This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On twisted group ring isomorphism problem for p-groups

Gurleen Kaur GK: Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, Mohali 140 306, India [email protected] Surinder Kaur SK: Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India [email protected]  and  Pooja Singla PS: Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India [email protected]
Abstract.

In this article, we explore the problem of determining isomorphisms between the twisted complex group algebras of finite pp-groups. This problem bears similarity to the classical group algebra isomorphism problem and has been recently examined by Margolis-Schnabel. Our focus lies on a specific invariant, referred to as the generalized corank, which relates to the twisted complex group algebra isomorphism problem. We provide a solution for non-abelian pp-groups with generalized corank at most three.

Key words and phrases:
twisted group algebras, projective representations, Schur multiplier
2010 Mathematics Subject Classification:
Primary 16S35; Secondry 20C25, 20E99

1. Introduction

The group ring RGRG, where GG is a finite group and RR is a commutative ring, holds significant importance in representation theory. Over the past few decades, there has been considerable interest in decoding information about a group GG from its group ring RGRG. One particularly challenging problem in this context is the isomorphism problem, which investigates whether a group ring uniquely determines its corresponding group. Specifically, if RGRG and RHRH are isomorphic as RR-rings, does it imply that the groups GG and HH are isomorphic as well? For the current status of this problem, one can refer to [2, 13, 15, 16, 27]. The solution to this problem depends mainly upon the ring under consideration. For example, all the finite abelian groups of a given order have isomorphic complex group algebras, whereas the rational group algebras of any two non-isomorphic abelian groups are always non-isomorphic (see [25]). In 1971, Dade [3] constructed an example demonstrating the existence of two non-isomorphic metabelian groups that possess isomorphic group algebras over any field. Subsequently, Hertweck  [10] presented a counterexample to this phenomenon specifically for integral group rings, showcasing two non-isomorphic groups of even order whose integral group rings are isomorphic. However, the problem of determining whether integral group rings of groups with odd order exhibit isomorphism remains an open question. Additionally, investigating this problem in the context of modular group rings, in particular, for the group rings of finite pp-groups over a field of characteristic pp has been of significant interest (see [26]).

In recent times, a variant of the classical isomorphism problem known as the twisted group ring isomorphism problem has gained considerable attention. The problem was initially introduced in [17] and has been further explored by the authors in [18, 19]. In order to explain this version of the isomorphism problem, we start by introducing some notation.

Let RR be a commutative ring with unity and R×R^{\times} be the unit group of RR. Following [14], we denote the set of 22-cocyles of GG by Z2(G,R×)Z^{2}(G,R^{\times}) and the second cohomology group of GG over R×R^{\times} by H2(G,R×)H^{2}(G,R^{\times}). For a 22-cocycle α,\alpha, let [α][\alpha] denote its cohomology class. Given a ring RR, we write GRHG\sim_{R}H if there exists an isomorphism ψ:H2(G,R×)H2(H,R×)\psi:H^{2}(G,R^{\times})\rightarrow H^{2}(H,R^{\times}) such that RαGRψ(α)HR^{\alpha}G\cong R^{\psi(\alpha)}H for every [α]H2(G,R×)[\alpha]\in H^{2}(G,R^{\times}). The twisted group ring isomorphism problem is to determine the equivalence classes of groups of order n,n, under the relation R\sim_{R}. We call these equivalence classes to be the RR-twist isomorphism classes.

If two groups belong to the same RR-twist isomorphism class, then their group rings over RR are isomorphic. The order of the group H2(G,R×){\mathrm{H}}^{2}(G,R^{\times}) remains unchanged under the R\sim_{R} relation for the twisted group ring of GG. Throughout this article, our focus lies on the \mathbb{C}-twist isomorphism classes of finite pp-groups. The structure of the complex group algebras remains invariant under \mathbb{C}-twist isomorphism. Also, the group H2(G,×){\mathrm{H}}^{2}(G,\mathbb{C}^{\times}) is commonly referred to as the Schur multiplier of GG.

In [17, Theorem 4.3], Margolis and Schnabel determined the \mathbb{C}-twist isomorphism classes of groups of order p4p^{4}, where pp is a prime. In the same article, they proved (see [17, Lemma 1.2]) that any equivalence class of a finite abelian group with respect to \sim_{\mathbb{C}} is a singleton. Hence it is sufficient to focus on the classification of the \mathbb{C}-twist isomorphism classes of non-abelian finite groups. In this article, we continue this line of investigation of the \mathbb{C}-twist isomorphism classes of finite non-abelian pp-groups by fixing the order of the Schur multiplier. In this direction, Green [6] proved that the order of the Schur multiplier of a pp-group GG of order pnp^{n} is at most pn(n1)2.p^{\frac{n(n-1)}{2}}. Niroomand [20] improved this bound for non-abelian pp-groups and proved that |H2(G,×)|p(n1)(n2)2+1|{\mathrm{H}}^{2}(G,\mathbb{C}^{\times})|\leq p^{\frac{(n-1)(n-2)}{2}+1} for any non-abelian group GG of order pnp^{n}. Motivated by this result, a finite non-abelian pp-group GG is said to have generalized corank s(G)s(G) if |H2(G,×)|=p(n1)(n2)2+1s(G).|{\mathrm{H}}^{2}(G,\mathbb{C}^{\times})|=p^{\frac{(n-1)(n-2)}{2}+1-s(G)}.

We study the \mathbb{C}-twist isomorphism classes of finite non-abelian pp-groups by fixing their generalized corank. In particular, we describe the \mathbb{C}-twist isomorphism classes of all pp-groups with s(G)3s(G)\leq 3. The classification of all non-isomorphic pp-groups with s(G)3s(G)\leq 3 is known in the literature by the work of P. Niroomand [22] and S. Hatui [8]. We use this classification along with the structure of the corresponding twisted group algebras to obtain our results. We use the following notation:

  • CpnC_{p^{n}} denotes the cyclic group of order pnp^{n}.

  • CpnmC_{p^{n}}^{m} or Cpn(m)C_{p^{n}}^{(m)} denote the direct product of mm-copies of the cyclic group of order pnp^{n}.

  • Hm1H_{m}^{1} and Hm2H_{m}^{2} denote the extraspecial pp-groups of order p2m+1p^{2m+1} and of exponent pp and p2p^{2}, respectively.

  • H.KH.K denotes the central product of the groups HH and KK.

  • E(r)=E.CprE(r)=E.C_{p^{r}}, where EE is an extraspecial pp-group.

We now list the main results of this article. Our first result describes the \mathbb{C}-twist isomorphism classes of groups with generalized corank zero or one.

Lemma 1.1.

For non-abelian groups GG of order pnp^{n} with s(G){0,1}s(G)\in\{0,1\}, every \mathbb{C}-twist isomorphism class is a singleton, i.e. consists of only one group up to isomorphism.

In our next result, we describe all non-singleton \mathbb{C}-twist isomorphism classes of finite pp-groups with s(G)=2s(G)=2.

Theorem 1.2.

For non-abelian groups GG of order pnp^{n} with s(G)=2s(G)=2, all non-singleton \mathbb{C}-twist isomorphism classes are as follows:

  • (1)

    for any n4n\geq 4, 8×C2(n3)E(2)×C2(n4)\mathbb{Q}_{8}\times C_{2}^{(n-3)}\sim_{\mathbb{C}}E(2)\times C_{2}^{(n-4)};

  • (2)

    for an odd prime pp, E(2)H12×Cpa,b|ap2=1,bp=1,[a,b,a]=[a,b,b]=1E(2)\sim_{\mathbb{C}}H_{1}^{2}\times C_{p}\sim_{\mathbb{C}}\langle a,b~{}|~{}a^{p^{2}}=1,b^{p}=1,[a,b,a]=[a,b,b]=1\rangle;

  • (3)

    for n5n\geq 5, E(2)×Cp(n4)H12×Cp(n3)E(2)\times C_{p}^{(n-4)}\sim_{\mathbb{C}}H_{1}^{2}\times C_{p}^{(n-3)};

  • (4)

    for n=2m+1n=2m+1 and m2,m\geq 2, Hm1×Cp(n2m1)Hm2×Cp(n2m1)H_{m}^{1}\times C_{p}^{(n-2m-1)}\sim_{\mathbb{C}}H_{m}^{2}\times C_{p}^{(n-2m-1)};

  • (5)

    for n6n\geq 6 and 1<mn/211<m\leq n/2-1, E(2)×Cp(n2m2)Hm1×Cp(n2m1)Hm2×Cp(n2m1)E(2)\times C_{p}^{(n-2m-2)}\sim_{\mathbb{C}}H_{m}^{1}\times C_{p}^{(n-2m-1)}\sim_{\mathbb{C}}H_{m}^{2}\times C_{p}^{(n-2m-1)}.

See Section 3 for the proof of Lemma 1.1 and Theorem 1.2. The next result describes the non-singleton \mathbb{C}-twist isomorphism classes for the groups of order pnp^{n} with s(G)=3s(G)=3. A complete classification of these groups was given by Hatui [8, Theorem 1.1]. We refer the reader to Theorem 4.1 for the details and for the notation appearing in our next result.

Theorem 1.3.

For non-abelian groups GG of order pnp^{n} with s(G)=3s(G)=3, all non-singleton \mathbb{C}-twist isomorphism classes are as follows:

  1. (1)

    ϕ3(211)aϕ3(211)b1ϕ3(211)brp;\phi_{3}(211)a\sim_{\mathbb{C}}\phi_{3}(211)b_{1}\sim_{\mathbb{C}}\phi_{3}(211)b_{r_{p}};

  2. (2)

    ϕ2(2111)cϕ2(2111)d.\phi_{2}(2111)c\sim_{\mathbb{C}}\phi_{2}(2111)d.

A proof of the above result is included in Section 4.

Remark 1.4.

In literature, classification of all finite pp-groups GG with corank of GG (denoted by t(G)t(G)) atmost 66 is also known, see [1, 4, 7, 23, 24, 28]. By definition, t(G)6t(G)\leq 6 for any non-abelian group GG of order pnp^{n} implies n8n\leq 8 and s(G)5s(G)\leq 5. Further, s(G){4,5}s(G)\in\{4,5\} gives n4n\leq 4. Therefore, our above description of \mathbb{C}-twist isomorphism classes along with the known results from literature also gives \sim_{\mathbb{C}} classes of groups with t(G)6t(G)\leq 6.

2. Preliminaries

We first recall the results of Clifford theory regarding the ordinary characters of a finite group. For proofs, see [11, Chapter 6]. Clifford theory provides an important connection between the complex characters of a finite group GG and its normal subgroups. For a finite group GG, we use Irr(G)\mathrm{Irr}(G) to denote the set of all inequivalent irreducible representations of GG. For an abelian group AA, we also use A^\widehat{A} to denote Irr(A)\mathrm{Irr}(A) and call this to be the set of characters of AA. For χIrr(N)\chi\in\mathrm{Irr}(N), where NN is a normal subgroup of GG, we use Irr(Gχ)\mathrm{Irr}(G\mid\chi) to denote the set of irreducible representations of GG lying above χ\chi, i.e., Irr(Gχ)={ρIrr(G)ρ|N,χ0}\mathrm{Irr}(G\mid\chi)=\{\rho\in\mathrm{Irr}(G)\mid\langle\rho|_{N},\chi\rangle\neq 0\}.

Theorem 2.1.

Let GG be a finite group and NN be a normal subgroup. For any irreducible representation ρ\rho of NN, let IG(ρ)={gG|ρgρ}I_{G}(\rho)=\{g\in G|\,\,\rho^{g}\cong\rho\} denote the stabilizer of ρ\rho in GG. Then the following hold:

  • (a)

    The map

    θIndIG(ρ)G(θ)\theta\mapsto\mathrm{Ind}_{I_{G}(\rho)}^{G}(\theta)

    is a bijection of Irr(IG(ρ)ρ)\mathrm{Irr}(I_{G}(\rho)\mid\rho) onto Irr(Gρ)\mathrm{Irr}(G\mid\rho).

  • (b)

    Let HH be a subgroup of GG containing NN, and suppose that ρ\rho is an irreducible representation of NN which has an extension ρ~\tilde{\rho} to HH (i.e. ρ~|N=ρ\tilde{\rho}|_{N}=\rho). Then the representations δρ~\delta\otimes\tilde{\rho} for δIrr(H/N)\delta\in\mathrm{Irr}(H/N) are irreducible, distinct for distinct δ\delta and

    IndNH(ρ)=δIrr(H/N)δρ~.\mathrm{Ind}^{H}_{N}(\rho)=\oplus_{\delta\in\mathrm{Irr}(H/N)}\delta\otimes\tilde{\rho}.

Another useful result in this direction is as follows:

Theorem 2.2.

([11], Corollary 11.22) Let NGN\unlhd G and suppose G/NG/N is cyclic. Let ρIrr(N)\rho\in\mathrm{Irr}(N) such that IG(ρ)=GI_{G}(\rho)=G. Then ρ\rho is extendible to G.

Recall that a finite group GG is said to be of central type if it has a non-degenerate 2-cocycle αZ2(G,)\alpha\in Z^{2}(G,\mathbb{C}^{*}); or in other words, it has a unique irreducible α\alpha-projective representation so that the twisted group algebra αG\mathbb{C}^{\alpha}G is simple. The following result given by Margolis-Schnabel [17] will be used later to determine \mathbb{C}-twist isomorphism classes:

Lemma 2.3.

Let GG and HH be groups of order p4p^{4}. Then GHG\sim_{\mathbb{C}}H if the following three conditions are satisfied.

  1. (1)

    GH\mathbb{C}G\cong\mathbb{C}H

  2. (2)

    H2(G,×)H2(H,×){\mathrm{H}}^{2}(G,\mathbb{C}^{\times})\cong{\mathrm{H}}^{2}(H,\mathbb{C}^{\times})

  3. (3)

    GG and HH are not of central type.

3. pp-groups with s(G)2s(G)\leq 2

In this section, we study the \mathbb{C}-twist isomorphism classes of pp-groups with s(G)2s(G)\leq 2. We first deal with the case of s(G){0,1}s(G)\in\{0,1\}.

Proof of Lemma 1.1.

Niroomand [21, Theorem 21, Corollary 23] proved the following classification of finite non-abelian pp-groups GG with s(G){0,1}s(G)\in\{0,1\}:

  • (a)

    A group GG has s(G)=0s(G)=0 if, and only if, GG is isomorphic to H11×Cp(n3)H_{1}^{1}\times C_{p}^{(n-3)}.

  • (b)

    A group GG has s(G)=1s(G)=1 if, and only if, GG is isomorphic to D8×C2(n2)D_{8}\times C_{2}^{(n-2)} or Cp(4)Cp(p2)C_{p}^{(4)}\rtimes C_{p}\,(p\neq 2).

We remark that in [21], Niroomand uses the corank of a group GG (denoted t(G)t(G)) instead of the generalized corank of GG. We have used the well known relation t(G)=s(G)+(n2)t(G)=s(G)+(n-2) for any non-abelian pp-group GG to use the results of [21]. We obtain Lemma 1.1 by observing that all of the above groups with fixed s(G)s(G) have non-isomorphic complex group algebras. ∎

The rest of this section is devoted to the s(G)=2s(G)=2 case. The following result from [22] classifies all the non-abelian groups of order pnp^{n} with s(G)=2.s(G)=2.

Theorem 3.1.

([22], Theorem 11) Let GG be a group of order pnp^{n}. Then s(G)=2s(G)=2 if, and only if, GG is isomorphic to one of the following:

  • (i)

    E(2)×Cp(n2m2)E(2)\times C_{p}^{(n-2m-2)}

  • (ii)

    H12×Cp(n3)H_{1}^{2}\times C_{p}^{(n-3)}

  • (iii)

    Q8×C2(n3)Q_{8}\times C_{2}^{(n-3)}

  • (iv)
    • (a)

      Hm1×Cp(n2m1),H_{m}^{1}\times C_{p}^{(n-2m-1)}, where Hm1H_{m}^{1} is an extraspecial pp-group of order p2m+1p^{2m+1} and exponent p(m2)p~{}(m\geq 2)

    • (b)

      Hm2×Cp(n2m1),H_{m}^{2}\times C_{p}^{(n-2m-1)}, where Hm2H_{m}^{2} is an extraspecial pp-group of order p2m+1p^{2m+1} and exponent p2(m2)p^{2}~{}(m\geq 2)

  • (v)

    a,b|a4=1,b4=1,[a,b,a]=[a,b,b]=1,[a,b]=a2b2\langle a,b~{}|~{}a^{4}=1,b^{4}=1,[a,b,a]=[a,b,b]=1,[a,b]=a^{2}b^{2}\rangle

  • (vi)

    a,b,c|a2=b2=c2=1,abc=bca=cab\langle a,b,c~{}|~{}a^{2}=b^{2}=c^{2}=1,abc=bca=cab\rangle

  • (vii)

    a,b|ap2=1,bp=1,[a,b,a]=[a,b,b]=1\langle a,b~{}|~{}a^{p^{2}}=1,b^{p}=1,[a,b,a]=[a,b,b]=1\rangle

  • (viii)

    Cp×(Cp4θCp)(p2)C_{p}\times(C_{p}^{4}\rtimes_{\theta}C_{p})~{}(p\neq 2)

  • (ix)

    a,b|a9=b3=1,[a,b,a]=1,[a,b,b]=a6,[a,b,b,b]=1\langle a,b~{}|~{}a^{9}=b^{3}=1,[a,b,a]=1,[a,b,b]=a^{6},[a,b,b,b]=1\rangle

  • (x)

    a,b|ap=1,bp=1,[a,b,a]=[a,b,b,a]=[a,b,b,b]=1(p3).\langle a,b~{}|~{}a^{p}=1,b^{p}=1,[a,b,a]=[a,b,b,a]=[a,b,b,b]=1\rangle~{}(p\neq 3).

In order to prove Theorem 1.2, we need the following lemma:

Lemma 3.2.

Suppose G1G_{1} and G2G_{2} are two groups with isomorphisms δ:G1G2,\delta:G_{1}^{\prime}\rightarrow G_{2}^{\prime}, σ:G1/G1G2/G2\sigma:G_{1}/G_{1}^{\prime}\rightarrow G_{2}/G_{2}^{\prime} and the following short exact sequences for i{1,2}:i\in\{1,2\}:

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom(Gi,×)\textstyle{\mathrm{Hom}(G_{i}^{\prime},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}trai\scriptstyle{\mathrm{tra}_{i}}H2(Gi/Gi,×)\textstyle{H^{2}(G_{i}/G_{i}^{\prime},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}infi\scriptstyle{\mathrm{inf_{i}}}H2(Gi,×)\textstyle{H^{2}(G_{i},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1.\textstyle{1.}

If δ~:Hom(G2,×)Hom(G1,×)\tilde{\delta}:{\mathrm{Hom}}(G_{2}^{\prime},\mathbb{C}^{\times})\rightarrow{\mathrm{Hom}}(G_{1}^{\prime},\mathbb{C}^{\times}) and σ~:H2(G1/G1,×)H2(G2/G2,×)\tilde{\sigma}:{\mathrm{H}}^{2}(G_{1}/G_{1}^{\prime},\mathbb{C}^{\times})\rightarrow{\mathrm{H}}^{2}(G_{2}/G_{2}^{\prime},\mathbb{C}^{\times}) are the induced isomorphisms such that the Figure 3.1 is commutative, then G1G2G_{1}\sim_{\mathbb{C}}G_{2}.

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom(G2,×)\textstyle{\mathrm{Hom}(G_{2}^{\prime},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}tra2\scriptstyle{\mathrm{tra}_{2}}δ~\scriptstyle{\tilde{\delta}}H2(G2/G2,×)\textstyle{H^{2}(G_{2}/G_{2}^{\prime},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σ~\scriptstyle{\tilde{\sigma}}inf2\scriptstyle{\mathrm{inf_{2}}}H2(G2,×)\textstyle{H^{2}(G_{2},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom(G1,×)\textstyle{\mathrm{Hom}(G_{1}^{\prime},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}tra1\scriptstyle{\mathrm{tra}_{1}}H2(G1/G1,×)\textstyle{H^{2}(G_{1}/G_{1}^{\prime},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}inf1\scriptstyle{\mathrm{inf_{1}}}H2(G1,×)\textstyle{H^{2}(G_{1},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}
Figure 3.1.
Proof.

Our goal is to define an isomorphism γ:H2(G2,×)H2(G1,×)\gamma:{\mathrm{H}}^{2}(G_{2},\mathbb{C}^{\times})\rightarrow{\mathrm{H}}^{2}(G_{1},\mathbb{C}^{\times}) that gives \mathbb{C}-twist isomorphism between G2G_{2} and G1G_{1}. It follows from Theorem 2.92.9 in [14] and Theorem 3.13.1 in [9] that the projective representations of GiG_{i} are obtained from those of Gi/GiG_{i}/G_{i}^{\prime} via inflation and

(3.1) α[Gi]infi(β)=αβ[Gi/Gi].\displaystyle\mathbb{C}^{\alpha}[G_{i}]\cong\prod_{\mathrm{inf_{i}}(\beta)=\alpha}\mathbb{C}^{\beta}[G_{i}/G_{i}^{\prime}].

The map σ~\tilde{\sigma} is an induced isomorphism obtained from σ\sigma. Hence β[G1/G1]σ~(β)[G2/G2].\mathbb{C}^{\beta}[G_{1}/G_{1}^{\prime}]\cong\mathbb{C}^{\tilde{\sigma}(\beta)}[G_{2}/G_{2}^{\prime}]. Therefore, it is sufficient to define an isomorphism γ:H2(G2,×)H2(G1,×)\gamma:{\mathrm{H}}^{2}(G_{2},\mathbb{C}^{\times})\rightarrow{\mathrm{H}}^{2}(G_{1},\mathbb{C}^{\times}) such that Figure 3.1 is commutative. Indeed such a γ\gamma is obtained by defining

γ([α])=inf1(σ~([α0]))for[α]H2(G2,×),\gamma([\alpha])=\mathrm{inf}_{1}(\tilde{\sigma}([\alpha_{0}]))\,\,\mathrm{for}\,\,[\alpha]\in H^{2}(G_{2},\mathbb{C}^{\times}),

where [α0]H2(G2/G2,×)[\alpha_{0}]\in H^{2}(G_{2}/G_{2}^{\prime},\mathbb{C}^{\times}) is any element such that inf2([α0])=[α]\inf_{2}([\alpha_{0}])=[\alpha]. ∎

Proposition 3.3.

The distinct \mathbb{C}-twist isomorphism classes of groups of order pnp^{n} are as follows:

  • (i)
    • (a)

      E(2)×Cp(n4)H12×Cp(n3),E(2)\times C_{p}^{(n-4)}\sim_{\mathbb{C}}H_{1}^{2}\times C_{p}^{(n-3)}, for p2p\neq 2

    • (b)

      E(2)×C2(n4)Q8×C2(n3)E(2)\times C_{2}^{(n-4)}\sim_{\mathbb{C}}Q_{8}\times C_{2}^{(n-3)}

  • (ii)
    • (a)

      For n=2m+1n=2m+1 and m2m\geq 2, Hm1×Cp(n2m1)Hm2×Cp(n2m1)H_{m}^{1}\times C_{p}^{(n-2m-1)}\sim_{\mathbb{C}}H_{m}^{2}\times C_{p}^{(n-2m-1)}

    • (b)

      For n6n\geq 6 and m2m\geq 2, E(2)×Cp(n2m2)Hm1×Cp(n2m1)Hm2×Cp(n2m1).E(2)\times C_{p}^{(n-2m-2)}\sim_{\mathbb{C}}H_{m}^{1}\times C_{p}^{(n-2m-1)}\sim_{\mathbb{C}}H_{m}^{2}\times C_{p}^{(n-2m-1)}.

Proof.

We proceed to prove (i). The proof of (ii) is similar so we only give essential ingredients there and omit the details.

(i)(a) For simplification of notations, we denote E(2)×Cp(n4)E(2)\times C_{p}^{(n-4)} and H12×Cp(n3)H_{1}^{2}\times C_{p}^{(n-3)} by G1G_{1} and G2G_{2}, respectively. The groups G1G_{1} and G2G_{2} have following presentations:

G1=<x1,y1,z1,γ1,a1,a2,an4[x1,y1]=z1=γ1p,x1p=y1p=aip=1,γ1p2=1>G_{1}=<x_{1},y_{1},z_{1},\gamma_{1},a_{1},a_{2},\cdots a_{n-4}\mid[x_{1},y_{1}]=z_{1}=\gamma_{1}^{p},x_{1}^{p}=y_{1}^{p}=a_{i}^{p}=1,\gamma_{1}^{p^{2}}=1>
G2=<x2,y2,z2,b1,,bn3[x2,y2]=x2p=z2,x2p2=y2p=z2p=bip=1>.G_{2}=<x_{2},y_{2},z_{2},b_{1},\cdots,b_{n-3}\mid[x_{2},y_{2}]=x_{2}^{p}=z_{2},x_{2}^{p^{2}}=y_{2}^{p}=z_{2}^{p}=b_{i}^{p}=1>.

Therefore, GiCpG_{i}^{\prime}\cong C_{p} and Gi/GiCpn1G_{i}/G_{i}^{\prime}\cong C_{p}^{n-1} for i{1,2}i\in\{1,2\}. Also, in view of Proposition 1.3 of [14],

H2(Gi/Gi,×)Cp(n1)(n2)2,H2(Gi,×)Cp(n1)(n2)21.{\mathrm{H}}^{2}(G_{i}/G_{i}^{\prime},\mathbb{C}^{\times})\cong C_{p}^{\frac{(n-1)(n-2)}{2}},\,\,{\mathrm{H}}^{2}(G_{i},\mathbb{C}^{\times})\cong C_{p}^{\frac{(n-1)(n-2)}{2}-1}.

This yields the following short exact sequences for i{1,2}i\in\{1,2\}:

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom(Gi,×)\textstyle{\mathrm{Hom}(G_{i}^{\prime},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}trai\scriptstyle{\mathrm{tra}_{i}}H2(Gi/Gi,×)\textstyle{H^{2}(G_{i}/G_{i}^{\prime},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}infi\scriptstyle{\mathrm{inf_{i}}}H2(Gi,×)\textstyle{H^{2}(G_{i},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1.\textstyle{1.}

We now define δ:G1G2\delta:G_{1}^{\prime}\rightarrow G_{2}^{\prime} and σ:G1/G1G2/G2\sigma:G_{1}/G_{1}^{\prime}\rightarrow G_{2}/G_{2}^{\prime} such that the Figure 3.1 is commutative. Define δ\delta by δ(z1)=z2\delta(z_{1})=z_{2} and σ\sigma by

σ(x1G1)=x2G2,σ(y1G1)=y2G2,σ(γ1G1)=bn3G2,σ(aiG1)=biG2,\sigma(x_{1}G_{1}^{{}^{\prime}})=x_{2}G_{2}^{{}^{\prime}},\sigma(y_{1}G_{1}^{{}^{\prime}})=y_{2}G_{2}^{{}^{\prime}},\sigma(\gamma_{1}G_{1}^{{}^{\prime}})=b_{n-3}G_{2}^{{}^{\prime}},\sigma(a_{i}G_{1}^{{}^{\prime}})=b_{i}G_{2}^{{}^{\prime}},

for all i{1,,n4}i\in\{1,\ldots,n-4\}. We now describe transgression maps for these groups.

Define a section s1:G1/G1G1s_{1}:G_{1}/G_{1}^{\prime}\rightarrow G_{1} by

s1(x1iy1jγ1ka1r1an4rn4G1)=x1iy1jγ1ka1r1an4rn4s_{1}(x_{1}^{i}y_{1}^{j}\gamma_{1}^{k}a_{1}^{r_{1}}\cdots a_{n-4}^{r_{n-4}}G_{1}^{\prime})=x_{1}^{i}y_{1}^{j}\gamma_{1}^{k}a_{1}^{r_{1}}\cdots a_{n-4}^{r_{n-4}}

For u=x1iy1jγ1ka1r1an4rn4G1u=x_{1}^{i}y_{1}^{j}\gamma_{1}^{k}a_{1}^{r_{1}}\cdots a_{n-4}^{r_{n-4}}G_{1}^{{}^{\prime}} and v=x1iy1jγ1ka1r1an4rn4G1,v=x_{1}^{i^{\prime}}y_{1}^{j^{\prime}}\gamma_{1}^{k^{\prime}}a_{1}^{r^{\prime}_{1}}\cdots a_{n-4}^{r^{\prime}_{n-4}}G_{1}^{{}^{\prime}}, we have

s1(u)s1(v)s1(uv)1=γ1pji.s_{1}(u)s_{1}(v)s_{1}(uv)^{-1}=\gamma_{1}^{-pji^{\prime}}.

Hence a representative of [tra1(χ)][\mathrm{tra_{1}}(\chi)] is given by tra1(χ)(u,v)=χ(z1ji){\mathrm{tra}}_{1}(\chi)(u,v)=\chi(z_{1}^{-ji^{\prime}}) for χHom(G1,×)\chi\in{\mathrm{Hom}}(G_{1}^{\prime},\mathbb{C}^{\times}). Define a section s2:G2/G2G2s_{2}:G_{2}/G_{2}^{\prime}\rightarrow G_{2} by

s2(x2iy2jb1r1bn3rn3G2)=x2iy2jb1r1bn3rn3s_{2}(x_{2}^{i}y_{2}^{j}b_{1}^{r_{1}}\cdots b_{n-3}^{r_{n-3}}G_{2}^{\prime})=x_{2}^{i}y_{2}^{j}b_{1}^{r_{1}}\cdots b_{n-3}^{r_{n-3}}

For u=x2iy2jb1r1bn3rn3G2u=x_{2}^{i}y_{2}^{j}b_{1}^{r_{1}}\cdots b_{n-3}^{r_{n-3}}G_{2}^{{}^{\prime}} and v=x2iy2jb1r1bn3rn3G2,v=x_{2}^{i^{\prime}}y_{2}^{j^{\prime}}b_{1}^{r^{\prime}_{1}}\cdots b_{n-3}^{r^{\prime}_{n-3}}G_{2}^{{}^{\prime}}, we have

s2(u)s2(v)s2(uv)1=z2ji.s_{2}(u)s_{2}(v)s_{2}(uv)^{-1}=z_{2}^{-ji^{\prime}}.

Therefore, a representative of [tra2(χ)][\mathrm{tra_{2}}(\chi)] is given by tra2(χ)(u,v)=χ(z2ji)\mathrm{tra_{2}}(\chi)(u,v)=\chi(z_{2}^{-ji^{\prime}}) for χHom(G2,×)\chi\in{\mathrm{Hom}}(G_{2}^{\prime},\mathbb{C}^{\times}). This combined with the given isomorphisms δ\delta and σ\sigma gives the commutativity of Figure 3.1. Now, the result follows as a direct consequence of Lemma 3.2.

For (i)(b)(i)(b), proof is along the same lines as that of (i)(a)(i)(a) with only difference that Q8×C2(n3)Q_{8}\times C_{2}^{(n-3)} has the following presentation:

a,b,c,b1,,bn3|a4=1,a2=b2=c,b1ab=ca,bi2=1 1i(n3).\langle a,b,c,b_{1},\cdots,b_{n-3}\ |\ a^{4}=1,a^{2}=b^{2}=c,b^{-1}ab=ca,b_{i}^{2}=1\ \forall\ 1\leq i\leq(n-3)\rangle.

We leave the rest of the details for the reader.

(ii) We denote the groups E(2)×Cp(n2m2)E(2)\times C_{p}^{(n-2m-2)}, Hm1×Cp(n2m1)H_{m}^{1}\times C_{p}^{(n-2m-1)} and Hm2×Cp(n2m1)H_{m}^{2}\times C_{p}^{(n-2m-1)} by G1mG^{m}_{1}, G2mG^{m}_{2} and G3mG^{m}_{3}, respectively. Note that if mmm\neq m^{\prime}, then for any i,j{1,2,3},i,j\in\{1,2,3\}, the complex group algebras of GimG_{i}^{m} and GjmG_{j}^{m^{\prime}} are not isomorphic. Further, observe that for any m2m\geq 2, the order of G1mG_{1}^{m} is pnp^{n} such that n6.n\geq 6. Therefore, for some n6,n\geq 6, if GimG_{i}^{m} is \mathbb{C}-twist isomorphic to Gjm,G_{j}^{m^{\prime}}, then it implies that m=mm=m^{\prime}. Similarly, when n=5,n=5, a necessary condition for the \mathbb{C}-twist isomorphism of G1mG_{1}^{m} and G2mG_{2}^{m^{\prime}} is that m=mm=m^{\prime}. Therefore, now onwards we fix mm and prove the result.

The commutator subgroup of GimG_{i}^{m} is central and is isomorphic to Cp;C_{p}; and Gim/(Gim)Cp(n1).G_{i}^{m}/(G_{i}^{m})^{\prime}\cong C_{p}^{(n-1)}. Further, since for any i{1,2,3},i\in\{1,2,3\}, H2(Gim,×)Cpn23n2{\mathrm{H}}^{2}(G_{i}^{m},\mathbb{C}^{\times})\cong C_{p}^{\frac{n^{2}-3n}{2}}, we get the following short exact sequences:

1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom(Gi,×)\textstyle{\mathrm{Hom}(G_{i}^{\prime},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}trai\scriptstyle{\mathrm{tra}_{i}}H2(Gi/Gi,×)\textstyle{H^{2}(G_{i}/G_{i}^{\prime},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}infi\scriptstyle{\mathrm{inf_{i}}}H2(Gi,×)\textstyle{H^{2}(G_{i},\mathbb{C}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1.\textstyle{1.}

As in (i), the proof of \mathbb{C}-twist isomorphism follows by considering the image of the trai\mathrm{tra_{i}} for i{1,2,3}i\in\{1,2,3\} and by proving the commutativity of Figure 3.1. This is obtained by using the following presentation of groups Gim.G_{i}^{m}.

G1m\displaystyle G_{1}^{m} =\displaystyle= <x1,,xm,y1,ym,z,γ,a1,a2,an2m2[xi,yi]=z=γp,\displaystyle<x_{1},\cdots,x_{m},y_{1},\cdots y_{m},z,\gamma,a_{1},a_{2},\cdots a_{n-2m-2}\mid[x_{i},y_{i}]=z=\gamma^{p},
xip=yip=aip=1,γp2=1>.\displaystyle x_{i}^{p}=y_{i}^{p}=a_{i}^{p}=1,\gamma^{p^{2}}=1>.
G2m\displaystyle G_{2}^{m} =\displaystyle= <x1,,xm,y1,ym,z,a1,a2,,an2m1[xi,yi]=z,\displaystyle<x_{1},\cdots,x_{m},y_{1},\cdots y_{m},z,a_{1},a_{2},\cdots,a_{n-2m-1}\mid[x_{i},y_{i}]=z,
xip=yip=aip=1>.\displaystyle x_{i}^{p}=y_{i}^{p}=a_{i}^{p}=1>.
G3m\displaystyle G_{3}^{m} =\displaystyle= <x1,,xm,y1,ym,z,a1,a2,,an2m1[xi,yi]=z=xmp=ymp,\displaystyle<x_{1},\cdots,x_{m},y_{1},\cdots y_{m},z,a_{1},a_{2},\cdots,a_{n-2m-1}\mid[x_{i},y_{i}]=z=x_{m}^{p}=y_{m}^{p},
xip=yip=zp=1(1im1),aip=1>.\displaystyle x_{i}^{p}=y_{i}^{p}=z^{p}=1(1\leq i\leq m-1),a_{i}^{p}=1>.

Below we calculate tra1\mathrm{tra}_{1} explicitly and leave the details for tra2{\mathrm{tra}}_{2} and tra3{\mathrm{tra}}_{3} as those are similar. By the given presentation of G1mG_{1}^{m}, we have (G1m)=<γp>(G_{1}^{m})^{\prime}=<\gamma^{p}>. Define a section s:G1m/(G1m)G1ms:G_{1}^{m}/(G_{1}^{m})^{\prime}\rightarrow G_{1}^{m} by

s(x1i1xmimy1j1ymjmγka1r1an2m2rn2m2(G1m))=x1i1xmimy1j1ymjmγka1r1an2m2rn2m2s(x_{1}^{i_{1}}\cdots x_{m}^{i_{m}}y_{1}^{j_{1}}\cdots y_{m}^{j_{m}}\gamma^{k}a_{1}^{r_{1}}\cdots a_{n-2m-2}^{r_{n-2m-2}}(G_{1}^{m})^{\prime})=x_{1}^{i_{1}}\cdots x_{m}^{i_{m}}y_{1}^{j_{1}}\cdots y_{m}^{j_{m}}\gamma^{k}a_{1}^{r_{1}}\cdots a_{n-2m-2}^{r_{n-2m-2}}

Note that for any two elements

u=x1i1xmimy1j1ymjmγka1r1an2m2rn2m2(G1m),v=x1i1xmimy1j1ymjmγka1r1an2m2rn2m2(G1m)u=x_{1}^{i_{1}}\cdots x_{m}^{i_{m}}y_{1}^{j_{1}}\cdots y_{m}^{j_{m}}\gamma^{k}a_{1}^{r_{1}}\cdots a_{n-2m-2}^{r_{n-2m-2}}(G_{1}^{m})^{{}^{\prime}},v=x_{1}^{i^{\prime}_{1}}\cdots x_{m}^{i^{\prime}_{m}}y_{1}^{j^{\prime}_{1}}\cdots y_{m}^{j^{\prime}_{m}}\gamma^{k^{\prime}}a_{1}^{r^{\prime}_{1}}\cdots a_{n-2m-2}^{r^{\prime}_{n-2m-2}}(G_{1}^{m})^{{}^{\prime}}

of G1m/(G1m),G_{1}^{m}/(G_{1}^{m})^{{}^{\prime}}, we have s(u)s(v)s(uv)1=γpl=1mjlil.s(u)s(v)s(uv)^{-1}=\gamma^{-p\sum_{l=1}^{m}j_{l}i^{\prime}_{l}}. Therefore, for any χHom((G1m),×)\chi\in\mathrm{Hom}((G_{1}^{m})^{\prime},\mathbb{C}^{\times}), a representative of [tra1(χ)][\mathrm{tra_{1}}(\chi)] is given by tra1(χ)(u,v)=χ(zl=1mjlil).\mathrm{tra_{1}}(\chi)(u,v)=\chi(z^{-\sum_{l=1}^{m}j_{l}i^{\prime}_{l}}). By a similar computation of tra2{\mathrm{tra}}_{2} and tra3{\mathrm{tra}}_{3}, we obtain that for all i{1,2,3},i\in\{1,2,3\}, the groups GimG_{i}^{m} pairwise satisfy the hypothesis of Lemma 3.2 and hence are \mathbb{C}-twist isomorphic. ∎

We now complete the details regarding the \mathbb{C}-twist isomorphism classes for pp-groups with s(G)=2s(G)=2.

Proof of Theorem 1.2.

It follows from Theorem 3.1 that for any fixed pp, there exists only one pp-group of order p3p^{3} with s(G)=2s(G)=2 and so it forms a singleton \mathbb{C}-twist class. We now consider cases when n4.n\geq 4.
n=4n=4: Any group of order p4p^{4} with s(G)=2s(G)=2 is isomorphic to one of the following:

  • E(2)E(2)

  • H12×Cp,p2H_{1}^{2}\times C_{p},p\neq 2

  • Q8×C2Q_{8}\times C_{2}

  • a,b|a4=1,b4=1,[a,b,a]=[a,b,b]=1,[a,b]=a2b2\langle a,b~{}|~{}a^{4}=1,b^{4}=1,[a,b,a]=[a,b,b]=1,[a,b]=a^{2}b^{2}\rangle

  • a,b,c|a2=b2=c2=1,abc=bca=cab\langle a,b,c~{}|~{}a^{2}=b^{2}=c^{2}=1,abc=bca=cab\rangle

  • a,b|ap2=1,bp=1,[a,b,a]=[a,b,b]=1\langle a,b~{}|~{}a^{p^{2}}=1,b^{p}=1,[a,b,a]=[a,b,b]=1\rangle

  • a,b|a9=b3=1,[a,b,a]=1,[a,b,b]=a6,[a,b,b,b]=1\langle a,b~{}|~{}a^{9}=b^{3}=1,[a,b,a]=1,[a,b,b]=a^{6},[a,b,b,b]=1\rangle

  • a,b|ap=1,bp=1,[a,b,a]=[a,b,b,a]=[a,b,b,b]=1\langle a,b~{}|~{}a^{p}=1,b^{p}=1,[a,b,a]=[a,b,b,a]=[a,b,b,b]=1\rangle (p3).(p\neq 3).

Here the group a,b,c|a2=b2=c2=1,abc=bca=cab\langle a,b,c~{}|~{}a^{2}=b^{2}=c^{2}=1,abc=bca=cab\rangle is isomorphic to E(2).E(2). As mentioned in Theorem 4.34.3 in [17], any non-singleton \mathbb{C}-twist isomorphism class of groups of order p4p^{4} consists of two groups, when p=2;p=2; and of three groups, when pp is an odd prime. Thus comparing with the groups given in Table 3 and Table 4 in [17], we obtain the following non-singleton \mathbb{C}-twist isomorphism classes of groups of order p4p^{4} with generalized corank 22:

  • 8×C2E(2),\mathbb{Q}_{8}\times C_{2}\sim_{\mathbb{C}}E(2), when p=2p=2

  • E(2)H11×Cpa,b|ap2=1,bp=1,[a,b,a]=[a,b,b]=1E(2)\sim_{\mathbb{C}}H_{1}^{1}\times C_{p}\sim_{\mathbb{C}}\langle a,b~{}|~{}a^{p^{2}}=1,b^{p}=1,[a,b,a]=[a,b,b]=1\rangle, when pp is odd.

Thus each of the remaining groups of order p4p^{4} in the above list constitutes a \mathbb{C}-twist isomorphism class of size 1.1.
n5:n\geq 5: Any group of order pnp^{n} with n5n\geq 5 and s(G)=2s(G)=2 is isomorphic to one of the following:

  • E(2)×Cp(n2m2)E(2)\times C_{p}^{(n-2m-2)}

  • H12×Cp(n3),p2H_{1}^{2}\times C_{p}^{(n-3)},p\neq 2

  • Q8×C2(n3)Q_{8}\times C_{2}^{(n-3)}

  • Hm1×Cp(n2m1)H_{m}^{1}\times C_{p}^{(n-2m-1)}

  • Hm2×Cp(n2m1)H_{m}^{2}\times C_{p}^{(n-2m-1)}

  • Cp×(Cp4θCp),p2.C_{p}\times(C_{p}^{4}\rtimes_{\theta}C_{p}),~{}p\neq 2.

The derived subgroup of Cp×(Cp4θCp),p2C_{p}\times(C_{p}^{4}\rtimes_{\theta}C_{p}),~{}p\neq 2 is of order p2p^{2}; whereas the derived subgroup of the rest of the groups in the above list is of order pp. Therefore, by comparing the complex group algebras, we obtain that for a fixed odd prime p,p, the group Cp×(Cp4θCp)C_{p}\times(C_{p}^{4}\rtimes_{\theta}C_{p}) forms a singleton \mathbb{C}-twist isomorphism class. Finally, Proposition 3.3 completes the classification of the rest of the groups into \mathbb{C}-twist isomorphism classes. ∎

4. pp-groups with s(G)=3s(G)=3

In this section, we proceed with the determination of the \mathbb{C}-twist isomorphism classes of the pp-groups with s(G)=3.s(G)=3. The following result, using the notations of [12], gives a complete list of pp-groups with s(G)=3s(G)=3.

Theorem 4.1.

([8], Theorem 1.1) Let GG be a finite non-abelian pp-group of order pnp^{n} with s(G)=3s(G)=3. Let rpr_{p} be the smallest positive integer which is a non-quadratic residue mod (p)(p).

  • (a)

    For an odd prime pp, GG is isomorphic to one of the following groups:

    • (i)

      ϕ2(22)=α,α1,α2|[α1,α]=αp=α2,α1p2=α2p=1\phi_{2}(22)=\langle\alpha,~{}\alpha_{1},~{}\alpha_{2}~{}|~{}[\alpha_{1},\alpha]=\alpha^{p}=\alpha_{2},~{}\alpha_{1}^{p^{2}}=\alpha_{2}^{p}=1\rangle

    • (ii)

      ϕ3(211)a=α,α1,α2,α3|[α1,α]=α2,[α2,α]=αp=α3,α1(p)=α2p=α3p=1\phi_{3}(211)a=\langle\alpha,~{}\alpha_{1},\alpha_{2},~{}\alpha_{3}~{}|~{}[\alpha_{1},\alpha]=\alpha_{2},~{}[\alpha_{2},\alpha]=\alpha^{p}=\alpha_{3},\alpha_{1}^{(p)}=\alpha_{2}^{p}=\alpha_{3}^{p}=1\rangle

    • (iii)

      ϕ3(211)br=α,α1,α2,α3|[α1,α]=α2,[α2,α]r=α1(p)=α3r,αp=α2p=α3p=1,\phi_{3}(211)b_{r}=\langle\alpha,~{}\alpha_{1},\alpha_{2},\alpha_{3}~{}|~{}[\alpha_{1},\alpha]=\alpha_{2},~{}[\alpha_{2},\alpha]^{r}=\alpha_{1}^{(p)}=\alpha_{3}^{r},~{}\alpha^{p}=\alpha_{2}^{p}=\alpha_{3}^{p}=1\rangle, where rr is either 11 or rp.r_{p}.

    • (iv)

      ϕ2(2111)c=ϕ2(211)c×Cp\phi_{2}(2111)c=\phi_{2}(211)c\times C_{p}, where ϕ2(211)c=α,α1,α2|[α1,α]=α2,αp2=α1p=α2p=1\phi_{2}(211)c=\langle\alpha,\alpha_{1},\alpha_{2}~{}|~{}[\alpha_{1},\alpha]=\alpha_{2},~{}\alpha^{p^{2}}=\alpha_{1}^{p}=\alpha_{2}^{p}=1\rangle

    • (v)

      ϕ2(2111)d=ESp(p3)×Cp2\phi_{2}(2111)d=ES_{p}(p^{3})\times C_{p^{2}}

    • (vi)

      ϕ3(15)=ϕ3(14)×Cp\phi_{3}(1^{5})=\phi_{3}(1^{4})\times C_{p}, where ϕ3(14)=α,α1,α2,α3|[αi,α]=αi+1,αp=αi(p)=α3p=1(i=1,2)\phi_{3}(1^{4})=\langle\alpha,\alpha_{1},\alpha_{2},\alpha_{3}~{}|~{}[\alpha_{i},\alpha]=\alpha_{i+1},~{}\alpha^{p}=\alpha_{i}^{(p)}=\alpha_{3}^{p}=1~{}(i=1,2)\rangle

    • (vii)

      ϕ7(15)=α,α1,α2,α3,β|[αi,α]=αi+1,[α1,β]=α3,αp=α1(p)=αi+1p=βp=1(i=1,2)\phi_{7}(1^{5})=\langle~{}\alpha,~{}\alpha_{1},\alpha_{2},\alpha_{3},\beta~{}|~{}~{}[\alpha_{i},\alpha]=\alpha_{i+1},[\alpha_{1},\beta]=\alpha_{3},~{}\alpha^{p}=\alpha_{1}^{(p)}=\alpha_{i+1}^{p}=\beta^{p}=1~{}(i=1,2)\rangle

    • (viii)

      ϕ11(16)=α1,β1,α2,β2,α3,β3|[α1,α2]=β3,[α2,α3]=β1,[α3,α1]=β2,αi(p)=βip(i=1,2,3)\phi_{11}(1^{6})=\langle~{}\alpha_{1},~{}\beta_{1},\alpha_{2},\beta_{2},\alpha_{3},\beta_{3}~{}|~{}~{}[\alpha_{1},\alpha_{2}]=\beta_{3},~{}[\alpha_{2},\alpha_{3}]=\beta_{1},~{}[\alpha_{3},\alpha_{1}]=\beta_{2},\alpha_{i}^{(p)}=\beta_{i}^{p}~{}(i=1,2,3)\rangle

    • (ix)

      ϕ12(16)=ESp(p3)×ESp(p3)\phi_{12}(1^{6})=ES_{p}(p^{3})\times ES_{p}(p^{3})

    • (x)

      ϕ13(16)=α1,α2,α3,α4,β1,β2|[α1,αi+1]=βi,[α2,α4]=β2,αip=α3p=α4p=βip=1(i=1,2)\phi_{13}(1^{6})=\langle\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\beta_{1},\beta_{2}~{}|~{}[\alpha_{1},\alpha_{i+1}]=\beta_{i},~{}[\alpha_{2},\alpha_{4}]=\beta_{2},~{}\alpha_{i}^{p}=\alpha_{3}^{p}=\alpha_{4}^{p}=\beta_{i}^{p}=1(i=1,2)\rangle

    • (xi)

      ϕ15(16)=α1,α2,α3,α4,β1,β2|[α1,αi+1]=βi,[α3,α4]=β1,[α2,α4]=β2g,αip=α3p=α4p=βip=1(i=1,2)\phi_{15}(1^{6})=\langle\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\beta_{1},\beta_{2}~{}|~{}[\alpha_{1},\alpha_{i+1}]=\beta_{i},~{}[\alpha_{3},\alpha_{4}]=\beta_{1},~{}[\alpha_{2},\alpha_{4}]=\beta_{2}^{g},~{}\alpha_{i}^{p}=\alpha_{3}^{p}=\alpha_{4}^{p}=\beta_{i}^{p}=1(i=1,2)\rangle, where gg is the smallest positive integer which is a primitive root modulo pp

    • (xii)

      (Cp(4)Cp)×Cp2(C_{p}^{(4)}\rtimes C_{p})\times C_{p}^{2}.

  • (b)

    For p=2p=2, GG is isomorphic to one of the following groups:

    • (xiii)

      C24C2C_{2}^{4}\rtimes C_{2}

    • (xiv)

      C2×((C4×C2)C2)C_{2}\times((C_{4}\times C_{2})\rtimes C_{2})

    • (xv)

      C4C4C_{4}\rtimes C_{4}

    • (xvi)

      D16D_{16}, the dihedral group of order 16.

As mentioned earlier, the \mathbb{C}-twist isomorphism classes of the groups of order p4p^{4} were described by Margolis-Schnabel [17]. We now consider the groups of order p5p^{5} with s(G)=3s(G)=3. Let H1H_{1} and H2H_{2} denote the groups ϕ2(2111)d\phi_{2}(2111)d and ϕ2(2111)c,\phi_{2}(2111)c, respectively. We proceed to prove that H1H_{1} and H2H_{2} are \mathbb{C}-twist isomorphic. We use the following general result to prove this. We refer the reader to [14, Chapter 3] for results regarding the existence and construction of the representation group of a finite group.

Lemma 4.2.

Let G1G_{1} and G2G_{2} be two finite groups with G1~\widetilde{G_{1}} and G2~\widetilde{G_{2}} as their representation groups respectively. Let A1,A2A_{1},A_{2} be central subgroups of G1~\widetilde{G_{1}} and G2~\widetilde{G_{2}} respectively such that Gi~/AiGi\widetilde{G_{i}}/A_{i}\cong G_{i} and the transgression maps trai:Hom(Ai,×)H2(Gi,×)\mathrm{tra_{i}}:\mathrm{Hom}(A_{i},\mathbb{C}^{\times})\rightarrow{\mathrm{H}}^{2}(G_{i},\mathbb{C}^{\times}) are isomorphisms. Let σ:Hom(A1,×)Hom(A2,×)\sigma:\mathrm{Hom}(A_{1},\mathbb{C}^{\times})\rightarrow\mathrm{Hom}(A_{2},\mathbb{C}^{\times}) be an isomorphism such that the following sets are in a dimension preserving bijection for every χHom(A1,×)\chi\in\mathrm{Hom}(A_{1},\mathbb{C}^{\times}):

Irr(G1~χ)Irr(G2~σ(χ)).\mathrm{Irr}(\widetilde{G_{1}}\mid\chi)\leftrightarrow\mathrm{Irr}(\widetilde{G_{2}}\mid\sigma(\chi)).

Then G1G_{1} and G2G_{2} are \mathbb{C}-twist isomorphic.

Proof.

For χHom(A1,×)\chi\in{\mathrm{Hom}}(A_{1},\mathbb{C}^{\times}), we denote tra1(χ)H2(G1,×){\mathrm{tra}}_{1}(\chi)\in{\mathrm{H}}^{2}(G_{1},\mathbb{C}^{\times}) by αχ\alpha_{\chi}. We note that

Irr(G1~χ)Irr(G2~σ(χ)).\mathrm{Irr}(\widetilde{G_{1}}\mid\chi)\leftrightarrow\mathrm{Irr}(\widetilde{G_{2}}\mid\sigma(\chi)).

gives

αχ[G1]ασ(χ)[G2].\mathbb{C}^{\alpha_{\chi}}[G_{1}]\cong\mathbb{C}^{\alpha_{\sigma(\chi)}}[G_{2}].

Therefore, the map αχασ(χ)\alpha_{\chi}\mapsto\alpha_{\sigma(\chi)} between H2(G1,×){\mathrm{H}}^{2}(G_{1},\mathbb{C}^{\times}) and H2(G2,×){\mathrm{H}}^{2}(G_{2},\mathbb{C}^{\times}) gives the required \mathbb{C}-twist isomorphism between G1G_{1} and G2G_{2}. ∎

Note that H1=E1×Cp2H_{1}=E_{1}\times C_{p^{2}} and H2=α,α1,α2[α1,α]=α2,αp2=α1p=α2p=1×α3H_{2}=\langle\alpha,\alpha_{1},\alpha_{2}\mid[\alpha_{1},\alpha]=\alpha_{2},\alpha^{p^{2}}=\alpha_{1}^{p}=\alpha_{2}^{p}=1\rangle\times\langle\alpha_{3}\rangle. Define the following groups:

H1~\displaystyle\widetilde{H_{1}} =\displaystyle= α1,α2,α3,α4,x,y,z,α[x,y]=z,[x,z]=α1,[y,z]=α2,\displaystyle\langle\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},x,y,z,\alpha\mid[x,y]=z,[x,z]=\alpha_{1},[y,z]=\alpha_{2},
[x,α]=α3,[y,α]=α4,xp=yp=zp=αip=αp2=1.\displaystyle[x,\alpha]=\alpha_{3},[y,\alpha]=\alpha_{4},x^{p}=y^{p}=z^{p}=\alpha_{i}^{p}=\alpha^{p^{2}}=1\rangle.

and

H2~\displaystyle\widetilde{H_{2}} =\displaystyle= x,y,z,w,α,α1,α2,α3[α1,α]=α2,[α1,α2]=x,[α,α2]=y,\displaystyle\langle x,y,z,w,\alpha,\alpha_{1},\alpha_{2},\alpha_{3}\mid[\alpha_{1},\alpha]=\alpha_{2},[\alpha_{1},\alpha_{2}]=x,[\alpha,\alpha_{2}]=y,
[α3,α1]=z,[α3,α]=w,αp2=αip=xp=yp=zp=wp=1.\displaystyle[\alpha_{3},\alpha_{1}]=z,[\alpha_{3},\alpha]=w,\alpha^{p^{2}}=\alpha_{i}^{p}=x^{p}=y^{p}=z^{p}=w^{p}=1\rangle.

The following lemma plays a very crucial role towards this end:

Lemma 4.3.

The groups H1~\widetilde{H_{1}} and H2~\widetilde{H_{2}} are representations groups of H1H_{1} and H2H_{2}, respectively.

Proof.

Here, we give a proof for H1H_{1}. The proof for H2H_{2} is along the same lines so we omit that part. The group H1H_{1} has the following presentation:

H1=x,y,z,α[x,y]=z,xp=yp=αp2=1.H_{1}=\langle x,y,z,\alpha\mid[x,y]=z,x^{p}=y^{p}=\alpha^{p^{2}}=1\rangle.

Consider the projection map from H1~\widetilde{H_{1}} onto H1H_{1} obtained by mapping x,y,z,αx,y,z,\alpha to x,y,z,αx,y,z,\alpha respectively and all αi\alpha_{i} to 11. Let K1K_{1} be the kernel of this projection map. Then |K1|=|H2(H1,×)|=p4|K_{1}|=|{\mathrm{H}}^{2}(H_{1},\mathbb{C}^{\times})|=p^{4} and K1Z(H1~)[H1~,H1~]K_{1}\subseteq Z(\widetilde{H_{1}})\cap[\widetilde{H_{1}},\widetilde{H_{1}}]. Therefore, by [14, Theorem 3.7 (Chapter 3)], H1~\widetilde{H_{1}} is a representation group of H1H_{1}. ∎

Proposition 4.4.

The groups H1~\widetilde{H_{1}} and H2~\widetilde{H_{2}} satisfy the following:

[H1~][H2~]p4(Mp())(p3+4p2p+1)p2(p1)(Mp2())p3(p1)3(p+2).\mathbb{C}[\widetilde{H_{1}}]\cong\mathbb{C}[\widetilde{H_{2}}]\cong\mathbb{C}^{\oplus p^{4}}\oplus(\mathrm{M}_{p}(\mathbb{C}))^{\oplus(p^{3}+4p^{2}-p+1)p^{2}(p-1)}\oplus(\mathrm{M}_{p^{2}}(\mathbb{C}))^{\oplus p^{3}(p-1)^{3}(p+2)}.

Furthermore, for the subgroups A=α1,α2,α3,α4A=\langle\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\rangle and B=x,y,z,wB=\langle x,y,z,w\rangle of H1~\widetilde{H_{1}} and H2~\widetilde{H_{2}} respectively, there exists an isomorphism σ:A^B^\sigma:\widehat{A}\rightarrow\widehat{B} such that the following sets are in a dimension preserving bijection for every χA^\chi\in\hat{A}:

Irr(H1~χ)Irr(H2~σ(χ)).\mathrm{Irr}(\widetilde{H_{1}}\mid\chi)\leftrightarrow\mathrm{Irr}(\widetilde{H_{2}}\mid\sigma(\chi)).
Proof.

Representations of H1~\widetilde{H_{1}}: We first justify the representations of H1~\widetilde{H_{1}}. By the definition of H1~\widetilde{H_{1}}, the derived subgroup of H1~\widetilde{H_{1}} (denoted H1~\widetilde{H_{1}}^{\prime}) is α1,α2,α3,α4,z\langle\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},z\rangle and the center of H1~\widetilde{H_{1}} is α1,α2,α3,α4,αp\langle\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha^{p}\rangle. By considering the quotient group H1~\widetilde{H_{1}}/H1~\widetilde{H_{1}}^{\prime}, we obtain that H1~\widetilde{H_{1}} has exactly p4p^{4} number of one-dimensional representations.

We next consider the abelian normal subgroup N=α1,α2,α3,α4,α,zN=\langle\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha,z\rangle of H1~\widetilde{H_{1}}. The group NN has order p7p^{7}. Hence every irreducible representation of H1~\widetilde{H_{1}} has dimension either 11, pp or p2p^{2}. We have already justified all one-dimensional representations. Our next goal is to determine all pp and p2p^{2} dimensional representations.

Let χIrr(N)\chi\in\operatorname{Irr}(N) such that χ(α1)=ξi1\chi(\alpha_{1})=\xi^{i_{1}}, χ(α2)=ξi2\chi(\alpha_{2})=\xi^{i_{2}}, χ(α3)=ξi3\chi(\alpha_{3})=\xi^{i_{3}} and χ(α4)=ξi4\chi(\alpha_{4})=\xi^{i_{4}}, where ξ\xi is a primitive pthp^{th} root of unity and 0i1,i2,i3,i4(p1)0\leq i_{1},i_{2},i_{3},i_{4}\leq(p-1). We determine the stabilizer of χ\chi in H1~\widetilde{H_{1}}, denoted by IH1~(χ).I_{\widetilde{H_{1}}}(\chi). Recall IH1~(χ)={gH1~χg=χ}.I_{\widetilde{H_{1}}}(\chi)=\{g\in\widetilde{H_{1}}\mid\chi^{g}=\chi\}. By definition of χ\chi, NIH1~(χ)N\leq I_{\widetilde{H_{1}}}(\chi). Next, consider g=xiyjng=x^{i}y^{j}n, with nNn\in N. Recall that every mNm\in N satisfes m=αezfhm=\alpha^{e}z^{f}h for some hZ(H1~).h\in Z(\widetilde{H_{1}}). Therefore, we have

χxiyj(αezfh)=χ(αezfh)\chi^{x^{i}y^{j}}(\alpha^{e}z^{f}h)=\chi(\alpha^{e}z^{f}h)

if and only if χ(xiyjαezfyjxi)=χ(αezf).\chi(x^{i}y^{j}\alpha^{e}z^{f}y^{-j}x^{-i})=\chi(\alpha^{e}z^{f}). Since

xi(yjαe)zfyjxi\displaystyle x^{i}(y^{j}\alpha^{e})z^{f}y^{-j}x^{-i} =\displaystyle= xi(αeyjα4je)zfyjxi=αexiα3ieyjα4jezfyjxi\displaystyle x^{i}(\alpha^{e}y^{j}\alpha_{4}^{je})z^{f}y^{-j}x^{-i}=\alpha^{e}x^{i}\alpha_{3}^{ie}y^{j}\alpha_{4}^{je}z^{f}y^{-j}x^{-i}
=\displaystyle= αexiyjzfyjxiα3ieα4je=αexizfyjα2jfyjxiα3ieα4je\displaystyle\alpha^{e}x^{i}y^{j}z^{f}y^{-j}x^{-i}\alpha_{3}^{ie}\alpha_{4}^{je}=\alpha^{e}x^{i}z^{f}y^{j}\alpha_{2}^{jf}y^{-j}x^{-i}\alpha_{3}^{ie}\alpha_{4}^{je}
=\displaystyle= αezfα1ifα2jfα3ieα4je,\displaystyle\alpha^{e}z^{f}\alpha_{1}^{if}\alpha_{2}^{jf}\alpha_{3}^{ie}\alpha_{4}^{je},

we obtain that xiyjnIH1~(χ)x^{i}y^{j}n\in I_{\widetilde{H_{1}}}(\chi) if and only if χ(α1ifα2jfα3ieα4je)=1\chi(\alpha_{1}^{if}\alpha_{2}^{jf}\alpha_{3}^{ie}\alpha_{4}^{je})=1. This is equivalent to saying that ξi1if+i2jf+i3ie+i4je=1.\xi^{i_{1}if+i_{2}jf+i_{3}ie+i_{4}je}=1.

We now consider various cases of irreducible characters of NN. Note that in each of the cases discussed below, all the computations for ii and jj are done modulo pp.

  • Case I: Consider the characters χ\chi of NN such that i1=i2=i3=i4=0i_{1}=i_{2}=i_{3}=i_{4}=0. These are exactly p3p^{3} in number. Among these there are p2p^{2} characters which act trivially on zz and hence on H1~\widetilde{H_{1}}^{\prime}. These give p4p^{4} number of one dimensional characters of H1~\widetilde{H_{1}}. The other (p3p2)(p^{3}-p^{2}) character of NN of this case give irreducible character of H1~\widetilde{H_{1}} of dimension pp and therefore we obtain p4p3p^{4}-p^{3} many characters of H1~\widetilde{H_{1}} of dimension pp.

  • Case II: When any three of i1,i2,i3,i4i_{1},i_{2},i_{3},i_{4} are 0 and the fourth one is non-zero, then g=xiyjnIH1~(χ)g=x^{i}y^{j}n\in I_{\widetilde{H_{1}}}(\chi) if and only if either ii or jj is 0. Thus |IH1~(χ)|=p8.|I_{\widetilde{H_{1}}}(\chi)|=p^{8}.

  • Case III: When any two of i1,i2,i3,i4i_{1},i_{2},i_{3},i_{4} are 0 and the other two are non-zero, then ii is a non-zero multiple of jj or one of them is zero and other can take any value. Hence |IH1~(χ)|=p8.|I_{\widetilde{H_{1}}}(\chi)|=p^{8}.

  • Case IV: When any three of i1,i2,i3,i4i_{1},i_{2},i_{3},i_{4} are non-zero and the fourth one is 0, then i=j=0i=j=0 and hence IH1~(χ)=N.I_{\widetilde{H_{1}}}(\chi)=N.

  • Case V: Assume that each it,i_{t}, where t{1,2,3,4},t\in\{1,2,3,4\}, is non-zero. When f=0f=0 and e=1,i=i4ji3;e=1,i=\frac{-i_{4}j}{i_{3}}; and when e=0e=0 and f=1,i=i2ji1.f=1,i=\frac{-i_{2}j}{i_{1}}. Therefore, i4ji3=i2ji1,\frac{-i_{4}j}{i_{3}}=\frac{-i_{2}j}{i_{1}}, which holds if and only if (i4i1i2i3)j=0.(i_{4}i_{1}-i_{2}i_{3})j=0. Now if i4i1i2i3,i_{4}i_{1}\neq i_{2}i_{3}, then i=j=0i=j=0 and hence IH1~(χ)=N.I_{\widetilde{H_{1}}}(\chi)=N. Here note that (p1)3(p-1)^{3} many characters of NN satisfy i4i1=i2i3i_{4}i_{1}=i_{2}i_{3} and their inertia group is of order p8.p^{8}. Thus the remaining ((p1)4(p1)3)((p-1)^{4}-(p-1)^{3}) characters have inertia group N.N.

Considering the case of (p7p3)(p^{7}-p^{3}) many characters of N,N, discussed in Cases II-V, the inertia group of p3(p1)3(p+2)p^{3}(p-1)^{3}(p+2) characters is N,N, and for the other p3(p1)(p2+4p1)p^{3}(p-1)(p^{2}+4p-1) characters, it is of order p8.p^{8}. By using Clifford theory, we obtain

[H1~]p4(Mp())(p3+4p2p+1)p2(p1)(Mp2())p(p1)3(p+2).\mathbb{C}[\widetilde{H_{1}}]\cong\mathbb{C}^{\oplus p^{4}}\oplus(\mathrm{M}_{p}(\mathbb{C}))^{\oplus(p^{3}+4p^{2}-p+1)p^{2}(p-1)}\oplus(\mathrm{M}_{p^{2}}(\mathbb{C}))^{\oplus p(p-1)^{3}(p+2)}.

Representations of H2~\widetilde{H_{2}}: We have H2~=x,y,z,w,α2\widetilde{H_{2}}^{\prime}=\langle x,y,z,w,\alpha_{2}\rangle and Z(H2~)=αp,x,y,z,wZ(\widetilde{H_{2}})=\langle\alpha^{p},x,y,z,w\rangle. Clearly, there are exactly p4p^{4} number of linear characters of H2~\widetilde{H_{2}}. Consider the subgroup

M=α2,α3,x,y,z,w,αpM=\langle\alpha_{2},\alpha_{3},x,y,z,w,\alpha^{p}\rangle

of H2~\widetilde{H_{2}}. This is an abelian normal group of order p7p^{7}. Let χIrr(M)\chi\in\mathrm{Irr}(M) such that χ(x)=ξi1\chi(x)=\xi^{i_{1}}, χ(y)=ξi2\chi(y)=\xi^{i_{2}}, χ(z)=ξi3\chi(z)=\xi^{i_{3}} and χ(w)=ξi4,\chi(w)=\xi^{i_{4}}, where ξ\xi is a primitive pthp^{th} root of unity and 0i1,i2,i3,i4(p1)0\leq i_{1},i_{2},i_{3},i_{4}\leq(p-1). Let g=αiα1jmg=\alpha^{i}\alpha_{1}^{j}m, where mM,m\in M, be an element of IG(χ).I_{G}(\chi). Therefore, for any m=α2kα3lhM,m^{{}^{\prime}}=\alpha_{2}^{k}\alpha_{3}^{l}h\in M, where hZ(H1~),h\in Z(\widetilde{H_{1}}), we have χαiα1j(α2kα3lh)=χ(α2kα3lh).\chi^{\alpha^{i}\alpha_{1}^{j}}(\alpha_{2}^{k}\alpha_{3}^{l}h)=\chi(\alpha_{2}^{k}\alpha_{3}^{l}h). Now similar computations yield that we must have ξi1jk+i2ik+i3(jl)+i4(il)=1\xi^{i_{1}jk+i_{2}ik+i_{3}(-jl)+i_{4}(-il)}=1 and hence the following cases arise:

  • Case I: When any three of i1,i2,i3,i4i_{1},i_{2},i_{3},i_{4} are 0 and the fourth one is non-zero, then either ii or jj is 0.0. Thus |IG(χ)|=p8.|I_{G}(\chi)|=p^{8}.

  • Case II: When any two of i1,i2,i3,i4i_{1},i_{2},i_{3},i_{4} are 0 and the other two are non-zero, then ii is a non-zero multiple of jj or one of them is zero and other can take any value. Hence |IG(χ)|=p8.|I_{G}(\chi)|=p^{8}.

  • Case III: When any three of i1,i2,i3,i4i_{1},i_{2},i_{3},i_{4} are non-zero and the fourth one is 0, then i=j=0i=j=0 and hence IG(χ)=M.I_{G}(\chi)=M.

  • Case IV: Assume that each it,i_{t}, where t{1,2,3,4},t\in\{1,2,3,4\}, is non-zero. When l=0l=0 and k=1,i=i1ji2;k=1,i=\frac{-i_{1}j}{i_{2}}; and when k=0k=0 and l=1,i=i3ji4.l=1,i=\frac{-i_{3}j}{i_{4}}. Therefore, i3ji4=i1ji2,\frac{-i_{3}j}{i_{4}}=\frac{-i_{1}j}{i_{2}}, which holds if and only if (i4i1i2i3)j=0.(i_{4}i_{1}-i_{2}i_{3})j=0. Now if i4i1i2i3,i_{4}i_{1}\neq i_{2}i_{3}, then i=j=0i=j=0 and hence IG(χ)=M.I_{G}(\chi)=M. On the other hand, if i4=i2i3i1,i_{4}=\frac{i_{2}i_{3}}{i_{1}}, then |IG(χ)|=p8.|I_{G}(\chi)|=p^{8}. Therefore, in this case the inertia group of (p1)3(p-1)^{3} many characters is of order p8p^{8} and for the remaining ((p1)4(p1)3)((p-1)^{4}-(p-1)^{3}) characters it is M.M.

Considering all the above cases along with the Clifford theory gives

[H2~]p4(Mp())(p3+4p2p+1)p2(p1)(Mp2())p(p1)3(p+2).\mathbb{C}[\widetilde{H_{2}}]\cong\mathbb{C}^{\oplus p^{4}}\oplus(\mathrm{M}_{p}(\mathbb{C}))^{\oplus(p^{3}+4p^{2}-p+1)p^{2}(p-1)}\oplus(\mathrm{M}_{p^{2}}(\mathbb{C}))^{\oplus p(p-1)^{3}(p+2)}.

The required isomorphism is also obtained from the above construction. ∎

Proposition 4.5.

The groups H1H_{1} and H2H_{2} are \mathbb{C}-twist isomorphic.

Proof.

This follows from Lemma 4.2, Lemma 4.3 and Proposition 4.4. ∎

Lemma 4.6.

[ϕ3(15)][ϕ7(15)]\mathbb{C}[\phi_{3}(1^{5})]\ncong\mathbb{C}[\phi_{7}(1^{5})].

Proof.

It follows from the presentations of ϕ3(15)\phi_{3}(1^{5}) and ϕ7(15)\phi_{7}(1^{5}) that the nilpotency class of both the groups is 3.3. Now, consider the abelian normal subgroup N1=α1,α2,α3,βN_{1}=\langle\alpha_{1},\alpha_{2},\alpha_{3},\beta\rangle of ϕ3(15).\phi_{3}(1^{5}). Since it is of index p,p, each irreducible representation of ϕ3(15)\phi_{3}(1^{5}) is of dimension at most p.p.

Now note that the derived subgroup of ϕ7(15)\phi_{7}(1^{5}) is α2×α3\langle\alpha_{2}\rangle\times\langle\alpha_{3}\rangle and its center is α3\langle\alpha_{3}\rangle. Consider the abelian normal subgroup N2=α1,α2,α3N_{2}=\langle\alpha_{1},\alpha_{2},\alpha_{3}\rangle of ϕ7(15)\phi_{7}(1^{5}). Let χIrr(N2)\chi\in\mathrm{Irr}(N_{2}) such that χ(α1)=ζi1,χ(α2)=ζi2\chi(\alpha_{1})=\zeta^{i_{1}},\chi(\alpha_{2})=\zeta^{i_{2}} and χ(α3)=ζi3\chi(\alpha_{3})=\zeta^{i_{3}}, where ζ\zeta is a primitive pp-th root of unity and 0i1,i2,i3(p1).0\leq i_{1},i_{2},i_{3}\leq(p-1). Assume that for some 0i,jp1,0\leq i,j\leq p-1, αiβj\alpha^{i}\beta^{j} stabilizes χ.\chi. Let α1aα2bα3cN2\alpha_{1}^{a}\alpha_{2}^{b}\alpha_{3}^{c}\in N_{2}. Since the group ϕ7(15)\phi_{7}(1^{5}) is of nilpotency class 33,

αi(βjα1a)α2bα3cβjαi\displaystyle\alpha^{i}(\beta^{j}\alpha_{1}^{a})\alpha_{2}^{b}\alpha_{3}^{c}\beta^{-j}\alpha^{-i} =\displaystyle= αiα1aβjα2bβjαiα3caj\displaystyle\alpha^{i}\alpha_{1}^{a}\beta^{j}\alpha_{2}^{b}\beta^{-j}\alpha^{-i}\alpha_{3}^{c-aj}
=\displaystyle= α2aiα1aαiβjα2bβjαiα3caja(i2)\displaystyle\alpha_{2}^{-ai}\alpha_{1}^{a}\alpha^{i}\beta^{j}\alpha_{2}^{b}\beta^{-j}\alpha^{-i}\alpha_{3}^{c-aj-a\binom{i}{2}}
=\displaystyle= α1aα2baiα3ib+caja(i2)=α1aα2bα3cα2aiα3ibaja(i2).\displaystyle\alpha_{1}^{a}\alpha_{2}^{b-ai}\alpha_{3}^{-ib+c-aj-a\binom{i}{2}}=\alpha_{1}^{a}\alpha_{2}^{b}\alpha_{3}^{c}\alpha_{2}^{-ai}\alpha_{3}^{-ib-aj-a\binom{i}{2}}.

Thus, αiβj\alpha^{i}\beta^{j} stabilizes χ\chi if, and only if, ζaii2(ib+aj+a(i2))i3=1.\zeta^{-aii_{2}-(ib+aj+a\binom{i}{2})i_{3}}=1. When i2=0i_{2}=0 and i30,i_{3}\neq 0, then for a=0a=0 and b=1i3,b=\frac{-1}{i_{3}}, we have ζi=1;\zeta^{i}=1; which implies that i=0.i=0. Further, a=1i3a=\frac{-1}{i_{3}} (note that i3i_{3} is invertible modulo pp) gives ζj=1\zeta^{j}=1. Hence j=0j=0 and it follows that the inertia group of χ\chi in ϕ7(15)\phi_{7}(1^{5}) is N2.N_{2}. Therefore, the character of ϕ7(15)\phi_{7}(1^{5}) induced from χ\chi is irreducible of degree p2.p^{2}. Since ϕ3(15)\phi_{3}(1^{5}) has no irreducible representations of dimension p2,p^{2}, the complex group algebras of ϕ3(15)\phi_{3}(1^{5}) and ϕ7(15)\phi_{7}(1^{5}) are not isomorphic. ∎

Proof of Theorem 1.3.

From Theorem 4.1, it is clear that every pp-group with s(G)=3s(G)=3 has order pnp^{n} where n{4,,7}n\in\{4,\ldots,7\}. In the following, we separately consider the cases of nn with 4n74\leq n\leq 7:

n=4

For an odd prime p,p, the only groups of order p4p^{4} whose generalized corank is 33 are ϕ2(22),ϕ3(211)a,ϕ3(211)b1\phi_{2}(22),\phi_{3}(211)a,\phi_{3}(211)b_{1} and ϕ3(211)brp.\phi_{3}(211)b_{r_{p}}. It follows from the presentation that the derived subgroup of the group ϕ2(22)\phi_{2}(22) is [α1,α],\langle[\alpha_{1},\alpha]\rangle, which is of order p;p; whereas for the rest of the three groups, the derived subgroup is of order p2.p^{2}. Therefore, each of these groups has p2p^{2} and (p21)(p^{2}-1) irreducible characters of degree 11 and p,p, respectively, and hence their complex group algebras are isomorphic. Since these groups are not of central type, it follows from Lemma 2.3 that they lie in the same \mathbb{C}-twist isomorphism class.

On the other hand, when p=2p=2; the only two 22-groups with s(G)=3s(G)=3 that correspond to the case of n=4n=4 are C4C4C_{4}\rtimes C_{4} and D16.D_{16}. Since the complex group algebras of these two groups are not isomorphic, each of these groups constitutes a singleton \mathbb{C}-twist isomorphism class.

n=5

When pp is an odd prime, it follows from Theorem 4.1 that the only groups of order p5p^{5} with s(G)=3s(G)=3 are ϕ3(15)\phi_{3}(1^{5}), ϕ7(15),H1\phi_{7}(1^{5}),H_{1} and H2H_{2}. Consequently, the result follows from Proposition 4.5. The derived subgroup of the groups ϕ3(15)\phi_{3}(1^{5}) and ϕ7(15)\phi_{7}(1^{5}) is elementary abelian of order p2p^{2} and of H1H_{1} and H2H_{2} is of order p.p. Thus the groups ϕ3(15)\phi_{3}(1^{5}) and ϕ7(15)\phi_{7}(1^{5}) have p3p^{3} linear characters; where as H1H_{1} and H2H_{2} have p4p^{4} linear characetrs. Therefore, no group in the set {ϕ3(15),ϕ7(15)}\{\phi_{3}(1^{5}),\phi_{7}(1^{5})\} can be \mathbb{C}-twist isomorphic to any group in {H1,H2}.\{H_{1},H_{2}\}. Now it follows from Lemma 4.6 and Proposition 4.5 that in this case the only non-singleton \mathbb{C}-twist isomorphism class is constituted by H1H_{1} and H2.H_{2}.

For p=2p=2, the only two 22-groups of order 3232 that have generalized corank 33 are C24C2C_{2}^{4}\rtimes C_{2} and C2×((C4×C2)C2)C_{2}\times((C_{4}\times C_{2})\rtimes C_{2}). It can be checked using GAP [5] that the size of the derived subgroup of the first group is 44 and that of the second is 2.2. Thus the complex group algebras of these groups are not isomorphic, which establishes the desired result.

n=6

The groups of order p6p^{6} with s(G)=3s(G)=3 are ϕ11(16),ϕ12(16),ϕ13(16)\phi_{11}(1^{6}),\phi_{12}(1^{6}),\phi_{13}(1^{6}) and ϕ15(16).\phi_{15}(1^{6}). Note that the size of the commutator subgroup of ϕ11(16)\phi_{11}(1^{6}) is p3p^{3} and of the rest of the groups is p2.p^{2}.

It can be checked that ϕ12(16)=ESp(p3)×ESp(p3)\phi_{12}(1^{6})=ES_{p}(p^{3})\times ES_{p}(p^{3}) has 2p2(p1)2p^{2}(p-1) inequivalent irreducible representations of dimension pp and (p1)2(p-1)^{2} of dimension p2.p^{2}. Further, it follows from [12, Table 4.1] that ϕ13(16)\phi_{13}(1^{6}) has (p3p2)(p^{3}-p^{2}) representations of dimension pp; whereas ϕ15(16)\phi_{15}(1^{6}) has no representation of dimension pp. Thus each group of order p6p^{6} with generalized corank 3 constitutes a singleton \mathbb{C}-twist isomorphism class.

n=7

Any group of order p7p^{7} with s(G)=3s(G)=3 is isomorphic to Cp(4)Cp×Cp2C_{p}^{(4)}\rtimes C_{p}\times C_{p}^{2}. Hence such a group forms a singleton \mathbb{C}-twist isomorphism class. ∎

Acknowledgement

GK acknowledges the research support of the National Board for Higher Mathematics, Department of Atomic Energy, Govt. of India (0204/16(7)/2022/R&D-II/ 11978). SK acknowledges the support of the Council of Scientific and Industrial Research (CSIR), India (09/092(1066)/2020-EMR-I). PS thanks the support of SERB power grant(SPG/2022/001099).

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  • [1] Ya. G. Berkovich, On the order of the commutator subgroup and the Schur multiplier of a finite pp-group, J. Algebra 144 (1991), no. 2, 269–272. MR 1140606
  • [2] D. B. Coleman, Finite groups with isomorphic group algebras, Trans. Amer. Math. Soc. 105 (1962), 1–8. MR 142622
  • [3] E. C. Dade, Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps, Math. Z. 119 (1971), 345–348. MR 280610
  • [4] Graham Ellis, On the Schur multiplier of pp-groups, Comm. Algebra 27 (1999), no. 9, 4173–4177. MR 1705860
  • [5] The GAP Group, Gap – groups, algorithms, and programming, version 4.12.2, 2022.
  • [6] J. A. Green, On the number of automorphisms of a finite group, Proc. Roy. Soc. London Ser. A 237 (1956), 574–581. MR 81901
  • [7] Jafari S H, Finite p-groups whose order of their schur multiplier is given (t=6), the Extended Abstract of the 6th International Group Theory Conference (2014).
  • [8] S. Hatui, Characterization of finite pp-groups by their Schur multiplier, Proc. Indian Acad. Sci. Math. Sci. 128 (2018), no. 4, Paper No. 49, 9. MR 3834965
  • [9] S. Hatui and P. Singla, On Schur multiplier and projective representations of Heisenberg groups, J. Pure Appl. Algebra 225 (2021), no. 11, Paper No. 106742, 16. MR 4232687
  • [10] M. Hertweck, A counterexample to the isomorphism problem for integral group rings, Ann. of Math. (2) 154 (2001), no. 1, 115–138. MR 1847590
  • [11] I. M. Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Providence, RI, 2006, Corrected reprint of the 1976 original [Academic Press, New York; MR0460423]. MR 2270898
  • [12] R. James, The groups of order p6p^{6} (pp an odd prime), Math. Comp. 34 (1980), no. 150, 613–637. MR 559207
  • [13] G. Karpilovsky, Finite groups with isomorphic group algebras, Illinois J. Math. 25 (1981), no. 1, 107–111. MR 602901
  • [14] by same author, Projective representations of finite groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 94, Marcel Dekker, Inc., New York, 1985. MR 788161
  • [15] L. Margolis, The modular isomorphism problem: a survey, Jahresber. Dtsch. Math.-Ver. 124 (2022), no. 3, 157–196. MR 4472590
  • [16] L. Margolis and A. Del Rio, Finite subgroups of group rings: a survey, arXiv preprint arXiv:1809.00718 (2018).
  • [17] L. Margolis and O. Schnabel, Twisted group ring isomorphism problem, Q. J. Math. 69 (2018), no. 4, 1195–1219. MR 3908699
  • [18] by same author, The twisted group ring isomorphism problem over fields, Israel J. Math. 238 (2020), no. 1, 209–242. MR 4145799
  • [19] L Margolis and OFIR Schnabel, Twisted group ring isomorphism problem and infinite cohomology groups, arXiv preprint arXiv:2011.10129 (2020).
  • [20] P. Niroomand, On the order of Schur multiplier of non-abelian pp-groups, J. Algebra 322 (2009), no. 12, 4479–4482. MR 2558872
  • [21] by same author, A note on the Schur multiplier of groups of prime power order, Ric. Mat. 61 (2012), no. 2, 341–346. MR 3000665
  • [22] by same author, Classifying pp-groups by their Schur multipliers, Math. Rep. (Bucur.) 20(70) (2018), no. 3, 279–284. MR 3873102
  • [23] Peyman Niroomand, Characterizing finite pp-groups by their Schur multipliers, C. R. Math. Acad. Sci. Paris 350 (2012), no. 19-20, 867–870. MR 2990893
  • [24] by same author, Characterizing finite pp-groups by their Schur multipliers, t(G)=5t(G)=5, Math. Rep. (Bucur.) 17(67) (2015), no. 2, 249–254. MR 3375732
  • [25] S. Perlis and G. L. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc. 68 (1950), 420–426. MR 34758
  • [26] C. Polcino Milies and S. K. Sehgal, An introduction to group rings, Algebra and Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, 2002. MR 1896125
  • [27] R. Sandling, The isomorphism problem for group rings: a survey, Orders and their Applications: Proceedings of a Conference held in Oberwolfach, West Germany June 3–9, 1984, Springer, 2006, pp. 256–288.
  • [28] Xiao Ming Zhou, On the order of Schur multipliers of finite pp-groups, Comm. Algebra 22 (1994), no. 1, 1–8. MR 1255666