This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the weak Lefschetz property for almost complete intersections generated by uniform powers of general linear forms

Rosa M. Miró-Roig Universitat de Barcelona, Departament de Matemàtiques i Informàtica, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain. [email protected]  and  Quang Hoa Tran University of Education, Hue University, 34 Le Loi St., Hue City, Vietnam. [email protected]
Abstract.

In [11], Conjecture 6.6, Migliore, the first author, and Nagel conjectured that, for all n4n\geq 4, the artinian ideal I=(L0d,,L2n+1d)R=k[x0,,x2n]I=(L_{0}^{d},\ldots,L_{2n+1}^{d})\subset R=k[x_{0},\ldots,x_{2n}] generated by the dd-th powers of 2n+22n+2 general linear forms fails to have the weak Lefschetz property if and only if d>1d>1. This paper is entirely devoted to prove partially this conjecture. More precisely, we prove that R/IR/I fails to have the weak Lefschetz property, provided 4n8,d44\leq n\leq 8,\ d\geq 4 or d=2r, 1r8, 4n2r(r+2)1d=2r,\ 1\leq r\leq 8,\ 4\leq n\leq 2r(r+2)-1.
Keywords: almost complete intersections, artinian algebras, general linear forms, linear systems of general points, powers of linear forms, weak Lefschetz property.
MSC2010: primary 14C20, 13E10; secondary 13C40, 13C13, 13D02, 13D40.

1. Introduction

Ideals generated by powers of linear forms have attracted great deal of attention recently. For instance, their Hilbert function has been the focus of the papers [2, 8, 16]; and the presence or failure of the weak Lefschetz property has been deeply studied in [8, 11, 12, 13, 14], among others.

Let kk be a field of characteristic zero and R=k[x0,,xn]R=k[x_{0},\ldots,x_{n}] be the standard graded polynomial ring over kk in n+1n+1 variables. A graded artinian kk-algebra A:=R/IA:=R/I is said to have the weak Lefschetz property (WLP for short) if there is a linear form [A]1\ell\in[A]_{1} such that the multiplication

×:[A]i[A]i+1\times\ell:[A]_{i}\longrightarrow[A]_{i+1}

has maximal rank for all ii, i.e., ×\times\ell is either injective or surjective, for all ii. On the contrary, we say that AA fails to have the WLP if there is an integer ii such that the above multiplication does not have maximal rank for any linear form \ell. There has been a long series of papers determining classes of algebras holding/failing the WLP but much more work remains to be done.

The first result in this direction is due to Stanley [15] and Watanabe [17] and it asserts that the WLP holds for any artinian complete intersection ideal II generated by powers of linear forms. In fact, they showed that there is a linear form [A]1\ell\in[A]_{1} such that the multiplication

×s:[A]i[A]i+s\times\ell^{s}:[A]_{i}\longrightarrow[A]_{i+s}

has maximal rank for all i,si,s. When this property holds, the algebra is said to have the strong Lefschetz property (briefly SLP). In [14], Schenck and Seceleanu gave the nice result that any artinian ideal IR=k[x,y,z]I\subset R=k[x,y,z] generated by powers of linear forms has the WLP. Moreover, when these linear forms are general, the SLP of R/IR/I has also been studied, in particular, the multiplication by the square 2\ell^{2} of a general linear form \ell induces a homomorphism of maximal rank in any graded component of R/IR/I, see [1, 10]. However, Migliore, the first author, and Nagel showed by examples that in 4 variables, an ideal generated by the dd-th powers of five general linear forms fails to have the WLP for d=3,,12d=3,\ldots,12 [11]. Therefore, it is natural to ask when the WLP holds for artinian ideals Ik[x0,,xn]I\subset k[x_{0},\ldots,x_{n}] generated by powers of n+2\geq n+2 general linear forms. In [11], Migliore, the first author, and Nagel studied this question where the ideal is an almost complete intersection and they also proposed the following conjecture in order to complete this investigation.

Conjecture 1.1.

[11, Conjecture 6.6] Let R=k[x0,,x2n]R=k[x_{0},\ldots,x_{2n}] be the polynomial ring over a field of characteristic zero. Consider an artinian ideal I=(L0d,,L2n+1d)RI=(L_{0}^{d},\ldots,L_{2n+1}^{d})\subset R generated by the dd-th powers of general linear forms. If n4n\geq 4, then the ring R/IR/I fails to have the WLP if and only if d>1.d>1. Furthermore, if n=3n=3, then R/IR/I fails to have the WLP when d=3d=3.

The first author has shown that R/IR/I fails to have the WLP when d=2d=2 [12] and in the recent paper [13], Nagel and Trok have established Conjecture 1.1 for n0n\gg 0 and d0d\gg 0. The last part of the conjecture was proved by Di Gennaro, Ilardi, and Vallès in [3, Proposition 5.5]. Unfortunately, there was a gap in their proof. However, it was corrected in [4] and then in [9], the last part of Conjecture 1.1 was proved by Ilardi and Vallès. The goal of this note is to solve partially the conjecture. More precisely, we prove the following (see Corollaries 3.33.10, Theorem 4.1 and Remark 4.2).

Theorem.

Let R=k[x0,,x2n]R=k[x_{0},\ldots,x_{2n}] be the polynomial ring over a field of characteristic zero and consider an artinian ideal I=(L0d,,L2n+1d)RI=(L_{0}^{d},\ldots,L_{2n+1}^{d})\subset R generated by the dd-th powers of general linear forms.

  1. (1)

    If d=2r, 2r8d=2r,\,2\leq r\leq 8 and 4n2r(r+2)1,4\leq n\leq 2r(r+2)-1, then R/IR/I fails to have the WLP.

  2. (2)

    If 4n84\leq n\leq 8 and d4d\geq 4, then R/IR/I fails to have the WLP.

Therefore, Theorem answers partially Conjecture 1.1 for 4n84\leq n\leq 8, missing only the case d=3d=3, since the case d=2d=2 is shown by the first author [12]. Our approach is based on the connection between computing the dimension of R/(I,)R/(I,\ell), where \ell is a general linear form and the dimension of linear system of fat points. More precisely, we prove the following result (see Theorem 3.1).

Theorem.

If \ell is a general linear form and j=(2n21)(d1)2n1j=\lfloor\frac{(2n^{2}-1)(d-1)}{2n-1}\rfloor, then

dimk\displaystyle\dim_{k} [R/(I,)]j=dimk𝔏2n1(j;(j+1d)2n+2)\displaystyle[R/(I,\ell)]_{j}=\dim_{k}\mathfrak{L}_{2n-1}\big{(}j;(j+1-d)^{2n+2}\big{)}
={dimk𝔏2n1(e;02n+2)ifd=(2n1)e+1dimk𝔏2n1(e+nr+1;(nr)2n+2)ifd=(2n1)e+2rdimk𝔏2n1(e+2nr+1;(2nr1)2n+2)ifd=(2n1)e+2r+1\displaystyle=\begin{cases}\dim_{k}\mathfrak{L}_{2n-1}\big{(}e;0^{2n+2}\big{)}&\text{if}\;d=(2n-1)e+1\\ \dim_{k}\mathfrak{L}_{2n-1}\big{(}e+n-r+1;(n-r)^{2n+2}\big{)}&\text{if}\;d=(2n-1)e+2r\\ \dim_{k}\mathfrak{L}_{2n-1}\big{(}e+2n-r+1;(2n-r-1)^{2n+2}\big{)}&\text{if}\;d=(2n-1)e+2r+1\end{cases}

where e,re,r are non-negative integers such that 1rn11\leq r\leq n-1.

2. Preparatory results

Throughout this paper RR denotes a polynomial ring k[x0,,xn]k[x_{0},\ldots,x_{n}] over a field kk of characteristic zero, with its standard grading where deg(xi)=1.\deg(x_{i})=1. If IRI\subset R is a homogeneous ideal, then the kk-algebra A=j0[A]jA=\oplus_{j\geq 0}[A]_{j} is standard graded. Its Hilbert function is a map hA:,hA(j)=dimk[A]j.h_{A}:\mathbb{N}\longrightarrow\mathbb{N},h_{A}(j)=\dim_{k}[A]_{j}.

For any artinian ideal IRI\subset R and a general linear form R\ell\in R, the exact sequence

[R/I]j1[R/I]j[R/(I,)]j0[R/I]_{j-1}\longrightarrow[R/I]_{j}\longrightarrow[R/(I,\ell)]_{j}\longrightarrow 0

gives, in particular, that the multiplication by \ell will fail to have maximal rank exactly when

(2.1) dimk[R/(I,)]jmax{dimk[R/I]jdimk[R/I]j1,0}.\dim_{k}[R/(I,\ell)]_{j}\neq\max\{\dim_{k}[R/I]_{j}-\dim_{k}[R/I]_{j-1},0\}.

In this case, we will say that R/IR/I fails to have the WLP in degree j1.j-1.

We first recall a result of Emsalem and Iarrobino giving a duality between powers of linear forms and ideals of fat points in n\mathbb{P}^{n}. We quote it in the form that we need.

Lemma 2.1.

[6, Theorem I] Let 𝔭1,,𝔭s\mathfrak{p}_{1},\ldots,\mathfrak{p}_{s} be the ideals of ss distinct points in n\mathbb{P}^{n} that are dual to the linear forms 1,,sR\ell_{1},\ldots,\ell_{s}\in R and choose the positive integers a1,,asa_{1},\ldots,a_{s}. Then, for each integer j1+max{a1,,as}j\geq-1+\max\{a_{1},\ldots,a_{s}\},

dimk[R/(1a1,,sas)]j=dimk[aij𝔭ij+1ai]j.\dim_{k}\big{[}R/(\ell_{1}^{a_{1}},\ldots,\ell_{s}^{a_{s}})\big{]}_{j}=\dim_{k}\big{[}\bigcap_{a_{i}\leq j}\mathfrak{p}_{i}^{j+1-a_{i}}\big{]}_{j}.

If the points defined by the ideals 𝔭i\mathfrak{p}_{i} are general points, then the dimension of the linear system [𝔭1b1𝔭sbs]jRj[\mathfrak{p}_{1}^{b_{1}}\cap\cdots\cap\mathfrak{p}_{s}^{b_{s}}]_{j}\subset R_{j} depends only on the numbers n,j,b1,,bs.n,j,b_{1},\ldots,b_{s}. In order to simplify notation, in this case we denote by

𝔏n(j;b1,,bs)\mathfrak{L}_{n}(j;b_{1},\ldots,b_{s})

the linear system [𝔭1b1𝔭sbs]jRj[\mathfrak{p}_{1}^{b_{1}}\cap\cdots\cap\mathfrak{p}_{s}^{b_{s}}]_{j}\subset R_{j}. We use superscripts to indicate repeated entries. For example, 𝔏4(j;24,42)=𝔏4(j;2,2,2,2,4,4).\mathfrak{L}_{4}(j;2^{4},4^{2})=\mathfrak{L}_{4}(j;2,2,2,2,4,4). Notice that, for every linear system 𝔏n(j;b1,,bs)\mathfrak{L}_{n}(j;b_{1},\ldots,b_{s}), one has

dimk𝔏n(j;b1,,bs)max{0,(n+jn)i=1s(n+bi1n)}.\dim_{k}\mathfrak{L}_{n}(j;b_{1},\ldots,b_{s})\geq\max\Big{\{}0,\binom{n+j}{n}-\sum_{i=1}^{s}\binom{n+b_{i}-1}{n}\Big{\}}.

To study the WLP, the following is useful to compute the left-hand side of (2.1).

Lemma 2.2.

[11, Proposition 3.4] Let (1a1,,sas)(\ell_{1}^{a_{1}},\ldots,\ell_{s}^{a_{s}}) be an ideal of RR generated by powers of ss general linear forms, and let \ell be a general linear form. Then, for each integer j1+max{a1,,as}j\geq-1+\max\{a_{1},\ldots,a_{s}\},

dimk[R/(1a1,,sas,)]j=dimk𝔏n1(j;j+1a1,,j+1as).\dim_{k}\big{[}R/(\ell_{1}^{a_{1}},\ldots,\ell_{s}^{a_{s}},\ell)\big{]}_{j}=\dim_{k}\mathfrak{L}_{n-1}(j;j+1-a_{1},\ldots,j+1-a_{s}).

Using Cremona transformations, one can relate two different linear systems. This is often stated only for general points.

Lemma 2.3.

[5, Theorem 3] Let s>n2s>n\geq 2 and j,b1,,bsj,b_{1},\ldots,b_{s} be non-negative integers, with b1bs.b_{1}\geq\cdots\geq b_{s}. Set t=(n1)j(b1++bn+1)t=(n-1)j-(b_{1}+\cdots+b_{n+1}). If bi+t0b_{i}+t\geq 0 for all i=1,,n+1,i=1,\ldots,n+1, then

dimk𝔏n(j;b1,,bs)=dimk𝔏n(j+t;b1+t,,bn+1+t,bn+2,,bs).\dim_{k}\mathfrak{L}_{n}(j;b_{1},\ldots,b_{s})=\dim_{k}\mathfrak{L}_{n}(j+t;b_{1}+t,\ldots,b_{n+1}+t,b_{n+2},\ldots,b_{s}).

In this note, we are interested in certain almost complete intersections. Then one can compute the right-hand side of (2.1). For any integer m,m, we denote

[m]+=max{m,0}.[m]_{+}=\max\{m,0\}.
Lemma 2.4.

[11, Lemma 3.7] Let I=(L0a0,,Ln+1an+1)RI=(L_{0}^{a_{0}},\ldots,L_{n+1}^{a_{n+1}})\subset R be an almost complete intersection generated by powers of n+2n+2 general linear forms. Set A=R/(L0a0,Lnan)A=R/(L_{0}^{a_{0}},\ldots L_{n}^{a_{n}}). Then, for each integer jj,

dimk[R/I]jdimk[R/I]j1=[hA(j)hA(jan+1)]+[hA(j1)hA(jan+11)]+.\dim_{k}[R/I]_{j}-\dim_{k}[R/I]_{j-1}=[h_{A}(j)-h_{A}(j-a_{n+1})]_{+}-[h_{A}(j-1)-h_{A}(j-a_{n+1}-1)]_{+}.

Furthermore, if j12an+1+12i=0n(ai1)j\leq\frac{1}{2}a_{n+1}+\frac{1}{2}\sum_{i=0}^{n}(a_{i}-1), then the formula simplifies to

dimk[R/I]jdimk[R/I]j1=[hA(j)hA(j1)][hA(jan+1)hA(jan+11)].\dim_{k}[R/I]_{j}-\dim_{k}[R/I]_{j-1}=[h_{A}(j)-h_{A}(j-1)]-[h_{A}(j-a_{n+1})-h_{A}(j-a_{n+1}-1)].

3. Almost uniform powers of general linear forms

Throughout this section, we always denote R=k[x0,,x2n]R=k[x_{0},\ldots,x_{2n}] and consider an artinian ideal I=(L0d,,L2n+1d)I=(L_{0}^{d},\ldots,L_{2n+1}^{d}) of RR generated by the dd-th powers of general linear forms and fix j=(2n21)(d1)2n1j=\lfloor\frac{(2n^{2}-1)(d-1)}{2n-1}\rfloor.

Theorem 3.1.

If \ell is a general linear form, then

dimk\displaystyle\dim_{k} [R/(I,)]j=dimk𝔏2n1(j;(j+1d)2n+2)\displaystyle[R/(I,\ell)]_{j}=\dim_{k}\mathfrak{L}_{2n-1}\big{(}j;(j+1-d)^{2n+2}\big{)}
={dimk𝔏2n1(e;02n+2)ifd=(2n1)e+1dimk𝔏2n1(e+nr+1;(nr)2n+2)ifd=(2n1)e+2rdimk𝔏2n1(e+2nr+1;(2nr1)2n+2)ifd=(2n1)e+2r+1\displaystyle=\begin{cases}\dim_{k}\mathfrak{L}_{2n-1}\big{(}e;0^{2n+2}\big{)}&\text{if}\;d=(2n-1)e+1\\ \dim_{k}\mathfrak{L}_{2n-1}\big{(}e+n-r+1;(n-r)^{2n+2}\big{)}&\text{if}\;d=(2n-1)e+2r\\ \dim_{k}\mathfrak{L}_{2n-1}\big{(}e+2n-r+1;(2n-r-1)^{2n+2}\big{)}&\text{if}\;d=(2n-1)e+2r+1\end{cases}

where e,re,r are non-negative integers such that 1rn11\leq r\leq n-1 and

dimk[R/I]jdimk[R/I]j1=k=0n(1)k(2n+2k)(2n1+jkd2n1).\displaystyle\dim_{k}[R/I]_{j}-\dim_{k}[R/I]_{j-1}=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{2n-1+j-kd}{2n-1}.
Proof.

It follows from Lemma 2.2 that

D:=\displaystyle D:= dimk[R/(I,)]j=dimk𝔏2n1(j;(j+1d)2n+2).\displaystyle\dim_{k}[R/(I,\ell)]_{j}=\dim_{k}\mathfrak{L}_{2n-1}\big{(}j;(j+1-d)^{2n+2}\big{)}.

Set

t=(2n2)j2n(j+1d)=2j+2n(d1).t=(2n-2)j-2n(j+1-d)=-2j+2n(d-1).

As j=(2n21)(d1)2n1,j=\lfloor\frac{(2n^{2}-1)(d-1)}{2n-1}\rfloor, we get

j+1d+t=j+(2n1)(d1)2(n1)2(d1)2n10.j+1-d+t=-j+(2n-1)(d-1)\geq\frac{2(n-1)^{2}(d-1)}{2n-1}\geq 0.

Using Lemma 2.3 (n+1)(n+1) times, in each step the Cremona transformation changes the multiplicities of linear system 𝔏2n1(j;(j+1d)2n+2)\mathfrak{L}_{2n-1}\big{(}j;(j+1-d)^{2n+2}\big{)} by tt, we obtain

D=\displaystyle D= dimk𝔏2n1(j;(j+1d)2n+2)\displaystyle\dim_{k}\mathfrak{L}_{2n-1}\big{(}j;(j+1-d)^{2n+2}\big{)}
=\displaystyle= dimk𝔏2n1(j+2n(d1);(j+1d)2,(j+(2n1)(d1))2n)\displaystyle\dim_{k}\mathfrak{L}_{2n-1}\big{(}-j+2n(d-1);(j+1-d)^{2},(-j+(2n-1)(d-1))^{2n}\big{)}
=\displaystyle= dimk𝔏2n1(3j+4n(d1);(j+(2n1)(d1))4,(3j+(4n1)(d1))2n2)\displaystyle\dim_{k}\mathfrak{L}_{2n-1}\big{(}-3j+4n(d-1);(-j+(2n-1)(d-1))^{4},(-3j+(4n-1)(d-1))^{2n-2}\big{)}
\displaystyle\vdots
=\displaystyle= dimk𝔏2n1((2n+1)j+2n(n+1)(d1);((2n1)j+(2n21)(d1))2n+2).\displaystyle\dim_{k}\mathfrak{L}_{2n-1}\big{(}-(2n+1)j+2n(n+1)(d-1);(-(2n-1)j+(2n^{2}-1)(d-1))^{2n+2}\big{)}.

These computations are correct and has a chance of resulting in a non-empty linear system if

(2n+1)j+2n(n+1)(d1)>(2n1)j+(2n21)(d1)0,-(2n+1)j+2n(n+1)(d-1)>-(2n-1)j+(2n^{2}-1)(d-1)\geq 0,

which is true since j=(2n21)(d1)2n1.j=\lfloor\frac{(2n^{2}-1)(d-1)}{2n-1}\rfloor. Thus

(3.1) D=dimk𝔏2n1(2n(n+1)(d1)(2n+1)j;((2n21)(d1)(2n1)j)2n+2).D=\dim_{k}\mathfrak{L}_{2n-1}\big{(}2n(n+1)(d-1)-(2n+1)j;((2n^{2}-1)(d-1)-(2n-1)j)^{2n+2}\big{)}.

Now we consider three cases:

Case 1: d=(2n1)e+1,d=(2n-1)e+1, hence j=(2n21)ej=(2n^{2}-1)e. By (3.1) and a simply computation shows that

D=dimk𝔏2n1(e;02n+2).D=\dim_{k}\mathfrak{L}_{2n-1}\big{(}e;0^{2n+2}\big{)}.

Case 2: d=(2n1)e+2r, 1rn1d=(2n-1)e+2r,\ 1\leq r\leq n-1. A straightforward computation shows that

j=(2n21)e+2nr+rn1.j=(2n^{2}-1)e+2nr+r-n-1.

Therefore, by (3.1), we obtain

D=dimk𝔏2n1(e+nr+1;(nr)2n+2).D=\dim_{k}\mathfrak{L}_{2n-1}\big{(}e+n-r+1;(n-r)^{2n+2}\big{)}.

Case 3: d=(2n1)e+2r+1, 1rn1d=(2n-1)e+2r+1,\ 1\leq r\leq n-1. It is easy to show that

j=(2n21)e+2nr+r1.j=(2n^{2}-1)e+2nr+r-1.

By (3.1) we get that

D=dimk𝔏2n1(e+2nr+1;(2nr1)2n+2).D=\dim_{k}\mathfrak{L}_{2n-1}\big{(}e+2n-r+1;(2n-r-1)^{2n+2}\big{)}.

Finally, let A=R/(L0d,,L2nd)A=R/(L_{0}^{d},\ldots,L_{2n}^{d}), hence AA is a complete intersection and it has the SLP (see, e.g., [15] or [17]), one has

dimk[R/I]jdimk[R/I]j1=[hA(j)hA(j1)][hA(jd)hA(jd1)],\dim_{k}[R/I]_{j}-\dim_{k}[R/I]_{j-1}=[h_{A}(j)-h_{A}(j-1)]-[h_{A}(j-d)-h_{A}(j-d-1)],

by Lemma 2.4 since jd2+(2n+1)(d1)2.j\leq\frac{d}{2}+\frac{(2n+1)(d-1)}{2}. Resolving AA over RR using the Koszul resolution, we get for the Hilbert function of AA

hA(j)=k=02n+1(1)k(2n+1k)(2n+jkd2n).h_{A}(j)=\sum_{k=0}^{2n+1}(-1)^{k}\binom{2n+1}{k}\binom{2n+j-kd}{2n}.

As j=(2n21)(d1)2n1j=\lfloor\frac{(2n^{2}-1)(d-1)}{2n-1}\rfloor, hence jkd<0j-kd<0 if kn+1.k\geq n+1. It follows that

hA(j)=k=0n(1)k(2n+1k)(2n+jkd2n).h_{A}(j)=\sum_{k=0}^{n}(-1)^{k}\binom{2n+1}{k}\binom{2n+j-kd}{2n}.

A straightforward computation gives

dimk[R/I]jdimk[R/I]j1=k=0n(1)k(2n+2k)(2n1+jkd2n1).\displaystyle\dim_{k}[R/I]_{j}-\dim_{k}[R/I]_{j-1}=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{2n-1+j-kd}{2n-1}.

Proposition 3.2.

Assume that d=(2n1)e+2rd=(2n-1)e+2r, ee and rr are non-negative integers such that 1rn1\leq r\leq n. If n2r(r+2)1n\leq 2r(r+2)-1 then

dimk[R/(I,)]j>0,\dim_{k}[R/(I,\ell)]_{j}>0,

where \ell is a general linear form in R.R.

Proof.

As d=(2n1)e+2r, 1rnd=(2n-1)e+2r,\,1\leq r\leq n, by Theorem 3.1 we get that

dimk[R/(I,)]j=dimk𝔏2n1(e+nr+1;(nr)2n+2),\dim_{k}[R/(I,\ell)]_{j}=\dim_{k}\mathfrak{L}_{2n-1}\big{(}e+n-r+1;(n-r)^{2n+2}\big{)},

where ee is a non-negative integer. It is enough to show that

dimk𝔏2n1(nr+1;(nr)2n+2)>0.\dim_{k}\mathfrak{L}_{2n-1}\big{(}n-r+1;(n-r)^{2n+2}\big{)}>0.

Lemma 2.1 shows that

dimk𝔏2n1(nr+1;(nr)2n+2)=dimk[k[x0,,x2n1]/(02,,2n+12)]nr+1,\dim_{k}\mathfrak{L}_{2n-1}\big{(}n-r+1;(n-r)^{2n+2}\big{)}=\dim_{k}\Big{[}k[x_{0},\ldots,x_{2n-1}]/(\ell_{0}^{2},\ldots,\ell_{2n+1}^{2})\Big{]}_{n-r+1},

where 0,,2n+1\ell_{0},\ldots,\ell_{2n+1} are general linear forms in k[x0,,x2n1].k[x_{0},\ldots,x_{2n-1}]. Setting

P=k[x0,,x2n1]/(02,,2n2)P=k[x_{0},\ldots,x_{2n-1}]/(\ell_{0}^{2},\ldots,\ell_{2n}^{2})

then, by [12, Proposition 3.4], for every 0tn0\leq t\leq n,

dimk[P]t=(2nt)(2nt2).\dim_{k}[P]_{t}=\binom{2n}{t}-\binom{2n}{t-2}.

It follows that

dimk𝔏2n1(nr+1;(nr)2n+2)\displaystyle\dim_{k}\mathfrak{L}_{2n-1}\big{(}n-r+1;(n-r)^{2n+2}\big{)} dimk[P]nr+1dimk[P]nr1\displaystyle\geq\dim_{k}[P]_{n-r+1}-\dim_{k}[P]_{n-r-1}
=(2nnr+1)2(2nnr1)+(2nnr3).\displaystyle=\binom{2n}{n-r+1}-2\binom{2n}{n-r-1}+\binom{2n}{n-r-3}.

We have

(2nnr+1)\displaystyle\binom{2n}{n-r+1} 2(2nnr1)+(2nnr3)>0\displaystyle-2\binom{2n}{n-r-1}+\binom{2n}{n-r-3}>0
(2n)!(nr+1)!(n+r1)!(2n)!(nr1)!(n+r+1)!\displaystyle\Leftrightarrow\frac{(2n)!}{(n-r+1)!(n+r-1)!}-\frac{(2n)!}{(n-r-1)!(n+r+1)!}
>(2n)!(nr1)!(n+r+1)!(2n)!(nr3)!(n+r+3)!\displaystyle>\frac{(2n)!}{(n-r-1)!(n+r+1)!}-\frac{(2n)!}{(n-r-3)!(n+r+3)!}
2r(2n+1)(nr+1)!(n+r+1)!>2(r+2)(2n+1)(nr1)!(n+r+3)!\displaystyle\Leftrightarrow\frac{2r(2n+1)}{(n-r+1)!(n+r+1)!}>\frac{2(r+2)(2n+1)}{(n-r-1)!(n+r+3)!}
r(nr)(nr+1)>r+2(n+r+2)(n+r+3)\displaystyle\Leftrightarrow\frac{r}{(n-r)(n-r+1)}>\frac{r+2}{(n+r+2)(n+r+3)}
n2(2r2+4r1)n(2r2+4r)<0\displaystyle\Leftrightarrow n^{2}-(2r^{2}+4r-1)n-(2r^{2}+4r)<0
1<n<2r(r+2).\displaystyle\Leftrightarrow-1<n<2r(r+2).

Thus dimk[R/(I,)]j\dim_{k}[R/(I,\ell)]_{j} for any rn2r(r+2)1.r\leq n\leq 2r(r+2)-1.

Corollary 3.3.

If 2n152\leq n\leq 15 and d=4d=4, then R/IR/I fails to have the WLP.

Proof.

In this case, we have j=3n+1j=3n+1. By Proposition 3.2, for any 2n15,2\leq n\leq 15,

dimk[R/(I,)]3n+1>0,\dim_{k}[R/(I,\ell)]_{3n+1}>0,

where \ell is a general linear form in RR.

On other hand, by Theorem 3.1, we have

dimk[R/I]3n+1dimk[R/I]3n=k=0n(1)k(2n+2k)(5n4k2n1).\displaystyle\dim_{k}[R/I]_{3n+1}-\dim_{k}[R/I]_{3n}=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{5n-4k}{2n-1}.

Using Macaulay2 [7], we see that for any 2n15,2\leq n\leq 15,

dimk[R/I]3n+1dimk[R/I]3n0.\dim_{k}[R/I]_{3n+1}-\dim_{k}[R/I]_{3n}\leq 0.

It follows that R/IR/I fails to have the WLP since the surjectivity does not hold. ∎

Remark 3.4.

Set

Sn=k=0n(1)k(2n+2k)(5n4k2n1),n2.S_{n}=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{5n-4k}{2n-1},n\geq 2.

Examples suggest that the sequence (Sn)n2(S_{n})_{n\geq 2} of integers is strictly decreasing with S2=0,S_{2}=0, and so all these are non-positive.

Corollary 3.5.

If 3n293\leq n\leq 29 and d=6d=6, then R/IR/I fails to have the WLP.

Proof.

In this case, we have j=5n+2j=5n+2. Let \ell be a general linear form in RR. By Proposition 3.2 we get that

dimk[R/(I,)]5n+2>0,\dim_{k}[R/(I,\ell)]_{5n+2}>0,

for any 3n29.3\leq n\leq 29.

On other hand, by Theorem 3.1, we have

dimk[R/I]5n+2dimk[R/I]5n+1=k=0n(1)k(2n+2k)(7n+16k2n1).\displaystyle\dim_{k}[R/I]_{5n+2}-\dim_{k}[R/I]_{5n+1}=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{7n+1-6k}{2n-1}.

Using Macaulay2 [7], we see that for any 3n29,3\leq n\leq 29,

dimk[R/I]5n+2dimk[R/I]5n+1<0,\dim_{k}[R/I]_{5n+2}-\dim_{k}[R/I]_{5n+1}<0,

which shows that R/IR/I fails to have the WLP since the surjectivity does not hold. ∎

Corollary 3.6.

If 4n474\leq n\leq 47 and d=8d=8, then R/IR/I fails to have the WLP.

Proof.

Let \ell be a general linear form. In this case, we have j=7n+3j=7n+3. By Proposition 3.2, for any 4n47,4\leq n\leq 47,

dimk[R/(I,)]7n+3>0.\dim_{k}[R/(I,\ell)]_{7n+3}>0.

On other hand, by Theorem 3.1, we have

dimk[R/I]7n+3dimk[R/I]7n+2=k=0n(1)k(2n+2k)(9n+28k2n1).\displaystyle\dim_{k}[R/I]_{7n+3}-\dim_{k}[R/I]_{7n+2}=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{9n+2-8k}{2n-1}.

Using Macaulay2 [7], we see that for any 4n47,4\leq n\leq 47,

dimk[R/I]7n+3dimk[R/I]7n+2<0,\dim_{k}[R/I]_{7n+3}-\dim_{k}[R/I]_{7n+2}<0,

which shows that R/IR/I fails to have the WLP since the surjectivity does not hold. ∎

Corollary 3.7.

If 5n695\leq n\leq 69 and d=10d=10, then R/IR/I fails to have the WLP.

Proof.

Let \ell be a general linear form in RR. In this case, one has j=9n+4j=9n+4. By Proposition 3.2, for any 5n69,5\leq n\leq 69,

dimk[R/(I,)]9n+4>0.\dim_{k}[R/(I,\ell)]_{9n+4}>0.

On other hand, by Theorem 3.1, we have

dimk[R/I]9n+4dimk[R/I]9n+3=k=0n(1)k(2n+2k)(11n+310k2n1).\displaystyle\dim_{k}[R/I]_{9n+4}-\dim_{k}[R/I]_{9n+3}=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{11n+3-10k}{2n-1}.

Using Macaulay2 [7], we see that for any 5n69,5\leq n\leq 69,

dimk[R/I]9n+4dimk[R/I]9n+3<0,\dim_{k}[R/I]_{9n+4}-\dim_{k}[R/I]_{9n+3}<0,

which shows that R/IR/I fails to have the WLP since the surjectivity does not hold. ∎

Corollary 3.8.

If 6n956\leq n\leq 95 and d=12d=12, then R/IR/I fails to have the WLP.

Proof.

In this case, one has j=11n+5j=11n+5. For any 6n95,6\leq n\leq 95, one has

dimk[R/(I,)]11n+5>0,\dim_{k}[R/(I,\ell)]_{11n+5}>0,

by Proposition 3.2, where \ell is a general linear form in RR.

On other hand, by Theorem 3.1, we have

dimk[R/I]11n+5dimk[R/I]11n+4=k=0n(1)k(2n+2k)(13n+412k2n1).\displaystyle\dim_{k}[R/I]_{11n+5}-\dim_{k}[R/I]_{11n+4}=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{13n+4-12k}{2n-1}.

Using Macaulay2 [7], we see that for any 6n95,6\leq n\leq 95,

dimk[R/I]11n+5dimk[R/I]11n+4<0,\dim_{k}[R/I]_{11n+5}-\dim_{k}[R/I]_{11n+4}<0,

which shows that R/IR/I fails to have the WLP since the surjectivity does not hold. ∎

Corollary 3.9.

If 7n1257\leq n\leq 125 and d=14d=14, then R/IR/I fails to have the WLP.

Proof.

Let \ell be a general linear form in RR. In this case, one has j=13n+6j=13n+6. Proposition 3.2 follows that

dimk[R/(I,)]13n+6>0,\dim_{k}[R/(I,\ell)]_{13n+6}>0,

for any 7n125.7\leq n\leq 125.

On other hand, by Theorem 3.1, we have

dimk[R/I]13n+6dimk[R/I]13n+5=k=0n(1)k(2n+2k)(15n+514k2n1).\displaystyle\dim_{k}[R/I]_{13n+6}-\dim_{k}[R/I]_{13n+5}=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{15n+5-14k}{2n-1}.

Using Macaulay2 [7], we see that for any 7n125,7\leq n\leq 125,

dimk[R/I]13n+6dimk[R/I]13n+5<0,\dim_{k}[R/I]_{13n+6}-\dim_{k}[R/I]_{13n+5}<0,

which shows that R/IR/I fails to have the WLP since the surjectivity does not hold. ∎

Corollary 3.10.

If 8n1598\leq n\leq 159 and d=16d=16, then R/IR/I fails to have the WLP.

Proof.

Let \ell be a general linear form in RR. Computation shows that j=15n+7j=15n+7. Proposition 3.2 follows that

dimk[R/(I,)]15n+7>0,\dim_{k}[R/(I,\ell)]_{15n+7}>0,

for any 8n159.8\leq n\leq 159.

On other hand, by Theorem 3.1, we have

dimk[R/I]15n+7dimk[R/I]15n+6=k=0n(1)k(2n+2k)(17n+616k2n1).\displaystyle\dim_{k}[R/I]_{15n+7}-\dim_{k}[R/I]_{15n+6}=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{17n+6-16k}{2n-1}.

Using Macaulay2 [7], we see that for any 7n159,7\leq n\leq 159,

dimk[R/I]15n+7dimk[R/I]15n+6<0,\dim_{k}[R/I]_{15n+7}-\dim_{k}[R/I]_{15n+6}<0,

which shows that R/IR/I fails to have the WLP since the surjectivity does not hold. ∎

Proposition 3.11.

Assume that n,d2n,d\geq 2 and \ell is a general linear form in R.R. Then

dimk[R/(I,)]j>0\dim_{k}[R/(I,\ell)]_{j}>0

if one of the following conditions is satisfied

  1. (i)

    2n12n-1 or 2n+12n+1 divides d1d-1.

  2. (ii)

    2n12n-1 divides d+1d+1.

  3. (iii)

    2n12n-1 divides d+3d+3.

  4. (iv)

    2n12n-1 divides d+5d+5.

  5. (v)

    d4n22n+2.d\geq 4n^{2}-2n+2.

Proof.

Set t=2n(n+1)(d1)2n+1.t=\lfloor\frac{2n(n+1)(d-1)}{2n+1}\rfloor. It is easy to show that jtj\leq t. It follows from [13, Proposition 4.1] that

dimk[R/(I,)]t>0\dim_{k}[R/(I,\ell)]_{t}>0

if 2n+12n+1 divides d1d-1 or d4n22n+2.d\geq 4n^{2}-2n+2. Hence

dimk[R/(I,)]j>0\dim_{k}[R/(I,\ell)]_{j}>0

if 2n+12n+1 divides d1d-1 or d4n22n+2d\geq 4n^{2}-2n+2 as claimed in the item (v) and the last part of the item (i). Now if 2n12n-1 divides d1d-1, then, by Theorem 3.1,

dimk[R/(I,)]j=dimk𝔏2n1(e;02n+2)>0,e1,\dim_{k}[R/(I,\ell)]_{j}=\dim_{k}\mathfrak{L}_{2n-1}\big{(}e;0^{2n+2}\big{)}>0,\;\forall e\geq 1,

which complete the proof of the item (i).

If d+1=(2n1)e,e1d+1=(2n-1)e,\,e\geq 1, then d=(2n1)(e1)+2(n1).d=(2n-1)(e-1)+2(n-1). By Theorem 3.1,

dimk[R/(I,)]j=dimk𝔏2n1(e+1;12n+2)>0,e1,n2\dim_{k}[R/(I,\ell)]_{j}=\dim_{k}\mathfrak{L}_{2n-1}\big{(}e+1;1^{2n+2}\big{)}>0,\;\forall e\geq 1,n\geq 2

as claimed in the item (ii).

If d+3=(2n1)e,e1d+3=(2n-1)e,\,e\geq 1, then d=(2n1)(e1)+2(n2).d=(2n-1)(e-1)+2(n-2). If n3,n\geq 3, by Theorem 3.1,

dimk[R/(I,)]j=dimk𝔏2n1(e+2;22n+2)dimk𝔏2n1(3;22n+2).\dim_{k}[R/(I,\ell)]_{j}=\dim_{k}\mathfrak{L}_{2n-1}\big{(}e+2;2^{2n+2}\big{)}\geq\dim_{k}\mathfrak{L}_{2n-1}\big{(}3;2^{2n+2}\big{)}.

As

dimk𝔏2n1(3;22n+2)\displaystyle\dim_{k}\mathfrak{L}_{2n-1}\big{(}3;2^{2n+2}\big{)} (2n+22n1)(2n+2)(2n2n1)\displaystyle\geq\binom{2n+2}{2n-1}-(2n+2)\binom{2n}{2n-1}
=2n(n+1)(2n5)3>0.\displaystyle=\frac{2n(n+1)(2n-5)}{3}>0.

If n=2n=2, then d+3=3e,e2d+3=3e,\,e\geq 2. It follows that

dimk[R/(I,)]j=dimk𝔏3(e+2;26)>0.\dim_{k}[R/(I,\ell)]_{j}=\dim_{k}\mathfrak{L}_{3}\big{(}e+2;2^{6}\big{)}>0.

Thus (iii) is proved.

It remains to show (iv). Since d+5=(2n1)ed+5=(2n-1)e with e1e\geq 1 if n4n\geq 4, one has

d=(2n1)(e1)+2(n3).d=(2n-1)(e-1)+2(n-3).

If n5,n\geq 5, by Theorem 3.1,

dimk[R/(I,)]j\displaystyle\dim_{k}[R/(I,\ell)]_{j} =dimk𝔏2n1(e+3;32n+2)\displaystyle=\dim_{k}\mathfrak{L}_{2n-1}\big{(}e+3;3^{2n+2}\big{)}
dimk𝔏2n1(4;32n+2)\displaystyle\geq\dim_{k}\mathfrak{L}_{2n-1}\big{(}4;3^{2n+2}\big{)}
(2n+32n1)(2n+2)(2n+12n1)\displaystyle\geq\binom{2n+3}{2n-1}-(2n+2)\binom{2n+1}{2n-1}
=n(n+1)(2n+1)(2n9)6>0.\displaystyle=\frac{n(n+1)(2n+1)(2n-9)}{6}>0.

Note that e{3ifn=22ifn=3.e\geq\begin{cases}3&\text{if}\;n=2\\ 2&\text{if}\;n=3\end{cases}. Thus

dimk[R/(I,)]j={dimk𝔏3(e2;06)ifn=2,e3dimk𝔏5(e+3;38)ifn=3,e2dimk𝔏7(e+3;310)ifn=4,e1.\displaystyle\dim_{k}[R/(I,\ell)]_{j}=\begin{cases}\dim_{k}\mathfrak{L}_{3}\big{(}e-2;0^{6}\big{)}&\text{if}\;n=2,e\geq 3\\ \dim_{k}\mathfrak{L}_{5}\big{(}e+3;3^{8}\big{)}&\text{if}\;n=3,e\geq 2\\ \dim_{k}\mathfrak{L}_{7}\big{(}e+3;3^{10}\big{)}&\text{if}\;n=4,e\geq 1.\end{cases}

Therefore, dimk[R/(I,)]j>0\dim_{k}[R/(I,\ell)]_{j}>0 if n{2,3}.n\in\{2,3\}. If n=4n=4, then

dimk[R/(I,)]j=dimk𝔏7(e+3;310)dimk𝔏7(4;310).\dim_{k}[R/(I,\ell)]_{j}=\dim_{k}\mathfrak{L}_{7}\big{(}e+3;3^{10}\big{)}\geq\dim_{k}\mathfrak{L}_{7}\big{(}4;3^{10}\big{)}.

Set P=k[x0,,x7]/(x02,,x72).P=k[x_{0},\ldots,x_{7}]/(x_{0}^{2},\ldots,x_{7}^{2}). We have

dimk𝔏7(4;310)hP(4)2hP(2)+hP(0)=15>0.\displaystyle\dim_{k}\mathfrak{L}_{7}\big{(}4;3^{10}\big{)}\geq h_{P}(4)-2h_{P}(2)+h_{P}(0)=15>0.

This completes the argument. ∎

We close this section by giving the following result. It is similar to a result of Nagel and Trok in [13, Proposition 6.3].

Proposition 3.12.

Given integers n2n\geq 2 and 0q2(n1),0\leq q\leq 2(n-1), define a polynomial function Pn,q:P_{n,q}:~{}\mathbb{R}\longrightarrow\mathbb{R} by

Pn,q(t)=k=0n(1)k(2n+2k)(n1+(n1)q2n1+(q+1)(nk)+t[2n21(2n1)k]2n1).P_{n,q}(t)=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{n-1+\lfloor\frac{(n-1)q}{2n-1}\rfloor+(q+1)(n-k)+t[2n^{2}-1-(2n-1)k]}{2n-1}.

Then one has:

  1. (a)

    If for some qq with 1q2(n1),Pn,q(t)01\leq q\leq 2(n-1),\ P_{n,q}(t)\leq 0 for every t0t\geq 0, then Conjecture 1.1 is true for every d4n22n+2d\geq 4n^{2}-2n+2 such that d1qd-1-q is divisible by 2n1.2n-1.

  2. (b)

    If Pn,0(t)0P_{n,0}(t)\leq 0 for every t1t\geq 1, then Conjecture 1.1 is true for every dd such that d1d-1 is divisible by 2n1.2n-1.

  3. (c)

    If k=0n(1)k(2n+2k)[2n21(2n1)k]2n1<0\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}[2n^{2}-1-(2n-1)k]^{2n-1}<0 for each integer n4n\geq 4, then Conjecture 1.1 is true for every d0d\gg 0.

Proof.

Let \ell be a general linear form in RR. It follows from Proposition 3.11 that

dimk[R/(I,)]j>0,\dim_{k}[R/(I,\ell)]_{j}>0,

provided d4n22n+2d\geq 4n^{2}-2n+2 or d+id+i is divisible by 2n12n-1 with i{1,1,3,5}i\in\{-1,1,3,5\}. It follows that under these assumptions the multiplication

×:[R/I]j1[R/I]j\times\ell:[R/I]_{j-1}\longrightarrow[R/I]_{j}

fails to have maximal rank if and only if it fails surjectivity. It is enough to show that

dimk[R/I]jdimk[R/I]j10.\displaystyle\dim_{k}[R/I]_{j}-\dim_{k}[R/I]_{j-1}\leq 0.

Now write d1=(2n1)t+qd-1=(2n-1)t+q with integers tt and qq where 0q2(n1).0\leq q\leq 2(n-1). Then a straightforward computation gives

j=(2n21)t+nq+(n1)q2n1.j=(2n^{2}-1)t+nq+\big{\lfloor}\frac{(n-1)q}{2n-1}\big{\rfloor}.

By Theorem 3.1,

dimk[R/I]jdimk[R/I]j1=k=0n(1)k(2n+2k)(2n1+jkd2n1)\displaystyle\dim_{k}[R/I]_{j}-\dim_{k}[R/I]_{j-1}=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{2n-1+j-kd}{2n-1}
=k=0n(1)k(2n+2k)(n1+(n1)q2n1+(q+1)(nk)+t[2n21(2n1)k]2n1)\displaystyle=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{n-1+\big{\lfloor}\frac{(n-1)q}{2n-1}\big{\rfloor}+(q+1)(n-k)+t[2n^{2}-1-(2n-1)k]}{2n-1}
=Pn,q(t).\displaystyle=P_{n,q}(t).

Now, if for some integer t0t\geq 0 we have Pn,q(t)0,P_{n,q}(t)\leq 0, then

dimk[R/(I,)]jmax{dimk[R/I]jdimk[R/I]j1,0}.\dim_{k}[R/(I,\ell)]_{j}\neq\max\{\dim_{k}[R/I]_{j}-\dim_{k}[R/I]_{j-1},0\}.

This proves assertions (a) and (b).

Note that Pn,q(t)P_{n,q}(t) is a polynomial in tt of degree 2n12n-1 and

cn:=k=0n(1)k(2n+2k)[2n21(2n1)k]2n1c_{n}:=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}[2n^{2}-1-(2n-1)k]^{2n-1}

is the coefficient of t2n1t^{2n-1} in Pn,q(t).P_{n,q}(t). Since cn<0c_{n}<0 by assumption, it follows that Pn,q(t)<0P_{n,q}(t)<0 for all t0t\gg 0 independent of qq, and thus the claim (c) is proved. ∎

Based on computations, we conjecture that

cn:=k=0n(1)k(2n+2k)[2n21(2n1)k]2n1<0,for anyn2.c_{n}:=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}[2n^{2}-1-(2n-1)k]^{2n-1}<0,\;\text{for any}\;n\geq 2.

In facts that computations suggest that the sequence (cn)n2(c_{n})_{n\geq 2} of integers is strictly decreasing with c2=26,c_{2}=-26, and so all these are negatives. Thank to Macaulay2 [7], we can check it cn<0c_{n}<0 for any 2n400.2\leq n\leq 400. This conjecture implies that Conjecture 1.1 is true for d0.d\gg 0.

4. Almost uniform powers of general linear forms in a few variables

Our main result of this section is the following.

Theorem 4.1.

Let R=k[x0,,x2n]R=k[x_{0},\ldots,x_{2n}] and I=(L0d,,L2n+1d)I=(L_{0}^{d},\ldots,L_{2n+1}^{d}), where L0,,L2n+1L_{0},\ldots,L_{2n+1} are general linear forms in RR. If 4n84\leq n\leq 8 and d4d\geq 4, then R/IR/I fails to have the WLP.

Proof.

Let R\ell\in R be a general linear form and we will show that the multiplication

×:[R/I]j1[R/I]j\times\ell:[R/I]_{j-1}\longrightarrow[R/I]_{j}

fails to have maximal rank with j=(2n21)(d1)2n1,j=\lfloor\frac{(2n^{2}-1)(d-1)}{2n-1}\rfloor, provided 4n84\leq n\leq 8 and d4.d\geq 4. To do this, we will show

dimk[R/(I,)]jmax{dimk[R/I]jdimk[R/I]j1,0}.\dim_{k}[R/(I,\ell)]_{j}\neq\max\{\dim_{k}[R/I]_{j}-\dim_{k}[R/I]_{j-1},0\}.

First, we prove the following assertion.

Claim 1: D:=dimk[R/(I,)]j>0D:=\dim_{k}[R/(I,\ell)]_{j}>0 for any 4n84\leq n\leq 8 and d4.d\geq 4.

Indeed, Theorem 3.1 shows that

D={dimk𝔏2n1(e;02n+2)ifd=(2n1)e+1dimk𝔏2n1(e+nr+1;(nr)2n+2)ifd=(2n1)e+2rdimk𝔏2n1(e+2nr+1;(2nr1)2n+2)ifd=(2n1)e+2r+1\displaystyle D=\begin{cases}\dim_{k}\mathfrak{L}_{2n-1}(e;0^{2n+2})&\text{if}\quad d=(2n-1)e+1\\ \dim_{k}\mathfrak{L}_{2n-1}(e+n-r+1;(n-r)^{2n+2})&\text{if}\quad d=(2n-1)e+2r\\ \dim_{k}\mathfrak{L}_{2n-1}(e+2n-r+1;(2n-r-1)^{2n+2})&\text{if}\quad d=(2n-1)e+2r+1\end{cases}

where e,re,r are non-negative integers and 1rn11\leq r\leq n-1. Note that the dimension of linear systems satisfies

(4.1) dimk𝔏2n1(i;a2n+2)(2n1+i2n1)(2n+2)(2n2+a2n1).\displaystyle\dim_{k}\mathfrak{L}_{2n-1}(i;a^{2n+2})\geq\binom{2n-1+i}{2n-1}-(2n+2)\binom{2n-2+a}{2n-1}.

We now consider the following cases:

Case 1: n=4. Using (4.1), computations show that these linear systems are not empty for every

e{1ifd10,1,2(mod7)0ifd13,4,5,6(mod7).\displaystyle e\geq\begin{cases}1&\text{if}\quad d-1\equiv 0,1,2({\operatorname{mod}}7)\\ 0&\text{if}\quad d-1\equiv 3,4,5,6({\operatorname{mod}}7).\end{cases}

In other words, D0D\neq 0 for any d4.d\geq 4.

Case 2: n=5. Using (4.1), computations show that these linear system are not empty, provided

e{1ifd10,1,2,4(mod9)0ifd13,5,6,7,8(mod9).\displaystyle e\geq\begin{cases}1&\text{if}\quad d-1\equiv 0,1,2,4({\operatorname{mod}}9)\\ 0&\text{if}\quad d-1\equiv 3,5,6,7,8({\operatorname{mod}}9).\end{cases}

In other words, D0D\neq 0 for all d4d\geq 4 and d5d\neq 5.

Let 0,,2n+1\ell_{0},\ldots,\ell_{2n+1} be general linear forms in k[x0,,x2n1]k[x_{0},\ldots,x_{2n-1}] and set

Pn,s=k[x0,,x2n1]/(0s,,2n1s),Qn,s=k[x0,,x2n1]/(0s,,2ns)P_{n,s}=k[x_{0},\ldots,x_{2n-1}]/(\ell_{0}^{s},\ldots,\ell_{2n-1}^{s}),\quad Q_{n,s}=k[x_{0},\ldots,x_{2n-1}]/(\ell_{0}^{s},\ldots,\ell_{2n}^{s})

and Rn,s=k[x0,,x2n1]/(0s,,2n+1s).R_{n,s}=k[x_{0},\ldots,x_{2n-1}]/(\ell_{0}^{s},\ldots,\ell_{2n+1}^{s}). The exact sequence

deduces that

hRn,s(i)\displaystyle h_{R_{n,s}}(i) hQn,s(i)hQn,s(is)\displaystyle\geq h_{Q_{n,s}}(i)-h_{Q_{n,s}}(i-s)
=hPn,s(i)2hPn,s(is)+hPn,s(i2s)\displaystyle=h_{P_{n,s}}(i)-2h_{P_{n,s}}(i-s)+h_{P_{n,s}}(i-2s)

where the last equality deduces from the fact that Pn,sP_{n,s} is a complete intersection and has the SLP (see [15] or [17]).

Now we need to show D0D\neq 0 for d=5.d=5. Indeed, in this case, one has

D=dimk𝔏9(9;712)\displaystyle D=\dim_{k}\mathfrak{L}_{9}(9;7^{12}) =dimk[R5,3]9\displaystyle=\dim_{k}[R_{5,3}]_{9}
hP5,3(9)2hP5,3(6)+hP5,3(3)\displaystyle\geq h_{P_{5,3}}(9)-2h_{P_{5,3}}(6)+h_{P_{5,3}}(3)
=83502×2850+210\displaystyle=8350-2\times 2850+210
=2860\displaystyle=2860

which shows D0D\neq 0 for d=5.d=5.

Case 3: n=6. Using (4.1), computations show that these linear system are not empty for any d6d\geq 6 and d7,9.d\neq 7,9. We need to show D0D\neq 0 for d=4,5,7,9.d=4,5,7,9. If d=4d=4, then D0D\neq 0, by Proposition 3.2. With the notations as in the case 2, one has

D={dimk𝔏11(11;914)=dim[R6,3]11ifd=5dimk𝔏11(10;814)=dim[R6,3]10ifd=7dimk𝔏11(9;714)=dim[R6,3]9ifd=9.\displaystyle D=\begin{cases}\dim_{k}\mathfrak{L}_{11}(11;9^{14})\;\;=\dim[R_{6,3}]_{11}&\text{if}\quad d=5\\ \dim_{k}\mathfrak{L}_{11}(10;8^{14})\;\;=\dim[R_{6,3}]_{10}&\text{if}\quad d=7\\ \dim_{k}\mathfrak{L}_{11}(9;7^{14})\quad=\dim[R_{6,3}]_{9}&\text{if}\quad d=9.\end{cases}

The hh-vector of P6,3P_{6,3} is

hP6,3=\displaystyle h_{P_{6,3}}= (1,12,78,352,1221,3432,8074,16236,28314,43252,58278,69576,73789,\displaystyle(1,12,78,352,1221,3432,8074,16236,28314,43252,58278,69576,73789,
69576,58278,43252,28314,16236,8074,3432,1221,352,78,12,1).\displaystyle 69576,58278,43252,28314,16236,8074,3432,1221,352,78,12,1).

It is easy to see

dim[R6,3]ihP6,3(i)2hP6,3(i3)+hP6,3(i6)>0,\dim[R_{6,3}]_{i}\geq h_{P_{6,3}}(i)-2h_{P_{6,3}}(i-3)+h_{P_{6,3}}(i-6)>0,

for each i{9,10,11}.i\in\{9,10,11\}.
Thus, D>0D>0 for every d4.d\geq 4.

Case 4: n=7. Using (4.1), computations show that these linear system are not empty for d4d\geq 4 and d5,6,7,9,11,16d\neq 5,6,7,9,11,16. We need to show D0D\neq 0 for d=5,6,7,9,11,16.d=5,6,7,9,11,16. By Proposition 3.2 we get that D0D\neq 0 for d=6d=6. With the notations as in the case 2, one has

D={dimk𝔏13(13;1116)=dim[R7,3]13ifd=5dimk𝔏13(12;1016)=dim[R7,3]12ifd=7dimk𝔏13(11;916)=dim[R7,3]11ifd=9dimk𝔏13(10;816)=dim[R7,3]10ifd=11dimk𝔏13(15;1216)=dim[R7,4]15ifd=16.\displaystyle D=\begin{cases}\dim_{k}\mathfrak{L}_{13}(13;11^{16})=\dim[R_{7,3}]_{13}&\text{if}\quad d=5\\ \dim_{k}\mathfrak{L}_{13}(12;10^{16})=\dim[R_{7,3}]_{12}&\text{if}\quad d=7\\ \dim_{k}\mathfrak{L}_{13}(11;9^{16})\;\;=\dim[R_{7,3}]_{11}&\text{if}\quad d=9\\ \dim_{k}\mathfrak{L}_{13}(10;8^{16})\;\;=\dim[R_{7,3}]_{10}&\text{if}\quad d=11\\ \dim_{k}\mathfrak{L}_{13}(15;12^{16})=\dim[R_{7,4}]_{15}&\text{if}\quad d=16.\end{cases}

As hh-vector of Q7,3Q_{7,3} is

hQ7,3=(1,14,105,545\displaystyle h_{Q_{7,3}}=(1,14,105,545 ,2170,6993,18837,43290,85995,148785,224796,295659,\displaystyle,2170,6993,18837,43290,85995,148785,224796,295659,
334425,315420,227475,83097)\displaystyle 334425,315420,227475,83097)

we get D>0D>0 for d=5,7,9,11.d=5,7,9,11. Similarly, one can easy show that D>0D>0 for d=16.d=16. Thus, D>0D>0 for every d4d\geq 4.

Case 5: n=8. By Proposition 3.2, we have D0D\neq 0 for d=15e+2rd=15e+2r, ee and rr are non-negative integers such that 2r82\leq r\leq 8. Using (4.1), we can also show that D0D\neq 0 for d4d\geq 4 and d5,7,9,11,13,18,20d\neq 5,7,9,11,13,18,20. We now need to prove D0D\neq 0 for d5,7,9,11,13,18,20d\neq 5,7,9,11,13,18,20. With the notations as in the case 2, one has

D={dimk𝔏15(15;1318)=dim[R8,3]15ifd=5dimk𝔏15(14;1218)=dim[R8,3]14ifd=7dimk𝔏15(13;1118)=dim[R8,3]13ifd=9dimk𝔏15(12;1018)=dim[R8,3]12ifd=11dimk𝔏15(11;918)=dim[R8,3]11ifd=13dimk𝔏15(17;1418)=dim[R8,4]17ifd=18dimk𝔏15(16;1318)=dim[R8,4]16ifd=20.\displaystyle D=\begin{cases}\dim_{k}\mathfrak{L}_{15}(15;13^{18})=\dim[R_{8,3}]_{15}&\text{if}\quad d=5\\ \dim_{k}\mathfrak{L}_{15}(14;12^{18})=\dim[R_{8,3}]_{14}&\text{if}\quad d=7\\ \dim_{k}\mathfrak{L}_{15}(13;11^{18})=\dim[R_{8,3}]_{13}&\text{if}\quad d=9\\ \dim_{k}\mathfrak{L}_{15}(12;10^{18})=\dim[R_{8,3}]_{12}&\text{if}\quad d=11\\ \dim_{k}\mathfrak{L}_{15}(11;9^{18})\;\,=\dim[R_{8,3}]_{11}&\text{if}\quad d=13\\ \dim_{k}\mathfrak{L}_{15}(17;14^{18})=\dim[R_{8,4}]_{17}&\text{if}\quad d=18\\ \dim_{k}\mathfrak{L}_{15}(16;13^{18})=\dim[R_{8,4}]_{16}&\text{if}\quad d=20.\end{cases}

As hh-vector of Q8,3Q_{8,3} is

hQ8,3=(1,16,136\displaystyle h_{Q_{8,3}}=(1,16,136 ,799,3604,13192,40528,106828,245242,495312,885768,1406886,\displaystyle,799,3604,13192,40528,106828,245242,495312,885768,1406886,
1983696,2469624,2677704,2448816,1730787,625992)\displaystyle 1983696,2469624,2677704,2448816,1730787,625992)

we get D>0D>0 for d=5,7,9,11,13.d=5,7,9,11,13. Similarly, the Hilbert functions of Q8,4Q_{8,4} up to degree 17 are

hQ8,4(t)=\displaystyle h_{Q_{8,4}}(t)= (1,16,136,816,3859,15232,51952,156672,424558,1046112,2364768,\displaystyle(1,16,136,816,3859,15232,51952,156672,424558,1046112,2364768,
4937888,9574978,17312256,29277264,46411904,69063979,96521904)\displaystyle 4937888,9574978,17312256,29277264,46411904,69063979,96521904)

which show D>0D>0 for d=18,20.d=18,20. Thus, D>0D>0 for every d4d\geq 4.

Therefore, Claim 1 is completely proved.

Second, to prove failure of the WLP in degree jj it remains to show the following assertion.

Claim 2: E:=dimk[R/I]jdimk[R/I]j10E:=\dim_{k}[R/I]_{j}-\dim_{k}[R/I]_{j-1}\leq 0 for all 4n84\leq n\leq 8 and d4.d\geq 4.

Theorem 3.1 gives

E:=dimk[R/I]jdimk[R/I]j1=k=0n(1)k(2n+2k)(2n1+jkd2n1).E:=\dim_{k}[R/I]_{j}-\dim_{k}[R/I]_{j-1}=\sum_{k=0}^{n}(-1)^{k}\binom{2n+2}{k}\binom{2n-1+j-kd}{2n-1}.

We consider the following cases:

Case 1: n=4. We consider seven cases for d1=7e+m,0m6d-1=7e+m,0\leq m\leq 6. Thank to Macaulay2 [7], we can show that E<0E<0 for any d4.d\geq 4.

Subcase 1: If d=7e+1d=7e+1, then j=31ej=31e and hence

E\displaystyle E =(31e+77)10(24e+67)+45(17e+57)120(10e+47)+210(3e+37)\displaystyle=\binom{31e+7}{7}-10\binom{24e+6}{7}+45\binom{17e+5}{7}-120\binom{10e+4}{7}+210\binom{3e+3}{7}
=17!(1086400574e7914853422e6328170248e560270140e45015486e3\displaystyle=\frac{1}{7!}(-1086400574e^{7}-914853422e^{6}-328170248e^{5}-60270140e^{4}-5015486e^{3}
+102442e2+60228e+5040)<0for anye1.\displaystyle\quad+102442e^{2}+60228e+5040)<0\quad\text{for any}\quad e\geq 1.

Subcase 2: If d=7e+2d=7e+2, then j=31e+4j=31e+4 and we have

E\displaystyle E =(31e+117)10(24e+97)+45(17e+77)120(10e+57)+210(3e+37)\displaystyle=\binom{31e+11}{7}-10\binom{24e+9}{7}+45\binom{17e+7}{7}-120\binom{10e+5}{7}+210\binom{3e+3}{7}
=17!(1086400574e71829706844e61272885740e5457929640e4\displaystyle=\frac{1}{7!}(-1086400574e^{7}-1829706844e^{6}-1272885740e^{5}-457929640e^{4}
84318206e35316556e2+535080e+75600)<0for anye1.\displaystyle\quad-84318206e^{3}-5316556e^{2}+535080e+75600)<0\quad\text{for any}\quad e\geq 1.

Subcase 3: If d=7e+3d=7e+3, then j=31e+8j=31e+8. It follows that

E\displaystyle E =(31e+157)10(24e+127)+45(17e+97)120(10e+67)+210(3e+37)\displaystyle=\binom{31e+15}{7}-10\binom{24e+12}{7}+45\binom{17e+9}{7}-120\binom{10e+6}{7}+210\binom{3e+3}{7}
=17!(1086400574e72744560266e62847411560e51530367860e4\displaystyle=\frac{1}{7!}(-1086400574e^{7}-2744560266e^{6}-2847411560e^{5}-1530367860e^{4}
431507006e350737554e2+1747620e+680400)<0for anye1.\displaystyle\quad-431507006e^{3}-50737554e^{2}+1747620e+680400)<0\quad\text{for any}\quad e\geq 1.

Subcase 4: If d=7e+4d=7e+4, then j=31e+13j=31e+13. One has

E\displaystyle E =(31e+207)10(24e+167)+45(17e+127)120(10e+87)+210(3e+47)\displaystyle=\binom{31e+20}{7}-10\binom{24e+16}{7}+45\binom{17e+12}{7}-120\binom{10e+8}{7}+210\binom{3e+4}{7}
=17!(1086400574e74059690376e66472447730e55696621560e4\displaystyle=\frac{1}{7!}(-1086400574e^{7}-4059690376e^{6}-6472447730e^{5}-5696621560e^{4}
2981962256e3925181824e2156720480e11088000)<0for anye0.\displaystyle\quad-2981962256e^{3}-925181824e^{2}-156720480e-11088000)<0\quad\text{for any}\quad e\geq 0.

Subcase 5: If d=7e+5d=7e+5, then j=31e+17j=31e+17 and hence

E\displaystyle E =(31e+247)10(24e+197)+45(17e+147)120(10e+97)+210(3e+47)\displaystyle=\binom{31e+24}{7}-10\binom{24e+19}{7}+45\binom{17e+14}{7}-120\binom{10e+9}{7}+210\binom{3e+4}{7}
=17!(1086400574e74974543798e69666743618e510305716610e4\displaystyle=\frac{1}{7!}(-1086400574e^{7}-4974543798e^{6}-9666743618e^{5}-10305716610e^{4}
6484301936e32393744472e2475568352e38586240)<0for anye0.\displaystyle\quad-6484301936e^{3}-2393744472e^{2}-475568352e-38586240)<0\quad\text{for any}\quad e\geq 0.

Subcase 6: If d=7e+6d=7e+6, then j=31e+22j=31e+22 and therefore

E\displaystyle E =(31e+297)10(24e+237)+45(17e+177)120(10e+117)+210(3e+57)\displaystyle=\binom{31e+29}{7}-10\binom{24e+23}{7}+45\binom{17e+17}{7}-120\binom{10e+11}{7}+210\binom{3e+5}{7}
=17!(1086400574e76289673908e615592053428e521447402760e4\displaystyle=\frac{1}{7!}(-1086400574e^{7}-6289673908e^{6}-15592053428e^{5}-21447402760e^{4}
17672567486e38719279492e22383703952e278359200)<0for anye0.\displaystyle\quad-17672567486e^{3}-8719279492e^{2}-2383703952e-278359200)<0\;\text{for any}\;e\geq 0.

Subcase 7: If d=7e+7d=7e+7, then j=31e+26j=31e+26. It follows that

E\displaystyle E =(31e+337)10(24e+267)+45(17e+197)120(10e+127)+210(3e+57)\displaystyle=\binom{31e+33}{7}-10\binom{24e+26}{7}+45\binom{17e+19}{7}-120\binom{10e+12}{7}+210\binom{3e+5}{7}
=17!(1086400574e77204527330e620406119384e531980364500e4\displaystyle=\frac{1}{7!}(-1086400574e^{7}-7204527330e^{6}-20406119384e^{5}-31980364500e^{4}
29926695806e316705543050e25144220396e673001280)<0for anye0.\displaystyle\;-29926695806e^{3}-16705543050e^{2}-5144220396e-673001280)<0\;\text{for any}\;e\geq 0.

Thus E<0E<0 for any d4.d\geq 4. Claim 2 is proved for n=4.n=4.

Case 2: n=5. We write d1=9e+m,0m8d-1=9e+m,0\leq m\leq 8. We will prove that E<0E<0 for any d4.d\geq 4. Thank to Macaulay2 [7], a straightforward computation gives

Subcase 1: If d=9e+1d=9e+1, then j=49ej=49e. It follows that

E\displaystyle E =k=05(1)k(12k)((499k)e+9k9)\displaystyle=\sum_{k=0}^{5}(-1)^{k}\binom{12}{k}\binom{(49-9k)e+9-k}{9}
=19!(32649547827918e929495874488598e811942585863236e7\displaystyle=\frac{1}{9!}(-32649547827918e^{9}-29495874488598e^{8}-11942585863236e^{7}
2793889960092e6406323342558e535868202902e41535113104e3\displaystyle-2793889960092e^{6}-406323342558e^{5}-35868202902e^{4}-1535113104e^{3}
+29687112e2+7209216e+362880)<0for anye1.\displaystyle+29687112e^{2}+7209216e+362880)<0\;\text{for any}\;e\geq 1.

Analogously we can check the another cases.

Subcase 2: If d=9e+2r, 1r4d=9e+2r,\ 1\leq r\leq 4, then j=49e+11r6j=49e+11r-6 and

E=k=05(1)k(12k)((499k)e+(112k)r+39).\displaystyle E=\sum_{k=0}^{5}(-1)^{k}\binom{12}{k}\binom{(49-9k)e+(11-2k)r+3}{9}.

We compute with Macaulay2 to show that if r=1,r=1, then E<0E<0 for any e1e\geq 1 and if r{2,3,4}r\in\{2,3,4\} then E<0E<0 for any e0e\geq 0.

Subcase 3: If d=9e+2r+1, 1r4d=9e+2r+1,\ 1\leq r\leq 4, then j=49e+11r1j=49e+11r-1 and

E=k=05(1)k(12k)((499k)e+(112k)rk+89).\displaystyle E=\sum_{k=0}^{5}(-1)^{k}\binom{12}{k}\binom{(49-9k)e+(11-2k)r-k+8}{9}.

Similarly, we can show that if r=1,r=1, then E<0E<0 for any e1e\geq 1 and if r{2,3,4}r\in\{2,3,4\} then E<0E<0 for any e0e\geq 0.

It follows that E<0E<0 for any d4.d\geq 4. Claim 2 is proved for n=5.n=5.

Case 3: n=6. Write d1=11e+m,0m10.d-1=11e+m,0\leq m\leq 10. Thank to Macaulay2 [7], we will show that E<0E<0 for any d2.d\geq 2.

Subcase 1: If d=11e+1d=11e+1, then j=71ej=71e and

E\displaystyle E =k=06(1)k(14k)((7111k)e+11k11)=111!(2310696921327619572e11\displaystyle=\sum_{k=0}^{6}(-1)^{k}\binom{14}{k}\binom{(71-11k)e+11-k}{11}=\frac{1}{11!}(-2310696921327619572e^{11}
2159206229822458212e10925836626096405100e9238845827273630940e8\displaystyle-2159206229822458212e^{10}-925836626096405100e^{9}-238845827273630940e^{8}
40895244843536556e74822097086873836e6390251062386900e5\displaystyle-40895244843536556e^{7}-4822097086873836e^{6}-390251062386900e^{5}
20387890763460e4526999267872e3+8455070448e2\displaystyle-20387890763460e^{4}-526999267872e^{3}+8455070448e^{2}
+1189900800e+39916800)<0for anye1.\displaystyle+1189900800e+39916800)<0\;\text{for any}\;e\geq 1.

Analogously we can check the another cases.

Subcase 2: If d=11e+2r, 1r5d=11e+2r,\ 1\leq r\leq 5, then j=71e+13r7j=71e+13r-7. For each 1r51\leq r\leq 5, computations with Macaulay2 show that

E=k=06(1)k(14k)((7111k)e+(132k)r+411)<0for anye0.\displaystyle E=\sum_{k=0}^{6}(-1)^{k}\binom{14}{k}\binom{(71-11k)e+(13-2k)r+4}{11}<0\quad\text{for any}\;e\geq 0.

Subcase 3: If d=11e+2r+1, 1r5d=11e+2r+1,\ 1\leq r\leq 5, then j=71e+13r1j=71e+13r-1. For each 1r51\leq r\leq 5, computations with Macaulay2 show that

E=k=06(1)k(14k)((7111k)e+(132k)rk+1011)<0for anye0.\displaystyle E=\sum_{k=0}^{6}(-1)^{k}\binom{14}{k}\binom{(71-11k)e+(13-2k)r-k+10}{11}<0\quad\text{for any}\;e\geq 0.

It follows that E<0E<0 for any d2.d\geq 2. Claim 2 is proved for n=6.n=6.

Case 4: n=7. We write d1=13e+m,0m12.d-1=13e+m,0\leq m\leq 12. Thank to Macaulay2 [7], we will show that E<0E<0 for any d2.d\geq 2.

Subcase 1: If d=13e+1d=13e+1, then j=97ej=97e and hence

E\displaystyle E =k=07(1)k(16k)((9713k)e+13k13)\displaystyle=\sum_{k=0}^{7}(-1)^{k}\binom{16}{k}\binom{(97-13k)e+13-k}{13}
=113!(334688414610649890510291e13318779633066827110608001e12\displaystyle=\frac{1}{13!}(-334688414610649890510291e^{13}-318779633066827110608001e^{12}
141329943714960759520905e1138495945182007845679433e10\displaystyle-141329943714960759520905e^{11}-38495945182007845679433e^{10}
7165747937184385180203e9958746457198704734703e8\displaystyle-7165747937184385180203e^{9}-958746457198704734703e^{8}
94270438988259145755e76819523889292264579e6\displaystyle-94270438988259145755e^{7}-6819523889292264579e^{6}
354359614333473606e512260161531299396e4210757791455640e3\displaystyle-354359614333473606e^{5}-12260161531299396e^{4}-210757791455640e^{3}
+2848164688512e2+260089315200e+6227020800)<0for anye1.\displaystyle+2848164688512e^{2}+260089315200e+6227020800)<0\;\text{for any}\;e\geq 1.

Analogously we can check the another cases.

Subcase 2: If d=13e+2r, 1r6d=13e+2r,\ 1\leq r\leq 6, then j=97e+15r8j=97e+15r-8. For each 1r61\leq r\leq 6, computations with Macaulay2 show that

E=k=07(1)k(16k)((9713k)e+(152k)r+513)<0for anye0.\displaystyle E=\sum_{k=0}^{7}(-1)^{k}\binom{16}{k}\binom{(97-13k)e+(15-2k)r+5}{13}<0\;\text{for any}\;e\geq 0.

Subcase 3: If d=13e+2r+1, 1r6d=13e+2r+1,\ 1\leq r\leq 6, then j=97e+15r1j=97e+15r-1. For each 1r61\leq r\leq 6, computations with Macaulay2 show that

E=k=07(1)k(16k)((9713k)e+(152k)rk+1213)<0for anye0.\displaystyle E=\sum_{k=0}^{7}(-1)^{k}\binom{16}{k}\binom{(97-13k)e+(15-2k)r-k+12}{13}<0\;\text{for any}\;e\geq 0.

It follows that E<0E<0 for all d2d\geq 2 as desired.

Case 5: n=8. Write d1=15e+m,0m14.d-1=15e+m,0\leq m\leq 14. Thank to Macaulay2 [7], we will show that E<0E<0 for any d2.d\geq 2.

Subcase 1: If d=15e+1d=15e+1, then j=127ej=127e and hence

E\displaystyle E =k=08(1)k(18k)((12715k)e+15k15)\displaystyle=\sum_{k=0}^{8}(-1)^{k}\binom{18}{k}\binom{(127-15k)e+15-k}{15}
=115!(89416180762084130597433031670e1586189264600012090365415830692e14\displaystyle=\frac{1}{15!}(-89416180762084130597433031670e^{15}-86189264600012090365415830692e^{14}
39053028448507299529147674830e1311015489694695869227569915190e12\displaystyle-39053028448507299529147674830e^{13}-11015489694695869227569915190e^{12}
2159771261721698841245859830e11311249224672723122942089934e10\displaystyle-2159771261721698841245859830e^{11}-311249224672723122942089934e^{10}
33979437594069966555524110e92851416027092144483798970e8\displaystyle-33979437594069966555524110e^{9}-2851416027092144483798970e^{8}
184330466550469812352780e79076381685750429456406e6\displaystyle-184330466550469812352780e^{7}-9076381685750429456406e^{6}
329488524726287066140e58109990225233736840e498835121150056720e3\displaystyle-329488524726287066140e^{5}-8109990225233736840e^{4}-98835121150056720e^{3}
+1138217439820032e2+71328551374080e+1307674368000)<0for anye1.\displaystyle+1138217439820032e^{2}+71328551374080e+1307674368000)<0\;\text{for any}\;e\geq 1.

Analogously we can check the another cases.

Subcase 2: If d=15e+2r, 1r7d=15e+2r,\ 1\leq r\leq 7, then j=127e+17r9j=127e+17r-9. For each 1r71\leq r\leq 7, computations with Macaulay2 show that

E=k=08(1)k(18k)((12715k)e+(172k)r+615)<0for anye0.\displaystyle E=\sum_{k=0}^{8}(-1)^{k}\binom{18}{k}\binom{(127-15k)e+(17-2k)r+6}{15}<0\;\text{for any}\;e\geq 0.

Subcase 3: If d=15e+2r+1, 1r7d=15e+2r+1,\ 1\leq r\leq 7, then j=127e+17r1j=127e+17r-1. For each 1r71\leq r\leq 7, computations with Macaulay2 show that

E=k=08(1)k(18k)((12715k)e+(172k)rk+1415)<0for anye0.\displaystyle E=\sum_{k=0}^{8}(-1)^{k}\binom{18}{k}\binom{(127-15k)e+(17-2k)r-k+14}{15}<0\;\text{for any}\;e\geq 0.

It follows that E<0E<0 for all d2d\geq 2 and n=8n=8.

Thus Claim 2 is completely proved.

Finally, Theorem 4.1 follows from the above two claims. ∎

Remark 4.2.
  1. (1)

    The first author has shown that an artinian ideal I=(L02,,L2n+12)RI=(L_{0}^{2},\ldots,L_{2n+1}^{2})\subset R generated by the quadratic powers of general linear forms fails to have the WLP [12]. Therefore, Theorem 4.1 answers partially Conjecture 1.1 for 4n84\leq n\leq 8, missing only the case d=3.d=3.

  2. (2)

    Theorem 4.1 together with Corollaries 3.33.10 says that R/IR/I fails to have the WLP for all d=2r,2r8d=2r,2\leq r\leq 8 and 4n2r(r+2)1.4\leq n\leq 2r(r+2)-1.

Acknowledgments

Computations using the algebra software Macaulay2 [7] were essential to get the ideas behind some of the proofs. The authors thank the referee for a careful reading and useful comments that improved the presentation of the article. The first author was partially supported by the grant MTM2016-78623-P. The second author was partially supported by the project “Àlgebra i Geometria Algebraica” under grant number 2017SGR00585 and by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2019.07.

References

  • [1] Charles Almeida and Aline V. Andrade. Lefschetz property and powers of linear forms in 𝕂[x,y,z]\mathbb{K}[x,y,z]. Forum Math., 30(4):857–865, 2018.
  • [2] Federico Ardila and Alexander Postnikov. Combinatorics and geometry of power ideals. Trans. Amer. Math. Soc., 362(8):4357–4384, 2010.
  • [3] Roberta Di Gennaro, Giovanna Ilardi, and Jean Vallès. Singular hypersurfaces characterizing the Lefschetz properties. J. Lond. Math. Soc. (2), 89(1):194–212, 2014.
  • [4] Roberta Di Gennaro, Giovanna Ilardi, and Jean Vallès. Comments on the WLP in degree 33 for 88 cubes in 6{\mathbb{P}}^{6}. Preprint: hal-02321118, October 2019.
  • [5] Marcin Dumnicki. An algorithm to bound the regularity and nonemptiness of linear systems in n\mathbb{P}^{n}. J. Symbolic Comput., 44(10):1448–1462, 2009.
  • [6] Jacques Emsalem and Anthony Iarrobino. Inverse system of a symbolic power. I. J. Algebra, 174(3):1080–1090, 1995.
  • [7] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
  • [8] Brian Harbourne, Hal Schenck, and Alexandra Seceleanu. Inverse systems, Gelfand-Tsetlin patterns and the weak Lefschetz property. J. Lond. Math. Soc. (2), 84(3):712–730, 2011.
  • [9] Giovanna Ilardi and Jean Vallès. Eight cubes of linear forms in 6\mathbb{P}^{6}. arXiv e-prints: 1910.04035, Oct 2019.
  • [10] Juan C. Migliore and Rosa M. Miró-Roig. On the strong Lefschetz problem for uniform powers of general linear forms in k[x,y,z]k[x,y,z]. Proc. Amer. Math. Soc., 146(2):507–523, 2018.
  • [11] Juan C. Migliore, Rosa M. Miró-Roig, and Uwe Nagel. On the weak Lefschetz property for powers of linear forms. Algebra Number Theory, 6(3):487–526, 2012.
  • [12] Rosa M. Miró-Roig. Harbourne, Schenck and Seceleanu’s conjecture. J. Algebra, 462:54–66, 2016.
  • [13] Uwe Nagel and Bill Trok. Interpolation and the weak Lefschetz property. Trans. Amer. Math. Soc., 372(12):8849–8870, 2019.
  • [14] Hal Schenck and Alexandra Seceleanu. The weak Lefschetz property and powers of linear forms in 𝕂[x,y,z]\mathbb{K}[x,y,z]. Proc. Amer. Math. Soc., 138(7):2335–2339, 2010.
  • [15] Richard P. Stanley. Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Algebraic Discrete Methods, 1(2):168–184, 1980.
  • [16] Bernd Sturmfels and Zhiqiang Xu. Sagbi bases of Cox-Nagata rings. J. Eur. Math. Soc. (JEMS), 12(2):429–459, 2010.
  • [17] Junzo Watanabe. The Dilworth number of Artinian rings and finite posets with rank function. In Commutative algebra and combinatorics (Kyoto, 1985), volume 11 of Adv. Stud. Pure Math., pages 303–312. North-Holland, Amsterdam, 1987.