\omega) is of type (G,P,𝕍)(G,P,{\mathbb{V}}) if it is of type (G,P)(G,P) and im(κH)𝕍\mathrm{im}(\kappa_{H})\subseteq{\mathbb{V}}, and let 𝔖𝕍{\mathfrak{S}}_{\mathbb{V}} be the maximal symmetry dimension among regular, normal parabolic geometries of type (G,P,𝕍)(G,P,{\mathbb{V}}) with κH0\kappa_{H}\not\equiv 0. We can now formulate our main result111See §3.1 for our subscript notation for parabolics in the complex or split-real setting.:

Theorem 1.1.

Let GG be a complex or split-real simple Lie group, PGP\subsetneq G a parabolic subgroup, and G0G_{0} its Levi factor. Let (𝒢M,ω)({\mathcal{G}}\to M,\omega) be a regular, normal parabolic geometry of type (G,P,𝕍)(G,P,{\mathbb{V}}), where 𝕍H2(𝔭+,𝔤)1{\mathbb{V}}\subseteq H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}})^{1} is a G0G_{0}-irrep. Suppose that dim(inf(𝒢,ω))=𝔖𝕍{\rm dim}(\inf({\mathcal{G}},\omega))={\mathfrak{S}}_{\mathbb{V}}, and rank(G)3\mathrm{rank}(G)\geq 3 or (G,P)=(G2,P2)(G,P)=(G_{2},P_{2}). Then the geometry is locally homogeneous about any u𝒢u\in{\mathcal{G}} with κH(u)0\kappa_{H}(u)\neq 0. The corresponding algebraic model (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}) with dim𝔣=𝔖𝕍{\rm dim}\,{\mathfrak{f}}={\mathfrak{S}}_{\mathbb{V}} is (up to PP-equivalences 𝔣Adp𝔣{\mathfrak{f}}\mapsto{\rm Ad}_{p}{\mathfrak{f}}, pP\forall p\in P):

  1. (1)

    complex case: unique.

  2. (2)

    split-real case: one of at most two possibilities. Uniqueness holds if and only if there exists g0G0g_{0}\in G_{0} such that g0ϕ0=ϕ0g_{0}\cdot\phi_{0}=-\phi_{0}, where ϕ0𝕍\phi_{0}\in{\mathbb{V}} is a lowest weight vector.

Our result is constructive (see §3.4): over {\mathbb{C}}, the distinguished algebraic model (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}) encoding the corresponding submaximally symmetric geometry is what we refer to here as the canonical curved model of type (𝔤,𝔭,𝕍)({\mathfrak{g}},{\mathfrak{p}},{\mathbb{V}}), which has curvature κ=ϕ0\kappa=\phi_{0} (interpreted as a harmonic 2-cochain). The Lie algebra 𝔣{\mathfrak{f}} arises as a filtered deformation of a graded subalgebra 𝔞:=𝔞ϕ0𝔤{\mathfrak{a}}:={\mathfrak{a}}^{\phi_{0}}\subseteq{\mathfrak{g}} (see §2.2), namely 𝔣=𝔞{\mathfrak{f}}={\mathfrak{a}} as vector subspaces, but with bracket [,]𝔣:=[,]κ(,)[\cdot,\cdot]_{\mathfrak{f}}:=[\cdot,\cdot]-\kappa(\cdot,\cdot), where [,][\cdot,\cdot] is the bracket on 𝔤{\mathfrak{g}} (restricted to 𝔞{\mathfrak{a}}). This is the same abstract model used in [16]. In the split-real setting, the second possibility is 𝔣=𝔞{\mathfrak{f}}={\mathfrak{a}} with κ=ϕ0\kappa=-\phi_{0}.

For fixed (G,P)(G,P), Theorem 1.1 can be used to deduce the analogous classification of all submaximally symmetric structures, i.e. κH\kappa_{H} is not constrained to a specific 𝕍{\mathbb{V}}. See §4 for some examples.

We now give numerous examples illustrating that one cannot in general weaken the hypotheses of Theorem 1.1 and expect such a uniform conclusion.

Non-uniqueness over {\mathbb{C}} can occur if we do not require 𝕍H2(𝔭+,𝔤)1{\mathbb{V}}\subseteq H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}})^{1} to be G0G_{0}-irreducible:

Example 1.2.

A Legendrian contact geometry (over 𝔽={\mathbb{F}}={\mathbb{R}} or {\mathbb{C}}) is a contact manifold (M2n+1,𝒞)(M^{2n+1},{\mathcal{C}}) with contact distribution endowed with a splitting 𝒞={\mathcal{C}}={\mathcal{E}}\oplus{\mathcal{F}} into Legendrian subbundles. (Second order ODE is the n=1n=1 case.) Such a structure underlies a parabolic geometry of type (SL(n+2,𝔽),P1,n+1)(\operatorname{SL}(n+2,{\mathbb{F}}),P_{1,n+1}), 𝔤0𝔽2×𝔰𝔩(n,𝔽){\mathfrak{g}}_{0}\cong{\mathbb{F}}^{2}\times\mathfrak{sl}(n,{\mathbb{F}}), and for n2n\geq 2 we have an 𝔤0{\mathfrak{g}}_{0}-irreducible decomposition H2(𝔭+,𝔤)1𝕋1𝕋2𝕎H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}})^{1}\cong{\mathbb{T}}_{1}\oplus{\mathbb{T}}_{2}\oplus{\mathbb{W}}. From [16, Table 11], we have 𝔖𝕋1=𝔖𝕋2=𝔖𝕎=n2+4{\mathfrak{S}}_{{\mathbb{T}}_{1}}={\mathfrak{S}}_{{\mathbb{T}}_{2}}={\mathfrak{S}}_{\mathbb{W}}=n^{2}+4. The corresponding canonical curved models are inequivalent.

If one weakens the complex / split-real assumptions, varying phenomena can occur:

Example 1.3.

Real hypersurfaces in 3{\mathbb{C}}^{3} having positive-definite Levi form yield 5D (integrable) CR geometries, which are specific real forms of complex Legendrian contact geometries (Example 1.2) when n=2n=2. They underlie regular, normal parabolic geometries of type (G,P1,3)(G,P_{1,3}), where G=SU(1,3)G=\operatorname{SU}(1,3) (not split-real), and the complexification of κH\kappa_{H} would take values only in 𝕎{\mathbb{W}}\otimes_{\mathbb{R}}{\mathbb{C}}. We have 𝔐=15{\mathfrak{M}}=15, while it is known that 𝔖=𝔘=7{\mathfrak{S}}={\mathfrak{U}}=7, with infinitely many inequivalent submaximally symmetric models; see [8, Table 8 (D.7)]. In the Levi-indefinite case, G=SU(2,2)G=\operatorname{SU}(2,2) (again, not split-real), 𝔐=15{\mathfrak{M}}=15, and there is a unique local model realizing 𝔖=𝔘=8{\mathfrak{S}}={\mathfrak{U}}=8; see [8, Table 7 (N.8)].

Now suppose rank(G)=2\mathrm{rank}(G)=2. In contrast to local uniqueness in the (G2,P2)(G_{2},P_{2}) case (both over {\mathbb{C}} and {\mathbb{R}}, see §3.2), there is a 1-parameter family of submaximally symmetric models in the (G2,P1)(G_{2},P_{1}) case:

Example 1.4.

A (2,3,5)(2,3,5)-geometry is a 5-manifold MM equipped with a rank 2 distribution 𝒟{\mathcal{D}} having generic growth under the Lie bracket, i.e. rank([𝒟,𝒟])=3\mathrm{rank}([{\mathcal{D}},{\mathcal{D}}])=3 and rank([𝒟,[𝒟,𝒟]])=5\mathrm{rank}([{\mathcal{D}},[{\mathcal{D}},{\mathcal{D}}]])=5. Locally, any such 𝒟{\mathcal{D}} admits a Monge normal form: there exist local coordinates (x,y,p,q,z)(x,y,p,q,z) and a function f=f(x,y,p,q,z)f=f(x,y,p,q,z) with fqq0f_{qq}\neq 0 such that 𝒟{\mathcal{D}} is spanned by the vector fields

q,x+py+qp+fz.\partial_{q},\quad\partial_{x}+p\partial_{y}+q\partial_{p}+f\partial_{z}.

Such a structure underlies a parabolic geometry of type (G2,P1)(G_{2},P_{1}), so 𝔐=14{\mathfrak{M}}=14, with f=q2f=q^{2} realizing maximal symmetry. Here, 𝔖=𝔘=7{\mathfrak{S}}={\mathfrak{U}}=7 in either the complex or real case. Over {\mathbb{C}}, a well-known list of submaximally symmetric models is given by f=qmf=q^{m} (for m1,0,13,23,1,2m\neq-1,0,\frac{1}{3},\frac{2}{3},1,2) and f=log(q)f=\log(q).

Other rank two cases include 3-dimensional conformal geometry, i.e. type (B2,P1)(B_{2},P_{1}), and the contact geometry of scalar 3rd order ODE, i.e. type (B2,P1,2)(B_{2},P_{1,2}). Submaximally symmetric models are non-unique for both – in the former case see the classification in [12], while in the latter case they are given by y′′′+ky+y=0y^{\prime\prime\prime}+ky^{\prime}+y=0, where kk is constant. The rank two case of 2nd order ODE exhibits several exceptional phenomena:

Example 1.5.

Scalar 2nd order ODE y′′=f(x,y,y)y^{\prime\prime}=f(x,y,y^{\prime}) (up to point transformations) underlie (SL3,P1,2)(\operatorname{SL}_{3},P_{1,2}) geometries, for which 𝔐=8{\mathfrak{M}}=8 and 𝔖=3<𝔘=4{\mathfrak{S}}=3<{\mathfrak{U}}=4. Locally, one has a 3-manifold MM with coordinates (x,y,p)(x,y,p) and split contact distribution 𝒞={\mathcal{C}}={\mathcal{E}}\oplus{\mathcal{F}} on MM with

=x+py+f(x,y,p)p,=p.\displaystyle{\mathcal{E}}=\langle\partial_{x}+p\partial_{y}+f(x,y,p)\partial_{p}\rangle,\quad{\mathcal{F}}=\langle\partial_{p}\rangle. (1.1)

We have dim(G0)=2{\rm dim}(G_{0})=2, and G0G_{0} corresponds to arbitrary rescalings along {\mathcal{E}} and {\mathcal{F}}. We have H2(𝔭+,𝔤)1𝕃1𝕃2H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}})^{1}\cong{\mathbb{L}}_{1}\oplus{\mathbb{L}}_{2}, with each 𝕃i{\mathbb{L}}_{i} being a 1-dim G0G_{0}-irrep. The components of κH\kappa_{H} along 𝕃1{\mathbb{L}}_{1} and 𝕃2{\mathbb{L}}_{2} correspond to the well-known Tresse relative invariants I1I_{1} and I2=fppppI_{2}=f_{pppp}. For I1I_{1}, we refer to [16, eqn (5.8)] and replace (t,x,p)(t,x,p) there with (x,y,p)(x,y,p). Two submaximally symmetric models are:

  1. (i)

    y′′=exp(y)y^{\prime\prime}=\exp(y^{\prime}): symmetries are 𝔣=x,y,xx+(yx)yp{\mathfrak{f}}=\langle\partial_{x},\partial_{y},x\partial_{x}+(y-x)\partial_{y}-\partial_{p}\rangle. We have I1=e3pI_{1}=e^{3p} and I2=epI_{2}=e^{p} both nonvanishing. Thus, κH\kappa_{H} is not concentrated in a single irreducible component.

  2. (ii)

    y′′=(xyy)3y^{\prime\prime}=(xy^{\prime}-y)^{3}: symmetries are 𝔣=xy+p,xxyy2pp,yxp2p{\mathfrak{f}}=\langle x\partial_{y}+\partial_{p},x\partial_{x}-y\partial_{y}-2p\partial_{p},y\partial_{x}-p^{2}\partial_{p}\rangle. The evaluation map evo:𝔣ToM\operatorname{ev}_{o}:{\mathfrak{f}}\to T_{o}M is surjective except along the singular set Σ={y=px}\Sigma=\{y=px\}, so neighbourhoods of o1Σo_{1}\in\Sigma and o2Σo_{2}\not\in\Sigma (endowed with restricted geometric structures) are not locally equivalent. We have I1=72(pxy)I_{1}=72(px-y) and I2=0I_{2}=0, so κH\kappa_{H} vanishes along Σ\Sigma.

A priori, we cannot exclude the possibility of similar limiting singular behavior as in Example 1.5(ii) for submaximally symmetric structures occurring in geometries with rank(G)3\mathrm{rank}(G)\geq 3, so we always work near a point where κH\kappa_{H} is nonvanishing. Constraining ourselves to the hypotheses of Theorem 1.1 ultimately leads to a classification problem for homogeneous structures.

We note that Cartan reduction is a general method for classifying (homogeneous) geometric structures. (See for example [7] for a recent application.) While this is a powerful, systematic method, it is typically applied on a case-by-case basis, and for any given structure it takes a substantial amount of effort to set up the correct structure equations (via the Cartan equivalence method, for instance). Moreover, its implementation can be extremely cumbersome to do by-hand (often being done in a symbolic algebra system such as Maple or Mathematica), and normalizations generally proceed in an ad-hoc manner. In principle, it can be used to analyze submaximally symmetric structures, but in practice it is not a feasible method to arrive at the claimed generality of Theorem 1.1. Our approach will be to proceed in a uniform manner by taking the Cartan-geometric viewpoint as the basic input, and make efficient use of representation theory.

Let us briefly outline our article. In §2, we recall relevant background from parabolic geometries and our earlier work on symmetry gaps, and formulate the notion of an algebraic model (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}) encoding any homogeneous parabolic geometry. In §3, we recall Kostant’s theorem, define the canonical curved model, and formulate the algebraic model classification problem (Problem 3.3). We then solve it, first for (G2,P2)(G_{2},P_{2}) geometries (§3.2), and then the general rank(G)3\mathrm{rank}(G)\geq 3 case (§3.4). We conclude in §4 with concrete examples of submaximally symmetric structures, which are asserted to be unique (over {\mathbb{C}}) from Theorem 1.1.

Conventions: The base manifold MM is always assumed to be connected. We work in the smooth and holomorphic categories when referring to real and complex geometries, respectively. For simple roots, we use the same ordering as in LiE [19].

2. Parabolic geometries and algebraic models

We begin by reviewing background from parabolic geometries and symmetry gaps – see [6, 16] for more details.

2.1. Parabolic geometries

Let GG be a real or complex semisimple Lie group, PGP\subset G a parabolic subgroup, and 𝔭𝔤{\mathfrak{p}}\subset{\mathfrak{g}} be their Lie algebras. Then 𝔤{\mathfrak{g}} admits a natural PP-invariant (decreasing) filtration 𝔤=𝔤ν𝔤ν{\mathfrak{g}}={\mathfrak{g}}^{-\nu}\supset...\supset{\mathfrak{g}}^{\nu} (we put 𝔤i=𝔤{\mathfrak{g}}^{i}={\mathfrak{g}} for i<νi<-\nu, 𝔤i=0{\mathfrak{g}}^{i}=0 for i>νi>\nu), 𝔤1=𝔭+{\mathfrak{g}}^{1}={\mathfrak{p}}_{+} is the nilradical of 𝔤0=𝔭{\mathfrak{g}}^{0}={\mathfrak{p}}, and [𝔤i,𝔤j]𝔤i+j[{\mathfrak{g}}^{i},{\mathfrak{g}}^{j}]\subset{\mathfrak{g}}^{i+j} for all i,ji,j\in{\mathbb{Z}}. There always exists grading element 𝖹𝔤\mathsf{Z}\in{\mathfrak{g}} whose ad𝖹{\rm ad}_{\mathsf{Z}}-eigenvalues j\forall j\in{\mathbb{Z}} (degrees) and eigenspaces 𝔤j:={x𝔤:ad𝖹(x)=jx}{\mathfrak{g}}_{j}:=\{x\in{\mathfrak{g}}:{\rm ad}_{\mathsf{Z}}(x)=jx\} (j\forall j\in{\mathbb{Z}}) endow 𝔤{\mathfrak{g}} with the structure of a graded Lie algebra 𝔤=𝔤ν𝔤ν{\mathfrak{g}}={\mathfrak{g}}_{-\nu}\oplus\ldots\oplus{\mathfrak{g}}_{\nu} compatible with the filtration, i.e. [𝔤i,𝔤j]𝔤i+j[{\mathfrak{g}}_{i},{\mathfrak{g}}_{j}]\subset{\mathfrak{g}}_{i+j} and 𝔤ij=iν𝔤j{\mathfrak{g}}^{i}\cong\bigoplus_{j=i}^{\nu}{\mathfrak{g}}_{j}. The associated-graded Lie algebra gr(𝔤)\mathrm{gr}({\mathfrak{g}}) is defined by gri(𝔤):=𝔤i/𝔤i+1\mathrm{gr}_{i}({\mathfrak{g}}):={\mathfrak{g}}^{i}/{\mathfrak{g}}^{i+1}. Given 𝖹\mathsf{Z} as above, we identify gri(𝔤)𝔤i\mathrm{gr}_{i}({\mathfrak{g}})\cong{\mathfrak{g}}_{i} as 𝔤0{\mathfrak{g}}_{0}-modules, and if x𝔤ix\in{\mathfrak{g}}^{i}, we denote by gri(x)𝔤i\mathrm{gr}_{i}(x)\in{\mathfrak{g}}_{i} the projection to its leading part. We have 𝖹𝔷(𝔤0)\mathsf{Z}\in{\mathfrak{z}}({\mathfrak{g}}_{0}) (centre of 𝔤0{\mathfrak{g}}_{0}), 𝔭=𝔤0𝔭+{\mathfrak{p}}={\mathfrak{g}}_{0}\oplus{\mathfrak{p}}_{+}, and the Killing form on 𝔤{\mathfrak{g}} identifies (𝔤/𝔭)𝔭+({\mathfrak{g}}/{\mathfrak{p}})^{*}\cong{\mathfrak{p}}_{+} as PP-modules. Finally, letting G0={gP:Adg(𝔤i)𝔤i,i}G_{0}=\{g\in P:{\rm Ad}_{g}({\mathfrak{g}}_{i})\subset{\mathfrak{g}}_{i},\,\forall i\} be the Levi subgroup (with Lie algebra 𝔤0{\mathfrak{g}}_{0}), and P+=exp(𝔭+)PP_{+}=\exp({\mathfrak{p}}_{+})\leq P, we have PG0P+P\cong G_{0}\ltimes P_{+}.

A parabolic geometry is a Cartan geometry (𝒢M,ω)({\mathcal{G}}\to M,\omega) of type (G,P)(G,P), i.e. a (right) principal PP-bundle 𝒢M{\mathcal{G}}\to M with a Cartan connection ωΩ1(𝒢,𝔤)\omega\in\Omega^{1}({\mathcal{G}},{\mathfrak{g}}):

  1. (i)

    ωu:Tu𝒢𝔤\omega_{u}:T_{u}{\mathcal{G}}\to{\mathfrak{g}} is a linear isomorphism u𝒢\forall u\in{\mathcal{G}};

  2. (ii)

    ω\omega is PP-equivariant: Rpω=Adp1ωR_{p}^{*}\omega={\rm Ad}_{p^{-1}}\circ\omega, pP\forall p\in P;

  3. (iii)

    ω(ζA)=A\omega(\zeta_{A})=A, A𝔭\forall A\in{\mathfrak{p}}, where ζA\zeta_{A} is the fundamental vertical vector field corresponding to AA.

The curvature of ω\omega is K=dω+12[ω,ω]Ω2(𝒢,𝔤)K=d\omega+\frac{1}{2}[\omega,\omega]\in\Omega^{2}({\mathcal{G}},{\mathfrak{g}}) (which is PP-equivariant and horizontal, i.e. K(ζA,)=0K(\zeta_{A},\cdot)=0), or equivalently we have the curvature function κ:𝒢2(𝔤/𝔭)𝔤\kappa:{\mathcal{G}}\to\bigwedge^{2}({\mathfrak{g}}/{\mathfrak{p}})^{*}\otimes{\mathfrak{g}} given by κ(x,y)=K(ω1(x),ω1(y))\kappa(x,y)=K(\omega^{-1}(x),\omega^{-1}(y)). The geometry is flat if K=0K=0, which characterizes local equivalence to the flat model (GG/P,ωG)(G\to G/P,\omega_{G}), where ωG\omega_{G} is the (left-invariant) Maurer–Cartan form on GG. Via the Killing form, the codomain of κ\kappa identifies (as a PP-module) with C2(𝔭+,𝔤):=2𝔭+𝔤C_{2}({\mathfrak{p}}_{+},{\mathfrak{g}}):=\bigwedge^{2}{\mathfrak{p}}_{+}\otimes{\mathfrak{g}}. These are 2-chains in the complex (C(𝔭+,𝔤),)(C_{\bullet}({\mathfrak{p}}_{+},{\mathfrak{g}}),\partial^{*}) with \partial^{*} the Lie algebra homology differential. We say that (𝒢M,ω)({\mathcal{G}}\to M,\omega) is normal if κ=0\partial^{*}\kappa=0 and it is regular if κ(𝔤i,𝔤j)𝔤i+j+1\kappa({\mathfrak{g}}^{i},{\mathfrak{g}}^{j})\subset{\mathfrak{g}}^{i+j+1} for any i,ji,j. Equivalently, if we naturally extend the filtration on 𝔤{\mathfrak{g}} to a filtration on 2𝔭+𝔤\bigwedge^{2}{\mathfrak{p}}_{+}\otimes{\mathfrak{g}}, then we have κker()1\kappa\in\ker(\partial^{*})^{1}. This is the subspace of ker()2𝔭+𝔤\ker(\partial^{*})\subset\bigwedge^{2}{\mathfrak{p}}_{+}\otimes{\mathfrak{g}} on which 𝖹\mathsf{Z} acts with positive eigenvalues (degrees). There is a well-known equivalence of categories between regular, normal parabolic geometries and underlying geometric structures on MM (see [6] for details).

For any regular, normal parabolic geometry, a key invariant is its harmonic curvature κH:𝒢H2(𝔭+,𝔤):=ker()im()\kappa_{H}:{\mathcal{G}}\to H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}}):=\frac{\ker(\partial^{*})}{\mathrm{im}(\partial^{*})}, given by κH=κmodim()\kappa_{H}=\kappa\,\,\,{\rm mod}\ \mathrm{im}(\partial^{*}), and this PP-equivariant function is a complete obstruction to flatness. Moreover, H2(𝔭+,𝔤)H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}}) is a completely reducible 𝔭{\mathfrak{p}}-representation, i.e. 𝔭+{\mathfrak{p}}_{+}-acts trivially. As 𝔤0{\mathfrak{g}}_{0}-modules, 𝔤/𝔭𝔤{\mathfrak{g}}/{\mathfrak{p}}\cong{\mathfrak{g}}_{-}, and Ck(𝔤,𝔤):=k𝔤𝔤C^{k}({\mathfrak{g}}_{-},{\mathfrak{g}}):=\bigwedge^{k}{\mathfrak{g}}_{-}^{*}\otimes{\mathfrak{g}} yields a complex (C(𝔤,𝔤),)(C^{\bullet}({\mathfrak{g}}_{-},{\mathfrak{g}}),\partial) with respect to the standard Lie algebra cohomology differential \partial, for which we have the (𝔤0{\mathfrak{g}}_{0}-invariant) algebraic Hodge decomposition:

Ck(𝔤,𝔤)im()ker()im(),\displaystyle C^{k}({\mathfrak{g}}_{-},{\mathfrak{g}})\cong\mathrm{im}(\partial)\oplus\ker(\Box)\oplus\mathrm{im}(\partial^{*}), (2.1)

where =+\Box=\partial\partial^{*}+\partial^{*}\partial is the (𝔤0{\mathfrak{g}}_{0}-equivariant) algebraic Laplacian, with ker()=ker()ker()\ker(\Box)=\ker(\partial)\cap\ker(\partial^{*}). Then H2(𝔭+,𝔤)=ker()im()ker()ker()im()H2(𝔤,𝔤)H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}})=\frac{\ker(\partial^{*})}{\mathrm{im}(\partial^{*})}\cong\ker(\Box)\cong\frac{\ker(\partial)}{\mathrm{im}(\partial)}\cong H^{2}({\mathfrak{g}}_{-},{\mathfrak{g}}) as 𝔤0{\mathfrak{g}}_{0}-modules, which may be efficiently computed via Kostant’s theorem (§3.1). By regularity, κH\kappa_{H} has image in the subspace H2(𝔭+,𝔤)1H2(𝔭+,𝔤)H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}})^{1}\subseteq H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}}) on which 𝖹\mathsf{Z} acts with positive eigenvalues. This corresponds to some 𝔤0{\mathfrak{g}}_{0}-submodule H+2(𝔤,𝔤)H2(𝔤,𝔤)H^{2}_{+}({\mathfrak{g}}_{-},{\mathfrak{g}})\subseteq H^{2}({\mathfrak{g}}_{-},{\mathfrak{g}}) under the above identification.

Finally, by [6, Thm.3.1.12], if κ\kappa has lowest non-trivial degree s>0s>0, then its leading part grs(κ)\mathrm{gr}_{s}(\kappa) is harmonic and coincides with the degree ss component of κH0\kappa_{H}\neq 0. In particular, κH\kappa_{H} being a complete obstruction to flatness follows from this.

2.2. Symmetry and Tanaka prolongation

Two (regular, normal) parabolic geometries of type (G,P)(G,P) are equivalent if there is a principal bundle isomorphism that pulls back one Cartan connection to the other, and an automorphism is a self-equivalence. A Cartan geometry (𝒢πM,ω)({\mathcal{G}}\stackrel{{\scriptstyle\pi}}{{\to}}M,\omega) is (locally) homogeneous if there is a Lie group acting by (local) automorphisms whose projection to MM yields a (locally) transitive action on MM. Infinitesimally, the symmetry algebra is

𝔦𝔫𝔣(𝒢,ω)={ξ𝔛(𝒢)P:ξω=0},\displaystyle\mathfrak{inf}({\mathcal{G}},\omega)=\{\xi\in{\mathfrak{X}}({\mathcal{G}})^{P}:{\mathcal{L}}_{\xi}\omega=0\}, (2.2)

where 𝔛(𝒢)P{\mathfrak{X}}({\mathcal{G}})^{P} are the PP-invariant vector fields on 𝒢{\mathcal{G}}.

Let us now summarize how to equivalently view 𝔦𝔫𝔣(𝒢,ω)\mathfrak{inf}({\mathcal{G}},\omega) in a more algebraic manner [2, 5, 16]. Fix any u𝒢u\in{\mathcal{G}}. Then ωu:Tu𝒢𝔤\omega_{u}:T_{u}{\mathcal{G}}\to{\mathfrak{g}} restricts to a linear injection on inf(𝒢,ω)\inf({\mathcal{G}},\omega). Letting 𝔣=𝔣(u):=ωu(inf(𝒢,ω)){\mathfrak{f}}={\mathfrak{f}}(u):=\omega_{u}(\inf({\mathcal{G}},\omega)), the Lie bracket on inf(𝒢,ω)\inf({\mathcal{G}},\omega) transfers to the bracket on 𝔣{\mathfrak{f}} given by

[x,y]𝔣=[x,y]κu(x,y),x,y𝔣.\displaystyle[x,y]_{\mathfrak{f}}=[x,y]-\kappa_{u}(x,y),\quad\forall x,y\in{\mathfrak{f}}. (2.3)

The PP-invariant filtration on 𝔤{\mathfrak{g}} induces a filtration on 𝔣{\mathfrak{f}} via 𝔣i:=𝔣𝔤i{\mathfrak{f}}^{i}:={\mathfrak{f}}\cap{\mathfrak{g}}^{i}. By regularity, κ(𝔤i,𝔤j)𝔤i+j+1\kappa({\mathfrak{g}}^{i},{\mathfrak{g}}^{j})\subset{\mathfrak{g}}^{i+j+1}, so [𝔣i,𝔣j]𝔣𝔣𝔤i+j=𝔣i+j[{\mathfrak{f}}^{i},{\mathfrak{f}}^{j}]_{\mathfrak{f}}\subset{\mathfrak{f}}\cap{\mathfrak{g}}^{i+j}={\mathfrak{f}}^{i+j}, and (𝔣,[,]𝔣)({\mathfrak{f}},[\cdot,\cdot]_{\mathfrak{f}}) becomes a filtered Lie algebra (generally not a Lie subalgebra of 𝔤{\mathfrak{g}}). By regularity, the associated-graded 𝔰:=gr(𝔣){\mathfrak{s}}:=\mathrm{gr}({\mathfrak{f}}), defined by 𝔰i:=𝔣i/𝔣i+1{\mathfrak{s}}_{i}:={\mathfrak{f}}^{i}/{\mathfrak{f}}^{i+1} is identified as a graded subalgebra of 𝔤{\mathfrak{g}} (via 𝔰i𝔣i/𝔤i+1𝔤i/𝔤i+1𝔤i{\mathfrak{s}}_{i}\hookrightarrow{\mathfrak{f}}^{i}/{\mathfrak{g}}^{i+1}\subseteq{\mathfrak{g}}^{i}/{\mathfrak{g}}^{i+1}\cong{\mathfrak{g}}_{i}). The filtrand 𝔣0𝔤0=𝔭{\mathfrak{f}}^{0}\subseteq{\mathfrak{g}}^{0}={\mathfrak{p}} satisfies the important algebraic condition 𝔣0κ=0{\mathfrak{f}}^{0}\cdot\kappa=0, which implies 𝔣0κH=0{\mathfrak{f}}^{0}\cdot\kappa_{H}=0. Since 𝔭+{\mathfrak{p}}_{+} acts trivially on H2(𝔭+,𝔤)H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}}), then 𝔣1κH=0{\mathfrak{f}}^{1}\cdot\kappa_{H}=0 always, so 𝔰0κH=0{\mathfrak{s}}_{0}\cdot\kappa_{H}=0, i.e. 𝔰0{\mathfrak{s}}_{0} is contained in the annihilator 𝔞0:=𝔞𝔫𝔫(κH(u))𝔤0{\mathfrak{a}}_{0}:=\mathfrak{ann}(\kappa_{H}(u))\subseteq{\mathfrak{g}}_{0}.

Now define the following (extrinsic) Tanaka prolongation algebra 𝔞ϕ{\mathfrak{a}}^{\phi} as in [16]:

Definition 2.1 (Extrinsic Tanaka prolongation).

Let 𝔞0𝔤0{\mathfrak{a}}_{0}\subseteq{\mathfrak{g}}_{0} be a Lie subalgebra. Extend this to a {\mathbb{Z}}-graded Lie subalgebra 𝔞𝔤{\mathfrak{a}}\subseteq{\mathfrak{g}} by defining 𝔞=𝔤{\mathfrak{a}}_{-}={\mathfrak{g}}_{-} and 𝔞k={X𝔤k:[X,𝔤1]𝔞k1}{\mathfrak{a}}_{k}=\{X\in{\mathfrak{g}}_{k}:[X,{\mathfrak{g}}_{-1}]\subseteq{\mathfrak{a}}_{k-1}\} for k>0k>0. Denote 𝔞=k𝔞k{\mathfrak{a}}=\bigoplus_{k}{\mathfrak{a}}_{k} by pr𝔤(𝔤,𝔞0)\mathrm{pr}^{\mathfrak{g}}({\mathfrak{g}}_{-},{\mathfrak{a}}_{0}). When ϕ\phi lies in some 𝔤0{\mathfrak{g}}_{0}-representation, we write 𝔞ϕ:=pr𝔤(𝔤,𝔞𝔫𝔫(ϕ)){\mathfrak{a}}^{\phi}:=\mathrm{pr}^{\mathfrak{g}}({\mathfrak{g}}_{-},\mathfrak{ann}(\phi)).

The constraint 𝔰0𝔞0{\mathfrak{s}}_{0}\subseteq{\mathfrak{a}}_{0} propagates via Tanaka prolongation to the higher levels. More precisely, the following important inclusion holds:

𝔰(u)𝔞κH(u),u𝒢.\displaystyle{\mathfrak{s}}(u)\subseteq{\mathfrak{a}}^{\kappa_{H}(u)},\quad\forall u\in{\mathcal{G}}. (2.4)

Otherwise put, the symmetry algebra 𝔣{\mathfrak{f}} is a constrained filtered sub-deformation of 𝔞κH{\mathfrak{a}}^{\kappa_{H}}, i.e.

  1. (i)

    𝔣{\mathfrak{f}} is a filtered deformation of the graded subspace 𝔰(u)𝔞κH(u){\mathfrak{s}}(u)\subseteq{\mathfrak{a}}^{\kappa_{H}(u)}, and

  2. (ii)

    𝔣{\mathfrak{f}} is constrained: e.g. it is a filtered subspace of 𝔤{\mathfrak{g}} and satisfies (2.3) for some κ\kappa.

The inclusion (2.4) was established in [16, Thm.2.4.6] on the open dense set of so-called regular points, i.e. those u𝒢u\in{\mathcal{G}} on which dim𝔰i(u){\rm dim}\,{\mathfrak{s}}_{i}(u) are locally constant functions i\forall i, and was generalized to all points in [17, Thm.3.3]. If the given geometry is not flat, then κH(u)0\kappa_{H}(u)\neq 0 at some u𝒢u\in{\mathcal{G}}, so 𝖹𝔞𝔫𝔫(κH(u))\mathsf{Z}\not\in\mathfrak{ann}(\kappa_{H}(u)) by the regularity assumption on κ\kappa, and hence dim(inf(𝒢,ω))=dim(𝔰)<dim(𝔤){\rm dim}(\inf({\mathcal{G}},\omega))={\rm dim}({\mathfrak{s}})<{\rm dim}({\mathfrak{g}}). Thus, the flat model is locally the unique maximally symmetric geometry. Defining

𝔖\displaystyle{\mathfrak{S}} :=max{dim(inf(𝒢,ω)):(𝒢M,ω) regular, normal of type (G,P) and κH0},\displaystyle:=\max\{{\rm dim}(\inf({\mathcal{G}},\omega)):({\mathcal{G}}\to M,\omega)\mbox{ regular, normal of type $(G,P)$ and }\kappa_{H}\not\equiv 0\}, (2.5)
𝔘\displaystyle{\mathfrak{U}} :=max{dim(𝔞ϕ):0ϕH+2(𝔤,𝔤)},\displaystyle:=\max\{{\rm dim}({\mathfrak{a}}^{\phi}):0\neq\phi\in H^{2}_{+}({\mathfrak{g}}_{-},{\mathfrak{g}})\}, (2.6)

equation (2.4) immediately implies

𝔖𝔘<dim(𝔤).\displaystyle{\mathfrak{S}}\leq{\mathfrak{U}}<{\rm dim}({\mathfrak{g}}). (2.7)

A (regular, normal) geometry with dim(inf(𝒢,ω))=𝔖{\rm dim}(\inf({\mathcal{G}},\omega))={\mathfrak{S}} is submaximally symmetric. A priori, it should not be assumed that these are locally homogeneous, particularly if 𝔖<𝔘{\mathfrak{S}}<{\mathfrak{U}}.

Definition 2.2.

Let 𝒪H2(𝔭+,𝔤)1{\mathcal{O}}\subseteq H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}})^{1} be a G0G_{0}-invariant subset. Let

𝔖𝒪\displaystyle{\mathfrak{S}}_{\mathcal{O}} :=max{dim(inf(𝒢,ω)):(𝒢M,ω) regular, normal of type (G,P)im(κH)𝒪,κH0},\displaystyle:=\max\{{\rm dim}(\inf({\mathcal{G}},\omega)):({\mathcal{G}}\to M,\omega)\mbox{ regular, normal of type $(G,P)$, }\mathrm{im}(\kappa_{H})\subseteq{\mathcal{O}},\,\kappa_{H}\not\equiv 0\},
𝔘𝒪\displaystyle{\mathfrak{U}}_{\mathcal{O}} :=max{dim(𝔞ϕ):0ϕ𝒪}.\displaystyle:=\max\{{\rm dim}({\mathfrak{a}}^{\phi}):0\neq\phi\in{\mathcal{O}}\}.
Lemma 2.3.

For regular, normal parabolic geometries of type (G,P)(G,P), and 𝒪H2(𝔭+,𝔤)1{\mathcal{O}}\subseteq H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}})^{1} a G0G_{0}-invariant subset, suppose that 𝔖𝒪=𝔘𝒪{\mathfrak{S}}_{\mathcal{O}}={\mathfrak{U}}_{\mathcal{O}}. Then any (𝒢M,ω)({\mathcal{G}}\to M,\omega) with im(κH)𝒪\mathrm{im}(\kappa_{H})\subseteq{\mathcal{O}} and dim(inf(𝒢,ω))=𝔘𝒪{\rm dim}(\inf({\mathcal{G}},\omega))={\mathfrak{U}}_{\mathcal{O}} is locally homogeneous near any u𝒢u\in{\mathcal{G}} with κH(u)0\kappa_{H}(u)\neq 0.

Proof.

Fix u𝒢u\in{\mathcal{G}} with κH(u)0\kappa_{H}(u)\neq 0. By (2.4), dim(𝔰(u))=dim(𝔞κH(u))𝔘𝒪{\rm dim}({\mathfrak{s}}(u))={\rm dim}({\mathfrak{a}}^{\kappa_{H}(u)})\leq{\mathfrak{U}}_{\mathcal{O}}. By hypothesis, dim(𝔰(u))=dim(inf(𝒢,ω))=𝔘𝒪{\rm dim}({\mathfrak{s}}(u))={\rm dim}(\inf({\mathcal{G}},\omega))={\mathfrak{U}}_{\mathcal{O}}, so (2.4) implies 𝔰(u)=𝔞κH(u){\mathfrak{s}}(u)={\mathfrak{a}}^{\kappa_{H}(u)}. Hence, 𝔰(u)=𝔤{\mathfrak{s}}_{-}(u)={\mathfrak{g}}_{-}, which implies local homogeneity by Lie’s third theorem. ∎

2.3. Homogeneous parabolic geometries

Let (𝒢M,ω)({\mathcal{G}}\to M,\omega) be homogeneous with respect to the Lie group FF. Fix u𝒢u\in{\mathcal{G}}, and let F0FF^{0}\subset F be the stabilizer of o=π(u)Mo=\pi(u)\in M. Given any f0F0f_{0}\in F^{0}, we have f0u=uι(f0)f_{0}\cdot u=u\cdot\iota(f_{0}) for some Lie group homomorphism ι:F0P\iota:F^{0}\to P. This defines a right F0F^{0}-action on F×PF\times P via (f,p)f0=(ff0,ι(f01)p)(f,p)\cdot f_{0}=(ff_{0},\iota(f_{0}^{-1})p) and we let F×F0PF\times_{F^{0}}P be the collection of all F0F^{0}-orbits (f,p)¯\overline{(f,p)}. Letting 𝔣{\mathfrak{f}} and 𝔣0{\mathfrak{f}}^{0} be the Lie algebras of FF and F0F^{0} respectively, we have [6, Prop.1.5.15]:

  1. (1)

    𝒢M{\mathcal{G}}\to M is equivalent to the associated bundle F×F0PF/F0F\times_{F^{0}}P\to F/F^{0}.

  2. (2)

    Any FF-invariant Cartan connection ωΩ1(F×F0P,𝔤)\omega\in\Omega^{1}(F\times_{F^{0}}P,{\mathfrak{g}}) of type (𝔤,P)({\mathfrak{g}},P) is completely determined by the following:

Definition 2.4.

An algebraic Cartan connection of type (𝔤,P)({\mathfrak{g}},P) on (𝔣,F0)({\mathfrak{f}},F^{0}) is a linear map ϖ:𝔣𝔤\varpi:{\mathfrak{f}}\to{\mathfrak{g}} with:

  1. (C1)

    ϖ|𝔣0=ι\varpi|_{{\mathfrak{f}}^{0}}=\iota^{\prime}, where ι:𝔣0𝔭\iota^{\prime}:{\mathfrak{f}}^{0}\to{\mathfrak{p}} is the differential of ι:F0P\iota:F^{0}\to P.

  2. (C2)

    Adι(f)ϖ=ϖAdf{\rm Ad}_{\iota(f)}\circ\varpi=\varpi\circ{\rm Ad}_{f}, fF0\forall f\in F^{0}. Infinitesimally:

    [ϖ(x),ϖ(y)]=ϖ([x,y]𝔣),x𝔣0,y𝔣,\displaystyle[\varpi(x),\varpi(y)]=\varpi([x,y]_{\mathfrak{f}}),\quad\forall x\in{\mathfrak{f}}^{0},\quad\forall y\in{\mathfrak{f}}, (C2’)

    where [,]𝔣[\cdot,\cdot]_{\mathfrak{f}} and [,][\cdot,\cdot] are the Lie brackets on 𝔣{\mathfrak{f}} and 𝔤{\mathfrak{g}} respectively. If F0F^{0} is connected, then (C2)({\rm C}2) and (C2’) are equivalent.

  3. (C3)

    ϖ\varpi induces a vector space isomorphism 𝔣/𝔣0𝔤/𝔭{\mathfrak{f}}/{\mathfrak{f}}^{0}\cong{\mathfrak{g}}/{\mathfrak{p}}.

Indeed, given ϖ\varpi as above, we obtain ω\omega by factoring ω^1Ω1(F×P,𝔤)\hat{\omega}^{1}\in\Omega^{1}(F\times P,{\mathfrak{g}}) given by

ω^(f,p)(X,Y)=Adp1ϖ(X)+Y,(X,Y)TfF×TpP.\displaystyle\hat{\omega}_{(f,p)}(X,Y)={\rm Ad}_{p^{-1}}\varpi(X)+Y,\quad(X,Y)\in T_{f}F\times T_{p}P.

The basepoint change ufuu\mapsto f\cdot u leaves (ι,ϖ)(\iota,\varpi) unchanged, but a fibrewise change uupu\mapsto u\cdot p induces (ι,ϖ)(Adp1ι,Adp1ϖ)(\iota,\varpi)\mapsto({\rm Ad}_{p^{-1}}\circ\iota,{\rm Ad}_{p^{-1}}\circ\varpi).

Define κ~(x,y):=[ϖ(x),ϖ(y)]ϖ([x,y]𝔣)\tilde{\kappa}(x,y):=[\varpi(x),\varpi(y)]-\varpi([x,y]_{\mathfrak{f}}), so κ~2(𝔣/𝔣0)𝔤\tilde{\kappa}\in\bigwedge^{2}({\mathfrak{f}}/{\mathfrak{f}}^{0})^{*}\otimes{\mathfrak{g}} by (C2’). The curvature of ω\omega corresponds to κ2(𝔤/𝔭)𝔤\kappa\in\bigwedge^{2}({\mathfrak{g}}/{\mathfrak{p}})^{*}\otimes{\mathfrak{g}} given by κ(x,y)=κ~(ϖ1(x),ϖ1(y))\kappa(x,y)=\tilde{\kappa}(\varpi^{-1}(x),\varpi^{-1}(y)). The notions of regularity and normality of κ\kappa are immediately specialized to this algebraic setting, as is the quotient object κH=κmodim()H2(𝔭+,𝔤)1\kappa_{H}=\kappa\,\,{\rm mod}\ \mathrm{im}(\partial^{*})\in H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}})^{1}.

2.4. Algebraic models

Note that (C3)({\rm C}3) and (C2’) forces ker(ϖ)𝔣0\ker(\varpi)\subset{\mathfrak{f}}^{0} to be an ideal in 𝔣{\mathfrak{f}}. The FF-action on F/F0F/F^{0} can always assumed to be infinitesimally effective, i.e. 𝔣0{\mathfrak{f}}^{0} does not contain any non-trivial ideals of 𝔣{\mathfrak{f}} (hence, ker(ϖ)=0\ker(\varpi)=0). (Otherwise, we may without loss of generality quotient both FF and F0F^{0} by the corresponding normal subgroup.) Consequently, we assume that ϖ:𝔣𝔤\varpi:{\mathfrak{f}}\to{\mathfrak{g}} is injective and identify 𝔣{\mathfrak{f}} with its image in 𝔤{\mathfrak{g}}. This motivates the following definition.

Definition 2.5.

An algebraic model (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}) is a Lie algebra (𝔣,[,]𝔣)({\mathfrak{f}},[\cdot,\cdot]_{\mathfrak{f}}) such that:

  1. (M1)

    𝔣𝔤{\mathfrak{f}}\subseteq{\mathfrak{g}} is a vector subspace with inherited filtration 𝔣i:=𝔣𝔤i{\mathfrak{f}}^{i}:={\mathfrak{f}}\cap{\mathfrak{g}}^{i} such that 𝔰=gr(𝔣){\mathfrak{s}}=\mathrm{gr}({\mathfrak{f}}) satisfies 𝔰=𝔤{\mathfrak{s}}_{-}={\mathfrak{g}}_{-}.

  2. (M2)

    𝔣0{\mathfrak{f}}^{0} inserts trivially into κ~(x,y)=[x,y][x,y]𝔣\tilde{\kappa}(x,y)=[x,y]-[x,y]_{\mathfrak{f}}, so identify κ~2(𝔣/𝔣0)𝔤\tilde{\kappa}\in\bigwedge^{2}({\mathfrak{f}}/{\mathfrak{f}}^{0})^{*}\otimes{\mathfrak{g}} with κ2(𝔤/𝔭)𝔤\kappa\in\bigwedge^{2}({\mathfrak{g}}/{\mathfrak{p}})^{*}\otimes{\mathfrak{g}}.

  3. (M3)

    κ\kappa is regular and normal, i.e. κker()1\kappa\in\ker(\partial^{*})^{1}.

The result below immediately follows from the general theory recalled in §2.2, but it is instructive to give proofs directly following from Definition 2.5 above.

Proposition 2.6.

Let (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}) be an algebraic model. Then

  1. (1)

    (𝔣,[,]𝔣)({\mathfrak{f}},[\cdot,\cdot]_{\mathfrak{f}}) is a filtered Lie algebra. (In general, 𝔣{\mathfrak{f}} is not a Lie subalgebra of 𝔤{\mathfrak{g}}.)

  2. (2)

    𝔣0κ=0{\mathfrak{f}}^{0}\cdot\kappa=0, i.e. [z,κ(x,y)]κ([z,x],y)κ(x,[z,y])=0[z,\kappa(x,y)]-\kappa([z,x],y)-\kappa(x,[z,y])=0, x,y𝔣\forall x,y\in{\mathfrak{f}} and z𝔣0\forall z\in{\mathfrak{f}}^{0}.

  3. (3)

    𝔰𝔞κH{\mathfrak{s}}\subseteq{\mathfrak{a}}^{\kappa_{H}}, where κH:=κmodim()\kappa_{H}:=\kappa\,\,{\rm mod}\ \mathrm{im}(\partial^{*}).

Proof.

For (1), if x𝔣ix\in{\mathfrak{f}}^{i} and y𝔣jy\in{\mathfrak{f}}^{j}, then κ(x,y)𝔤i+j+1\kappa(x,y)\in{\mathfrak{g}}^{i+j+1} by regularity of κ\kappa, i.e. (M3), so (1) implies [x,y]𝔣𝔤i+j[x,y]_{\mathfrak{f}}\in{\mathfrak{g}}^{i+j}. But 𝔣{\mathfrak{f}} is a Lie algebra, so [x,y]𝔣𝔣𝔤i+j=𝔣i+j[x,y]_{\mathfrak{f}}\in{\mathfrak{f}}\cap{\mathfrak{g}}^{i+j}={\mathfrak{f}}^{i+j} and [𝔣i,𝔣j]𝔣𝔣i+j[{\mathfrak{f}}^{i},{\mathfrak{f}}^{j}]_{\mathfrak{f}}\subset{\mathfrak{f}}^{i+j}. For (2), we use the Jacobi identity and the fact that κ\kappa vanishes under 𝔣0{\mathfrak{f}}^{0}-insertions by (M2). Namely, let x,y𝔣x,y\in{\mathfrak{f}} and z𝔣0z\in{\mathfrak{f}}^{0}. Then

0\displaystyle 0 =[[x,y]𝔣,z]𝔣+[[y,z]𝔣,x]𝔣+[[z,x]𝔣,y]𝔣\displaystyle=[[x,y]_{\mathfrak{f}},z]_{\mathfrak{f}}+[[y,z]_{\mathfrak{f}},x]_{\mathfrak{f}}+[[z,x]_{\mathfrak{f}},y]_{\mathfrak{f}}
=[[x,y]κ(x,y),z]𝔣+[[y,z],x]𝔣+[[z,x],y]𝔣\displaystyle=[[x,y]-\kappa(x,y),z]_{\mathfrak{f}}+[[y,z],x]_{\mathfrak{f}}+[[z,x],y]_{\mathfrak{f}}
=[[x,y],z][κ(x,y),z]+[[y,z],x]κ([y,z],x)+[[z,x],y]κ([z,x],y)\displaystyle=[[x,y],z]-[\kappa(x,y),z]+[[y,z],x]-\kappa([y,z],x)+[[z,x],y]-\kappa([z,x],y)
=[z,κ(x,y)]κ([y,z],x)κ([z,x],y).\displaystyle=[z,\kappa(x,y)]-\kappa([y,z],x)-\kappa([z,x],y).

Finally, we prove (3). Since \partial^{*} is PP-equivariant and 𝔣0𝔭=𝔤0{\mathfrak{f}}^{0}\subseteq{\mathfrak{p}}={\mathfrak{g}}^{0}, then 𝔣0im()im(){\mathfrak{f}}^{0}\cdot\mathrm{im}(\partial^{*})\subseteq\mathrm{im}(\partial^{*}), so (2) implies 𝔣0κH=0{\mathfrak{f}}^{0}\cdot\kappa_{H}=0, which factors to 𝔰0κH=0{\mathfrak{s}}_{0}\cdot\kappa_{H}=0 by complete reducibility of H2(𝔭+,𝔤)H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}}). Letting 𝔞:=𝔞κH{\mathfrak{a}}:={\mathfrak{a}}^{\kappa_{H}}, this means 𝔰0𝔞0=𝔞𝔫𝔫(κH){\mathfrak{s}}_{0}\subseteq{\mathfrak{a}}_{0}=\mathfrak{ann}(\kappa_{H}). By regularity, 𝔰𝔤{\mathfrak{s}}\subseteq{\mathfrak{g}} is a graded Lie subalgebra, so for any k>0k>0, [𝔰k,𝔤1]=[𝔰k,𝔰1]𝔰k1[{\mathfrak{s}}_{k},{\mathfrak{g}}_{-1}]=[{\mathfrak{s}}_{k},{\mathfrak{s}}_{-1}]\subseteq{\mathfrak{s}}_{k-1}. Inductively, we have 𝔰k𝔞k{\mathfrak{s}}_{k}\subseteq{\mathfrak{a}}_{k} for all k>0k>0. ∎

Importantly, we note that the set of algebraic models of type (𝔤,𝔭)({\mathfrak{g}},{\mathfrak{p}}):

  • admits a PP-action via 𝔣Adp𝔣{\mathfrak{f}}\mapsto{\rm Ad}_{p}{\mathfrak{f}} for any pPp\in P. All algebraic models in the same PP-orbit are to be regarded as equivalent, so we must always account for this redundancy.

  • is partially ordered: declare that 𝔣𝔣{\mathfrak{f}}\leq{\mathfrak{f}}^{\prime} if and only if 𝔣{\mathfrak{f}} is a Lie subalgebra of 𝔣{\mathfrak{f}}^{\prime}. We will focus on maximal elements 𝔣{\mathfrak{f}}. (We view non-maximal elements as non-optimal descriptions of the same geometric structure.)

Remark 2.7.

Conversely, by [16, Lemma 4.1.4], to each algebraic model (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}), there exists a locally homogeneous geometry (𝒢M,ω)({\mathcal{G}}\to M,\omega) of type (G,P)(G,P) with inf(𝒢,ω)\inf({\mathcal{G}},\omega) containing a subalgebra isomorphic to 𝔣{\mathfrak{f}}. If 𝔣{\mathfrak{f}} is maximal with respect to the partial order defined above, then inf(𝒢,ω)𝔣\inf({\mathcal{G}},\omega)\cong{\mathfrak{f}}.

Since gr(𝔣)=𝔰\mathrm{gr}({\mathfrak{f}})={\mathfrak{s}}, we may view 𝔣𝔤{\mathfrak{f}}\subseteq{\mathfrak{g}} as a graph over 𝔰𝔤{\mathfrak{s}}\subseteq{\mathfrak{g}}. Namely, choosing some graded subspace 𝔰𝔤{\mathfrak{s}}^{\perp}\subseteq{\mathfrak{g}} so that 𝔤=𝔰𝔰{\mathfrak{g}}={\mathfrak{s}}\oplus{\mathfrak{s}}^{\perp} (in fact, 𝔰𝔭{\mathfrak{s}}^{\perp}\subseteq{\mathfrak{p}} since 𝔤𝔰{\mathfrak{g}}_{-}\subseteq{\mathfrak{s}} by hypothesis), we can write

𝔣=i=νν{x+𝔡(x):x𝔰i}\displaystyle{\mathfrak{f}}=\bigoplus_{i=-\nu}^{\nu}\{x+{\mathfrak{d}}(x):x\in{\mathfrak{s}}_{i}\} (2.8)

for some unique linear map 𝔡:𝔰𝔰{\mathfrak{d}}:{\mathfrak{s}}\to{\mathfrak{s}}^{\perp} of positive degree, i.e. if x𝔰ix\in{\mathfrak{s}}_{i}, then 𝔡(x)𝔰𝔤i+1{\mathfrak{d}}(x)\in{\mathfrak{s}}^{\perp}\cap{\mathfrak{g}}^{i+1}. We refer to 𝔡{\mathfrak{d}} as the deformation map and 𝔡(x){\mathfrak{d}}(x) as the tail of xx.

Lemma 2.8.

Let T𝔣0T\in{\mathfrak{f}}^{0} with 𝔰{\mathfrak{s}} and 𝔰{\mathfrak{s}}^{\perp} being adT{\rm ad}_{T}-invariant. Then T𝔡=0T\cdot{\mathfrak{d}}=0, i.e. adT𝔡=𝔡adT{\rm ad}_{T}\circ{\mathfrak{d}}={\mathfrak{d}}\circ{\rm ad}_{T}.

Proof.

Given x𝔰x\in{\mathfrak{s}}, we have x+𝔡(x)𝔣x+{\mathfrak{d}}(x)\in{\mathfrak{f}} and [T,x+𝔡(x)]𝔣𝔣[T,x+{\mathfrak{d}}(x)]_{\mathfrak{f}}\in{\mathfrak{f}}. By (M2), [T,x+𝔡(x)]𝔣=[T,x+𝔡(x)]=[T,x]+[T,𝔡(x)][T,x+{\mathfrak{d}}(x)]_{\mathfrak{f}}=[T,x+{\mathfrak{d}}(x)]=[T,x]+[T,{\mathfrak{d}}(x)]. But [T,x]𝔰[T,x]\in{\mathfrak{s}} and [T,𝔡(x)]𝔰𝔤i+1[T,{\mathfrak{d}}(x)]\in{\mathfrak{s}}^{\perp}\cap{\mathfrak{g}}^{i+1} since 𝔡{\mathfrak{d}} has positive degree, so by uniqueness of 𝔡{\mathfrak{d}}, we have [T,𝔡(x)]=𝔡([T,x])[T,{\mathfrak{d}}(x)]={\mathfrak{d}}([T,x]). ∎

3. The canonical curved model and local uniqueness

We focus on proving Theorem 1.1 in the complex case. The arguments in the split-real case are almost exactly the same, and potentially differ only in the final step of §3.4. This is described at the end of §3.

3.1. Kostant’s theorem and the canonical curved model

Let GG be a complex semisimple Lie group, 𝔥𝔤{\mathfrak{h}}\subset{\mathfrak{g}} a Cartan subalgebra with :=dim(𝔥)=rank(𝔤)\ell:={\rm dim}({\mathfrak{h}})=\mathrm{rank}({\mathfrak{g}}), Δ𝔥\Delta\subset{\mathfrak{h}}^{*} the associated root system, 𝔤α{\mathfrak{g}}_{\alpha} the root space for αΔ\alpha\in\Delta, Δ+Δ\Delta^{+}\subset\Delta the positive roots relative to a choice of simple root system {αi}i=1\{\alpha_{i}\}_{i=1}^{\ell}, and {𝖹i}i=1𝔥\{\mathsf{Z}_{i}\}_{i=1}^{\ell}\subset{\mathfrak{h}} its dual basis, i.e. 𝖹i(αj)=αj(𝖹i)=δij\mathsf{Z}_{i}(\alpha_{j})=\alpha_{j}(\mathsf{Z}_{i})=\delta_{ij}. If 𝔨𝔤{\mathfrak{k}}\subseteq{\mathfrak{g}} is an 𝔥{\mathfrak{h}}-invariant subspace, we write Δ(𝔨):={αΔ:𝔤α𝔨}\Delta({\mathfrak{k}}):=\{\alpha\in\Delta:{\mathfrak{g}}_{\alpha}\subseteq{\mathfrak{k}}\}, and Δ+(𝔨):=Δ(𝔨)Δ+\Delta^{+}({\mathfrak{k}}):=\Delta({\mathfrak{k}})\cap\Delta^{+}. A parabolic subgroup PGP\subset G with Lie algebra 𝔭𝔤{\mathfrak{p}}\subset{\mathfrak{g}} is encoded by a subset I𝔭{1,,}I_{\mathfrak{p}}\subseteq\{1,\ldots,\ell\}, with associated grading element 𝖹:=iI𝔭𝖹i\mathsf{Z}:=\sum_{i\in I_{\mathfrak{p}}}\mathsf{Z}_{i}, and 𝔭=𝔤0=i0𝔤i{\mathfrak{p}}={\mathfrak{g}}_{\geq 0}=\bigoplus_{i\geq 0}{\mathfrak{g}}_{i} relative to it. On the Dynkin diagram of 𝔤{\mathfrak{g}}, we put crosses at nodes corresponding to I𝔭I_{\mathfrak{p}}, and refer to PP using subscripts, e.g. if I𝔭={i,j}I_{\mathfrak{p}}=\{i,j\}, then P=Pi,jP=P_{i,j}, etc. (In our convention, the Borel subalgebra has crosses on all Dynkin diagram nodes.)

The Killing form of 𝔤{\mathfrak{g}} induces a non-degenerate pairing ,\langle\cdot,\cdot\rangle on 𝔥{\mathfrak{h}}^{*}. Letting α:=2αα,α\alpha^{\vee}:=\frac{2\alpha}{\langle\alpha,\alpha\rangle} be the coroot of αΔ\alpha\in\Delta, we have the Cartan matrix c=(cij)c=(c_{ij}) with cij:=αi,αjc_{ij}:=\langle\alpha_{i},\alpha_{j}^{\vee}\rangle. The fundamental weights {λj}j=1\{\lambda_{j}\}_{j=1}^{\ell} are defined by λi,αj=δij\langle\lambda_{i},\alpha_{j}^{\vee}\rangle=\delta_{ij}, and these satisfy αi=j=1cijλj\alpha_{i}=\sum_{j=1}^{\ell}c_{ij}\lambda_{j}. Corresponding to αj\alpha_{j} is the simple reflection σj\sigma_{j} defined by σj(x)=xx,αjαj\sigma_{j}(x)=x-\langle x,\alpha_{j}^{\vee}\rangle\alpha_{j}, and the Weyl group WW is the group generated by all simple reflections.

Kostant’s theorem [11] yields an efficient 𝔤0{\mathfrak{g}}_{0}-module description of H2(𝔭+,𝔤)H2(𝔤,𝔤)H_{2}({\mathfrak{p}}_{+},{\mathfrak{g}})\cong H^{2}({\mathfrak{g}}_{-},{\mathfrak{g}}): it is the direct sum of 𝔤0{\mathfrak{g}}_{0}-irreps 𝕍μ{\mathbb{V}}_{\mu}, each of multiplicity one, and having lowest weight μ=wλ\mu=-w\bullet\lambda, where:

  1. (1)

    λ\lambda is the highest weight of a simple ideal of 𝔤{\mathfrak{g}};

  2. (2)

    w=(jk):=σjσkW𝔭(2)w=(jk):=\sigma_{j}\circ\sigma_{k}\in W^{\mathfrak{p}}(2) is a length 2 word of the Hasse diagram W𝔭WW^{\mathfrak{p}}\subset W. Concretely for our purposes here, this is equivalent to: jI𝔭j\in I_{\mathfrak{p}} and either: (i) kI𝔭k\in I_{\mathfrak{p}}, or (ii) cjk<0c_{jk}<0.

  3. (3)

    \bullet refers to the affine action of WW on weights: letting ρ:=i=1λi\rho:=\sum_{i=1}^{\ell}\lambda_{i}, we have

    μ\displaystyle\mu =wλ=w(λ+ρ)+ρ=w0+w(λ).\displaystyle=-w\bullet\lambda=-w(\lambda+\rho)+\rho=-w\bullet 0+w(-\lambda). (3.1)

Via the 𝔤0{\mathfrak{g}}_{0}-module isomorphism H2(𝔤,𝔤)ker()H^{2}({\mathfrak{g}}_{-},{\mathfrak{g}})\cong\ker(\Box) from (2.1), a representative lowest weight vector ϕ0𝕍μker()2(𝔤)𝔤2𝔭+𝔤\phi_{0}\in{\mathbb{V}}_{\mu}\subset\ker(\Box)\subset\bigwedge^{2}({\mathfrak{g}}_{-})^{*}\otimes{\mathfrak{g}}\cong\bigwedge^{2}{\mathfrak{p}}_{+}\otimes{\mathfrak{g}} is given in terms of root vectors eγe_{\gamma} by:

ϕ0:=eαjeσj(αk)ew(λ).\displaystyle\phi_{0}:=e_{\alpha_{j}}\wedge e_{\sigma_{j}(\alpha_{k})}\otimes e_{w(-\lambda)}. (3.2)

To interpret ϕ0\phi_{0} as a 2-cochain, we identify eαje_{\alpha_{j}} and eσj(αk)e_{\sigma_{j}(\alpha_{k})} as the dual elements (eαj)(e_{-\alpha_{j}})^{*} and (eσj(αk))(e_{-\sigma_{j}(\alpha_{k})})^{*} via the Killing form. (Here, we fix root vectors yielding a basis on 𝔤/𝔭{\mathfrak{g}}/{\mathfrak{p}}.)

For 𝒪=𝕍μ\{0}{\mathcal{O}}={\mathbb{V}}_{\mu}\backslash\{0\}, define 𝔘μ:=𝔘𝒪{\mathfrak{U}}_{\mu}:={\mathfrak{U}}_{\mathcal{O}} and 𝔖μ:=𝔖𝒪{\mathfrak{S}}_{\mu}:={\mathfrak{S}}_{\mathcal{O}}. By [16, Prop.3.1.1], we have

dim(𝔞ϕ)dim(𝔞ϕ0),ϕ𝕍μ\{0},\displaystyle{\rm dim}({\mathfrak{a}}^{\phi})\leq{\rm dim}({\mathfrak{a}}^{\phi_{0}}),\quad\forall\phi\in{\mathbb{V}}_{\mu}\backslash\{0\}, (3.3)

with equality precisely when the projectivizations [ϕ][\phi] and [ϕ0][\phi_{0}] lie in the same G0G_{0}-orbit in (𝕍μ){\mathbb{P}}({\mathbb{V}}_{\mu}). Hence, 𝔘μ=dim(𝔞ϕ0){\mathfrak{U}}_{\mu}={\rm dim}({\mathfrak{a}}^{\phi_{0}}). Concerning realizability of this upper bound, we have:

Definition 3.1.

Use notations as above with GG simple. Suppose wW𝔭(2)w\in W^{\mathfrak{p}}(2) satisfies w(λ)Δw(-\lambda)\in\Delta^{-} and 𝖹(μ)>0\mathsf{Z}(\mu)>0. The canonical curved model of type (𝔤,𝔭,𝕍μ)({\mathfrak{g}},{\mathfrak{p}},{\mathbb{V}}_{\mu}) is the algebraic model (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}) given by defining 𝔣:=𝔞ϕ0{\mathfrak{f}}:={\mathfrak{a}}^{\phi_{0}} as a vector subspace of 𝔤{\mathfrak{g}}, equipped with the filtration inherited from 𝔤{\mathfrak{g}}, and deformed bracket [,]𝔣:=[,]ϕ0(,)[\cdot,\cdot]_{\mathfrak{f}}:=[\cdot,\cdot]-\phi_{0}(\cdot,\cdot).

By [16, Lemma 4.1.1], (𝔣,[,]𝔣)({\mathfrak{f}},[\cdot,\cdot]_{\mathfrak{f}}) is indeed a Lie algebra, and clearly dim(𝔣)=𝔘μ{\rm dim}({\mathfrak{f}})={\mathfrak{U}}_{\mu}. The filtration on 𝔣{\mathfrak{f}} is inherited: 𝔣i:=𝔣𝔤i{\mathfrak{f}}^{i}:={\mathfrak{f}}\cap{\mathfrak{g}}^{i}. Since ϕ0ker()=ker()ker()\phi_{0}\in\ker(\Box)=\ker(\partial)\cap\ker(\partial^{*}), then κ=ϕ0\kappa=\phi_{0} is clearly normal, and 𝖹(μ)>0\mathsf{Z}(\mu)>0 guarantees regularity. Thus, (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}) is an algebraic model, which is clearly maximal with respect to the aforementioned partial order.

Proposition 3.2.

Use notations as above with GG simple. Suppose that rank(G)2\mathrm{rank}(G)\geq 2, and exclude G=A2G=A_{2} and (G,P)=(B2,P1),(B2,P1,2)(G,P)=(B_{2},P_{1}),(B_{2},P_{1,2}). Then w(λ)Δw(-\lambda)\in\Delta^{-} for any wW𝔭(2)w\in W^{\mathfrak{p}}(2). For μ=wλ\mu=-w\bullet\lambda with 𝖹(μ)>0\mathsf{Z}(\mu)>0, the canonical curved model of type (𝔤,𝔭,𝕍μ)({\mathfrak{g}},{\mathfrak{p}},{\mathbb{V}}_{\mu}) exists, and so 𝔖μ=𝔘μ{\mathfrak{S}}_{\mu}={\mathfrak{U}}_{\mu}. Moreover, any regular, normal parabolic geometry (𝒢M,ω)({\mathcal{G}}\to M,\omega) of type (G,P,𝕍μ)(G,P,{\mathbb{V}}_{\mu}) with dim(inf(𝒢,ω))=𝔖μ{\rm dim}(\inf({\mathcal{G}},\omega))={\mathfrak{S}}_{\mu} is locally homogeneous about any u𝒢u\in{\mathcal{G}} with κH(u)0\kappa_{H}(u)\neq 0.

Proof.

This follows from [16, Lemma 4.1.2] and local homogeneity follows from Lemma 2.3. ∎

Under the hypotheses of Proposition 3.2, our problem of classifying submaximally symmetric models relative to 𝕍μ{\mathbb{V}}_{\mu} becomes that of classifying algebraic models (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}) with 0κH𝕍μ0\neq\kappa_{H}\in{\mathbb{V}}_{\mu} and dim(𝔣)=𝔘μ{\rm dim}({\mathfrak{f}})={\mathfrak{U}}_{\mu}. From Proposition 2.6, 𝔰=gr(𝔣)𝔞κH{\mathfrak{s}}=\mathrm{gr}({\mathfrak{f}})\subseteq{\mathfrak{a}}^{\kappa_{H}}. The equality dim(𝔣)=𝔘μ=dim(𝔞ϕ0){\rm dim}({\mathfrak{f}})={\mathfrak{U}}_{\mu}={\rm dim}({\mathfrak{a}}^{\phi_{0}}) forces 𝔰=𝔞κH{\mathfrak{s}}={\mathfrak{a}}^{\kappa_{H}} with [κH]=g0[ϕ0][\kappa_{H}]=g_{0}\cdot[\phi_{0}] for some g0G0g_{0}\in G_{0}. Using the induced G0G_{0}-action on 𝔣{\mathfrak{f}}, we may henceforth assume that [κH]=[ϕ0][\kappa_{H}]=[\phi_{0}], and so (𝔣,[,]𝔣)({\mathfrak{f}},[\cdot,\cdot]_{\mathfrak{f}}) satisfies

𝔰=gr(𝔣)=𝔞ϕ0.\displaystyle{\mathfrak{s}}=\mathrm{gr}({\mathfrak{f}})={\mathfrak{a}}^{\phi_{0}}. (3.4)

In summary, to establish Theorem 1.1, it suffices to answer the following question:

Problem 3.3.

When rank(G)3\mathrm{rank}(G)\geq 3 or (G,P)=(G2,P2)(G,P)=(G_{2},P_{2}), classify algebraic models (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}) with 0κH𝕍μ0\neq\kappa_{H}\in{\mathbb{V}}_{\mu} satisfying (3.4), up to the action by the residual subgroup Stab([ϕ0])P+P\operatorname{Stab}([\phi_{0}])\ltimes P_{+}\leq P.)

Over {\mathbb{C}}, we will show that the canonical curved model is the unique solution to Problem 3.3.

3.2. The (G2,P2)(G_{2},P_{2}) case

We first answer Problem 3.3 in the (G,P)=(G2,P2)(G,P)=(G_{2},P_{2}) case. For G2G_{2}, recall:

,(cij)=(2132),{α1=2λ1λ2,α2=3λ1+2λ2,{λ1=2α1+α2,λ2=3α1+2α2.\displaystyle\leavevmode\hbox to51.21pt{\vbox to21.64pt{\pgfpicture\makeatletter\hbox{\hskip 11.38092pt\lower-5.99046pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}{}}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{1.42271pt}{1.70709pt}\pgfsys@lineto{27.03001pt}{1.70709pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}{}}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{1.42271pt}{-1.70709pt}\pgfsys@lineto{27.03001pt}{-1.70709pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}{}}{{}}{}{{}{}}{{}}{} {{}{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{12.80365pt}{0.0pt}\pgfsys@moveto{17.07138pt}{5.69046pt}\pgfsys@lineto{12.80365pt}{0.0pt}\pgfsys@lineto{17.07138pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope ; \par ; \par {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.13387pt}{0.0pt}\pgfsys@curveto{2.13387pt}{1.17851pt}{1.17851pt}{2.13387pt}{0.0pt}{2.13387pt}\pgfsys@curveto{-1.17851pt}{2.13387pt}{-2.13387pt}{1.17851pt}{-2.13387pt}{0.0pt}\pgfsys@curveto{-2.13387pt}{-1.17851pt}{-1.17851pt}{-2.13387pt}{0.0pt}{-2.13387pt}\pgfsys@curveto{1.17851pt}{-2.13387pt}{2.13387pt}{-1.17851pt}{2.13387pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{9.95863pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{0.0pt}{9.95863pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@moveto{30.58662pt}{0.0pt}\pgfsys@curveto{30.58662pt}{1.17851pt}{29.63127pt}{2.13387pt}{28.45276pt}{2.13387pt}\pgfsys@curveto{27.27425pt}{2.13387pt}{26.3189pt}{1.17851pt}{26.3189pt}{0.0pt}\pgfsys@curveto{26.3189pt}{-1.17851pt}{27.27425pt}{-2.13387pt}{28.45276pt}{-2.13387pt}\pgfsys@curveto{29.63127pt}{-2.13387pt}{30.58662pt}{-1.17851pt}{30.58662pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@moveto{28.45276pt}{9.95863pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{28.45276pt}{9.95863pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; {}{{}}{} {}{{}}{}{}{}{}{{}}{} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad(c_{ij})=\begin{pmatrix}2&-1\\ -3&2\end{pmatrix},\quad\begin{cases}\alpha_{1}=2\lambda_{1}-\lambda_{2},\\ \alpha_{2}=-3\lambda_{1}+2\lambda_{2}\end{cases},\quad\begin{cases}\lambda_{1}=2\alpha_{1}+\alpha_{2},\\ \lambda_{2}=3\alpha_{1}+2\alpha_{2}\end{cases}. (3.5)

Let {𝖹1,𝖹2}\{\mathsf{Z}_{1},\mathsf{Z}_{2}\} be the dual basis to the simple roots {α1,α2}\{\alpha_{1},\alpha_{2}\}. The highest weight is λ=λ2=3α1+2α2\lambda=\lambda_{2}=3\alpha_{1}+2\alpha_{2}. The root diagram is given in Figure 1. Let eαe_{\alpha} be a root vector for the root αΔ\alpha\in\Delta.

α2α1𝔤2:𝔤1:𝔤0:𝔤1:𝔤2:\begin{array}[]{c}\leavevmode\hbox to145.08pt{\vbox to110.23pt{\pgfpicture\makeatletter\hbox{\hskip 93.66907pt\lower-55.11302pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@invoke{ }\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-34.14322pt}{53.26773pt}\pgfsys@moveto{-34.14322pt}{53.26773pt}\pgfsys@lineto{-34.14322pt}{44.73227pt}\pgfsys@lineto{34.14322pt}{44.73227pt}\pgfsys@lineto{34.14322pt}{53.26773pt}\pgfsys@closepath\pgfsys@moveto{34.14322pt}{44.73227pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@invoke{ }\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-51.21504pt}{29.26773pt}\pgfsys@moveto{-51.21504pt}{29.26773pt}\pgfsys@lineto{-51.21504pt}{20.73227pt}\pgfsys@lineto{51.21504pt}{20.73227pt}\pgfsys@lineto{51.21504pt}{29.26773pt}\pgfsys@closepath\pgfsys@moveto{51.21504pt}{20.73227pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@invoke{ }\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-34.14322pt}{4.26773pt}\pgfsys@moveto{-34.14322pt}{4.26773pt}\pgfsys@lineto{-34.14322pt}{-4.26773pt}\pgfsys@lineto{34.14322pt}{-4.26773pt}\pgfsys@lineto{34.14322pt}{4.26773pt}\pgfsys@closepath\pgfsys@moveto{34.14322pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@invoke{ }\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-51.21504pt}{-20.73227pt}\pgfsys@moveto{-51.21504pt}{-20.73227pt}\pgfsys@lineto{-51.21504pt}{-29.26773pt}\pgfsys@lineto{51.21504pt}{-29.26773pt}\pgfsys@lineto{51.21504pt}{-20.73227pt}\pgfsys@closepath\pgfsys@moveto{51.21504pt}{-29.26773pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@invoke{ }\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{.5,.5,.5}\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-34.14322pt}{-44.73227pt}\pgfsys@moveto{-34.14322pt}{-44.73227pt}\pgfsys@lineto{-34.14322pt}{-53.26773pt}\pgfsys@lineto{34.14322pt}{-53.26773pt}\pgfsys@lineto{34.14322pt}{-44.73227pt}\pgfsys@closepath\pgfsys@moveto{34.14322pt}{-53.26773pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{49.28001pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{49.28001pt}\pgfsys@moveto{1.42271pt}{49.28001pt}\pgfsys@curveto{1.42271pt}{50.06577pt}{0.78575pt}{50.70273pt}{0.0pt}{50.70273pt}\pgfsys@curveto{-0.78575pt}{50.70273pt}{-1.42271pt}{50.06577pt}{-1.42271pt}{49.28001pt}\pgfsys@curveto{-1.42271pt}{48.49426pt}{-0.78575pt}{47.8573pt}{0.0pt}{47.8573pt}\pgfsys@curveto{0.78575pt}{47.8573pt}{1.42271pt}{48.49426pt}{1.42271pt}{49.28001pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{49.28001pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{42.67914pt}{24.64pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{42.67914pt}{24.64pt}\pgfsys@moveto{44.10185pt}{24.64pt}\pgfsys@curveto{44.10185pt}{25.42575pt}{43.46489pt}{26.06271pt}{42.67914pt}{26.06271pt}\pgfsys@curveto{41.89339pt}{26.06271pt}{41.25642pt}{25.42575pt}{41.25642pt}{24.64pt}\pgfsys@curveto{41.25642pt}{23.85425pt}{41.89339pt}{23.21729pt}{42.67914pt}{23.21729pt}\pgfsys@curveto{43.46489pt}{23.21729pt}{44.10185pt}{23.85425pt}{44.10185pt}{24.64pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{24.64pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{14.22638pt}{24.64pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{14.22638pt}{24.64pt}\pgfsys@moveto{15.6491pt}{24.64pt}\pgfsys@curveto{15.6491pt}{25.42575pt}{15.01213pt}{26.06271pt}{14.22638pt}{26.06271pt}\pgfsys@curveto{13.44063pt}{26.06271pt}{12.80367pt}{25.42575pt}{12.80367pt}{24.64pt}\pgfsys@curveto{12.80367pt}{23.85425pt}{13.44063pt}{23.21729pt}{14.22638pt}{23.21729pt}\pgfsys@curveto{15.01213pt}{23.21729pt}{15.6491pt}{23.85425pt}{15.6491pt}{24.64pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{24.64pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{24.64pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-14.22638pt}{24.64pt}\pgfsys@moveto{-12.80367pt}{24.64pt}\pgfsys@curveto{-12.80367pt}{25.42575pt}{-13.44063pt}{26.06271pt}{-14.22638pt}{26.06271pt}\pgfsys@curveto{-15.01213pt}{26.06271pt}{-15.6491pt}{25.42575pt}{-15.6491pt}{24.64pt}\pgfsys@curveto{-15.6491pt}{23.85425pt}{-15.01213pt}{23.21729pt}{-14.22638pt}{23.21729pt}\pgfsys@curveto{-13.44063pt}{23.21729pt}{-12.80367pt}{23.85425pt}{-12.80367pt}{24.64pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{24.64pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-42.67914pt}{24.64pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-49.20338pt}{33.14278pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\footnotesize$\alpha_{2}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-42.67914pt}{24.64pt}\pgfsys@moveto{-41.25642pt}{24.64pt}\pgfsys@curveto{-41.25642pt}{25.42575pt}{-41.89339pt}{26.06271pt}{-42.67914pt}{26.06271pt}\pgfsys@curveto{-43.46489pt}{26.06271pt}{-44.10185pt}{25.42575pt}{-44.10185pt}{24.64pt}\pgfsys@curveto{-44.10185pt}{23.85425pt}{-43.46489pt}{23.21729pt}{-42.67914pt}{23.21729pt}\pgfsys@curveto{-41.89339pt}{23.21729pt}{-41.25642pt}{23.85425pt}{-41.25642pt}{24.64pt}\pgfsys@closepath\pgfsys@moveto{-42.67914pt}{24.64pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{24.64pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{36.15488pt}{-1.00044pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\footnotesize$\alpha_{1}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{24.64pt}{0.0pt}\pgfsys@moveto{26.06271pt}{0.0pt}\pgfsys@curveto{26.06271pt}{0.78575pt}{25.42575pt}{1.42271pt}{24.64pt}{1.42271pt}\pgfsys@curveto{23.85425pt}{1.42271pt}{23.21729pt}{0.78575pt}{23.21729pt}{0.0pt}\pgfsys@curveto{23.21729pt}{-0.78575pt}{23.85425pt}{-1.42271pt}{24.64pt}{-1.42271pt}\pgfsys@curveto{25.42575pt}{-1.42271pt}{26.06271pt}{-0.78575pt}{26.06271pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{24.64pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{42.67914pt}{-24.64pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{42.67914pt}{-24.64pt}\pgfsys@moveto{44.10185pt}{-24.64pt}\pgfsys@curveto{44.10185pt}{-23.85425pt}{43.46489pt}{-23.21729pt}{42.67914pt}{-23.21729pt}\pgfsys@curveto{41.89339pt}{-23.21729pt}{41.25642pt}{-23.85425pt}{41.25642pt}{-24.64pt}\pgfsys@curveto{41.25642pt}{-25.42575pt}{41.89339pt}{-26.06271pt}{42.67914pt}{-26.06271pt}\pgfsys@curveto{43.46489pt}{-26.06271pt}{44.10185pt}{-25.42575pt}{44.10185pt}{-24.64pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{-24.64pt}\pgfsys@fillstroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{-49.28001pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{0.0pt}{-49.28001pt}\pgfsys@moveto{1.42271pt}{-49.28001pt}\pgfsys@curveto{1.42271pt}{-48.49426pt}{0.78575pt}{-47.8573pt}{0.0pt}{-47.8573pt}\pgfsys@curveto{-0.78575pt}{-47.8573pt}{-1.42271pt}{-48.49426pt}{-1.42271pt}{-49.28001pt}\pgfsys@curveto{-1.42271pt}{-50.06577pt}{-0.78575pt}{-50.70273pt}{0.0pt}{-50.70273pt}\pgfsys@curveto{0.78575pt}{-50.70273pt}{1.42271pt}{-50.06577pt}{1.42271pt}{-49.28001pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-49.28001pt}\pgfsys@fillstroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-42.67914pt}{-24.64pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{-42.67914pt}{-24.64pt}\pgfsys@moveto{-41.25642pt}{-24.64pt}\pgfsys@curveto{-41.25642pt}{-23.85425pt}{-41.89339pt}{-23.21729pt}{-42.67914pt}{-23.21729pt}\pgfsys@curveto{-43.46489pt}{-23.21729pt}{-44.10185pt}{-23.85425pt}{-44.10185pt}{-24.64pt}\pgfsys@curveto{-44.10185pt}{-25.42575pt}{-43.46489pt}{-26.06271pt}{-42.67914pt}{-26.06271pt}\pgfsys@curveto{-41.89339pt}{-26.06271pt}{-41.25642pt}{-25.42575pt}{-41.25642pt}{-24.64pt}\pgfsys@closepath\pgfsys@moveto{-42.67914pt}{-24.64pt}\pgfsys@fillstroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{-24.64pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{-14.22638pt}{-24.64pt}\pgfsys@moveto{-12.80367pt}{-24.64pt}\pgfsys@curveto{-12.80367pt}{-23.85425pt}{-13.44063pt}{-23.21729pt}{-14.22638pt}{-23.21729pt}\pgfsys@curveto{-15.01213pt}{-23.21729pt}{-15.6491pt}{-23.85425pt}{-15.6491pt}{-24.64pt}\pgfsys@curveto{-15.6491pt}{-25.42575pt}{-15.01213pt}{-26.06271pt}{-14.22638pt}{-26.06271pt}\pgfsys@curveto{-13.44063pt}{-26.06271pt}{-12.80367pt}{-25.42575pt}{-12.80367pt}{-24.64pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{-24.64pt}\pgfsys@fillstroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{14.22638pt}{-24.64pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}{}\pgfsys@moveto{14.22638pt}{-24.64pt}\pgfsys@moveto{15.6491pt}{-24.64pt}\pgfsys@curveto{15.6491pt}{-23.85425pt}{15.01213pt}{-23.21729pt}{14.22638pt}{-23.21729pt}\pgfsys@curveto{13.44063pt}{-23.21729pt}{12.80367pt}{-23.85425pt}{12.80367pt}{-24.64pt}\pgfsys@curveto{12.80367pt}{-25.42575pt}{13.44063pt}{-26.06271pt}{14.22638pt}{-26.06271pt}\pgfsys@curveto{15.01213pt}{-26.06271pt}{15.6491pt}{-25.42575pt}{15.6491pt}{-24.64pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{-24.64pt}\pgfsys@fillstroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-24.64pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-24.64pt}{0.0pt}\pgfsys@moveto{-23.21729pt}{0.0pt}\pgfsys@curveto{-23.21729pt}{0.78575pt}{-23.85425pt}{1.42271pt}{-24.64pt}{1.42271pt}\pgfsys@curveto{-25.42575pt}{1.42271pt}{-26.06271pt}{0.78575pt}{-26.06271pt}{0.0pt}\pgfsys@curveto{-26.06271pt}{-0.78575pt}{-25.42575pt}{-1.42271pt}{-24.64pt}{-1.42271pt}\pgfsys@curveto{-23.85425pt}{-1.42271pt}{-23.21729pt}{-0.78575pt}{-23.21729pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-24.64pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{tikz@color}{rgb}{1,0,0}\definecolor[named]{.}{rgb}{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.84544pt}{0.0pt}\pgfsys@curveto{2.84544pt}{1.5715pt}{1.5715pt}{2.84544pt}{0.0pt}{2.84544pt}\pgfsys@curveto{-1.5715pt}{2.84544pt}{-2.84544pt}{1.5715pt}{-2.84544pt}{0.0pt}\pgfsys@curveto{-2.84544pt}{-1.5715pt}{-1.5715pt}{-2.84544pt}{0.0pt}{-2.84544pt}\pgfsys@curveto{1.5715pt}{-2.84544pt}{2.84544pt}{-1.5715pt}{2.84544pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-89.5894pt}{48.33557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\footnotesize${\mathfrak{g}}_{2}$:}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-89.5894pt}{23.69556pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\footnotesize${\mathfrak{g}}_{1}$:}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-89.5894pt}{-0.94444pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\footnotesize${\mathfrak{g}}_{0}$:}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-90.33606pt}{-25.58444pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\footnotesize${\mathfrak{g}}_{-1}$:}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-90.33606pt}{-50.22446pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{{\footnotesize${\mathfrak{g}}_{-2}$:}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\end{array}

Figure 1. G2G_{2} root diagram with grading associated to P2P_{2}

We have 𝖹=𝖹2\mathsf{Z}=\mathsf{Z}_{2}, which induces the grading 𝔤=𝔤2𝔤2{\mathfrak{g}}={\mathfrak{g}}_{-2}\oplus...\oplus{\mathfrak{g}}_{2}. Moreover,

𝔤0=𝖹,hα1,eα1,eα1𝔤𝔩2,𝔤1=𝔤α2𝔤α1α2𝔤2α1α2𝔤3α1α2,𝔤2=𝔤3α12α2,w=(21)W𝔭(2),μ=wλ=7λ1+4λ2=2α1+α2,H2(𝔤,𝔤)=74,ϕ0=eα2eα1+α2e3α1α2,𝔞=𝔤𝔞0,𝔞0=𝖹1+2𝖹2𝔤α1.\displaystyle\begin{array}[]{l}{\mathfrak{g}}_{0}=\langle\mathsf{Z},h_{\alpha_{1}},e_{\alpha_{1}},e_{-\alpha_{1}}\rangle\cong\mathfrak{gl}_{2},\\ {\mathfrak{g}}_{-1}={\mathfrak{g}}_{-\alpha_{2}}\oplus{\mathfrak{g}}_{-\alpha_{1}-\alpha_{2}}\\ \qquad\quad\oplus\,{\mathfrak{g}}_{-2\alpha_{1}-\alpha_{2}}\oplus{\mathfrak{g}}_{-3\alpha_{1}-\alpha_{2}},\\ {\mathfrak{g}}_{-2}={\mathfrak{g}}_{-3\alpha_{1}-2\alpha_{2}},\\ \end{array}\quad\begin{array}[]{l}w=(21)\in W^{\mathfrak{p}}(2),\\ \mu=-w\bullet\lambda=-7\lambda_{1}+4\lambda_{2}=-2\alpha_{1}+\alpha_{2},\\ H^{2}({\mathfrak{g}}_{-},{\mathfrak{g}})=\leavevmode\hbox to51.21pt{\vbox to22.5pt{\pgfpicture\makeatletter\hbox{\hskip 11.38092pt\lower-5.99046pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}{}}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{1.42271pt}{1.70709pt}\pgfsys@lineto{27.03001pt}{1.70709pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}{}}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{1.42271pt}{-1.70709pt}\pgfsys@lineto{27.03001pt}{-1.70709pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}{}}{{}}{}{{}{}}{{}}{} {{}{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{12.80365pt}{0.0pt}\pgfsys@moveto{17.07138pt}{5.69046pt}\pgfsys@lineto{12.80365pt}{0.0pt}\pgfsys@lineto{17.07138pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope ; \par ; \par {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.13387pt}{0.0pt}\pgfsys@curveto{2.13387pt}{1.17851pt}{1.17851pt}{2.13387pt}{0.0pt}{2.13387pt}\pgfsys@curveto{-1.17851pt}{2.13387pt}{-2.13387pt}{1.17851pt}{-2.13387pt}{0.0pt}\pgfsys@curveto{-2.13387pt}{-1.17851pt}{-1.17851pt}{-2.13387pt}{0.0pt}{-2.13387pt}\pgfsys@curveto{1.17851pt}{-2.13387pt}{2.13387pt}{-1.17851pt}{2.13387pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{9.95863pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{6.73642pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$7$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; {}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@moveto{28.45276pt}{9.95863pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.175pt}{6.73642pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@moveto{24.18503pt}{-4.26773pt}\pgfsys@lineto{32.72093pt}{4.26817pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@moveto{24.18503pt}{4.26773pt}\pgfsys@lineto{32.72093pt}{-4.26817pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope ; {}{{}}{} {}{{}}{}{}{}{}{{}}{} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\\ \phi_{0}=e_{\alpha_{2}}\wedge e_{\alpha_{1}+\alpha_{2}}\otimes e_{-3\alpha_{1}-\alpha_{2}},\\ {\mathfrak{a}}={\mathfrak{g}}_{-}\oplus{\mathfrak{a}}_{0},\quad{\mathfrak{a}}_{0}=\langle\mathsf{Z}_{1}+2\mathsf{Z}_{2}\rangle\oplus{\mathfrak{g}}_{-\alpha_{1}}.\end{array} (3.15)

Let us now classify algebraic models (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}) with gr(𝔣)=𝔞\mathrm{gr}({\mathfrak{f}})={\mathfrak{a}}. Let T𝔣0T\in{\mathfrak{f}}^{0} with gr0(T)=𝖹1+2𝖹2\mathrm{gr}_{0}(T)=\mathsf{Z}_{1}+2\mathsf{Z}_{2}. Since (𝖹1+2𝖹2)(α)0(\mathsf{Z}_{1}+2\mathsf{Z}_{2})(\alpha)\neq 0 for all αΔ(𝔭+)\alpha\in\Delta({\mathfrak{p}}_{+}), we use the P+P_{+}-action to normalize to T=𝖹1+2𝖹2𝔣0T=\mathsf{Z}_{1}+2\mathsf{Z}_{2}\in{\mathfrak{f}}^{0}.

Defining 𝔞=𝖹2𝔤α1𝔤+{\mathfrak{a}}^{\perp}=\langle\mathsf{Z}_{2}\rangle\oplus{\mathfrak{g}}_{\alpha_{1}}\oplus{\mathfrak{g}}_{+}, let 𝔡𝔞𝔞{\mathfrak{d}}\in{\mathfrak{a}}^{*}\otimes{\mathfrak{a}}^{\perp} be the associated deformation map (of positive degree). The decomposition 𝔤=𝔞𝔞{\mathfrak{g}}={\mathfrak{a}}\oplus{\mathfrak{a}}^{\perp} is adT{\rm ad}_{T}-invariant, so T𝔡=0T\cdot{\mathfrak{d}}=0 by Lemma 2.8, i.e. 𝔡{\mathfrak{d}} is a sum of weight vectors for weights that are multiples of μ=2α1+α2\mu=-2\alpha_{1}+\alpha_{2}. The weights of 𝔞{\mathfrak{a}}^{*} and 𝔞{\mathfrak{a}}^{\perp} agree, and they are both:

0,α1,α2,α1+α2,2α1+α2,3α1+α2,3α1+2α2.\displaystyle 0,\quad\alpha_{1},\quad\alpha_{2},\quad\alpha_{1}+\alpha_{2},\quad 2\alpha_{1}+\alpha_{2},\quad 3\alpha_{1}+\alpha_{2},\quad 3\alpha_{1}+2\alpha_{2}. (3.16)

Since μ\mu has coefficients with respect to {α1,α2}\{\alpha_{1},\alpha_{2}\} of opposite sign, there is no sum of two weights in (3.16) that is: (i) a multiple of μ\mu, and (ii) has positive degree. Thus, 𝔡=0{\mathfrak{d}}=0, and 𝔣=𝔞{\mathfrak{f}}={\mathfrak{a}} as filtered subspaces of 𝔤{\mathfrak{g}}.

Now consider curvature κker()12𝔭+𝔤\kappa\in\ker(\partial^{*})^{1}\subset\bigwedge^{2}{\mathfrak{p}}_{+}\otimes{\mathfrak{g}}. Since Tκ=0T\cdot\kappa=0 by Proposition 2.6, then we are interested in weights σ\sigma (of 2-cochains) that are multiples of μ\mu:

σ=rμ=α+β+γ,where α,βΔ(𝔭+) are distinct,γΔ{0},r1.\displaystyle\sigma=r\mu=\alpha+\beta+\gamma,\quad\mbox{where }\quad\alpha,\beta\in\Delta({\mathfrak{p}}_{+})\mbox{ are distinct},\quad\gamma\in\Delta\cup\{0\},\quad r\geq 1. (3.17)

(We have r1r\geq 1 since regularity and the final statement in §2.1 imply 𝖹(σ)𝖹(μ)1\mathsf{Z}(\sigma)\geq\mathsf{Z}(\mu)\geq 1.) Recall that λ=λ2=3α1+2α2\lambda=\lambda_{2}=3\alpha_{1}+2\alpha_{2} and note that λγ<σ=rμ-\lambda\leq\gamma<\sigma=r\mu. Then 3𝖹1(λ)𝖹1(σ)=r𝖹1(μ)=2r-3\leq\mathsf{Z}_{1}(-\lambda)\leq\mathsf{Z}_{1}(\sigma)=r\mathsf{Z}_{1}(\mu)=-2r, and so r32r\leq\frac{3}{2}. However, 𝖹(μ)=𝖹2(μ)=1\mathsf{Z}(\mu)=\mathsf{Z}_{2}(\mu)=1 and σ\sigma has integer coefficients in the simple root basis, so the only possibility is r=1r=1. Since H2(𝔤,𝔤)𝕍μH^{2}({\mathfrak{g}}_{-},{\mathfrak{g}})\cong{\mathbb{V}}_{\mu} is a 𝔤0{\mathfrak{g}}_{0}-irrep, then κ\kappa must be a nonzero multiple of ϕ0\phi_{0}. Use Adexp(t𝖹){\rm Ad}_{\exp(t\mathsf{Z})} to rescale over {\mathbb{C}} so that κ=ϕ0\kappa=\phi_{0}, so we obtain the canonical curved model.

Over {\mathbb{R}}, we may rescale to κ=±ϕ0\kappa=\pm\phi_{0}. Let us study the action by G0GL(2,)G_{0}\cong\operatorname{GL}(2,{\mathbb{R}}) more concretely. Let {x,y}\{x,y\} be the standard basis of 2{\mathbb{R}}^{2}, and {ω,η}\{\omega,\eta\} the dual basis. Then 𝔤1S32{\mathfrak{g}}_{-1}\cong S^{3}{\mathbb{R}}^{2} as G0G_{0}-modules and we can identify

(eα2,eα1α2,e2α1α2,e3α1α2)=(x3,x2y,xy2,y3).(e_{-\alpha_{2}},e_{-\alpha_{1}-\alpha_{2}},e_{-2\alpha_{1}-\alpha_{2}},e_{-3\alpha_{1}-\alpha_{2}})=(x^{3},x^{2}y,xy^{2},y^{3}).

We regard ϕ0\phi_{0} as a multiple of ω3ω2ηy3\omega^{3}\wedge\omega^{2}\eta\otimes y^{3}. Hence, A=diag(a,b)G0A=\operatorname{diag}(a,b)\in G_{0} acts as ϕ0a5b2ϕ0\phi_{0}\mapsto a^{-5}b^{2}\phi_{0}, so taking (a,b)=(1,1)(a,b)=(-1,1) induces ϕ0ϕ0\phi_{0}\mapsto-\phi_{0}. Again, we obtain the canonical curved model.

The underlying structures for regular, normal parabolic geometries of type (G2,P2)(G_{2},P_{2}) are called G2G_{2}-contact geometries. See [18] for κH\kappa_{H} and a coordinate realization of a submaximally symmetric structure given in [18, Table 8]. By uniqueness proved above, this corresponds to the canonical curved model. We have shown:

Proposition 3.4.

There is a locally unique (complex or real) G2G_{2}-contact geometry that is submaximally symmetric (𝔖=7{\mathfrak{S}}=7) about any point where harmonic curvature is nonvanishing.

3.3. Preparation for the general case and the twistor simplification

The rank(G)3\mathrm{rank}(G)\geq 3 case for Problem 3.3 is treated in a similar spirit to the (G2,P2)(G_{2},P_{2}) case, but will require some further preparations. We will need more details about μ=wλ\mu=-w\bullet\lambda and gr(𝔣)=𝔞ϕ0\mathrm{gr}({\mathfrak{f}})={\mathfrak{a}}^{\phi_{0}}. First, observe that for w=(jk)w=(jk), we have w0=αj+σj(αk)-w\bullet 0=\alpha_{j}+\sigma_{j}(\alpha_{k}) by (3.1) and (3.2). If λ=i=1riλi\lambda=\sum_{i=1}^{\ell}r_{i}\lambda_{i}, then (3.1) becomes:

μ\displaystyle\mu =λ+(rj+1)αj+(rk+1)(αkckjαj).\displaystyle=-\lambda+(r_{j}+1)\alpha_{j}+(r_{k}+1)(\alpha_{k}-c_{kj}\alpha_{j}). (3.18)

Second, from [16, Thm. 3.3.3], gr(𝔣)=𝔞ϕ0\mathrm{gr}({\mathfrak{f}})={\mathfrak{a}}^{\phi_{0}} is the Tanaka prolongation of:

𝔞𝔫𝔫(ϕ0)=ker(μ)γΔ(𝔤0,0)𝔤γ𝔤0.\displaystyle\mathfrak{ann}(\phi_{0})=\ker(\mu)\oplus\bigoplus_{\gamma\in\Delta({\mathfrak{g}}_{0,\leq 0})}{\mathfrak{g}}_{\gamma}\quad\subset\quad{\mathfrak{g}}_{0}. (3.19)

This is the direct sum of ker(μ):={h𝔥:μ(h)=0}\ker(\mu):=\{h\in{\mathfrak{h}}:\mu(h)=0\} and root spaces for the roots

Δ(𝔤0,0):={αΔ(𝔤0):𝖹Jμ(α)0},\displaystyle\Delta({\mathfrak{g}}_{0,\leq 0}):=\{\alpha\in\Delta({\mathfrak{g}}_{0}):\mathsf{Z}_{J_{\mu}}(\alpha)\leq 0\}, (3.20)

where 𝖹Jμ:=iJμ𝖹i\mathsf{Z}_{J_{\mu}}:=\sum_{i\in J_{\mu}}\mathsf{Z}_{i} is a secondary grading with respect to the set

Jμ:={i{1,,}\I𝔭:μ,αi0}.\displaystyle J_{\mu}:=\{i\in\{1,...,\ell\}\backslash I_{\mathfrak{p}}:\langle\mu,\alpha_{i}^{\vee}\rangle\neq 0\}. (3.21)

In [16], the weight μ\mu was encoded on a Dynkin diagram by inscribing over corresponding nodes the coefficients of μ-\mu with respect to {λi}\{\lambda_{i}\}. The set JμJ_{\mu} corresponds to uncrossed nodes with a nonzero coefficient.

Example 3.5.

Consider (G,P)=(E8,P8)(G,P)=(E_{8},P_{8}). Here, 𝖹=𝖹8\mathsf{Z}=\mathsf{Z}_{8}, λ=λ8\lambda=\lambda_{8}, w=(87)W𝔭(2)w=(87)\in W^{\mathfrak{p}}(2), and 𝔤0E7{\mathfrak{g}}_{0}\cong{\mathbb{C}}\oplus E_{7}. Applying Kostant’s theorem, we find that

H+2(𝔤,𝔤)𝕍μ=00000114H^{2}_{+}({\mathfrak{g}}_{-},{\mathfrak{g}})\cong{\mathbb{V}}_{\mu}=\leavevmode\hbox to193.48pt{\vbox to50.66pt{\pgfpicture\makeatletter\hbox{\hskip 11.38092pt\lower-34.14322pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {{}{}}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {{}{}}{}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{56.90552pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {{}{}}{}{}\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@lineto{85.35828pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {{}{}}{}{}\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@lineto{113.81104pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {{}{}}{}{}\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@lineto{56.90552pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \par \par; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{2.13387pt}{0.0pt}\pgfsys@curveto{2.13387pt}{1.17851pt}{1.17851pt}{2.13387pt}{0.0pt}{2.13387pt}\pgfsys@curveto{-1.17851pt}{2.13387pt}{-2.13387pt}{1.17851pt}{-2.13387pt}{0.0pt}\pgfsys@curveto{-2.13387pt}{-1.17851pt}{-1.17851pt}{-2.13387pt}{0.0pt}{-2.13387pt}\pgfsys@curveto{1.17851pt}{-2.13387pt}{2.13387pt}{-1.17851pt}{2.13387pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{9.95863pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{6.73642pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{56.90552pt}{-28.45276pt}\pgfsys@moveto{59.03938pt}{-28.45276pt}\pgfsys@curveto{59.03938pt}{-27.27425pt}{58.08403pt}{-26.3189pt}{56.90552pt}{-26.3189pt}\pgfsys@curveto{55.727pt}{-26.3189pt}{54.77165pt}{-27.27425pt}{54.77165pt}{-28.45276pt}\pgfsys@curveto{54.77165pt}{-29.63127pt}{55.727pt}{-30.58662pt}{56.90552pt}{-30.58662pt}\pgfsys@curveto{58.08403pt}{-30.58662pt}{59.03938pt}{-29.63127pt}{59.03938pt}{-28.45276pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{-28.45276pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{56.90552pt}{-28.45276pt}\pgfsys@moveto{56.90552pt}{-18.49413pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.40552pt}{-21.71634pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@moveto{30.58662pt}{0.0pt}\pgfsys@curveto{30.58662pt}{1.17851pt}{29.63127pt}{2.13387pt}{28.45276pt}{2.13387pt}\pgfsys@curveto{27.27425pt}{2.13387pt}{26.3189pt}{1.17851pt}{26.3189pt}{0.0pt}\pgfsys@curveto{26.3189pt}{-1.17851pt}{27.27425pt}{-2.13387pt}{28.45276pt}{-2.13387pt}\pgfsys@curveto{29.63127pt}{-2.13387pt}{30.58662pt}{-1.17851pt}{30.58662pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@moveto{28.45276pt}{9.95863pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.95276pt}{6.73642pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@moveto{59.03938pt}{0.0pt}\pgfsys@curveto{59.03938pt}{1.17851pt}{58.08403pt}{2.13387pt}{56.90552pt}{2.13387pt}\pgfsys@curveto{55.727pt}{2.13387pt}{54.77165pt}{1.17851pt}{54.77165pt}{0.0pt}\pgfsys@curveto{54.77165pt}{-1.17851pt}{55.727pt}{-2.13387pt}{56.90552pt}{-2.13387pt}\pgfsys@curveto{58.08403pt}{-2.13387pt}{59.03938pt}{-1.17851pt}{59.03938pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@moveto{56.90552pt}{9.95863pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.40552pt}{6.73642pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@moveto{87.49214pt}{0.0pt}\pgfsys@curveto{87.49214pt}{1.17851pt}{86.53679pt}{2.13387pt}{85.35828pt}{2.13387pt}\pgfsys@curveto{84.17976pt}{2.13387pt}{83.22441pt}{1.17851pt}{83.22441pt}{0.0pt}\pgfsys@curveto{83.22441pt}{-1.17851pt}{84.17976pt}{-2.13387pt}{85.35828pt}{-2.13387pt}\pgfsys@curveto{86.53679pt}{-2.13387pt}{87.49214pt}{-1.17851pt}{87.49214pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@moveto{85.35828pt}{9.95863pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.85828pt}{6.73642pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$0$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; \par\par\par {}{{}}{} {{}{}}{}{}\pgfsys@moveto{113.81104pt}{0.0pt}\pgfsys@lineto{142.2638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {{}{}}{}{}\pgfsys@moveto{142.2638pt}{0.0pt}\pgfsys@lineto{170.71655pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{113.81104pt}{0.0pt}\pgfsys@moveto{115.9449pt}{0.0pt}\pgfsys@curveto{115.9449pt}{1.17851pt}{114.98955pt}{2.13387pt}{113.81104pt}{2.13387pt}\pgfsys@curveto{112.63252pt}{2.13387pt}{111.67717pt}{1.17851pt}{111.67717pt}{0.0pt}\pgfsys@curveto{111.67717pt}{-1.17851pt}{112.63252pt}{-2.13387pt}{113.81104pt}{-2.13387pt}\pgfsys@curveto{114.98955pt}{-2.13387pt}{115.9449pt}{-1.17851pt}{115.9449pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{113.81104pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{113.81104pt}{0.0pt}\pgfsys@moveto{113.81104pt}{9.95863pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{111.31104pt}{6.73642pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{142.2638pt}{0.0pt}\pgfsys@moveto{144.39766pt}{0.0pt}\pgfsys@curveto{144.39766pt}{1.17851pt}{143.4423pt}{2.13387pt}{142.2638pt}{2.13387pt}\pgfsys@curveto{141.08528pt}{2.13387pt}{140.12993pt}{1.17851pt}{140.12993pt}{0.0pt}\pgfsys@curveto{140.12993pt}{-1.17851pt}{141.08528pt}{-2.13387pt}{142.2638pt}{-2.13387pt}\pgfsys@curveto{143.4423pt}{-2.13387pt}{144.39766pt}{-1.17851pt}{144.39766pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{142.2638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{142.2638pt}{0.0pt}\pgfsys@moveto{142.2638pt}{9.95863pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{139.7638pt}{6.73642pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; ; {}{{}}{}{{{}}{}{}{}{}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }{}\pgfsys@moveto{170.71655pt}{0.0pt}\pgfsys@moveto{172.85042pt}{0.0pt}\pgfsys@curveto{172.85042pt}{1.17851pt}{171.89507pt}{2.13387pt}{170.71655pt}{2.13387pt}\pgfsys@curveto{169.53804pt}{2.13387pt}{168.58269pt}{1.17851pt}{168.58269pt}{0.0pt}\pgfsys@curveto{168.58269pt}{-1.17851pt}{169.53804pt}{-2.13387pt}{170.71655pt}{-2.13387pt}\pgfsys@curveto{171.89507pt}{-2.13387pt}{172.85042pt}{-1.17851pt}{172.85042pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{170.71655pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{170.71655pt}{0.0pt}\pgfsys@moveto{170.71655pt}{9.95863pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{165.4388pt}{6.73642pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} ; {}{{}}{} {}{{}}{}{}{}{}{{}}{} \par\par \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}

with μ=λ6λ7+4λ8\mu=-\lambda_{6}-\lambda_{7}+4\lambda_{8}, and so Jμ={6,7}J_{\mu}=\{6,7\}. (Also, 𝖹(μ)=1\mathsf{Z}(\mu)=1.) See [16, §3.3] for more examples.

According to [3], any parabolic geometry can be lifted to a correspondence space, and conversely a parabolic geometry may be descended to a twistor space if a suitable curvature condition is satisfied. (The latter amounts to viewing the given geometry of type (G,Q)(G,Q) as a geometry of type (G,P)(G,P), where QPGQ\subset P\subset G.) These are categorical constructions, so symmetries are naturally mapped to symmetries. We will not recall here the general theory developed in [3], but only summarize various results from [16, §3.5] in order to emphasize a “twistor simplification” (3.22) relevant for our purposes. The main reason for doing so is to assert (3.28), which facilitates the classification of filtered sub-deformations of 𝔞ϕ0{\mathfrak{a}}^{\phi_{0}} in §3.4.

Under the assumption κH𝕍μ\kappa_{H}\in{\mathbb{V}}_{\mu}, one may always descend to a minimal twistor space. Concretely, if μ=wλ\mu=-w\bullet\lambda, where w=(jk)W𝔮(2)w=(jk)\in W^{\mathfrak{q}}(2), then [16, Prop.3.5.1 & Cor.3.5.2] indicates that we may instead view a given (G,Q)(G,Q) geometry as a (G,P)(G,P) geometry, where

P={Pj,if cjk<0;Pj,k,if cjk=0.\displaystyle P=\begin{cases}P_{j},&\mbox{if }c_{jk}<0;\\ P_{j,k},&\mbox{if }c_{jk}=0.\end{cases} (3.22)

In [16, Thm.3.5.4], we showed that the Lie algebra structure of 𝔞ϕ0{\mathfrak{a}}^{\phi_{0}} is unchanged with respect to the above change of parabolics, in spite of the grading change, cf. [16, Example 3.5.5].

Normality of the geometry is preserved in passing to a correspondence or twistor space, but a priori regularity is not.

Example 3.6.

For regular, normal geometries of type (G2,P2)(G_{2},P_{2}), we have λ=λ2\lambda=\lambda_{2} and 𝖹=𝖹2\mathsf{Z}=\mathsf{Z}_{2}. Then w=(21)W𝔭(2)w=(21)\in W^{\mathfrak{p}}(2) yields μ=7λ1+4λ2=2α1+α2\mu=-7\lambda_{1}+4\lambda_{2}=-2\alpha_{1}+\alpha_{2}, so 𝖹(μ)=1\mathsf{Z}(\mu)=1. Viewed on the correspondence space as a (G2,P1,2)(G_{2},P_{1,2}) geometry, which has grading element 𝖹~:=𝖹1+𝖹2\widetilde{\mathsf{Z}}:=\mathsf{Z}_{1}+\mathsf{Z}_{2}, the corresponding harmonic curvature would take values in a module with degree 𝖹~(μ)=1\widetilde{\mathsf{Z}}(\mu)=-1, i.e. regularity is not preserved.

Despite regularity not being preserved when passing upwards to a correspondence space, let us consider the passage downwards to the minimal twistor space. In the simple setting, preservation of regularity upon such descent can be observed a posteriori through the tables compiled in [16, Appendix C]. We now give a uniform proof of this:

Lemma 3.7.

Let 𝔤{\mathfrak{g}} be a complex simple Lie algebra of rank(𝔤)2\mathrm{rank}({\mathfrak{g}})\geq 2 with highest weight λ\lambda, 𝔮𝔤{\mathfrak{q}}\subset{\mathfrak{g}} a parabolic subalgebra. Fix w=(jk)W𝔮(2)w=(jk)\in W^{\mathfrak{q}}(2) and μ=wλ\mu=-w\bullet\lambda. Define 𝔮𝔭𝔤{\mathfrak{q}}\subset{\mathfrak{p}}\subset{\mathfrak{g}}, where the parabolic subalgebra 𝔭{\mathfrak{p}} is defined by I𝔮I𝔭={{j},ckj<0;{j,k},ckj=0.I_{\mathfrak{q}}\supset I_{\mathfrak{p}}=\begin{cases}\{j\},&c_{kj}<0;\\ \{j,k\},&c_{kj}=0.\end{cases} Let 𝖹,𝖹¯\mathsf{Z},\bar{\mathsf{Z}} be the grading elements corresponding to 𝔮,𝔭{\mathfrak{q}},{\mathfrak{p}} respectively. If we have 𝖹(μ)>0\mathsf{Z}(\mu)>0, then 𝖹¯(μ)>0\bar{\mathsf{Z}}(\mu)>0.

Proof.

From (3.18), we have 𝖹s(μ)=𝖹s(λ)<0\mathsf{Z}_{s}(\mu)=\mathsf{Z}_{s}(-\lambda)<0 for any sj,ks\neq j,k. (Recall that all coefficients of λ\lambda in the simple root basis are positive.) We have jI𝔮j\in I_{\mathfrak{q}}. Suppose that (i) cjk=0c_{jk}=0 (hence, kI𝔮k\in I_{\mathfrak{q}}), or (ii) cjk<0c_{jk}<0 and kI𝔮k\not\in I_{\mathfrak{q}}. In either case, 0<𝖹(μ)=𝖹¯(μ)+𝖹I𝔮\{j,k}(μ)0<\mathsf{Z}(\mu)=\bar{\mathsf{Z}}(\mu)+\mathsf{Z}_{I_{\mathfrak{q}}\backslash\{j,k\}}(\mu), where 𝖹I𝔮\{j,k}:=sI𝔮\{j,k}𝖹s\mathsf{Z}_{I_{\mathfrak{q}}\backslash\{j,k\}}:=\sum_{s\in I_{\mathfrak{q}}\backslash\{j,k\}}\mathsf{Z}_{s}, so 𝖹¯(μ)>0\bar{\mathsf{Z}}(\mu)>0 since 𝖹I𝔮\{j,k}(μ)<0\mathsf{Z}_{I_{\mathfrak{q}}\backslash\{j,k\}}(\mu)<0.

From §3.1, it remains to consider the case cjk<0c_{jk}<0 and kI𝔮k\in I_{\mathfrak{q}}. Then

0<𝖹(μ)=𝖹¯(μ)+𝖹k(μ)+𝖹I𝔮\{j,k}(μ)\displaystyle 0<\mathsf{Z}(\mu)=\bar{\mathsf{Z}}(\mu)+\mathsf{Z}_{k}(\mu)+\mathsf{Z}_{I_{\mathfrak{q}}\backslash\{j,k\}}(\mu) (3.23)

From (3.18), note that

𝖹k(μ)=𝖹k(λ)+rk+1.\displaystyle\mathsf{Z}_{k}(\mu)=\mathsf{Z}_{k}(-\lambda)+r_{k}+1. (3.24)

If rk=0r_{k}=0, then 𝖹k(μ)1+0+1=0\mathsf{Z}_{k}(\mu)\leq-1+0+1=0. As above, 𝖹¯(μ)>0\bar{\mathsf{Z}}(\mu)>0 and we are done. So let us suppose that rk>0r_{k}>0. We can examine all such possibilities from knowledge of the well-known highest roots of simple Lie algebras:

A(1)B(3)C(2)D(4)E6E7E8F4G2λ1+λλ22λ1λ2λ2λ1λ8λ1λ2\displaystyle\begin{array}[]{|c|c|c|c|c|c|c|c|c|c}\hline\cr A_{\ell}\,(\ell\geq 1)&B_{\ell}\,(\ell\geq 3)&C_{\ell}\,(\ell\geq 2)&D_{\ell}\,(\ell\geq 4)&E_{6}&E_{7}&E_{8}&F_{4}&G_{2}\\ \hline\cr\lambda_{1}+\lambda_{\ell}&\lambda_{2}&2\lambda_{1}&\lambda_{2}&\lambda_{2}&\lambda_{1}&\lambda_{8}&\lambda_{1}&\lambda_{2}\\ \hline\cr\end{array} (3.27)

If 𝔤{\mathfrak{g}} is not type A or C, then from (3.27), we have rk=1r_{k}=1, and it is well-known that 𝖹k\mathsf{Z}_{k} yields a contact grading on 𝔤{\mathfrak{g}}. So 𝖹k(λ)=2\mathsf{Z}_{k}(\lambda)=2, 𝖹k(μ)=2+1+1=0\mathsf{Z}_{k}(\mu)=-2+1+1=0 from (3.24), and 𝖹¯(μ)>0\bar{\mathsf{Z}}(\mu)>0 follows from (3.23). For the type A and C cases, we show that 𝖹¯(μ)>0\bar{\mathsf{Z}}(\mu)>0 independent of the hypothesis on 𝖹(μ)\mathsf{Z}(\mu):

  1. (1)

    Type C: We have rk=2r_{k}=2, k=1k=1, and j=2j=2. Since λ=2λ1=2α1++2λ1+λ\lambda=2\lambda_{1}=2\alpha_{1}+...+2\lambda_{\ell-1}+\lambda_{\ell}, then from (3.18), we have 𝖹¯(μ)=𝖹j(μ)=𝖹j(λ)+rj+1(rk+1)ckj2+0+13ckj2\bar{\mathsf{Z}}(\mu)=\mathsf{Z}_{j}(\mu)=\mathsf{Z}_{j}(-\lambda)+r_{j}+1-(r_{k}+1)c_{kj}\geq-2+0+1-3c_{kj}\geq 2.

  2. (2)

    Type A: We have rk=1r_{k}=1 and using a Dynkin diagram symmetry, we may assume k=1k=1, so j=2j=2. Since λ=α1++α\lambda=\alpha_{1}+...+\alpha_{\ell}, we have 𝖹¯(μ)=𝖹j(μ)=𝖹j(λ)+rj+1(rk+1)ckj1+0+12ckj=2\bar{\mathsf{Z}}(\mu)=\mathsf{Z}_{j}(\mu)=\mathsf{Z}_{j}(-\lambda)+r_{j}+1-(r_{k}+1)c_{kj}\geq-1+0+1-2c_{kj}=2.

Now, because of [16, Prop.3.4.7] (see also [16, Defn 3.4.1]), the “twistor simplification” implies that after moving to the larger parabolic subgroup indicated in (3.22) and the corresponding grading, we get 𝔞+ϕ0=0{\mathfrak{a}}^{\phi_{0}}_{+}=0. Combining this with (3.4), we obtain:

𝔣1=0.\displaystyle{\mathfrak{f}}^{1}=0. (3.28)

3.4. Proof of the main theorem

Let us turn now to the proof of Theorem 1.1.

Lemma 3.8.

Let 𝔤{\mathfrak{g}} be a complex simple Lie algebra with :=rank(𝔤)3\ell:=\mathrm{rank}({\mathfrak{g}})\geq 3 and λ\lambda its highest root. Let w=(jk)W𝔭(2)w=(jk)\in W^{\mathfrak{p}}(2) such that μ=wλ\mu=-w\bullet\lambda satisfies 𝖹(μ)>0\mathsf{Z}(\mu)>0. Then:

  1. (MU1)

    μ=i=1miαi\mu=\sum_{i=1}^{\ell}m_{i}\alpha_{i} has coefficients mim_{i} of opposite sign. More precisely, mi<0m_{i}<0, ij,k\forall i\neq j,k, and either mj>0m_{j}>0 or mk>0m_{k}>0.

  2. (MU2)

    H0ker(μ)\exists H_{0}\in\ker(\mu) with f(H0)0f(H_{0})\neq 0 for all f=α+βf=\alpha+\beta with (α,β):=Δ+×(Δ+{0})(\alpha,\beta)\in{\mathcal{R}}:=\Delta^{+}\times(\Delta^{+}\cup\{0\}).

Proof.

From (3.18), μλmod{αj,αk}\mu\equiv-\lambda\,\,{\rm mod}\ \{\alpha_{j},\alpha_{k}\}. Since 𝔤{\mathfrak{g}} is simple, then all coefficients of λ\lambda with respect to the basis of simple roots {αi}i=1\{\alpha_{i}\}_{i=1}^{\ell} are strictly positive. Since 3\ell\geq 3, then mi=𝖹i(μ)=𝖹i(λ)<0m_{i}=\mathsf{Z}_{i}(\mu)=\mathsf{Z}_{i}(-\lambda)<0 for all ij,ki\neq j,k. At least one of mj=𝖹j(μ)m_{j}=\mathsf{Z}_{j}(\mu) or mk=𝖹k(μ)m_{k}=\mathsf{Z}_{k}(\mu) must be positive, since 𝖹(μ)>0\mathsf{Z}(\mu)>0 by hypothesis.

Fix any (α,β)(\alpha,\beta)\in{\mathcal{R}}, and f=α+β>0f=\alpha+\beta>0, so by the first claim, μ\mu is not a multiple of ff. Thus, ker(μ)\ker(\mu) and ker(f)\ker(f) are distinct hyperplanes in 𝔥{\mathfrak{h}}. Their sum must be 𝔥{\mathfrak{h}}, while Πf:=ker(μ)ker(f)\Pi_{f}:=\ker(\mu)\cap\ker(f) is a hyperplane in ker(μ)\ker(\mu). Since Δ+\Delta^{+} is finite, the finite union (α,β)Πα+β\bigcup_{(\alpha,\beta)\in{\mathcal{R}}}\Pi_{\alpha+\beta} has non-empty complement in ker(μ)\ker(\mu) (being the finite intersection of open sets 𝔥\Πα+β{\mathfrak{h}}\,\backslash\,\Pi_{\alpha+\beta}). Picking H0H_{0} in this (open) complement completes the proof. ∎

Assume the hypotheses of Lemma 3.8. From the previous subsections, we have reduced our submaximal symmetry classification problem to studying algebraic models (𝔣;𝔤,𝔭)({\mathfrak{f}};{\mathfrak{g}},{\mathfrak{p}}) with

im(κH)𝕍μ,𝔰=gr(𝔣)=𝔞ϕ0=:𝔞,\displaystyle\mathrm{im}(\kappa_{H})\subseteq{\mathbb{V}}_{\mu},\quad{\mathfrak{s}}=\mathrm{gr}({\mathfrak{f}})={\mathfrak{a}}^{\phi_{0}}=:{\mathfrak{a}}, (3.29)

where ϕ0𝕍μ\phi_{0}\in{\mathbb{V}}_{\mu} is given by (3.2). We will classify these up to the action of Stab([ϕ0])P+P\operatorname{Stab}([\phi_{0}])\ltimes P_{+}\leq P. Moreover, we may assume the twistor simplification, which implies that 𝔣1=0{\mathfrak{f}}^{1}=0, where we have moved to the grading associated with the larger parabolic subgroup indicated in (3.22).

Step 1: Using the P+P_{+}-action, normalize 𝔣{\mathfrak{f}} so that H0𝔣0H_{0}\in{\mathfrak{f}}^{0}.

As in Lemma 3.8, fix H0ker(μ)𝔞𝔫𝔫(ϕ0)𝔞H_{0}\in\ker(\mu)\subset\mathfrak{ann}(\phi_{0})\subset{\mathfrak{a}}. Let H𝔣0𝔤H\in{\mathfrak{f}}^{0}\subset{\mathfrak{g}} with leading part gr0(H)=H0\mathrm{gr}_{0}(H)=H_{0}, so H=H0+H+H=H_{0}+H_{+}, where H+:=𝔡(H0)𝔭+H_{+}:={\mathfrak{d}}(H_{0})\in{\mathfrak{p}}_{+}. If H+0H_{+}\neq 0, let 0Hr:=grr(H+)𝔤r0\neq H_{r}:=\mathrm{gr}_{r}(H_{+})\in{\mathfrak{g}}_{r} for some minimal r1r\geq 1. Let us normalize HH via the P+P_{+}-action. Letting X𝔤rX\in{\mathfrak{g}}_{r}, we have:

Adexp(X)(H)=exp(adX)(H)=H+[X,H]+=H0+Hr[H0,X]+,\displaystyle{\rm Ad}_{\exp(X)}(H)=\exp({\rm ad}_{X})(H)=H+[X,H]+\ldots=H_{0}+H_{r}-[H_{0},X]+\ldots, (3.30)

where the dots indicate terms of degree >r>r. Fixing root vectors eα𝔤αe_{\alpha}\in{\mathfrak{g}}_{\alpha}, we have Hr=αΔ(𝔤r)cαeαH_{r}=\sum_{\alpha\in\Delta({\mathfrak{g}}_{r})}c_{\alpha}e_{\alpha}. By (MU2) in Lemma 3.8, α(H0)0\alpha(H_{0})\neq 0 αΔ+\forall\alpha\in\Delta^{+}, so defining X:=αΔ(𝔤r)cαα(H0)eαX:=\sum_{\alpha\in\Delta({\mathfrak{g}}_{r})}\frac{c_{\alpha}}{\alpha(H_{0})}e_{\alpha}, we have Hr[H0,X]=0H_{r}-[H_{0},X]=0. Redefining Adexp(X)(𝔣){\rm Ad}_{\exp(X)}({\mathfrak{f}}) as 𝔣{\mathfrak{f}} and Adexp(X)(H){\rm Ad}_{\exp(X)}(H) as HH, the latter has H+H_{+} with leading part of degree r+1r+1. Inductively, we may normalize H+=𝔡(H0)=0H_{+}={\mathfrak{d}}(H_{0})=0, and so H=H0𝔥𝔣0H=H_{0}\in{\mathfrak{h}}\cap{\mathfrak{f}}^{0}. Since α(H0)0\alpha(H_{0})\neq 0 for all αΔ(𝔭+)\alpha\in\Delta({\mathfrak{p}}_{+}), the P+P_{+}-part of the structure group has been completely reduced.

Step 2: Observe that ker(μ)𝔣0\ker(\mu)\subset{\mathfrak{f}}^{0}

Fix any 0H0ker(μ)𝔥0\neq H_{0}^{\prime}\in\ker(\mu)\subset{\mathfrak{h}}, so H0𝔞H_{0}^{\prime}\in{\mathfrak{a}}. Write H=H0+H+𝔣H^{\prime}=H_{0}^{\prime}+H_{+}^{\prime}\in{\mathfrak{f}} with H+=𝔡(H0)𝔭+=𝔤1H_{+}^{\prime}={\mathfrak{d}}(H_{0}^{\prime})\in{\mathfrak{p}}_{+}={\mathfrak{g}}^{1}. By (M2) from Definition 2.5, we have:

[H0,H]𝔣=[H0,H]=[H0,H0+H+]=[H0,H+]𝔭+𝔣=𝔣1=0,\displaystyle[H_{0},H^{\prime}]_{\mathfrak{f}}=[H_{0},H^{\prime}]=[H_{0},H^{\prime}_{0}+H_{+}^{\prime}]=[H_{0},H_{+}^{\prime}]\in{\mathfrak{p}}_{+}\cap{\mathfrak{f}}={\mathfrak{f}}^{1}=0, (3.31)

where the twistor simplification was invoked for the last equality. Since (MU2) implies α(H0)0\alpha(H_{0})\neq 0 for all αΔ(𝔭+)\alpha\in\Delta({\mathfrak{p}}_{+}), then necessarily H+=0H_{+}^{\prime}=0. Thus, ker(μ)𝔣0\ker(\mu)\subset{\mathfrak{f}}^{0}.

Step 3: Show that 𝔣=𝔞{\mathfrak{f}}={\mathfrak{a}} as subspaces of 𝔤{\mathfrak{g}}.

Recall JμJ_{\mu} from (3.21) and the secondary grading 𝖹Jμ\mathsf{Z}_{J_{\mu}}. From (3.19), we have 𝔤=𝔞𝔞{\mathfrak{g}}={\mathfrak{a}}\oplus{\mathfrak{a}}^{\perp} where

𝔞=𝔤𝔞0,where𝔞0=ker(μ)γΔ(𝔤0,0)𝔤γ,𝔞:=ker(μ)𝔤0,+𝔤+,where𝔤0,+:=γΔ(𝔤0,+)𝔤γ,\displaystyle\begin{split}&{\mathfrak{a}}={\mathfrak{g}}_{-}\oplus{\mathfrak{a}}_{0},\quad\mbox{where}\quad{\mathfrak{a}}_{0}=\ker(\mu)\oplus\bigoplus_{\gamma\in\Delta({\mathfrak{g}}_{0,\leq 0})}{\mathfrak{g}}_{\gamma},\\ &{\mathfrak{a}}^{\perp}:=\ker(\mu)^{\perp}\oplus{\mathfrak{g}}_{0,+}\oplus{\mathfrak{g}}_{+},\quad\mbox{where}\quad{\mathfrak{g}}_{0,+}:=\bigoplus_{\gamma\in\Delta({\mathfrak{g}}_{0,+})}{\mathfrak{g}}_{\gamma},\end{split} (3.32)

and ker(μ)\ker(\mu)^{\perp} is a 1-dimensional complement to ker(μ)\ker(\mu) inside 𝔥{\mathfrak{h}}. Both 𝔞{\mathfrak{a}} and 𝔞{\mathfrak{a}}^{\perp} are 𝔥{\mathfrak{h}}-invariant, so in particular they are invariant under ker(μ)\ker(\mu). Defining the associated deformation map 𝔡:𝔞𝔞{\mathfrak{d}}:{\mathfrak{a}}\to{\mathfrak{a}}^{\perp}, Lemma 2.8 implies that H𝔡=0H\cdot{\mathfrak{d}}=0, Hker(μ)𝔣0\forall H\in\ker(\mu)\subset{\mathfrak{f}}^{0}, so 𝔡{\mathfrak{d}} lies in the direct sum of weight spaces of 𝔞𝔞{\mathfrak{a}}^{*}\otimes{\mathfrak{a}}^{\perp} for weights that are multiples of μ\mu.

Note ΔΔ(𝔞)\Delta^{-}\subset\Delta({\mathfrak{a}}), so let αΔ+\alpha\in\Delta^{+} and examine 𝔡(eα){\mathfrak{d}}(e_{-\alpha}). From (3.19), we have 𝔤α𝔞{\mathfrak{g}}_{-\alpha}\subset{\mathfrak{a}}, and the weights of eα𝔞e_{-\alpha}^{*}\otimes{\mathfrak{a}}^{\perp} are of the form α+γ\alpha+\gamma, where γΔ+(𝔞){0}\gamma\in\Delta^{+}({\mathfrak{a}}^{\perp})\cup\{0\}. These all have non-negative coefficients in the simple root basis. By (MU1), these weights cannot be multiples of μ\mu. Hence, 𝔡(eα)=0{\mathfrak{d}}(e_{-\alpha})=0, i.e. eα𝔣e_{-\alpha}\in{\mathfrak{f}}. (This argument is very similar to the (G2,P2)(G_{2},P_{2}) case from §3.2.)

For our Step 3 claim, it suffices to consider αΔ+(𝔞)=Δ+(𝔤0,0)\alpha\in\Delta^{+}({\mathfrak{a}})=\Delta^{+}({\mathfrak{g}}_{0,0}) and show that 𝔡(eα)=0{\mathfrak{d}}(e_{\alpha})=0, αΔ+(𝔤0,0)\forall\alpha\in\Delta^{+}({\mathfrak{g}}_{0,0}). First recall that w=(jk)W𝔭(2)w=(jk)\in W^{\mathfrak{p}}(2) as in Lemma 3.8. We claim that we may assume

𝖹j(μ)>0,𝖹s(μ)=𝖹s(λ)<0,sj,k.\displaystyle\mathsf{Z}_{j}(\mu)>0,\quad\mathsf{Z}_{s}(\mu)=\mathsf{Z}_{s}(-\lambda)<0,\quad s\neq j,k. (3.33)

Via the twistor simplification, we have either: (a) I𝔭={j}I_{\mathfrak{p}}=\{j\}, hence 𝖹j(μ)=𝖹(μ)>0\mathsf{Z}_{j}(\mu)=\mathsf{Z}(\mu)>0; or (b) I𝔭={j,k}I_{\mathfrak{p}}=\{j,k\} with cjk=0c_{jk}=0, hence 0<𝖹(μ)=𝖹j(μ)+𝖹k(μ)0<\mathsf{Z}(\mu)=\mathsf{Z}_{j}(\mu)+\mathsf{Z}_{k}(\mu), so either 𝖹j(μ)>0\mathsf{Z}_{j}(\mu)>0 or 𝖹k(μ)>0\mathsf{Z}_{k}(\mu)>0. Since cjk=0c_{jk}=0, then swap j,kj,k if necessary to assume that 𝖹j(μ)>0\mathsf{Z}_{j}(\mu)>0. Since 3\ell\geq 3, (3.18) implies the rest of (3.33).

Since 𝔡{\mathfrak{d}} has positive degree, then 𝔡(eα)𝔭+{\mathfrak{d}}(e_{\alpha})\in{\mathfrak{p}}_{+}, so let us consider a weight γα\gamma-\alpha for γΔ(𝔭+)\gamma\in\Delta({\mathfrak{p}}_{+}) corresponding to a possible term eαeγe_{\alpha}^{*}\otimes e_{\gamma} in 𝔡{\mathfrak{d}}. Using JμJ_{\mu}, we have two cases:

  1. (1)

    Jμ\{k}J_{\mu}\backslash\{k\}\neq\emptyset: Since 𝖹j(α)=0\mathsf{Z}_{j}(\alpha)=0, then 𝖹j(γα)=𝖹j(γ)>0\mathsf{Z}_{j}(\gamma-\alpha)=\mathsf{Z}_{j}(\gamma)>0, while for any iJμ\{k}i\in J_{\mu}\backslash\{k\}, we have 𝖹i(γα)=𝖹i(γ)>0\mathsf{Z}_{i}(\gamma-\alpha)=\mathsf{Z}_{i}(\gamma)>0. By (3.33), γα\gamma-\alpha cannot be a multiple of μ\mu.

  2. (2)

    Jμ\{k}=J_{\mu}\backslash\{k\}=\emptyset: Since 3\ell\geq 3, fix any sj,ks\neq j,k and note that cjs,cks,ckj0c_{js},c_{ks},c_{kj}\leq 0 (by standard properties of Cartan matrices). By definition of JμJ_{\mu}, we have μ,αs=0\langle\mu,\alpha_{s}^{\vee}\rangle=0. Recalling that ri0r_{i}\geq 0 for all ii, (3.18) implies:

    0=μ,αs=rs(rj+1)cjs(rk+1)(cksckjcjs)rs0.\displaystyle 0=\langle-\mu,\alpha_{s}^{\vee}\rangle=r_{s}-(r_{j}+1)c_{js}-(r_{k}+1)(c_{ks}-c_{kj}c_{js})\geq r_{s}\geq 0. (3.34)

    Hence, rs=0r_{s}=0, cjs=cks=0c_{js}=c_{ks}=0, i.e. every sj,ks\neq j,k is not connected in the Dynkin diagram to either jj or kk. Since 𝔤{\mathfrak{g}} is simple (with rank(𝔤)3\mathrm{rank}({\mathfrak{g}})\geq 3), its Dynkin diagram is connected, so this is a contradiction, i.e. this case is vacuous.

We conclude that 𝔡(eα)=0{\mathfrak{d}}(e_{\alpha})=0, αΔ+(𝔤0,0)\forall\alpha\in\Delta^{+}({\mathfrak{g}}_{0,0}), and hence 𝔡=0{\mathfrak{d}}=0. Thus, 𝔣=𝔞{\mathfrak{f}}={\mathfrak{a}} as subspaces of 𝔤{\mathfrak{g}}.

Step 4: Study curvature κ\kappa

By (M3) and Proposition 2.6, we have κker()12𝔭+𝔤\kappa\in\ker(\partial^{*})^{1}\subset\bigwedge^{2}{\mathfrak{p}}_{+}\otimes{\mathfrak{g}} and 𝔣0κ=0{\mathfrak{f}}^{0}\cdot\kappa=0. Since ker(μ)𝔣0\ker(\mu)\subset{\mathfrak{f}}^{0}, then κ\kappa is valued in the direct sum of weight spaces of ker()1\ker(\partial^{*})^{1} for weights σ=rμ=α+β+γ\sigma=r\mu=\alpha+\beta+\gamma with α,βΔ(𝔭+)\alpha,\beta\in\Delta({\mathfrak{p}}_{+}) and γΔ{0}\gamma\in\Delta\cup\{0\}. For the same reasons there (regularity and the final statement in §2.1), we again have r1r\geq 1. Let us show that r1r\leq 1. Write the highest weight of 𝔤{\mathfrak{g}} as λ=iniαi\lambda=\sum_{i}n_{i}\alpha_{i}, where ni>0n_{i}>0 for all ii since 𝔤{\mathfrak{g}} is simple. Since λ-\lambda is the lowest root of 𝔤{\mathfrak{g}}, then λγ<σ-\lambda\leq\gamma<\sigma. Thus, for any ij,ki\neq j,k,

ni=𝖹i(λ)𝖹i(γ)𝖹i(σ)=r𝖹i(μ)=rni,\displaystyle-n_{i}=\mathsf{Z}_{i}(-\lambda)\leq\mathsf{Z}_{i}(\gamma)\leq\mathsf{Z}_{i}(\sigma)=r\mathsf{Z}_{i}(\mu)=-rn_{i}, (3.35)

where the last equality follows from (3.18). Since ni>0n_{i}>0, then r1r\leq 1 follows. Thus, r=1r=1 and so κ\kappa has weight σ=μ\sigma=\mu. The multiplicity of μ\mu (lowest weight) is the same as that occurring in the 𝔤0{\mathfrak{g}}_{0}-irrep 𝕍μ{\mathbb{V}}_{\mu}, i.e. multiplicity one, by Kostant’s theorem. Under the identification with harmonic 2-cochains, κ\kappa must be a nonzero multiple of ϕ0\phi_{0}. Using Adexp(t𝖹){\rm Ad}_{\exp(t\mathsf{Z})}, we may do a complex rescaling to arrange κ=ϕ0\kappa=\phi_{0}. Thus, we have obtained the canonical curved model.

Working with split-real geometries, we similarly arrive at κ\kappa being a nonzero multiple of ϕ0\phi_{0} using almost exactly the same arguments as in the complex case. The only part that differs concerns the use of [16, Prop.3.1.1] to assert (3.3) and the subsequent statement characterizing equality there. A key ingredient for that Proposition is that 𝒪=G0[ϕ0]{\mathcal{O}}=G_{0}\cdot[\phi_{0}] is the unique closed G0G_{0}-orbit in (𝕍μ){\mathbb{P}}({\mathbb{V}}_{\mu}), and this orbit is of minimal dimension. This is a well-known result in the complex setting, and the result remains true in the split-real setting – see [20, Cor.1]. All other arguments in [16, Prop.3.1.1] and this section are exactly the same to arrive to κ\kappa being a nonzero multiple of ϕ0\phi_{0}.

Finally, a real scaling using Adexp(t𝖹){\rm Ad}_{\exp(t\mathsf{Z})} normalizes κ=±ϕ0\kappa=\pm\phi_{0}. The algebraic models are PP-equivalent if and only if there exists g0G0g_{0}\in G_{0} such that g0ϕ0=ϕ0g_{0}\cdot\phi_{0}=-\phi_{0}. The proof of Theorem 1.1 is complete.

4. Examples

In this final section, we apply Theorem 1.1 and give concrete examples of submaximally symmetric parabolic geometries, expressed as underlying geometric structures. Implicit here are known equivalences of categories, in particular the parabolic geometry types (G,P)(G,P) associated to given structures. We do not provide details here, but instead refer the reader to [6].

We will use the following notation. Let EijE_{ij} denote the standard square matrix (of size to be specified) with a 1 in the (i,j)(i,j)-position and 0 elsewhere. We continue to use λ\lambda for the highest weight of 𝔤{\mathfrak{g}}, and ϕ0\phi_{0} for a lowest weight vector of a 𝔤0{\mathfrak{g}}_{0}-irreducible submodule of H+2(𝔤,𝔤)H^{2}_{+}({\mathfrak{g}}_{-},{\mathfrak{g}}), obtained via Kostant’s theorem (§3.1).

4.1. Projective structures

On a manifold MnM^{n}, two torsion-free affine connections are equivalent if and only if they admit the same unparametrized geodesics, and an equivalence class [][\nabla] is called a projective structure. These well-known structures underlie geometries of type (G,P)=(An,P1)(G,P)=(A_{n},P_{1}), for which 𝔐=(n+1)21{\mathfrak{M}}=(n+1)^{2}-1, and harmonic curvature corresponds to the projective Weyl curvature. Here, G0GL(n,𝔽)G_{0}\cong\operatorname{GL}(n,{\mathbb{F}}) (for 𝔽={\mathbb{F}}={\mathbb{R}} or {\mathbb{C}}) realized as matrices of the form A=(det(A0)100A0)Matn+1(𝔽)A=\begin{pmatrix}\det(A_{0})^{-1}&0\\ 0&A_{0}\end{pmatrix}\in\mathrm{Mat}_{n+1}({\mathbb{F}}), where A0GL(n,𝔽)A_{0}\in\operatorname{GL}(n,{\mathbb{F}}). In [16], we found that 𝔖=(n1)2+4{\mathfrak{S}}=(n-1)^{2}+4 for n3n\geq 3, realized in particular by the Egorov projective structure [10], [16, (5.11)]. We can now assert:

Corollary 4.1.

Let n3n\geq 3, and (Mn,[])(M^{n},[\nabla]) a submaximally symmetric projective structure with non-vanishing projective Weyl curvature at xMx\in M. Then about xx, (Mn,[])(M^{n},[\nabla]) is locally equivalent to the Egorov projective structure (in either the real or complex settings).

Proof.

Using Theorem 1.1, we immediately conclude the result over 𝔽={\mathbb{F}}={\mathbb{C}}, so consider 𝔽={\mathbb{F}}={\mathbb{R}}. Using w=(12)W𝔭(2)w=(12)\in W^{\mathfrak{p}}(2) and λ=λ1+λn\lambda=\lambda_{1}+\lambda_{n}, we obtain ϕ0=eα1eα1+α2eα2αn=E12E13En+1,2\phi_{0}=e_{\alpha_{1}}\wedge e_{\alpha_{1}+\alpha_{2}}\otimes e_{-\alpha_{2}-...-\alpha_{n}}=E_{12}\wedge E_{13}\otimes E_{n+1,2}, where EijMatn+1()E_{ij}\in\mathrm{Mat}_{n+1}({\mathbb{R}}). Letting A=diag(a1,,an+1)G0A=\operatorname{diag}(a_{1},...,a_{n+1})\in G_{0} where a1=(a2an+1)1a_{1}=(a_{2}\cdots a_{n+1})^{-1}, we get Aϕ0=a12an+1a22a3ϕ0A\cdot\phi_{0}=\frac{a_{1}^{2}a_{n+1}}{a_{2}^{2}a_{3}}\phi_{0}. Since n3n\geq 3, then setting a2==an=1a_{2}=...=a_{n}=1 and a1=an+1=1a_{1}=a_{n+1}=-1, we get Aϕ0=ϕ0A\cdot\phi_{0}=-\phi_{0}. Invoking Theorem 1.1 now gives the result. ∎

Remark 4.2.

Over {\mathbb{R}}, some attention should be given to the choice of Lie group GG. Choosing G=An:=SL(n+1,)G=A_{n}:=\operatorname{SL}(n+1,{\mathbb{R}}) with G0G_{0} as above, the induced G0G_{0}-action on 𝔤1{\mathfrak{g}}_{-1} is vBvv\mapsto Bv, where B=R0det(R0)B=R_{0}\det(R_{0}), so det(B)=det(R0)n+1\det(B)=\det(R_{0})^{n+1}, which is always positive when nn is odd. In these cases, one is in fact working with oriented manifolds. In the unoriented setting, one could work with G=PGL(n+1,)G=\operatorname{PGL}(n+1,{\mathbb{R}}) (i.e. GL(n+1,)\operatorname{GL}(n+1,{\mathbb{R}}) modulo its centre 𝒵(GL(n+1,)){\mathcal{Z}}(\operatorname{GL}(n+1,{\mathbb{R}})), used as in [6, Prop.4.1.5]) or use G=SL^(n+1,):={RMatn+1():det(R)=±1}G=\widehat{SL}(n+1,{\mathbb{R}}):=\{R\in\mathrm{Mat}_{n+1}({\mathbb{R}}):\det(R)=\pm 1\} when nn is odd.

4.2. 2nd order ODE systems

Any system x¨i=Fi(t,xj,x˙j)\ddot{x}^{i}=F^{i}(t,x^{j},\dot{x}^{j}), 1im1\leq i\leq m of 2nd order ODE in m2m\geq 2 dependent variables (viewed up to point transformations) admits an equivalent description as a (regular, normal) parabolic geometry of type (Am+1,P1,2)=(PGL(n+1,𝔽),P1,2)(A_{m+1},P_{1,2})=(\operatorname{PGL}(n+1,{\mathbb{F}}),P_{1,2}). (In [6, §4.4.3], these are formulated as generalized path geometries. When m3m\geq 3 (or m=1m=1), these can all be locally realized as 2nd order ODE systems, while for m=2m=2, we additionally have the constraint that κH\kappa_{H} vanishes in degree +1+1.) We have 𝔐=(m+2)21{\mathfrak{M}}=(m+2)^{2}-1, locally uniquely realized by the trivial ODE x¨1==x¨m=0\ddot{x}^{1}=...=\ddot{x}^{m}=0. Here,

G0={(a1000a2000A0):A0GL(m,𝔽),ai𝔽×}mod𝒵(GL(n+1,𝔽)),\displaystyle G_{0}=\left\{\begin{pmatrix}a_{1}&0&0\\ 0&a_{2}&0\\ 0&0&A_{0}\end{pmatrix}:A_{0}\in\operatorname{GL}(m,{\mathbb{F}}),\,a_{i}\in{\mathbb{F}}^{\times}\right\}\quad\,{\rm mod}\ {\mathcal{Z}}(\operatorname{GL}(n+1,{\mathbb{F}})), (4.1)

and harmonic curvature decomposes into two components: Fels curvature (degree +3) and Fels torsion (degree +2). Referring to [17, §5.3 and §5.4], we have (using λ=λ1+λm+1\lambda=\lambda_{1}+\lambda_{m+1} and EijMatm+2(𝔽)E_{ij}\in\mathrm{Mat}_{m+2}({\mathbb{F}}) and notation 𝔖μ{\mathfrak{S}}_{\mu}, 𝔘μ{\mathfrak{U}}_{\mu} from §3.1):

  • w=(21)w=(21) (“Segré branch”, i.e. vanishing Fels torsion): μ1:=wλ=4λ23λ3λm+1\mu_{1}:=-w\bullet\lambda=4\lambda_{2}-3\lambda_{3}-\lambda_{m+1} has 𝖹(μ1)=+3\mathsf{Z}(\mu_{1})=+3, and 𝔖μ1=𝔘μ1=m2+5{\mathfrak{S}}_{\mu_{1}}={\mathfrak{U}}_{\mu_{1}}=m^{2}+5, realized in the Segré branch by:

    x¨1==x¨m1=0,x¨m=(x˙1)3.\displaystyle\ddot{x}^{1}=...=\ddot{x}^{m-1}=0,\quad\ddot{x}^{m}=(\dot{x}^{1})^{3}. (4.2)
  • w=(12)w=(12) (“projective branch”, i.e. vanishing Fels curvature): μ2:=wλ=4λ1λ2λ3λm+1\mu_{2}:=-w\bullet\lambda=4\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{m+1} has 𝖹(μ2)=+2\mathsf{Z}(\mu_{2})=+2 and 𝔖μ2=𝔘μ2=m2+4{\mathfrak{S}}_{\mu_{2}}={\mathfrak{U}}_{\mu_{2}}=m^{2}+4, realized in the projective branch by the geodesic equations of the Egorov projective structure:

    x¨i=2x1x˙1x˙2x˙i,1im.\displaystyle\ddot{x}^{i}=2x^{1}\dot{x}^{1}\dot{x}^{2}\dot{x}^{i},\quad 1\leq i\leq m. (4.3)

    Using the point transformation (t~,x~1,x~2,,x~m)=(x1,t+12(x1)2x2,x2,,xm)(\tilde{t},\tilde{x}^{1},\tilde{x}^{2},...,\tilde{x}^{m})=(x^{1},t+\frac{1}{2}(x^{1})^{2}x^{2},x^{2},...,x^{m}) given in [1], a simpler alternative model to (4.3) is

    x¨1=x2,x¨2==x¨m=0.\displaystyle\ddot{x}^{1}=x^{2},\quad\ddot{x}^{2}=...=\ddot{x}^{m}=0. (4.4)

    (All ODE in the projective branch are geodesic equations for some projective structure, and Theorem 4.1 asserts the classification of submaximal symmetry models in this branch.)

Uniqueness of the submaximally symmetric ODE (4.2) and (4.4) was recently asserted in [1, Theorems 2 & 3] without proof. Applying our Theorem 1.1, we obtain:

Corollary 4.3.

Let m2m\geq 2. Over 𝔽={\mathbb{F}}={\mathbb{R}} or {\mathbb{C}}, suppose that a given 2nd order ODE system x¨i=Fi(t,xj,x˙j)\ddot{x}^{i}=F^{i}(t,x^{j},\dot{x}^{j}), 1im1\leq i\leq m is submaximally symmetric, i.e. it has point symmetry algebra of dimension 𝔖=m2+5{\mathfrak{S}}=m^{2}+5. Then the system has vanishing Fels torsion everywhere, and about any point where Fels curvature is non-vanishing, the system is locally point equivalent to (4.2).

Within the projective branch (i.e. vanishing Fels curvature), about any point where Fels torsion is non-vanishing, any submaximally symmetric system (realizing 𝔖μ2=m2+4{\mathfrak{S}}_{\mu_{2}}=m^{2}+4) is locally point equivalent to (4.4).

Proof.

Note that we have 𝔘=max{𝔘μ1,𝔘μ2}=𝔘μ1=m2+5{\mathfrak{U}}=\max\{{\mathfrak{U}}_{\mu_{1}},{\mathfrak{U}}_{\mu_{2}}\}={\mathfrak{U}}_{\mu_{1}}=m^{2}+5 and 𝔖=𝔖μ1=m2+5{\mathfrak{S}}={\mathfrak{S}}_{\mu_{1}}=m^{2}+5. Since 𝔖=𝔘{\mathfrak{S}}={\mathfrak{U}}, then local homogeneity follows from Lemma 2.3. Write ϕ=ϕ1+ϕ2\phi=\phi_{1}+\phi_{2} for ϕ1𝕍μ1\phi_{1}\in{\mathbb{V}}_{\mu_{1}} and ϕ2𝕍μ2\phi_{2}\in{\mathbb{V}}_{\mu_{2}}, where 𝕍μi{\mathbb{V}}_{\mu_{i}} are the 𝔤0{\mathfrak{g}}_{0}-irreducible submodules of H+2(𝔤,𝔤)H^{2}_{+}({\mathfrak{g}}_{-},{\mathfrak{g}}) corresponding to Fels curvature and Fels torsion respectively. We have 𝔞ϕ𝔞ϕ2{\mathfrak{a}}^{\phi}\subset{\mathfrak{a}}^{\phi_{2}}, which has maximal dimension 𝔘μ2=m2+4{\mathfrak{U}}_{\mu_{2}}=m^{2}+4 when ϕ20\phi_{2}\neq 0. By (2.4) and the symmetry dimension being m2+5m^{2}+5, the Fels torsion must vanish everywhere.

We now invoke Theorem 1.1. Using w=(21)W𝔭(2)w=(21)\in W^{\mathfrak{p}}(2), we find that ϕ0=eα2eα1+α2eα3αm+1=E23E13Em+2,3\phi_{0}=e_{\alpha_{2}}\wedge e_{\alpha_{1}+\alpha_{2}}\otimes e_{-\alpha_{3}-...-\alpha_{m+1}}=E_{23}\wedge E_{13}\otimes E_{m+2,3}. For A=diag(a1,,am+2)G0A=\operatorname{diag}(a_{1},...,a_{m+2})\in G_{0}, we get Aϕ0=a1a2am+2a33ϕ0A\cdot\phi_{0}=\frac{a_{1}a_{2}a_{m+2}}{a_{3}^{3}}\phi_{0}. Setting a1==am+1=1a_{1}=...=a_{m+1}=1 and am+2=1a_{m+2}=-1, we get Aϕ0=ϕ0A\cdot\phi_{0}=-\phi_{0}, so uniqueness now follows from Theorem 1.1. Our final statement reformulates Corollary 4.1 via the correspondence space construction (§3.3). ∎

We remark that in [16], we used G=SL(m+2,)G=\operatorname{SL}(m+2,{\mathbb{R}}) instead of G=PGL(m+2,)G=\operatorname{PGL}(m+2,{\mathbb{R}}). This small change does not affect 𝔖{\mathfrak{S}} and 𝔘{\mathfrak{U}}, but the notion of point equivalence is slightly restricted with the former, as we now explain. Consider A=(a1000a2000A0)G0A=\begin{pmatrix}a_{1}&0&0\\ 0&a_{2}&0\\ 0&0&A_{0}\end{pmatrix}\in G_{0} with a1a2det(A0)=1a_{1}a_{2}\det(A_{0})=1. The ODE structure is modelled on 𝔤1{\mathfrak{g}}_{-1}, which is split into the direct sum of E21\langle E_{21}\rangle (corresponding to the line field spanned by the total derivative Dt:=t+x˙ixi+Fix˙iD_{t}:=\partial_{t}+\dot{x}^{i}\partial_{x^{i}}+F^{i}\partial_{\dot{x}^{i}}) and E32,,Em+2,2\langle E_{32},...,E_{m+2,2}\rangle (corresponding to x˙i\langle\partial_{\dot{x}^{i}}\rangle). On 𝔤1{\mathfrak{g}}_{-1}, AA induces:

(,v)(c,B0v),c=a2a1,B0=A0a21.\displaystyle(\ell,v)\mapsto\left(c\ell,B_{0}v\right),\quad c=\tfrac{a_{2}}{a_{1}},\quad B_{0}=A_{0}a_{2}^{-1}. (4.5)

But then det(B0)=det(A0)a2m=1a1a2m+1=ca2m+2\det(B_{0})=\det(A_{0})a_{2}^{-m}=\frac{1}{a_{1}a_{2}^{m+1}}=\frac{c}{a_{2}^{m+2}}. When mm is even, the signs of cc and det(B0)\det(B_{0}) are aligned, and the point transformation (t,xi)(t,xi)(t,x^{i})\mapsto(-t,x^{i}) would not be an admissible equivalence.

If we consider G=SL(m+2,)G=\operatorname{SL}(m+2,{\mathbb{R}}), then for m3m\geq 3, setting ai=1a_{i}=1 for i3,4i\neq 3,4 except a3=a4=1a_{3}=a_{4}=-1 yields Aϕ0=ϕ0A\cdot\phi_{0}=-\phi_{0}. When m=2m=2, we have Aϕ0=a1a2a4a33ϕ0=1a34ϕ0A\cdot\phi_{0}=\frac{a_{1}a_{2}a_{4}}{a_{3}^{3}}\phi_{0}=\frac{1}{a_{3}^{4}}\phi_{0}, and no AG0A\in G_{0} exists with Aϕ0=ϕ0A\cdot\phi_{0}=-\phi_{0}. In this case, x¨=0\ddot{x}=0, y¨=±x˙3\ddot{y}=\pm\dot{x}^{3} would be inequivalent submaximally symmetric models.

4.3. Conformal structures

Given a smooth manifold MnM^{n} with n3n\geq 3 and a metric gg of signature (p,q)(p,q), we let [g]:={λg|λ:M+ smooth}[g]:=\{\lambda g\,|\,\lambda:M\to{\mathbb{R}}^{+}\mbox{ smooth}\}, and refer to (Mn,[g])(M^{n},[g]) as a conformal structure. This admits an equivalent description as a parabolic geometry of type (G,P)=(SO(p+1,q+1),P1)(G,P)=(\operatorname{SO}(p+1,q+1),P_{1}), where P1P_{1} is the stabilizer of a null line in p+1,q+1{\mathbb{R}}^{p+1,q+1}, so 𝔐=(n+22){\mathfrak{M}}=\binom{n+2}{2}. Restrict now to n4n\geq 4. See [9] for 𝔖{\mathfrak{S}} in the Riemannian / Lorentzian cases, which are exceptional. In non-Riemannian / non-Lorentzian signatures, [16, §5.1] indicates 𝔖=(n12)+6{\mathfrak{S}}=\binom{n-1}{2}+6, realized by [𝐠][{\mathbf{g}}], with 𝐠{\mathbf{g}} given by the direct product of a flat Euclidean metric of signature (p2,q2)(p-2,q-2) and the (2,2)(2,2)-metric

gpp(2,2)=y2dw2+dwdx+dydz.\displaystyle g_{{\rm pp}}^{(2,2)}=y^{2}dw^{2}+dwdx+dydz. (4.6)

Restrict now to the split-real form, so |pq|1|p-q|\leq 1. We view 𝔤Matn+2(){\mathfrak{g}}\subset\mathrm{Mat}_{n+2}({\mathbb{R}}) as matrices that are skew with respect to the anti-diagonal, and let G0G_{0} consist of block diagonal matrices with blocks (λ,C,λ1)(\lambda,C,\lambda^{-1}) with λ>0\lambda>0 and CSO(p,q)C\in\operatorname{SO}(p,q), and so the G0G_{0}-action on 𝔤1{\mathfrak{g}}_{-1} is given by xλ1Cxx\mapsto\lambda^{-1}Cx. In particular, any scalar product on 𝔤1{\mathfrak{g}}_{-1} is only positively rescaled, so any conformal structure [g][g] and its “negative” [g][-g] are inequivalent. Together with Theorem 1.1, we deduce:

Corollary 4.4.

Let n=p+q4n=p+q\geq 4 and |pq|1|p-q|\leq 1. Suppose that a conformal structure of signature (p,q)(p,q) is submaximally symmetric, i.e. its conformal symmetry algebra has dimension 𝔖=(n12)+6{\mathfrak{S}}=\binom{n-1}{2}+6. Then about any point where the Weyl curvature is non-vanishing, the structure is locally conformally equivalent to one of the two models [𝐠][{\mathbf{g}}] or [𝐠][-{\mathbf{g}}] described above.

The split-signature assumption |pq|1|p-q|\leq 1 may likely be relaxed so that the same conclusion would hold in general non-Riemannian / non-Lorentzian signatures, but this would require a more careful investigation into related real forms, which is beyond our scope here. For the more subtle conformal Riemannian and Lorentzian cases, finding the complete local classification of submaximally symmetric models is an open problem. (See [9] for known models.)

4.4. Parabolic contact structures

Generalizing §3.2, parabolic contact structures of type (G,P)(G,P) (or “GG-contact structures”) are underlying structures for (regular, normal) geometries of types:

(A,P1,),2,(B,P2),3,(C,P1),2,(D,P2),4,(E6,P2),(E7,P1),(E8,P8),(F4,P1),(G2,P2).\displaystyle\begin{split}&(A_{\ell},P_{1,\ell}),\,\,\ell\geq 2,\quad(B_{\ell},P_{2}),\,\,\ell\geq 3,\quad(C_{\ell},P_{1}),\,\,\ell\geq 2,\quad(D_{\ell},P_{2}),\,\,\ell\geq 4,\\ &(E_{6},P_{2}),\quad(E_{7},P_{1}),\quad(E_{8},P_{8}),\quad(F_{4},P_{1}),\quad(G_{2},P_{2}).\end{split} (4.7)

As shown in [18], these structures all admit descriptions (possibly passing to a correspondence space) in terms of differential equations. The cases (A2,P1,2)(A_{2},P_{1,2}) and (C2,P1)(C_{2},P_{1}) are classical, and correspond to scalar 2nd order ODE (up to point transformations) and scalar 3rd order ODE (up to contact transformations). These are exceptions: they admit non-unique submaximally symmetric structures with 𝔖=3{\mathfrak{S}}=3 and 𝔖=5{\mathfrak{S}}=5 symmetries respectively. For all other cases, explicit submaximally symmetric structures (with respect to a given G0G_{0}-irrep 𝕍{\mathbb{V}} of H+2(𝔤,𝔤)H^{2}_{+}({\mathfrak{g}}_{-},{\mathfrak{g}})) were given in [18, §4.2]. Over {\mathbb{C}}, these are locally unique by Theorem 1.1.

Acknowledgements

We thank Boris Kruglikov and Henrik Winther for helpful discussions. The research leading to these results has received funding from the Norwegian Financial Mechanism 2014-2021 (project registration number 2019/34/H/ST1/00636), the Tromsø Research Foundation (project “Pure Mathematics in Norway”), the UiT Aurora project MASCOT, and this article/publication is based upon work from COST Action CaLISTA CA21109 supported by COST (European Cooperation in Science and Technology), https://www.cost.eu.

References

  • [1] V.M. Boyko, O.V. Lokaziuk, R.O. Popovych, Admissible transformations and Lie symmetries of linear systems of second-order ordinary differential equations, arXiv:2105.05139 (2021).
  • [2] A. Čap, Automorphism groups of parabolic geometries, Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 233–239.
  • [3] A. Čap, Correspondence spaces and twistor spaces for parabolic geometries, J. Reine Angew. Math 582 (2005), 143–172.
  • [4] A. Čap, On canonical Cartan connections associated to filtered G-structures, arXiv:1707.05627 (2017).
  • [5] A. Čap, K. Neusser, On automorphism groups of some types of generic distributions, Diff. Geom. Appl. 27 (2009), no. 6, 769–779.
  • [6] A. Čap, J. Slovák, Parabolic Geometries I: Background and General Theory, Mathematical Surveys and Monographs, vol. 154, American Mathematical Society, 2009.
  • [7] B. Doubrov, A. Medvedev, and D. The, Homogeneous integrable Legendrian contact structures in dimension five, J. Geom. Anal. 30 (2020), 3806–3858.
  • [8] B. Doubrov, A. Medvedev, and D. The, Homogeneous Levi non-degenerate hypersurfaces in 3\mathbb{C}^{3}, Math. Z. 297 (2021), 669–709.
  • [9] B. Doubrov and D. The, Maximally degenerate Weyl tensors in Riemannian and Lorentzian signatures, Diff. Geom. Appl. 34 (2014), 25–44.
  • [10] P. Egorov, Collineations of projectively connected spaces (Russian), Dokl. Akad. Nauk SSSR 80 (1951), 709–712.
  • [11] B. Kostant, Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. of Math. (2) 74 (1961), 329–387.
  • [12] G. I. Kruchkovich, Classification of three-dimensional Riemannian spaces according to groups of motions, Usp. Mat. Nauk (N.S.) 9, no.1(59) (1954), 3-40; correction: Usp. Mat. Nauk (N.S.) 9, no.3 (61) (1954), 285. (Russian)
  • [13] B. Kruglikov, Submaximally symmetric CR-structures, J. Geom. Anal. 26 (2016), 3090–3097.
  • [14] B. Kruglikov, V. Matveev, D. The, Submaximally symmetric c-projective structures, Internat. J. Math. 27 (2016), no. 3, 1650022.
  • [15] B. Kruglikov, H. Winther, L. Zalabova, Submaximally symmetric almost quaternionic structures, Transform. Groups 23 (2018), 723–741.
  • [16] B. Kruglikov, D. The, The gap phenomenon in parabolic geometries, J. Reine Angew. Math. 723 (2017), 153–215.
  • [17] B. Kruglikov, D. The, Jet-determination of symmetries of parabolic geometries, Math. Ann. 371 (2018), 1575–1613.
  • [18] D. The, Exceptionally simple PDE, Diff. Geom. Appl. 56 (2018), 13–41.
  • [19] M.A.A. van Leeuwen, A. M. Cohen, B. Lisser, LiE, A package for Lie group computations (1992), http://wwwmathlabo.univ-poitiers.fr/\simmaavl/LiE/.
  • [20] H. Winther, Minimal Projective Orbits of Semi-simple Lie Groups, arXiv:2302.12138 (2023).