This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the three-dimensional shape of a crystal

Emanuel Indrei and Aram Karakhanyan Department of Mathematics and Statistics
Sam Houston State University
Huntsville, TX
USA.
School of Mathematics
The University of Edinburgh
Peter Tait Guthrie Road
EH9 3FD Edinburgh, UK.
Abstract.

In this paper we completely settle the Almgren problem in 3\mathbb{R}^{3} under some generic conditions on the potential and tension functions. The problem, among other things, appears in classical thermodynamics when one is to understand if minimizing the free energy with convex potential and under a mass constraint generates a convex crystal. Our new idea in proving a three-dimensional convexity theorem is to utilize a stability theorem when mm is small, convexity when mm is small, and the first variation PDE with a new maximum principle approach.

The research of the second author was partially supported by EPSRC grant EP/S03157X/1 Mean curvature measure of free boundary.

1. Introduction

A fundamental problem in thermodynamics is to prove convexity of minimizers to the free energy minimization with mass constraint. The free energy (E)\mathcal{E}(E) of a set of finite perimeter EnE\subset\mathbb{R}^{n} with reduced boundary E\partial^{*}E is defined via the surface energy

(E)=Ef(νE)𝑑n1,\mathcal{F}(E)=\int_{\partial^{*}E}f(\nu_{E})d\mathcal{H}^{n-1},

and, the potential energy

𝒢(E)=Eg(x)𝑑x,\mathcal{G}(E)=\int_{E}g(x)dx,

where g0g\geq 0, g(0)=0g(0)=0:

(E)=(E)+𝒢(E).\mathcal{E}(E)=\mathcal{F}(E)+\mathcal{G}(E).

The following problem historically is attributed to Almgren.

Problem: If the potential gg is convex (or, more generally, if the sub-level sets {g<t}\{g<t\} are convex), are minimizers convex or, at least, connected? [MR2807136, p. 146].

In a recent paper, Indrei proved the existence of a convex g0g\geq 0, g(0)=0g(0)=0, so that there are no minimizers for m>0m>0. Observe the general partition of the convexity problem into coercive (e.g. the monotone radial potential) and non-coercive potentials (e.g. the gravitational potential). Supposing n=2n=2, under additional assumptions, the first author proved convexity for all m>0m>0 [Cryst] (cf. [D]). In the argument, the planar context is crucial. Recently, the authors proved a sharp quantitative inequality for the isotropic radial Almgren problem (f(x)=|x|,g=g(|x|)f(x)=|x|,g=g(|x|)) in n\mathbb{R}^{n}. The theorem is the first positive result for all m>0m>0 on the stability and convexity for a large class of potentials in higher dimension.

For g=0g=0 the stability appeared in [MR2672283] with an explicit modulus; in [MR2456887] for g=0g=0 and the isotropic case with a semi-explicit modulus; and, in [Cryst] for mm small with a semi-explicit modulus and a locally bounded potential.

Naturally, in physics, the most important dimension is n=3n=3. We introduce a new method to prove:

Theorem 1.1.

If gC2,αg\in C^{2,\alpha_{*}} is convex, fC4(3{0})f\in C^{4}(\mathbb{R}^{3}\setminus\{0\}) is λ\lambda-elliptic, and f,gf,g admit minimizers EmBR(m)E_{m}\subset B_{R(m)} with RLloc(+)R\in L_{loc}^{\infty}(\mathbb{R}^{+}) either:
(i) EmE_{m} is convex &\& unique for all m(0,)m\in(0,\infty);
(ii) there exist >0\mathcal{M}>0 &\& a modulus wm(0+)=0w_{m}(0^{+})=0 such that for all m(0,)m\in(0,\mathcal{M}), EmE_{m} is unique, convex and there exist ϵ0,γ>0\epsilon_{0},\gamma>0 such that for all ϵϵ0\epsilon\leq\epsilon_{0},

lim infmγ(m)wm(ϵ)1.\liminf_{m\rightarrow\mathcal{M}^{-}}\frac{\gamma(\mathcal{M}-m)}{w_{m}(\epsilon)}\geq 1.

Our theorem implies convexity for a large collection of potentials; our argument is inclusive of also non-convex potentials. The main element is estimating the modulus.

Remark 1.2.

If f(ν)=1f(\nu)=1 when ν𝕊n1\nu\in\mathbb{S}^{n-1}, g(x)=h(|x|)g(x)=h(|x|), h:++h:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+} is increasing, h(0)=0h(0)=0, then for any m1>m0>0m_{1}>m_{0}>0, ϵ>0\epsilon>0,

infm1mm0wm(ϵ)>0\inf_{m_{1}\geq m\geq m_{0}}w_{m}(\epsilon)>0

[qk] and therefore for all ,ϵ,γ>0\mathcal{M},\epsilon,\gamma>0,

lim infmγ(m)wm(ϵ)=0\liminf_{m\rightarrow\mathcal{M}^{-}}\frac{\gamma(\mathcal{M}-m)}{w_{m}(\epsilon)}=0

which precludes (ii). The result then yields uniqueness and convexity for any m(0,)m\in(0,\infty).

Our new idea is to utilize a stability theorem when mm is small, convexity when mm is small, and the first variation PDE with a new maximum principle approach. Assuming gg is coercive, the assumption on existence is true. Nevertheless, in certain configurations, one may prove existence for non-coercive potentials, e.g. the gravitational potential.
The stability result contains an invariance collection. Define

𝒜m=𝒜f,g,m\displaystyle\mathcal{A}_{m}=\mathcal{A}_{f,g,m} ={A:Ax=Aax+xa,xa3,(AaE)=(E),\displaystyle=\{A:Ax=A_{a}x+x_{a},x_{a}\in\mathbb{R}^{3},\mathcal{E}(A_{a}E)=\mathcal{E}(E),
|AaE|=|E|=m for some minimizer E}.\displaystyle|A_{a}E|=|E|=m\text{ for some minimizer $E$}\}.

An invariance map of the free energy is a transformation A𝒜mA\in\mathcal{A}_{m}. The uniqueness of minimizers can only be true mod 2\mathcal{H}^{2} sets of measure zero and an invariance map generated by the mass, potential, and tension. In many classes of potentials, assuming mm is small, A𝒜mA\in\mathcal{A}_{m} is a translation Ax=x+zAx=x+z, z3z\in\mathbb{R}^{3}. For example, suppose gg is zero on a ball BB. If mm is small, note that uniqueness can only be shown up to a translation: Aa=I3×3A_{a}=I_{3\times 3}, xa3x_{a}\in\mathbb{R}^{3} is such that Km+xa{g=0}K_{m}+x_{a}\subset\{g=0\} when KmBK_{m}\subset B (KmK_{m} is the Wulff shape such that |Km|=m|K_{m}|=m). The three transformations, reflection, rotation, and translation, always satisfy closure under convexity: AEAE is convex iff EE is convex.

2. Proof of Theorem 1.1

Define

𝒜a={m:Em¯is unique & convex for all 0<m¯m}\mathcal{A}_{a}=\{m:E_{\overline{m}}\hskip 5.78172pt\text{is unique $\&$ convex for all $0<\overline{m}\leq m$}\}
=sup𝒜a.\mathcal{M}=\sup\mathcal{A}_{a}.

Theorem 3.1 and Theorem 2 in Figalli and Maggi [MR2807136] imply (0,ma)𝒜a(0,m_{a})\subset\mathcal{A}_{a}. Hence >0\mathcal{M}>0. In addition, one may assume the invariance maps are closed under convexity. If <\mathcal{M}<\infty, for m(0,)m\in(0,\mathcal{M}), EmE_{m} is unique &\& convex. Therefore either: (a) there exists a non-convex minimizer having mass \mathcal{M}; (b) there exist two convex minimizers not mod an invariance map equal having mass \mathcal{M}; or (c) for all m(0,]m\in(0,\mathcal{M}], EmE_{m} is unique, convex and for m>m>\mathcal{M} there exists a<ma<m such that either convexity or uniqueness fails for minimizers with mass aa. If mk<m_{k}<\mathcal{M}, mkm_{k}\rightarrow\mathcal{M}, along a subsequence, EmkTE_{m_{k}}\rightarrow T_{\mathcal{M}}, with |T|=|T_{\mathcal{M}}|=\mathcal{M}, TT_{\mathcal{M}} a convex minimizer. Set

ϵ=15infR|REΔT||E|>0,\epsilon=\frac{1}{5}\inf_{R}\frac{|RE_{\mathcal{M}}\Delta T_{\mathcal{M}}|}{|E_{\mathcal{M}}|}>0,

where if (a) is valid, EE_{\mathcal{M}} is the non-convex minimizer and if (b) is true, EE_{\mathcal{M}} is a convex minimizer not (mod invariance transformations) equal to TT_{\mathcal{M}}. If m(0,)m\in(0,\mathcal{M}), the uniqueness of convex minimizers implies that there exists wm(ϵ)>0w_{m}(\epsilon)>0 such that for all ϵ>0\epsilon>0, if |E|=|Em||E|=|E_{m}|, EBRE\subset B_{R}, and

|(E)(Em)|<wm(ϵ),|\mathcal{E}(E)-\mathcal{E}(E_{m})|<w_{m}(\epsilon),

then there exists RR such that

|EmΔRE||Em|<ϵ.\frac{|E_{m}\Delta RE|}{|E_{m}|}<\epsilon.

Let {mk}\{m_{k}\} be the sequence such that

lim infm23m23wm(ϵ)=limk23mk23wmk(ϵ),\liminf_{m\rightarrow\mathcal{M}^{-}}\frac{\mathcal{M}^{\frac{2}{3}}-m^{\frac{2}{3}}}{w_{m}(\epsilon)}=\lim_{k\rightarrow\infty}\frac{\mathcal{M}^{\frac{2}{3}}-m_{k}^{\frac{2}{3}}}{w_{m_{k}}(\epsilon)},

and define γk\gamma_{k} via |γkE|=|Emk||\gamma_{k}E_{\mathcal{M}}|=|E_{m_{k}}|, i.e. γk=(mk)13\gamma_{k}=(\frac{m_{k}}{\mathcal{M}})^{\frac{1}{3}}. Note

|(γkE)(Emk)|\displaystyle|\mathcal{E}(\gamma_{k}E_{\mathcal{M}})-\mathcal{E}(E_{m_{k}})| |(γkE)(E)|+|(T)(Emk)|\displaystyle\leq|\mathcal{E}(\gamma_{k}E_{\mathcal{M}})-\mathcal{E}(E_{\mathcal{M}})|+|\mathcal{E}(T_{\mathcal{M}})-\mathcal{E}(E_{m_{k}})|
(E)(1γk2)+(supBRg)|EΔ(γkE)|\displaystyle\leq\mathcal{F}(E_{\mathcal{M}})(1-\gamma_{k}^{2})+(\sup_{B_{R}}g)|E_{\mathcal{M}}\Delta(\gamma_{k}E_{\mathcal{M}})|
+|(T)(Emk)|.\displaystyle+|\mathcal{E}(T_{\mathcal{M}})-\mathcal{E}(E_{m_{k}})|.

Moreover,

(T)\displaystyle\mathcal{E}(T_{\mathcal{M}}) (1γkEmk)\displaystyle\leq\mathcal{E}(\frac{1}{\gamma_{k}}E_{m_{k}})
=1γk2(Emk)+1γkEmkg(x)𝑑x\displaystyle=\frac{1}{\gamma_{k}^{2}}\mathcal{F}(E_{m_{k}})+\int_{\frac{1}{\gamma_{k}}E_{m_{k}}}g(x)dx
(1γk21)(Emk)+(supBRg)|1γkEmkΔEmk|+(Emk)\displaystyle\leq(\frac{1}{\gamma_{k}^{2}}-1)\mathcal{F}(E_{m_{k}})+(\sup_{B_{R}}g)|\frac{1}{\gamma_{k}}E_{m_{k}}\Delta E_{m_{k}}|+\mathcal{E}(E_{m_{k}})

and similarly thanks to |1γkEmkΔEmk|a(1γk1)|\frac{1}{\gamma_{k}}E_{m_{k}}\Delta E_{m_{k}}|\leq a(\frac{1}{\gamma_{k}}-1) (e.g via [MR2807136, Lemma 4]) this implies

|(T)(Emk)|αp(1γk21)=α(23mk23),|\mathcal{E}(T_{\mathcal{M}})-\mathcal{E}(E_{m_{k}})|\leq\alpha_{p}(\frac{1}{\gamma_{k}^{2}}-1)=\alpha(\mathcal{M}^{\frac{2}{3}}-m_{k}^{\frac{2}{3}}),

mkm_{k}\thickapprox\mathcal{M}.

In particular,

|(γkE)(Emk)|γ1(23mk23)|\mathcal{E}(\gamma_{k}E_{\mathcal{M}})-\mathcal{E}(E_{m_{k}})|\leq\gamma_{1}(\mathcal{M}^{\frac{2}{3}}-m_{k}^{\frac{2}{3}})

where γ1=γ1()\gamma_{1}=\gamma_{1}(\mathcal{M}).

Suppose

(1) lim infm23m23wm(ϵ)<1γ1,\liminf_{m\rightarrow\mathcal{M}^{-}}\frac{\mathcal{M}^{\frac{2}{3}}-m^{\frac{2}{3}}}{w_{m}(\epsilon)}<\frac{1}{\gamma_{1}},

then for kk large

|(γkE)(Emk)|γ1(23mk23)wmk(ϵ)wmk(ϵ)<wmk(ϵ)|\mathcal{E}(\gamma_{k}E_{\mathcal{M}})-\mathcal{E}(E_{m_{k}})|\leq\frac{\gamma_{1}(\mathcal{M}^{\frac{2}{3}}-m_{k}^{\frac{2}{3}})}{w_{m_{k}}(\epsilon)}w_{m_{k}}(\epsilon)<w_{m_{k}}(\epsilon)

and this implies the existence of RkR_{k} such that

|EmkΔRk(γkE)||Emk|<ϵ.\frac{|E_{m_{k}}\Delta R_{k}(\gamma_{k}E_{\mathcal{M}})|}{|E_{m_{k}}|}<\epsilon.

However, if kk is large, γk1\gamma_{k}\thickapprox 1, which implies

|(Emk)ΔRk(γkE)||Emk|\displaystyle\frac{|(E_{m_{k}})\Delta R_{k}(\gamma_{k}E_{\mathcal{M}})|}{|E_{m_{k}}|} |TΔRk(E)||E|\displaystyle\thickapprox\frac{|T_{\mathcal{M}}\Delta R_{k}(E_{\mathcal{M}})|}{|E_{\mathcal{M}}|}
infR|REΔT||E|=5ϵ,\displaystyle\geq\inf_{R}\frac{|RE_{\mathcal{M}}\Delta T_{\mathcal{M}}|}{|E_{\mathcal{M}}|}=5\epsilon,

a contradiction. Therefore (1) is not true and

lim infm23mk23wm(ϵ)1γ1,\liminf_{m\rightarrow\mathcal{M}^{-}}\frac{\mathcal{M}^{\frac{2}{3}}-m_{k}^{\frac{2}{3}}}{w_{m}(\epsilon)}\geq\frac{1}{\gamma_{1}},

for

ϵϵ0:=15infR|REΔT||E|.\epsilon\leq\epsilon_{0}:=\frac{1}{5}\inf_{R}\frac{|RE_{\mathcal{M}}\Delta T_{\mathcal{M}}|}{|E_{\mathcal{M}}|}.

Thus this yields γ=γ()>0\gamma=\gamma(\mathcal{M})>0,

lim infmmkwm(ϵ)1γ;\liminf_{m\rightarrow\mathcal{M}^{-}}\frac{\mathcal{M}-m_{k}}{w_{m}(\epsilon)}\geq\frac{1}{\gamma};

observe the bound in (ii) is proved. The last part is to preclude (c).


Claim 1: A convex minimizer at mass \mathcal{M} is uniformly convex.

Proof of Claim 1:

The anisotropic mean curvature is

Hf=trace(D2fA),H_{f}=\text{trace}\Big{(}D^{2}fA\Big{)},

where D2fD^{2}f is the matrix of second tangential derivatives and AA is the second fundamental form. The formula for the first variation implies

(2) Hf=μg,H_{f}=\mu-g,

where

μ=2(E)+Egx,νE𝑑2n|E|.\mu=\frac{2\mathcal{F}(E_{\mathcal{M}})+\int_{\partial^{*}E_{\mathcal{M}}}g\langle x,\nu_{E_{\mathcal{M}}}\rangle d\mathcal{H}^{2}}{n|E_{\mathcal{M}}|}.

Convexity of EE_{\mathcal{M}} and (2) imply that locally there is a convex function uC2.1(Ω),Ω2u\in C^{2.1}(\Omega),\Omega\subset\mathbb{R}^{2} so that

aij(u)uij=μg(x,u),a_{ij}(\nabla u)u_{ij}=\mu-g(x,u),

where aij(u),i,j{1,2}a_{ij}(\nabla u),i,j\in\{1,2\}, is a uniformly elliptic matrix given in terms of the second order derivatives of ff and depending on u\nabla u with gg being a convex function of (x,u)3(x,u)\in\mathbb{R}^{3} and \nabla the gradient, see Chapter 16.4 [GT01]. Recall that for the classical case f(ξ)=|ξ|f(\xi)=|\xi| we have

aij(u)=11+|u|2(δijuiuj1+|u|2).a_{ij}(\nabla u)=\frac{1}{\sqrt{1+|\nabla u|^{2}}}\left(\delta_{ij}-\frac{u_{i}u_{j}}{1+|\nabla u|^{2}}\right).

Note

(3) μg>0 on E.\mu-g>0\hskip 7.22743pt\text{ on $\partial E_{\mathcal{M}}$}.

Indeed, let us choose a smoothly changing coordinate system so that D2uD^{2}u is diagonal. Then the mean curvature takes the form Hf=a11u11+a22u22.H_{f}=a_{11}u_{11}+a_{22}u_{22}. After differentiating we get

(Hf)ss=32g(x,u)s(x1x2u)s(x1x2u)guuss,s=1,2.\displaystyle(H_{f})_{ss}=-\nabla^{2}_{\mathbb{R}^{3}}g(x,u)\partial_{s}\begin{pmatrix}x_{1}\\ x_{2}\\ u\end{pmatrix}\partial_{s}\begin{pmatrix}x_{1}\\ x_{2}\\ u\end{pmatrix}-g_{u}u_{ss},\quad s=1,2.

Then

ass(Hf)ssguHf,a_{ss}(H_{f})_{ss}\leq-g_{u}H_{f},

and consequently

ass(Hf)ss(gu)Hf0,a_{ss}(H_{f})_{ss}-(g_{u})^{-}H_{f}\leq 0,

where (gu)(g_{u})^{-} is the negative part of gug_{u}. Hence the result follows from the strong minimum principle.

Subclaim: If detD2u(x0)=0\det D^{2}u(x_{0})=0 for some x0Ωx_{0}\in\Omega then detD2u(x)=0\det D^{2}u(x)=0 for all xΩx\in\Omega.

Proof of Subclaim:
Observe that under our assumptions uC3,1(Ω)u\in C^{3,1}(\Omega) thanks to Corollary 16.7 [GT01]. The proof is based on the observation that w:=detD2u(x)w:=\det D^{2}u(x) satisfies an inequality of the form aijwijcw+bw0a_{ij}w_{ij}-cw+b\cdot\nabla w\leq 0 near x0x_{0}, with c0c\geq 0.

Let us write the equation in the form (D2u,u)=aijuij\mathcal{F}(D^{2}u,\nabla u)=\sum a_{ij}u_{ij} and let f=μgf=\mu-g, then the equation takes the form

=f.\mathcal{F}=f.

Differentiate twice in xs,xt,1s,t2x_{s},x_{t},1\leq s,t\leq 2 to get

s=fs,\displaystyle\mathcal{F}_{s}=f_{s},
st=fst.\displaystyle\mathcal{F}_{st}=f_{st}.

Now we have that

ws=uijuijs,wst=uij,kluijsuklt+uijuijst,\displaystyle w_{s}=u^{ij}u_{ijs},\quad w_{st}=u^{ij,kl}u_{ijs}u_{klt}+u^{ij}u_{ijst},

where uiju^{ij} is the cofactor matrix.

On the other hand

s\displaystyle\mathcal{F}_{s} =\displaystyle= palmusulm+almulms,\displaystyle\nabla_{p}a_{lm}\cdot\nabla u_{s}u_{lm}+a_{lm}u_{lms},
st\displaystyle\mathcal{F}_{st} =\displaystyle= (pp2almut)usulm\displaystyle(\nabla_{pp}^{2}a_{lm}\nabla u_{t})\cdot\nabla u_{s}u_{lm}
+palmustulm+palmusulmt+palmutulms\displaystyle+\nabla_{p}a_{lm}\cdot\nabla u_{st}u_{lm}+\nabla_{p}a_{lm}\cdot\nabla u_{s}u_{lmt}+\nabla_{p}a_{lm}\cdot\nabla u_{t}u_{lms}
+almulmst\displaystyle+a_{lm}u_{lmst}
:=\displaystyle:= (2)+(3)+almulmst,\displaystyle\mathcal{F}^{(2)}+\mathcal{F}^{(3)}+a_{lm}u_{lmst},

where we use the notation with dummy variable p:=up:=\nabla u.

Since the Weingarten mapping is self-adjoint, then at each point xx, near x0x_{0} we have

(4) D2u(x)=diag[λ1,λ2]D^{2}u(x)=\mbox{diag}[\lambda_{1},\lambda_{2}]

in a continuously changing coordinate system. Moreover, λ2λ10\lambda_{2}\geq\lambda_{1}\geq 0. By (3), λ1+λ2>0\lambda_{1}+\lambda_{2}>0. Suppose w(x0)=0w(x_{0})=0, then u11(x0)u22(x0)=0u_{11}(x_{0})u_{22}(x_{0})=0 and without loss of generality

(5) u11(x)>10δandu22(x)<δu_{11}(x)>10\delta\quad\mbox{and}\quad u_{22}(x)<\delta

for δ>0\delta>0, in some neighborhood xBr0(x0)x\in B_{r_{0}}(x_{0}), r0>0r_{0}>0 small. Using these observations we can make the following explicit computations

(6) ws\displaystyle w_{s} =\displaystyle= u11su22+u11u22s,\displaystyle u_{11s}u_{22}+u_{11}u_{22s},
(7) wst\displaystyle w_{st} =\displaystyle= u11stu22+u11su22t+u11tu22s+u11u22st2u12tu12s.\displaystyle u_{11st}u_{22}+u_{11s}u_{22t}+u_{11t}u_{22s}+u_{11}u_{22st}-2u_{12t}u_{12s}.

The second order derivatives appearing in st\mathcal{F}_{st}, after contracting with the cofactor matrix uij=diag(u22,u11)u^{ij}=\mbox{diag}(u_{22},u_{11}), and using (4), can be simplified as follows

ustst(2)\displaystyle u^{st}\mathcal{F}_{st}^{(2)} :=\displaystyle:= (pp2almut)usulmust\displaystyle(\nabla_{pp}^{2}a_{lm}\nabla u_{t})\cdot\nabla u_{s}u_{lm}u^{st}
=\displaystyle= (pp2almu1)u1ulmu11+(pp2almu2)u2ulmu22\displaystyle(\nabla_{pp}^{2}a_{lm}\nabla u_{1})\cdot\nabla u_{1}u_{lm}u^{11}+(\nabla_{pp}^{2}a_{lm}\nabla u_{2})\cdot\nabla u_{2}u_{lm}u^{22}
=\displaystyle= (pp2almu1)u1ulmu22+(pp2almu2)u2ulmu11\displaystyle(\nabla_{pp}^{2}a_{lm}\nabla u_{1})\cdot\nabla u_{1}u_{lm}u_{22}+(\nabla_{pp}^{2}a_{lm}\nabla u_{2})\cdot\nabla u_{2}u_{lm}u_{11}
=\displaystyle= (pp2a11u1)u1u11u22+(pp2a22u1)u1u22u22\displaystyle(\nabla_{pp}^{2}a_{11}\nabla u_{1})\cdot\nabla u_{1}u_{11}u_{22}+(\nabla_{pp}^{2}a_{22}\nabla u_{1})\cdot\nabla u_{1}u_{22}u_{22}
+(pp2a11u2)u2u11u11+(pp2a22u2)u2u22u11\displaystyle+(\nabla_{pp}^{2}a_{11}\nabla u_{2})\cdot\nabla u_{2}u_{11}u_{11}+(\nabla_{pp}^{2}a_{22}\nabla u_{2})\cdot\nabla u_{2}u_{22}u_{11}
=\displaystyle= ((pp2a11u1)u1+(pp2a22u2)u2)w\displaystyle\left((\nabla_{pp}^{2}a_{11}\nabla u_{1})\cdot\nabla u_{1}+(\nabla_{pp}^{2}a_{22}\nabla u_{2})\cdot\nabla u_{2}\right)w
+(p1p1a22+p2p2a11)w2.\displaystyle+(\partial_{p_{1}p_{1}}a_{22}+\partial_{p_{2}p_{2}}a_{11})w^{2}.

Consequently,

(8) ustst(2)=O(cw+bw),u^{st}\mathcal{F}_{st}^{(2)}=O(cw+b\cdot\nabla w),

for some fixed c>0c>0 and b2b\in\mathbb{R}^{2}.

Next, let us compute the expression

(9) almwlm\displaystyle a_{lm}w_{lm} =\displaystyle= ustalmuimst+almust,ijustluijm\displaystyle u^{st}a_{lm}u_{imst}+a_{lm}u^{st,ij}u_{stl}u_{ijm}
=\displaystyle= ustst(2)ustst(3)+ustfst+alm(u11lu22m+u11mu22l2u12mu12l)\displaystyle-u^{st}\mathcal{F}_{st}^{(2)}-u^{st}\mathcal{F}_{st}^{(3)}+u^{st}f_{st}+a_{lm}(u_{11l}u_{22m}+u_{11m}u_{22l}-2u_{12m}u_{12l})
=\displaystyle= ustst(2)ustst(3)+ustfst+J.\displaystyle-u^{st}\mathcal{F}_{st}^{(2)}-u^{st}\mathcal{F}_{st}^{(3)}+u^{st}f_{st}+J.

We need to simplify the last term J:=alm(u11lu22m+u11mu22l2u12mu12l)J:=a_{lm}(u_{11l}u_{22m}+u_{11m}u_{22l}-2u_{12m}u_{12l}). It can be written in a more explicit form as follows

J\displaystyle J =\displaystyle= a11(u111u221+u111u2212u1212)+a12(u111u222+u112u2212u122u121)\displaystyle a_{11}(u_{111}u_{221}+u_{111}u_{221}-2u_{121}^{2})+a_{12}(u_{111}u_{222}+u_{112}u_{221}-2u_{122}u_{121})
+a21(u112u221+u111u2222u121u122)+a22(u112u222+u112u2222u1222)\displaystyle+a_{21}(u_{112}u_{221}+u_{111}u_{222}-2u_{121}u_{122})+a_{22}(u_{112}u_{222}+u_{112}u_{222}-2u_{122}^{2})
=\displaystyle= 2(a11(u111u221u1212)+a12(u111u222u122u121)+a22(u112u222u1222)).\displaystyle 2\left(a_{11}(u_{111}u_{221}-u_{121}^{2})+a_{12}(u_{111}u_{222}-u_{122}u_{121})+a_{22}(u_{112}u_{222}-u_{122}^{2})\right).

Using the explicit forms of ws,sw_{s},\mathcal{F}_{s} we obtain

(10) a11u11s+2a12u12s+a22u22s=fs(psall)ussull,\displaystyle a_{11}u_{11s}+2a_{12}u_{12s}+a_{22}u_{22s}=f_{s}-(\partial_{p_{s}}a_{ll})u_{ss}u_{ll},
(11) u11su22+u11u22s=ws,\displaystyle u_{11s}u_{22}+u_{11}u_{22s}=w_{s},

since

palmusulm=(psall)ussull.\nabla_{p}a_{lm}\cdot\nabla u_{s}u_{lm}=(\partial_{p_{s}}a_{ll})u_{ss}u_{ll}.

From (11)

(12) u22s=wsu11su22u11,u_{22s}=\frac{w_{s}-u_{11s}u_{22}}{u_{11}},

plugging this into (11) yields

fs(psall)ussull\displaystyle f_{s}-(\partial_{p_{s}}a_{ll})u_{ss}u_{ll} =\displaystyle= a11u11s+2a12u12s+a22wsu11su22u11\displaystyle a_{11}u_{11s}+2a_{12}u_{12s}+a_{22}\frac{w_{s}-u_{11s}u_{22}}{u_{11}}
=\displaystyle= u11sa11u11a22u22u11+a22wsu11+2a12u12s.\displaystyle u_{11s}\frac{a_{11}u_{11}-a_{22}u_{22}}{u_{11}}+a_{22}\frac{w_{s}}{u_{11}}+2a_{12}u_{12s}.

If s=1s=1, then u12s=u121=u112u_{12s}=u_{121}=u_{112}, and from the above computation

f1(p1all)u11ull=u111a11u11a22u22u11+a22w1u11+2a12u112.\displaystyle f_{1}-(\partial_{p_{1}}a_{ll})u_{11}u_{ll}=u_{111}\frac{a_{11}u_{11}-a_{22}u_{22}}{u_{11}}+a_{22}\frac{w_{1}}{u_{11}}+2a_{12}u_{112}.

Similarly, for s=2s=2 we obtain

f2(p2all)u22ull=u112a11u11a22u22u11+a22w2u11+2a12w1u111u22u11.\displaystyle f_{2}-(\partial_{p_{2}}a_{ll})u_{22}u_{ll}=u_{112}\frac{a_{11}u_{11}-a_{22}u_{22}}{u_{11}}+a_{22}\frac{w_{2}}{u_{11}}+2a_{12}\frac{w_{1}-u_{111}u_{22}}{u_{11}}.

Combining the last two equation we get a system of equations for the remaining third order derivatives u111u_{111} and u112u_{112};

f1(p1all)u11ulla22w1u11=u111a11u11a22u22u11+2a12u112,\displaystyle f_{1}-(\partial_{p_{1}}a_{ll})u_{11}u_{ll}-a_{22}\frac{w_{1}}{u_{11}}=u_{111}\frac{a_{11}u_{11}-a_{22}u_{22}}{u_{11}}+2a_{12}u_{112},
f2(p2all)u22ulla22w2u112a12w1u11=2a12u22u11u111+u112a11u11a22u22u11.\displaystyle f_{2}-(\partial_{p_{2}}a_{ll})u_{22}u_{ll}-a_{22}\frac{w_{2}}{u_{11}}-2a_{12}\frac{w_{1}}{u_{11}}=-2a_{12}\frac{u_{22}}{u_{11}}u_{111}+u_{112}\frac{a_{11}u_{11}-a_{22}u_{22}}{u_{11}}.

Note that the determinant of the coefficient matrix is

𝒟:=(a11u11a22u22)2u112+4a122u22u11>0,\mathcal{D}:=\frac{(a_{11}u_{11}-a_{22}u_{22})^{2}}{u_{11}^{2}}+4a_{12}^{2}\frac{u_{22}}{u_{11}}>0,

and, moreover,

(13) 1𝒟=u112(a11u11a22u22)2(1+4a122u22u11h)\frac{1}{\mathcal{D}}=\frac{u_{11}^{2}}{(a_{11}u_{11}-a_{22}u_{22})^{2}}\left(1+4a_{12}^{2}\frac{u_{22}}{u_{11}}h\right)

for some bounded function hh in view of (5).

Solving the system we find

u111\displaystyle u_{111} =\displaystyle= 1𝒟(a11u11a22u22u11(f1(p1all)u11ulla22w1u11)\displaystyle\frac{1}{\mathcal{D}}\Big{(}\frac{a_{11}u_{11}-a_{22}u_{22}}{u_{11}}(f_{1}-(\partial_{p_{1}}a_{ll})u_{11}u_{ll}-a_{22}\frac{w_{1}}{u_{11}})
2a12(f2(p2all)u22ulla22w2u112a12w1u11))\displaystyle-2a_{12}(f_{2}-(\partial_{p_{2}}a_{ll})u_{22}u_{ll}-a_{22}\frac{w_{2}}{u_{11}}-2a_{12}\frac{w_{1}}{u_{11}})\Big{)}
=\displaystyle= 1𝒟(a11u11a22u22u11(f1(p1a11)u112)2a12(f2(p2a22)u222))+O(cw+bw)\displaystyle\frac{1}{\mathcal{D}}\Big{(}\frac{a_{11}u_{11}-a_{22}u_{22}}{u_{11}}(f_{1}-(\partial_{p_{1}}a_{11})u_{11}^{2})-2a_{12}(f_{2}-(\partial_{p_{2}}a_{22})u_{22}^{2})\Big{)}+O(cw+b\cdot\nabla w)
=\displaystyle= 1𝒟(a11u11a22u22u11(f1(p1a11)u112)2a12(f2))+O(cw+bw)\displaystyle\frac{1}{\mathcal{D}}\Big{(}\frac{a_{11}u_{11}-a_{22}u_{22}}{u_{11}}(f_{1}-(\partial_{p_{1}}a_{11})u_{11}^{2})-2a_{12}(f_{2})\Big{)}+O(cw+b\cdot\nabla w)

and

u112\displaystyle u_{112} =\displaystyle= 1𝒟(a11u11a22u22u11(f2(p2all)u22ulla22w2u112a12w1u11)\displaystyle\frac{1}{\mathcal{D}}\Big{(}\frac{a_{11}u_{11}-a_{22}u_{22}}{u_{11}}(f_{2}-(\partial_{p_{2}}a_{ll})u_{22}u_{ll}-a_{22}\frac{w_{2}}{u_{11}}-2a_{12}\frac{w_{1}}{u_{11}})
+2a12u22u11(f1(p1all)u11ulla22w1u11))\displaystyle+2a_{12}\frac{u_{22}}{u_{11}}(f_{1}-(\partial_{p_{1}}a_{ll})u_{11}u_{ll}-a_{22}\frac{w_{1}}{u_{11}})\Big{)}
=\displaystyle= 1𝒟(a11u11a22u22u11(f2(p2a22)u222)+2a12u22u11(f1(p1a11)u112))+O(cw+bw)\displaystyle\frac{1}{\mathcal{D}}\Big{(}\frac{a_{11}u_{11}-a_{22}u_{22}}{u_{11}}(f_{2}-(\partial_{p_{2}}a_{22})u_{22}^{2})+2a_{12}\frac{u_{22}}{u_{11}}(f_{1}-(\partial_{p_{1}}a_{11})u_{11}^{2})\Big{)}+O(cw+b\cdot\nabla w)
=\displaystyle= 1𝒟(a11u11a22u22u11f2)+O(cw+bw)\displaystyle\frac{1}{\mathcal{D}}\Big{(}\frac{a_{11}u_{11}-a_{22}u_{22}}{u_{11}}f_{2}\Big{)}+O(cw+b\cdot\nabla w)
=\displaystyle= u11a11u11a22u22(1+4a122u22u11h)f2+O(cw+bw)\displaystyle\frac{u_{11}}{a_{11}u_{11}-a_{22}u_{22}}\left(1+4a_{12}^{2}\frac{u_{22}}{u_{11}}h\right)f_{2}+O(cw+b\cdot\nabla w)
=\displaystyle= u11a11u11a22u22f2+O(cw+bw).\displaystyle\frac{u_{11}}{a_{11}u_{11}-a_{22}u_{22}}f_{2}+O(cw+b\cdot\nabla w).

Therefore, combining with (13) and (5) we infer that u112u_{112} and u112u_{112} can be estimated in terms of the lower order derivatives of uu, hence we conclude that

(14) u111,u112=O(cw+bw).u_{111},u_{112}=O(cw+b\cdot\nabla w).

Returning to

J\displaystyle J =\displaystyle= 2{a11(u111w1u111u22u11u1122)\displaystyle 2\Bigg{\{}a_{11}\left(u_{111}\frac{w_{1}-u_{111}u_{22}}{u_{11}}-u_{112}^{2}\right)
+a12(u111w2u112u22u11w1u111u22u11u112)\displaystyle+a_{12}\left(u_{111}\frac{w_{2}-u_{112}u_{22}}{u_{11}}-\frac{w_{1}-u_{111}u_{22}}{u_{11}}u_{112}\right)
+a22(u112w2u112u22u11(w1u111u22u11)2)}\displaystyle+a_{22}\left(u_{112}\frac{w_{2}-u_{112}u_{22}}{u_{11}}-\left(\frac{w_{1}-u_{111}u_{22}}{u_{11}}\right)^{2}\right)\Bigg{\}}
=\displaystyle= 2{u1112(a11u22u11a22u222u112)+u1122(a11a22u22u11)\displaystyle 2\Bigg{\{}u_{111}^{2}(-a_{11}\frac{u_{22}}{u_{11}}-a_{22}\frac{u_{22}^{2}}{u_{11}^{2}})+u_{112}^{2}(-a_{11}-a_{22}\frac{u_{22}}{u_{11}})
+u111(w1a11u11+w2a22u11+2w1a22u22u11)\displaystyle+u_{111}(w_{1}\frac{a_{11}}{u_{11}}+w_{2}\frac{a_{22}}{u_{11}}+2w_{1}\frac{a_{22}u_{22}}{u_{11}})
+u112(w1a12u11+w2a22u11)a22w12u112}\displaystyle+u_{112}(-w_{1}\frac{a_{12}}{u_{11}}+w_{2}\frac{a_{22}}{u_{11}})-a_{22}\frac{w_{1}^{2}}{u_{11}^{2}}\Bigg{\}}
\displaystyle\leq u111(w1a11u11+w2a22u11+2w1a22u22u11)\displaystyle u_{111}(w_{1}\frac{a_{11}}{u_{11}}+w_{2}\frac{a_{22}}{u_{11}}+2w_{1}\frac{a_{22}u_{22}}{u_{11}})
+u112(w1a12u11+w2a22u11)\displaystyle+u_{112}(-w_{1}\frac{a_{12}}{u_{11}}+w_{2}\frac{a_{22}}{u_{11}})
=\displaystyle= O(cw+bw),\displaystyle O(cw+b\cdot\nabla w),

where the last line follows from (14) and (5).

For the third order derivatives in st,\mathcal{F}_{st}, after contraction with uiju^{ij} we have

ustst(3)\displaystyle u^{st}\mathcal{F}_{st}^{(3)} :=\displaystyle:= (palmustulm+palmusulmt+palmutulms)ust\displaystyle\left(\nabla_{p}a_{lm}\cdot\nabla u_{st}u_{lm}+\nabla_{p}a_{lm}\cdot\nabla u_{s}u_{lmt}+\nabla_{p}a_{lm}\cdot\nabla u_{t}u_{lms}\right)u^{st}
=\displaystyle= s=12l,m(palmussulmuss+2palmusulmsuss)\displaystyle\sum_{s=1}^{2}\sum_{l,m}\left(\nabla_{p}a_{lm}\cdot\nabla u_{ss}u_{lm}u^{ss}+2\nabla_{p}a_{lm}\cdot\nabla u_{s}u_{lms}u^{ss}\right)
=\displaystyle= s=12(pa11ussu11uss+pa22ussu22uss+2l,mpalmusulmsuss)\displaystyle\sum_{s=1}^{2}\left(\nabla_{p}a_{11}\cdot\nabla u_{ss}u_{11}u^{ss}+\nabla_{p}a_{22}\cdot\nabla u_{ss}u_{22}u^{ss}+2\sum_{l,m}\nabla_{p}a_{lm}\cdot\nabla u_{s}u_{lms}u^{ss}\right)
=\displaystyle= s=12(p1a11u1ssu11uss+p2a11u2ssu11uss)\displaystyle\sum_{s=1}^{2}\left(\partial_{p_{1}}a_{11}u_{1ss}u_{11}u^{ss}+\partial_{p_{2}}a_{11}u_{2ss}u_{11}u^{ss}\right)
+s=12(p1a22u1ssu22uss+p2a22u2ssu22uss)\displaystyle+\sum_{s=1}^{2}\left(\partial_{p_{1}}a_{22}u_{1ss}u_{22}u^{ss}+\partial_{p_{2}}a_{22}u_{2ss}u_{22}u^{ss}\right)
+2s=12l,m(p1almu1sulmsuss+p2almu2sulmsuss)\displaystyle+2\sum_{s=1}^{2}\sum_{l,m}\left(\partial_{p_{1}}a_{lm}u_{1s}u_{lms}u^{ss}+\partial_{p_{2}}a_{lm}u_{2s}u_{lms}u^{ss}\right)
=\displaystyle= (p1a11u11)w1+(p2a11u11)w2\displaystyle(\partial_{p_{1}}a_{11}u_{11})w_{1}+(\partial_{p_{2}}a_{11}u_{11})w_{2}
+(p1a22u22)w1+(p2a22u22)w2\displaystyle+(\partial_{p_{1}}a_{22}u_{22})w_{1}+(\partial_{p_{2}}a_{22}u_{22})w_{2}
+2l,m(p1almulm1+p2almulm2)w.\displaystyle+2\sum_{l,m}\left(\partial_{p_{1}}a_{lm}u_{lm1}+\partial_{p_{2}}a_{lm}u_{lm2}\right)w.

From here and our estimates for the third order derivatives we conclude that

(15) ustst(3)=O(cw+bw),u^{st}\mathcal{F}_{st}^{(3)}=O(cw+b\cdot\nabla w),

for some fixed c>0c>0 and b2b\in\mathbb{R}^{2}.

Using this and (9) we get

(16) almwlmustfst+O(cw+bw).\displaystyle a_{lm}w_{lm}\leq u^{st}f_{st}+O(cw+b\cdot\nabla w).

To finish the proof note that

ustfst\displaystyle u^{st}f_{st} =\displaystyle= ust3f(x,u)(00ust)+ust32f(x,u)s(x1x2u)t(x1x2u)\displaystyle u^{st}\nabla_{\mathbb{R}^{3}}f(x,u)\cdot\begin{pmatrix}0\\ 0\\ u_{st}\end{pmatrix}+u^{st}\nabla^{2}_{\mathbb{R}^{3}}f(x,u)\partial_{s}\begin{pmatrix}x_{1}\\ x_{2}\\ u\end{pmatrix}\partial_{t}\begin{pmatrix}x_{1}\\ x_{2}\\ u\end{pmatrix}
=\displaystyle= fuwuss32g(x,u)s(x1x2u)s(x1x2u)\displaystyle f_{u}w-u^{ss}\nabla^{2}_{\mathbb{R}^{3}}g(x,u)\partial_{s}\begin{pmatrix}x_{1}\\ x_{2}\\ u\end{pmatrix}\partial_{s}\begin{pmatrix}x_{1}\\ x_{2}\\ u\end{pmatrix}
\displaystyle\leq fuw\displaystyle f_{u}w

since we assume that gg is convex. Summarizing, it follows from the last inequality and (16) that

almwlm+cw+bw0.a_{lm}w_{lm}+cw+b\cdot\nabla w\leq 0.

Writing c=c+c,c±0c=c^{+}-c^{-},c^{\pm}\geq 0, and using w0w\geq 0 we get that

(17) almwlmcw+bw0.a_{lm}w_{lm}-c^{-}w+b\cdot\nabla w\leq 0.

Applying the strong minimum principle we see that w=0w=0 in Br0(x0)B_{r_{0}}(x_{0}). Therefore, the proof of Subclaim is finished.

Next, we prove Claim 1: if the Gauss curvature of E\partial E_{\mathcal{M}} vanishes at some point, w(x0)=0w(x_{0})=0, then the Gauss curvature is zero everywhere on E\partial E_{\mathcal{M}} (Subclaim). By Theorem 2.8 [RT] uu is the lower boundary of the convex hull of the set of points (x,u|Ω),(x,u|_{\partial\Omega}), for any strictly convex Ω\Omega. For such Ω,\Omega, if we pick a point xΩx\in\Omega then there is a line segment passing through xx. These line segments cannot intersect since otherwise that mean curvature vanishes at the intersection. Thus the graph of uu over Ω\Omega is a ruled surface. If we take a hyperplane perpendicular to the one containing the domain Ω\Omega, then for Ω\Omega^{\perp} lying on this hyperplane the same conclusion will hold. However, the line segments generated by Ω\Omega and Ω\Omega^{\perp} must intersect, which will contradict the C3C^{3} regularity of the surface. This yields the proof of Claim 1.

Suppose for mk>m_{k}>\mathcal{M} there is mjk<mkm_{j_{k}}<m_{k} with EmjkE_{m_{j_{k}}} a non-convex minimizer. Via Claim 1, EE_{\mathcal{M}} is uniformly convex. In particular, the two curvatures are uniformly positive. Via the smoothness, up to a subsequence, EmjkEE_{m_{j_{k}}}\rightarrow E_{\mathcal{M}} in C2C^{2}. Observe that for kk sufficiently large, the regularity implies that the principal curvatures of EmjkE_{m_{j_{k}}} are near the ones of EE_{\mathcal{M}} and thus this contradicts non-convexity. In particular,

(18) if m>m>\mathcal{M} is near \mathcal{M}, then EmE_{m} is uniformly convex.

To show uniqueness the next fact is sufficient:

The Uniqueness Fact: There exists m0>0m_{0}>0 and a modulus of continuity a(m,0+)=0a(m,0^{+})=0 such that for all m<+m0m<\mathcal{M}+m_{0} there exists ϵ0>0\epsilon_{0}>0 such that for all 0<ϵ<ϵ00<\epsilon<\epsilon_{0} &\& for all minimizers EmBRE_{m}\subset B_{R}, EBRE\subset B_{R}, |E|=|Em|=m<+m0|E|=|E_{m}|=m<\mathcal{M}+m_{0}, if

|(Em)(E)|<a(m,ϵ),|\mathcal{E}(E_{m})-\mathcal{E}(E)|<a(m,\epsilon),

there exists an invariance map AA such that

|EΔAEm||Em|<ϵ.\frac{|E\Delta AE_{m}|}{|E_{m}|}<\epsilon.

Assume the uniqueness is false. Then for all m0>0m_{0}>0, for all moduli qq there exists m<+m0m<\mathcal{M}+m_{0} such that for a fixed ϵ0>0\epsilon_{0}>0 there exists ϵ<ϵ0\epsilon<\epsilon_{0} &\& there exist Em,ϵ0,Em,ϵ0BRE_{m,\epsilon_{0}},E_{m,\epsilon_{0}}^{\prime}\subset B_{R}, |Em,ϵ0|=|Em,ϵ0|=m|E_{m,\epsilon_{0}}|=|E_{m,\epsilon_{0}}^{\prime}|=m such that

|(Em,ϵ0)(Em,ϵ0)|<qm(ϵ),|\mathcal{E}(E_{m,\epsilon_{0}})-\mathcal{E}(E_{m,\epsilon_{0}}^{\prime})|<q_{m}(\epsilon),

and

(19) infA|Em,ϵ0ΔAEm,ϵ0||Em,ϵ0|ϵ>0.\inf_{A}\frac{|E_{m,\epsilon_{0}}^{\prime}\Delta AE_{m,\epsilon_{0}}|}{|E_{m,\epsilon_{0}}|}\geq\epsilon>0.

Let m0=1km_{0}=\frac{1}{k}, wk0+w_{k}\rightarrow 0^{+}, q^\hat{q} a modulus of continuity and define

(20) qk=wkq^(ϵ),q_{k}=w_{k}\hat{q}(\epsilon),

hence there exists mk<+1km_{k}<\mathcal{M}+\frac{1}{k} such that for a fixed ϵ0>0\epsilon_{0}>0 there exists ϵ<ϵ0\epsilon<\epsilon_{0} &\& there exist minimizers Emk,ϵ0E_{m_{k},\epsilon_{0}}, in addition some sets Emk,ϵ0BRE_{m_{k},\epsilon_{0}}^{\prime}\subset B_{R}, |Emk,ϵ0|=|Emk,ϵ0|=mk<+1k|E_{m_{k},\epsilon_{0}}|=|E_{m_{k},\epsilon_{0}}^{\prime}|=m_{k}<\mathcal{M}+\frac{1}{k} such that

|(Emk,ϵ0)(Emk,ϵ0)|<qk,|\mathcal{E}(E_{m_{k},\epsilon_{0}})-\mathcal{E}(E_{m_{k},\epsilon_{0}}^{\prime})|<q_{k},

and

(21) infA|Emk,ϵ0ΔAEmk,ϵ0||Emk,ϵ0|ϵ>0.\inf_{A}\frac{|E_{m_{k},\epsilon_{0}}^{\prime}\Delta AE_{m_{k},\epsilon_{0}}|}{|E_{m_{k},\epsilon_{0}}|}\geq\epsilon>0.

Set

Emk=Emk,ϵ0E_{m_{k}}=E_{m_{k},\epsilon_{0}}, Emk=Emk,ϵ0E_{m_{k}}^{\prime}=E_{m_{k},\epsilon_{0}}^{\prime}. Also, define γk=(mk)13\gamma_{k}=(\frac{\mathcal{M}}{m_{k}})^{\frac{1}{3}} such that

|γkEmk|=|E|.|\gamma_{k}E_{m_{k}}|=|E_{\mathcal{M}}|.

Next, observe that thanks to the compactness, Emk,ϵ0EE_{m_{k},\epsilon_{0}}\rightarrow E, this yields (Emk,ϵ0)(E)\mathcal{E}(E_{m_{k},\epsilon_{0}})\rightarrow\mathcal{E}(E), where EE is a minimizer, |E|=|E|=\mathcal{M}. In addition,

|(Emk,ϵ0)(Emk,ϵ0)|<qk0|\mathcal{E}(E_{m_{k},\epsilon_{0}})-\mathcal{E}(E_{m_{k},\epsilon_{0}}^{\prime})|<q_{k}\rightarrow 0

also implies along a subsequence

Emk,ϵ0E^,E_{m_{k},\epsilon_{0}}^{\prime}\rightarrow\hat{E},

|E^|=,|\hat{E}|=\mathcal{M}, E^\hat{E} a minimizer. The aforementioned

(22) infA|Emk,ϵ0ΔAEmk,ϵ0||Emk,ϵ0|ϵ>0\inf_{A}\frac{|E_{m_{k},\epsilon_{0}}^{\prime}\Delta AE_{m_{k},\epsilon_{0}}|}{|E_{m_{k},\epsilon_{0}}|}\geq\epsilon>0

therefore yields a contradiction: initially, the uniqueness at mass \mathcal{M} yields A1A_{1} so that A1E=E^A_{1}E=\hat{E}; thus

A1Emk,ϵ0A1E,A_{1}E_{m_{k},\epsilon_{0}}\rightarrow A_{1}E,
Emk,ϵ0E^,E_{m_{k},\epsilon_{0}}^{\prime}\rightarrow\hat{E},
|Emk,ϵ0ΔA1Emk,ϵ0||Emk,ϵ0|0.\frac{|E_{m_{k},\epsilon_{0}}^{\prime}\Delta A_{1}E_{m_{k},\epsilon_{0}}|}{|E_{m_{k},\epsilon_{0}}|}\rightarrow 0.

Hence (18) together with uniqueness preclude (c).

3. Appendix

3.1. Modulus of the free energy

If gg is locally bounded, the subsequent theorem solves the more general uniqueness problem in any dimension.

Theorem 3.1 ([Cryst]).

Suppose gLloc({g<})g\in L_{loc}^{\infty}(\{g<\infty\}) admits minimizers EmBRE_{m}\subset B_{R} for all mm small. There exists m0>0m_{0}>0 and a modulus of continuity q(0+)=0q(0^{+})=0 such that for all m<m0m<m_{0} there exists ϵ0>0\epsilon_{0}>0 such that for all 0<ϵ<ϵ00<\epsilon<\epsilon_{0} and for all minimizers EmBRE_{m}\subset B_{R}, EBRE\subset B_{R}, |E|=|Em|=m<m0|E|=|E_{m}|=m<m_{0}, if

|(Em)(E)|<a(m,ϵ)=q(ϵ)mn1n,|\mathcal{E}(E_{m})-\mathcal{E}(E)|<a(m,\epsilon)=q(\epsilon)m^{\frac{n-1}{n}},

there exists an invariance map A𝒜mA\in\mathcal{A}_{m} such that

|EΔAEm||Em|<ϵ.\frac{|E\Delta AE_{m}|}{|E_{m}|}<\epsilon.

Also, AEmEm+αmAE_{m}\approx E_{m}+\alpha_{m}: there exists αmn\alpha_{m}\in\mathbb{R}^{n}, c(n)>0c(n)>0, so that

|AEmΔ(Em+αm)|2(1c(n)1n|K|1n(supBRmg))12m1+12n,|AE_{m}\Delta\Big{(}E_{m}+\alpha_{m}\Big{)}|\leq 2\Big{(}\frac{1}{c(n)}\frac{1}{n|K|^{\frac{1}{n}}}(\sup_{B_{R_{m}}}g)\Big{)}^{\frac{1}{2}}m^{1+\frac{1}{2n}},

where the radius Rm>0R_{m}>0 is such that

(m|K|)1nKBRm.(\frac{m}{|K|})^{\frac{1}{n}}K\subset B_{R_{m}}.

References