This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the structure of étale fibrations of LL_{\infty}-bundles

Kai Behrend Hsuan-Yi Liao and Ping Xu
Abstract

We prove that an étale fibration between LL_{\infty}-bundles has local sections made up of several elementary morphisms of particularly simple and accessible type. As applications, we prove an inverse function theorem for LL_{\infty}-bundles, and give an elementary proof that every weak equivalence of LL_{\infty}-bundles induces a quasi-isomorphism of the differential graded algebras of global functions. In addition, we apply this inverse function theorem to prove that the homotopy category of LL_{\infty}-bundles has a simple description in terms of homotopy classes of morphisms, when we restrict LL_{\infty}-bundles to their germs about their classical loci.

footnotetext: Research partially supported by NSF grants DMS-2001599, KIAS Individual Grant MG072801 and MOST/NSTC Grant 110-2115-M-007-001-MY2.

Introduction

An LL_{\infty}-bundle is a triple =(M,L,λ){\mathscr{M}}=(M,L,\lambda), where MM is a CC^{\infty}-manifold, L=L1LnL=L^{1}\oplus\ldots\oplus L^{n} is a finite-dimensional graded vector bundle of positive amplitude over MM, and λ=(λk)0k<n\lambda=(\lambda_{k})_{0\leq k<n} is a sequence of bundle maps λk:SymkLL\lambda_{k}:\mathop{\rm Sym}\nolimits^{k}L\to L of degree 11, making each fiber L|PL|_{P}, where PMP\in M, a curved L[1]L_{\infty}[1]-algebra. The zeroth operation λ0\lambda_{0} is a global section of L1L^{1} (called the curvature). We will refer to the set of points in MM at which λ0\lambda_{0} vanishes as the classical locus or the Maurer-Cartan locus of {\mathscr{M}}.

A morphism of LL_{\infty}-bundles (f,ϕ):(M,L,λ)(M,L,λ)(f,\phi):(M,L,\lambda)\to(M^{\prime},L^{\prime},\lambda^{\prime}) consists of a differential map of manifolds f:MMf:M\to M^{\prime}, and a sequence of bundle maps

ϕk:SymkLL,k1,\phi_{k}:\mathop{\rm Sym}\nolimits^{k}L\to L^{\prime},\qquad k\geq 1,

of degree zero over ff. It is required that for every PMP\in M, the induced sequence of maps ϕ|P\phi|_{P} defines a morphism of curved L[1]L_{\infty}[1]-algebras (L,λ)|P(L,λ)|f(P)(L,\lambda)|_{P}\to(L^{\prime},\lambda^{\prime})|_{f(P)}. There are two particularly important classes of morphisms in the category of LL_{\infty}-bundles — fibrations and weak equivalences. A fibration is a morphism of LL_{\infty}-bundles (f,ϕ):(M,L,λ)(M,L,λ)(f,\phi):(M,L,\lambda)\to(M^{\prime},L^{\prime},\lambda^{\prime}) such that f:MMf:M\to M^{\prime} is a submersion, and ϕ1:LfL\phi_{1}:L\to f^{\ast}L^{\prime} is a degree-wise surjective morphism of graded vector bundles over MM. A weak equivalence is a morphism of LL_{\infty}-bundles which is étale and induces a bijection on classical loci. (A morphism is étale if it induces a quasi-isomorphism on tangent complexes at all classical points.) It is proved in [2] that LL_{\infty}-bundles form a category of fibrant objects in the sense of Brown [6]. This category contains both the category of CC^{\infty}-manifolds, and the category of finite dimensional, positively graded L[1]L_{\infty}[1]-algebras as full subcategories. This feature of the category of LL_{\infty}-bundles suggests its importance in derived differential geometry [18, 8, 9, 14, 5, 17, 16, 11, 10].

In the present paper, we investigate the structure of étale and trivial fibrations between LL_{\infty}-bundles. By trivial fibration, we mean a fibration which is also a weak equivalence. For instance, if UU is an open neighborhood of the classical locus of {\mathscr{M}} in the base manifold MM, then the inclusion map |U{\mathscr{M}}|_{U}\hookrightarrow{\mathscr{M}} is a trivial fibration. Recall that every fibration is equal to the composition of an isomorphism followed by a linear fibration (Proposition 1.1). Here, a morphism (f,ϕ)(f,\phi) is said to be linear if ϕk\phi_{k} vanish for all k>1k>1. Therefore, we will focus our attention on linear fibrations.

A main technique in studying LL_{\infty}-bundles is the (homotopy) transfer theorem (Proposition 1.4). When applying the transfer theorem to an LL_{\infty}-bundle {\mathscr{M}}, we obtain a weakly equivalently LL_{\infty}-bundle {\mathscr{M}}^{\prime} over the same base manifold together with an inclusion morphism ι:\iota:{\mathscr{M}}^{\prime}\to{\mathscr{M}} and a projection morphism π:\pi:{\mathscr{M}}\to{\mathscr{M}}^{\prime} such that the composition πι\pi\bullet\iota is the identity morphism. Both ι\iota and π\pi are weak equivalences. A transfer embedding (U,H,μ)(M,L,λ)(U,H,\mu)\to(M,L,\lambda) is the composition of an inclusion morphism given by the transfer theorem and an trivial fibration of the type |U{\mathscr{M}}|_{U}\hookrightarrow{\mathscr{M}}, where UU is an open neighborhood of the classical locus of {\mathscr{M}}.

A particularly simple kind of linear LL_{\infty}-morphism is given as follows. Let =(M,L,λ){\mathscr{M}}=(M,L,\lambda) be an LL_{\infty}-bundle. Let YMY\subset M be a submanifold, and E1L1|YE^{1}\subset L^{1}|_{Y} a subbundle, such that the curvature λ0|Y:YL1|Y\lambda_{0}|_{Y}:Y\to L^{1}|_{Y} factors through E1E^{1}. Then 𝒴=(Y,E1,L2|Y){\mathscr{Y}}=(Y,E^{1},L^{\geq 2}|Y) is an LL_{\infty}-bundle in a canonical way, and the inclusion 𝒴{\mathscr{Y}}\to{\mathscr{M}} is a linear morphism. Let us call such embeddings simple subbundles.

Our main technical result can be summarized by saying that linear étale fibrations admit particularly ’nice’ sections, at least after replacing the target by a locally isomorphic one:

  • Theorem A (Theorem 2.2) Let f:𝒩f:{\mathscr{M}}\to{\mathscr{N}} be a linear étale fibration. Then there exists a commutative diagram of LL_{\infty}-bundles

    {{\mathscr{M}}^{\prime}}𝒩{{\mathscr{N}}^{\prime}}{{\mathscr{M}}}𝒩 ,{{\mathscr{N}}\hbox to0.0pt{\,,\hss}}ι\scriptstyle{\iota}u\scriptstyle{u}s\scriptstyle{s}f\scriptstyle{f}

    where u:𝒩𝒩u:{\mathscr{N}}^{\prime}\to{\mathscr{N}} is a local isomorphism, s:𝒩s:{\mathscr{N}}^{\prime}\to{\mathscr{M}}^{\prime} is a simple subbundle, and ι:\iota:{\mathscr{M}}^{\prime}\to{\mathscr{M}} is a finite composition of transfer embeddings. Moreover, uu and ss are linear.

    Although ι\iota, the composition of transfer embeddings, is not linear, the composition fι:𝒩f\circ\iota:{\mathscr{M}}^{\prime}\to{\mathscr{N}} is linear as well, and also induces isomorphisms of bundles in degrees two and larger.

We can view this theorem as exhibiting how {\mathscr{M}} is built up from 𝒩{\mathscr{N}} (or 𝒩{\mathscr{N}}^{\prime}) in several steps. In this sense, we consider Theorem A a structure theorem for étale fibrations.

Inverse function theorem

When we apply Theorem A to the case of trivial fibrations, adding the assumption that ff induces a bijection on classical loci, we can strengthen the result, and replace the local isomorphism uu by the inclusion 𝒩|U𝒩{\mathscr{N}}|_{U}\to{\mathscr{N}} of an open neighborhood of the classical locus in 𝒩{\mathscr{N}}. We obtain:

  • Theorem B (Corollary 3.2) Every trivial fibration of LL_{\infty}-bundles admits a section, at least after restricting to an open neighborhood of the classical locus of the target.

This theorem prompts us to define the category of germs of LL_{\infty}-bundles by declaring

Morgerm(,𝒩)=limUMorL-bundles(|U,𝒩),\mathop{\rm Mor}\nolimits_{\text{germ}}({\mathscr{M}},{\mathscr{N}})=\mathop{\lim\limits_{\textstyle\longrightarrow}}_{U}\mathop{\rm Mor}\nolimits_{\text{$L_{\infty}$-bundles}}({\mathscr{M}}|_{U},{\mathscr{N}})\,,

where the limit is taken over all open neighborhoods of the classical locus of {\mathscr{M}}. This new category inherits the structure of category of fibrant objects, and it still has the same homotopy category. It has the additional property, that every trivial fibration admits a section. Such categories of fibrant objects have a particularly simple description of their homotopy categories: the morphisms are simply homotopy classes of morphisms (Corollary 3.13). Here two morphism germs f,g:𝒩f,g:{\mathscr{M}}\to{\mathscr{N}} are homotopic if there exists a morphism germ h:𝒫𝒩h:{\mathscr{M}}\to{\mathscr{P}}{\mathscr{N}} from {\mathscr{M}} to a path space object 𝒫𝒩{\mathscr{P}}{\mathscr{N}} of 𝒩{\mathscr{N}}, which gives back ff and gg upon composing with the two evaluation maps 𝒫𝒩𝒩{\mathscr{P}}{\mathscr{N}}\to{\mathscr{N}}. (The existence of 𝒫𝒩{\mathscr{P}}{\mathscr{N}} and the two evaluation maps is guaranteed by the axioms of category of fibrant objects.)

After the posting of the first e-print version [3] on arXiv.org, we learned that a similar version of the inversion function theorem for LL_{\infty}-bundles (called LL_{\infty} spaces by the authors) was also obtained by Amorim-Tu using a different method [1].

The associated differential graded algebra

By standard facts, we can associate to an LL_{\infty}-bundle (M,L,λ)(M,L,\lambda)

  1. (i)

    a differential graded manifold, whose structure sheaf is the sheaf of commutative differential graded algebras 𝒜=Sym𝒪ML{\mathscr{A}}=\mathop{\rm Sym}\nolimits_{{\mathscr{O}}_{M}}L^{\vee}, with a derivation Q:𝒜𝒜Q:{\mathscr{A}}\to{\mathscr{A}} of degree 1, induced by (λk)(\lambda_{k}), satisfying Q2=12[Q,Q]=0Q^{2}=\frac{1}{2}[Q,Q]=0,

  2. (ii)

    the commutative differential graded algebra Γ(M,𝒜)\Gamma(M,{\mathscr{A}}) of global sections.

As another application of Theorem A, we give an elementary proof of the following

  • Theorem C (Theorem 4.2) Any weak equivalence of LL_{\infty}-bundles induces a quasi-isomorphism of the associated differential graded algebras of global sections.

The importance of this theorem lies in the fact that it establishes that the differential graded algebra of global sections is an invariant of an LL_{\infty}-bundle: Weakly equivalent LL_{\infty}-bundles have quasi-isomorphic global section algebras.

The converse, namely that every morphism of LL_{\infty}-bundles, which induces a quasi-isomorphism on global section differential graded algebras is a weak equivalence, has been proved using techniques from the theory of dg CC^{\infty}-rings, in particular the existence of the cotangent complex. See [16, 7, 19, 20].

Notations and conventions

Differentiable means CC^{\infty}. Manifold means differentiable manifold, which includes second countable and Hausdorff as part of the definition. Hence manifolds admit partitions of unity, which implies that vector bundles admit connections, and fiberwise surjective homomorphisms of vector bundles admit sections.

For any graded vector bundle EE over a manifold MM, we sometimes use the same symbol EE to denote the sheaf of its sections over MM, by abuse of notation. In particular, for a graded vector bundle LL over MM, by Sym𝒪ML\mathop{\rm Sym}\nolimits_{{\mathscr{O}}_{M}}L^{\vee}, or simply SymL\mathop{\rm Sym}\nolimits L^{\vee}, we denote the sheaf, over MM, of sections of the graded vector bundle SymL\mathop{\rm Sym}\nolimits L^{\vee}, i.e. the sheaf of fiberwise polynomial functions on LL.

The notation |||\cdot| denotes the degree of an element. When we use this notation, we assume the input is a homogeneous element.

Acknowledgments

We would like to thank several institutions for their hospitality, which allowed the completion of this project: Pennsylvania State University (Liao), University of British Columbia (Liao and Xu), National Center for Theoretical Science (Liao), KIAS (Xu), Institut des Hautes Études Scientifiques (Liao) and Institut Henri Poincaré (Behrend, Liao and Xu). We also wish to thank Ruggero Bandiera, Damien Broka, David Carchedi, Alberto Cattaneo, David Favero, Domenico Fiorenza, Ezra Getzler, Owen Gwilliam, Vladimir Hinich, Bumsig Kim, Wille Liu, Marco Manetti, Raja Mehta, Pavel Mnev, Joost Nuiten, Byungdo Park, Jonathan Pridham, Dima Roytenberg, Pavol Severa, Mathieu Stiénon and Ted Voronov for fruitful discussions and useful comments.

1 Preliminaries

The present paper is a sequel to [2]. We briefly summarize important facts in this section. See [2] for the details.

LL_{\infty}-bundles

Recall that a morphism of LL_{\infty}-bundles (f,ϕ):(M,L,λ)(M,L,λ)(f,\phi):(M,L,\lambda)\to(M^{\prime},L^{\prime},\lambda^{\prime}) consists of a differentiable map of manifolds f:MMf:M\to M^{\prime}, and ϕSymM0(L,fL)\phi\in\mathop{\rm Sym}\nolimits_{M}^{0}(L,f^{\ast}L^{\prime}) such that ϕλ=λϕ\phi\circ\lambda=\lambda^{\prime}\bullet\phi. Such a morphism (f,ϕ)(f,\phi) is said to be linear if ϕk=0\phi_{k}=0 for all k1k\geq 1. It is called a fibration if ff is a submersion, and ϕ1:LfL\phi_{1}:L\to f^{\ast}L^{\prime} is surjective. The following proposition was proved in [2].

Proposition 1.1

Every fibration is equal to the composition of a linear fibration with an isomorphism.

Recall that a morphism {\mathscr{M}}\to{\mathscr{M}}^{\prime} of LL_{\infty}-bundles is étale at a classical point PP of {\mathscr{M}} if it induces a quasi-isomorphism of tangent complexes at PP. We say a morphism {\mathscr{M}}\to{\mathscr{M}}^{\prime} is étale if it is étale at every classical point of {\mathscr{M}}. A morphism {\mathscr{M}}\to{\mathscr{M}}^{\prime} is a weak equivalence if it is étale and induces a bijection of classical loci. The main theorem in [2] is the following

Theorem 1.2

The category of LL_{\infty}-bundles is a category of fibrant objects.

Homotopy transfer theorem

An important tool in the present paper is the homotopy transfer theorem. Let (L,δ)(L,\delta) be a complex of vector bundles (of finite dimension, concentrated in finitely many positive degrees) over a manifold MM. Assume that LL is endowed with a finite descending filtration L=F0LF1LL=F_{0}L\supset F_{1}L\supset\ldots which is compatible with the grading and the differential δ\delta.

Remark 1.3

The natural filtration of LL is given by

FkL=ikLi.F_{k}L=\bigoplus_{i\geq k}L^{i}\,.

Every L[1]L_{\infty}[1]-structure on LL is filtered (i.e. increases the filtration degree by 11) with respect to this natural filtration.

In the proof of Lemma 2.3, we need the following variation of the natural filtration FF at level nn. In fact, we define

F~k=Fk,for all kn,n+1,\widetilde{F}_{k}=F_{k}\,,\qquad\text{for all $k\not=n,n+1$}\,,

and

F~n=jn1Lj,F~n+1=jn+1Lj.\widetilde{F}_{n}=\bigoplus_{j\geq n-1}L^{j}\,,\qquad\widetilde{F}_{n+1}=\bigoplus_{j\geq n+1}L^{j}\,.

The claim (which is easy to check) is that the only operation which is not of filtered degree 1 with respect to F~\widetilde{F} is λ1:LnLn+1\lambda_{1}:L^{n}\to L^{n+1}.

Let η:LL\eta:L\to L be a vector bundle map of degree 1-1 which is compatible with the filtration FF and satisfies the two equations

η2=0,ηδη=η.\eta^{2}=0\,,\qquad\eta\delta\eta=\eta\,.

(We call η\eta a contraction of δ\delta.) Under these hypotheses, δη\delta\eta and ηδ\eta\delta are projection operators, and so is [δ,η][\delta,\eta]. We define

H=ker[δ,η]=ker(δη)ker(ηδ)=im(idL[δ,η])H=\ker[\delta,\eta]=\ker(\delta\eta)\cap\ker(\eta\delta)=\mathop{\rm im}\nolimits(\operatorname{id}_{L}-[\delta,\eta])\,

which is a graded vector subbundle of LL. Let us write ι:HL\iota:H\to L for the inclusion, and π:LH\pi:L\to H for the projection. We have

ιπ=idL[δ,η],andπι=idH.\iota\pi=\operatorname{id}_{L}-[\delta,\eta]\,,\quad\text{and}\quad\pi\iota=\operatorname{id}_{H}\,.

We write δ\delta also for the induced differential on HH. Then ι:(H,δ)(L,δ)\iota:(H,\delta)\to(L,\delta) is a homotopy equivalence with homotopy inverse π\pi.

Proposition 1.4 (Homotopy Transfer Theorem)

Let λ=(λk)k0\lambda=(\lambda_{k})_{k\geq 0} be a curved L[1]L_{\infty}[1]-structure on (L,δ)(L,\delta). If λ\lambda is filtered, then there is a unique ϕSymM0(H,L)\phi\in\mathop{\rm Sym}\nolimits_{M}^{0}(H,L) satisfying the equation

ϕ=ιηλϕ.\phi=\iota-\eta\lambda\bullet\phi\,. (1)

Setting

μ=πλϕSymM1(H,H)\mu=\pi\lambda\bullet\phi\in\mathop{\rm Sym}\nolimits_{M}^{1}(H,H)

defines a curved L[1]L_{\infty}[1]-structure on (H,δ)(H,\delta), such that (id,ϕ)(\operatorname{id},\phi) is a morphism of LL_{\infty}-bundles from (M,H,δ+μ)(M,H,\delta+\mu) to (M,L,δ+λ)(M,L,\delta+\lambda).

Furthermore, there exists a morphism of LL_{\infty}-bundles (id,π~):(M,L,δ+λ)(M,H,δ+ν)(\operatorname{id},\widetilde{\pi}):(M,L,\delta+\lambda)\to(M,H,\delta+\nu) satisfying the equations π~1=ππ~1λ1η\widetilde{\pi}_{1}=\pi-\widetilde{\pi}_{1}\lambda_{1}\eta and π~ϕ=idH\widetilde{\pi}\bullet\phi=\operatorname{id}_{H}.

The formulas of ϕ\phi, μ\mu and π~\widetilde{\pi} can be obtained by the method in [4] (also see [2, 13]). Since the filtration FF is assumed to have finite length, the operations ϕ\phi, μ\mu and π~\widetilde{\pi} are finite sums of compositions of smooth operations. Thus they are smooth.

The explicit formulas of ϕ\phi and μ\mu also can be obtained by solving (1) recursively. The resulting formulas can be expressed as sums over trees.

Proposition 1.5

Let (id,ϕ):(M,H,δ+μ)(M,L,δ+λ)(\operatorname{id},\phi):(M,H,\delta+\mu)\to(M,L,\delta+\lambda) be an inclusion morphism of LL_{\infty}-bundles obtained from Proposition 1.4. Then (id,ϕ)(\operatorname{id},\phi) is a weak equivalence of LL_{\infty}-bundles.

  • Proof. Let PMP\in M be a point. Since π~1ϕ1=id\widetilde{\pi}_{1}\circ\phi_{1}=\operatorname{id}, we have that ϕ1:H1L1\phi_{1}:H^{1}\to L^{1} is an isomorphism onto a subbundle of L1L^{1}, and thus μ0(P)=0\mu_{0}(P)=0 is equivalent to λ0(P)=0\lambda_{0}(P)=0. In other words, the Maurer-Cartan loci of (M,H,δ+μ)(M,H,\delta+\mu) and (M,L,δ+λ)(M,L,\delta+\lambda) are equal.

    Suppose PP is a Maurer-Cartan point. Then (H|P,δ+μ1)(H|_{P},\delta+\mu_{1}) and (L|P,δ+λ1)(L|_{P},\delta+\lambda_{1}) are complexes of vector spaces, and ϕ1\phi_{1} is a morphism of complexes. In fact,

    ϕ1:(H|P,δ+μ1)(L|P,δ+λ1)\phi_{1}:(H|_{P},\delta+\mu_{1})\to(L|_{P},\delta+\lambda_{1})

    is a quasi-isomorphism. To prove it, considering the spectral sequence induced by the given filtration, one can reduce the proof to the fact that

    ι:(H|P,δ)(L|P,δ)\iota:(H|_{P},\delta)\longrightarrow(L|_{P},\delta)

    is a quasi-isomorphism. Consequently, the vertical maps

    TM|P\textstyle{TM|_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}id\scriptstyle{\operatorname{id}}H1|P\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces H^{1}|_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ1|P\scriptstyle{\phi_{1}|_{P}}H2|P\textstyle{H^{2}|_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ1|P\scriptstyle{\phi_{1}|_{P}}\textstyle{\ldots}TM|P\textstyle{TM|_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}L1|P\textstyle{L^{1}|_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}L2|P\textstyle{L^{2}|_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\ldots}

    also form a quasi-isomorphism of complexes. This completes the proof. \Box

2 Étale fibrations

2.1 The statement of main theorem

Let =(M,L,λ){\mathscr{M}}=(M,L,\lambda) and 𝒩=(N,L,λ){\mathscr{N}}=(N,L^{\prime},\lambda^{\prime}) be LL_{\infty}-bundles, and (f,ϕ):𝒩(f,\phi):{\mathscr{M}}\to{\mathscr{N}} be an étale fibration. Due to Proposition 1.1, we may assume that (f,ϕ):𝒩(f,\phi):{\mathscr{M}}\to{\mathscr{N}} is linear, i.e. ϕ=ϕ1\phi=\phi_{1}.

Definition 2.1

A morphism (U,H,μ)(M,L,λ)(U,H,\mu)\to(M,L,\lambda) of LL_{\infty}-bundles is called a transfer embedding if UU is an open submanifold of MM which contains π0()\pi_{0}({\mathscr{M}}) and furthermore it is the composition of the trivial fibration |U{\mathscr{M}}|_{U}\hookrightarrow{\mathscr{M}} and an inclusion morphism obtained by the transfer theorem (Proposition 1.4).

We say (Y,E,ν)(Y,E,\nu) is a sub-LL_{\infty}-bundle of (U,H,μ)(U,H,\mu) if YY is a submanifold of UU, and EE is a graded vector subbundle of H|YH|_{Y} such that the inclusion map EHE\hookrightarrow H is a linear morphism of LL_{\infty}-bundles.

Let YMY\subset M be a submanifold, and E1L1|YE^{1}\subset L^{1}|_{Y} a subbundle, such that the curvature λ0|Y:YL1|Y\lambda_{0}|_{Y}:Y\to L^{1}|_{Y} factors through E1E^{1}. Then 𝒴=(Y,E1L2|Y){\mathscr{Y}}=(Y,E^{1}\oplus L^{\geq 2}|_{Y}) is an LL_{\infty}-bundle in a canonical way, and the inclusion 𝒴{\mathscr{Y}}\to{\mathscr{M}} is a linear morphism. We call such embeddings simple subbundles.

We prove the following theorem in this section.

Theorem 2.2

Let (f,ϕ):(M,L,λ)(N,L,λ)(f,\phi):(M,L,\lambda)\to(N,L^{\prime},\lambda^{\prime}) be a linear fibration.

  1. (1)

    If (f,ϕ)(f,\phi) is étale at every point in a subset ZZ of the Maurer-Cartan locus of (M,L,λ)(M,L,\lambda), then there exist a finite sequence of transfer embeddings (U,H,μ)(M,L,λ)(U,H,\mu)\to\cdots\to(M,L,\lambda), and a simple embedding (Y,E,ν)(U,H,μ)(Y,E,\nu)\hookrightarrow(U,H,\mu) such that

    1. (i)

      ZYZ\subset Y;

    2. (ii)

      the composition (U,H,μ)(M,L,λ)(N,L,λ)(U,H,\mu)\to(M,L,\lambda)\to(N,L^{\prime},\lambda^{\prime}) is a linear fibration such that H2f(L)2H^{\geq 2}\to f^{*}(L^{\prime})^{\geq 2} is an isomorphism of graded vector bundles;

    3. (iii)

      the morphism (Y,E,ν)(N,L,λ)|f(Y)(Y,E,\nu)\to(N,L^{\prime},\lambda^{\prime})|_{f(Y)} is a linear local isomorphism of LL_{\infty}-bundles.

  2. (2)

    Furthermore, if (f,ϕ)(f,\phi) is a trivial fibration, then the transfer embeddings and the simple embedding can be chosen so that the morphism (Y,E,ν)(N,L,λ)|f(Y)(Y,E,\nu)\to(N,L^{\prime},\lambda^{\prime})|_{f(Y)} is a linear isomorphism of LL_{\infty}-bundles.

More explicitly, by choosing a splitting of the short exact sequence 0KH1f(L)100\to K\hookrightarrow H^{1}\xrightarrow{}f^{\ast}(L^{\prime})^{1}\to 0 of vector bundles, one has a decomposition

H1\displaystyle H^{1} =Kf(L)1,\displaystyle=K\oplus f^{\ast}(L^{\prime})^{1},
μ0\displaystyle\mu_{0}\, =u+fλ0.\displaystyle=\,u\,+\,f^{\ast}\lambda_{0}^{\prime}\,.

Then uu is a regular section of KK over UU. This means that for every point PMP\in M, such that u(P)=0u(P)=0, the derivative induces a surjective linear map DPu:TM|PE|PD_{P}u:TM|_{P}\to E|_{P}. In other words, uu being a regular section is equivalent to that uu is transversal to the zero section of EE. One can choose YY to be an open neighborhood of π0()\pi_{0}({\mathscr{M}}) in Z(u)Z(u) and E1=f(L)1|YE^{1}=f^{\ast}(L^{\prime})^{1}|_{Y} such that the restriction f|Yf|_{Y} is a diffeomorphism from YY to an open submanifold of NN which contains π0(𝒩)\pi_{0}({\mathscr{N}}).

We proceed the proof of Theorem 2.2 in three steps:

  1. Step 1.

    construct a finite sequence of transfer embeddings (U,H,μ)(M,L,λ)(U,H,\mu)\to\cdots\to(M,L,\lambda) such that the composition

    (U,H,μ)(M,L,λ)(N,L,λ)(U,H,\mu)\to(M,L,\lambda)\to(N,L^{\prime},\lambda^{\prime})

    is a linear fibration whose restriction (U,H2)(U,f(L)2|U)\big{(}U,H^{\geq 2}\big{)}\to\big{(}U,f^{\ast}(L^{\prime})^{\geq 2}|_{U}\big{)} is an isomorphism of graded vector bundles;

  2. Step 2.

    construct a simple subbundle (Y,E,ν)(U,H,μ)(Y,E,\nu)\hookrightarrow(U,H,\mu) such that ZYZ\subset Y and the composition

    (Y,E,ν)(U,H,μ)(M,L,λ)(N,L,λ)(Y,E,\nu)\to(U,H,\mu)\to(M,L,\lambda)\to(N,L^{\prime},\lambda^{\prime}) (2)

    is a linear local isomorphism of LL_{\infty}-bundles;

  3. Step 3.

    in the case of trivial fibration, use a topological lemma (Lemma 2.6) to modify the simple embedding constructed in Step 2 so that the composition (2) becomes an isomorphism.

2.2 Step 1: construction of transfer embeddings

To achieve Step 1, we construct a sequence of morphisms by the transfer theorem in the following way.

Lemma 2.3

Consider a fixed base manifold MM, with a linear morphism of LL_{\infty}-bundles (idM,ϕ):(M,L,λ)(M,L,λ)(\operatorname{id}_{M},\phi):(M,L,\lambda)\to(M,L^{\prime},\lambda^{\prime}) over it. Let k2k\geq 2. Suppose that

  1. (i)

    ϕ:LL\phi:L\to L^{\prime} is an isomorphism of vector bundles in degrees k+1\geq k+1, and an epimorphism in degrees k\leq k.

  2. (ii)

    Moreover, let Zπ0()Z\subset\pi_{0}({\mathscr{M}}) be a subset of the classical locus of {\mathscr{M}} such that at every point PP of ZZ we have that the induced map on the cohomology Hn(L|P,λ1)Hn(L|P,λ1)H^{n}(L|_{P},\lambda_{1})\to H^{n}(L^{\prime}|_{P},\lambda^{\prime}_{1}) is an isomorphism when nkn\geq k and surjective when n=k1n=k-1.

Then, after restricting to an open neighborhood of ZZ in MM, if necessary, there exists an inclusion morphism ι:HL\iota:H\to L obtained by the transfer theorem such that the composition ϕι:HL\phi\circ\iota:H\to L^{\prime} is a linear morphism of LL_{\infty}-bundles, which is an isomorphism in degrees k\geq k and an epimorphism in degrees k1\leq k-1.

  • Proof. Since ϕ\phi is an epimorphism in each degree, the kernel KK of ϕ:LL\phi:L\to L^{\prime} is a graded vector bundle, and an L[1]L_{\infty}[1]-ideal in LL. Consider the diagram

    Kk1\textstyle{K^{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}λ1\scriptstyle{\lambda_{1}}Kk\textstyle{K^{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}Lk2\textstyle{L^{k-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Lk1\textstyle{L^{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ1\scriptstyle{\lambda_{1}}Lk\textstyle{L^{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Lk+1 .\textstyle{L^{k+1}\hbox to0.0pt{\,.\hss}}

    A diagram chase proves that at all points of ZZ, the vector bundle homomorphism λ1:Kk1Kk\lambda_{1}:K^{k-1}\to K^{k} is surjective. This will still be the case in an open neighborhood, so we may assume, without loss of generality, that this map is an epimorphism over all of MM. We then choose a section χ:KkKk1\chi:K^{k}\to K^{k-1} of λ1\lambda_{1}, and a retraction of θ:LkKk\theta:L^{k}\to K^{k} of j:KkLkj:K^{k}\to L^{k}, and define η:LkLk1\eta:L^{k}\to L^{k-1} to be equal to η=jχθ\eta=j\chi\theta.

    Kk1\textstyle{K^{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}λ1\scriptstyle{\lambda_{1}}Kk\textstyle{K^{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}χ\scriptstyle{\chi}Lk2\textstyle{L^{k-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Lk1\textstyle{L^{k-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ=λ1\scriptstyle{\delta=\lambda_{1}}Lk\textstyle{L^{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}θ\scriptstyle{\theta}η=jχθ\scriptstyle{\eta=j\chi\theta}Lk+1\textstyle{L^{k+1}}

    We also write δ\delta for λ1:Lk1Lk\lambda_{1}:L^{k-1}\to L^{k}, but set δ=0\delta=0 elsewhere, to define a differential δ:LL\delta:L\to L of degree 1. Our definition ensures that δ2=0\delta^{2}=0, although λ120\lambda_{1}^{2}\not=0.

    One checks that ηδη=η\eta\delta\eta=\eta, and so ηδ\eta\delta and δη\delta\eta are projection operators, so in both cases kernel and image are bundles. Let Hk1=kerηδH^{k-1}=\ker\eta\delta, and Hk=kerδηH^{k}=\ker\delta\eta. For ik,k1i\not=k,k-1, we set Hi=LiH^{i}=L^{i}.

    The two projection operators jθ=δηj\theta=\delta\eta coincide, and hence Hk=kerδηH^{k}=\ker\delta\eta is a complement for Kk=imjθK^{k}=\mathop{\rm im}\nolimits j\theta. Therefore, the composition HkLkLkH^{k}\to L^{k}\to{L^{\prime}}^{k} is an isomorphism.

    We have Lk1=kerηδ+imηδkerηδ+Kk1=Hk1+Kk1L^{k-1}=\ker\eta\delta+\mathop{\rm im}\nolimits\eta\delta\subset\ker\eta\delta+K^{k-1}=H^{k-1}+K^{k-1}, because η\eta factors through Kk1K^{k-1}, by definition. It follows that the composition Hk1Lk1Lk1H^{k-1}\to L^{k-1}\to{L^{\prime}}^{k-1} is surjective.

    Now λδ\lambda-\delta is a curved L[1]L_{\infty}[1]-structure on the complex of vector bundles (L,δ)(L,\delta), and η\eta is a contraction of δ\delta. We apply the transfer theorem for bundles of curved L[1]L_{\infty}[1]-algebras: Proposition 1.4. This gives rise to a structure μ\mu, of a bundle of curved L[1]L_{\infty}[1]-algebras on the complex (H,δ)(H,\delta), together with a morphism of curved L[1]L_{\infty}[1]-structures ι:HL\iota:H\to L, whose linear part is given by the inclusion HLH\subset L. Here the linear part is the inclusion because η(λ1δ)=0\eta(\lambda_{1}-\delta)=0. We consider δ+μ\delta+\mu as an LL_{\infty}-bundle structure on HH.

    The composition ϕι\phi\bullet\iota is linear, because all non-trivial trees involved in ι\iota have η\eta at the root, and ϕη=0\phi\circ\eta=0.

In order to apply the transfer theorem, we use the variation of the natural filtration at level kk, see Remark 1.3, on LL. Both δ\delta and η\eta preserve this filtration, hence HH inherits this filtration, and the transfer theorem applies. \Box

  • Proof of Step 1. Note that since all the bundles are assumed to have finite ranks here, the first assumption in Lemma 2.3 is automatically satisfied for a linear fibration with a large enough kk. It is also clear that the second assumption is satisfied for étale fibrations. Applying Lemma 2.3 inductively to the given linear fibration, we obtain a sequence of transfer embeddings (U,H,μ)(M,L,λ)(U,H,\mu)\to\cdots\to(M,L,\lambda) satisfying the condition in Step 1. \Box

2.3 Step 2: splitting

Next, we split Hf(L)H\twoheadrightarrow f^{*}(L^{\prime}).

Lemma 2.4

Let (f,ϕ):(M,H,μ)(N,L,λ)(f,\phi):(M,H,\mu)\to(N,L^{\prime},\lambda^{\prime}) be a linear fibration of LL_{\infty}-bundles such that ϕ:Hkf(L)k\phi:H^{k}\to f^{\ast}(L^{\prime})^{k} is an isomorphism, for all k2k\geq 2. Let ZZ be a subset of the Maurer-Cartan locus of (H,μ)(H,\mu), such that the morphism of LL_{\infty}-bundles (f,ϕ)(f,\phi) is étale at every point of ZZ. After restricting to an open neighborhood UU of ZZ in MM, there exists a submanifold YY of UU, and subbundle E1E^{1} of H1|YH^{1}|_{Y}, such that

  1. (i)

    ZYZ\subset Y,

  2. (ii)

    the restriction of the curvature λ0|Y\lambda_{0}|_{Y} is contained in Γ(Y,E1)Γ(Y,H1|Y)\Gamma(Y,E^{1})\subset\Gamma(Y,H^{1}|_{Y}), so that E:=E1H2|YE:=E^{1}\oplus H^{\geq 2}|_{Y} is a bundle of curved L[1]L_{\infty}[1]-subalgebras of H|YH|_{Y},

  3. (iii)

    the composition YMNY\to M\to N is a local diffeomorphism,

  4. (iv)

    the map ϕ|Y:E1|Yf(L)1|Y\phi|_{Y}:E^{1}|_{Y}\to f^{\ast}(L^{\prime})^{1}|_{Y} is an isomorphism of vector bundles, so that the composition (Y,E)(Y,fL|Y)(Y,E)\to(Y,f^{\ast}L^{\prime}|_{Y}) is a linear isomorphism of bundles of curved L[1]L_{\infty}[1]-algebras.

In particular, the composition (Y,E)(N,L)(Y,E)\to(N,L^{\prime}) is étale at all points of ZYZ\subset Y.

  • Proof. We have a diagram

    M\textstyle{M\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s\scriptstyle{s}f\scriptstyle{f}H1\textstyle{H^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi}N\textstyle{N\ignorespaces\ignorespaces\ignorespaces\ignorespaces}t\scriptstyle{t}(L)1\textstyle{(L^{\prime})^{1}}

    Here f:MNf:M\to N is a submersion, and ϕ:H1f(L)1\phi:H^{1}\to f^{\ast}(L^{\prime})^{1} an epimorphism. We have written s=μ0s=\mu_{0} and t=λ0t=\lambda_{0}^{\prime} for the respective curvatures.

    We denote by KK the kernel of ϕ:H1f(L)1\phi:H^{1}\to f^{\ast}(L^{\prime})^{1}. We choose

    1. (i)

      an affine connection on the vector bundle (L)1(L^{\prime})^{1};

    2. (ii)

      a retraction θ:H1K=ker(ϕ)\theta:H^{1}\to K=\ker(\phi) of the inclusion KH1K\to H^{1}, giving rise to a splitting H1=KE~1H^{1}=K\oplus\widetilde{E}^{1}, where E~1H1\widetilde{E}^{1}\subset H^{1} is a subbundle such that ϕ:E~1f(L)1\phi:\widetilde{E}^{1}\to f^{\ast}(L^{\prime})^{1} is an isomorphism;

    3. (iii)

      an affine connection on the vector bundle KK.

    These data give rise to an affine connection on H1Kf(L)1H^{1}\cong K\oplus f^{\ast}(L^{\prime})^{1}.

    The curvature sΓ(M,H1)s\in\Gamma(M,H^{1}) splits into a sum

    s=u+ft,s=u+f^{\ast}t, (3)

    where uΓ(M,K)u\in\Gamma(M,K) is a section of KK.

    Consider the diagram of vector bundles over MM:

    TM/Nj(u)jKTMsuH1ϕθfTNf(t)f(L)1 .\begin{split}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 15.56494pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\\&\crcr}}}\ignorespaces{\hbox{\kern-13.28186pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{T_{M/N}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-6.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-9.28334pt\raise-19.74277pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62779pt\hbox{$\scriptstyle{j}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.65222pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.28188pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.3389pt\raise 6.5pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{(\nabla u)\circ j}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 48.8086pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 48.8086pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 56.41275pt\raise-3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 56.41275pt\raise-27.84778pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-12.01215pt\raise-39.48553pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{TM\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 12.01216pt\raise-39.48553pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 19.81577pt\raise-34.09387pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{\nabla s}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 47.45027pt\raise-39.48553pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-42.48553pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-73.73718pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 12.01216pt\raise-31.07468pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.31503pt\raise-14.3511pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{\nabla u}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 52.12662pt\raise-3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 47.45027pt\raise-39.48553pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{H^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 56.41275pt\raise-42.48553pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 46.24191pt\raise-62.23497pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\phi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 56.41275pt\raise-72.67996pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 41.12665pt\raise-19.74277pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\theta}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 54.72885pt\raise-2.99811pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern-15.56494pt\raise-84.9844pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{f^{\ast}TN\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 15.56494pt\raise-84.9844pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.37999pt\raise-78.21358pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.02083pt\hbox{$\scriptstyle{f^{\ast}(\nabla t)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 39.56494pt\raise-84.9844pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 39.56494pt\raise-84.9844pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{f^{\ast}(L^{\prime})^{1}\hbox to0.0pt{\,.\hss}}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{split} (4)

    Both squares with downward pointing arrows commute. Moreover, we have θ(s)=u\theta\circ(\nabla s)=\nabla u.

    Let PZP\in Z. The fact (f,ϕ)(f,\phi) is étale at PP means that in the morphism of short exact sequences of vector spaces

    TM/N|PK|PTM|PH1|PTN|ϕ(P)(L)1|ϕ(P) ,\begin{split}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 19.71143pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\\&\crcr}}}\ignorespaces{\hbox{\kern-16.85728pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{T_{M/N}|_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.8573pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 51.30399pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-6.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.56888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 51.30399pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K|_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 63.59465pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 63.59465pt\raise-29.43112pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-16.69865pt\raise-41.06888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{TM|_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.69867pt\raise-41.06888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 51.05675pt\raise-41.06888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-46.56888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-78.28996pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 51.05675pt\raise-41.06888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{H^{1}|_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 63.59465pt\raise-46.56888pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 63.59465pt\raise-76.48552pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-19.71143pt\raise-88.78996pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{TN|_{\phi(P)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 19.71144pt\raise-88.78996pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 43.71143pt\raise-88.78996pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 43.71143pt\raise-88.78996pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{(L^{\prime})^{1}|_{\phi(P)}\hbox to0.0pt{\,,\hss}}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{split} (5)

    the map TM/N|PK|PT_{M/N}|_{P}\to K|_{P} is an isomorphism.

Note that the composition (u)j(\nabla u)\circ j is an isomorphism at PZP\in Z, because at every point in ZZ, the diagram (4) coincides with the diagram (5). Then (u)j(\nabla u)\circ j is still an isomorphism in a neighborhood of ZZ, so we will assume that it is true everywhere: (u)j(\nabla u)\circ j is an isomorphism.

We note that uΓ(M,K)u\in\Gamma(M,K) is a regular section. This is true, because at points where uu vanishes, the derivative TM|PK|PTM|_{P}\to K|_{P} coincides with (u)|P(\nabla u)|_{P}, but u:TMK\nabla u:TM\to K is an epimorphism because (u)j(\nabla u)\circ j is an isomorphism.

Hence, Y=Z(u)Y=Z(u) is a submanifold of MM, and we have a short exact sequence of vector bundles TYTM|YK|YTY\to TM|_{Y}\to K|_{Y}. Note that ZYZ\subset Y.

Since TM/N|YT_{M/N}|_{Y} is a complement for TYTY in TM|YTM|_{Y}, it follows that the composition TYTM|Y(fTN)|YTY\to TM|_{Y}\to(f^{\ast}TN)|_{Y} is an isomorphism, so that the composition YMNY\to M\to N is étale.

By definition u|Y=0u|_{Y}=0, so after restricting to YY, the curvature s|Ys|_{Y} is contained in the subbundle E1:=E~1|YH1|YE^{1}:=\widetilde{E}^{1}|_{Y}\subset H^{1}|_{Y}. \Box

  • Proof of Step 2. By Property (ii) in Lemma 2.4, there exists a simple subbundle (Y,E,ν)(U,H,μ)(Y,E,\nu)\hookrightarrow(U,H,\mu). The other properties in Lemma 2.4 guarantee that this simple subbundle satisfies the requirements in Step 2. \Box

2.4 Step 3 and the proof of Theorem 2.2

By Lemma 2.3 and Lemma 2.4, we proved Assertion (1) in Theorem 2.2. To prove Assertion (2), we need the following observation from the proof of Lemma 2.4.

Remark 2.5

Let XX be the preimage of f(Z)f(Z) under ff in Y=Z(u)Y=Z(u). If (f,ϕ)(f,\phi) is a trivial fibration, then the restriction f:Xf(Z)f:X\to f(Z) is a bijection because of Decomposition (3).

Now assume the given linear fibration (f,ϕ):(M,H,μ)(N,L,λ)(f,\phi):(M,H,\mu)\to(N,L^{\prime},\lambda^{\prime}) is trivial. In Lemma 2.4, we proved that the composition YMNY\to M\to N is a local diffeomorphism. However, to get an isomorphism of LL_{\infty}-bundles, we need to show that f:Yf(Y)Nf:Y\to f(Y)\subset N is a diffeomorphism. To achieve this step, we need a topological lemma.

We expect the following lemma is classical, but we could not find a reference. So we include a proof here for the sake of completeness.

Lemma 2.6

Let f:MNf:M\to N be a local diffeomorphism, and ZNZ\subset N a closed subset, with preimage X=f1(Z)MX=f^{-1}(Z)\subset M. Assume that the induced map XZX\to Z is injective. Then there exists an open neighborhood VV of XX in MM, such that f|V:VNf|_{V}:V\to N is a diffeomorphism onto an open neighborhood of ZZ in NN.

  • Proof. It suffices to prove that there exists an open neighborhood VV of XX in MM, such that f|V:VNf|_{V}:V\to N is injective.

    Case I. ZZ is compact.

    Choose a sequence of relatively compact open neighborhoods V1V2V_{1}\supset V_{2}\supset\ldots of XX in MM, such that

    iVi=X.\bigcap_{i}V_{i}=X\,.

    We claim that there exists an ii, such that ff is injective when restricted to ViV_{i}. If not, choose in every ViV_{i} a pair of points (Pi,Qi)(P_{i},Q_{i}), such that f(Pi)=f(Qi)f(P_{i})=f(Q_{i}). Upon replacing (Pi,Qi)(P_{i},Q_{i}) by a subsequence, we may assume that limiPi=P\lim_{i\to\infty}P_{i}=P, and limiQi=Q\lim_{i\to\infty}Q_{i}=Q. We have P,QXP,Q\in X, and by continuity, f(P)=f(Q)f(P)=f(Q). This implies P=QP=Q. Let VV be a neighborhood of P=QP=Q in MM, such that f|Vf|_{V} is injective. For sufficiently large ii, both PiP_{i} and QiQ_{i} are in VV, which is a contradiction.

    Case II. General case.

    Let (Ui)iI(U_{i})_{i\in I} be a locally finite open cover of NN, such that all UiU_{i} are relatively compact. It follows that, for every iIi\in I, the set

    Ii={jIUjUi}I_{i}=\{j\in I\mathrel{\mid}U_{j}\cap U_{i}\not=\varnothing\}

    is finite. Hence,

    U~i=jIiUj\widetilde{U}_{i}=\bigcup_{j\in I_{i}}U_{j}

    is still relatively compact, and by Case I, there exists an open neighborhood V~i\widetilde{V}_{i} of Xf1U~iX\cap f^{-1}\widetilde{U}_{i} on which ff is injective. We may assume that V~if1U~i\widetilde{V}_{i}\subset f^{-1}\widetilde{U}_{i}. Define

    Vi=(f1Ui)jIiV~j.V_{i}=(f^{-1}U_{i})\cap\bigcap_{j\in I_{i}}\widetilde{V}_{j}\,.

    This is an open subset of MM. If PXP\in X, such that f(P)Uif(P)\in U_{i}, then f(P)U~jf(P)\in\widetilde{U}_{j}, for all jIij\in I_{i}. Hence, Pf1U~jV~jP\in f^{-1}\widetilde{U}_{j}\subset\widetilde{V}_{j}, for all jIij\in I_{i}, and so PViP\in V_{i}. Thus, Xf1UiViX\cap f^{-1}U_{i}\subset V_{i}.

    We define

    V=iIVi.V=\bigcup_{i\in I}V_{i}\,.

    This is an open neighborhood of XX in MM. We claim that ff is injective on VV. So let P,QVP,Q\in V be two points such that f(P)=f(Q)f(P)=f(Q). Suppose PViP\in V_{i} and QVjQ\in V_{j}. Then f(P)Uif(P)\in U_{i}, and f(Q)Ujf(Q)\in U_{j}, so that UiU_{i} and UjU_{j} intersect. Hence iIji\in I_{j}, and so VjV~iV_{j}\subset\widetilde{V}_{i}. Since we have ViV~iV_{i}\subset\widetilde{V}_{i}, we have that both P,QV~iP,Q\in\widetilde{V}_{i}. Since ff is injective on V~i\widetilde{V}_{i}, we conclude that P=QP=Q. \Box

Now, we are ready to complete the proof of Theorem 2.2.

  • Proof of Theorem 2.2. We have constructed a sequence of transfer embeddings (U,H,μ)(M,L,λ)(U,H,\mu)\to\cdots\to(M,L,\lambda) and a simple subbundle (Y,E,ν)(U,H,μ)(Y,E,\nu)\hookrightarrow(U,H,\mu) by Lemma 2.3 and Lemma 2.4. By Remark 2.5, the underlying smooth f:YNf:Y\to N satisfies the assumption in Lemma 2.6. Thus, there exists an open neighborhood VV of ZZ in YY such that (f,ϕ):(Y,E,ν)|V(N,L,λ)|f(V)(f,\phi):(Y,E,\nu)|_{V}\to(N,L^{\prime},\lambda^{\prime})|_{f(V)} is a linear isomorphism of LL_{\infty}-bundles. \Box

3 Inverse function theorem and the homotopy category of LL_{\infty}-bundles

One important application of Theorem 2.2 is the inverse function theorem for LL_{\infty}-bundles (Theorem 3.1), which allows us to give a simple description of the homotopy category of LL_{\infty}-bundles.

3.1 The inverse function theorem for LL_{\infty}-bundles

Theorem 3.1

Let =(M,L,λ){\mathscr{M}}=(M,L,\lambda) and 𝒩=(N,L,λ){\mathscr{N}}=(N,L^{\prime},\lambda^{\prime}) be LL_{\infty}-bundles, and (f,ϕ):𝒩(f,\phi):{\mathscr{M}}\to{\mathscr{N}} a fibration. Let Zπ0()Z\subset\pi_{0}({\mathscr{M}}) be a subset of points at which (f,ϕ)(f,\phi) is étale. Then there exists a local diffeomorphism of manifolds YNY\to N and a commutative diagram

Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{{\mathscr{M}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒴\textstyle{{\mathscr{Y}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒩 .\textstyle{{\mathscr{N}}\hbox to0.0pt{\,.\hss}}

Here 𝒴{\mathscr{Y}} is the pullback of (L,λ)(L^{\prime},\lambda^{\prime}) via YNY\to N, and the lower triangle consists of morphisms of LL_{\infty}-bundles.

If, moreover, π0()π0(𝒩)\pi_{0}({\mathscr{M}})\to\pi_{0}({\mathscr{N}}) is injective, we can choose YY to be an open submanifold of NN.

  • Proof. Without loss of generality, we may assume the fibration (f,ϕ):𝒩(f,\phi):{\mathscr{M}}\to{\mathscr{N}} is linear, i.e. ϕ=ϕ1\phi=\phi_{1}. By applying Theorem 2.2 to (f,ϕ)(f,\phi), we obtain an LL_{\infty}-bundle 𝒴=(Y,E,ν)(Y,fL,fλ){\mathscr{Y}}=(Y,E,\nu)\cong(Y,f^{\ast}L^{\prime},f^{\ast}\lambda^{\prime}) together with a local diffeomorphism YNY\to N and a morphism of LL_{\infty}-bundles 𝒴{\mathscr{Y}}\to{\mathscr{M}}. This LL_{\infty}-bundle 𝒴{\mathscr{Y}} proves the first part of Theorem 3.1.

To finish the proof, we now assume π0()π0(𝒩)\pi_{0}({\mathscr{M}})\to\pi_{0}({\mathscr{N}}) is injective. Since YY was chosen to be the zero locus of uu in Lemma 2.4, it follows from (3) that f1(Z(t))YZ(s)f^{-1}\big{(}Z(t)\big{)}\cap Y\subset Z(s), and thus ff maps f1(Z(t))Yf^{-1}\big{(}Z(t)\big{)}\cap Y injectively to Z(t)Z(t). Therefore, by Lemma 2.6, the space YY can be chosen to be an open submanifold of NN. This concludes the proof. \Box

Corollary 3.2

A fibration admits local sections through every point at which it is étale.

Every trivial fibration of LL_{\infty}-bundles admits a section, after restricting the target to an open neighborhood of its classical locus.

  • Proof. Apply the theorem for either ZZ being a single point, or Z=π0()Z=\pi_{0}({\mathscr{M}}). \Box

Remark 3.3

Let {\mathscr{M}} and 𝒩{\mathscr{N}} be smooth manifolds (i.e. L=M×0L=M\times 0 and L=N×0L^{\prime}=N\times 0). Then a morphism (f,0):𝒩(f,0):{\mathscr{M}}\to{\mathscr{N}} is étale at PP if and only if the tangent map of ff is an isomorphism at PP. In this extreme case, Corollary 3.2 reduces to the inverse function theorem for smooth manifolds.

3.2 Remarks on the homotopy category

Let 𝒞{\mathscr{C}} be an arbitrary category of fibrant objects. The homotopy category Ho(𝒞)\mathrm{Ho}({\mathscr{C}}) of 𝒞{\mathscr{C}} is the localization of 𝒞{\mathscr{C}} at the weak equivalences. It follows from Brown’s lemma (every weak equivalence can be factored into a composition of a trivial fibration and a section of a trivial fibration) that Ho(𝒞)\mathrm{Ho}({\mathscr{C}}) is same as the localization at the trivial fibrations.

In general, it is complicated to describe morphisms in a localization by an arbitrary class WW of morphisms. Nevertheless, if WW admits a calculus of fractions (see [12]), then there is a simple description of the localization in terms of spans. In [6], Brown first approximated Ho(𝒞)\mathrm{Ho}({\mathscr{C}}) by another category π𝒞\pi{\mathscr{C}} and then showed that the weak equivalences in π𝒞\pi{\mathscr{C}} have a calculus of right fractions. In this way, he obtained a more explicit description of Ho(𝒞)\mathrm{Ho}({\mathscr{C}}). He also remarked in [6], that one can replace weak equivalences by trivial fibrations in his description of Ho(𝒞)\mathrm{Ho}({\mathscr{C}}).

More explicitly, recall that a path space object for an object YY in 𝒞{\mathscr{C}} is an object PYP_{Y} together with morphisms Y𝑠PY𝑒Y×YY\xrightarrow{s}P_{Y}\xrightarrow{e}Y\times Y, where ss is a weak equivalence, ee is a fibration, and the composition ese\circ s is the diagonal morphism. The fibration e:PYY×Ye:P_{Y}\to Y\times Y decomposes into two evaluation maps: ev0=pr1e\mathop{\rm ev}\nolimits_{0}=\mathop{\rm pr}\nolimits_{1}\circ e and ev1=pr2e\mathop{\rm ev}\nolimits_{1}=\mathop{\rm pr}\nolimits_{2}\circ e. Two morphisms f,g:XYf,g:X\to Y are homotopic, denoted by fgf\simeq g, if for some path space object PYP_{Y} for YY, there exists a morphism h:XPYh:X\to P_{Y}, such that f=ev0hf=\mathop{\rm ev}\nolimits_{0}\circ h and g=ev1hg=\mathop{\rm ev}\nolimits_{1}\circ h. In this case, hh is called a homotopy from ff to gg.

Lemma 3.4

Let ss be a section of a trivial fibration t:XXt:X^{\prime}\to X. Then st1st\simeq 1.

  • Proof. The diagonal morphism XX×XXX^{\prime}\to X^{\prime}\times_{X}X^{\prime} is a weak equivalence. Hence, when we factor the canonical map X×XXX×XX^{\prime}\times_{X}X^{\prime}\to X^{\prime}\times X^{\prime} as a weak equivalence ww, followed by a fibration ff, we obtain a path space for XX^{\prime}:

    PX{PX^{\prime}}X{X^{\prime}}X×XX{X^{\prime}\times_{X}X^{\prime}}X×X .{X^{\prime}\times X^{\prime}\hbox to0.0pt{\,.\hss}}f\scriptstyle{f}Δ\scriptstyle{\Delta}w\scriptstyle{w}

    The morphism st×1:XX×Xst\times 1:X^{\prime}\to X^{\prime}\times X^{\prime} factors through X×XXX^{\prime}\times_{X}X^{\prime}, because tst=ttst=t. So we can replace Δ\Delta by st×1st\times 1 in the above diagram:

    PX{PX^{\prime}}X{X^{\prime}}X×XX{X^{\prime}\times_{X}X^{\prime}}X×X ,{X^{\prime}\times X^{\prime}\hbox to0.0pt{\,,\hss}}f\scriptstyle{f}st×1\scriptstyle{st\times 1}w\scriptstyle{w}

    and we see that, indeed, st1st\simeq 1. \Box

Let π𝒞\pi{\mathscr{C}} be the category with the same objects as 𝒞{\mathscr{C}} and with morphisms

Morπ𝒞(X,Y)=Mor(X,Y)/,\mathop{\rm Mor}\nolimits_{\pi{\mathscr{C}}}(X,Y)=\mathop{\rm Mor}\nolimits(X,Y)\big{/}\approx\,,

where fgf\approx g if any only if there exists a weak equivalence t:XXt:X^{\prime}\to X such that ftgtf\circ t\simeq g\circ t. The relation \approx is an equivalence relation, and if fgf\approx g, then ff is a weak equivalence if and only if gg is. Thus the category π𝒞\pi{\mathscr{C}} inherits the notion of weak equivalence. Brown [6] proves that π𝒞\pi{\mathscr{C}} admits a right calculus of fractions with respect to weak equivalence, and that the category of right fractions is the homotopy category of 𝒞{\mathscr{C}}.

We will now assume that 𝒞{\mathscr{C}} satisfies the following property:

Every trivial fibration admits a section. (*)

A first consequence of this condition is the following.

Lemma 3.5

In a category of fibrant objects satisfying (\ast), fgf\simeq g implies ufuguf\simeq ug and fvgvfv\simeq gv, whenever these compositions make sense.

  • Proof. The claim fvgvfv\simeq gv is trivial. By [6], Proposition 1, (ii), the assumption fgf\simeq g implies that for every morphism uu, such that ufuf and ugug are defined, there exists a trivial fibration xx, such that ufxugxufx\simeq ugx. Precomposing with a section of xx gives the required result ufuguf\simeq ug. \Box

Lemma 3.6

Under the assumption (\ast), every right fraction is equivalent to a fraction with an identity in the denominator. Thus, every morphism in Ho(𝒞)\mathrm{Ho}({\mathscr{C}}) can be represented by a morphism in 𝒞{\mathscr{C}}, with ff and gg defining the same morphism in Ho(𝒞)\mathrm{Ho}({\mathscr{C}}), if and only if fgf\approx g.

  • Proof. Let ww be a weak equivalence, and ff a morphism. Consider the right fraction

    X{X^{\prime}}X{X}Y{Y}w\scriptstyle{w}f\scriptstyle{f}

    Use Brown’s lemma to factor w=usw=us, where uu is a trivial fibration, and ss a section of a trivial fibration tt, so that ts=1ts=1. Then use Property (\ast), to find a section xx of uu, so that ux=1ux=1. The diagram

    X{X^{\prime}}X{X}X′′{X^{\prime\prime}}Y{Y}X{X}w=us\scriptstyle{w=us}f\scriptstyle{f}s\scriptstyle{s}u\scriptstyle{u}ft\scriptstyle{ft}1\scriptstyle{1}x\scriptstyle{x}ftx\scriptstyle{ftx}

    shows that our given right fraction is equivalent to the morphism ftx:XYftx:X\to Y. \Box

Lemma 3.7

Under the assumption (\ast), for any two morphisms f,g:XYf,g:X\to Y in 𝒞{\mathscr{C}}, we have fgf\approx g if and only if fgf\simeq g.

  • Proof. The main part consists of fleshing out Remark 2 after Theorem 1 of [6]. Let w:XXw:X^{\prime}\to X be a weak equivalence, such that fwgwfw\simeq gw. Again, we use Brown’s lemma to factor w=usw=us, where uu is a trivial fibration and ss is a section of a trivial fibration tt. Thus, we have fusgusfus\simeq gus, and hence fustgustfust\simeq gust.

    Now by Lemma 3.4, we have 1st1\simeq st, which implies fufustgustgufu\simeq fust\simeq gust\simeq gu, by Lemma 3.5, and transitivity of the homotopy relation. Precomposing with a section of uu, we obtain fgf\simeq g, as required. \Box

Now Lemmas 3.6 and 3.7 imply immediately the following proposition.

Proposition 3.8

Under the assumption (\ast), the homotopy category Ho(𝒞)\mathrm{Ho}({\mathscr{C}}) of 𝒞{\mathscr{C}} has the same objects as 𝒞{\mathscr{C}}, and has homotopy classes of morphisms in 𝒞{\mathscr{C}} as morphisms:

HomHo(𝒞)(X,Y)=Hom𝒞(X,Y)/.\mathop{\rm Hom}\nolimits_{\mathrm{Ho}({\mathscr{C}})}(X,Y)=\mathop{\rm Hom}\nolimits_{\mathscr{C}}(X,Y)/\simeq\,.
Corollary 3.9

Under the assumption (\ast), every weak equivalence is a homotopy equivalence.

  • Proof. Factor the weak equivalence w=usw=us, where uu is a trivial fibration and ss is a section of the trivial fibration tt. Let vv be a section of uu. Then we have ts=1ts=1, st1st\simeq 1, and uv=1uv=1, vu1vu\simeq 1. Let y=tvy=tv. Then yy is a homotopy inverse of ww. In fact, wy=ustvuv=1wy=ustv\simeq uv=1, and yw=tvusts=1yw=tvus\simeq ts=1. \Box

Remark 3.10

Under the assumption (\ast), two morphisms f,g:XYf,g:X\to Y are homotopic, if and only if for every path space object PYPY for YY there exists a homotopy h:XPYh:X\to PY, such that ev0h=f\mathop{\rm ev}\nolimits_{0}\circ h=f, and ev1h=g\mathop{\rm ev}\nolimits_{1}\circ h=g.

3.3 The homotopy category of LL_{\infty}-bundles

Now let \mathscr{L} be the category of LL_{\infty}-bundles. To investigate Ho()\mathrm{Ho}(\mathscr{L}), we introduce the category of germs of LL_{\infty}-bundles germ\mathscr{L}_{\text{germ}}, whose objects are LL_{\infty}-bundles, and whose morphisms are given by

Morgerm(,𝒩)=limπ0()UMor(|U,𝒩),\mathop{\rm Mor}\nolimits_{\mathscr{L}_{\text{germ}}}({\mathscr{M}},{\mathscr{N}})=\mathop{\lim\limits_{\textstyle\longrightarrow}}_{\pi_{0}({\mathscr{M}})\subset U}\mathop{\rm Mor}\nolimits_{\mathscr{L}}({\mathscr{M}}|_{U},{\mathscr{N}})\,,

where {\mathscr{M}} and 𝒩{\mathscr{N}} are LL_{\infty}-bundles, and the colimit is taken over all open neighborhoods of the classical locus of {\mathscr{M}} inside the underlying manifold of {\mathscr{M}}. In other words, a morphism [fU]:𝒩[f_{U}]:{\mathscr{M}}\to{\mathscr{N}} in germ\mathscr{L}_{\text{germ}} is an equivalence class represented by a morphism of LL_{\infty}-bundles fU:|U𝒩f_{U}:{\mathscr{M}}|_{U}\to{\mathscr{N}}, where UU is an open neighborhood of π0()\pi_{0}({\mathscr{M}}) in the base manifold of {\mathscr{M}}. Two equivalence classes [fU],[fV]:𝒩[f_{U}],[f_{V}]:{\mathscr{M}}\to{\mathscr{N}} are equal if and only if there exists another open neighborhood WW of π0()\pi_{0}({\mathscr{M}}) such that WUVW\subset U\cap V and fU|W=fV|Wf_{U}|_{W}=f_{V}|_{W} in \mathscr{L}. We say that [fU][f_{U}] is the germ of fUf_{U}.

Composition of germs, and identity germs, are defined in a straightforward manner, leading to the category germ\mathscr{L}_{\text{germ}}, which comes together with a canonical functor germ\mathscr{L}\to\mathscr{L}_{\text{germ}}, sending a morphism to its germ. (In fact, germ\mathscr{L}_{\text{germ}} is the localization of {\mathscr{L}} at the weak equivalences of the form |U{\mathscr{M}}|_{U}\to{\mathscr{M}}.)

A morphism in germ\mathscr{L}_{\text{germ}} is called a weak equivalence, if it is a germ of a weak equivalence. This definition makes germ\mathscr{L}_{\text{germ}} into a category with weak equivalences. Since every morphism |U{\mathscr{M}}|_{U}\to{\mathscr{M}} is a weak equivalence in \mathscr{L}, the homotopy category of germ\mathscr{L}_{\text{germ}} is equal (or rather canonically isomorphic, not just equivalent) to the homotopy category of \mathscr{L}:

Ho()=Ho(germ).\mathrm{Ho}(\mathscr{L})=\mathrm{Ho}(\mathscr{L}_{\text{germ}})\,.

We call a morphism in germ\mathscr{L}_{\text{germ}} a fibration, if it is a germ of a fibration. (Not every representative of a fibration in germ\mathscr{L}_{\text{germ}} need be a fibration in \mathscr{L}, in contrast to the situation with weak equivalences.)

Proposition 3.11

The category germ\mathscr{L}_{\text{germ}} is a category of fibrant objects, which satisfies Property (\ast).

  • Proof. To prove that fibrations and trivial fibrations are stable under pullbacks, it is helpful to note that fibered products in \mathscr{L} map to fibered products in germ\mathscr{L}_{\text{germ}}. In fact, none of the axioms of a category of fibrant objects is difficult to check. Property (\ast) follows directly from Corollary 3.2. \Box

The functor germ\mathscr{L}\to\mathscr{L}_{\text{germ}} maps path space objects to path space objects. Conversely, we have

Lemma 3.12

Every path space object for 𝒩{\mathscr{N}} in germ\mathscr{L}_{\text{germ}} is isomorphic to the image under germ\mathscr{L}\to\mathscr{L}_{\text{germ}} of a path space object in \mathscr{L} for 𝒩|U{\mathscr{N}}|_{U}, for some open neighborhood UU of π0(𝒩)\pi_{0}({\mathscr{N}}).

  • Proof. Suppose that we have a path space object for 𝒩{\mathscr{N}} in the category germ\mathscr{L}_{\text{germ}},

    𝒫germ𝒩{{\mathscr{P}}_{\text{germ}}{\mathscr{N}}}𝒩{{\mathscr{N}}}𝒩×𝒩 ,{{\mathscr{N}}\times{\mathscr{N}}\hbox to0.0pt{\,,\hss}}Δ\scriptstyle{\Delta}\scriptstyle{\sim} (6)

    where the dotted arrows indicate germs of morphisms. By replacing 𝒫germ𝒩{\mathscr{P}}_{\text{germ}}{\mathscr{N}} by a neighborhood of its classical locus, we may assume that 𝒫germ𝒩𝒩×𝒩{\mathscr{P}}_{\text{germ}}{\mathscr{N}}\to{\mathscr{N}}\times{\mathscr{N}} is a morphism in \mathscr{L}. Then we can find a neighborhood UU of π0(𝒩)\pi_{0}({\mathscr{N}}), that is a common domain of definition for both dotted arrows originating at 𝒩{\mathscr{N}}. We obtain a commutative diagram in \mathscr{L}

    𝒫germ𝒩{{\mathscr{P}}_{\text{germ}}{\mathscr{N}}}𝒩|U{{\mathscr{N}}|_{U}}𝒩{{\mathscr{N}}}𝒩×𝒩 ,{{\mathscr{N}}\times{\mathscr{N}}\hbox to0.0pt{\,,\hss}}i\scriptstyle{i}\scriptstyle{\sim}Δ\scriptstyle{\Delta}

    where ii is the inclusion of 𝒩|U{\mathscr{N}}|_{U} into 𝒩{\mathscr{N}}, the morphism 𝒩|U𝒫germ𝒩{\mathscr{N}}|_{U}\to{\mathscr{P}}_{\text{germ}}{\mathscr{N}} is a weak equivalence, and 𝒫germ𝒩𝒩×𝒩{\mathscr{P}}_{\text{germ}}{\mathscr{N}}\to{\mathscr{N}}\times{\mathscr{N}} is a fibration. Now U×UU\times U is an open neighborhood of the classical locus of 𝒩×𝒩{\mathscr{N}}\times{\mathscr{N}}, and restricting to the preimage of U×UU\times U in 𝒫germ𝒩{\mathscr{P}}_{\text{germ}}{\mathscr{N}}, we may assume that we have the diagram

    𝒫germ𝒩{{\mathscr{P}}_{\text{germ}}{\mathscr{N}}}𝒩|U{{\mathscr{N}}|_{U}}𝒩|U×𝒩|U {{\mathscr{N}}|_{U}\times{\mathscr{N}}|_{U}\hbox to0.0pt{\,\hss}}Δ\scriptstyle{\Delta}\scriptstyle{\sim}

    in \mathscr{L}. It represents a path space object for 𝒩|U{\mathscr{N}}|_{U} in \mathscr{L}, whose image in germ\mathscr{L}_{\text{germ}} is isomorphic to (6). \Box

Corollary 3.13

For LL_{\infty}-bundles {\mathscr{M}}, 𝒩{\mathscr{N}}, we have

MorHo()(,𝒩)=Morgerm(,𝒩)/.\mathop{\rm Mor}\nolimits_{\mathrm{Ho}(\mathscr{L})}({\mathscr{M}},{\mathscr{N}})=\mathop{\rm Mor}\nolimits_{\mathscr{L}_{\text{germ}}}({\mathscr{M}},{\mathscr{N}})\big{/}\simeq.

More explicitly, every morphism 𝒩{\mathscr{M}}\to{\mathscr{N}} in Ho(\mathrm{Ho}({\mathscr{L}}) can be represented by a morphism of LL_{\infty}-bundles |U𝒩{\mathscr{M}}|_{U}\to{\mathscr{N}}, and two such are equal in Ho()\mathrm{Ho}({\mathscr{L}}), if and only if, when restricted to suitable neighborhoods of π0()\pi_{0}({\mathscr{M}}) and π0(𝒩)\pi_{0}({\mathscr{N}}), they become homotopic.

  • Proof. For the last claim, use Lemma 3.12. \Box

Corollary 3.14

In the category germ\mathscr{L}_{\text{germ}}, every weak equivalence is a homotopy equivalence.

Remark 3.15

The question remains, if for any weak equivalence f:𝒩f:{\mathscr{M}}\to{\mathscr{N}} is \mathscr{L}, we can find open neighborhoods π0()U\pi_{0}({\mathscr{M}})\subset U and π0(𝒩)V\pi_{0}({\mathscr{N}})\subset V, such that ff induces a morphism f:|U𝒩|Vf:{\mathscr{M}}|_{U}\to{\mathscr{N}}|_{V}, which admits a homotopy inverse in \mathscr{L}. (A similar statement has been conjectured by Amorim-Tu [1], although it is not clear to us that their notion of homotopy is equivalent to ours.)

4 Quasi-isomorphisms

As another application of Theorem 2.2, in this section, we investigate the relationship between weak equivalences and quasi-isomorphisms.

Recall that one has a fully faithful functor [2]

(L-bundles)\displaystyle(\text{$L_{\infty}$-bundles}) (dg manifolds of positive amplitudes)\displaystyle\longrightarrow(\text{dg manifolds of positive amplitudes})
(M,L,λ)\displaystyle(M,L,\lambda) (M,SymL,Qλ).\displaystyle\longmapsto(M,\mathop{\rm Sym}\nolimits L^{\vee},Q_{\lambda})\,.

In particular, a morphism of LL_{\infty}-bundles (M,L,λ)(N,L,λ)(M,L,\lambda)\to(N,L^{\prime},\lambda^{\prime}) induces a morphism of dg algebras Γ(N,Sym(L))Γ(M,SymL)\Gamma(N,\mathop{\rm Sym}\nolimits(L^{\prime})^{\vee})\to\Gamma(M,\mathop{\rm Sym}\nolimits L^{\vee}) of the global sections in the opposite direction.

Definition 4.1

A morphism of LL_{\infty}-bundles is said to be a quasi-isomorphism if it induces an quasi-isomorphism of the dg algebras of global sections.

In this section, we give an elementary proof of the following theorem.

Theorem 4.2

Suppose that (M,L,λ)(N,L,λ)(M,L,\lambda)\to(N,L^{\prime},\lambda^{\prime}) is a weak equivalence of LL_{\infty}-bundles. Then the induced morphism of differential graded algebras Γ(N,Sym(L))Γ(M,SymL)\Gamma(N,\mathop{\rm Sym}\nolimits(L^{\prime})^{\vee})\to\Gamma(M,\mathop{\rm Sym}\nolimits L^{\vee}) is a quasi-isomorphism.

4.1 Properties of quasi-isomorphisms

Before proving Theorem 4.2, let us establish some properties of quasi-isomorphisms.

Proposition 4.3

A quasi-isomorphism of LL_{\infty}-bundles induces a bijection on classical loci.

  • Proof. Let {\mathscr{M}} and 𝒩{\mathscr{N}} be LL_{\infty}-bundles with base manifolds MM and NN, respectively. We denote by AA and BB the corresponding cdgas of global sections. Let (f,ϕ):𝒩(f,\phi):{\mathscr{M}}\to{\mathscr{N}} be a morphism of LL_{\infty}-bundles. Note that the set of points of MM is identified with the set of {\mathbb{R}}-algebra morphisms A0A^{0}\to{\mathbb{R}}, where A0=C(M)A^{0}=C^{\infty}(M). See [15, Problem 1-C]. It follows that the set of classical points of {\mathscr{M}} is equal to the set of algebra morphisms H0(A)H^{0}(A)\to{\mathbb{R}}. Similarly, the set of classical points of 𝒩{\mathscr{N}} is the set of algebra morphisms H0(B)H^{0}(B)\to{\mathbb{R}}. Since the quasi-isomorphism BAB\to A induces an isomorphism H0(B)H0(A)H^{0}(B)\to H^{0}(A), it follows that ff induces a bijection π0()π0(𝒩)\pi_{0}({\mathscr{M}})\to\pi_{0}({\mathscr{N}}) on classical loci. \Box

Proposition 4.4

If a fibration of quasi-smooth LL_{\infty}-bundles induces a quasi-isomorphism of global section algebras, then it is a weak equivalence.

  • Proof. We are in the quasi-smooth case. So L=L1L=L^{1}, and E=E1E=E^{1}. By assumption, the following three-term sequence is exact on the right:

    Γ(M,Λ2L)λΓ(M,L)λC(M)Γ(N,E)μC(N)\begin{split}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 27.49583pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-27.49583pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(M,\Lambda^{2}L^{\vee})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.49585pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 28.60143pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{{\,\lrcorner\,}\lambda}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 51.49583pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 51.49583pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(M,L^{\vee})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 96.74307pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 98.48094pt\raise 5.43056pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{{\,\lrcorner\,}\lambda}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 120.74306pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 120.74306pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{C^{\infty}(M)}$}}}}}}}{\hbox{\kern-3.0pt\raise-41.0133pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 51.7528pt\raise-41.0133pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(N,E^{\vee})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 96.4861pt\raise-41.0133pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 98.4137pt\raise-35.8258pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{{\,\lrcorner\,}\mu}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 121.5764pt\raise-41.0133pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 74.11945pt\raise-29.62444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 74.11945pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 121.5764pt\raise-41.0133pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{C^{\infty}(N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 139.75903pt\raise-29.97444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 139.75903pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{split} (7)

    As a formal consequence, the following diagram is exact on the left:

    C(M)\textstyle{C^{\infty}(M)^{\ast}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Γ(M,L)\textstyle{\Gamma(M,L^{\vee})^{\ast}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Γ(M,Λ2L)\textstyle{\Gamma(M,\Lambda^{2}L^{\vee})^{\ast}}C(N)\textstyle{C^{\infty}(N)^{\ast}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Γ(N,E)\textstyle{\Gamma(N,E^{\vee})^{\ast}}
    (8)

    Here the asterisques denote {\mathbb{R}}-linear maps to {\mathbb{R}}. Our claim is that for PZ(λ)MP\in Z(\lambda)\subset M, the square

    TM|P\textstyle{TM|_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}L|P\textstyle{L|_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}TN|f(P)\textstyle{TN|_{f(P)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E|f(P)\textstyle{E|_{f(P)}} (9)

    is exact. By our assumption that (f,ϕ)(f,\phi) is a fibration, the vertical maps are surjective, so we need to prove that (9) induces a bijection on kernels. The point PP defines a C(M)C^{\infty}(M)-module structure on {\mathbb{R}}, and the point f(P)f(P) defines a C(N)C^{\infty}(N)-module structure on {\mathbb{R}}. The vector space

    TM|PC(M)TM|_{P}\subset C^{\infty}(M)^{\ast}

    consists of the linear maps C(M)C^{\infty}(M)\to{\mathbb{R}} which are derivations. The vector space

    L|PΓ(M,L)L|_{P}\subset\Gamma(M,L^{\vee})^{\ast}

    consists of the C(M)C^{\infty}(M)-linear maps Γ(M,L)\Gamma(M,L^{\vee})\to{\mathbb{R}}.

    Consider an element xL|Px\in L|_{P}, mapping to zero in E|f(P)E|_{f(P)}. The element xx maps to zero in Γ(M,Λ2L)\Gamma(M,\Lambda^{2}L^{\vee})^{\ast}, because the map L|PΛ2L|PL|_{P}\to\Lambda^{2}L|_{P} induced by multiplication by λ\lambda is zero, as λ\lambda vanishes at PP. Comparing with (8), we see that there exists a unique {\mathbb{R}}-linear map v:C(M)v:C^{\infty}(M)\to{\mathbb{R}}, such that

    1. (i)

      vf:Γ(N)v\circ f^{\sharp}:\Gamma(N)\to{\mathbb{R}} vanishes,

    2. (ii)

      v(λ):Γ(L)v\circ({\,\lrcorner\,}\lambda):\Gamma(L^{\vee})\to{\mathbb{R}} is equal to xx.

    We need to show that vv is a derivation, i.e., that for g,hC(M)g,h\in C^{\infty}(M), we have

    v(gh)=v(g)h+gv(h).v(gh)=v(g)h+gv(h)\,.

    By the right exactness of (7), the vector space C(M)C^{\infty}(M) is generated as an {\mathbb{R}}-vector space by the images of C(N)C^{\infty}(N) and Γ(M,L)\Gamma(M,L^{\vee}). Thus, it suffices to consider the following two cases.

    Case 1. Assume both g,hg,h are pullbacks from NN. So there exist g~,h~:N\widetilde{g},\widetilde{h}:N\to{\mathbb{R}}, such that g=g~fg=\widetilde{g}\circ f and h=h~fh=\widetilde{h}\circ f. We have

    v(gh)=v((g~f)(h~f))=v((g~h~)f)=0=v(g~f)h+gv(h~f)=v(g)h+gv(h).v(gh)=v((\widetilde{g}\circ f)(\widetilde{h}\circ f))=v((\widetilde{g}\widetilde{h})\circ f)=0=v(\widetilde{g}\circ f)h+gv(\widetilde{h}\circ f)=v(g)h+gv(h)\,.

    Case 2. Assume that h=αλh=\alpha{\,\lrcorner\,}\lambda, where αΓ(M,L)\alpha\in\Gamma(M,L^{\vee}). We have

    v(gh)=v(g(αλ))=v((gα)λ)=x(gα)=g(P)x(α),v(gh)=v(g(\alpha{\,\lrcorner\,}\lambda))=v((g\alpha){\,\lrcorner\,}\lambda)=x(g\alpha)=g(P)x(\alpha)\,,

    and

    v(g)h+gv(h)=v(g)(αλ)(P)+g(P)v(αλ)=0+g(P)x(α).v(g)h+gv(h)=v(g)(\alpha{\,\lrcorner\,}\lambda)(P)+g(P)v(\alpha{\,\lrcorner\,}\lambda)=0+g(P)x(\alpha)\,.

    This finishes the proof. \Box

4.2 Proof of Theorem 4.2: transversal case

In this subsection and the next, we prove Theorem 4.2. We first prove it in the transversal case, and then reduce the general situation to the transversal case.

Let (M,E,u)(M,E,u) be a quasi-smooth LL_{\infty}-bundle, where MM is a manifold and uΓ(E)u\in\Gamma(E) a regular section. In other words, the section uu is transversal to the zero section. Let YMY\subset M be the zero locus of uu, which is a submanifold of MM. We have a canonical epimorphism of vector bundles Du|Y:TM|YE|YDu|_{Y}:TM|_{Y}\to E|_{Y}, whose kernel is TYTY.

We will place EE in degree 11, so that (M,E,u)(M,E,u), as well as (Y,0,0)(Y,0,0), are LL_{\infty}-bundles, and (Y,0,0)(M,E,u)(Y,0,0)\to(M,E,u) is a morphism of LL_{\infty}-bundles (in fact, a weak equivalence of LL_{\infty}-bundles). The following proposition contains the well-known Koszul resolution. We sketch a proof of it here for completeness.

Proposition 4.5

The restriction map Γ(M,SymE,ιu)C(Y)\Gamma(M,\mathop{\rm Sym}\nolimits E^{\vee},\iota_{u})\to C^{\infty}(Y) is a quasi-isomorphism.

  • Proof. Let YUMY\subset U\subset M be an open neighborhood of YY in MM.

Claim.

The restriction map

Γ(M,SymE,ιu)Γ(U,SymE|U,ιu)\Gamma(M,\mathop{\rm Sym}\nolimits E^{\vee},\iota_{u})\longrightarrow\Gamma(U,\mathop{\rm Sym}\nolimits E^{\vee}|_{U},\iota_{u})

is a quasi-isomorphism. To prove this, let f:Mf:M\to{\mathbb{R}} be a differentiable function such that f|Y=1f|_{Y}=1, and f|MU=0f|_{M\setminus U}=0. Multiplication by ff defines a homomorphism of differential graded Γ(M,SymE,ιu)\Gamma(M,\mathop{\rm Sym}\nolimits E^{\vee},\iota_{u})-modules

Γ(U,SymE|U,ιu)Γ(M,SymE,ιu),\Gamma(U,\mathop{\rm Sym}\nolimits E^{\vee}|_{U},\iota_{u})\longrightarrow\Gamma(M,\mathop{\rm Sym}\nolimits E^{\vee},\iota_{u})\,,

in the other direction, which is a section of the restriction map. Now it suffices to show that for every i0i\leq 0, multiplication by ff induces the identity on Hi(Γ(M,SymE,ιu))H^{i}(\Gamma(M,\mathop{\rm Sym}\nolimits E^{\vee},\iota_{u})). This follows from the fact that ff restricts to the identity in C(Y)C^{\infty}(Y), and that every Hi(Γ(M,SymE,ιu))H^{i}(\Gamma(M,\mathop{\rm Sym}\nolimits E^{\vee},\iota_{u})) is a C(Y)C^{\infty}(Y)-module.

By the claim, we can replace MM by any open neighborhood of YY. In fact, we will assume that MM is a tubular neighborhood of YY, with Euler vector field vv and projection ρ:MY\rho:M\to Y. We denote the relative tangent bundle by TM/YT_{M/Y}. The Euler vector field is a regular section of TM/YT_{M/Y}, with zero locus YY.

Claim.

After restricting to a smaller neighborhood of YY if necessary, there exists an isomorphism of vector bundles Ψ:TM/YE\Psi:T_{M/Y}\to E, such that Ψ(v)=u\Psi(v)=u.

To prove this claim, first assume that there exists a normal coordinate system (xi)i=0,,n(x^{i})_{i=0,\ldots,n} on MM, compatible with the tubular neighborhood structure. This means that the Euler vector field has the form v=i=1kxiiv=\sum_{i=1}^{k}x^{i}\partial_{i}, where kk is the rank of EE, and the codimension of YY in MM. Also assume that EE is trivial, with basis (ei)i=1,,k(e_{i})_{i=1,\ldots,k}. We have u=uieiu=\sum u^{i}e_{i}, and define Ψ:TM/YE\Psi:T_{M/Y}\to E in coordinates by the matrix

Ψij=01(iuj)(tx1,,txk,xk+1,,xn)𝑑t.\Psi_{i}^{j}=\int_{0}^{1}(\partial_{i}u^{j})(tx_{1},\ldots,tx_{k},x_{k+1},\ldots,x_{n})\,dt\,.

Then Ψ(v)=u\Psi(v)=u, and Ψ|Y\Psi|_{Y} is the canonical isomorphism Du|YDu|_{Y}.

For the general case, construct a family of Ψα\Psi_{\alpha} locally, and define a global endomorphism Ψ:TM/YE\Psi:T_{M/Y}\to E using a partition of unity (ψα)(\psi_{\alpha}):

Ψ=αψαΨα.\Psi=\sum_{\alpha}\psi_{\alpha}\Psi_{\alpha}\,.

We have that Ψ(v)=u\Psi(v)=u, and Ψ|Y=Du|Y\Psi|_{Y}=Du|_{Y}. Hence Ψ\Psi is an isomorphism in an open neighborhood of YY. Upon replacing MM by this neighborhood, we may assume that Ψ\Psi is an isomorphism globally.

We are now reduced to the case where E=TM/Y[1]E=T_{M/Y}[-1], and uu is the Euler vector field. In this case, SymE=Sym(TM/Y[1])ΛTM/Y\mathop{\rm Sym}\nolimits E^{\vee}=\mathop{\rm Sym}\nolimits(T_{M/Y}^{\vee}[1])\cong\Lambda T_{M/Y}^{\vee}. We define a contraction operator η:Γ(M,ΛTM/Y)Γ(M,ΛTM/Y)\eta:\Gamma(M,\Lambda T_{M/Y}^{\vee})\to\Gamma(M,\Lambda T_{M/Y}^{\vee}) by the formula

η(ω)=01σ𝑑ωdtt,\eta(\omega)=\int_{0}^{1}\sigma^{\ast}d\omega\wedge\frac{dt}{t}\,,

where σ:[0,1]×MM\sigma:[0,1]\times M\to M is the multiplicative flow of vv in the tubular neighborhood MM.

Claim.

[η,ιv]=idρι[\eta,\iota_{v}]=\operatorname{id}-\rho^{\ast}\circ\iota^{\ast}.

Here, ρ:MY\rho:M\to Y is the projection, ι:YM\iota:Y\to M is the inclusion morphism; ρ:C(Y)Γ(M,ΛTM/Y)\rho^{\ast}:C^{\infty}(Y)\to\Gamma(M,\Lambda T_{M/Y}^{\vee}) and ι:Γ(M,ΛTM/Y)C(Y)\iota^{\ast}:\Gamma(M,\Lambda T_{M/Y}^{\vee})\to C^{\infty}(Y) are the corresponding induced maps on function algebras.

The claim can be checked locally, so we may assume given normal coordinates (xi)(x^{i}), as above. The the multiplicative flow is given by

σ(t,x1,,xn)=(tx1,txi,xi+1,,xn),\sigma(t,x^{1},\ldots,x^{n})=(tx^{1},\ldots tx^{i},x^{i+1},\ldots,x^{n})\,,

and using this, the claim is straightforward to prove.

Thus, (C(Y),0)\big{(}C^{\infty}(Y),0\big{)} is homotopy equivalent to (Γ(M,ΛTM/Y),ιv)\big{(}\Gamma(M,\Lambda T_{M/Y}^{\vee}),\iota_{v}\big{)}. This completes the proof. \Box

4.3 Proof of Theorem 4.2: general case

Let (M,L,λ)(M,L,\lambda) be an arbitrary LL_{\infty}-bundle. Suppose that L1L^{1} is split into a direct sum L1=EHL^{1}=E\oplus H, in such a way that the curvature λ0Γ(M,L1)\lambda_{0}\in\Gamma(M,L^{1}) splits as λ0=u+s\lambda_{0}=u+s, where uu is a regular section of EE. Let Y=Z(u)Y=Z(u) be the vanishing locus of uu, and consider the induced morphism of LL_{\infty}-bundles

(Y,H|YL2|Y,λ)(M,L,λ).(Y,H|_{Y}\oplus L^{\geq 2}|_{Y},\lambda)\longrightarrow(M,L,\lambda)\,.
Lemma 4.6

The restriction map

Γ(M,SymL,Qλ)Γ(Y,Sym(H|Y(L2)|Y),Qλ)\Gamma(M,\mathop{\rm Sym}\nolimits L^{\vee},Q_{\lambda})\longrightarrow\Gamma\big{(}Y,\mathop{\rm Sym}\nolimits(H^{\vee}|_{Y}\oplus(L^{\geq 2})^{\vee}|_{Y}),Q_{\lambda}\big{)}

is a quasi-isomorphism.

  • Proof. Let us write L~=HL2\widetilde{L}=H\oplus L^{\geq 2}. By the decomposition L=EL~L=E\oplus\widetilde{L} of graded vector bundles, we obtain an induced morphism of sheaves of differential graded algebras SymESymL\mathop{\rm Sym}\nolimits E^{\vee}\to\mathop{\rm Sym}\nolimits L^{\vee} over MM. Since SymL\mathop{\rm Sym}\nolimits L^{\vee} is locally free over SymE\mathop{\rm Sym}\nolimits E^{\vee}, the morphism SymESymL\mathop{\rm Sym}\nolimits E^{\vee}\to\mathop{\rm Sym}\nolimits L^{\vee} is flat. Therefore the quasi-isomorphism SymE𝒪Y\mathop{\rm Sym}\nolimits E^{\vee}\to{\mathscr{O}}_{Y} gives rise to another quasi-isomorphism

    SymESymESymL𝒪YSymESymL.\mathop{\rm Sym}\nolimits E^{\vee}\otimes_{\mathop{\rm Sym}\nolimits E^{\vee}}\mathop{\rm Sym}\nolimits L^{\vee}\stackrel{{\scriptstyle\textstyle\sim}}{{\longrightarrow}}{\mathscr{O}}_{Y}\otimes_{\mathop{\rm Sym}\nolimits E^{\vee}}\mathop{\rm Sym}\nolimits L^{\vee}\,.

    The left hand side is equal to SymL\mathop{\rm Sym}\nolimits L^{\vee}, and the right hand side is equal to 𝒪Y𝒪MSymL~{\mathscr{O}}_{Y}\otimes_{{\mathscr{O}}_{M}}\mathop{\rm Sym}\nolimits\widetilde{L}^{\vee}, proving that we have a quasi-isomorphism SymL𝒪Y𝒪MSymL~\mathop{\rm Sym}\nolimits L^{\vee}\to{\mathscr{O}}_{Y}\otimes_{{\mathscr{O}}_{M}}\mathop{\rm Sym}\nolimits\widetilde{L}^{\vee}. \Box

Proposition 4.7

Any transfer embedding (U,H,μ)(M,L,λ)(U,H,\mu)\to(M,L,\lambda) is a quasi-isomorphism of LL_{\infty}-bundles.

Proof.

We assume that HLH\to L is obtained by an application of the transfer theorem for bundles of curved L[1]L_{\infty}[1]-algebras as in Proposition 1.4. More precisely, let (M,L,δ)(M,L,\delta) be a bundle of complexes endowed with the curved L[1]L_{\infty}[1]-structure λ\lambda, let η\eta be a contraction of δ\delta and (M,H,δ)(M,H,\delta) the bundle of complexes onto which η\eta contracts (M,L,δ)(M,L,\delta). Let μ\mu be the family of transferred curved L[1]L_{\infty}[1]-structures on (M,H,δ)(M,H,\delta) and ϕ:HL\phi:H\to L the inclusion morphism.

Recall that a transfer embedding is a composition of the trivial fibration (U,H,μ)(M,H,μ)(U,H,\mu)\hookrightarrow(M,H,\mu) and an inclusion morphism ϕ\phi obtained by the transfer theorem. Since the trivial fibration (U,H,μ)(M,H,μ)(U,H,\mu)\hookrightarrow(M,H,\mu) is a quasi-isomorphism, it suffices to show that (id,ϕ):(M,H,μ)(M,L,λ)(\operatorname{id},\phi):(M,H,\mu)\to(M,L,\lambda) is a quasi-isomorphism.

Let A=Γ(M,SymL)A=\Gamma(M,\mathop{\rm Sym}\nolimits L^{\vee}) and B=Γ(M,SymH)B=\Gamma(M,\mathop{\rm Sym}\nolimits H^{\vee}). Let us denote the derivations induced by the dual maps of δ\delta and λk\lambda_{k} on AA by δ\delta and qkq_{k}, respectively. Similarly, denote the derivations induced by the dual maps of δ\delta and μk\mu_{k} on BB by δ\delta and rkr_{k}, respectively.

Claim.

The morphism of function algebras

ϕ:(A,δ+q)(B,δ+r),\phi^{\sharp}:(A,\delta+q)\longrightarrow(B,\delta+r)\,,

associated to the morphism of LL_{\infty}-bundles ϕ:(M,H,δ+μ)(M,L,δ+λ)\phi:(M,H,\delta+\mu)\to(M,L,\delta+\lambda) is a quasi-isomorphism.

To prove the claim, refine the grading on AA to a double grading

Ak,=Γ(M,SymL)k+.A^{k,\ell}=\Gamma(M,\mathop{\rm Sym}\nolimits^{-\ell}L^{\vee})^{k+\ell}\,.

It is contained in the region defined by 0\ell\leq 0 and k0k\leq 0. Moreover AA has only finitely many non-zero terms for each fixed value of k+k+\ell. This will imply that the spectral sequences we construct below are bounded and hence convergent to the expected limit.

Note that δ\delta and all qnq_{n} are bigraded: the degree of δ\delta is (1,0)(1,0), and the degree of qnq_{n} is (n,1n)(n,1-n).

If we filter AA by FkA=Ak,F_{k}A=A^{\geq k,\bullet}, the differential δ+q\delta+q preserves the filtration, and we obtain a bounded spectral sequence Enk,E_{n}^{k,\ell}, which is convergent to Hk+(A,δ+q)H^{k+\ell}(A,\delta+q):

Enk,Hk+(A,δ+q).E_{n}^{k,\ell}\Longrightarrow H^{k+\ell}(A,\delta+q)\,.

The same construction applies to (B,δ+r)(B,\delta+r), and we get a convergent spectral sequence

E~nk,Hk+(B,δ+r).\widetilde{E}_{n}^{k,\ell}\Longrightarrow H^{k+\ell}(B,\delta+r)\,.

The morphism of differential graded algebras ϕ\phi^{\sharp} induces a morphism of spectral sequences EE~E\to\widetilde{E}, because ϕ\phi respects the filtrations introduced above.

To prove our claim, it suffices to show that ϕ\phi^{\sharp} induces a quasi-isomorphism E1E~1E_{1}\to\widetilde{E}_{1}. The differential on E1E_{1} is induced by δ+q1\delta+q_{1} on the cohomology of E0E_{0} with respect to q0q_{0}. Similarly, the differential on E~1\widetilde{E}_{1} is induced by δ+r1\delta+r_{1} on the cohomology of E~0\widetilde{E}_{0} with respect to r0r_{0}. The homomorphism E1E~1E_{1}\to\widetilde{E}_{1} is induced by ϕ1\phi_{1}^{\sharp}.

Recall that from Proposition 1.4, we have the deformed projection π~1:LH\widetilde{\pi}_{1}:L\to H. It induces an algebra morphism BAB\to A, which we will denote by π~1\widetilde{\pi}_{1}^{\sharp}. Also there is the deformed contraction η~:LL\widetilde{\eta}:L\to L of degree 1-1. We extend its dual to a fiberwise derivation SymLSymL\mathop{\rm Sym}\nolimits L^{\vee}\to\mathop{\rm Sym}\nolimits L^{\vee}, which we also denote by η~\widetilde{\eta} by abuse of notations. We denote by η~:SymLSymL\widetilde{\eta}^{\prime}:\mathop{\rm Sym}\nolimits L^{\vee}\to\mathop{\rm Sym}\nolimits L^{\vee} the endomorphism obtained by dividing the derivation η~\widetilde{\eta} by the weight (and setting η~(1)=0\widetilde{\eta}^{\prime}(1)=0).

We will now construct a fiberwise homotopy operator h:SymLSymLh:\mathop{\rm Sym}\nolimits L^{\vee}\to\mathop{\rm Sym}\nolimits L^{\vee}, with the property that

[δ+q1,h]=1ϕ1π~1.[\delta+q_{1},h]=1-\phi_{1}^{\sharp}\widetilde{\pi}_{1}^{\sharp}\,. (10)

For this purpose, recall that SymL\mathop{\rm Sym}\nolimits L^{\vee} is a bundle of Hopf algebras. Let us denote the coproduct by Δ\Delta, and the product by mm. Define hh fiberwisely by the formula:

h=mw(ϕ1π~1η~)Δ.h=m\circ w\circ(\phi_{1}^{\sharp}\widetilde{\pi}_{1}^{\sharp}\otimes\widetilde{\eta}^{\prime})\circ\Delta\,.

Here w:SymLSymLSymLSymLw:\mathop{\rm Sym}\nolimits L^{\vee}\otimes\mathop{\rm Sym}\nolimits L^{\vee}\to\mathop{\rm Sym}\nolimits L^{\vee}\otimes\mathop{\rm Sym}\nolimits L^{\vee} is the operator that divides an element of bi-weight (k,)(k,\ell) by the binomial coefficient (k+)!k!!\frac{(k+\ell)!}{k!\ell!}. It is a direct verification that (10) holds. Hence the map ϕ\phi indeed induces a homotopy equivalence on E1E_{1}. This concludes the proof. ∎

We note that a transfer embedding (id,ϕ):(U,H,μ)(M,L,λ)(\operatorname{id},\phi):(U,H,\mu)\to(M,L,\lambda) is a weak equivalence according to Proposition 1.5.

  • Proof of Theorem 4.2. By Proposition 1.1 and Theorem 1.2, we may assume that (M,L,λ)(N,L,λ)(M,L,\lambda)\to(N,L^{\prime},\lambda^{\prime}) is a linear trivial fibration of LL_{\infty}-bundles. Then according to Theorem 2.2, it suffices to prove that both (Y,E,ν)(U,H,μ)(Y,E,\nu)\to(U,H,\mu) and (U,H,μ)(M,L,λ)(U,H,\mu)\to(M,L,\lambda) induce quasi-isomorphisms on the dg function algebras. The former is done in Lemma 4.6. The latter follows from Proposition 4.7. \Box

Remark 4.8

After we posted the first e-print version [3] of the present paper, Pridham informed us the methods in Nuiten’s thesis [16] can be applied to prove the converse: if a morphism of LL_{\infty}-bundles induces a quasi-isomorphism on the global section dg algebras, then it is a weak equivalence. More recently, Carchedi, Steffens and Taroyan also studied the equivalence between weak equivalences and quasi-isomorphisms. See [7, 19, 20]. The methods of Nuiten, Carchedi, Steffens and Taroyan are based on the theories of dg CC^{\infty}-rings and derived CC^{\infty}-schemes, while our method is simply based on the transfer theorem and classical differential geometry.

References

  • [1] Lino Amorim and Junwu Tu. The inverse function theorem for curved LL-infinity spaces. J. Noncommut. Geom., 16(4):1445–1477, 2022.
  • [2] Kai Behrend, Hsuan-Yi Liao, and Ping Xu. Differential graded manifolds of finite positive amplitude. preprint.
  • [3] Kai Behrend, Hsuan-Yi Liao, and Ping Xu. Derived Differentiable Manifolds. arXiv e-prints, page arXiv:2006.01376, June 2020.
  • [4] Alexander Berglund. Homological perturbation theory for algebras over operads. Algebr. Geom. Topol., 14(5):2511–2548, 2014.
  • [5] Dennis Borisov and Justin Noel. Simplicial approach to derived differential manifolds. arXiv:1112.0033, November 2011.
  • [6] Kenneth S. Brown. Abstract homotopy theory and generalized sheaf cohomology. Trans. Amer. Math. Soc., 186:419–458, 1973.
  • [7] David Carchedi. Derived Manifolds as Differential Graded Manifolds. arXiv e-prints, page arXiv:2303.11140, March 2023.
  • [8] David Carchedi and Dmitry Roytenberg. Homological Algebra for Superalgebras of Differentiable Functions. arXiv:1212.3745, December 2012.
  • [9] David Carchedi and Dmitry Roytenberg. On theories of superalgebras of differentiable functions. Theory Appl. Categ., 28:No. 30, 1022–1098, 2013.
  • [10] David Carchedi and Pelle Steffens. On the Universal Property of Derived Manifolds. arXiv e-prints, page arXiv:1905.06195, May 2019.
  • [11] J. Eugster and J. P. Pridham. An introduction to derived (algebraic) geometry. arXiv:2109.14594, October 2021.
  • [12] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New York, 1967.
  • [13] Ezra Getzler. Maurer-Cartan elements and homotopical perturbation theory. arXiv:1802.06736, February 2018.
  • [14] Dominic Joyce. An introduction to d-manifolds and derived differential geometry. In Moduli spaces, volume 411 of London Math. Soc. Lecture Note Ser., pages 230–281. Cambridge Univ. Press, Cambridge, 2014.
  • [15] John W. Milnor and James D. Stasheff. Characteristic classes. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76.
  • [16] Joost Nuiten. Lie algebroids in derived differential topology. Thesis (Ph.D.)—Universiteit Utrecht, 2018.
  • [17] J. P. Pridham. An outline of shifted Poisson structures and deformation quantisation in derived differential geometry. arXiv:1804.07622, April 2018.
  • [18] David I. Spivak. Derived smooth manifolds. Duke Math. J., 153(1):55–128, 2010.
  • [19] Pelle Steffens. Derived CC^{\infty}-Geometry I: Foundations. arXiv e-prints, page arXiv:2304.08671, April 2023.
  • [20] Gregory Taroyan. Equivalent models of derived stacks. arXiv e-prints, page arXiv:2303.12699, March 2023.

Kai Behrend, Department of Mathematics, University of British Columbia

E-mail address: [email protected]

Hsuan-Yi Liao, Department of Mathematics, National Tsing Hua University

E-mail address: [email protected]

Ping Xu, Department of Mathematics, Pennsylvania State University

E-mail address: [email protected]