This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the volume of the Minkowski sum of zonoids

Matthieu Fradelizi, Mokshay Madiman, Mathieu Meyer and Artem Zvavitch supported in part by the Agence Nationale de la Recherche, project GeMeCoD (ANR 2011 BS01 007 01).supported in part by the U.S. National Science Foundation through grants DMS-1409504.supported in part by the U.S. National Science Foundation Grant DMS-1101636, Simons Foundation, the CNRS and the Bézout Labex.
Abstract

We explore some inequalities in convex geometry restricted to the class of zonoids. We show the equivalence, in the class of zonoids, between a local Alexandrov-Fenchel inequality, a local Loomis-Whitney inequality, the log-submodularity of volume, and the Dembo-Cover-Thomas conjecture on the monotonicity of the ratio of volume to the surface area. In addition to these equivalences, we confirm these conjectures in 3{\mathbb{R}}^{3} and we establish an improved inequality in 2{\mathbb{R}}^{2}. Along the way, we give a negative answer to a question of Adam Marcus regarding the roots of the Steiner polynomial of zonoids. We also investigate analogous questions in the LpL_{p}-Brunn-Minkowski theory, and in particular, we confirm all of the above conjectures in the case p=2p=2, in any dimension.

1 Introduction

The deep parallels between inequalities in Information Theory and Convex Geometry have been explored intensively. The recognition of these parallels goes back to at least 1984, when Costa and Cover [14] observed the formal resemblance between the Brunn-Minkowski inequality in Convex Geometry and the entropy power inequality in Information Theory. The Brunn-Minkowski inequality (see, e.g., [26, 44]) states that for all compact sets A,BA,B in n{\mathbb{R}}^{n}, |A+B|1/n|A|1/n+|B|1/n|A+B|^{1/n}\geq|A|^{1/n}+|B|^{1/n}, where we write |A||A| for the volume of AA. The entropy power inequality (see, e.g., [16]) states that for any pair of independent random vectors X,YX,Y in n{\mathbb{R}}^{n}, N(X+Y)N(X)+N(Y)N(X+Y)\geq N(X)+N(Y), where N(X)=e2h(X)nN(X)=e^{\frac{2h(X)}{n}} denotes the entropy power of XX, and h(X)=f(x)logf(x)𝑑xh(X)=-\int f(x)\log f(x)dx is the entropy of XX if XX has density ff (and h(X)=h(X)=-\infty if not). Despite the apparent distinctness of the settings, a compelling case can be made (see, e.g., [17, 46, 26, 48, 36]) that these inequalities are deeply connected – in particular, it is now well understood that the functional A|A|1/nA\mapsto|A|^{1/n} in the geometry of compact subsets of n{\mathbb{R}}^{n}, and the functional fXN(X)f_{X}\mapsto N(X) in probability are analogous in many (but not all) ways. In the last decade, several further developments have been made that link Information Theory to the Brunn-Minkowski theory, including entropy analogues of Blaschke-Santaló’s inequality [33], reverse Brunn-Minkowski’s inequality [6, 7], Rogers-Shephard’s inequality [9, 35] and Busemann’s inequality [4]. Indeed, volume inequalities and entropy inequalities (and also certain small ball inequalities [37]) can be unified using the framework of Rényi entropies; this framework and the relevant literature is surveyed in [36].

The analogies between Information Theory and Convex Geometry are not so direct when one moves to second-order functionals. In particular, convex geometry analogues of Fisher information inequalities hold sometimes but not always [22, 2, 25]. Motivated by these analogies, Dembo, Cover and Thomas [17] proposed the inequality, called concavity of the ratio of volume to the surface area,

|A+B||(A+B)||A||A|+|B||B|\frac{|A+B|}{|\partial(A+B)|}\geq\frac{|A|}{|\partial A|}+\frac{|B|}{|\partial B|} (1)

as a natural analogue dual to the Fisher information inequality. It was noticed already in [17] (see also [27]) that (1) is true when AA (or BB) is an Euclidean Ball, moreover, in [22], it was proved that this last inequality holds for any convex bodies AA and BB in 2{\mathbb{R}}^{2}. It is interesting to note that even a weaker conjecture, called monotonicity of the ratio of volume to the surface area,

|A+B||(A+B)||A||A|\frac{|A+B|}{|\partial(A+B)|}\geq\frac{|A|}{|\partial A|} (2)

is not trivial. The case of BB being a segment already gives another natural conjecture

|(PuA)||PuA||A||A|,\frac{|\partial(P_{u^{\perp}}A)|}{|P_{u^{\perp}}A|}\leq\frac{|\partial A|}{|A|}, (3)

where PuAP_{u^{\perp}}A denotes the orthogonal projection AA onto the hyperplane with normal vector uSn1u\in S^{n-1}. We explain in details the relationships between the above conjectures as parts of Theorems 3.6 and 3.9 below. It was proved in [27] (see also Lemma 5.3 for a simple proof) that (3) holds with with a multiplicative constant:

|(PuA)||PuA|2(n1)n|A||A|,\frac{|\partial(P_{u^{\perp}}A)|}{|P_{u^{\perp}}A|}\leq\frac{2(n-1)}{n}\frac{|\partial A|}{|A|}, (4)

Moreover, it was shown in [22] that the constant is sharp. Thus, there are counterexamples to (3) in n{\mathbb{R}}^{n} for any n3n\geq 3 and inequalities (1) and (2) are not true in general for the whole class of convex bodies in n{\mathbb{R}}^{n}, n3n\geq 3. Conjecture (1) is connected with the following conjectured inequality for the volume of projections:

|A+B||Pu(A+B)|n1|A||PuA|n1+|B||PuB|n1.\frac{|A+B|}{|P_{u^{\bot}}(A+B)|_{n-1}}\geq\frac{|A|}{|P_{u^{\bot}}A|_{n-1}}+\frac{|B|}{|P_{u^{\bot}}B|_{n-1}}. (5)

Bonnesen proved in [11] (see [44] equation (7.196)) that, for any convex bodies AA, BB in n{\mathbb{R}}^{n},

|A+B|(|PuA|n11n1+|PuB|n11n1)n1(|A||PuA|n1+|B||PuB|n1),|A+B|\geq\left(|P_{u^{\bot}}A|_{n-1}^{\frac{1}{n-1}}+|P_{u^{\bot}}B|_{n-1}^{\frac{1}{n-1}}\right)^{n-1}\left(\frac{|A|}{|P_{u^{\bot}}A|_{n-1}}+\frac{|B|}{|P_{u^{\bot}}B|_{n-1}}\right), (6)

which is (5) for n=2n=2. The fact that (1) is true in dimension 22 and in the case when one of the bodies is an Euclidean ball inspires the natural conjecture that (1) holds for zonoids. Recall that zonoids are Hausdorff limits of zonotopes and that zonotopes are Minkowski sums of segments. Our main goal, in this paper, is to study a weaker version of this conjecture: is it true that for two zonoids A,BA,B in n{\mathbb{R}}^{n} we have

|A+B||Pu(A+B)|n1|A||PuA|n1?\frac{|A+B|}{|P_{u^{\bot}}(A+B)|_{n-1}}\geq\frac{|A|}{|P_{u^{\bot}}A|_{n-1}}? (7)

Note that (7) is again not true for general convex bodies and n3n\geq 3. We prove it for zonoids and n=3n=3. We also present a number of equivalent and useful restatements of (7).

The second main contribution of this paper has to do with an analogue of the Plünnecke-Ruzsa [40, 42] inequality for zonoids, or equivalently, the log-submodularity property of volume on the space of zonoids with respect to Minkowski summation. More precisely, we study the following conjecture from [24]: given zonoids A,B1,B2A,B_{1},B_{2} in n{\mathbb{R}}^{n}, one has

|A||A+B1+B2||A+B1||A+B2|.|A|\,|A+B_{1}+B_{2}|\,\leq\,|A+B_{1}|\,|A+B_{2}|. (8)

This conjecture was inspired by Bobkov and the second-named author [7] who proved that for convex bodies A,B1,B2A,B_{1},B_{2} in n{\mathbb{R}}^{n}, one has

|A||A+B1+B2|3n|A+B1||A+B2|.|A|\,|A+B_{1}+B_{2}|\leq 3^{n}|A+B_{1}|\,|A+B_{2}|.

Recently, it was proved in [24] that the constant 3n3^{n} in the preceding inequality may be replaced by φn\varphi^{n}, where φ=(1+5)/2\varphi=(1+\sqrt{5})/2 is the golden ratio, that the best constant cnc_{n} is lower bounded by (4/3+o(1))n(4/3+o(1))^{n} and that c2=1c_{2}=1 and c3=4/3c_{3}=4/3. These observations for dimensions n3n\geq 3 imply that, for general convex bodies, it is impossible to have (8). In this paper, we prove that (8) holds in 3{\mathbb{R}}^{3} for zonoids.

This paper is organized as follows. In Section 2, we collect background material on mixed volumes. Numerous equivalent descriptions of log-submodularity, on a given class of convex bodies, are explored in Section 3. In Section 4, we first present an improved version of log\log-submodularity in 2{\mathbb{R}}^{2} by proving a strong version of two dimensional conjecture of T. Courtade, and we then prove inequality (7) in the special case of paralleletopes. Section 5 explores log-submodularity of volume on the class of zonoids– we first prove that this holds in 3{\mathbb{R}}^{3}, and then discuss an array of inequalities that are equivalent to log-submodularity for zonoids in arbitrary dimension (all of which therefore now hold in 3{\mathbb{R}}^{3}). Along the way, we answer a question of Adam Marcus about Steiner polynomials of zonoids. Finally, in Section 6, inspired by a work of Brazitikos and McIntyre [12] on vector-valued Maclaurin inequalities, we discuss possible extensions of our results to the more general class of LpL^{p}-zonoids, which appear in the more general LpL_{p}-Brunn-Minkowski theory.

Acknowledgments. We are indebted to Shiri Artstein-Avidan, Guillaume Aubrun, Silouanos Brazitikos, Dan Florentin, Dylan Langharst, Ivan Soprunov, and Ramon Van Handel, for a number of valuable discussions and suggestions.

2 Preliminaries on mixed volumes

In this section, we introduce basic notations and collect essential facts and definitions from convex geometry that are used in the paper. As a general reference on the theory, we use [44]. We write x,y\langle x,y\rangle for the inner product of vectors xx and yy in n{\mathbb{R}}^{n} and by |x||x| the Euclidean norm of a vector xnx\in{\mathbb{R}}^{n}. The closed Euclidean ball in n{\mathbb{R}}^{n} is denoted by B2nB_{2}^{n}, and its boundary by Sn1S^{n-1}. We also denote by e1,,ene_{1},\dots,e_{n} the standard orthonormal basis in n{\mathbb{R}}^{n}. Moreover, for any set in KnK\subset{\mathbb{R}}^{n}, we denote its boundary by K\partial K. A compact set KK in n{\mathbb{R}}^{n} is called star-shaped if, for every xKx\in K, the segment [0,x][0,x] is a subset of KK; its radial function ρK\rho_{K} is then defined by ρK(x)=sup{a;axK}\rho_{K}(x)=\sup\{a;ax\in K\}. When 0 belongs to the interior of KK then xK=ρK1(x)\|x\|_{K}=\rho_{K}^{-1}(x) is the Minkowski functional of KK. A convex body is a convex, compact set with non-empty interior. For a convex body KK, we define its support function by hK(x)=maxyKx,yh_{K}(x)=\max_{y\in K}\langle x,y\rangle.

We write |K|m|K|_{m} for the mm-dimensional Lebesgue measure (volume) of a measurable set KnK\subset{\mathbb{R}}^{n}, where m=1,,nm=1,...,n is the dimension of the minimal affine space containing KK, we often use the shorten notation |K||K| for nn-dimensional volume. From [44, Theorem 5.1.6], for any compact convex sets K1,,KrK_{1},\dots,K_{r} in n{\mathbb{R}}^{n} and any non-negative numbers t1,,trt_{1},\dots,t_{r}, one has

|t1K1++trKr|=i1,,in=1rti1tinV(Ki1,,Kin)\displaystyle\left|t_{1}K_{1}+\cdots+t_{r}K_{r}\right|=\sum_{i_{1},\dots,i_{n}=1}^{r}t_{i_{1}}\cdots t_{i_{n}}V(K_{i_{1}},\dots,K_{i_{n}}) (9)

for some non-negative numbers V(Ki1,,Kin)V(K_{i_{1}},\dots,K_{i_{n}}), which are the mixed volumes of Ki1,,KinK_{i_{1}},\dots,K_{i_{n}}. We also often use a two bodies version of (9):

|A+tB|=k=0n(nk)tkV(A[nk],B[k]),\displaystyle\left|A+tB\right|=\sum_{k=0}^{n}{n\choose k}t^{k}V(A[n-k],B[k]), (10)

for any t>0t>0 and compact, convex sets A,BA,B in n{\mathbb{R}}^{n}, where for simplicity we use notation A[m]A[m] for a convex set AA repeated mm times. Mixed volumes satisfy a number of extremely useful inequalities. The first one is the Brunn-Minkowski inequality |K+L|1/n|K|1/n+|L|1/n,|K+L|^{1/n}\geq|K|^{1/n}+|L|^{1/n}, whenever K,LK,L and K+LK+L are measurable. A direct consequence are Minkowski’s first inequality

V(L,K[n1])|L|1/n|K|(n1)/n,\displaystyle V(L,K[n-1])\geq|L|^{1/n}|K|^{(n-1)/n}, (11)

and Minkowski’s second inequality

V(L,K[n1])2|K|V(L[2],K[n2]),\displaystyle V(L,K[n-1])^{2}\geq|K|V(L[2],K[n-2]), (12)

for two convex, compact subsets KK and LL in n{\mathbb{R}}^{n}. We will use the classical integral representation for the mixed volume:

V(L,K[n1])=1nSn1hL(u)𝑑SK(u),V(L,K[n-1])=\frac{1}{n}\int_{S^{n-1}}h_{L}(u)dS_{K}(u), (13)

where SKS_{K} is the surface area measure of KK [44]. Mixed volumes are also useful to study the volume of the orthogonal projections of convex bodies. Let EE be an mm-dimensional subspace of n{\mathbb{R}}^{n}, for 1mn1\leq m\leq n and let PE:nEP_{E}:{\mathbb{R}}^{n}\to E be the orthogonal projection onto EE. Then for any convex body KK we have

|U|nm|PEK|m=(nm)V(K[m],U[nm]),\displaystyle|U|_{n-m}|P_{E}K|_{m}={{n}\choose{m}}V(K[m],U[n-m]), (14)

where UU is any convex body in the subspace EE^{\perp} orthogonal to EE. It follows from (14) that for any orthonormal system u1,,ur,u_{1},\dots,u_{r}, 1rn1\leq r\leq n we get

|P[u1,,ur]K|nr=n!(nr)!V(K[nr],[0,u1],,[0,ur]).\left|P_{[u_{1},\dots,u_{r}]^{\bot}}K\right|_{n-r}=\frac{n!}{(n-r)!}V(K[n-r],[0,u_{1}],\dots,[0,u_{r}]). (15)

For example, denote by u={xn:x,u=0}u^{\perp}=\{x\in{\mathbb{R}}^{n}:\langle x,u\rangle=0\} the hyperplane orthogonal to a vector uSn1u\in S^{n-1}, we obtain

|PuK|n1=nV(K[n1],[0,u]).\displaystyle|P_{u^{\perp}}K|_{n-1}=nV(K[n-1],[0,u]). (16)

Another useful formula is connected with the computation of surface area and mixed volumes:

|K|=nV(K[n1],B2n),\displaystyle|\partial K|=nV(K[n-1],B_{2}^{n}), (17)

where by |K||\partial K| we denote the surface area of the convex body KK in n{\mathbb{R}}^{n}.

A polytope which is the Minkowski sum of finitely many line segments is called a zonotope. Limits of zonotopes in the Hausdorff metric are called zonoids, see [44, Section 3.2] for details. Consider zonotopes Zj=ij=1Nj[0,wijj]Z_{j}=\sum_{i_{j}=1}^{N_{j}}[0,w_{i_{j}j}], where, j=1,,nj=1,\dots,n and wijjnw_{i_{j}j}\in{\mathbb{R}}^{n}. Using the linearity of mixed volumes, we get that

V(Z1,,Zn)=V([0,wi11],[0,winn])=1n!|det({wijj}j=1n)|,V(Z_{1},\dots,Z_{n})=\sum V([0,w_{i_{1}1}],\dots[0,w_{i_{n}n}])=\frac{1}{n!}\sum|{\mathop{\rm det}}(\{w_{i_{j}j}\}_{j=1}^{n})|, (18)

where the sums runs over the integers ij{1,,Nj}i_{j}\in\{1,\dots,N_{j}\}, for j{1,,n}j\in\{1,\dots,n\}. Notice that, if Z1=[0,u]Z_{1}=[0,u], with uSn1u\in S^{n-1}, we may use the basic properties of determinants to show that

V([0,u],Z2,,Zn)=1n!|det({Puwijj}j=2n)|,V([0,u],Z_{2},\dots,Z_{n})=\frac{1}{n!}\sum|{\mathop{\rm det}}(\{P_{u^{\perp}}w_{i_{j}j}\}_{j=2}^{n})|,

where the sum is taken over all integer ij{1,,Nj}i_{j}\in\{1,\dots,N_{j}\}, for j{2,,n}j\in\{2,\dots,n\}. We mainly use the following particular case: for Z=[0,u1]++[0,um]Z=[0,u_{1}]+\cdots+[0,u_{m}], then

|Z|=1i1<<inm\displaystyle|Z|=\!\!\!\sum_{1\leq i_{1}<\cdots<i_{n}\leq m} |det(ui1,,uin)|\displaystyle|{\mathop{\rm det}}(u_{i_{1}},\dots,u_{i_{n}})| (19)
|PeZ|=1i2<<inm|det(Peui2,,Peuin)|.\displaystyle|P_{e^{\bot}}Z|=\!\!\!\sum_{1\leq i_{2}<\cdots<i_{n}\leq m}|{\mathop{\rm det}}(P_{e^{\bot}}u_{i_{2}},\dots,P_{e^{\bot}}u_{i_{n}})|.

3 Equivalent forms of the log-submodularity of volume

3.1 Submodularity

Let us recall the notion of submodular set function and remind some basic properties, see [34, 47, 21, 24] for more information on this subject and the proofs of the theorems. We denote [n]={1,,n}{[n]}=\{1,\cdots,n\} and let 2[n]2^{[n]} be the family of subsets of [n]{[n]}.

Definition 3.1.

A set function F:2[n]F:2^{[n]}\rightarrow{\mathbb{R}} is submodular if

F(ST)+F(ST)F(S)+F(T)for all subsets S,T of [n].\displaystyle F(S\cup T)+F(S\cap T)\leq F(S)+F(T)\quad\mbox{for all subsets $S,T$ of $[n]$}. (20)

Submodularity is closely related to a partial ordering on hypergraphs [18, 10, 3]. Let (n,m)\mbox{${\cal M}$}(n,m) be the following family of multi-hypergraphs: each consists of non-empty subsets SiS_{i} of [n][n], i|Si|=m\sum_{i}|S_{i}|=m, with Si=SjS_{i}=S_{j} allowed. Consider a given multi-hypergraph 𝒞={S1,,Sl}(n,m)\mathcal{C}=\{S_{1},\dots,S_{l}\}\in\mbox{${\cal M}$}(n,m). Take any pair of non-nested sets {Si,Sj}𝒞\{S_{i},S_{j}\}\subset\mathcal{C} and let 𝒞=𝒞(i,j)\mathcal{C}^{\prime}=\mathcal{C}(i,j) be obtained from 𝒞\mathcal{C} by replacing SiS_{i} and SjS_{j} by SiSjS_{i}\cap S_{j} and SiSjS_{i}\cup S_{j}, keeping only SiSjS_{i}\cup S_{j} if SiSj=S_{i}\cap S_{j}=\emptyset. 𝒞\mathcal{C}^{\prime} is called an elementary compression of 𝒞\mathcal{C}. The result of a sequence of elementary compressions is called a compression. Define a partial order on (n,m)\mbox{${\cal M}$}(n,m) by setting 𝒜>𝒜\mathcal{A}>\mathcal{A}^{\prime} if 𝒜\mathcal{A}^{\prime} is a compression of 𝒜\mathcal{A}. Using transitivity of the partial order and reducing to elementary compression, we get the following theorem (see [3]).

Theorem 3.2.

Suppose FF is a submodular function on [n][n]. Let 𝒜\mathcal{A} and \mathcal{B} be finite multi-hypergraph of subsets of [n][n], with 𝒜>\mathcal{A}>\mathcal{B}. Then

S𝒜F(S)TF(T).\displaystyle\sum_{S\in\mathcal{A}}F(S)\geq\sum_{T\in\mathcal{B}}F(T).

For every multi-hypergraph 𝒜(n,m)\mathcal{A}\in\mbox{${\cal M}$}(n,m) there is a unique minimal multi-hypergraph 𝒜#\mathcal{A}^{\#} dominated by 𝒜\mathcal{A} consisting of the sets Sj#={i[n]:i lies in at least j of the sets S𝒜}S^{\#}_{j}=\{i\in[n]:i\text{ lies in at least }j\text{ of the sets }S\in\mathcal{A}\}. One implication of Theorem 3.2 is that submodular functions FF with F(φ)=0F(\varphi)=0 are “fractionally subadditive” (see, e.g., [38])– this property has also been investigated in connection with volumes of Minkowski sums [8, 23, 5].

We also have a notion of submodularity on the positive octant of the Euclidean space.

Definition 3.3.

A function f:+nf:{\mathbb{R}}_{+}^{n}\rightarrow{\mathbb{R}} is submodular if, for any x,y+nx,y\in\mathbb{R}_{+}^{n},

f(xy)+f(xy)f(x)+f(y),\displaystyle f(x\vee y)+f(x\wedge y)\leq f(x)+f(y),

where xyx\vee y (resp. xyx\wedge y) denotes the componentwise maximum (resp. minimum) of xx and yy.

The next very simple lemma connects submodularity for functions defined on +n{\mathbb{R}}_{+}^{n} to submodularity for set functions. For a set S{1,,n}S\subset\{1,\dots,n\}, let 1S\hbox{\rm\large{1}}_{S} be the vector in n{\mathbb{R}}^{n} such that for each i{1,,n}i\in\{1,\dots,n\}, the ii-th coordinate of 1S\hbox{\rm\large{1}}_{S} is 1, for iSi\in S and 0, for iSi\notin S.

Lemma 3.4.

If f:+nf:{\mathbb{R}}_{+}^{n}\rightarrow{\mathbb{R}} is submodular, and we set F(S):=f(1S)F(S):=f(\hbox{\rm\large{1}}_{S}) for each S{1,,n}S\subset\{1,\dots,n\}, then FF is a submodular set function.

The fact that submodular functions are closely related to functions with decreasing differences is classical (see, e.g., [34] or [47], which describes more general results involving arbitrary lattices). We denote by i,j2\partial^{2}_{i,j} the second derivative with respect to coordinates i,ji,j.

Proposition 3.5.

Let f:+nf:{\mathbb{R}}_{+}^{n}\rightarrow{\mathbb{R}} be a C2C^{2} function. Then ff is submodular if and only if i,j2f0\partial_{i,j}^{2}f\leq 0 on +n{\mathbb{R}}_{+}^{n}, for every iji\neq j.

3.2 Classes closed under sums and dilation

Let us now show the various forms that the notions of submodularity and log-submodularity can have applied to volume of convex compact sets.

Theorem 3.6.

Consider a collection 𝒦\cal{K} of compact convex sets in n{\mathbb{R}}^{n} stable by sums and dilation. Then the following statements are equivalent:

  1. 1.

    For every m1m\geq 1 and every A,B1,,BmA,B_{1},\dots,B_{m} in 𝒦{\cal K}

    |A|m1|A+i=1mBi|i=1m|A+Bi|.\displaystyle|A|^{m-1}\left|A+\sum_{i=1}^{m}B_{i}\right|\leq\prod_{i=1}^{m}|A+B_{i}|. (21)
  2. 2.

    For every m1m\geq 1 and A,B1,,Bm𝒦A,B_{1},\dots,B_{m}\in\cal{K}, the function w¯:2[m][0,)\bar{w}:2^{[m]}\rightarrow[0,\infty) defined by

    w¯(S)=log|A+iSBi|\displaystyle\bar{w}(S)=\log\bigg{|}A+\sum_{i\in S}B_{i}\bigg{|} (22)

    for each S2[m]S\in 2^{[m]}, is a submodular.

  3. 3.

    For every m1m\geq 1 and any multi-hypergraphs 𝒜,\mathcal{A},\mathcal{B} on [m][m] with 𝒜>\mathcal{A}>\mathcal{B},

    S𝒜w¯(S)Tw¯(T),\displaystyle\sum_{S\in\mathcal{A}}\bar{w}(S)\geq\sum_{T\in\mathcal{B}}\bar{w}(T),

    where w¯\bar{w} is defined by (22).

  4. 4.

    For every m1m\geq 1 and every A,B1,,Bm𝒦A,B_{1},\dots,B_{m}\in\cal{K}, the function w:+m[0,)w:{\mathbb{R}}_{+}^{m}\rightarrow[0,\infty) defined, for x=(x1,,xm)+mx=(x_{1},\dots,x_{m})\in{\mathbb{R}}_{+}^{m}, by

    w(x)=log|A+i=1mxiBi|,\displaystyle w(x)=\log\bigg{|}A+\sum_{i=1}^{m}x_{i}B_{i}\bigg{|}, (23)

    is submodular.

  5. 5.

    For every A,B1,B2𝒦A,B_{1},B_{2}\in\cal{K}

    |A|V(A[n2],B1,B2)nn1V(A[n1],B1)V(A[n1],B2).\displaystyle|A|V(A[n-2],B_{1},B_{2})\leq\frac{n}{n-1}V(A[n-1],B_{1})V(A[n-1],B_{2}).
Proof.

2. \implies 1. This follows directly from the definition.
1. \implies 2.: We use (21) with A+iSTBiA+\sum_{i\in S\cap T}B_{i}, iSTBi\sum_{i\in S\setminus T}B_{i} and iTSBi\sum_{i\in T\setminus S}B_{i}.
2. \Longleftrightarrow 3.: This follows from Theorem 3.2 applied to w¯-\bar{w}.
2. \Longleftrightarrow 4.: This comes from Lemma 3.4 and the fact that 𝒞\cal{C} is dilation invariant.
4. \Longleftrightarrow 5.: We apply Proposition 3.5 to f=wf=-w. Let Kx=A+ixiBiK_{x}=A+\sum_{i}x_{i}B_{i} and v(x)=|Kx|v(x)=|K_{x}|. Then

jv(x)=limε0|Kx+εBj||Kx|ε=nV(Kx[n1],Bj),\displaystyle\partial_{j}v(x)=\lim_{\varepsilon\rightarrow 0}\frac{|K_{x}+\varepsilon B_{j}|-|K_{x}|}{\varepsilon}=nV(K_{x}[n-1],B_{j}),

and for kjk\neq j

j,k2v(x)=nkV(Kx[n1],Bj)=nlimε0V((Kx+εBk)[n1],Bj)V(Kx[n1],Bj)ε=n(n1)V(Kx[n2],Bk,Bj).\displaystyle\begin{split}\partial_{j,k}^{2}v(x)&=n\partial_{k}V(K_{x}[n-1],B_{j})\\ &=n\lim_{\varepsilon\rightarrow 0}\frac{V((K_{x}+\varepsilon B_{k})[n-1],B_{j})-V(K_{x}[n-1],B_{j})}{\varepsilon}\\ &=n(n-1)V(K_{x}[n-2],B_{k},B_{j}).\end{split}

By Proposition 3.5, the submodularity of ww is equivalent to j,k2w(x)0\partial_{j,k}^{2}w(x)\leq 0. But w=log(v)w=\log(v) so

j,k2w(x)=vjkvjvkvv2,\displaystyle\partial_{j,k}^{2}w(x)=\frac{v\partial_{jk}v-\partial_{j}v\partial_{k}v}{v^{2}},

which is negative if and only if

|Kx|V(Kx[n2],Bj,Bk)nn1V(Kx[n1],Bj)V(Kx[n1],Bk).\displaystyle|K_{x}|V(K_{x}[n-2],B_{j},B_{k})\leq\frac{n}{n-1}V(K_{x}[n-1],B_{j})V(K_{x}[n-1],B_{k}).

Thus plugging x=0x=0 we get 4.5.4.\implies 5. and using 4. with KK instead of AA gives 5.4.5.\implies 4.     \Box

We note that it is enough to check property 1. in Theorem 3.6, just in the case m=2m=2. Indeed the case of general m>2m>2 follows by an iteration argument.

We also note that, in dimension 22, property 5. of Theorem 3.6 holds for any convex bodies by the classical local version of Alexandrov’s inequality that was proved by W. Fenchel (see [19], also [43] and discussion in Section 4.1 below) and further generalized in [22, 2, 45]: for any convex compact sets A,B1,B2A,B_{1},B_{2} in n{\mathbb{R}}^{n} we have

|A|V(A[n2],B1,B2)2V(A[n1],B1)V(A[n1],B2).|A|V(A[n-2],B_{1},B_{2})\leq 2V(A[n-1],B_{1})V(A[n-1],B_{2}). (24)

The constant 22 is sharp in any dimension (see [27] and [24]). This shows also that log-submodularity doesn’t hold in the set of compact convex sets in n{\mathbb{R}}^{n}, for n3n\geq 3. From (24) and Theorem 3.6, the following theorem holds.

Theorem 3.7.

For every A,B1,B2A,B_{1},B_{2} convex compact in 2{\mathbb{R}}^{2} it holds

|A||A+B1+B2||A+B1||A+B2|.|A|\,|A+B_{1}+B_{2}|\leq|A+B_{1}|\,|A+B_{2}|.

It is easy to see that 1. from Theorem 3.6 works well with direct sums, more precisely if A1,B11,,Bm1n1A^{1},B^{1}_{1},\dots,B_{m}^{1}\subset{\mathbb{R}}^{n_{1}} and A2,B12,,Bm2n2A^{2},B^{2}_{1},\dots,B_{m}^{2}\subset{\mathbb{R}}^{n_{2}} satisfy (21), then A=A1×A2n1+n2A=A^{1}\times A^{2}\subset{\mathbb{R}}^{n_{1}+n_{2}} and Bi=Bi1×Bi2B_{i}=B^{1}_{i}\times B_{i}^{2} in n1+n2{\mathbb{R}}^{n_{1}+n_{2}}, i=1,,mi=1,\dots,m satisfies (21). This fact can be used to create different classes of compact convex sets stable by sum and dilations which satisfy the properties of Theorem 3.6.

Remark 3.8.

Minkowski’s second inequality gives that, for any compact convex sets AA and BB, one has

|A|V(A[n2],B[2])V(A[n1],B)2.\displaystyle|A|V(A[n-2],B[2])\leq V(A[n-1],B)^{2}. (25)

Theorem 3.6 implies that if 𝒦\mathcal{K} is a class of convex bodies on which log-submodularity holds (property 1. of Theorem 3.6), then for bodies in 𝒦\mathcal{K}, a Fenchel type inequality similar to (24) holds with a dimensional factor nn1\frac{n}{n-1} instead of 22.

Let us, also, note that the same proof shows that for a fixed compact convex set AA not necessarily belonging to 𝒦\cal{K}, if, for every B1,B2B_{1},B_{2} in 𝒦{\cal K}, one has

|A||A+B1+B2||A+B1||A+B2|,\displaystyle|A|\,|A+B_{1}+B_{2}|\leq|A+B_{1}|\,|A+B_{2}|, (26)

then, for every B1,B2𝒦B_{1},B_{2}\in\cal{K}, one has

|A|V(A[n2],B1,B2)nn1V(A[n1],B1)V(A[n1],B2).\displaystyle|A|V(A[n-2],B_{1},B_{2})\leq\frac{n}{n-1}V(A[n-1],B_{1})V(A[n-1],B_{2}).

3.3 Classes closed under linear transformations

Theorem 3.9.

Let {\cal L} be a class of a compact convex sets in n{\mathbb{R}}^{n} stable under any linear transformations. The following are equivalent.

  1. 1.

    |A||(A+[0,u])||A||A+[0,u]||A|\,|\partial(A+[0,u])|\leq|\partial A|\,|A+[0,u]| for any AA\in{\cal L} and any unu\in{\mathbb{R}}^{n}.

  2. 2.

    |A||(PuA)||A||PuA|n1|A|\,|\partial(P_{u^{\bot}}A)|\leq|\partial A|\,|P_{u^{\bot}}A|_{n-1}, for any AA\in{\cal L} and any uSn1u\in S^{n-1}.

  3. 3.

    |A||P[u,v]A|n21u,v2|PuA|n1|PvA|n1|A|\,|P_{[u,v]^{\bot}}A|_{n-2}\sqrt{1-\langle u,v\rangle^{2}}\leq|P_{u^{\bot}}A|_{n-1}|P_{v^{\bot}}A|_{n-1}, for any AA\in{\cal L} and any u,vSn1u,v\in S^{n-1}.

  4. 4.

    |A+[0,u]+[0,v]||A||A+[0,u]||A+[0,v]||A+[0,u]+[0,v]|\,|A|\leq|A+[0,u]|\,|A+[0,v]| for any AA\in{\cal L} and any u,vnu,v\in{\mathbb{R}}^{n}.

  5. 5.

    |A|V(A[n2],Z1,Z2)nn1V(A[n1],Z1)V(A[n1],Z2)|A|V(A[n-2],Z_{1},Z_{2})\leq\frac{n}{n-1}V(A[n-1],Z_{1})V(A[n-1],Z_{2}), for any AA\in{\cal L} and any Z1,Z2Z_{1},Z_{2} zonoids.

  6. 6.

    For any AA\in{\cal L} and any u,vnu,v\in{\mathbb{R}}^{n}, let us define P(t)=|A+t([0,u]+[0,v])|P(t)=|A+t([0,u]+[0,v])|, for t>0t>0. Then P(t)P(t) is the restriction to +{\mathbb{R}}_{+} of a polynomial on {\mathbb{R}}, which has only real roots.

Proof.

1.2.1.\iff 2.: This was observed in [2]. It is true even for fixed AA and uu and follows from the identities |A+[0,u]|=|A|+|PuA||A+[0,u]|=|A|+|P_{u^{\bot}}A| and

|(A+[0,u])|=nV((A+[0,u])[n1],B2n)=|A|+|(PuA)|.|\partial(A+[0,u])|=nV((A+[0,u])[n-1],B_{2}^{n})=|\partial A|+|\partial(P_{u^{\bot}}A)|.

2.3.2.\implies 3.: Define Tε:nnT_{\varepsilon}:{\mathbb{R}}^{n}\to{\mathbb{R}}^{n} by Tεx=εx+x,vvT_{\varepsilon}x=\varepsilon x+\langle x,v\rangle v. Notice that T0(B2n)=[v,v]T_{0}(B_{2}^{n})=[-v,v]. From (2)(2) applied to Tε1AT_{\varepsilon}^{-1}A and Tε1uT_{\varepsilon}^{-1}u we have

|Tε1A|V(Tε1A[n2],[0,Tε1u],B2n)nn1V(Tε1A[n1],B2n)V(Tε1A[n1],[0,Tε1u]).|T_{\varepsilon}^{-1}A|V(T_{\varepsilon}^{-1}A[n-2],[0,T_{\varepsilon}^{-1}u],B_{2}^{n})\leq\frac{n}{n-1}V(T_{\varepsilon}^{-1}A[n-1],B_{2}^{n})V(T_{\varepsilon}^{-1}A[n-1],[0,T_{\varepsilon}^{-1}u]).

Thus

|A|V(A[n2],[0,u],TεB2n)nn1V(A[n1],TεB2n)V(A[n1],[0,u]).|A|V(A[n-2],[0,u],T_{\varepsilon}B_{2}^{n})\leq\frac{n}{n-1}V(A[n-1],T_{\varepsilon}B_{2}^{n})V(A[n-1],[0,u]).

When ε0\varepsilon\to 0, we get

|A|V(A[n2],[0,u],[0,v])nn1V(A[n1],[0,v])V(A[n1],[0,u]).\displaystyle|A|V(A[n-2],[0,u],[0,v])\leq\frac{n}{n-1}V(A[n-1],[0,v])V(A[n-1],[0,u]). (27)

From (14) we get |PuA|n1=nV(A[n1],[0,u])|P_{u^{\bot}}A|_{n-1}=nV(A[n-1],[0,u]) and

|P[u,v]A|n21u,v2=n(n1)V(A[n2],[0,u],[0,v]).|P_{[u,v]^{\bot}}A|_{n-2}\sqrt{1-\langle u,v\rangle^{2}}=n(n-1)V(A[n-2],[0,u],[0,v]).

3.4.3.\iff 4.: We may assume that uu is not colinear with vv. Applying a linear transformation to A,uA,u and vv, we may assume that u,vu,v are orthonormal. Expanding both sides of the inequality in 4. and using (9), we get 3.
3.5.3.\implies 5.: As noticed above, 3.3. is equivalent to (27). From the linearity of mixed volumes, we deduce that for every zonotopes Z1Z_{1} and Z2Z_{2}, one has

|A|V(A[n2],Z1,Z2)nn1V(A[n1],Z1)V(A[n1],Z2).\displaystyle|A|V(A[n-2],Z_{1},Z_{2})\leq\frac{n}{n-1}V(A[n-1],Z_{1})V(A[n-1],Z_{2}). (28)

Taking limits, we conclude that (28) is valid for every zonoids Z1,Z2Z_{1},Z_{2}.
5.2.5.\implies 2.: Applying (28) to Z1=[0,u]Z_{1}=[0,u] and Z2=B2nZ_{2}=B_{2}^{n} and using that V(A[n2],[0,u],B2n)=1n(n1)|(PuA)|V(A[n-2],[0,u],B_{2}^{n})=\frac{1}{n(n-1)}|\partial(P_{u^{\bot}}A)|, V(A[n1],[0,u])=1n|PuA|n1V(A[n-1],[0,u])=\frac{1}{n}|P_{u^{\bot}}A|_{n-1} and V(A[n1],B2n)=1n|A|V(A[n-1],B_{2}^{n})=\frac{1}{n}|\partial A|, we conclude.
3.6.3.\iff 6.: We may assume that uu is not colinear with vv. Applying a linear transformation, to (3) and (6), it is enough to assume that u,vu,v are orthonormal. Then

P(t)=|A|+t(|PuA|n1+|PvA|n1)+|P[u,v]A|n2t2.P(t)=|A|+t(|P_{u^{\bot}}A|_{n-1}+|P_{v^{\bot}}A|_{n-1})+|P_{[u,v]^{\bot}}A|_{n-2}t^{2}.

The equation

|A|+t(|PuA|n1+|PvA|n1)+|P[u,v]A|n2t2=0|A|+t(|P_{u^{\bot}}A|_{n-1}+|P_{v^{\bot}}A|_{n-1})+|P_{[u,v]^{\bot}}A|_{n-2}t^{2}=0

has real roots is equivalent to

(|PuA|n1+|PvA|n12)2|A||P[u,v]A|n2,\displaystyle\left(\frac{|P_{u^{\bot}}A|_{n-1}+|P_{v^{\bot}}A|_{n-1}}{2}\right)^{2}\geq|A||P_{[u,v]^{\bot}}A|_{n-2}, (29)

which follows immediately from 3.. To show that 6.3.6.\implies 3. assume (29) is true for all AA in {\cal L} and u,vSn1u,v\in S^{n-1}. Consider the linear operator TT such that Tu=tuTu=tu and Tv=t1vTv=t^{-1}v for t>0t>0 and Tx=xTx=x for x[u,v]x\in[u,v]^{\perp}. Taking t=(|PuA|n1/|PvA|n1|)1/2t=(|P_{u^{\bot}}A|_{n-1}/|P_{v^{\bot}}A|_{n-1}|)^{1/2} we get

|PvTA|n1=|PuTA|n1.|P_{v^{\bot}}TA|_{n-1}=|P_{u^{\bot}}TA|_{n-1}.

Applying (29) to TATA, we get

|PuTA|n1|PvTA|n1|TA||P[u,v]TA|n2.|P_{u^{\bot}}TA|_{n-1}|P_{v^{\bot}}TA|_{n-1}\geq|TA||P_{[u,v]^{\bot}}TA|_{n-2}.

Since |TA|=|A||TA|=|A|, |P[u,v]TA|n2=|P[u,v]A|n2|P_{[u,v]^{\bot}}TA|_{n-2}=|P_{[u,v]^{\bot}}A|_{n-2} and

|PuTA|n1|PvTA|n1=|PuA|n1|PvA|n1|P_{u^{\bot}}TA|_{n-1}|P_{v^{\bot}}TA|_{n-1}=|P_{u^{\bot}}A|_{n-1}|P_{v^{\bot}}A|_{n-1}

we get 3.     \Box

Remark 3.10.

It was proved in [45] that 5. in Theorem 3.9 is satisfied when AA is a simplex (actually, even without constant n/(n1)n/(n-1)), thus all of the properties in Theorem 3.9 are true for simplices. Actually, the inequalities of statements 2. and 3. hold with an extra factor n1n\frac{n-1}{n} on the right hand side.

Remark 3.11.

Notice that the inequality (24) shows that the property 5.5. of Theorem 3.9 holds true for the class \mathcal{L} of compact convex sets in 2{\mathbb{R}}^{2} and doesn’t hold in the class of compact convex sets in n{\mathbb{R}}^{n}, for n3n\geq 3.

4 Some Special Cases

4.1 An improved inequality in 2{\mathbb{R}}^{2}

Inspired by an analogous result [15, Theorem 3] in Information Theory, T. Courtade asked if

|B|1/n|C|1/n+|A|1/n|A+B+C|1/n|A+B|1/n|A+C|1/n|B|^{1/n}|C|^{1/n}+|A|^{1/n}|A+B+C|^{1/n}\leq|A+B|^{1/n}|A+C|^{1/n} (30)

for A=B2nA=B_{2}^{n} being the Euclidean ball, and any convex bodies B,CB,C in n{\mathbb{R}}^{n}. Here we confirm Courtade’s conjecture in 2{\mathbb{R}}^{2} in a more general setting.

Theorem 4.1.

Consider convex bodies A,B,C2A,B,C\subset{\mathbb{R}}^{2}, then

|A|1/2|A+B+C|1/2+|B|1/2|C|1/2|A+B|1/2|A+C|1/2.|A|^{1/2}|A+B+C|^{1/2}+|B|^{1/2}|C|^{1/2}\leq|A+B|^{1/2}|A+C|^{1/2}. (31)
Proof.

The main tool to prove the above inequality is the following classical inequality of Fenchel that we have already used. We will need now to use the most general form of this inequality (see [44, (7.69) pp. 401]):

(|A|V(B,C)V(A,B)V(A,C))2(V(A,B)2|A||B|)(V(A,C)2|A||C|).(|A|V(B,C)-V(A,B)V(A,C))^{2}\leq(V(A,B)^{2}-|A||B|)(V(A,C)^{2}-|A||C|).

Note that the above can be rewritten as

|C|V(A,B)2+|B|V(A,C)2+|A|V2(B,C)|A||B||C|2V(A,B)V(A,C)V(B,C)0|C|V(A,B)^{2}+|B|V(A,C)^{2}+|A|V^{2}(B,C)-|A||B||C|-2V(A,B)V(A,C)V(B,C)\leq 0 (32)

Squaring both sides of (31) we get

2(|A||A+B+C||B||C|)1/2+|A||A+B+C|+|B||C||A+B||A+C|2\big{(}|A||A+B+C||B||C|\big{)}^{1/2}+|A||A+B+C|+|B||C|\leq|A+B||A+C|

We use (9) to rewrite above as

(|A||B||C||A+B+C|)1/2+|A|V(B,C)2V(A,B)V(A,C)+V(A,B)|C|+|B|V(A,C).\left(|A||B||C||A+B+C|\right)^{1/2}+|A|V(B,C)\leq 2V(A,B)V(A,C)+V(A,B)|C|+|B|V(A,C).

Using (24) we may rewrite the above inequality as

|A||B||C||A+B+C|(2V(A,B)V(A,C)+V(A,B)|C|+|B|V(A,C)|A|V(B,C))2.|A||B||C||A+B+C|\leq\left(2V(A,B)V(A,C)+V(A,B)|C|+|B|V(A,C)-|A|V(B,C)\right)^{2}.

Consider rBrB, r0r\geq 0, instead of BB:

|A||B||C||A+rB+C|(2V(A,B)V(A,C)+V(A,B)|C|+r|B|V(A,C)|A|V(B,C))2.|A||B||C||A+rB+C|\leq\left(2V(A,B)V(A,C)+V(A,B)|C|+r|B|V(A,C)-|A|V(B,C)\right)^{2}.

The above represents a quadratic inequality αr2+βr+γ0,\alpha r^{2}+\beta r+\gamma\geq 0, with

α=|B|2V2(A,C)|A||B|2|C|,\alpha=|B|^{2}V^{2}(A,C)-|A||B|^{2}|C|,
β=2(2V(A,B)V(A,C)+V(A,B)|C||A|V(B,C))|B|V(A,C)2|A||B||C|V(B,A+C),\beta=2\big{(}2V(A,B)V(A,C)+V(A,B)|C|-|A|V(B,C)\big{)}|B|V(A,C)-2|A||B||C|V(B,A+C),
γ=(2V(A,B)V(A,C)+V(A,B)|C||A|V(B,C))2|A||B||C||A+C|.\gamma=\big{(}2V(A,B)V(A,C)+V(A,B)|C|-|A|V(B,C)\big{)}^{2}-|A||B||C||A+C|.

It follows from (11) that α0\alpha\geq 0. It turns out β\beta may be negative and thus we need to show that D=β24αγ0,D=\beta^{2}-4\alpha\gamma\leq 0, which after division by |B|2|B|^{2} becomes

[(2V(A,B)V(A,C)+V(A,B)|C||A|V(B,C))V(A,C)|A||C|V(B,A+C)]2\left[\Big{(}2V(A,B)V(A,C)+V(A,B)|C|-|A|V(B,C)\Big{)}V(A,C)-|A||C|V(B,A+C)\right]^{2}
(V2(A,C)|A||C|)[(2V(A,B)V(A,C)+V(A,B)|C||A|V(B,C))2|A||B||C||A+C|]0.-\big{(}V^{2}(A,C)-|A||C|\big{)}\Big{[}\Big{(}2V(A,B)V(A,C)+V(A,B)|C|-|A|V(B,C)\Big{)}^{2}-|A||B||C||A+C|\Big{]}\leq 0.

Simplifying the above inequality and dividing it by |A||C||A||C| we may rearrange the terms to get that our goal is to show that

(|C|V(A,B)22V(A,B)V(A,C)V(B,C)+|A|V2(B,C))(|A|+2V(A,C)+|C|)\Big{(}|C|V(A,B)^{2}-2V(A,B)V(A,C)V(B,C)+|A|V^{2}(B,C)\Big{)}\Big{(}|A|+2V(A,C)+|C|\Big{)}
+(V2(A,C)|A||C|)|B|(|A+C|)0.+\big{(}V^{2}(A,C)-|A||C|\big{)}|B|(|A+C|)\leq 0.

Factoring out |A+C||A+C| we get that our goal is to show that

(|C|V(A,B)22V(A,B)V(A,C)V(B,C)+|A|V2(B,C)+|B|V2(A,C)|A||C||B|)|A+C|0.\Big{(}|C|V(A,B)^{2}-2V(A,B)V(A,C)V(B,C)+|A|V^{2}(B,C)+|B|V^{2}(A,C)-|A||C||B|\Big{)}|A+C|\leq 0.

Finally, the above inequality follows from (32).

\Box

From the failure of log-submodularity on the space of convex bodies for n3n\geq 3 (observed independently by Nayar and Tkocz [39] and a subset of the authors [24]), we know that inequality (30) cannot possibly hold for n3n\geq 3 if AA is an arbitrary convex body. Of course, Courtade’s conjecture could still be true since it only considers the case A=B2nA=B_{2}^{n}. We note that a weaker version of the conjecture, namely,

|B2n||B2n+B+C||B2n+B||B2n+C||B_{2}^{n}||B_{2}^{n}+B+C|\leq|B_{2}^{n}+B||B_{2}^{n}+C|

was proved in [24, Theorem 4.12] in the special case when BB is a zonoid and CC is an arbitrary convex body.

4.2 Parallelotopes in general dimension

It is clear that 3. from Theorem 3.9 holds for ellipsoids. Indeed, after applying a linear transformation, it reduces to the following inequality: |B2n||B2n2||B2n1|2|B_{2}^{n}||B_{2}^{n-2}|\leq|B_{2}^{n-1}|^{2}, which follows from the log-convexity of the Gamma function. In the next theorem, we prove that 3. from Theorem 3.9 holds for the class of parallelotopes.

Theorem 4.2.

Let AA be a parallelotope in n{\mathbb{R}}^{n} and u,vSn1u,v\in S^{n-1}, then

|A||P[u,v]A|n21u,v2|PuA|n1|PvA|n1,|A|\,|P_{[u,v]^{\bot}}A|_{n-2}\sqrt{1-\langle u,v\rangle^{2}}\leq|P_{u^{\bot}}A|_{n-1}\,|P_{v^{\bot}}A|_{n-1},

with equality if and only, when A=i=1n[ai,ai+wi],A=\sum_{i=1}^{n}[a_{i},a_{i}+w_{i}], for some ai,wia_{i},w_{i} in n{\mathbb{R}}^{n} we have that u=iIλiwiu=\sum_{i\in I}\lambda_{i}w_{i} and v=iIcλiwiv=\sum_{i\in I^{c}}\lambda_{i}w_{i} for some I{1,,n}I\in\{1,\dots,n\} and λ1,,λn\lambda_{1},\dots,\lambda_{n} in n{\mathbb{R}}^{n}.

Proof.

We use the representation of the volume of projections using mixed volumes (14) to restate the above statement as

|A|V(A[n2],[0,u],[0,v])nn1V(A[n1],[0,u])V(A[n1],[0,v]).|A|V(A[n-2],[0,u],[0,v])\leq\frac{n}{n-1}V(A[n-1],[0,u])V(A[n-1],[0,v]).

Applying a linear transformation, we may assume A=[0,1]n=i=1n[0,ei]A=[0,1]^{n}=\sum_{i=1}^{n}[0,e_{i}]. Thus

V(A[n1],[0,u])=1n|I|=n1|det(u,(ei)iI)|=1ni=1n|ui|,V\left(A[n-1],[0,u]\right)=\frac{1}{n}\sum_{|I|=n-1}|{\mathop{\rm det}}(u,(e_{i})_{i\in I})|=\frac{1}{n}\sum_{i=1}^{n}|u_{i}|,
V(A[n2],[0,u],[0,v])=1n(n1)|I|=n2|det(u,v,(ei)iI)|=1n(n1)i<j|uivjujvi|.V\left(A[n-2],[0,u],[0,v]\right)=\frac{1}{n(n-1)}\sum_{|I|=n-2}|{\mathop{\rm det}}(u,v,(e_{i})_{i\in I})|=\frac{1}{n(n-1)}\sum_{i<j}|u_{i}v_{j}-u_{j}v_{i}|.

Finally we need to show

i<j|uivjujvi||ui||vj|,\sum_{i<j}|u_{i}v_{j}-u_{j}v_{i}|\leq\sum|u_{i}|\sum|v_{j}|, (33)

which follows from the triangle inequality. The equality in (33) is only possible if and only if uivi=0u_{i}v_{i}=0 for every i{1,,n},i\in\{1,\dots,n\}, which implies the desired equality case.     \Box

We note that every zonotope AA can be seen as an orthogonal projection of a high dimensional cube. Unfortunately, Theorem 4.2 can not be generalized directly to the case of projection of higher co-dimensions (as it is done in 3. from Theorem 5.2 below), indeed such direct generalization requires Theorem 4.2 for all zonotopes in place of the cube. Thus we prove this property directly for the case of parallelotopes in the next theorem.

Theorem 4.3.

Let AA be a parallelotope in n{\mathbb{R}}^{n}, then

|A||PEFA||PEA||PFA|.|A||P_{E\cap F}A|\leq|P_{E}A||P_{F}A|. (34)

for any subspaces E,FE,F of n{\mathbb{R}}^{n} such that EFE^{\perp}\subset F.

Proof.

Notice that (34) is invariant under application of rotation SO(n)S\in O(n) to the parallelotope AA and subspaces EE and G.G. Thus, without loss of generality, we may assume A=T(i=1n[0,ei]),A=T\left(\sum_{i=1}^{n}[0,e_{i}]\right), for some TGL(n)T\in GL(n) and E={e1,,em}E=\{e_{1},\dots,e_{m}\}^{\perp} and F={em+1,em+j}F=\{e_{m+1},\dots e_{m+j}\}^{\perp}. Then

|PE(Ti=1n[0,ei])|nm=|i=1n[0,PE(Tei)]|nm=|i=1n[0,PETei]+k=1m[0,ek]|n,|P_{E}\left(T\sum_{i=1}^{n}[0,e_{i}]\right)|_{n-m}=|\sum_{i=1}^{n}[0,P_{E}(Te_{i})]|_{n-m}=|\sum_{i=1}^{n}[0,P_{E}Te_{i}]+\sum_{k=1}^{m}[0,e_{k}]|_{n},

where the last equality follows from i=1n[0,PE(Tei)]|nmE={e1,,em}\sum_{i=1}^{n}[0,P_{E}(Te_{i})]|_{n-m}\subset E=\{e_{1},\dots,e_{m}\}^{\perp}. Thus,

|PE(Ti=1n[0,ei])|nm=\displaystyle|P_{E}\left(T\sum_{i=1}^{n}[0,e_{i}]\right)|_{n-m}= |I|=nm|det(e1,,em,{PETei}iI|n\displaystyle\sum_{|I|=n-m}|{\mathop{\rm det}}(e_{1},\dots,e_{m},\{P_{E}Te_{i}\}_{i\in I}|_{n}
=\displaystyle= |I|=nm|det(e1,,em,{Tei}iI|n\displaystyle\sum_{|I|=n-m}|{\mathop{\rm det}}(e_{1},\dots,e_{m},\{Te_{i}\}_{i\in I}|_{n}
=\displaystyle= |det(T)||I|=nm|det(T1e1,,T1em,{ei}iI|n\displaystyle|{\mathop{\rm det}}(T)|\sum_{|I|=n-m}|{\mathop{\rm det}}(T^{-1}e_{1},\dots,T^{-1}e_{m},\{e_{i}\}_{i\in I}|_{n}
=\displaystyle= |det(T)||J|=m|det({wiJ}i=1m)|,\displaystyle|{\mathop{\rm det}}(T)|\sum_{|J|=m}|{\mathop{\rm det}}(\{w_{i}^{J}\}_{i=1}^{m})|, (35)

where we denote by wi=T1ei,w_{i}=T^{-1}e_{i}, i=1,,ni=1,\dots,n and by uJu^{J} we denote the orthogonal projection of vector uu onto the span{ei}iJspan\{e_{i}\}_{i\in J}. We apply (4.2) to get that

|PEFi=1n[0,Tei]|njm\displaystyle|P_{E\cap F}\sum_{i=1}^{n}[0,Te_{i}]|_{n-j-m} =\displaystyle= |det(T)||N|=m+j|det({wiN}i=1m+j)|\displaystyle|{\mathop{\rm det}}(T)|\sum_{|N|=m+j}|{\mathop{\rm det}}(\{w_{i}^{N}\}_{i=1}^{m+j})|
=\displaystyle= |det(T)||N|=m+j||I|=m,INε(N,I)det({wiI}im)det({wiNIc}i>m)|,\displaystyle|{\mathop{\rm det}}(T)|\!\!\!\sum_{|N|=m+j}\left|\sum_{|I|=m,I\subset N}\!\!\!\!\!\!\varepsilon(N,I){\mathop{\rm det}}(\{w_{i}^{I}\}_{i\leq m}){\mathop{\rm det}}(\{w_{i}^{N\cap I^{c}}\}_{i>m})\right|\!,

where in the last step we have used the Laplace formula. Finally,

|PEFi=1n[0,Tei]|njm\displaystyle|P_{E\cap F}\sum_{i=1}^{n}[0,Te_{i}]|_{n-j-m} \displaystyle\leq |det(T)|N=m+j|I|=m,IN|det({wiI}im)||det({wiNIc}i>m)|\displaystyle|{\mathop{\rm det}}(T)|\sum_{N=m+j}\sum_{|I|=m,I\subset N}|{\mathop{\rm det}}(\{w_{i}^{I}\}_{i\leq m})||{\mathop{\rm det}}(\{w_{i}^{N\cap I^{c}}\}_{i>m})|
=\displaystyle= |det(T)||I|=mN=m+j,IJ|det({wiI}im)||det({wiNIc}i>m)|\displaystyle|{\mathop{\rm det}}(T)|\sum_{|I|=m}\sum_{N=m+j,I\subset J}|{\mathop{\rm det}}(\{w_{i}^{I}\}_{i\leq m})||{\mathop{\rm det}}(\{w_{i}^{N\cap I^{c}}\}_{i>m})|
=\displaystyle= |det(T)||I|=mIJ,|J|=j,IJ=|det({wiI}im)||det({wiJ}i>m)|\displaystyle|{\mathop{\rm det}}(T)|\sum_{|I|=m}\sum_{I\cup J,|J|=j,I\cap J=\emptyset}|{\mathop{\rm det}}(\{w_{i}^{I}\}_{i\leq m})||{\mathop{\rm det}}(\{w_{i}^{J}\}_{i>m})|
=\displaystyle= |det(T)||I|=m|det({wiI}im)||J|=j,|det({wiJ}i>m)|\displaystyle|{\mathop{\rm det}}(T)|\sum_{|I|=m}|{\mathop{\rm det}}(\{w_{i}^{I}\}_{i\leq m})|\sum_{|J|=j,}|{\mathop{\rm det}}(\{w_{i}^{J}\}_{i>m})|
=\displaystyle= |det(T)|1|PE(Ti=1n[0,ei])||PF(Ti=1n[0,ei])|,\displaystyle|{\mathop{\rm det}}(T)|^{-1}|P_{E}\left(T\sum_{i=1}^{n}[0,e_{i}]\right)|\,|P_{F}\left(T\sum_{i=1}^{n}[0,e_{i}]\right)|,

where the last equality, again, follows from (4.2).     \Box

5 Inequalities for zonoids

5.1 Zonoids in 3{\mathbb{R}}^{3}

Zonoids form a natural class of bodies which is stable under addition and linear transformations. In this section, we confirm property (4) from Theorem 3.9 in the class of three dimensional zonoids. Thus, using Theorem 5.1, we get that all properties described in Theorems 3.6 and 3.9 are true for this class.

Theorem 5.1.

Let AA be a zonoid in 3{\mathbb{R}}^{3} and u,vS2u,v\in S^{2}. Then

|A|3|P[u,v]A|11u,v2|PuA|2|PvA|2.|A|_{3}|P_{[u,v]^{\bot}}A|_{1}\sqrt{1-\langle u,v\rangle^{2}}\leq|P_{u^{\bot}}A|_{2}|P_{v^{\bot}}A|_{2}. (36)
Proof.

Using (15), inequality (36) is equivalent to

|A|3|V(A,[0,u],[0,v])32V(A[2],[0,u])V(A[2],[0,v]).|A|_{3}|V(A,[0,u],[0,v])\leq\frac{3}{2}V(A[2],[0,u])V(A[2],[0,v]). (37)

We assume that u,vu,v are linearly independent (otherwise the inequality is trivial) and note that it is enough to prove (37) in the case of u=e1u=e_{1}, v=e2v=e_{2} and any zonoid AA. Indeed, the more general case then follows by applying the inequality to T1A,T^{-1}A, where TGL(3)T\in GL(3) is such that Te1=uTe_{1}=u and Te2=vTe_{2}=v. Thus our goal is to prove that, for any zonoid A3A\subset{\mathbb{R}}^{3},

|A|3|P[e1,e2]A|1|Pe1A|2|Pe2A|2.|A|_{3}|P_{[e_{1},e_{2}]^{\bot}}A|_{1}\leq|P_{e_{1}^{\bot}}A|_{2}|P_{e_{2}^{\bot}}A|_{2}. (38)

By approximation, it is enough to prove (38) when AA is a zonotope. Suppose that A=i=1M[0,ui],A=\sum_{i=1}^{M}[0,u_{i}], where ui=(xi,yi,zi)3u_{i}=(x_{i},y_{i},z_{i})\in{\mathbb{R}}^{3}. Using (19), we get that (38) is equivalent to

1i<j<kM|det(xixjxkyiyjykzizjzk)|i=1M|zi|1i<jM|det(yiyjzizj)|1i<jM|det(xixjzizj)|\displaystyle\sum_{1\leq i<j<k\leq M}\left|{\mathop{\rm det}}\!\!\begin{pmatrix}x_{i}&x_{j}&x_{k}\\ y_{i}&y_{j}&y_{k}\\ z_{i}&z_{j}&z_{k}\end{pmatrix}\right|\sum_{i=1}^{M}|z_{i}|\leq\!\!\!\sum_{1\leq i<j\leq M}\left|{\mathop{\rm det}}\!\!\begin{pmatrix}y_{i}&y_{j}\\ z_{i}&z_{j}\end{pmatrix}\right|\sum_{1\leq i<j\leq M}\left|{\mathop{\rm det}}\!\!\begin{pmatrix}x_{i}&x_{j}\\ z_{i}&z_{j}\end{pmatrix}\right| (39)

We consider y1,,yMy_{1},\dots,y_{M} and z1,,zMz_{1},\dots,z_{M} as fixed, we write x=(x1,,xM)Mx=(x_{1},\dots,x_{M})\in{\mathbb{R}}^{M} and we define f,g:Mf,g:{\mathbb{R}}^{M}\to{\mathbb{R}} by

f(x)=1i<jM|det(xixjzizj)|andg(x)=1i<j<kM|det(xixjxkyiyjykzizjzk)|.f(x)=\sum_{1\leq i<j\leq M}\left|{\mathop{\rm det}}\begin{pmatrix}x_{i}&x_{j}\\ z_{i}&z_{j}\end{pmatrix}\right|\quad\hbox{and}\quad g(x)=\sum_{1\leq i<j<k\leq M}\left|{\mathop{\rm det}}\begin{pmatrix}x_{i}&x_{j}&x_{k}\\ y_{i}&y_{j}&y_{k}\\ z_{i}&z_{j}&z_{k}\end{pmatrix}\right|.

We note that ff and gg are piecewise affine and convex with respect to xix_{i}, for any 1iM1\leq i\leq M. We use the following elementary observation. Let ψ:\psi:{\mathbb{R}}\to{\mathbb{R}} be a convex function. Fix some positive numbers {aj}j=1K\{a_{j}\}_{j=1}^{K}, dd\in{\mathbb{R}} and real numbers {cj}j=1K\{c_{j}\}_{j=1}^{K}. To prove that, for all tt\in{\mathbb{R}},

ψ(t)φ(t):=j=1Kai|t+ci|+d,\psi(t)\leq\varphi(t):=\sum_{j=1}^{K}a_{i}|t+c_{i}|+d,

it is enough to prove the inequality at all critical points t=cit=-c_{i} of φ\varphi and at the limit t±.t\to\pm\infty.

We shall apply the above argument inductively to ff and gg as functions of xix_{i}, for i{1,,M}i\in\{1,\dots,M\}, successively, with xjx_{j} fixed for jij\neq i.

We start with x1x_{1} and first check the limiting behavior at infinity (we also prove the limit at infinity argument as a part of a more general statement below). We note that, as x1x_{1}\to\infty, the left hand side of (39) behaves like

|x1|(1<j<kM|det(yjykzjzk)|)(j=1M|zj|)|x_{1}|\left(\sum_{1<j<k\leq M}\left|{\mathop{\rm det}}\begin{pmatrix}y_{j}&y_{k}\\ z_{j}&z_{k}\end{pmatrix}\right|\right)\left(\sum_{j=1}^{M}|z_{j}|\right)

and the right hand side of (39) behaves like

|x1|(1j<kM|det(yjykzjzk)|)(j=2M|zj|).|x_{1}|\left(\sum_{1\leq j<k\leq M}\left|{\mathop{\rm det}}\begin{pmatrix}y_{j}&y_{k}\\ z_{j}&z_{k}\end{pmatrix}\right|\right)\left(\sum_{j=2}^{M}|z_{j}|\right).

Thus, (39) becomes

(1<j<kM|det(yjykzjzk)|)(j=1M|zj|)(1j<kM|det(yjykzjzk)|)(j=2M|zj|)\left(\sum_{1<j<k\leq M}\left|{\mathop{\rm det}}\begin{pmatrix}y_{j}&y_{k}\\ z_{j}&z_{k}\end{pmatrix}\right|\right)\left(\sum_{j=1}^{M}|z_{j}|\right)\leq\left(\sum_{1\leq j<k\leq M}\left|{\mathop{\rm det}}\begin{pmatrix}y_{j}&y_{k}\\ z_{j}&z_{k}\end{pmatrix}\right|\right)\left(\sum_{j=2}^{M}|z_{j}|\right)

or

(1<j<kM|det(yjykzjzk)|)|z1|(1<kM|det(y1ykz1zk)|)(j=2M|zj|).\left(\sum_{1<j<k\leq M}\left|{\mathop{\rm det}}\begin{pmatrix}y_{j}&y_{k}\\ z_{j}&z_{k}\end{pmatrix}\right|\right)|z_{1}|\leq\left(\sum_{1<k\leq M}\left|{\mathop{\rm det}}\begin{pmatrix}y_{1}&y_{k}\\ z_{1}&z_{k}\end{pmatrix}\right|\right)\left(\sum_{j=2}^{M}|z_{j}|\right).

The above equation is exactly the 2{\mathbb{R}}^{2} analog of (36), with A=i=2M[0,(yi,zi)]A=\sum_{i=2}^{M}[0,(y_{i},z_{i})]; u=[1,0]u=[1,0] and v=(y1,z1)/|(y1,z1)|v=(y_{1},z_{1})/|(y_{1},z_{1})|, thus it holds.

Our next goal is to study the critical points of ff with respect to x1x_{1}, which satisfy

det(x1xjz1zj)=0, for zj0,   2jM.{\mathop{\rm det}}\begin{pmatrix}x_{1}&x_{j}\\ z_{1}&z_{j}\end{pmatrix}=0,\mbox{ for }z_{j}\not=0,\,\,\,2\leq j\leq M.

When x1x_{1} is a solution of the above equation, then (xj,zj)(x_{j},z_{j}) is parallel to (x1,z1)(x_{1},z_{1}). Assume (without loss of generality) that j=2j=2 and (x1,z1)=λ(x2,z2).(x_{1},z_{1})=\lambda(x_{2},z_{2}). We study (39), with respect to x2x_{2}, under the assumption that (x1,z1)=λ(x2,z2)(x_{1},z_{1})=\lambda(x_{2},z_{2}) and continue this algorithm inductively (we will show the general step below).

We must also consider the case when zj=0z_{j}=0, for all j2j\geq 2. In this case (39) becomes

(|z1|1<j<kM|det(xjxkyjyk)|)|z1|(|z1|j=2M|yj|)(|z1|j=2M|xj|)\left(|z_{1}|\sum_{1<j<k\leq M}\left|{\mathop{\rm det}}\begin{pmatrix}x_{j}&x_{k}\\ y_{j}&y_{k}\end{pmatrix}\right|\right)|z_{1}|\leq\left(|z_{1}|\sum_{j=2}^{M}|y_{j}|\right)\left(|z_{1}|\sum_{j=2}^{M}|x_{j}|\right)

or

(1<j<kM|det(xjxkyjyk)|)(j=2M|yj|)(j=2M|xj|),\left(\sum_{1<j<k\leq M}\left|{\mathop{\rm det}}\begin{pmatrix}x_{j}&x_{k}\\ y_{j}&y_{k}\end{pmatrix}\right|\right)\leq\left(\sum_{j=2}^{M}|y_{j}|\right)\left(\sum_{j=2}^{M}|x_{j}|\right),

which follows immediately from

|det(xjxkyjyk)||xjyk|+|xkyj|.\left|{\mathop{\rm det}}\begin{pmatrix}x_{j}&x_{k}\\ y_{j}&y_{k}\end{pmatrix}\right|\leq|x_{j}y_{k}|+|x_{k}y_{j}|. (40)

Continuing this process, we arrive to the case

(x1,z1)=λ1(xm,zm),,(xm1,zm1)=λm1(xm,zm),(x_{1},z_{1})=\lambda_{1}(x_{m},z_{m}),\dots,(x_{m-1},z_{m-1})=\lambda_{m-1}(x_{m},z_{m}), (41)

for some 2mM2\leq m\leq M. We also denote λm=1\lambda_{m}=1 and we study ff and gg as functions of xmx_{m}.

Again, our first step is to confirm (39), when xm±.x_{m}\to\pm\infty. To do so, let us see how the functions ff and gg changed under (41). Let us first consider the terms appearing in gg:

|det(xixjxkyiyjykzizjzk)|,\left|{\mathop{\rm det}}\begin{pmatrix}x_{i}&x_{j}&x_{k}\\ y_{i}&y_{j}&y_{k}\\ z_{i}&z_{j}&z_{k}\end{pmatrix}\right|,

when i<j<ki<j<k. For m<im<i, the above determinant doesn’t depend on xmx_{m}, so we only consider the case when mim\geq i.

  • If mkm\geq k, then the determinant is zero.

  • if im<ji\leq m<j then, when |xm||x_{m}|\to\infty

    |det(xixjxkyiyjykzizjzk)||xi||det(yjykzjzk)|=|λi||xm||det(yjykzjzk)|\left|{\mathop{\rm det}}\begin{pmatrix}x_{i}&x_{j}&x_{k}\\ y_{i}&y_{j}&y_{k}\\ z_{i}&z_{j}&z_{k}\end{pmatrix}\right|\sim|x_{i}|\left|{\mathop{\rm det}}\begin{pmatrix}y_{j}&y_{k}\\ z_{j}&z_{k}\end{pmatrix}\right|=|\lambda_{i}||x_{m}|\left|{\mathop{\rm det}}\begin{pmatrix}y_{j}&y_{k}\\ z_{j}&z_{k}\end{pmatrix}\right|
  • jm<kj\leq m<k then, when |xm|,|x_{m}|\to\infty, observing that λi=zi/zm\lambda_{i}=z_{i}/z_{m} and λj=zj/zm\lambda_{j}=z_{j}/z_{m} we get

    |det(xixjxkyiyjykzizjzk)||λixmdet(yjykzjzk)λjxmdet(yiykzizk)|=|xm||zk||zm||det(yiyjzizj)|.\left|{\mathop{\rm det}}\!\!\begin{pmatrix}x_{i}&x_{j}&x_{k}\\ y_{i}&y_{j}&y_{k}\\ z_{i}&z_{j}&z_{k}\end{pmatrix}\!\!\right|\!\sim\!\left|\lambda_{i}x_{m}{\mathop{\rm det}}\!\!\begin{pmatrix}y_{j}&y_{k}\\ z_{j}&z_{k}\end{pmatrix}-\lambda_{j}x_{m}{\mathop{\rm det}}\!\!\begin{pmatrix}y_{i}&y_{k}\\ z_{i}&z_{k}\end{pmatrix}\right|=|x_{m}|\frac{|z_{k}|}{|z_{m}|}\left|{\mathop{\rm det}}\!\!\begin{pmatrix}y_{i}&y_{j}\\ z_{i}&z_{j}\end{pmatrix}\right|.

We also need to compute the behaviour of the terms appearing in ff:

|det(xixjzizj)|,\left|{\mathop{\rm det}}\begin{pmatrix}x_{i}&x_{j}\\ z_{i}&z_{j}\end{pmatrix}\right|,

for i<ji<j. When mjm\geq j, it is zero and when m<im<i, it does not dependent on xmx_{m}. So we assume that im<ji\leq m<j. We get

|det(xixjzizj)||λi||xm||zj|.\left|{\mathop{\rm det}}\begin{pmatrix}x_{i}&x_{j}\\ z_{i}&z_{j}\end{pmatrix}\right|\sim|\lambda_{i}|\,|x_{m}|\,|z_{j}|.

Thus to show that the (39) is true, as |xm||x_{m}|\to\infty, we need to prove that

[(im|λi|)m<j<k<M|det(yjykzjzk)|+1|zm|(m<k|zk|)(1i<jm|det(yiyjzizj)|)](i=1M|zi|)\left[(\sum_{i\leq m}|\lambda_{i}|)\sum_{m<j<k<M}\left|{\mathop{\rm det}}\begin{pmatrix}y_{j}&y_{k}\\ z_{j}&z_{k}\end{pmatrix}\right|+\frac{1}{|z_{m}|}\left(\sum_{m<k}|z_{k}|\right)\!\!\!\left(\sum_{1\leq i<j\leq m}\left|{\mathop{\rm det}}\begin{pmatrix}y_{i}&y_{j}\\ z_{i}&z_{j}\end{pmatrix}\right|\right)\right]\!\!\!\left(\sum_{i=1}^{M}|z_{i}|\right)
(1i<jM|det(yiyjzizj)|)(im|λi|)j>k|zk|.\leq\left(\sum_{1\leq i<j\leq M}\left|{\mathop{\rm det}}\begin{pmatrix}y_{i}&y_{j}\\ z_{i}&z_{j}\end{pmatrix}\right|\right)\left(\sum_{i\leq m}|\lambda_{i}|\right)\sum_{j>k}|z_{k}|.

Multiplying both sides by |zm||z_{m}|, we are reduced to

[(im|zi|)m<j<k<M|det(yjykzjzk)|+(m<k|zk|)(1i<jm|det(yiyjzizj)|)](i=1M|zi|)\left[(\sum_{i\leq m}|z_{i}|)\sum_{m<j<k<M}\left|{\mathop{\rm det}}\begin{pmatrix}y_{j}&y_{k}\\ z_{j}&z_{k}\end{pmatrix}\right|+\left(\sum_{m<k}|z_{k}|\right)\left(\sum_{1\leq i<j\leq m}\left|{\mathop{\rm det}}\begin{pmatrix}y_{i}&y_{j}\\ z_{i}&z_{j}\end{pmatrix}\right|\right)\right]\left(\sum_{i=1}^{M}|z_{i}|\right)
(1i<jM|det(yiyjzizj)|)(im|zi|)j>k|zk|\leq\left(\sum_{1\leq i<j\leq M}\left|{\mathop{\rm det}}\begin{pmatrix}y_{i}&y_{j}\\ z_{i}&z_{j}\end{pmatrix}\right|\right)\left(\sum_{i\leq m}|z_{i}|\right)\sum_{j>k}|z_{k}|

Let A=i=mM[0,(yi,zi)]A^{\prime}=\sum_{i=m}^{M}[0,(y_{i},z_{i})] and B=i=1m[0,(yi,zi)]B^{\prime}=\sum_{i=1}^{m}[0,(y_{i},z_{i})], then the above becomes:

[|Pe1B||A|+|Pe1A||B|]|Pe1(A+B)||A+B||Pe1B||Pe1A|.\left[|P_{e_{1}^{\perp}}B^{\prime}||A^{\prime}|+|P_{e_{1}^{\perp}}A^{\prime}||B^{\prime}|\right]|P_{e_{1}^{\perp}}(A^{\prime}+B^{\prime})|\leq|A^{\prime}+B^{\prime}||P_{e_{1}^{\perp}}B^{\prime}||P_{e_{1}^{\perp}}A^{\prime}|.

This is Bonnesen’s inequality (6) in 2{\mathbb{R}}^{2}

|A|2|Pe1A|1+|B|2|Pe1B|1|A+B|2|Pe1(A+B)|1.\frac{|A^{\prime}|_{2}}{|P_{e_{1}^{\bot}}A|_{1}}+\frac{|B^{\prime}|_{2}}{|P_{e_{1}^{\bot}}B^{\prime}|_{1}}\leq\frac{|A^{\prime}+B^{\prime}|_{2}}{|P_{e_{1}^{\bot}}(A^{\prime}+B^{\prime})|_{1}}.

Our next step (if m<Mm<M) is to consider the critical points of ff, as a function of xmx_{m}; they are given by the equations

det(xmxjzmzj)=0,{\mathop{\rm det}}\begin{pmatrix}x_{m}&x_{j}\\ z_{m}&z_{j}\end{pmatrix}=0,

for zj0,z_{j}\not=0, jm+1j\geq m+1, if such zjz_{j} exists and repeat the process for all m<Mm<M. If zj=0,z_{j}=0, for all jm+1j\geq m+1, let us confirm the inequality directly (as for the case m=1m=1). To calculate

|det(xixjxkyiyjykzizjzk)|\left|{\mathop{\rm det}}\begin{pmatrix}x_{i}&x_{j}&x_{k}\\ y_{i}&y_{j}&y_{k}\\ z_{i}&z_{j}&z_{k}\end{pmatrix}\right|

we may consider cases: if i,j,kmi,j,k\leq m, then the rank of the above matrix is at most to 22 and the determinant is zero; if i,j,kmi,j,k\leq m, the matrix has a row of zeros and the determinant is again zero. In the case when im<j<ki\leq m<j<k, we get

|det(xixjxkyiyjykzizjzk)|=|zi||det(xjxkyjyk)|.\left|{\mathop{\rm det}}\begin{pmatrix}x_{i}&x_{j}&x_{k}\\ y_{i}&y_{j}&y_{k}\\ z_{i}&z_{j}&z_{k}\end{pmatrix}\right|=|z_{i}|\left|{\mathop{\rm det}}\begin{pmatrix}x_{j}&x_{k}\\ y_{j}&y_{k}\end{pmatrix}\right|.

When i<jm<ki<j\leq m<k, we use that (xi,xj)(x_{i},x_{j}) is parallel to (zi,zj)(z_{i},z_{j}) to get that

|det(xixjxkyiyjykzizjzk)|=|xk||det(yiyjzizj)|.\left|{\mathop{\rm det}}\begin{pmatrix}x_{i}&x_{j}&x_{k}\\ y_{i}&y_{j}&y_{k}\\ z_{i}&z_{j}&z_{k}\end{pmatrix}\right|=|x_{k}|\left|{\mathop{\rm det}}\begin{pmatrix}y_{i}&y_{j}\\ z_{i}&z_{j}\end{pmatrix}\right|.

We make a similar analysis on the right hand side of (39) which becomes

(i=1m|zi|)[(i=1m|zi|)m<j<k|det(xjxkyjyk)|+k>m|xk|i<jm|det(yiyjzizj)|]\displaystyle\left(\sum_{i=1}^{m}|z_{i}|\right)\left[\left(\sum_{i=1}^{m}|z_{i}|\right)\sum_{m<j<k}\left|{\mathop{\rm det}}\begin{pmatrix}x_{j}&x_{k}\\ y_{j}&y_{k}\end{pmatrix}\right|+\sum\limits_{k>m}|x_{k}|\sum_{i<j\leq m}\left|{\mathop{\rm det}}\begin{pmatrix}y_{i}&y_{j}\\ z_{i}&z_{j}\end{pmatrix}\right|\right]
[(i=1m|zi|)(j>m|yj|)+i<jm|det(yiyjzizj)|][(i=1m|zi|)(j>m|xj|)]\displaystyle\leq\left[\left(\sum_{i=1}^{m}|z_{i}|\right)\left(\sum_{j>m}|y_{j}|\right)+\sum_{i<j\leq m}\left|{\mathop{\rm det}}\begin{pmatrix}y_{i}&y_{j}\\ z_{i}&z_{j}\end{pmatrix}\right|\right]\left[\left(\sum_{i=1}^{m}|z_{i}|\right)\left(\sum_{j>m}|x_{j}|\right)\right]

The above inequality follows directly by simplification and application of (40).

We repeat the above process until we have m=Mm=M, thus (xi,zi)=λi(xM,zM)(x_{i},z_{i})=\lambda_{i}(x_{M},z_{M}) for each i=1,,M1i=1,\dots,M-1. Thus, the left hand side of the inequality (39) is equal to zero. Indeed, each of the following matrices

(xixjxkyiyjykzizjzk)\begin{pmatrix}x_{i}&x_{j}&x_{k}\\ y_{i}&y_{j}&y_{k}\\ z_{i}&z_{j}&z_{k}\end{pmatrix}

has rank less or equal then 22.     \Box

5.2 More equivalent formulations for zonoids

In this section, we show some additional equivalences (which thus hold in dimension 33).

Theorem 5.2.

Let nn\in{\mathbb{N}}, then the following are equivalent.

  1. 1.

    For every knk\geq n and for every family of vectors u1,,uku_{1},\dots,u_{k} in n{\mathbb{R}}^{n} the function f:2[k]f:2^{[k]}\to{\mathbb{R}} defined, for S[k]S\subset[k], by

    f(S)=log|iS[0,ui]|=logIS,|I|=n|det({ui}iI)|f(S)=\log\left|\sum_{i\in S}[0,u_{i}]\right|=\log\sum_{I\subset S,|I|=n}|{\mathop{\rm det}}(\{u_{i}\}_{i\in I})|

    is submodular: for all zonoids A,B,CA,B,C one has

    |A||A+B+C||A+B||A+C|.|A||A+B+C|\leq|A+B||A+C|.
  2. 2.

    For every knk\geq n and for every family of vectors u1,uku_{1}\dots,u_{k} in n{\mathbb{R}}^{n}, for every u,vnu,v\in{\mathbb{R}}^{n}

    |I|=n|det({ui}iI)|\displaystyle\sum_{|I|=n}|{\mathop{\rm det}}(\{u_{i}\}_{i\in I})| |I|=n2|det(u,v,(ui)iI)|\displaystyle\sum_{|I|=n-2}|{\mathop{\rm det}}(u,v,(u_{i})_{i\in I})|
    |I|=n1|det(u,(ui)iI)||I|=n1|det(v,(ui)iI)|.\displaystyle\leq\sum_{|I|=n-1}|{\mathop{\rm det}}(u,(u_{i})_{i\in I})|\sum_{|I|=n-1}|{\mathop{\rm det}}(v,(u_{i})_{i\in I})|.
  3. 3.

    For every zonoid AA in n{\mathbb{R}}^{n} and every subspaces E,FE,F of n{\mathbb{R}}^{n} such that EFE^{\perp}\subseteq F we have

    |A||PEFA||PEA||PFA|.|A||P_{E\cap F}A|\leq|P_{E}A||P_{F}A|.
  4. 4.

    For every m=1,,nm=1,\dots,n, for every zonoid AA and every orthonormal sequence u1,,umu_{1},\dots,u_{m}, one has

    |A|m1|P[u1,,um]A|nmi=1m|PuiA|n1.|A|^{m-1}\left|P_{[u_{1},\dots,u_{m}]^{\bot}}A\right|_{n-m}\leq\prod_{i=1}^{m}\left|P_{u_{i}^{\bot}}A\right|_{n-1}.
  5. 5.

    For every m=1,,nm=1,\dots,n and all zonoids A,B1,,BmA,B_{1},\dots,B_{m} in n{\mathbb{R}}^{n}, one has

    |A|m1V(A[nm],B1,,Bm)nm(nm)!n!i=1mV(A[n1],Bi).|A|^{m-1}V(A[n-m],B_{1},\dots,B_{m})\leq\frac{n^{m}(n-m)!}{n!}\prod_{i=1}^{m}V(A[n-1],B_{i}).
Proof.

The proof is based on translations of the properties described in Theorems 3.6 and 3.9 to the properties of zonoids.

We first show that 1. in Theorem 5.2 is equivalent to 1. in Theorem 3.6 in the class of zonotopes. Indeed, ff is submodular if and only if for every S,T{1,,k}S,T\subset\{1,\dots,k\}

|iST[0,ui]||iST[0,ui]||iS[0,ui]||iT[0,ui]|,\left|\sum_{i\in S\cup T}[0,u_{i}]\right|\left|\sum_{i\in S\cap T}[0,u_{i}]\right|\leq\left|\sum_{i\in S}[0,u_{i}]\right|\left|\sum_{i\in T}[0,u_{i}]\right|,

which is 1. in Theorem 5.2 for zonotopes A=iST[0,ui]A=\sum_{i\in S\cap T}[0,u_{i}], B1=iST[0,ui]B_{1}=\sum_{i\in S\setminus T}[0,u_{i}] and B2=iTS[0,ui]B_{2}=\sum_{i\in T\setminus S}[0,u_{i}]. We use (19) to finish the proof.

We next note that 2. in Theorem 5.2 is equivalent to 3. of Theorem 3.9 in the case of zonotopes. Assume by homogeneity that u,vSn1u,v\in S^{n-1}. Then we apply (19) to get:

|i=1m[0,ui]|=I[m],|I|=n|det(ui)iI| and |Pv(i=1m[0,ui])|=I[m],|I|=n1|det(v,(ui)iI)|\left|\sum_{i=1}^{m}[0,u_{i}]\right|=\sum_{I\subset[m],|I|=n}|{\mathop{\rm det}}(u_{i})_{i\in I}|\mbox{ and }\left|P_{v^{\perp}}\left(\sum_{i=1}^{m}[0,u_{i}]\right)\right|=\sum_{I\subset[m],|I|=n-1}|{\mathop{\rm det}}(v,(u_{i})_{i\in I})|

and the similar formula for the volume of P[u,v](i=1m[0,ui])P_{[u,v]^{\perp}}\left(\sum_{i=1}^{m}[0,u_{i}]\right).

Next, we show that 3. is equivalent to 3. from Theorem 3.9, which can be restated as

|A||P[ei,ej]A|n2|PeiA|n1|PejA|n1,\displaystyle|A||P_{[e_{i},e_{j}]^{\bot}}A|_{n-2}\leq|P_{e_{i}^{\bot}}A|_{n-1}|P_{e_{j}^{\bot}}A|_{n-1}, (42)

for any zonoid AA and iji\not=j, where (e1,,en)(e_{1},\dots,e_{n}) is any orthonormal basis. Moreover 3. from Theorem 5.2 is equivalent to

|A||P[e1,ek]A|nk|P[e1,,ei]A|ni|P[ei+1,,ek]A|n(ki).\displaystyle|A||P_{[e_{1},\dots e_{k}]^{\perp}}A|_{n-k}\leq|P_{[e_{1},\dots,e_{i}]^{\perp}}A|_{n-i}|P_{[e_{i+1},\dots,e_{k}]^{\perp}}A|_{n-(k-i)}. (43)

for any i<kni<k\leq n and any zonoid AA in n{\mathbb{R}}^{n}. Thus (42) is a particular case of (43). To prove the reverse, we first notice that if (42)(\ref{eq:z2}) holds for any zonoid AA in n{\mathbb{R}}^{n}, then it also must hold for zonoids in any dimension mnm\leq n. Indeed, for any zonoid AA in m{\mathbb{R}}^{m}, the cylinder A×[0,1]nmA\times[0,1]^{n-m} is a zonoid. Next, we may prove property (43) by induction. Indeed, using (42), it is true for k=2k=2 and i=1i=1, any nn\in\mathbb{N} and any zonoid AA in n{\mathbb{R}}^{n}. Assume the statement is true for some kk\in\mathbb{N} any i<kni<k\leq n. Let us apply the statement to the zonoid Pek+1AP_{e_{k+1}^{\perp}}A to get

|Pek+1A|n1|P[e1,,ek,ek+1]\displaystyle|P_{e_{k+1}^{\perp}}A|_{n-1}|P_{[e_{1},\dots,e_{k},e_{k+1}]^{\perp}} A|n(k+1)\displaystyle A|_{n-(k+1)} (44)
|P[e1,,ei,ek+1]A|n(i+1)|P[ei+1,,ek,ek+1]A|n(k+1i).\displaystyle\leq|P_{[e_{1},\dots,e_{i},e_{k+1}]^{\perp}}A|_{n-(i+1)}|P_{[e_{i+1},\dots,e_{k},e_{k+1}]^{\perp}}A|_{n-(k+1-i)}.

In addition, we apply the inductive hypothesis to AA and the subspace spanned by {e1,,ei,ek+1}\{e_{1},\dots,e_{i},e_{k+1}\} and the subspace spanned by ek+1e_{k+1} to get

|A||P[e1,,ei,ek+1]A|n(i+1)|P[e1,,ei]A|ni|Pek+1A|n1.\displaystyle|A||P_{[e_{1},\dots,e_{i},e_{k+1}]^{\perp}}A|_{n-(i+1)}\leq|P_{[e_{1},\dots,e_{i}]^{\perp}}A|_{n-i}|P_{e_{k+1}^{\perp}}A|_{n-1}. (45)

Finally, we multiply (44) and (45) to finish the proof.

To prove that 3. implies 4., we apply (43) to k=mk=m and i=1i=1, we get that

|P[u1,,um]A||P[u2,,um]A||Pu1A||A|.\frac{|P_{[u_{1},\dots,u_{m}]^{\perp}}A|}{|P_{[u_{2},\dots,u_{m}]^{\perp}}A|}\leq\frac{|P_{u_{1}^{\perp}}A|}{|A|}.

In the same way, for every 1im1\leq i\leq m, one has

|P[ui,,um]A||P[ui+1,,um]A||PuiA||A|.\frac{|P_{[u_{i},\dots,u_{m}]^{\perp}}A|}{|P_{[u_{i+1},\dots,u_{m}]^{\perp}}A|}\leq\frac{|P_{u_{i}^{\perp}}A|}{|A|}.

Taking the product of these inequalities, we get the result.

To prove that 4. implies 5., we use (15). Thus (4) gives that for every orthonormal family of vectors u1,,umu_{1},\dots,u_{m}, one has

|A|m1V(A[nm],[0,u1],,[0,um])nm(nm)!n!i=1mV(A[n1],[0,ui]).|A|^{m-1}V(A[n-m],[0,u_{1}],\dots,[0,u_{m}])\leq\frac{n^{m}(n-m)!}{n!}\prod_{i=1}^{m}V(A[n-1],[0,u_{i}]).

Since this inequality is invariant with respect to any linear image of AA by an invertible map, it holds also for any independent u1,,umu_{1},\dots,u_{m}. Then, we deduce that 5. holds for any sums of segments. The inequality for zonoids follows by taking limits.

Finally, 5. with m=2m=2 is equivalent to 5. in Theorem 3.9.     \Box

Notice that 5. of Theorem 5.2 can be rephrased by saying that, for any zonoid AA in n{\mathbb{R}}^{n}, the function f:[n]f:[n]\to{\mathbb{R}} defined by f(S)=log(|P[ei;iS]A|)f(S)=\log(|P_{[e_{i};i\in S]}A|) is submodular.

The inequalities analogous to 3. in Theorems 3.9 and 5.2 belong to the class of local Loomis-Whitney type inequalities and were studied in many works, including [27, 22, 45, 2, 1], for the most general classes of convex bodies. In the next lemma, we present a new proof of a result from [27], the proof uses the approach of the proof of Theorem 3.9.

Lemma 5.3.

Consider a convex body KK in n{\mathbb{R}}^{n} and a pair of orthogonal vectors u,vSn1u,v\in S^{n-1}, then

|K||P[u,v]K|2(n1)n|PuK||PvK|.|K||P_{[u,v]^{\perp}}K|\leq\frac{2(n-1)}{n}|P_{u^{\perp}}K||P_{v^{\perp}}K|.
Proof.

Let L=[0,u]+α[0,v],L=[0,u]+\alpha[0,v], where α=|PuK|/|PvK|,\alpha=|P_{u^{\perp}}K|/|P_{v^{\perp}}K|, noticing that the case |PvK|=0|P_{v^{\perp}}K|=0 is trivial. Then

nV(K[n1],L)=|PuK|n1+α|PvK|n1 and n(n1)2V(K[n2],L[2])=α|P[u,v]K|.nV(K[n-1],L)=|P_{u^{\perp}}K|_{n-1}+\alpha|P_{v^{\perp}}K|_{n-1}\mbox{ and }\frac{n(n-1)}{2}V(K[n-2],L[2])=\alpha|P_{[u,v]^{\perp}}K|.

Using Minkowski’s second inequality (12), we get

(|PuK|+α|PvK|n)22αn(n1)|K||P[u,v]K|\left(\frac{|P_{u^{\perp}}K|+\alpha|P_{v^{\perp}}K|}{n}\right)^{2}\geq\frac{2\alpha}{n(n-1)}|K||P_{[u,v]^{\perp}}K|

we substitute α=|PuK|/|PvK|\alpha=|P_{u^{\perp}}K|/|P_{v^{\perp}}K| to finish the proof.     \Box

The main tool in the proof of Lemma 5.3 is Minkowski’s second inequality, which relies on the fact that the polynomial Q(t)=|K+tL|Q(t)=|K+tL| raised to the power 1/n1/n is a concave function for t0t\geq 0. We conjecture that the concavity properties of this polynomial can be improved for ZZ being a zonoid and LL being a finite sum of mnm\leq n segments. More precisely, we conjecture that for any mnm\leq n and any sequence of vectors u1,,umu_{1},\dots,u_{m}, mnm\leq n from n{\mathbb{R}}^{n} if P(t)=|Z+ti=1m[0,ui]|,P(t)=|Z+t\sum_{i=1}^{m}[0,u_{i}]|, then P1/m(t)P^{1/m}(t) is a concave function for t0t\geq 0. This conjecture would follow if the statements of Theorem 5.2 or Theorem 3.9 would be true. Still we can prove the following proposition in 3{\mathbb{R}}^{3}.

Proposition 5.4.

Let ZZ be a zonoid in 3{\mathbb{R}}^{3} and u,vu,v be two vectors from 3{\mathbb{R}}^{3}. Let P(t)=|Z+t([0,u]+[0,v])|,P(t)=|Z+t([0,u]+[0,v])|, then P1/2(t)P^{1/2}(t) is a concave function for t0t\geq 0.

Proof.

We may assume that the vectors u,vu,v are linearly independent. Then, applying a linear transformation TT to ZZ and u,vu,v we may assume that vectors u,vu,v are orthogonal to each others and belong to S2.S^{2}. Using that Z+t([0,u]+[0,v])Z+t([0,u]+[0,v]) is again a zonoid, it is enough for us to show that (P1/2(0))′′0(P^{1/2}(0))^{\prime\prime}\leq 0, or 2P(0)P′′(0)P(0)22P(0)P^{\prime\prime}(0)\leq P^{\prime}(0)^{2}. Using that

P(0)=|Z|,P(0)=|PuZ|+|PvZ|andP′′(0)=2|P[u,v]Z|.P(0)=|Z|,\quad P^{\prime}(0)=|P_{u^{\perp}}Z|+|P_{v^{\perp}}Z|\quad\hbox{and}\quad P^{\prime\prime}(0)=2|P_{[u,v]^{\bot}}Z|.

and Theorem 5.1, we get

2P(0)P′′(0)=4|Z||P[u,v]Z|4|PuZ||PvZ|(|PuK|+|PvK|)2=P(0)2.2P(0)P^{\prime\prime}(0)=4|Z||P_{[u,v]^{\bot}}Z|\leq 4|P_{u^{\bot}}Z||P_{v^{\bot}}Z|\leq(|P_{u^{\perp}}K|+|P_{v^{\perp}}K|)^{2}=P^{\prime}(0)^{2}.

\Box

It follows from part 6. of Theorem 3.9 and Theorem 5.1 that if P(t)=|Z+t([0,u]+[0,v])|P(t)=|Z+t([0,u]+[0,v])|, then P(t)P(t), as a polynomial on {\mathbb{R}}, has only real roots, for any zonoid ZZ and any u,v3u,v\in{\mathbb{R}}^{3}. Thus another way to prove Proposition 5.4 is to notice the following simple property. Consider a quadratic polynomial PP with positive coefficients, then P(t)\sqrt{P(t)} is concave for t0t\geq 0 if and only if PP has only real roots. Thus, to study concavity of PC(t)=|Z+tC|1/2,\sqrt{P_{C}(t)}=|Z+tC|^{1/2}, when CC is two dimensional, one may study the roots of PP. The subject of roots of Steiner-type polynomials has attracted a fair bit of attention in the literature, see, e.g., [29] and references therein. Proposition 5.4 makes the following conjecture plausible:

Question 5.5.

Let ZZ be a zonoid in n{\mathbb{R}}^{n}. Then is it true that the polynomial PC(t)=|Z+tC|P_{C}(t)=|Z+tC| has only real roots for every convex body CC of dimension 22?

This question is directly connected to a question of Adam Marcus that we learned from Guillaume Aubrun about the roots of Steiner polynomials of zonoids, and, in fact, it was one of the starting point of this investigation.

Question 5.6.

Let ZZ be a zonoid in n{\mathbb{R}}^{n}. Then is it true that the Steiner polynomial PZ(t)=|Z+tB2n|P_{Z}(t)=|Z+tB_{2}^{n}| has only real roots?

Observe that, in the plane, even more is true: for any convex bodies K,LK,L, the polynomial PK,L(t)=|K+tL|P_{K,L}(t)=|K+tL| has only real roots. Indeed, PK,L(t)\sqrt{P_{K,L}(t)} is concave for t0t\geq 0 by Brunn-Minkowski inequality. This can be also seen from the computing the discriminant and noticing that V(K,L)2|K||L|0V(K,L)^{2}-|K||L|\geq 0.

Analogously, Question 5.5 is equivalent to the following question for mixed volumes: fix n3n\geq 3, and let KK a zonoid in n{\mathbb{R}}^{n} and LL be a two dimensional zonoid, is it true that

|K|V(K[n2],L[2])n2(n1)V(K[n1],L)2?|K|V(K[n-2],L[2])\leq\frac{n}{2(n-1)}V(K[n-1],L)^{2}?

The above inequality is true for LL being a parallelogram, as follows from Theorem 3.6. But, it is not true for general zonoids, as we show in the following proposition inspired by a work by Victor Katsnelson [30].

Proposition 5.7.

Let n3n\geq 3. Then there exists a zonoid ZZ in n{\mathbb{R}}^{n} such that the Steiner polynomial PZ(t)=|Z+tB2n|P_{Z}(t)=|Z+tB_{2}^{n}| and the polynomial QZ(t)=|tZ+B2n|Q_{Z}(t)=|tZ+B_{2}^{n}| has roots which are not real.

Proof.

Noticing that QZ(t)=tnPZ(1/t),Q_{Z}(t)=t^{n}P_{Z}(1/t), it is enough to show that PZ(t)P_{Z}(t) has a non-real root. Consider Z=B22×{0}2×n2Z=B_{2}^{2}\times\{0\}\subset{\mathbb{R}}^{2}\times{\mathbb{R}}^{n-2}. Integrating on sections parallel to 2×{0}{\mathbb{R}}^{2}\times\{0\} and changing variable, we get that, for t0t\geq 0,

PZ(t)=|Z+tB2n|=|B22|tB2n2(1+t2|x|2)2𝑑x=tn2|B22|B2n2(1+t1|x|2)2𝑑x.P_{Z}(t)=|Z+tB_{2}^{n}|=|B_{2}^{2}|\int_{tB_{2}^{n-2}}\left(1+\sqrt{t^{2}-|x|^{2}}\right)^{2}dx=t^{n-2}|B_{2}^{2}|\int_{B_{2}^{n-2}}\left(1+t\sqrt{1-|x|^{2}}\right)^{2}dx.

Since this last expression is the restriction of a polynomial to t0t\geq 0, the equality between PZ(t)P_{Z}(t) and the last term is valid on whole {\mathbb{R}}. Let tt\in{\mathbb{R}} be fixed. For almost all xB2n2x\in B_{2}^{n-2}, (1+t1|x|2)2>0(1+t\sqrt{1-|x|^{2}})^{2}>0, thus PZ(t)>0P_{Z}(t)>0, for t0t\neq 0, so the only real root of PZP_{Z} is 0 and it is of order n2n-2. Hence PZP_{Z} has exactly 22 non-real roots.     \Box

Proposition 5.7 shows that the answers to both Question 5.5 and Question 5.6 are negative.

Note that the example of the zonoid ZZ created in Proposition 5.7 is flat (i.e., has an affine hull of lower dimension than the ambient space), but one can replace it by a non-flat zonoid by using a small perturbation and the continuity of the roots of polynomials.

6 Inequalities for LpL_{p}-zonoids

Firey [20] extended the concept of Minkowski sum and introduced, for each real p1p\geq 1, a pp-linear combination of convex bodies, the so-called p\ell_{p}-sum KpLK\oplus_{p}L of the convex bodies KK and LL containing the origin by:

hKpL(x)=(hK(x)p+hL(x)p)1p,xn.h_{K\oplus_{p}L}(x)=\left(h_{K}(x)^{p}+h_{L}(x)^{p}\right)^{\frac{1}{p}},\quad\forall x\in{\mathbb{R}}^{n}.

For any linear transform TT on n{\mathbb{R}}^{n}, one has T(KpL)=(TK)p(TL)T(K\oplus_{p}L)=(TK)\oplus_{p}(TL). In a series of papers, Lutwak [31, 32] showed that the Firey sums lead to a Brunn-Minkowski theory for each p1p\geq 1, including LpL_{p}-Brunn-Minkowski inequality, definition and inequalities for LpL_{p}-mixed volumes, LpL_{p}-Minkowski problem, as well as many other applications. In this section, we show the connection of the discussion from previous sections to this theory.

An LpL_{p}-zonotope is the p\ell_{p}-sum of centered segments and an LpL_{p}-zonoid is the Hausdorff limit of LpL_{p}-zonotopes. For p=2p=2, an L2L_{2}-zonoid is always an ellipsoid, possibly living in a lower-dimensional subspace, thus it can be written as the sum of mnm\leq n orthogonal segments and is therefore an L2L_{2}-zonotope. The following extension of Conjecture 5 is thus natural.

Question 6.1.

Let p1p\geq 1 and consider LpL_{p}-zonoids A,BA,B in n{\mathbb{R}}^{n} is it true that

(|ApB||Pu(ApB)|n1)p(|A||PuA|n1)p+(|B||PuB|n1)p?\left(\frac{|A\oplus_{p}B|}{|P_{u^{\bot}}(A\oplus_{p}B)|_{n-1}}\right)^{p}\geq\left(\frac{|A|}{|P_{u^{\bot}}A|_{n-1}}\right)^{p}+\left(\frac{|B|}{|P_{u^{\bot}}B|_{n-1}}\right)^{p}? (46)

6.1 The case p=2p=2

The next theorem gives an affirmative answer to this question in the case p=2p=2.

Theorem 6.2.

Let A,BA,B be a pair of L2L_{2}-zonoids in n{\mathbb{R}}^{n} and let uu in Sn1S^{n-1}. Then

(|A2B||Pu(A2B)|n1)2(|A||PuA|n1)2+(|B||PuB|n1)2,\left(\frac{|A\oplus_{2}B|}{|P_{u^{\bot}}(A\oplus_{2}B)|_{n-1}}\right)^{2}\geq\left(\frac{|A|}{|P_{u^{\bot}}A|_{n-1}}\right)^{2}+\left(\frac{|B|}{|P_{u^{\bot}}B|_{n-1}}\right)^{2},

with equality if and only if AA and BB have parallel tangent hyperplanes at ρA(u)u\rho_{A}(u)u and ρB(u)u\rho_{B}(u)u.

We first give two proofs of the inequality and then prove the equality case.

Proof 1: For mnm\geq n and u1,,umnu_{1},\dots,u_{m}\in{\mathbb{R}}^{n}, let UU be the n×mn\times m matrix whose columns are u1,,umu_{1},\dots,u_{m}. One has [u1,u1]22[um,um]=UB2m=UUB2n[-u_{1},u_{1}]\oplus_{2}\cdots\oplus_{2}[-u_{m},u_{m}]=UB_{2}^{m}=\sqrt{UU^{*}}B_{2}^{n}. Indeed,

h[u1,u1]22[um,um]2(x)\displaystyle h^{2}_{[-u_{1},u_{1}]\oplus_{2}\cdots\oplus_{2}[-u_{m},u_{m}]}(x) =i=1mui,x2=i=1mUei,x2=i=1mei,Ux2=|Ux|2=hUB2m2(x)\displaystyle=\sum_{i=1}^{m}\langle u_{i},x\rangle^{2}=\sum_{i=1}^{m}\langle Ue_{i},x\rangle^{2}=\sum_{i=1}^{m}\langle e_{i},U^{*}x\rangle^{2}=|U^{*}x|^{2}=h^{2}_{UB_{2}^{m}}(x)
=Ux,Ux=UUx,UUx=|UUx|2=hUUB2n2(x).\displaystyle=\langle U^{*}x,U^{*}x\rangle=\langle\sqrt{UU^{*}}x,\sqrt{UU^{*}}x\rangle=|\sqrt{UU^{*}}x|^{2}=h^{2}_{\sqrt{UU^{*}}B_{2}^{n}}(x).

Using this and the Cauchy-Binet formula, one has

|[u1,u1]22[um,um]|2=|UB2m|n2=det(UU)|B2n|2=|B2n|2|I|=n(det(ui)iI)2.|[-u_{1},u_{1}]\oplus_{2}\cdots\oplus_{2}[-u_{m},u_{m}]|^{2}=|UB_{2}^{m}|^{2}_{n}={\mathop{\rm det}}(UU^{*})|B_{2}^{n}|^{2}=|B_{2}^{n}|^{2}\sum_{|I|=n}({\mathop{\rm det}}(u_{i})_{i\in I})^{2}. (47)

Next, using

Pu([u1,u1]22[um,um])=[Puu1,Puu1]22[Puum,Puum],P_{u^{\bot}}([-u_{1},u_{1}]\oplus_{2}\cdots\oplus_{2}[-u_{m},u_{m}])=[-P_{u^{\bot}}u_{1},P_{u^{\bot}}u_{1}]\oplus_{2}\cdots\oplus_{2}[-P_{u^{\bot}}u_{m},P_{u^{\bot}}u_{m}],

we get that

|Pu([u1,u1]22[um,um])|2=|B2n1|2|I|=n1(det(Puui)iI)2.|P_{u^{\bot}}([-u_{1},u_{1}]\oplus_{2}\cdots\oplus_{2}[-u_{m},u_{m}])|^{2}=|B_{2}^{n-1}|^{2}\sum_{|I|=n-1}({\mathop{\rm det}}(P_{u^{\bot}}u_{i})_{i\in I})^{2}.

Thus our goal is to prove that, for NNN\geq N^{\prime} and A=[u1,u1]22[uN,uN]A=[-u_{1},u_{1}]\oplus_{2}\cdots\oplus_{2}[-u_{N^{\prime}},u_{N^{\prime}}] and B=[uN+1,uN+1]22[uN,uN]B=[-u_{N^{\prime}+1},u_{N^{\prime}+1}]\oplus_{2}\cdots\oplus_{2}[-u_{N},u_{N}] we have

M{1,,N},|M|=n|det({um}mM|2M{1,,N},|M|=n1|det({Pe1um}mM)|2\displaystyle\frac{\sum\limits_{M\subset\{1,\dots,N^{\prime}\},|M|=n}|{\mathop{\rm det}}(\{u_{m}\}_{m\in M}|^{2}}{\sum\limits_{M\subset\{1,\dots,N^{\prime}\},|M|=n-1}|{\mathop{\rm det}}(\{P_{e_{1}^{\perp}}u_{m}\}_{m\in M})|^{2}} +L{N+1,,N},|L|=n|det({ul}lL|2L{N+1,,N},|L|=n1|det({Pe1ul}lL|2\displaystyle+\frac{\sum\limits_{L\subset\{N^{\prime}+1,\dots,N\},|L|=n}|{\mathop{\rm det}}(\{u_{l}\}_{l\in L}|^{2}}{\sum\limits_{L\subset\{N^{\prime}+1,\dots,N\},|L|=n-1}|{\mathop{\rm det}}(\{P_{e_{1}^{\perp}}u_{l}\}_{l\in L}|^{2}}
M{1,,N},|M|=n|det({um}mM|2M{1,,N},|M|=n1|det({Pe1(um)}mM|2.\displaystyle\leq\frac{\sum\limits_{M\subset\{1,\dots,N\},|M|=n}|{\mathop{\rm det}}(\{u_{m}\}_{m\in M}|^{2}}{\sum\limits_{M\subset\{1,\dots,N\},|M|=n-1}|{\mathop{\rm det}}(\{P_{e_{1}^{\perp}}(u_{m})\}_{m\in M}|^{2}}. (48)

For I{1,,m}I\subset\{1,\dots,m\} let UIU_{I} be the n×nn\times n submatrix built from UU by taking the columns with indices in II. Denote by z1,,znmz_{1},\dots,z_{n}\in{\mathbb{R}}^{m} the rows of the matrix UU. Since nmn\leq m, the set i=1n[0,zi]\sum_{i=1}^{n}[0,z_{i}] is a parallelotope leaving in a nn-dimensional subspace of m{\mathbb{R}}^{m}. Thus,

|i=1n[0,zi]|n2=|I|=n(detUI)2.\left|\sum_{i=1}^{n}[0,z_{i}]\right|_{n}^{2}=\sum_{|I|=n}({\mathop{\rm det}}\ U_{I})^{2}.

Therefore, we get that, for mnm\geq n, an n×mn\times m matrix UU whose rows are z1,,znmz_{1},\dots,z_{n}\in{\mathbb{R}}^{m} and columns u1,,umnu_{1},\dots,u_{m}\in{\mathbb{R}}^{n}:

|[u1,u1]22[um,um]|n=|B2n||i=1n[0,zi]|n.|[-u_{1},u_{1}]\oplus_{2}\cdots\oplus_{2}[-u_{m},u_{m}]|_{n}=|B_{2}^{n}|\left|\sum_{i=1}^{n}[0,z_{i}]\right|_{n}.

Let us write UU as a block matrix with two blocks U=(U1|0)+(0|U2)U=(U_{1}|0)+(0|U_{2}), with U1U_{1} being an n×kn\times k matrix and U2U_{2} an n×(mk)n\times(m-k) matrix and we denote V=(U1|0)V=(U_{1}|0) and W=(0|U2)W=(0|U_{2}). Moreover, denote by U,V,WU^{\prime},V^{\prime},W^{\prime} the matrices obtained from U,V,WU,V,W by erasing the nthn^{th} row. Then we only need to prove that

|I|=n(detUI)2|I|=n1(detUI)2|I|=n(detVI)2|I|=n1(detVI)2+|I|=n(detWI)2|I|=n1(detWI)2.\frac{\sum_{|I|=n}({\mathop{\rm det}}\ U_{I})^{2}}{\sum_{|I|=n-1}({\mathop{\rm det}}\ U^{\prime}_{I})^{2}}\geq\frac{\sum_{|I|=n}({\mathop{\rm det}}\ V_{I})^{2}}{\sum_{|I|=n-1}({\mathop{\rm det}}\ V^{\prime}_{I})^{2}}+\frac{\sum_{|I|=n}({\mathop{\rm det}}\ W_{I})^{2}}{\sum_{|I|=n-1}({\mathop{\rm det}}\ W^{\prime}_{I})^{2}}.

Recall that z1,,znmz_{1},\dots,z_{n}\in{\mathbb{R}}^{m} are the rows of UU. Thus the rows of VV are PEz1,,PEznP_{E}z_{1},\dots,P_{E}z_{n}, where PEP_{E} denotes the projection on the first kk coordinates and the rows of WW are PEz1,,PEznP_{E^{\bot}}z_{1},\dots,P_{E^{\bot}}z_{n}, where PEP_{E^{\bot}} denotes the projection on the nkn-k last coordinates. Thus we only need to show the following relationship for low-dimensional parallelotopes

(|i=1n[0,zi]||i=1n1[0,zi]|)2(|i=1n[0,PEzi]||i=1n1[0,PEzi]|)2+(|i=1n[0,PEzi]||i=1n1[0,PEzi]|)2.\left(\frac{\left|\sum_{i=1}^{n}[0,z_{i}]\right|}{\left|\sum_{i=1}^{n-1}[0,z_{i}]\right|}\right)^{2}\geq\left(\frac{\left|\sum_{i=1}^{n}[0,P_{E}z_{i}]\right|}{\left|\sum_{i=1}^{n-1}[0,P_{E}z_{i}]\right|}\right)^{2}+\left(\frac{\left|\sum_{i=1}^{n}[0,P_{E^{\bot}}z_{i}]\right|}{\left|\sum_{i=1}^{n-1}[0,P_{E^{\bot}}z_{i}]\right|}\right)^{2}.

Using that the volume of a parallelotope is the product of the volume of one of its face and its height, we get that, if Hn=span(z1,,zn1)H_{n}={\mathrm{span}}(z_{1},\dots,z_{n-1}), then

|i=1n[0,zi]||i=1n1[0,zi]|=d(zn,Hn).\frac{\left|\sum_{i=1}^{n}[0,z_{i}]\right|}{\left|\sum_{i=1}^{n-1}[0,z_{i}]\right|}=d(z_{n},H_{n}).

So we are reduced to prove that

d(zn,Hn)2d(PEzn,PEHn)2+d(PEzn,PEHn)2.d(z_{n},H_{n})^{2}\geq d(P_{E}z_{n},P_{E}H_{n})^{2}+d(P_{E^{\bot}}z_{n},P_{E^{\bot}}H_{n})^{2}.

Let hnHnh_{n}\in H_{n} such that d(zn,Hn)=|znhn|d(z_{n},H_{n})=|z_{n}-h_{n}|. By Pythagoras’ theorem,

d(zn,Hn)2=|znhn|2=PEznPEhn2+PEznPEhn2.d(z_{n},H_{n})^{2}=|z_{n}-h_{n}|^{2}=\|P_{E}z_{n}-P_{E}h_{n}\|^{2}+\|P_{E^{\bot}}z_{n}-P_{E^{\bot}}h_{n}\|^{2}.

Since PEhnPEHnP_{E}h_{n}\in P_{E}H_{n} and PEznPEHnP_{E^{\bot}}z_{n}\in P_{E^{\bot}}H_{n}, we conclude. \Box

Second proof of the inequality: We give another proof of Theorem 6.2, using the comparison of the 2\ell_{2} sum and the radial 22-sum. For any symmetric convex bodies KK and LL in n{\mathbb{R}}^{n}, one has

K2LK+~2L:=uSn1[0,ρK2(u)+ρL2(u)u].K\oplus_{2}L\supset K\widetilde{+}_{2}L:=\cup_{u\in S^{n-1}}\left[0,\sqrt{\rho_{K}^{2}(u)+\rho_{L}^{2}(u)}u\right]. (49)

Indeed, using support functions, the fact that KρK(u)[u,u]K\supset\rho_{K}(u)[-u,u] implies that hK(x)ρK(u)|x,u|h_{K}(x)\geq\rho_{K}(u)|\langle x,u\rangle|, for any xnx\in{\mathbb{R}}^{n} and thus

hK2L(x)=hK(x)2+hL(x)2ρK(u)2+ρL(u)2|x,u|=ρK(u)2+ρL(u)2h[u,u](x).h_{K\oplus_{2}L}(x)=\sqrt{h_{K}(x)^{2}+h_{L}(x)^{2}}\geq\sqrt{\rho_{K}(u)^{2}+\rho_{L}(u)^{2}}|\langle x,u\rangle|=\sqrt{\rho_{K}(u)^{2}+\rho_{L}(u)^{2}}h_{[-u,u]}(x).

The formula (49) can be also restated in the language of radial functions:

ρK2L(u)ρK2(u)+ρL2(u), for all uSn1.\rho_{K\oplus_{2}L}(u)\geq\sqrt{\rho_{K}^{2}(u)+\rho_{L}^{2}(u)},\mbox{ for all }u\in S^{n-1}. (50)

Next, we notice nice a formula for the volume of the orthogonal hyperplane projection of an ellipsoid (see, for example, [13, 41]), to which we give a very simple proof. Let =TB2n,\mathcal{E}=TB_{2}^{n}, for some positive definite TT then

|Pu|||u=nV(TB2n[n1],[0,u])|TB2n||T1u|=nV(B2n[n1],[0,T1u])|B2n||T1u|=|B2n1||B2n|.\frac{|P_{u^{\bot}}\mathcal{E}|}{|\mathcal{E}|\,\|u\|_{\mathcal{E}}}=\frac{nV(TB_{2}^{n}[n-1],[0,u])}{|TB_{2}^{n}|\,|T^{-1}u|}=\frac{nV(B_{2}^{n}[n-1],[0,T^{-1}u])}{|B_{2}^{n}|\,|T^{-1}u|}=\frac{|B_{2}^{n-1}|}{|B_{2}^{n}|}. (51)

Using the above we get

|||Pu|=|B2n||B2n1|ρ(u).\frac{|\mathcal{E}|}{|P_{u}\mathcal{E}|}=\frac{|B_{2}^{n}|}{|B_{2}^{n-1}|}\rho_{\mathcal{E}}(u). (52)

Thus, using this formula and (49), we deduce that for any ellipsoids A,BA,B

|A2B|2|Pu(A2B)|2\displaystyle\frac{|A\oplus_{2}B|^{2}}{|P_{u}(A\oplus_{2}B)|^{2}} =|B2n|2|B2n1|2ρA2B(u)2\displaystyle=\frac{|B_{2}^{n}|^{2}}{|B_{2}^{n-1}|^{2}}\rho_{A\oplus_{2}B}(u)^{2}
|B2n|2|B2n1|2(ρA(u)2+ρB(u)2)=|A|2|PuA|2+|B|2|PuB|2.\displaystyle\geq\frac{|B_{2}^{n}|^{2}}{|B_{2}^{n-1}|^{2}}(\rho_{A}(u)^{2}+\rho_{B}(u)^{2})=\frac{|A|^{2}}{|P_{u}A|^{2}}+\frac{|B|^{2}}{|P_{u}B|^{2}}. (53)

\Box

Proof of the equality case: This second proof also helps us to treat the equality case. From (52) there is equality if and only if

ρA2B(u)2=ρA(u)2+ρB(u)2.\rho_{A\oplus_{2}B}(u)^{2}=\rho_{A}(u)^{2}+\rho_{B}(u)^{2}.

The above is equivalent to the (ρA(u)2+ρB(u)2)1/2u(A2B)(\rho_{A}(u)^{2}+\rho_{B}(u)^{2})^{1/2}u\in\partial(A\oplus_{2}B). From here we get that, if nn is a normal vector to (A2B)\partial(A\oplus_{2}B) at (ρA(u)2+ρB(u)2)1/2u(\rho_{A}(u)^{2}+\rho_{B}(u)^{2})^{1/2}u then

hA2B(n)=(ρA(u)2+ρB(u)2)1/2u,n.h_{A\oplus_{2}B}(n)=(\rho_{A}(u)^{2}+\rho_{B}(u)^{2})^{1/2}\langle u,n\rangle.

The above is equivalent to hA(n)=ρA(u)u,n and hB(n)=ρB(u)u,n,h_{A}(n)=\rho_{A}(u)\langle u,n\rangle\mbox{ and }h_{B}(n)=\rho_{B}(u)\langle u,n\rangle, or simply to say that the normal vector to A\partial A at ρA(u)u\rho_{A}(u)u is the normal vector to B\partial B at ρB(u)u\rho_{B}(u)u. \Box

Remark 6.3.

If in the proof of equality case in the Theorem 6.2 we would represent A=T1B2nA=T_{1}B_{2}^{n} and B=T2B2n,B=T_{2}B_{2}^{n}, where T1,T2T_{1},T_{2} are two positive symmetric matrices. Then xA2=T12x,x.\|x\|^{2}_{A}=\langle T_{1}^{-2}x,x\rangle. and the normal vector to A\partial A at ρA(u)u\rho_{A}(u)u is parallel to T12uT_{1}^{-2}u, and the similar statement is true for BB. Thus our condition on parallel tangent hyperplanes is equivalent to the fact that there is λ>0\lambda>0 such that (T12λT22)u=0(T_{1}^{-2}-\lambda T_{2}^{-2})u=0 or simply that uu is an eigenvector for matrix T12T22T_{1}^{2}T_{2}^{-2}.

Remark 6.4.

Observe that in Theorem 6.2 there is an equality at least for nn directions uu (not counting u-u) and there is equality for every uu if and only if two ellipsoids are homothetic.

Let us now present some consequences or Theorem 6.2.

Corollary 6.5.

Let nn be a positive integer. Let AA and BB be L2L_{2}-zonoids in n{\mathbb{R}}^{n} and uu in Sn1S^{n-1}. Then, the function hh defined, for t0t\geq 0, by

h2(t)=|A2(tB)|2|Pu(A2(tB))|n12h_{2}(t)=\frac{|A\oplus_{2}(\sqrt{t}B)|^{2}}{|P_{u^{\bot}}(A\oplus_{2}(\sqrt{t}B))|^{2}_{n-1}}

is concave on +{\mathbb{R}}_{+}.

Proof.

For any λ[0,1]\lambda\in[0,1], one has A=(1λA)2(λA)A=(\sqrt{1-\lambda}A)\oplus_{2}(\sqrt{\lambda}A). Thus one deduces that

A2((1λ)s+λtB)=(1λ(A2sB))2(λ(A2tB)).A\oplus_{2}\left(\sqrt{(1-\lambda)s+\lambda t}B\right)=\left(\sqrt{1-\lambda}(A\oplus_{2}\sqrt{s}B)\right)\oplus_{2}\left(\sqrt{\lambda}(A\oplus_{2}\sqrt{t}B)\right).

Using Theorem 6.2 and the homogeneity of volume, we deduce that h2h_{2} is concave.     \Box

Next we show that Theorem 6.2 has the following additional applications:

Theorem 6.6.

Let nn be an integer, then for any 1kn1\leq k\leq n and for every pair of L2L_{2}-zonoids AA and BB in n{\mathbb{R}}^{n} and any (nkn-k)-dimensional subspace EE of n{\mathbb{R}}^{n} one has

(|A2B||PE(A2B)|nk)2k(|A||PEA|nk)2k+(|B||PEB|nk)2k.\left(\frac{|A\oplus_{2}B|}{|P_{E}(A\oplus_{2}B)|_{n-k}}\right)^{\frac{2}{k}}\geq\left(\frac{|A|}{|P_{E}A|_{n-k}}\right)^{\frac{2}{k}}+\left(\frac{|B|}{|P_{E}B|_{n-k}}\right)^{\frac{2}{k}}. (54)
Proof.

The proof goes by induction on kk. Theorem 6.2 establishes the case k=1k=1 and any n1n\geq 1. We assume that the inequality holds for some 1kn11\leq k\leq n-1 for all L2L_{2}-zonoids A,BA,B in n{\mathbb{R}}^{n} and all nkn-k dimensional subspace of n{\mathbb{R}}^{n}. Let EE be a nk1n-k-1 dimensional subspace of n{\mathbb{R}}^{n}. Then one may write E=FuE=F\cap u^{\bot}, for some nkn-k dimensional subspace FF and uFu\in F^{\bot}. Then, applying Theorem 6.2 to PFAP_{F}A and PFBP_{F}B and using that PuPF=PEP_{u^{\bot}}\circ P_{F}=P_{E} we get

(|PF(A2B)|nk|PE(A2B)|nk1)2(|PFA|nk|PEA|nk1)2+(|PFB|nk|PEB|nk1)2.\left(\frac{|P_{F}(A\oplus_{2}B)|_{n-k}}{|P_{E}(A\oplus_{2}B)|_{n-k-1}}\right)^{2}\geq\left(\frac{|P_{F}A|_{n-k}}{|P_{E}A|_{n-k-1}}\right)^{2}+\left(\frac{|P_{F}B|_{n-k}}{|P_{E}B|_{n-k-1}}\right)^{2}. (55)

Applying (54) to E=FE=F, raising the equation to power k/2k/2 and taking the product with (55), we get

|A2B||PE(A2B)|nk1\displaystyle\frac{|A\oplus_{2}B|}{|P_{E}(A\oplus_{2}B)|_{n-k-1}}\geq (56)
((|PFA|nk|PEA|nk1)2+(|PFB|nk|PEB|nk1)2)12((|A||PFA|nk)2k+(|B||PFB|nk)2k)k2.\displaystyle\left(\left(\frac{|P_{F}A|_{n-k}}{|P_{E}A|_{n-k-1}}\right)^{2}+\left(\frac{|P_{F}B|_{n-k}}{|P_{E}B|_{n-k-1}}\right)^{2}\right)^{\frac{1}{2}}\left(\left(\frac{|A|}{|P_{F}A|_{n-k}}\right)^{\frac{2}{k}}+\left(\frac{|B|}{|P_{F}B|_{n-k}}\right)^{\frac{2}{k}}\right)^{\frac{k}{2}}.

From Hölder’s inequality, we conclude that

|A2B||PE(A2B)|nk1((|A||PEA|nk1)2k+1+(|B||PEB|nk1)2k+1)k+12,\frac{|A\oplus_{2}B|}{|P_{E}(A\oplus_{2}B)|_{n-k-1}}\geq\left(\left(\frac{|A|}{|P_{E}A|_{n-k-1}}\right)^{\frac{2}{k+1}}+\left(\frac{|B|}{|P_{E}B|_{n-k-1}}\right)^{\frac{2}{k+1}}\right)^{\frac{k+1}{2}},

which is (54) for k+1k+1.     \Box

Corollary 6.7.

Let k,nk,n be a integer with 1kn.1\leq k\leq n. Then for every L2L_{2}-zonoids AA and BB in n{\mathbb{R}}^{n} and every zonoids Z1,,ZkZ_{1},\dots,Z_{k} in n,{\mathbb{R}}^{n},

(|A2B|V((A2B)[nk],Z1,,Zk))2k\displaystyle\left(\frac{|A\oplus_{2}B|}{V((A\oplus_{2}B)[n-k],Z_{1},\dots,Z_{k})}\right)^{\frac{2}{k}}\geq (57)
(|A|V(A[nk],Z1,,Zk))2k+(|B|V(B[n1],Z1,,Zk))2k,\displaystyle\left(\frac{|A|}{V(A[n-k],Z_{1},\dots,Z_{k})}\right)^{\frac{2}{k}}+\left(\frac{|B|}{V(B[n-1],Z_{1},\dots,Z_{k})}\right)^{\frac{2}{k}},

and thus the function ff defined, for t0t\geq 0, by

f(t)=|A2tB|2k|V((A2tB)[nk],Z1,,Zk)|nk2kf(t)=\frac{|A\oplus_{2}\sqrt{t}B|^{\frac{2}{k}}}{|V((A\oplus_{2}\sqrt{t}B)[n-k],Z_{1},\dots,Z_{k})|^{\frac{2}{k}}_{n-k}}

is concave on +{\mathbb{R}}_{+}. Moreover

|A2B|2|(A2B)|2|A|2|A|2+|B|2|B|2,\frac{|A\oplus_{2}B|^{2}}{|\partial(A\oplus_{2}B)|^{2}}\geq\frac{|A|^{2}}{|\partial A|^{2}}+\frac{|B|^{2}}{|\partial B|^{2}}, (58)

and thus the function gg defined, for t0t\geq 0, by

g(t)=|A2tB|2|(A2tB)|n12g(t)=\frac{|A\oplus_{2}\sqrt{t}B|^{2}}{|\partial(A\oplus_{2}\sqrt{t}B)|^{2}_{n-1}}

is concave on +{\mathbb{R}}_{+}.

Proof.

First notice that Theorem 6.6 may be reformulated in the following way. Let u1,,uku_{1},\dots,u_{k} be an orthonormal system in n{\mathbb{R}}^{n}. Then using (15) we have

(|A2B|V((A2B)[nk],[0,u1],,[0,uk]))2k\displaystyle\left(\frac{|A\oplus_{2}B|}{V((A\oplus_{2}B)[n-k],[0,u_{1}],\dots,[0,u_{k}])}\right)^{\frac{2}{k}}\geq (59)
(|A|V(A[nk],[0,u1],,[0,uk]))2k\displaystyle\left(\frac{|A|}{V(A[n-k],[0,u_{1}],\dots,[0,u_{k}])}\right)^{\frac{2}{k}} +(|B|V(B[nk],[0,u1],,[0,uk]))2k.\displaystyle+\left(\frac{|B|}{V(B[n-k],[0,u_{1}],\dots,[0,u_{k}])}\right)^{\frac{2}{k}}.

Applying a linear transform, (59) holds for any linearly independent system u1,,uku_{1},\dots,u_{k}. Then, for x,y0x,y\geq 0, define

φ(x,y)=(x2k+y2k)k2=(x,y)2k.\varphi(x,y)=(x^{-\frac{2}{k}}+y^{-\frac{2}{k}})^{-\frac{k}{2}}=\|(x,y)\|_{-\frac{2}{k}}. (60)

For a compact convex set AA and u1,,uknu_{1},\dots,u_{k}\in{\mathbb{R}}^{n}, let

ψA(u1,,uk)=V(A[nk],[0,u1],,,[0,uk])|A|.\psi_{A}(u_{1},\dots,u_{k})=\frac{V(A[n-k],[0,u_{1}],\dots,,[0,u_{k}])}{|A|}. (61)

From (59) we know that, if u1,,uku_{1},\dots,u_{k} are linerly independent, then

ψA2B(u1,,uk)φ(ψA(u1,,uk),ψB(u1,,uk)).\psi_{A\oplus_{2}B}(u_{1},\dots,u_{k})\leq\varphi(\psi_{A}(u_{1},\dots,u_{k}),\psi_{B}(u_{1},\dots,u_{k})).

For i=1,,ki=1,\dots,k, let Zi=[0,ui,1]22[0,ui,mi]Z_{i}=[0,u_{i,1}]\oplus_{2}\cdots\oplus_{2}[0,u_{i,m_{i}}] be a 22-zonotope. Assume that for any set of distinct kk vectors from the set {ui,j}\{u_{i,j}\} is an independent sequence (this can be achieved by a small perturbation of vectors ui,ju_{i,j}). Using that φ\varphi, being a 2k-\frac{2}{k}-norm, satisfies the reverse Minkowski inequality, we deduce that

i=1kji=1miψA2B(u1,j1,,uk,jk)\displaystyle\sum_{i=1}^{k}\sum_{j_{i}=1}^{m_{i}}\psi_{A\oplus_{2}B}(u_{1,j_{1}},\dots,u_{k,j_{k}}) i=1kji=1miφ(ψA(u1,j1,,uk,jk),ψB(u1,j1,,uk,jk))\displaystyle\leq\sum_{i=1}^{k}\sum_{j_{i}=1}^{m_{i}}\varphi(\psi_{A}(u_{1,j_{1}},\dots,u_{k,j_{k}}),\psi_{B}(u_{1,j_{1}},\dots,u_{k,j_{k}}))
φ(i=1kji=1miψA(u1,j1,,uk,jk),i=1kji=1miψB(u1,j1,,uk,jk)).\displaystyle\leq\varphi\left(\sum_{i=1}^{k}\sum_{j_{i}=1}^{m_{i}}\psi_{A}(u_{1,j_{1}},\dots,u_{k,j_{k}}),\sum_{i=1}^{k}\sum_{j_{i}=1}^{m_{i}}\psi_{B}(u_{1,j_{1}},\dots,u_{k,j_{k}})\right).

Thus we get

V((A2B)[nk],Z1,,Zk)|A2B|φ(V(A[nk],Z1,,Zk)|A|,V(B[nk],Z1,,Zk)|B|),\frac{V((A\oplus_{2}B)[n-k],Z_{1},\dots,Z_{k})}{|A\oplus_{2}B|}\leq\varphi\left(\frac{V(A[n-k],Z_{1},\dots,Z_{k})}{|A|},\frac{V(B[n-k],Z_{1},\dots,Z_{k})}{|B|}\right),

which is (57), for Z1,,ZkZ_{1},\dots,Z_{k} being a zonotopes. The result for zonoids follows by approximation. We apply (57) with k=1k=1 and Z1=B2nZ_{1}=B_{2}^{n} to prove (58). The concavity of ff and gg is proved with the method used for Corollary 6.5.

\Box

6.2 The case p2p\neq 2

Proposition 6.8.

The answer to Question 6.1 is negative when p>2p>2 and n2n\geq 2: a counterexample is given by A=B2nA=B_{2}^{n} and B=ε1p[v,v]B=\varepsilon^{\frac{1}{p}}[-v,v], for some ε>0\varepsilon>0.

Proof.

Let p>2p>2. We disprove the weaker statement

|ApB||Pu(ApB)|n1|A||PuA|n1.\frac{|A\oplus_{p}B|}{|P_{u^{\bot}}(A\oplus_{p}B)|_{n-1}}\geq\frac{|A|}{|P_{u^{\bot}}A|_{n-1}}. (62)

We restate (62) with B=ε1p[v,v],B=\varepsilon^{\frac{1}{p}}[-v,v], vSn1v\in S^{n-1} and ε0.\varepsilon\to 0. For this we use the extension of the classical notion of the mixed volumes introduced by Lutwak [31, 32], who proved that

limε0|Ap(ε1pB)||A|ε=1pSn1hBp(u)hA1p𝑑SA(u),\lim\limits_{\varepsilon\to 0}\frac{|A\oplus_{p}(\varepsilon^{\frac{1}{p}}\,B)|-|A|}{\varepsilon}=\frac{1}{p}\int\limits_{S^{n-1}}h^{p}_{B}(u)h_{A}^{1-p}dS_{A}(u), (63)

for p>1p>1 and all convex compact sets A,B,A,B, containing the origin and defined

Vp(A[n1],B)=1nSn1hBp(u)hA1p𝑑SA(u).V_{p}(A[n-1],B)=\frac{1}{n}\int\limits_{S^{n-1}}h^{p}_{B}(u)h_{A}^{1-p}dS_{A}(u). (64)

Taking B=ε1p[v,v]B=\varepsilon^{\frac{1}{p}}[-v,v] for some vSn1,v\in S^{n-1}, we get

|ApB|=|A|+εpSn1|v,x|phA1p𝑑SA(x)+o(ε)\Big{|}A\oplus_{p}B\Big{|}=|A|+\frac{\varepsilon}{p}\int\limits_{S^{n-1}}|\langle v,x\rangle|^{p}h_{A}^{1-p}dS_{A}(x)+o(\varepsilon)

Assuming vv in u,u^{\perp}, we get

|PuApPuB|=|PuA|+εpSn1u|v,x|phA1p(x)𝑑SPuA(x)+o(ε).\Big{|}P_{u^{\perp}}A\oplus_{p}P_{u^{\perp}}B\Big{|}=|P_{u^{\perp}}A|+\frac{\varepsilon}{p}\int\limits_{S^{n-1}\cap u^{\perp}}|\langle v,x\rangle|^{p}h_{A}^{1-p}(x)dS_{P_{u^{\perp}}A}(x)+o(\varepsilon).

Assume, by way of contradiction, that (62) is true for all LpL_{p}-zonoids An.A\subset{\mathbb{R}}^{n}. Then,

|A|Sn1u|v,x|phA1p(x)𝑑SPuA(x)|PuA|Sn1|v,x|phA1p(x)𝑑SA(x).|A|\int\limits_{S^{n-1}\cap u^{\perp}}|\langle v,x\rangle|^{p}h_{A}^{1-p}(x)dS_{P_{u^{\perp}}A}(x)\leq|P_{u^{\perp}}A|\int\limits_{S^{n-1}}|\langle v,x\rangle|^{p}h_{A}^{1-p}(x)dS_{A}(x). (65)

Now we take A=B2nA=B_{2}^{n}, u=e2u=e_{2} and v=e1v=e_{1}. Notice that B2nB_{2}^{n} is an LpL_{p} zonoid for all p1p\geq 1. Next (65) becomes

|B2n|Sn2|x1|p𝑑SB2n1(x)|B2n1|Sn1|x1|p𝑑SB2n(x).|B_{2}^{n}|\int_{S^{n-2}}|x_{1}|^{p}dS_{B_{2}^{n-1}}(x)\leq|B_{2}^{n-1}|\int_{S^{n-1}}|x_{1}|^{p}dS_{B_{2}^{n}}(x). (66)

Using polar coordinates and Fubini’s theorem, we get

Sn1|x1|p𝑑SB2n(x)=(n+p)B2n1|z1|p𝑑z=2πn12Γ(p+12)Γ(p+n2).\int_{S^{n-1}}|x_{1}|^{p}dS_{B_{2}^{n}}(x)=(n+p)\int_{B_{2}^{n-1}}|z_{1}|^{p}dz=\frac{2\pi^{\frac{n-1}{2}}\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p+n}{2}\right)}.

Thus (66) becomes

Γ(n+12)Γ(p+n2)Γ(n+22)Γ(p+n12).\Gamma\left(\frac{n+1}{2}\right)\Gamma\left(\frac{p+n}{2}\right)\leq\Gamma\left(\frac{n+2}{2}\right)\Gamma\left(\frac{p+n-1}{2}\right).

Using the strict log\log-convexity of Γ\Gamma function the above is only true if and only if p2p\leq 2.     \Box

Proposition 6.9.

Fix p>1p>1. Then (46) does not hold in the class of all convex symmetric bodies in n{\mathbb{R}}^{n}.

Proof.

Let us first construct an example in 2{\mathbb{R}}^{2}. We note that

|PuApPuε1p[v,v]|=2hA(v)+2εphA(v)1p+o(ε).\Big{|}P_{u^{\perp}}A\oplus_{p}P_{u^{\perp}}\varepsilon^{\frac{1}{p}}[-v,v]\Big{|}=2h_{A}(v)+\frac{2\varepsilon}{p}h_{A}(v)^{1-p}+o(\varepsilon).

Thus (62), for n=2n=2, would imply

|A|hA(v)pS1|v,x|phA1p(x)𝑑SA(x).|A|\leq h_{A}(v)^{p}\int\limits_{S^{1}}|\langle v,x\rangle|^{p}h_{A}^{1-p}(x)dS_{A}(x). (67)

Consider a(0,1),a\in(0,1), let A={(x1,x2)2,|xi|1,|x1±x2|2a}.A=\{(x_{1},x_{2})\in{\mathbb{R}}^{2},|x_{i}|\leq 1,|x_{1}\pm x_{2}|\leq 2-a\}. Then |A|=42a2|A|=4-2a^{2}. We check (67) with v=e1v=e_{1}. We first note that hA(e1)=1h_{A}(e_{1})=1. Next we compute

f(x)=|e1,x|phA1p(x)SA(x)f(x)=|\langle e_{1},x\rangle|^{p}h_{A}^{1-p}(x)S_{A}(x)

for different normal vectors xx of AA. We first note that f(±e2)=0f(\pm e_{2})=0, f(±e1)=2(1a)f(\pm e_{1})=2(1-a) and f((±1/2,±1/2))=a(2a)1p.f((\pm 1/\sqrt{2},\pm 1/\sqrt{2}))=a(2-a)^{1-p}. Thus to contradict (67) we must select aa such that

42a2>4(1a)+4a(2a)1p,4-2a^{2}>4(1-a)+4a(2-a)^{1-p},

or a<221/p,a<2-2^{1/p}, which is possible for every p>1p>1.

To build a counterexample in n{\mathbb{R}}^{n} for n3n\geq 3, we use the fact that if KK is a convex body in span{e1,,en1}{\rm span}\{e_{1},\dots,e_{n_{1}}\} and LL is a convex body in span{en1+1,,en1+n2}{\rm span}\{e_{n_{1}+1},\dots,e_{n_{1}+n_{2}}\}, then

|KpL|=Γ(n1q+1)Γ(n2q+1)Γ(n1+n1q+1)|K||L|=cn1,n2,q|K||L|,|K\oplus_{p}L|=\frac{\Gamma(\frac{n_{1}}{q}+1)\Gamma(\frac{n_{2}}{q}+1)}{\Gamma(\frac{n_{1}+n_{1}}{q}+1)}|K||L|=c_{n_{1},n_{2},q}|K||L|, (68)

where 1/p+1/q=11/p+1/q=1. Let An=Bqn2pA2A_{n}=B_{q}^{n-2}\oplus_{p}A_{2}, where A2span{e1,e2}A_{2}\subset{\rm span}\{e_{1},e_{2}\} is the counterexample created above, and Bqn2span{e3,,en}B^{n-2}_{q}\subset{\rm span}\{e_{3},\dots,e_{n}\}. Then (68) gives

|Anp[v,v]||Pe1(Anp[v,v])|n1=|Bqn2p(A2p[v,v])||Bqn2pPe1(A2p[v,v])|n1<|An||Pe1An|n1.\frac{|A_{n}\oplus_{p}[-v,v]|}{|P_{e_{1}^{\bot}}(A_{n}\oplus_{p}[-v,v])|_{n-1}}=\frac{|B_{q}^{n-2}\oplus_{p}(A_{2}\oplus_{p}[-v,v])|}{|B_{q}^{n-2}\oplus_{p}P_{e_{1}^{\bot}}(A_{2}\oplus_{p}[-v,v])|_{n-1}}<\frac{|A_{n}|}{|P_{e_{1}^{\bot}}A_{n}|_{n-1}}.

\Box

Let us note that the direct interpretation of the volume of LpL_{p}-zonotopes in terms of determinants is only possible in the case when p=1p=1 or p=2p=2 [28], thus it is natural to ask if the determinant inequality that we proved in the case p=2p=2 is still true in the case p2:p\not=2:

Question 6.10.

Let p1p\geq 1, consider NNnN\geq N^{\prime}\geq n and a sequence for vectors {ui}i=1N\{u_{i}\}_{i=1}^{N} in n{\mathbb{R}}^{n} is it true that

M{1,,N},|M|=n|det({um}mM|pM{1,,N},|M|=n1|det({Pe1um}mM)|p\displaystyle\frac{\sum\limits_{M\subset\{1,\dots,N^{\prime}\},|M|=n}|{\mathop{\rm det}}(\{u_{m}\}_{m\in M}|^{p}}{\sum\limits_{M\subset\{1,\dots,N^{\prime}\},|M|=n-1}|{\mathop{\rm det}}(\{P_{e_{1}^{\perp}}u_{m}\}_{m\in M})|^{p}} +L{N+1,,N},|L|=n|det({ul}lL|pL{N+1,,N},|L|=n1|det({Pe1ul}lL|p\displaystyle+\frac{\sum\limits_{L\subset\{N^{\prime}+1,\dots,N\},|L|=n}|{\mathop{\rm det}}(\{u_{l}\}_{l\in L}|^{p}}{\sum\limits_{L\subset\{N^{\prime}+1,\dots,N\},|L|=n-1}|{\mathop{\rm det}}(\{P_{e_{1}^{\perp}}u_{l}\}_{l\in L}|^{p}}
M{1,,N},|M|=n|det({um}mM|pM{1,,N},|M|=n1|det({Pe1(um)}mM|p?\displaystyle\leq\frac{\sum\limits_{M\subset\{1,\dots,N\},|M|=n}|{\mathop{\rm det}}(\{u_{m}\}_{m\in M}|^{p}}{\sum\limits_{M\subset\{1,\dots,N\},|M|=n-1}|{\mathop{\rm det}}(\{P_{e_{1}^{\perp}}(u_{m})\}_{m\in M}|^{p}}? (69)

Notice that the above question also has a negative answer when p>2p>2. Let N=n=2,N=n=2, N=1N^{\prime}=1 and the matrix

(110111).\begin{pmatrix}1&-1&0\\ 1&1&1\end{pmatrix}.

Then (69) becomes

2p1+12p+1+11+1+1,\frac{2^{p}}{1+1}\leq\frac{2^{p}+1+1}{1+1+1},

which is false for p>2p>2.

References

  • [1] D. Alonso-Gutiérrez, S. Artstein-Avidan, B. González Merino, C. H. Jiménez, and R. Villa. Rogers-Shephard and local Loomis-Whitney type inequalities. Math. Ann., 374(3-4):1719–1771, 2019.
  • [2] S. Artstein-Avidan, D. Florentin, and Y. Ostrover. Remarks about mixed discriminants and volumes. Commun. Contemp. Math., 16(2):1350031, 14, 2014.
  • [3] P. Balister and B. Bollobás. Projections, entropy, and sumsets. Combinatorica, 32(2):125–141, 2012.
  • [4] K. Ball, P. Nayar, and T. Tkocz. A reverse entropy power inequality for log-concave random vectors. Studia Math., 235(1):17–30, 2016.
  • [5] F. Barthe and M. Madiman. Volumes of subset Minkowski sums and the Lyusternik region. Preprint, arXiv:2112.06518, 2021.
  • [6] S. Bobkov and M. Madiman. Dimensional behaviour of entropy and information. C. R. Acad. Sci. Paris Sér. I Math., 349:201–204, Février 2011.
  • [7] S. Bobkov and M. Madiman. Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures. J. Funct. Anal., 262:3309–3339, 2012.
  • [8] S. G. Bobkov, M. Madiman, and L. Wang. Fractional generalizations of Young and Brunn-Minkowski inequalities. In C. Houdré, M. Ledoux, E. Milman, and M. Milman, editors, Concentration, Functional Inequalities and Isoperimetry, volume 545 of Contemp. Math., pages 35–53. Amer. Math. Soc., 2011.
  • [9] S. G. Bobkov and M. M. Madiman. On the problem of reversibility of the entropy power inequality. In Limit theorems in probability, statistics and number theory, volume 42 of Springer Proc. Math. Stat., pages 61–74. Springer, Heidelberg, 2013. Available online at arXiv:1111.6807.
  • [10] B. Bollobás and I. Leader. Compressions and isoperimetric inequalities. J. Combinatorial Theory Ser. A, 56(1):47–62, 1991.
  • [11] T. Bonnesen. Les problèmes de isopérimètres et des isépiphanes. Imprimerie Gauthier Villars et Cie, 1929.
  • [12] S. Brazitikos and F. McIntyre. Vector-valued maclaurin inequalities. Commun. Contemp. Math., 2021.
  • [13] R. Connelly and S. J. Ostro. Ellipsoids and lightcurves. Geom. Dedicata, 17(1):87–98, 1984.
  • [14] M.H.M. Costa and T.M. Cover. On the similarity of the entropy power inequality and the Brunn-Minkowski inequality. IEEE Trans. Inform. Theory, 30(6):837–839, 1984.
  • [15] T. A. Courtade. A strong entropy power inequality. IEEE Trans. Inform. Theory, 64(4, part 1):2173–2192, 2018.
  • [16] T.M. Cover and J.A. Thomas. Elements of Information Theory. J. Wiley, New York, 1991.
  • [17] A. Dembo, T.M. Cover, and J.A. Thomas. Information-theoretic inequalities. IEEE Trans. Inform. Theory, 37(6):1501–1518, 1991.
  • [18] W. R. Emerson. Averaging strongly subadditive set functions in unimodular amenable groups. I. Pacific J. Math., 61(2):391–400, 1975.
  • [19] W. Fenchel. Generalisation du theoreme de Brunn et Minkowski concernant les corps convexes. C. R. Acad. Sci. Paris., 203:764–766, 1936.
  • [20] Wm. J. Firey. pp-means of convex bodies. Math. Scand., 10:17–24, 1962.
  • [21] S. Foldes and P. L. Hammer. Submodularity, supermodularity, and higher-order monotonicities of pseudo-Boolean functions. Math. Oper. Res., 30(2):453–461, 2005.
  • [22] M. Fradelizi, A. Giannopoulos, and M. Meyer. Some inequalities about mixed volumes. Israel J. Math., 135:157–179, 2003.
  • [23] M. Fradelizi, M. Madiman, A. Marsiglietti, and A. Zvavitch. Do Minkowski averages get progressively more convex? C. R. Acad. Sci. Paris Sér. I Math., 354(2):185–189, February 2016.
  • [24] M. Fradelizi, M. Madiman, and A. Zvavitch. Sumset estimates in convex geometry. Preprint, 2022.
  • [25] M. Fradelizi and A. Marsiglietti. On the analogue of the concavity of entropy power in the Brunn-Minkowski theory. Adv. in Appl. Math., 57:1–20, 2014.
  • [26] R. J. Gardner. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. (N.S.), 39(3):355–405 (electronic), 2002.
  • [27] A. Giannopoulos, M. Hartzoulaki, and G. Paouris. On a local version of the Aleksandrov-Fenchel inequality for the quermassintegrals of a convex body. Proc. Amer. Math. Soc., 130(8):2403–2412, 2002.
  • [28] Y. Gordon and M. Junge. Volume formulas in LpL_{p}-spaces. Positivity, 1(1):7–43, 1997.
  • [29] M. Henk, M. A. Hernández Cifre, and E. Saorí n. Steiner polynomials via ultra-logconcave sequences. Commun. Contemp. Math., 14(6):1250040, 16, 2012.
  • [30] V. Katsnelson. On H. Weyl and H. Minkowski polynomials. Sib. Èlektron. Mat. Izv., 4:169–237, 2007.
  • [31] E. Lutwak. The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differential Geom., 38(1):131–150, 1993.
  • [32] E. Lutwak. The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math., 118(2):244–294, 1996.
  • [33] E. Lutwak, D. Yang, and G. Zhang. Moment-entropy inequalities. Ann. Probab., 32(1B):757–774, 2004.
  • [34] M. Madiman and F. Ghassemi. Combinatorial entropy power inequalities: A preliminary study of the Stam region. IEEE Trans. Inform. Theory, 65(3):1375–1386, March 2019. Available online at arXiv:1704.01177.
  • [35] M. Madiman and I. Kontoyiannis. Entropy bounds on abelian groups and the Ruzsa divergence. IEEE Trans. Inform. Theory, 64(1):77–92, January 2018. Available online at arXiv:1508.04089.
  • [36] M. Madiman, J. Melbourne, and P. Xu. Forward and reverse entropy power inequalities in convex geometry. In E. Carlen, M. Madiman, and E. M. Werner, editors, Convexity and Concentration, volume 161 of IMA Volumes in Mathematics and its Applications, pages 427–485. Springer, 2017. Available online at arXiv:1604.04225.
  • [37] M. Madiman, J. Melbourne, and P. Xu. Rogozin’s convolution inequality for locally compact groups. Preprint, arXiv:1705.00642, 2017.
  • [38] M. Madiman and P. Tetali. Information inequalities for joint distributions, with interpretations and applications. IEEE Trans. Inform. Theory, 56(6):2699–2713, June 2010.
  • [39] P. Nayar and T. Tkocz. Personal communication. 2017.
  • [40] H. Plünnecke. Eine zahlentheoretische Anwendung der Graphentheorie. J. Reine Angew. Math., 243:171–183, 1970.
  • [41] I. Rivin. Surface area and other measures of ellipsoids. Adv. in Appl. Math., 39(4):409–427, 2007.
  • [42] I. Z. Ruzsa. An application of graph theory to additive number theory. Scientia Ser. A Math. Sci. (N.S.), 3:97–109, 1989.
  • [43] R. Schneider. Convex bodies: the Brunn-Minkowski theory, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993.
  • [44] R. Schneider. Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, expanded edition, 2014.
  • [45] I. Soprunov and A. Zvavitch. Bezout inequality for mixed volumes. Int. Math. Res. Not. IMRN, (23):7230–7252, 2016.
  • [46] S. J. Szarek and D. Voiculescu. Shannon’s entropy power inequality via restricted Minkowski sums. In Geometric aspects of functional analysis, volume 1745 of Lecture Notes in Math., pages 257–262. Springer, Berlin, 2000.
  • [47] D. M. Topkis. Supermodularity and complementarity. Frontiers of Economic Research. Princeton University Press, Princeton, NJ, 1998.
  • [48] L. Wang and M. Madiman. Beyond the entropy power inequality, via rearrangements. IEEE Trans. Inform. Theory, 60(9):5116–5137, September 2014.

Matthieu Fradelizi
Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, LAMA UMR8050 F-77447 Marne-la-Vallée, France
E-mail address: [email protected]

Mokshay Madiman
University of Delaware
Department of Mathematical Sciences
501 Ewing Hall
Newark, DE 19716, USA
E-mail address: [email protected]

Mathieu Meyer
Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, LAMA UMR8050 F-77447 Marne-la-Vallée, France
E-mail address: [email protected]

Artem Zvavitch
Department of Mathematical Sciences
Kent State University
Kent, OH 44242, USA
E-mail address: [email protected]