This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On topological solutions to a generalized Chern-Simons equation on lattice graphs

Songbo Hou [email protected] Department of Applied Mathematics, College of Science, China Agricultural University, Beijing, 100083, P.R. China Xiaoqing Kong [email protected] Department of Applied Mathematics, College of Science, China Agricultural University, Beijing, 100083, P.R. China
Abstract

For n2n\geq 2, consider n\mathbb{Z}^{n} as a lattice graph. We explore a generalized Chern-Simons equation on n\mathbb{Z}^{n}. Employing the method of exhaustion, we prove that there exists a global solution that also qualifies as a topological solution. Our results extend those of Hua et al. [arXiv:2310.13905] and complement the findings of Chao and Hou [J. Math. Anal. Appl. 𝟓𝟏𝟗\bf{519}(1), 126787(2023)], as well as those of Hou and Qiao [J. Math. Phys. 𝟔𝟓\bf{65}(8), 081503(2024)].

keywords:
Chern-Simons equation , lattice graph , topological solution, maximal solution
MSC:
[2020] 35A01 35A16 35J91 35R02
journal: ***

1 Introduction

The Chern-Simons theory was originally formulated by Shiing-Shen Chern and James Simons in 1974. This theory was initially developed within the field of mathematics to study the geometric structures on three-dimensional manifolds. Later, it found broad applications in physics, particularly in quantum physics and condensed matter physics. The theory quickly gained significance in understanding topological phase transitions, especially in the context of quantum Hall effects, topological insulators, and high-temperature superconductors [44, 43, 7].

Substantial studies have been undertaken on the dynamic models of the Chern-Simons type in the field theory, referenced in works like [34, 40, 33] among others. From a mathematical perspective, the dynamical equations for different Chern-Simons frameworks pose significant analytical challenges, even in scenarios involving radial symmetry and static conditions [31]. In the Abelian Chern-Simons model, the self-dual structure was discovered in [20, 30] and has catalyzed extensive further investigation. Many problems of existence can be transformed into studies of elliptic partial differential equations or systems of equations, with a particular focus on exploring topological and non-topological solutions [2, 48, 3, 18, 28, 17].

Partial differential equations on discrete graphs have recently garnered significant interest and are now widely applied in diverse fields such as image processing, social network analysis, bioinformatics, and machine learning. Recent advancements have extended some traditional methods for solving partial differential equations in Euclidean spaces to the context of graphs.

Pioneering research by Grigor’yan et al. [15, 14, 16] introduced a variational method to examine the Kazdan-Warner equation, the Yamabe-type equation, and other nonlinear equations. The main goal of these studies was to demonstrate the existence of solutions. For a range of partial differential equations, further investigations have been thoroughly investigated on graphs. Notably, the existence results for Yamabe type equations have been detailed in references such as [12, 10, 51]. Studies addressing Kazdan-Warner equations are found in [50, 9, 11, 46, 36], and the results concerning Schrödinger equations appear in [49, 39, 42, 4]. Additionally, significant findings related to the heat equations are documented in [35, 37].

Define Δ\Delta as the Laplacian operator. In this research, we analyze a generalized Chern-Simons equation described by

Δu=λeu(eu1)2p+1+4πj=1Mnjδpj,\Delta u=\lambda e^{u}(e^{u}-1)^{2p+1}+4\pi\sum_{j=1}^{M}n_{j}\delta_{p_{j}}, (1.1)

where λ\lambda is a positive constant, pp is a non-negative integer, nin_{i} for 1iM1\leq i\leq M are positive integers, and pip_{i} for 1iM1\leq i\leq M are specific points with δpj\delta_{p_{j}} denoting the Dirac delta function at pjp_{j}. Within Euclidean spaces, the classification of a solution u(x)u(x) to equation (1.1) depends on its behavior at infinity: if u(x)u(x) approaches 0 as |x||x| increases indefinitely, it is termed topological, and if u(x)u(x) declines to -\infty as |x||x| increases, it termed non-topological.

For p=0p=0 and ni=1n_{i}=1 for all i=1,2,,Mi=1,2,\dots,M, Eq.(1.1) simplifies to

Δu=λeu(eu1)+4πj=1Mδpj.\Delta u=\lambda e^{u}(e^{u}-1)+4\pi\sum_{j=1}^{M}\delta_{p_{j}}. (1.2)

This equation was examined by Caffarelli et al. [1] and Tarantello [47] within a doubly periodic setting or on the 2-torus in 2\mathbb{R}^{2}, confirming solution presence. Similarly, Huang et al. [26] and Hou et al. [23] explored Eq.(1.2) on finite graphs, establishing solution existence. For p=2p=2 and ni=1n_{i}=1 for each i=1,2,,Mi=1,2,\dots,M, Eq.(1.1) modifies to

Δu=λeu(eu1)5+4πj=1Mδpj.\Delta u=\lambda e^{u}(e^{u}-1)^{5}+4\pi\sum_{j=1}^{M}\delta_{p_{j}}. (1.3)

Han [19] determined the presence of multi-vortices for Eq.(1.3) in a similarly doubly periodic region of 2\mathbb{R}^{2}. Chao et al. [5] and Hu [24] documented multiple solution findings for Eq.(1.3) on finite graphs. Additional research on Chern-Simons models on graphs has been reported in [38, 22, 21, 8, 6, 32, 25, 29].

We describe the lattice n\mathbb{Z}^{n} for n2n\geq 2 as a discrete graph denoted by n=(V,E)\mathbb{Z}^{n}=(V,E). Here, VV denotes the set of vertices and EE the set of edges:

V={x:x=(x1,,xn) where xi for each 1in}n,V=\left\{x:x=(x_{1},\ldots,x_{n})\text{ where }x_{i}\in\mathbb{Z}\text{ for each }1\leq i\leq n\right\}\subseteq\mathbb{R}^{n},
E={xy:x,yV such that d(x,y)=1},E=\left\{xy:x,y\in V\text{ such that }d(x,y)=1\right\},

where

d(x,y)=i=1n|xiyi|.d(x,y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|.

Consider a finite subset ΩV\Omega\subset V. The boundary, denoted δΩ\delta\Omega, is defined as

δΩ:={yΩ:xΩ,yx},\delta\Omega:=\{y\notin\Omega:\exists x\in\Omega,y\sim x\},

and we denote by Ω¯=ΩδΩ\bar{\Omega}=\Omega\cup\delta\Omega the closure of Ω\Omega.

Now, we introduce function spaces and operators on graphs to prepare for the subsequent analysis. Let C(V)C(V) denote the collection of all functions on VV. Similarly, for a finite subset Ω\Omega of VV, the set C(Ω)C(\Omega) is defined as the collection of functions that are defined over Ω\Omega. For any uC(V)u\in C(V), the integration of uu on V is defined as

Vu𝑑μ=xVu(x).\int_{V}ud\mu=\sum_{x\in V}u(x).

Analogously, we define the lql^{q}-norm (1q<)(1\leq q<\infty) of uC(V)u\in C(V) by

ulq(V)=(xV|u(x)|q)1q,\|u\|_{l^{q}\left(V\right)}=\left(\sum_{x\in V}|u(x)|^{q}\right)^{\frac{1}{q}},

and the ll^{\infty}-norm of uC(V)u\in C(V) by

ul(V)=supxV|u(x)|.\|u\|_{l^{\infty}(V)}=\sup_{x\in V}|u(x)|.

Denote xyx\sim y whenever xyxy is an edge in EE. We also define the following seminorm:

|u|1,q:=(xVyx|u(y)u(x)|q)1q.|u|_{1,q}:=\left(\sum_{x\in V}\sum_{y\sim x}|u(y)-u(x)|^{q}\right)^{\frac{1}{q}}.

The Laplacian operator for any uC(V)u\in C(V) is identified as

Δu(x)=yx(u(y)u(x)).\Delta u(x)=\sum_{y\sim x}(u(y)-u(x)).

Furthermore, for any uu and vv on the graph, we characterize the gradient form as follows:

Γ(u,v)(x):=12yx(u(y)u(x))(v(y)v(x)).\Gamma(u,v)(x):=\frac{1}{2}\sum_{y\sim x}(u(y)-u(x))(v(y)-v(x)).

If u=vu=v, this simplifies to Γ(u)=Γ(u,u)\Gamma(u)=\Gamma(u,u).

For functions u,vu,v in C(Ω¯)C(\bar{\Omega}), a bilinear form EΩ(u,v)E_{\Omega}(u,v) is specified as

EΩ(u,v):=Ω¯Γ(u,v)𝑑μ=12x,yΩ¯xy(u(y)u(x))(v(y)v(x)),E_{\Omega}(u,v):=\int_{\bar{\Omega}}\Gamma(u,v)d\mu=\frac{1}{2}\sum_{\begin{subarray}{c}x,y\in\bar{\Omega}\\ x\sim y\end{subarray}}(u(y)-u(x))(v(y)-v(x)), (1.4)

and EΩ(u)=EΩ(u,u)E_{\Omega}(u)=E_{\Omega}(u,u), referred to as the Dirichlet energy of uu. Lemma 2.2 in [49] indicates that for uC(V)u\in C(V) and vC(Ω¯)v\in C(\bar{\Omega}) with vv vanishing on Ω\partial\Omega, the following equality holds:

ΩΩΓ(u,v)𝑑μ=ΩΔuv𝑑μ.\int_{\Omega\cup\partial\Omega}\Gamma(u,v)d\mu=-\int_{\Omega}\Delta u\,v\,d\mu. (1.5)

Let d(x)=d(x,0)d(x)=d(x,0) represent distance from the origin. In this study, we focus primarily on global solutions to the following equation defined on VV:

{Δu=λeu(eu1)2p+1+4πj=1Mnjδpj,limd(x)+u(x)=0.\left\{\begin{aligned} &\Delta u=\lambda e^{u}(e^{u}-1)^{2p+1}+4\pi\sum_{j=1}^{M}n_{j}\delta_{p_{j}},\\ &\lim_{d(x)\to+\infty}u(x)=0.\end{aligned}\right. (1.6)

Our goal is to establish a topological solution which is also maximal. The primary finding is presented as follows:

Theorem 1.1.

For n2n\geq 2, Eq.(1.6) provides a topological solution uu in l2p+2(V)l^{2p+2}(V) on VV, which is also a maximal solution.

In our proof, we employ methods from [45, 25]. First, we establish an iterative scheme, which yields a monotone sequence {uk}\{u_{k}\} addressing the Dirichlet problem. Subsequently, we introduce the functional JΩ(u)J_{\Omega}(u) and demonstrate that JΩ(uk)J_{\Omega}(u_{k}) is uniformly bounded. By using the discrete Gagliardo-Nirenberg-Sobolev inequality, we ensure that the sequence {ukl2p+2(Ω)}\{\|u_{k}\|_{l^{2p+2}(\Omega)}\} is uniformly bounded. As we pass to the limit, we ascertain a solution on Ω\Omega. Utilizing the exhaustion method, we extend this solution to VV. Additionally, we establish the maximality of the solution.

2 Proof of Theorem 1.1

Initially, we recall the maximum principle. It a foundational result on graphs.

Lemma 2.1.

[25] Assume Ω\Omega is a finite subset of VV. Let gg belong to C(Ω¯)C(\bar{\Omega}) with g>0g>0. If fC(Ω¯)f\in C(\bar{\Omega}) satisfies these conditions:

{(Δg)f0on Ω,f0on Ω.\begin{cases}(\Delta-g)f\geqslant 0&\text{on }\Omega,\\ f\leqslant 0&\text{on }\partial\Omega.\end{cases}

Then, ff must be non-positive throughout Ω¯\bar{\Omega}.

We then apply the maximum principle to construct an iterative sequence. Define Ω0\Omega_{0} as a finite subset of VV encompassing {p1,p2,,pM}\{p_{1},p_{2},\ldots,p_{M}\}. Additionally, define Ω\Omega as a connected, finite subset such that Ω0ΩV\Omega_{0}\subset\Omega\subset V. Set h=4πj=1Mnjδpjh=4\pi\sum_{j=1}^{M}n_{j}\delta_{p_{j}} and define N=4πj=1MnjN=4\pi\sum_{j=1}^{M}n_{j}. Select a constant Λ>(2p+2)λ>0\Lambda>(2p+2)\lambda>0, initialize u0=0u_{0}=0, and proceed with the iterative scheme:

{(ΔΛ)uk=λeuk1(euk11)2p+1+hΛuk1 on Ω,uk=0 on Ω.\left\{\begin{array}[]{l}\left(\Delta-\Lambda\right)u_{k}=\lambda e^{u_{k-1}}\left(e^{u_{k-1}}-1\right)^{2p+1}+h-\Lambda u_{k-1}\text{ on }\Omega,\\ u_{k}=0\text{ on }\partial\Omega.\end{array}\right. (2.1)
Lemma 2.2.

Consider the sequence {uk}\{u_{k}\} established in (2.1). It follows that each uku_{k} in the sequence is uniquely determined and adheres to the order

0=u0u1u2.0=u_{0}\geqslant u_{1}\geqslant u_{2}\geqslant\cdots.
Proof.

First, we establish the following equation for u1u_{1}:

{(ΔΛ)u1=h on Ω,u1=0 on Ω.\begin{cases}\left(\Delta-\Lambda\right)u_{1}=h&\text{ on }\Omega,\\ u_{1}=0&\text{ on }\partial\Omega.\end{cases} (2.2)

By the variation method in Lemma 2.2 in [21], we find that (2.2) yields a unique solution. Utilizing Lemma 2.1, it follows that u10u_{1}\leqslant 0.

Assuming that

0=u0u1u2ui,0=u_{0}\geqslant u_{1}\geqslant u_{2}\geqslant\cdots\geqslant u_{i},

and given that

λeui(eui1)2p+1+hΛuil2(Ω),\lambda e^{u_{i}}\left(e^{u_{i}}-1\right)^{2p+1}+h-\Lambda u_{i}\in l^{2}(\Omega),

we can also guarantee the existence and uniqueness of ui+1u_{i+1} by the variation method again.

Analyzing the iterative equation (2.1), we derive that

(ΔΛ)(ui+1ui)\displaystyle\left(\Delta-\Lambda\right)\left(u_{i+1}-u_{i}\right) =λeui(eui1)2p+1λeui1(eui11)2p+1Λ(uiui1)\displaystyle=\lambda e^{u_{i}}\left(e^{u_{i}}-1\right)^{2p+1}-\lambda e^{u_{i-1}}\left(e^{u_{i-1}}-1\right)^{2p+1}-\Lambda(u_{i}-u_{i-1})
{λeξ(eξ1)2p[(2p+2)eξ1]Λ}(uiui1)\displaystyle\geqslant\{\lambda e^{\xi}\left(e^{\xi}-1\right)^{2p}\left[(2p+2)e^{\xi}-1\right]-\Lambda\}(u_{i}-u_{i-1})
Λ(e2ξ1)(uiui1)\displaystyle\geqslant\Lambda(e^{2\xi}-1)(u_{i}-u_{i-1})
0,\displaystyle\geqslant 0,

where ξ\xi denotes a function constrained such that uiξui1u_{i}\leqslant\xi\leqslant u_{i-1}. It ensures that uiui+1u_{i}\geq u_{i+1}, thus validating the lemma in accordance with Lemma 2.1.

Next, we define the natural functional JΩ(u)J_{\Omega}(u) and demonstrate that JΩ(uk)J_{\Omega}(u_{k}) decreases as kk increases. We introduce the following functional defined over Ω\Omega:

JΩ(u)=12EΩ(u)+xΩ[λ2p+2(eu(x)1)2p+2+h(x)u(x)].J_{\Omega}(u)=\frac{1}{2}E_{\Omega}(u)+\sum_{x\in\Omega}\left[\frac{\lambda}{2p+2}(e^{u(x)}-1)^{2p+2}+h(x)u(x)\right]. (2.3)
Lemma 2.3.

Define the sequence {uk}\{u_{k}\} as specified in Eq.(2.1). The sequence satisfies the decreasing inequality:

CJΩ(u1)JΩ(u2)JΩ(uk),C\geqslant J_{\Omega}(u_{1})\geqslant J_{\Omega}(u_{2})\geqslant\cdots\geqslant J_{\Omega}(u_{k})\geqslant\cdots,

where CC is a constant determined by the parameters nn, λ\lambda, pp, and NN.

Proof.

By multiplying Eq.(2.1) by the difference ukuk1u_{k}-u_{k-1} and performing integration on the domain Ω\Omega, we derive:

xΩ[(ΔukΛuk)(ukuk1)](x)\displaystyle\sum_{x\in\Omega}\left[\left(\Delta u_{k}-\Lambda u_{k}\right)\left(u_{k}-u_{k-1}\right)\right](x) (2.4)
=\displaystyle= xΩ[λeuk1(euk11)2p+1(ukuk1)Λuk1(ukuk1)+h(ukuk1)](x).\displaystyle\sum_{x\in\Omega}\left[\lambda e^{u_{k-1}}\left(e^{u_{k-1}}-1\right)^{2p+1}\left(u_{k}-u_{k-1}\right)-\Lambda u_{k-1}\left(u_{k}-u_{k-1}\right)+h\left(u_{k}-u_{k-1}\right)\right](x).

Utilizing the identity as specified in (1.5), we have

xΩΔuk(ukuk1)=EΩ(uk,ukuk1)=EΩ(uk,uk1)EΩ(uk).\sum_{x\in\Omega}\Delta u_{k}\left(u_{k}-u_{k-1}\right)=-E_{\Omega}(u_{k},u_{k}-u_{k-1})=E_{\Omega}(u_{k},u_{k-1})-E_{\Omega}(u_{k}). (2.5)

Integrating this with equation (2.4), we conclude

EΩ(uk)EΩ(uk,uk1)+xΩΛ(ukuk1)2\displaystyle E_{\Omega}(u_{k})-E_{\Omega}(u_{k},u_{k-1})+\sum_{x\in\Omega}\Lambda\left(u_{k}-u_{k-1}\right)^{2} (2.6)
=xΩ[λeuk1(euk11)2p+1(ukuk1)+h(x)(ukuk1)].\displaystyle=-\sum_{x\in\Omega}\left[\lambda e^{u_{k-1}}\left(e^{u_{k-1}}-1\right)^{2p+1}\left(u_{k}-u_{k-1}\right)+h(x)\left(u_{k}-u_{k-1}\right)\right].

Now we introduce a concave function for x0x\leq 0:

η(x)=λ2p+2(ex1)2p+2Λ2x2.\eta(x)=\frac{\lambda}{2p+2}\left(e^{x}-1\right)^{2p+2}-\frac{\Lambda}{2}x^{2}.

We see that

η(uk1)η(uk)η(uk1)(uk1uk)=[λ(euk11)2p+1euk1Λuk1](uk1uk),\eta\left(u_{k-1}\right)-\eta\left(u_{k}\right)\geqslant\eta^{\prime}\left(u_{k-1})(u_{k-1}-u_{k}\right)=\left[\lambda\left(e^{u_{k-1}}-1\right)^{2p+1}e^{u_{k-1}}-\Lambda u_{k-1}\right]\left(u_{k-1}-u_{k}\right),

which yields that

λ2p+2(euk1)2p+2\displaystyle\frac{\lambda}{2p+2}\left(e^{u_{k}}-1\right)^{2p+2}\leqslant λ2p+2(euk11)2p+2+Λ2(ukuk1)2\displaystyle\frac{\lambda}{2p+2}\left(e^{u_{k-1}}-1\right)^{2p+2}+\frac{\Lambda}{2}\left(u_{k}-u_{k-1}\right)^{2} (2.7)
+λeuk1(euk11)2p+1(ukuk1).\displaystyle+\lambda e^{u_{k-1}}\left(e^{u_{k-1}}-1\right)^{2p+1}\left(u_{k}-u_{k-1}\right).

It follows from (1.4) that

|EΩ(uk,uk1)|\displaystyle\left|E_{\Omega}\left(u_{k},u_{k-1}\right)\right|\leqslant 12x,yΩ¯xy|(uk(y)uk(x))(uk1(y)uk1(x))|\displaystyle\frac{1}{2}\sum_{\begin{subarray}{c}x,y\in\bar{\Omega}\\ x\sim y\end{subarray}}\left|(u_{k}(y)-u_{k}(x))(u_{k-1}(y)-u_{k-1}(x))\right| (2.8)
\displaystyle\leqslant 14x,yΩ¯xy[uk(y)uk(x))]2+14x,yΩ¯xy[uk1(y)uk1(x))]2\displaystyle\frac{1}{4}\sum_{\begin{subarray}{c}x,y\in\bar{\Omega}\\ x\sim y\end{subarray}}\left[u_{k}(y)-u_{k}(x))\right]^{2}+\frac{1}{4}\sum_{\begin{subarray}{c}x,y\in\bar{\Omega}\\ x\sim y\end{subarray}}\left[u_{k-1}(y)-u_{k-1}(x))\right]^{2}
=\displaystyle= 12EΩ(uk)+12EΩ(uk1).\displaystyle\frac{1}{2}E_{\Omega}\left(u_{k}\right)+\frac{1}{2}E_{\Omega}\left(u_{k-1}\right).

Combining (2.6), (2.7) and (2.8), we conclude that

JΩ(uk)JΩ(uk)+Λ2uk1ukl2(Ω)2JΩ(uk1).J_{\Omega}\left(u_{k}\right)\leqslant J_{\Omega}\left(u_{k}\right)+\frac{\Lambda}{2}\left\|u_{k-1}-u_{k}\right\|_{l^{2}(\Omega)}^{2}\leqslant J_{\Omega}\left(u_{k-1}\right).

Next, we estimate the upper bound for JΩ(u1)J_{\Omega}(u_{1}). Observing that

EΩ(u1)\displaystyle E_{\Omega}\left(u_{1}\right) =12x,yΩ¯xy[u1(y)u1(x))]2\displaystyle=\frac{1}{2}\sum_{\begin{subarray}{c}x,y\in\bar{\Omega}\\ x\sim y\end{subarray}}\left[u_{1}(y)-u_{1}(x))\right]^{2}
x,yΩ¯xy(u1(x)2+u1(y)2)\displaystyle\leqslant\sum_{\begin{subarray}{c}x,y\in\bar{\Omega}\\ x\sim y\end{subarray}}\left(u_{1}(x)^{2}+u_{1}(y)^{2}\right)
4nu1l2(Ω)2,\displaystyle\leqslant 4n\left\|u_{1}\right\|_{l^{2}(\Omega)}^{2},

and |eu11|=1eu1u1\left|e^{u_{1}}-1\right|=1-e^{u_{1}}\leqslant-u_{1}, we get

JΩ(u1)\displaystyle J_{\Omega}\left(u_{1}\right) 124nu1l2(Ω)2+λ2p+2xΩu1(x)2p+2+12xΩ[h(x)2+u1(x)2]\displaystyle\leqslant\frac{1}{2}\cdot 4n\left\|u_{1}\right\|_{l^{2}(\Omega)}^{2}+\frac{\lambda}{2p+2}\sum_{x\in\Omega}u_{1}(x)^{2p+2}+\frac{1}{2}\sum_{x\in\Omega}\left[h(x)^{2}+u_{1}(x)^{2}\right]
=c1+c2(u1l2(Ω)2+u1l2p+2(Ω)2p+2),\displaystyle=c_{1}+c_{2}\left(\left\|u_{1}\right\|_{l^{2}(\Omega)}^{2}+\left\|u_{1}\right\|^{2p+2}_{l^{2p+2}(\Omega)}\right),

where constants c1c_{1} and c2c_{2} are determined only by the parameters nn, pp, λ\lambda, and NN.

Upon multiplying Eq. (2.2) by u1u_{1} and performing a summation over Ω\Omega, we obtain

EΩ(u1)+ΛxΩu12=xΩhu1.E_{\Omega}(u_{1})+\Lambda\sum_{x\in\Omega}u_{1}^{2}=-\sum_{x\in\Omega}hu_{1}.

From this, we deduce

ΛxΩu1(x)212ΛxΩh(x)2+Λ2xΩu1(x)2.\Lambda\sum_{x\in\Omega}u_{1}(x)^{2}\leqslant\frac{1}{2\Lambda}\sum_{x\in\Omega}h(x)^{2}+\frac{\Lambda}{2}\sum_{x\in\Omega}u_{1}(x)^{2}.

Therefore,

xΩu1(x)2h2(V)2Λ2,\sum_{x\in\Omega}u_{1}(x)^{2}\leqslant\frac{\|h\|_{\ell^{2}(V)}^{2}}{\Lambda^{2}},

leading to

xΩu1(x)2p+2(xΩu1(x)2)p+1(h2(V)2Λ2)p+1.\sum_{x\in\Omega}u_{1}(x)^{2p+2}\leqslant\left(\sum_{x\in\Omega}u_{1}(x)^{2}\right)^{p+1}\leqslant\left(\frac{\|h\|_{\ell^{2}(V)}^{2}}{\Lambda^{2}}\right)^{p+1}.

We thus conclude that JΩ(u1)CJ_{\Omega}(u_{1})\leq C, where CC is dependent only on nn, λ\lambda, pp, and NN, thereby completing the proof.

Next, by applying the discrete Gagliardo-Nirenberg-Sobolev inequality and invoking Lemma 2.3, we determine the upper bound for ukl2p+2(Ω)\|u_{k}\|_{l^{2p+2}(\Omega)}. The foundation for this application is drawn from the proof presented in Theorem 4.1 in [41]:

Lemma 2.4.

[41] Assuming n2,q>1,γqn\geqslant 2,q>1,\gamma\geqslant q, and q=qq1q^{\prime}=\frac{q}{q-1}, the inequality

ulγnn1(V)γC(q,n,γ)|u|1,qul(γ1)q(V)γ1.\|u\|_{l^{\frac{\gamma n}{n-1}}(V)}^{\gamma}\leq C(q,n,\gamma)|u|_{1,q}\|u\|^{\gamma-1}_{l^{(\gamma-1)q^{\prime}}(V)}.

is satisfied for any function ulq(V)u\in l^{q}(V).

Lemma 2.1 in [27] implies that

ulp′′(V)ulp(V),\|u\|_{l^{p^{\prime\prime}}\left(V\right)}\leqslant\|u\|_{l^{p^{\prime}}\left(V\right)},

for any p′′pp^{\prime\prime}\geqslant p^{\prime}. Letting γ=2(p+1)\gamma=2(p+1), q=2q=2 and q=2q^{\prime}=2, we have for ul2(V)u\in l^{2}(V),

ul4p+4(V)ul2n(p+1)n1(V)C(n,p)|u|1,212p+2ul4p+2(V)2p+12p+2.\|u\|_{l^{4p+4}\left(V\right)}\leqslant\|u\|_{l^{\frac{2n(p+1)}{n-1}}\left(V\right)}\leqslant C(n,p)|u|_{1,2}^{\frac{1}{2p+2}}\|u\|_{l^{4p+2}\left(V\right)}^{\frac{2p+1}{2p+2}}. (2.9)
Lemma 2.5.

Define the sequence {uk}\{u_{k}\} as specified in Eq.(2.1). For any index k1k\geq 1, the following inequality holds:

ukl2p+2(Ω)C2(JΩ(uk)+1)C1,\|u_{k}\|_{l^{2p+2}(\Omega)}\leq C_{2}\left(J_{\Omega}(u_{k})+1\right)\leq C_{1}, (2.10)

where constants C2C_{2} and C1C_{1} are determined exclusively by the parameters nn, λ\lambda, pp, and NN.

Proof.

Define u~k\tilde{u}_{k} as the null extension of uku_{k} across VV:

u~k(x)={uk(x)onΩ,0onΩc.\tilde{u}_{k}(x)=\left\{\begin{array}[]{l@{\quad\text{on}\ }l}u_{k}(x)&\Omega,\\ 0&\Omega^{c}.\end{array}\right. (2.11)

It is evident that u~kl2(V)\tilde{u}_{k}\in l^{2}(V). By (2.9), the following inequality holds:

u~kl4p+4(V)2p+2(C(n,p))2p+2|u~k|1,2u~kl4p+2(V)2p+1.\|\tilde{u}_{k}\|_{l^{4p+4}(V)}^{2p+2}\leqslant(C(n,p))^{2p+2}|\tilde{u}_{k}|_{1,2}\|\tilde{u}_{k}\|_{l^{4p+2}(V)}^{2p+1}.

Referring to (2.11), we obtain:

u~kl4p+4(V)4p+4\displaystyle\|\tilde{u}_{k}\|_{l^{4p+4}(V)}^{4p+4} =xΩuk(x)4p+4,\displaystyle=\sum_{x\in\Omega}u_{k}(x)^{4p+4},
u~kl4p+2(V)4p+2\displaystyle\|\tilde{u}_{k}\|_{l^{4p+2}(V)}^{4p+2} =xΩuk(x)4p+2,\displaystyle=\sum_{x\in\Omega}u_{k}(x)^{4p+2},

and

|u~k|1,2(2EΩ(uk))12.|\tilde{u}_{k}|_{1,2}\leqslant\left(2E_{\Omega}(u_{k})\right)^{\frac{1}{2}}.

Thus, it follows that:

xΩuk(x)4p+4C3EΩ(uk)xΩuk(x)4p+2,\sum_{x\in\Omega}u_{k}(x)^{4p+4}\leqslant C_{3}E_{\Omega}(u_{k})\sum_{x\in\Omega}u_{k}(x)^{4p+2}, (2.12)

where C3=2(C(n,p))4p+4C_{3}=2(C(n,p))^{4p+4}.

Using the identity 1euk=1e|uk|=e|uk|1e|uk||uk|1+|uk|1-e^{u_{k}}=1-e^{-|u_{k}|}=\frac{e^{|u_{k}|}-1}{e^{|u_{k}|}}\geq\frac{|u_{k}|}{1+|u_{k}|}, and (2.3), we deduce:

JΩ(uk)\displaystyle J_{\Omega}(u_{k}) =12EΩ(uk)+xΩ[λ2p+2(euk(x)1)2p+2+h(x)uk(x)]\displaystyle=\frac{1}{2}E_{\Omega}(u_{k})+\sum_{x\in\Omega}\left[\frac{\lambda}{2p+2}\left(e^{u_{k}(x)}-1\right)^{2p+2}+h(x)u_{k}(x)\right]
12EΩ(uk)+λ2p+2xΩ(|uk(x)|1+|uk(x)|)2p+2hl4p+44p+3(Ω)ukl4p+4(Ω)\displaystyle\geqslant\frac{1}{2}E_{\Omega}(u_{k})+\frac{\lambda}{2p+2}\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}-\|h\|_{l^{\frac{4p+4}{4p+3}}\left(\Omega\right)}\|u_{k}\|_{l^{4p+4}(\Omega)}
12EΩ(uk)+λ2p+2xΩ(|uk(x)|1+|uk(x)|)2p+2C4(EΩ(uk))14p+4(xΩuk(x)4p+2)14p+4,\displaystyle\geqslant\frac{1}{2}E_{\Omega}(u_{k})+\frac{\lambda}{2p+2}\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}-C_{4}\left(E_{\Omega}(u_{k})\right)^{\frac{1}{4p+4}}\left(\sum_{x\in\Omega}u_{k}(x)^{4p+2}\right)^{\frac{1}{4p+4}},

where C4C_{4} is a uniform constant solely based on nn, pp, and NN

Let ϵ>0\epsilon>0 is a constant to be chosen later. By Yung’s inequality, we have

C4(EΩ(uk))14p+4(xΩuk(x)4p+2)14p+4\displaystyle C_{4}\left(E_{\Omega}(u_{k})\right)^{\frac{1}{4p+4}}\left(\sum_{x\in\Omega}u_{k}(x)^{4p+2}\right)^{\frac{1}{4p+4}}
=[C4ϵ2p+12p+2(2p+22p+1)2p+12p+2(EΩ(uk))14p+4][ϵ2p+12p+2(2p+22p+1)2p+12p+2(xΩuk(x)4p+2)14p+4]\displaystyle=\left[C_{4}\epsilon^{-\frac{2p+1}{2p+2}}\left(\frac{2p+2}{2p+1}\right)^{-\frac{2p+1}{2p+2}}\left(E_{\Omega}(u_{k})\right)^{\frac{1}{4p+4}}\right]\left[\epsilon^{\frac{2p+1}{2p+2}}\left(\frac{2p+2}{2p+1}\right)^{\frac{2p+1}{2p+2}}\left(\sum_{x\in\Omega}u_{k}(x)^{4p+2}\right)^{\frac{1}{4p+4}}\right]
ϵu~kl4p+2(V)+C5EΩ(uk)12\displaystyle\leq\epsilon\|\tilde{u}_{k}\|_{l^{4p+2}(V)}+C_{5}E_{\Omega}(u_{k})^{\frac{1}{2}}
ϵu~kl2p+2(V)+14EΩ(uk)+C6,\displaystyle\leq\epsilon\|\tilde{u}_{k}\|_{l^{2p+2}(V)}+\frac{1}{4}E_{\Omega}(u_{k})+C_{6},

where C5C_{5} and C6C_{6} are solely influenced by ϵ\epsilon, nn, NN, and pp.

Hence, we obtain

JΩ(uk)\displaystyle J_{\Omega}(u_{k})\geqslant 12EΩ(uk)+λ2p+2xΩ(|uk(x)|1+|uk(x)|)2p+2ϵu~kl2p+2(V)14EΩ(uk)C6\displaystyle\frac{1}{2}E_{\Omega}(u_{k})+\frac{\lambda}{2p+2}\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}-\epsilon\|\tilde{u}_{k}\|_{l^{2p+2}(V)}-\frac{1}{4}E_{\Omega}(u_{k})-C_{6} (2.13)
=\displaystyle= 14EΩ(uk)+λ2p+2xΩ(|uk(x)|1+|uk(x)|)2p+2ϵukl2p+2(Ω)C6.\displaystyle\frac{1}{4}E_{\Omega}(u_{k})+\frac{\lambda}{2p+2}\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}-\epsilon\|u_{k}\|_{l^{2p+2}(\Omega)}-C_{6}.

Using the inequality given in (2.12), the subsequent estimate is derived:

(xΩuk(x)2p+2)2=[xΩ(|uk(x)|1+|uk(x)|)p+1(1+|uk(x)|)p+1|uk(x)|p+1]2\displaystyle\left(\sum_{x\in\Omega}u_{k}(x)^{2p+2}\right)^{2}=\left[\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{p+1}(1+|u_{k}(x)|)^{p+1}|u_{k}(x)|^{p+1}\right]^{2}
xΩ(|uk(x)|1+|uk(x)|)2p+2xΩ(1+|uk(x)|)2p+2uk(x)2p+2\displaystyle\leqslant\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}\sum_{x\in\Omega}(1+|u_{k}(x)|)^{2p+2}u_{k}(x)^{2p+2}
22p+2xΩ(|uk(x)|1+|uk(x)|)2p+2xΩ(uk(x)2p+2+uk(x)4p+4)\displaystyle\leqslant 2^{2p+2}\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}\sum_{x\in\Omega}\left(u_{k}(x)^{2p+2}+u_{k}(x)^{4p+4}\right)
22p+2xΩ(|uk(x)|1+|uk(x)|)2p+2xΩuk(x)2p+2+22p+2C3xΩ(|uk(x)|1+|uk(x)|)2p+2EΩ(uk)xΩuk(x)4p+2\displaystyle\leqslant 2^{2p+2}\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}\sum_{x\in\Omega}u_{k}(x)^{2p+2}+2^{2p+2}C_{3}\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}E_{\Omega}(u_{k})\sum_{x\in\Omega}u_{k}(x)^{4p+2}
22p+2xΩ(|uk(x)|1+|uk(x)|)2p+2xΩuk(x)2p+2+22p+2C3xΩ(|uk(x)|1+|uk(x)|)2p+2EΩ(uk)(xΩuk(x)2p+2)2p+1p+1\displaystyle\leq 2^{2p+2}\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}\sum_{x\in\Omega}u_{k}(x)^{2p+2}+2^{2p+2}C_{3}\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}E_{\Omega}(u_{k})\left(\sum_{x\in\Omega}u_{k}(x)^{2p+2}\right)^{\frac{2p+1}{p+1}}
14(xΩuk(x)2p+2)2+C7[(xΩ(|uk(x)|1+|uk(x)|)2p+2)2+xΩ(|uk(x)|1+|uk(x)|)2p+2EΩ(uk)(xΩuk(x)2p+2)2p+1p+1]\displaystyle\leq\frac{1}{4}\left(\sum_{x\in\Omega}u_{k}(x)^{2p+2}\right)^{2}+C_{7}\left[\left(\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}\right)^{2}+\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}E_{\Omega}(u_{k})\left(\sum_{x\in\Omega}u_{k}(x)^{2p+2}\right)^{\frac{2p+1}{p+1}}\right]
12(xΩuk(x)2p+2)2+C8[(xΩ(|uk(x)|1+|uk(x)|)2p+2)2+(xΩ(|uk(x)|1+|uk(x)|)2p+2)2p+2EΩ(uk)2p+2]\displaystyle\leq\frac{1}{2}\left(\sum_{x\in\Omega}u_{k}(x)^{2p+2}\right)^{2}+C_{8}\left[\left(\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}\right)^{2}+\left(\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}\right)^{2p+2}E_{\Omega}(u_{k})^{2p+2}\right]
12(xΩuk(x)2p+2)2+C9[1+(xΩ(|uk(x)|1+|uk(x)|)2p+2)4p+4+EΩ(uk)4p+4],\displaystyle\leqslant\frac{1}{2}\left(\sum_{x\in\Omega}u_{k}(x)^{2p+2}\right)^{2}+C_{9}\left[1+\left(\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}\right)^{4p+4}+E_{\Omega}(u_{k})^{4p+4}\right],

which results in

ukl2p+2(Ω)C10[1+xΩ(|uk(x)|1+|uk(x)|)2p+2+EΩ(uk)],\|u_{k}\|_{l^{2p+2}(\Omega)}\leqslant C_{10}\left[1+\sum_{x\in\Omega}\left(\frac{|u_{k}(x)|}{1+|u_{k}(x)|}\right)^{2p+2}+E_{\Omega}(u_{k})\right], (2.14)

where C7C_{7}-C10C_{10} are constants depending only on nn and pp.

Selecting ϵ=min{18,λ4p+4}C10\epsilon=\frac{\min\left\{\frac{1}{8},\frac{\lambda}{4p+4}\right\}}{C_{10}} and integrating the results from (2.13) and (2.14), we obtain

ukl2p+2(Ω)C2(JΩ(uk)+1).\|u_{k}\|_{l^{2p+2}(\Omega)}\leqslant C_{2}(J_{\Omega}(u_{k})+1).

Furthermore, by Lemma 2.3, we conclude

ukl2p+2(Ω)C2(JΩ(uk)+1)C1,\|u_{k}\|_{l^{2p+2}(\Omega)}\leqslant C_{2}(J_{\Omega}(u_{k})+1)\leq C_{1},

where C2C_{2} and C1C_{1} depend only on nn, λ\lambda, pp and NN. ∎

The boundedness of ukl2p+2(Ω)\|u_{k}\|_{l^{2p+2}(\Omega)} ensures that Eq.(2.15) has a solution.

Lemma 2.6.

Define Ω\Omega as a finite subset of VV encompassing points {p1,p2,,pM}\{p_{1},p_{2},\ldots,p_{M}\}. There exists a function uΩu_{\Omega} to the following problem:

{Δu=λeu(eu1)2p+1+h,in Ω,u(x)=0,on δΩ.\begin{cases}\Delta u=\lambda e^{u}(e^{u}-1)^{2p+1}+h,&\text{in }\Omega,\\ u(x)=0,&\text{on }\delta\Omega.\end{cases} (2.15)

This solution is a maximal across all alternatives. Additionally, we have uΩl2p+2(Ω)C1\|u_{\Omega}\|_{l^{2p+2}(\Omega)}\leq C_{1}, with C1C_{1} determined exclusively by nn, λ\lambda, pp, and NN.

Proof.

By applying Lemmas 2.5 and 2.2 and noting that l2p+2(Ω)l^{2p+2}(\Omega) is finite-dimensional, we get

ukuΩ in l2p+2(Ω),u_{k}\rightarrow u_{\Omega}\text{ in }l^{2p+2}(\Omega),

and

uΩl2p+2(Ω)C0.\|u_{\Omega}\|_{l^{2p+2}(\Omega)}\leqslant C_{0}.

Since the convergence is pointwise, we see that the function uΩu_{\Omega} adheres to the equation:

{Δu=λeu(eu1)2p+1+h,on Ω,u(x)=0,on δΩ.\begin{cases}\Delta u=\lambda e^{u}(e^{u}-1)^{2p+1}+h,&\text{on }\Omega,\\ u(x)=0,&\text{on }\delta\Omega.\end{cases}

The remaining task is to demonstrate that this solution is maximal. For a function UC(Ω¯)U\in C(\bar{\Omega}) satisfying

{ΔUλeU(eU1)2p+1+h on Ω,U(x)0 on δΩ,\left\{\begin{array}[]{l}\Delta U\geqslant\lambda e^{U}\left(e^{U}-1\right)^{2p+1}+h\text{ on }\Omega,\\ U(x)\leqslant 0\text{ on }\delta\Omega,\end{array}\right.

we claim that

u0u1ukuΩU.u_{0}\geqslant u_{1}\geqslant\cdots\geqslant u_{k}\geqslant\cdots\geqslant u_{\Omega}\geqslant U. (2.16)

Initially, it is noted that

ΔUλeU(eU1)2p+1+hλeU(eU1)2p+1.\Delta U\geqslant\lambda e^{U}\left(e^{U}-1\right)^{2p+1}+h\geqslant\lambda e^{U}\left(e^{U}-1\right)^{2p+1}.

We assert that supxΩU(x)0\sup_{x\in\Omega}U(x)\leqslant 0. Should this not hold, and U(x0)=supxΩU(x)>0U(x_{0})=\sup_{x\in\Omega}U(x)>0 for some x0Ωx_{0}\in\Omega, then

0ΔU(x0)λeU(x0)(eU(x0)1)2p+1>0,0\geqslant\Delta U(x_{0})\geqslant\lambda e^{U(x_{0})}\left(e^{U(x_{0})}-1\right)^{2p+1}>0,

resulting in a contradiction and thus establishing the claim.

Assuming UukU\leqslant u_{k}, then

(ΔΛ)(uk+1U)\displaystyle(\Delta-\Lambda)(u_{k+1}-U) λeuk(euk1)2p+1λeU(eU1)2p+1Λ(ukU)\displaystyle\leqslant\lambda e^{u_{k}}\left(e^{u_{k}}-1\right)^{2p+1}-\lambda e^{U}\left(e^{U}-1\right)^{2p+1}-\Lambda(u_{k}-U)
λeξ(eξ1)2p[(2p+2)eξ1](ukU)Λ(ukU)\displaystyle\leqslant\lambda e^{\xi}\left(e^{\xi}-1\right)^{2p}\left[(2p+2)e^{\xi}-1\right](u_{k}-U)-\Lambda(u_{k}-U)
Λ(e2ξ1)(ukU)0,\displaystyle\leqslant\Lambda\left(e^{2\xi}-1\right)(u_{k}-U)\leqslant 0,

where ξ\xi is a function which lies between UU and uku_{k}. This ensures that Uuk+1U\leqslant u_{k+1} by Lemma 2.1. Hence UuΩU\leq u_{\Omega}. If uΩu^{\prime}_{\Omega} is a another solution, we conclude that uΩuΩu^{\prime}_{\Omega}\leq u_{\Omega}, which means that uΩu_{\Omega} is maximal. ∎

Mow, we will prove Theorem 1.1. Choose a series of finite and connected subsets {Ωj}\{\Omega_{j}\} such that

j=1Ωj=V\quad\bigcup_{j=1}^{\infty}\Omega_{j}=V

and

Ω0Ω1Ωi.\Omega_{0}\subset\Omega_{1}\subset\cdots\subset\Omega_{i}\subset\cdots.

These lemmas will be utilized to prove Theorem 1.1. For any integers 1il1\leqslant i\leqslant l, given that ΩiΩl\Omega_{i}\subset\Omega_{l} and observing that uΩl0u_{\Omega_{l}}\leqslant 0 on Ω¯i\bar{\Omega}_{i}, it follows from (2.16) that

uΩluΩion Ω¯i.u_{\Omega_{l}}\leqslant u_{\Omega_{i}}\quad\text{on }\bar{\Omega}_{i}.

Let u~Ωi\tilde{u}_{\Omega_{i}} denote the null extension of uΩiu_{\Omega_{i}} to VV. Then, we have

0u~Ω1u~Ω2u~Ωi0\geqslant\tilde{u}_{\Omega_{1}}\geqslant\tilde{u}_{\Omega_{2}}\geqslant\cdots\geqslant\tilde{u}_{\Omega_{i}}\geqslant\cdots

across VV. Given that u~Ωil2p+2(V)C1\left\|\tilde{u}_{\Omega_{i}}\right\|_{l^{2p+2}\left(V\right)}\leqslant C_{1} for all i1i\geqslant 1, we obtain

u~Ωk(x)u~(x),xV,\tilde{u}_{\Omega_{k}}(x)\rightarrow\tilde{u}(x),\quad\forall x\in V,

and u~l2p+2(V)\tilde{u}\in l^{2p+2}(V). Consequently, u~\tilde{u} satisfies the following equation:

{Δu~=λeu~(eu~1)2p+1+4πj=1Mnjδpj,on V,limd(x)+u~(x)=0.\begin{cases}\Delta\tilde{u}=\lambda e^{\tilde{u}}\left(e^{\tilde{u}}-1\right)^{2p+1}+4\pi\sum\limits_{j=1}^{M}n_{j}\delta_{p_{j}},&\text{on }V,\\ \lim_{d(x)\rightarrow+\infty}\tilde{u}(x)=0.\end{cases}

Obviously, u~\tilde{u} is topological.

Suppose there exists another topological solution u¯\bar{u} to (1.6). For all xVx\in V, we will show that u¯(x)0\bar{u}(x)\leqslant 0. Assume, for contradiction, that there exists a point x0Vx_{0}\in V such that u¯(x0)>0\bar{u}(x_{0})>0. Given that limd(x)+u¯(x)=0\lim\limits_{d(x)\rightarrow+\infty}\bar{u}(x)=0, there must be a domain Ωi\Omega_{i} where u¯(x1)=supxΩiu¯(x)>0\bar{u}(x_{1})=\sup_{x\in\Omega_{i}}\bar{u}(x)>0 for some x1Ωix_{1}\in\Omega_{i}. Therefore, we find

0Δu¯(x1)λeu¯(x1)(eu¯(x1)1)2p+1>0,0\geq\Delta\bar{u}(x_{1})\geqslant\lambda e^{\bar{u}(x_{1})}\left(e^{\bar{u}(x_{1})}-1\right)^{2p+1}>0,

which leads to a contradiction.

Applying (2.16) over Ωi\Omega_{i}, we obtain

u¯u~Ωi.\bar{u}\leqslant\tilde{u}_{\Omega_{i}}.

Fix an integer l1l\geqslant 1 and letting ili\geqslant l, we conclude

u¯(x)lim¯iu~Ωj(x)=u~(x)\bar{u}(x)\leqslant\underline{\lim}_{i\rightarrow\infty}\tilde{u}_{\Omega_{j}}(x)=\tilde{u}(x)\quad

on Ωl\Omega_{l}. Consequently, we have u¯u~\bar{u}\leqslant\tilde{u} across VV, indicating that u~\tilde{u} is also maximal.


ACKNOWLEDGMENTS

This work is partially supported by the National Key Research and Development Program of China 2020YFA0713100 and by the National Natural Science Foundation of China (Grant No. 11721101).

References

  • [1] Luis A. Caffarelli and Yi Song Yang. Vortex condensation in the Chern-Simons Higgs model: an existence theorem. Comm. Math. Phys., 168(2):321–336, 1995.
  • [2] Dongho Chae and Namkwon Kim. Topological multivortex solutions of the self-dual Maxwell-Chern-Simons-Higgs system. J. Differential Equations, 134(1):154–182, 1997.
  • [3] Hsungrow Chan, Chun-Chieh Fu, and Chang-Shou Lin. Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation. Comm. Math. Phys., 231(2):189–221, 2002.
  • [4] Xiaojun Chang, Ru Wang, and Duokui Yan. Ground states for logarithmic Schrödinger equations on locally finite graphs. J. Geom. Anal., 33(7):Paper No. 211, 26, 2023.
  • [5] Ruixue Chao and Songbo Hou. Multiple solutions for a generalized Chern-Simons equation on graphs. J. Math. Anal. Appl., 519(1):Paper No. 126787, 16, 2023.
  • [6] Ruixue Chao, Songbo Hou, and Jiamin Sun. Existence of solutions to a generalized self-dual Chern-Simons system on finite graphs. arXiv preprint arXiv:2206.12863, 2022.
  • [7] Gil Young Cho and Joel E. Moore. Topological BFBF field theory description of topological insulators. Ann. Physics, 326(6):1515–1535, 2011.
  • [8] Jia Gao and Songbo Hou. Existence theorems for a generalized Chern-Simons equation on finite graphs. J. Math. Phys., 64(9):Paper No. 091502, 12, 2023.
  • [9] Huabin Ge. Kazdan-Warner equation on graph in the negative case. J. Math. Anal. Appl., 453(2):1022–1027, 2017.
  • [10] Huabin Ge. A pp-th Yamabe equation on graph. Proc. Amer. Math. Soc., 146(5):2219–2224, 2018.
  • [11] Huabin Ge. The ppth Kazdan-Warner equation on graphs. Commun. Contemp. Math., 22(6):Paper No. 1950052, 17, 2020.
  • [12] Huabin Ge and Wenfeng Jiang. Yamabe equations on infinite graphs. J. Math. Anal. Appl., 460(2):885–890, 2018.
  • [13] Alexander Grigor’yan. Introduction to analysis on graphs, volume 71 of University Lecture Series. American Mathematical Society, Providence, RI, 2018.
  • [14] Alexander Grigor’yan, Yong Lin, and Yunyan Yang. Kazdan-Warner equation on graph. Calc. Var. Partial Differential Equations, 55(4):Art. 92, 13, 2016.
  • [15] Alexander Grigor’yan, Yong Lin, and Yunyan Yang. Yamabe type equations on graphs. J. Differential Equations, 261(9):4924–4943, 2016.
  • [16] Alexander Grigor’yan, Yong Lin, and YunYan Yang. Existence of positive solutions to some nonlinear equations on locally finite graphs. Sci. China Math., 60(7):1311–1324, 2017.
  • [17] Boling Guo and Fangfang Li. Existence of topological vortices in an Abelian Chern-Simons model. J. Math. Phys., 56(10):101505, 10, 2015.
  • [18] Jongmin Han and Hee-Seok Nam. On the topological multivortex solutions of the self-dual Maxwell-Chern-Simons gauged O(3){\rm O}(3) sigma model. Lett. Math. Phys., 73(1):17–31, 2005.
  • [19] Xiaosen Han. The existence of multi-vortices for a generalized self-dual Chern-Simons model. Nonlinearity, 26(3):805–835, 2013.
  • [20] Jooyoo Hong, Yoonbai Kim, and Pong Youl Pac. Multivortex solutions of the abelian Chern-Simons-Higgs theory. Phys. Rev. Lett., 64(19):2230–2233, 1990.
  • [21] Songbo Hou and Xiaoqing Kong. Existence and asymptotic behaviors of solutions to Chern-Simons systems and equations on finite graphs. arXiv preprint arXiv:2211.04237, 2022.
  • [22] Songbo Hou and Wenjie Qiao. Solutions to a generalized Chern–Simons Higgs model on finite graphs by topological degree. J. Math. Phys., 65(8):Paper No. 081503, 2024.
  • [23] Songbo Hou and Jiamin Sun. Existence of solutions to Chern-Simons-Higgs equations on graphs. Calc. Var. Partial Differential Equations, 61(4):Paper No. 139, 13, 2022.
  • [24] Yuanyang Hu. Existence of solutions to a generalized self-dual Chern-Simons equation on finite graphs. J. Korean Math. Soc., 61(1):133–147, 2024.
  • [25] Bobo Hua, Genggeng Huang, and Jiaxuan Wang. The existence of topological solutions to the chern-simons model on lattice graphs. arXiv preprint arXiv:2310.13905, 2023.
  • [26] An Huang, Yong Lin, and Shing-Tung Yau. Existence of solutions to mean field equations on graphs. Comm. Math. Phys., 377(1):613–621, 2020.
  • [27] Genggeng Huang, Congming Li, and Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete Contin. Dyn. Syst., 35(3):935–942, 2015.
  • [28] Hsin-Yuan Huang, Youngae Lee, and Chang-Shou Lin. Uniqueness of topological multi-vortex solutions for a skew-symmetric Chern-Simons system. J. Math. Phys., 56(4):041501, 12, 2015.
  • [29] Hsin-Yuan Huang, Jun Wang, and Wen Yang. Mean field equation and relativistic Abelian Chern-Simons model on finite graphs. J. Funct. Anal., 281(10):Paper No. 109218, 36, 2021.
  • [30] R. Jackiw and Erick J. Weinberg. Self-dual Chern-Simons vortices. Phys. Rev. Lett., 64(19):2234–2237, 1990.
  • [31] C. Nagraj Kumar and Avinash Khare. Charged vortex of finite energy in nonabelian gauge theories with Chern-Simons term. Phys. Lett. B, 178(4):395–399, 1986.
  • [32] Jiayu Li, Linlin Sun, and Yunyan Yang. Topological degree for Chern-Simons Higgs models on finite graphs. Calc. Var. Partial Differential Equations, 63(4):Paper No. 81, 21, 2024.
  • [33] Chang-Shou Lin and Jyotshana V. Prajapat. Vortex condensates for relativistic abelian Chern-Simons model with two Higgs scalar fields and two gauge fields on a torus. Comm. Math. Phys., 288(1):311–347, 2009.
  • [34] Chang-Shou Lin and Yisong Yang. Non-Abelian multiple vortices in supersymmetric field theory. Comm. Math. Phys., 304(2):433–457, 2011.
  • [35] Yong Lin and Yiting Wu. The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc. Var. Partial Differential Equations, 56(4):Paper No. 102, 22, 2017.
  • [36] Yang Liu and Yunyan Yang. Topological degree for Kazdan-Warner equation in the negative case on finite graph. Ann. Global Anal. Geom., 65(4):Paper No. 29, 20, 2024.
  • [37] Yang Liu and Mengjie Zhang. A heat flow with sign-changing prescribed function on finite graphs. J. Math. Anal. Appl., 528(2):Paper No. 127529, 17, 2023.
  • [38] Yingshu Lü and Peirong Zhong. Existence of solutions to a generalized self-dual Chern-Simons equation on graphs. arXiv preprint arXiv:2107.12535, 2021.
  • [39] Shoudong Man. On a class of nonlinear Schrödinger equations on finite graphs. Bull. Aust. Math. Soc., 101(3):477–487, 2020.
  • [40] Kwan Hui Nam. Vortex condensation in U(1)×U(1)U(1)\times U(1) Chern-Simons model with a general Higgs potential on a torus. J. Math. Anal. Appl., 407(2):305–315, 2013.
  • [41] Alessio Porretta. A note on the Sobolev and Gagliardo-Nirenberg inequality when p>Np>N. Adv. Nonlinear Stud., 20(2):361–371, 2020.
  • [42] Zidong Qiu and Yang Liu. Existence of solutions to the nonlinear Schrödinger equation on locally finite graphs. Arch. Math. (Basel), 120(4):403–416, 2023.
  • [43] S. Randjbar-Daemi, A. Salam, and J. Strathdee. Chern-Simons superconductivity at finite temperature. Nuclear Phys. B, 340(2-3):403–447, 1990.
  • [44] Gordon W. Semenoff and Pasquale Sodano. Nonabelian adiabatic phases and the fractional quantum Hall effect. Phys. Rev. Lett., 57(10):1195–1198, 1986.
  • [45] Joel Spruck and Yi Song Yang. Topological solutions in the self-dual Chern-Simons theory: existence and approximation. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 12(1):75–97, 1995.
  • [46] Linlin Sun and Liuquan Wang. Brouwer degree for Kazdan-Warner equations on a connected finite graph. Adv. Math., 404:Paper No. 108422, 29, 2022.
  • [47] Gabriella Tarantello. Multiple condensate solutions for the Chern-Simons-Higgs theory. J. Math. Phys., 37(8):3769–3796, 1996.
  • [48] Guofang Wang and Liqun Zhang. Non-topological solutions of the relativistic SU(3){\rm SU}(3) Chern-Simons Higgs model. Comm. Math. Phys., 202(3):501–515, 1999.
  • [49] Ning Zhang and Liang Zhao. Convergence of ground state solutions for nonlinear Schrödinger equations on graphs. Sci. China Math., 61(8):1481–1494, 2018.
  • [50] Xiaoxiao Zhang and Yanxun Chang. pp-th Kazdan-Warner equation on graph in the negative case. J. Math. Anal. Appl., 466(1):400–407, 2018.
  • [51] Xiaoxiao Zhang and Aijin Lin. Positive solutions of pp-th Yamabe type equations on infinite graphs. Proc. Amer. Math. Soc., 147(4):1421–1427, 2019.