This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Projection-Based Convexification of Some Spectral Sets

Renbo Zhao Department of Business Analytics, Tippie College of Business, University of Iowa ([email protected]).
Abstract

Given a finite-dimensional real inner-product space ๐”ผ\mathbb{E} and a closed convex cone ๐’ฆโІโ„n\mathcal{K}\subseteq\mathbb{R}^{n}, we call ฮป:๐”ผโ†’๐’ฆ\lambda:\mathbb{E}\to\mathcal{K} a spectral map if (๐”ผ,โ„n,ฮป)(\mathbb{E},\mathbb{R}^{n},\lambda) forms a generalized Fan-Theobald-von Neumann (FTvN) systemย [5]. Common examples of ฮป\lambda include the eigenvalue map, the singular-value map and the characteristic map of complete and isometric hyperbolic polynomials. We call ๐’ฎโІ๐”ผ\mathcal{S}\subseteq\mathbb{E} a spectral set if ๐’ฎ:=ฮปโˆ’1โ€‹(๐’ž)\mathcal{S}:=\lambda^{-1}(\mathcal{C}) for some ๐’žโІโ„n\mathcal{C}\subseteq\mathbb{R}^{n}. We provide projection-based characterizations of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S} (i.e., the closed convex hull of ๐’ฎ\mathcal{S}) under two settings, namely, when ๐’ž\mathcal{C} has no invariance property and when ๐’ž\mathcal{C} has certain invariance properties. In the former setting, our approach is based on characterizing the bi-polar set of ๐’ฎ\mathcal{S}, which allows us to judiciously exploit the properties of ฮป\lambda via convex dualities. In the latter setting, our results complement the existing characterization of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S} inย [7], and unify and extend the related results inย [8] established for certain special cases of ฮป\lambda and ๐’ž\mathcal{C}.

1 Introduction

Let (๐”ผ,โŸจโ‹…,โ‹…โŸฉ)(\mathbb{E},\langle{\cdot},{\cdot}\rangle) be a finite-dimensional real inner-product space and โˆ…โ‰ ๐’ฆโІโ„n\emptyset\neq\mathcal{K}\subseteq\mathbb{R}^{n} be a closed and convex cone. Consider a function ฮป:๐”ผโ†’๐’ฆ\lambda:\mathbb{E}\to\mathcal{K} that satisfies the following two properties:

  1. (P1)

    For all x,yโˆˆ๐”ผx,y\in\mathbb{E}, we have โŸจx,yโŸฉโ‰คโŸจฮปโ€‹(x),ฮปโ€‹(y)โŸฉ:=โˆ‘i=1nฮปiโ€‹(x)โ€‹ฮปiโ€‹(y)\langle{x},{y}\rangle\leq\langle{\lambda(x)},{\lambda(y)}\rangle:=\sum_{i=1}^{n}\lambda_{i}(x)\lambda_{i}(y).

  2. (P2)

    For all ฮผโˆˆ๐’ฆ\mu\in\mathcal{K} and yโˆˆ๐”ผy\in\mathbb{E}, there exists xโˆˆ๐”ผx\in\mathbb{E} such that ฮปโ€‹(x)=ฮผ\lambda(x)=\mu and โŸจx,yโŸฉ=โŸจฮปโ€‹(x),ฮปโ€‹(y)โŸฉ.\textstyle\langle{x},{y}\rangle=\langle{\lambda(x)},{\lambda(y)}\rangle.

(In particular, ฮป\lambda is surjective with range ๐’ฆ\mathcal{K}.) We call ฮป:๐”ผโ†’๐’ฆ\lambda:\mathbb{E}\to\mathcal{K} a spectral map. Given ฮป\lambda and a nonempty set ๐’žโІโ„n\mathcal{C}\subseteq\mathbb{R}^{n}, we can define the following spectral set (associated with ฮป\lambda and ๐’ž\mathcal{C}):

๐’ฎ:=ฮปโˆ’1โ€‹(๐’ž):={xโˆˆ๐”ผ:ฮปโ€‹(x)โˆˆ๐’ž}.\mathcal{S}:=\lambda^{-1}(\mathcal{C}):=\{x\in\mathbb{E}:\lambda(x)\in\mathcal{C}\}. (1.1)

The aim of this paper is to provide projection-based characterizations of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S} under different structural assumptions of ฮป\lambda, ๐’ž\mathcal{C} and ๐’ฆ\mathcal{K}. To avoid triviality, throughout this paper we assume the set ๐’ž\mathcal{C} to be feasible, namely ๐’žโˆฉ๐’ฆโ‰ โˆ…\mathcal{C}\cap\mathcal{K}\neq\emptyset.

The definition above suggests that the triple (๐”ผ,โ„n,ฮป)(\mathbb{E},\mathbb{R}^{n},\lambda) is a generalized version of the (finite dimensional) FTvN system, which was initially proposed in the seminal workย [5]. Specifically, the original definition of the FTvN system requires the spectral map ฮป\lambda to be isometric, namely, โ€–xโ€–=โ€–ฮปโ€‹(x)โ€–2\|x\|=\|\lambda(x)\|_{2} for all xโˆˆ๐”ผx\in\mathbb{E}, where โˆฅโ‹…โˆฅ\|\cdot\| is induced by the inner product โŸจโ‹…,โ‹…โŸฉ\langle{\cdot},{\cdot}\rangle on ๐”ผ\mathbb{E}. In this work, we relax this requirement to requiring the range of ฮป\lambda (namely, ๐’ฆ\mathcal{K}) to be a closed and convex cone, which is a consequence of the isometry property as well asย (P1) andย (P2). The FTvN system subsumes two fairly general systems, namely the normal decomposition systemย [9] and the system induced by complete and isometric (c.i.) hyperbolic polynomialsย [1], both of which include many important special cases. To elaborate the latter, let p:๐”ผโ†’โ„p:\mathbb{E}\to\mathbb{R} be a degree-nn homogeneous polynomial that is hyperbolic with respect to (w.r.t.) some direction dโˆˆ๐”ผd\in\mathbb{E}, namely, pโ€‹(d)โ‰ 0p(d)\neq 0 and for all xโˆˆ๐”ผx\in\mathbb{E}, the univariate polynomial tโ†ฆpโ€‹(tโ€‹dโˆ’x)t\mapsto p(td-x) has only real roots, which are denoted by ฮป1โ€‹(x)โ‰ฅโ‹ฏโ‰ฅฮปnโ€‹(x)\lambda_{1}(x)\geq\cdots\geq\lambda_{n}(x). Inย [1], it was shown that if pp is complete and isometric, then the characteristic map of pp (w.r.t.ย dd), namely, xโ†ฆ(ฮป1โ€‹(x),โ€ฆ,ฮปnโ€‹(x))x\mapsto(\lambda_{1}(x),\ldots,\lambda_{n}(x)) for xโˆˆ๐”ผx\in\mathbb{E}, is indeed an isometric spectral map. A notable special case of such a characteristic map is the eigenvalue map on a Euclidean Jordan algebra of rank nn, which in turn includes the eigenvalue map on the vector space of nร—nn\times n real symmetric matrices ๐•Šn\mathbb{S}^{n} as a special case. (The eigenvalue map on ๐•Šn\mathbb{S}^{n} is given by Xโ†ฆ(ฮป1โ€‹(X),โ€ฆ,ฮปnโ€‹(X))X\mapsto(\lambda_{1}(X),\ldots,\lambda_{n}(X)), where ฮป1โ€‹(X)โ‰ฅโ€ฆโ‰ฅฮปnโ€‹(X)\lambda_{1}(X)\geq\ldots\geq\lambda_{n}(X) are the eigenvalues of Xโˆˆ๐•ŠnX\in\mathbb{S}^{n}.) Beyond the system induced by c.i.ย hyperbolic polynomials, the FTvN system also includes the system induced by the singular-value map ฯƒ:โ„mร—nโ†’โ„l\sigma:\mathbb{R}^{m\times n}\to\mathbb{R}^{l} for l:=minโก{m,n}l:=\min\{m,n\}. Here ฯƒโ€‹(X):=(ฯƒ1โ€‹(X),โ€ฆ,ฯƒnโ€‹(X))\sigma(X):=(\sigma_{1}(X),\ldots,\sigma_{n}(X)) for any Xโˆˆโ„mร—nX\in\mathbb{R}^{m\times n} with singular values ฯƒ1โ€‹(X)โ‰ฅโ‹ฏโ‰ฅฯƒlโ€‹(X)โ‰ฅ0\sigma_{1}(X)\geq\cdots\geq\sigma_{l}(X)\geq 0. In addition, when ๐”ผ=โ„n\mathbb{E}=\mathbb{R}^{n}, examples of the FTvN system include the systems induced by the reordering, absolute-value and absolute-reordering maps. For details and more examples, we refer readers toย [4, Sectionย 4].

The spectral set ๐’ฎ\mathcal{S} appears as the spectral constraints in many optimization problems, where ฮป\lambda can take various forms, including the absolute-reordering map on โ„n\mathbb{R}^{n}ย [8], the eigenvalue map on ๐•Šn\mathbb{S}^{n}ย [3, 10] or more generally on a Euclidean Jordan algebra of rank nnย [6], and the singular-value map on โ„mร—n\mathbb{R}^{m\times n}ย [10]. Recently, some worksย [5, 6] pioneered the study of the optimization problems with spectral constraints ๐’ฎ\mathcal{S} defined by the isometric spectral map in the FTvN system, which unifies and generalizes all the aforementioned forms of ฮป\lambda. Indeed, optimization problems of this form not only possess great generality, but also enjoy many attractive properties for algorithmic development.

Despite the important role that ๐’ฎ=ฮปโˆ’1โ€‹(๐’ž)\mathcal{S}=\lambda^{-1}(\mathcal{C}) plays in optimization, to our knowledge, the study of ๐’ฎ\mathcal{S} has mainly focused on the setting where ๐’ž\mathcal{C} has certain invariance propertiesย [9, 8, 7]. Indeed, the proper notion of invariance depends on the spectral map ฮป\lambda. For example, if ฮป\lambda is the eigenvalue (resp.ย singular-value) map, then the corresponding notion of invariance is the permutation- (resp.ย permutation- and sign-) invariance. More generally, in the normal decomposition system, the invariance of ๐’ž\mathcal{C} is defined w.r.t.ย some closed group of orthogonal transformations on โ„n\mathbb{R}^{n}ย [9], and in the FTvN system, the invariance is defined via a ฮป\lambda-compatible spectral map on โ„n\mathbb{R}^{n}ย [4] (see Definitionsย 2.1 andย 2.2 for details). When ๐’ž\mathcal{C} is invariant (in some proper sense), from the seminal worksย [9, 8, 7], we know that ๐’ฎ\mathcal{S} is closed and convex if and only if ๐’ž\mathcal{C} is closed and convexย [9, 7], and furthermore, ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=ฮปโˆ’1โ€‹(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)\mathsf{clconv}\,\mathcal{S}=\lambda^{-1}(\mathsf{clconv}\,\mathcal{C})ย [8, 7]. On the other hand, there also exist simple examples demonstrating that for a general set ๐’ž\mathcal{C} without any invariance property, ๐’ฎ\mathcal{S} may not be convex even if ๐’ž\mathcal{C} is. This leads to the main question that we aim to address in this work:

How to characterize ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S} when ๐’ž\mathcal{C} has no invariance property?

The motivation behind this question is not only due to its natural theoretical interest, but also comes from the fact that non-invariant instances of ๐’ž\mathcal{C} frequently appear in the spectral constraints of optimization problems, and one of the most common examples is the H-polyhedron {xโˆˆโ„n:Aโ€‹xโ‰คb}\{x\in\mathbb{R}^{n}:Ax\leq b\} defined by general Aโˆˆโ„mร—nA\in\mathbb{R}^{m\times n} and bโˆˆโ„mb\in\mathbb{R}^{m}ย [3]. In these problems, the spectral constraint sets ๐’ฎ\mathcal{S} may be non-convex, and a natural step to obtain the convex relaxations of these problems is to characterize ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S}. Unfortunately, the proof techniques in prior works (see e.g.,ย [8, 7]) leading to ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=ฮปโˆ’1โ€‹(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)\mathsf{clconv}\,\mathcal{S}=\lambda^{-1}(\mathsf{clconv}\,\mathcal{C}) for invariant ๐’ž\mathcal{C} cannot be easily extended to the case where ๐’ž\mathcal{C} is non-invariant. As such, new techniques need to be developed to tackle the question posed above.

Apart from addressing the main question above, a side goal of this work is to establish alternative characterizations of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S} when ๐’ž\mathcal{C} is invariant in the context of FTvN system (cf.ย Definitionsย 2.1 andย 2.2). Although the result ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=ฮปโˆ’1โ€‹(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)\mathsf{clconv}\,\mathcal{S}=\lambda^{-1}(\mathsf{clconv}\,\mathcal{C}) inย [7] is simple and elegant, sometimes ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\mathsf{clconv}\,\mathcal{C} is complicated and difficult to describe, even though ๐’ž\mathcal{C} itself admits a simple description (see Remarkย 2.5). Therefore, we aim to characterize ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S} in certain ways that do not involve ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\mathsf{clconv}\,\mathcal{C}, and hopefully in some cases, these new characterizations admit simpler descriptions compared to ฮปโˆ’1โ€‹(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)\lambda^{-1}(\mathsf{clconv}\,\mathcal{C}).

Main contributions. Motivated by the goals above, in this work, we provide projection-based characterizations of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S} under different structural assumptions of ฮป\lambda, ๐’ž\mathcal{C} and ๐’ฆ\mathcal{K}. Our main results can be summarized in two parts.

First, we derive projection-based characterizations of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S}, where ๐’ฎ:=ฮปโˆ’1โ€‹(๐’ž)\mathcal{S}:=\lambda^{-1}(\mathcal{C}) is defined by a class of sets ๐’ž\mathcal{C} that do not have any invariance property, but instead satisfy some other relatively mild assumptions (see Theoremย 2.1 and Corollaryย 2.1 for details). Our approach is based on a simple idea, namely characterizing the bipolar set of ๐’ฎ\mathcal{S}. Despite its simplicity, this idea allows us to judiciously exploitย (P1) andย (P2) through convex dualities. To our knowledge, our approach is the first one for characterizing ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S} without leveraging the invariance properties of ๐’ž\mathcal{C}.

Second, we consider the setting where a ฮป\lambda-compatible spectral map ฮณ\gamma exists on โ„n\mathbb{R}^{n} and ๐’ž\mathcal{C} is ฮณ\gamma-invariant (cf.ย Definitionsย 2.1 andย 2.2). (Indeed, this notion of invariance is fairly general, and includes many common notions of invariance as special cases, e.g., permutation- and sign-invariance.) Under this setting, we derive a projection-based characterization of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S}, which is complementary to the characterization ฮปโˆ’1โ€‹(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)\lambda^{-1}(\mathsf{clconv}\,\mathcal{C})ย [7]. We demonstrate that in some cases, our characterization admits a simpler description compared to ฮปโˆ’1โ€‹(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)\lambda^{-1}(\mathsf{clconv}\,\mathcal{C}) (cf.ย Remarkย 2.5). In addition, our result unifies and extends the related results inย [8] established for certain special cases of ฮป\lambda and ๐’ž\mathcal{C}.

Notations.ย For any set ๐’ฐโ‰ โˆ…\mathcal{U}\neq\emptyset, denote its convex hull, affine hull and relative interior by ๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฐ\mathsf{conv}\,\mathcal{U}, ๐–บ๐–ฟ๐–ฟโ€‹๐’ฐ\mathsf{aff}\,\mathcal{U} and ๐—‹๐—‚โ€‹๐’ฐ\mathsf{ri}\,\mathcal{U}, respectively. For a nonempty cone ๐’ฆโІโ„n\mathcal{K}\subseteq\mathbb{R}^{n}, define its polar ๐’ฆโˆ˜:={yโˆˆโ„n:โŸจy,xโŸฉโ‰ค0,โˆ€xโˆˆ๐’ฆ}\mathcal{K}^{\circ}:=\{y\in\mathbb{R}^{n}:\langle{y},{x}\rangle\leq 0,\,\forall\,x\in\mathcal{K}\}. Let โˆฅโ‹…โˆฅ\|\cdot\| be the norm induced by the inner product โŸจโ‹…,โ‹…โŸฉ\langle{\cdot},{\cdot}\rangle on ๐”ผ\mathbb{E}. Also, for xโˆˆโ„nx\in\mathbb{R}^{n}, define โ€–xโ€–0:=|{iโˆˆ[n]:xiโ‰ 0}|\|x\|_{0}:=|\{i\in[n]:x_{i}\neq 0\}| and โ€–xโ€–p:=(โˆ‘i=1n|xi|p)1/p\|x\|_{p}:=(\sum_{i=1}^{n}|x_{i}|^{p})^{1/p} for pโ‰ฅ1p\geq 1. We define |x|:=(|x1|,โ€ฆ,|xn|)|x|:=(|x_{1}|,\ldots,|x_{n}|) and let xโ†“x^{\downarrow} be the vector with entries of xx arranged in non-increasing order. Also, let โ„+n\mathbb{R}_{+}^{n} be the nonnegative orthant, and define โ„โ†“n:={xโˆˆโ„n:x1โ‰ฅโ€ฆโ‰ฅxn}\mathbb{R}^{n}_{\downarrow}:=\{x\in\mathbb{R}^{n}:x_{1}\geq\ldots\geq x_{n}\} and (โ„+n)โ†“:=โ„+nโˆฉโ„โ†“n(\mathbb{R}^{n}_{+})_{\downarrow}:=\mathbb{R}_{+}^{n}\cap\mathbb{R}^{n}_{\downarrow}. Given real vector spaces ๐•\mathbb{V} and ๐•Ž\mathbb{W}, the function ฯˆ:๐•โ†’๐•Ž\psi:\mathbb{V}\to\mathbb{W} is called positively homogeneous (p.h.) if ฯˆโ€‹(tโ€‹x)=tโ€‹ฯˆโ€‹(x)\psi(tx)=t\psi(x) for all t>0t>0 and xโˆˆ๐•x\in\mathbb{V}. Given a closed convex function f:โ„nโ†’โ„โˆช{+โˆž}f:\mathbb{R}^{n}\to\mathbb{R}\cup\{+\infty\}, define ๐–ฝ๐—ˆ๐—†โ€‹f:={xโˆˆโ„n:fโ€‹(x)<+โˆž}\mathsf{dom}\,f:=\{x\in\mathbb{R}^{n}:f(x)<+\infty\}.

2 Main Results

For some results below, we need to make the following additional assumption about ฮป:๐”ผโ†’๐’ฆ\lambda:\mathbb{E}\to\mathcal{K}. To that end, let ๐–ฑ๐–ฒโ€‹(๐’ฆ){\sf RS}(\mathcal{K}) denote the recession subspace of ๐’ฆ\mathcal{K}, i.e., ๐–ฑ๐–ฒโ€‹(๐’ฆ):=๐’ฆโˆฉ(โˆ’๐’ฆ){\sf RS}(\mathcal{K}):=\mathcal{K}\cap(-\mathcal{K}).

  1. (P3)

    For any ฯ‰โˆˆ๐–ฑ๐–ฒโ€‹(๐’ฆ)\omega\in{\sf RS}(\mathcal{K}), there exists dโˆˆ๐”ผd\in\mathbb{E} such that ฮปโ€‹(x+d)=ฮปโ€‹(x)+ฯ‰\lambda(x+d)=\lambda(x)+\omega, for all xโˆˆ๐”ผx\in\mathbb{E}.

Remark 2.1

Note thatย (P3) holds if ฮป\lambda is isometric (namely, โ€–xโ€–=โ€–ฮปโ€‹(x)โ€–2\|x\|=\|\lambda(x)\|_{2} for all xโˆˆ๐”ผx\in\mathbb{E}). Specifically, let ๐’ฌ:={dโˆˆ๐”ผ:ฮปโ€‹(x+d)=ฮปโ€‹(x)+ฮปโ€‹(d),โˆ€xโˆˆ๐”ผ}\mathcal{Q}:=\{d\in\mathbb{E}:\lambda(x+d)=\lambda(x)+\lambda(d),\;\forall\,x\in\mathbb{E}\}, and note that 0โˆˆ๐’ฌ0\in\mathcal{Q}. Byย [4, Corollaryย 6.4], we know that ฮปโ€‹(๐’ฌ)=๐–ฑ๐–ฒโ€‹(๐’ฆ)\lambda(\mathcal{Q})={\sf RS}(\mathcal{K}). As such, for any ฯ‰โˆˆ๐–ฑ๐–ฒโ€‹(๐’ฆ)\omega\in{\sf RS}(\mathcal{K}), there exists dโˆˆ๐’ฌd\in\mathcal{Q} such that ฮปโ€‹(d)=ฯ‰\lambda(d)=\omega, which impliesย (P3).

Theorem 2.1

Let ฮป:๐”ผโ†’๐’ฆ\lambda:\mathbb{E}\to\mathcal{K} be a spectral map, and ๐’ž\mathcal{C} be closed and convex such that ๐’žโˆฉ๐—‹๐—‚โ€‹๐’ฆ\mathcal{C}\cap\mathsf{ri}\,\mathcal{K} is nonempty and bounded.

  1. (i)

    If 0โˆˆ๐’ž0\in\mathcal{C}, then

    ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ={xโˆˆ๐”ผ:โˆƒฮผโˆˆ๐’žโˆฉ๐’ฆโ€‹s.t.โกฮปโ€‹(x)โˆ’ฮผโˆˆ๐’ฆโˆ˜}.\mathsf{clconv}\,\mathcal{S}=\{x\in\mathbb{E}:\;\exists\,\mu\in\mathcal{C}\cap\mathcal{K}\;\;\operatorname{\;\;s.t.\;\;}\lambda(x)-\mu\in\mathcal{K}^{\circ}\}. (2.1)
  2. (ii)

    If ฮป\lambda also satisfiesย (P3), thenย (2.1) holds as long as ๐’žโˆฉ๐–ฑ๐–ฒโ€‹(๐’ฆ)โ‰ โˆ…\mathcal{C}\cap{\sf RS}(\mathcal{K})\neq\emptyset.

Moreover, if ๐’ฆ\mathcal{K} is polyhedral, then the assumptions on ๐’žโˆฉ๐—‹๐—‚โ€‹๐’ฆ\mathcal{C}\cap\mathsf{ri}\,\mathcal{K} can be dropped.

  • Proof

    See Sectionย 3. โ–ก\square โ–ก\square

Remark 2.2

(Membership Oracle of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S}) Note that the description of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S} inย (2.1) is based on projection. Therefore, given xโˆˆ๐”ผx\in\mathbb{E}, checking xโˆˆ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎx\in\mathsf{clconv}\,\mathcal{S} amounts to a convex feasibility problem in ฮผโˆˆโ„n\mu\in\mathbb{R}^{n}. Under certain assumptions, this feasibility problem can be solved in polynomial-time using the ellipsoid method, so long as the separation oracles of the sets ๐’ž\mathcal{C}, ๐’ฆ\mathcal{K} and ๐’ฆโˆ˜\mathcal{K}^{\circ} can be computed in polynomial time. Similar remarks also apply to other projection-based characterizations of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S} to be presented later.

From Theoremย 2.1, we can easily obtain the following corollary that characterizes ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S} when ๐’ž\mathcal{C} is (potentially) non-convex or non-closed. Indeed, this corollary can be viewed as a generalization of Theoremย 2.1.

Corollary 2.1

Let ฮป:๐”ผโ†’๐’ฆ\lambda:\mathbb{E}\to\mathcal{K} be a spectral map, and ๐’Ÿ:=๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’žโˆฉ๐’ฆ)\mathcal{D}:=\mathsf{clconv}\,(\mathcal{C}\cap\mathcal{K}) satisfy that ๐’Ÿโˆฉ๐—‹๐—‚โ€‹๐’ฆ\mathcal{D}\cap\mathsf{ri}\,\mathcal{K} is nonempty and bounded.

  1. (i)

    If 0โˆˆ๐’Ÿ0\in\mathcal{D}, then

    ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ={xโˆˆ๐”ผ:โˆƒฮผโˆˆ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’žโˆฉ๐’ฆ)โ€‹s.t.โกฮปโ€‹(x)โˆ’ฮผโˆˆ๐’ฆโˆ˜}.\mathsf{clconv}\,\mathcal{S}=\{x\in\mathbb{E}:\;\exists\,\mu\in\mathsf{clconv}\,(\mathcal{C}\cap\mathcal{K})\;\;\operatorname{\;\;s.t.\;\;}\lambda(x)-\mu\in\mathcal{K}^{\circ}\}. (2.2)
  2. (ii)

    If ฮป\lambda also satisfiesย (P3), thenย (2.2) holds as long as ๐’Ÿโˆฉ๐–ฑ๐–ฒโ€‹(๐’ฆ)โ‰ โˆ…\mathcal{D}\cap{\sf RS}(\mathcal{K})\neq\emptyset.

Moreover, if ๐’ฆ\mathcal{K} is polyhedral, then the assumptions on ๐’Ÿโˆฉ๐—‹๐—‚โ€‹๐’ฆ\mathcal{D}\cap\mathsf{ri}\,\mathcal{K} can be dropped.

The proof of Corollaryย 2.1 is immediate from the following lemma.

Lemma 2.1

Let ๐’Ÿ\mathcal{D} be given in Corollaryย 2.1 and define ๐’ฎโ€ฒ:=ฮปโˆ’1โ€‹(๐’Ÿ).\mathcal{S}^{\prime}:=\lambda^{-1}(\mathcal{D}). Then ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎโ€ฒ=๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S}^{\prime}=\mathsf{clconv}\,\mathcal{S}.

  • Proof

    See Sectionย 3. โ–ก\square โ–ก\square

Proof of Corollaryย 2.1. Since ๐’ŸโІ๐’ฆ\mathcal{D}\subseteq\mathcal{K} is closed, convex and feasible, based on Lemmaย 2.1, we can invoke Theoremย 2.1 to characterize ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎโ€ฒ\mathsf{clconv}\,\mathcal{S}^{\prime}. โ–ก\square

Next, let us turn our focus to the case where ๐’ž\mathcal{C} has certain invariance properties. We shall define the invariance of ๐’ž\mathcal{C} in a general way via the so-called ฮป\lambda-compatible spectral map on โ„n\mathbb{R}^{n}, which is in line withย [4, Sectionย 10].

Definition 2.1 (ฮป\lambda-Compatible Spectral Map)

Let ฮณ:โ„nโ†ฆ๐’ฆ\gamma:\mathbb{R}^{n}\mapsto\mathcal{K} be a spectral map, i.e., it satisfiesย (P1) andย (P2) (with ๐”ผ\mathbb{E} replaced by โ„n\mathbb{R}^{n}). If ฮณโˆ˜ฮป=ฮป\gamma\circ\lambda=\lambda on ๐”ผ\mathbb{E}, then ฮณ\gamma is called ฮป\lambda-compatible.

Definition 2.2 (ฮณ\gamma-Invariant Set)

Let ฮณ:โ„nโ†ฆ๐’ฆ\gamma:\mathbb{R}^{n}\mapsto\mathcal{K} be a spectral map. A set โˆ…โ‰ ๐’ฐโІโ„n\emptyset\neq\mathcal{U}\subseteq\mathbb{R}^{n} is called ฮณ\gamma-invariant if for any ฮผโˆˆ๐’ฐ\mu\in\mathcal{U}, [ฮผ]โІ๐’ฐ[\mu]\subseteq\mathcal{U}, where

[ฮผ]:={ฮฝโˆˆโ„n:ฮณโ€‹(ฮฝ)=ฮณโ€‹(ฮผ)}.[\mu]:=\{\nu\in\mathbb{R}^{n}:\gamma(\nu)=\gamma(\mu)\}. (2.3)
Remark 2.3

Several remarks are in order. First, note that the condition ฮณโˆ˜ฮป=ฮป\gamma\circ\lambda=\lambda on ๐”ผ\mathbb{E} is equivalent to that ฮณโ€‹(ฮผ)=ฮผ\gamma(\mu)=\mu for all ฮผโˆˆ๐’ฆ\mu\in\mathcal{K}. Therefore, the compatibility of ฮณ\gamma with ฮป\lambda is essentially its compatibility with ๐’ฆ\mathcal{K}, i.e., the range of ฮป\lambda. Second, from Definitionย 2.1, it is easy to see that ฮณโˆ˜ฮณ=ฮณ\gamma\circ\gamma=\gamma, and hence ฮณโ€‹(ฮผ)โˆˆ[ฮผ]โˆฉ๐’ฆ\gamma(\mu)\in[\mu]\cap\mathcal{K} for all ฮผโˆˆโ„n\mu\in\mathbb{R}^{n}. Third, note that given a spectral map ฮป:๐”ผโ†’๐’ฆ\lambda:\mathbb{E}\to\mathcal{K}, a ฮป\lambda-compatible spectral map ฮณ\gamma may not necessarily exist. A typical example of such a ฮป\lambda is the characteristic map of a complete and isometric hyperbolic polynomial, in which case ๐’ฆโІโ„โ†“n\mathcal{K}\subseteq\mathbb{R}^{n}_{\downarrow} is a closed convex cone without additional structures (seeย [4, Sectionย 10] for a discussion). That said, a ฮป\lambda-compatible spectral map ฮณ\gamma does exist for some special instances of ๐’ฆ\mathcal{K}. For example, rโ€‹(ฮผ):=ฮผโ†“r(\mu):=\mu^{\downarrow} for ๐’ฆ=โ„โ†“n\mathcal{K}=\mathbb{R}^{n}_{\downarrow}, rโ€‹(ฮผ):=|ฮผ|r(\mu):=|\mu| for ๐’ฆ=โ„+n\mathcal{K}=\mathbb{R}_{+}^{n} and rโ€‹(ฮผ):=|ฮผ|โ†“r(\mu):=|\mu|^{\downarrow} for ๐’ฆ=(โ„+n)โ†“\mathcal{K}=(\mathbb{R}^{n}_{+})_{\downarrow}. Indeed, in these examples, a set ๐’ฐ\mathcal{U} is ฮณ\gamma-invariant if it is permutation-, sign- and permutation- and sign-invariant, respectively.

Proposition 2.1

Given a spectral map ฮป:๐”ผโ†’๐’ฆ\lambda:\mathbb{E}\to\mathcal{K}, let ฮณ:โ„nโ†ฆ๐’ฆ\gamma:\mathbb{R}^{n}\mapsto\mathcal{K} be a ฮป\lambda-compatible spectral map, and ๐’ž\mathcal{C} be a ฮณ\gamma-invariant set. Define ๐’ฎยฏ:=ฮปโˆ’1โ€‹(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)\bar{\mathcal{S}}:=\lambda^{-1}(\mathsf{clconv}\,\mathcal{C}), then ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎยฏ\mathsf{clconv}\,\mathcal{S}=\mathsf{clconv}\,\bar{\mathcal{S}}. Moreover, if ฮป\lambda is also continuous and p.h., then ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎยฏ=๐’ฎยฏ\mathsf{clconv}\,\mathcal{S}=\mathsf{clconv}\,\bar{\mathcal{S}}=\bar{\mathcal{S}}.

  • Proof

    See Sectionย 3. โ–ก\square โ–ก\square

Remark 2.4

Two remarks are in order. First, the result ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=๐’ฎยฏ\mathsf{clconv}\,\mathcal{S}=\bar{\mathcal{S}} can be found inย [7, Theoremย 3.2(b)], but stated under the stronger assumption that ฮป\lambda is isometric. Note that this assumption implies that ฮป\lambda is continuous and p.h., but the reverse may not be true. In fact, our proof of Propositionย 2.1 shares similar ideas with that ofย [7, Theoremย 3.2(b)], but appears to be slightly shorter. Second, inย [8, Sectionย 3.1], it was shown that ๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=ฮปโˆ’1โ€‹(๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)\mathsf{conv}\,\mathcal{S}=\lambda^{-1}(\mathsf{conv}\,\mathcal{C}) for two special cases, namely i) ฮป\lambda is the eigenvalue map on ๐•Šn\mathbb{S}^{n} and ๐’ž\mathcal{C} is permutation-invariant and ii) ฮป\lambda is the singular-value map on โ„mร—n\mathbb{R}^{m\times n} and ๐’ž\mathcal{C} is permutation- and sign-invariant. By taking closure, it is easy to see that ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=ฮปโˆ’1โ€‹(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)\mathsf{clconv}\,\mathcal{S}=\lambda^{-1}(\mathsf{clconv}\,\mathcal{C}) in these two cases. This result is subsumed by the general result in Propositionย 2.1, which applies to any continuous and p.h.ย ฮป\lambda that admits a compatible spectral map ฮณ\gamma, and any ฮณ\gamma-invariant set ๐’ž\mathcal{C}.

Next, let us present a projection-based characterization of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S}. This characterization requires ฮณ:โ„nโ†ฆ๐’ฆ\gamma:\mathbb{R}^{n}\mapsto\mathcal{K} to be isometric, namely, โ€–ฮณโ€‹(x)โ€–2=โ€–xโ€–2\|\gamma(x)\|_{2}=\|x\|_{2} for all xโˆˆโ„nx\in\mathbb{R}^{n}. Common examples of ฮณ\gamma include those mentioned at the end of Remarkย 2.3. The advantages of such a projection-based characterization can be seen in Remarkย 2.5 and Corollaryย 2.2.

Proposition 2.2

Let ฮป\lambda, ฮณ\gamma and ๐’ž\mathcal{C} be given in Propositionย 2.1. Moreover, let ฮณ\gamma be isometric. Define ๐’ฎยฏโ€ฒ:=ฮปโˆ’1โ€‹(๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)\bar{\mathcal{S}}^{\prime}:=\lambda^{-1}(\mathsf{conv}\,\mathcal{C}) and for any โˆ…โ‰ ๐’ŸโІโ„n\emptyset\neq\mathcal{D}\subseteq\mathbb{R}^{n}, define

๐’ฎ~๐’Ÿ:={xโˆˆ๐”ผ:โˆƒฮผโˆˆ๐’Ÿโ€‹s.t.โกฮปโ€‹(x)โˆ’ฮผโˆˆ๐’ฆโˆ˜}.\widetilde{\mathcal{S}}_{\mathcal{D}}:=\{x\in\mathbb{E}:\;\exists\,\mu\in\mathcal{D}\;\;\operatorname{\;\;s.t.\;\;}\lambda(x)-\mu\in\mathcal{K}^{\circ}\}. (2.4)
  1. (i)

    For any ๐’Ÿ\mathcal{D} satisfying ๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’žโˆฉ๐’ฆ)โІ๐’ŸโІ(๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)โˆฉ๐’ฆ\mathsf{conv}\,(\mathcal{C}\cap\mathcal{K})\subseteq\mathcal{D}\subseteq(\mathsf{conv}\,\mathcal{C})\cap\mathcal{K}, we have ๐’ฎยฏโ€ฒ=๐’ฎ~๐’Ÿ\bar{\mathcal{S}}^{\prime}=\widetilde{\mathcal{S}}_{\mathcal{D}}.

  2. (ii)

    If ฮป\lambda is continuous and p.h., then for any ๐’Ÿ\mathcal{D} satisfying that ๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’žโˆฉ๐’ฆ)โІ๐’ŸโІ(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)โˆฉ๐’ฆ\mathsf{conv}\,(\mathcal{C}\cap\mathcal{K})\subseteq\mathcal{D}\subseteq(\mathsf{clconv}\,\mathcal{C})\cap\mathcal{K}, we have ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=๐–ผ๐—…โ€‹๐’ฎ~๐’Ÿ\mathsf{clconv}\,\mathcal{S}=\mathsf{cl}\,\widetilde{\mathcal{S}}_{\mathcal{D}}.

  • Proof

    See Sectionย 3. โ–ก\square โ–ก\square

Remark 2.5

Propositionย 2.2(ii) provides another characterization of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S}, namely ๐–ผ๐—…โ€‹๐’ฎ~๐’Ÿ\mathsf{cl}\,\widetilde{\mathcal{S}}_{\mathcal{D}} with ๐’Ÿ=๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’žโˆฉ๐’ฆ)\mathcal{D}=\mathsf{conv}\,(\mathcal{C}\cap\mathcal{K}). Note that in some cases, ๐–ผ๐—…โ€‹๐’ฎ~๐’Ÿ\mathsf{cl}\,\widetilde{\mathcal{S}}_{\mathcal{D}} may be simpler to describe than ๐’ฎยฏ:=ฮปโˆ’1โ€‹(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)\bar{\mathcal{S}}:=\lambda^{-1}(\mathsf{clconv}\,\mathcal{C}), as given in Propositionย 2.1. For example, let ๐’ฆ:=(โ„+n)โ†“\mathcal{K}:=(\mathbb{R}_{+}^{n})_{\downarrow}, ฮณโ€‹(ฮผ):=|ฮผ|โ†“\gamma(\mu):=|\mu|^{\downarrow} and ๐’ž:={ฮผโˆˆโ„n:โ€–ฮผโ€–0โ‰คk,โ€–ฮผโ€–2โ‰ค1}\mathcal{C}:=\{\mu\in\mathbb{R}^{n}:\|\mu\|_{0}\leq k,\|\mu\|_{2}\leq 1\} for some 1โ‰คkโ‰คn1\leq k\leq n. Note that ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\mathsf{clconv}\,\mathcal{C} can be rather complicated to describe (cf.ย [8, Section 3]). In contrast, ๐’žโˆฉ๐’ฆ={ฮผโˆˆ(โ„+n)โ†“:ฮผk+1โ‰ค0,โ€–ฮผโ€–2โ‰ค1}\mathcal{C}\cap\mathcal{K}=\{\mu\in(\mathbb{R}_{+}^{n})_{\downarrow}:\mu_{k+1}\leq 0,\;\|\mu\|_{2}\leq 1\}, which is the intersection of the unit โ„“2\ell_{2}-ball with n+1n+1 linear inequalities. Since ๐’žโˆฉ๐’ฆ\mathcal{C}\cap\mathcal{K} is convex and compact, we have ๐’Ÿ=๐’žโˆฉ๐’ฆ\mathcal{D}=\mathcal{C}\cap\mathcal{K}. Additionally, ๐’ฆโˆ˜\mathcal{K}^{\circ} has a simple description, i.e., ๐’ฆโˆ˜={ฮฝโˆˆโ„n:โˆ‘i=1kฮฝiโ‰ค0,โˆ€kโˆˆ[n]}\mathcal{K}^{\circ}=\{\nu\in\mathbb{R}^{n}:\textstyle\sum_{i=1}^{k}\nu_{i}\leq 0,\,\forall\,k\in[n]\}. Overall, ๐’ฎ~๐’Ÿ\widetilde{\mathcal{S}}_{\mathcal{D}} admits a simple description. Lastly, since ๐’Ÿ\mathcal{D} is compact, we have ๐–ผ๐—…โ€‹๐’ฎ~๐’Ÿ=๐’ฎ~๐’Ÿ\mathsf{cl}\,\widetilde{\mathcal{S}}_{\mathcal{D}}=\widetilde{\mathcal{S}}_{\mathcal{D}}.

Remark 2.6

(Connection to Results inย [8]) Inย [8, Sectionย 1], it was shown that if ๐’ž\mathcal{C} is permutation-, sign- and permutation- and sign-invariant, and ฮณโ€‹(ฮผ)=ฮผโ†“\gamma(\mu)=\mu^{\downarrow}, |ฮผ||\mu| and |ฮผ|โ†“|\mu|^{\downarrow}, respectively, then for any โ„ฑ\mathcal{F} satisfying ๐’žโˆฉ๐’ฆโІโ„ฑโІ(๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)โˆฉ๐’ฆ\mathcal{C}\cap\mathcal{K}\subseteq\mathcal{F}\subseteq(\mathsf{conv}\,\mathcal{C})\cap\mathcal{K},

๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž={ฮผโˆˆโ„n:โˆƒuโˆˆ๐–ผ๐—ˆ๐—‡๐—โ€‹โ„ฑโ€‹s.t.โกฮณโ€‹(ฮผ)โˆ’uโˆˆ๐’ฆโˆ˜}.\mathsf{conv}\,\mathcal{C}=\{\mu\in\mathbb{R}^{n}:\;\exists\,u\in\mathsf{conv}\,\mathcal{F}\;\;\operatorname{\;\;s.t.\;\;}\gamma(\mu)-u\in\mathcal{K}^{\circ}\}. (2.5)

(In fact, ฮผโˆ’uโˆˆ๐’ฆโˆ˜\mu-u\in\mathcal{K}^{\circ} was stated algebraically in terms of (weak) majorization and entry-wise inequality inย [8].) Since ฮณโˆ˜ฮณ=ฮณ\gamma\circ\gamma=\gamma in all cases above, we can take ฮป:=ฮณ\lambda:=\gamma in Propositionย 2.2, and ฮณ\gamma becomes ฮป\lambda-compatible. By taking closure on both sides ofย (2.5), it is clear that the resulting characterization of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\mathsf{clconv}\,\mathcal{C} is subsumed by the more general result in Propositionย 2.2(ii). As a noteworthy point, the proof techniques inย [8] are rather different from those in our proof of Propositionย 2.2. Specifically,ย (2.5) was proved separately for each of the three cases above inย [8], and the proof in each case made use of the special structures of ฮณ\gamma and ๐’ฆ\mathcal{K}. In contrast, our proof of Propositionย 2.2 only uses some general properties of ฮณ\gamma (i.e., isometry,ย (P1) andย (P2)) and ๐’ฆ\mathcal{K} (i.e., closedness and convexity), and acts as a unified proof for all the three cases above.

As the last result in this section, we present an extension of Propositionย 2.2. Indeed, if a ฮป\lambda-compact spectral map ฮณ\gamma exists, the projection-based characterization in Propositionย 2.2 can be extended to a much broader setting, where ๐’ž\mathcal{C} is only required to be feasible (but not necessarily ฮณ\gamma-invariant).

Corollary 2.2

Let ฮป\lambda and ฮณ\gamma be given in Propositionย 2.1. Moreover, let ฮป\lambda be continuous and p.h., and ฮณ\gamma be isometric. Then for any feasible set ๐’ž\mathcal{C} (i.e., ๐’žโˆฉ๐’ฆโ‰ โˆ…\mathcal{C}\cap\mathcal{K}\neq\emptyset) and any ๐’Ÿ\mathcal{D} satisfying that ๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’žโˆฉ๐’ฆ)โІ๐’ŸโІ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’žโˆฉ๐’ฆ)\mathsf{conv}\,(\mathcal{C}\cap\mathcal{K})\subseteq\mathcal{D}\subseteq\mathsf{clconv}\,(\mathcal{C}\cap\mathcal{K}), we have ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=๐–ผ๐—…โ€‹๐’ฎ~๐’Ÿ\mathsf{clconv}\,\mathcal{S}=\mathsf{cl}\,\widetilde{\mathcal{S}}_{\mathcal{D}}, where ๐’ฎ~๐’Ÿ\widetilde{\mathcal{S}}_{\mathcal{D}} is given inย (2.4).

  • Proof

    Define ๐’ž~:=โˆชฮผโˆˆ๐’žโˆฉ๐’ฆ[ฮผ]\widetilde{\mathcal{C}}:=\cup_{\mu\in\mathcal{C}\cap\mathcal{K}}\,[\mu], which is ฮณ\gamma-invariant. We claim that ๐’ž~โˆฉ๐’ฆ=๐’žโˆฉ๐’ฆ\widetilde{\mathcal{C}}\cap\mathcal{K}=\mathcal{C}\cap\mathcal{K}. Indeed, it is clear that if ฮผโˆˆ๐’žโˆฉ๐’ฆ\mu\in\mathcal{C}\cap\mathcal{K}, then ฮผโˆˆ๐’ž~โˆฉ๐’ฆ\mu\in\widetilde{\mathcal{C}}\cap\mathcal{K}. On the other hand, if ฮผโˆˆ๐’ž~โˆฉ๐’ฆ\mu\in\widetilde{\mathcal{C}}\cap\mathcal{K}, then there exists ฮผโ€ฒโˆˆ๐’žโˆฉ๐’ฆ\mu^{\prime}\in\mathcal{C}\cap\mathcal{K} such that ฮผโˆˆ[ฮผโ€ฒ]\mu\in[\mu^{\prime}], or equivalently, ฮณโ€‹(ฮผ)=ฮณโ€‹(ฮผโ€ฒ)\gamma(\mu)=\gamma(\mu^{\prime}). Since ฮผ,ฮผโ€ฒโˆˆ๐’ฆ\mu,\mu^{\prime}\in\mathcal{K}, we have ฮผ=ฮณโ€‹(ฮผ)\mu=\gamma(\mu) and ฮผโ€ฒ=ฮณโ€‹(ฮผโ€ฒ)\mu^{\prime}=\gamma(\mu^{\prime}), and hence ฮผ=ฮผโ€ฒโˆˆ๐’žโˆฉ๐’ฆ\mu=\mu^{\prime}\in\mathcal{C}\cap\mathcal{K}. As a result, we have ๐’ฎ=ฮปโˆ’1โ€‹(๐’ž)=ฮปโˆ’1โ€‹(๐’žโˆฉ๐’ฆ)=ฮปโˆ’1โ€‹(๐’ž~โˆฉ๐’ฆ)=ฮปโˆ’1โ€‹(๐’ž~)\mathcal{S}=\lambda^{-1}(\mathcal{C})=\lambda^{-1}(\mathcal{C}\cap\mathcal{K})=\lambda^{-1}(\widetilde{\mathcal{C}}\cap\mathcal{K})=\lambda^{-1}(\widetilde{\mathcal{C}}). Now, by Propositionย 2.2(ii), we have ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=๐–ผ๐—…โ€‹๐’ฎ~๐’Ÿ\mathsf{clconv}\,\mathcal{S}=\mathsf{cl}\,\widetilde{\mathcal{S}}_{\mathcal{D}} for any ๐’Ÿ\mathcal{D} satisfying that ๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’ž~โˆฉ๐’ฆ)โІ๐’ŸโІ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’ž~โˆฉ๐’ฆ)\mathsf{conv}\,(\widetilde{\mathcal{C}}\cap\mathcal{K})\subseteq\mathcal{D}\subseteq\mathsf{clconv}\,(\widetilde{\mathcal{C}}\cap\mathcal{K}). Since ๐’ž~โˆฉ๐’ฆ=๐’žโˆฉ๐’ฆ\widetilde{\mathcal{C}}\cap\mathcal{K}=\mathcal{C}\cap\mathcal{K}, we complete the proof. โ–ก\square โ–ก\square

3 Proofs of Results in Sectionย 2

We start by introducing some preliminary convex analytic facts, which can be found in Rockafellarย [11, Sectionsย 12โ€“14]. For any nonempty set ๐’ฐโІโ„n\mathcal{U}\subseteq\mathbb{R}^{n}, define its support function ฯƒ๐’ฐโ€‹(y):=supxโˆˆ๐’ฐโŸจy,xโŸฉ\sigma_{\mathcal{U}}(y):=\sup_{x\in\mathcal{U}}\;\langle{y},{x}\rangle for yโˆˆโ„ny\in\mathbb{R}^{n}. It is clear that ฯƒ๐’ฐ\sigma_{\mathcal{U}} is proper, closed, convex and p.h. In addition, for any x0โˆˆโ„nx_{0}\in\mathbb{R}^{n}, we have ฯƒ๐’ฐโˆ’x0โ€‹(y)=ฯƒ๐’ฐโˆ’โŸจy,x0โŸฉ\sigma_{\mathcal{U}-x_{0}}(y)=\sigma_{\mathcal{U}}-\langle{y},{x_{0}}\rangle for all yโˆˆโ„ny\in\mathbb{R}^{n}. We also denote the indicator function of ๐’ฐ\mathcal{U} by ฮน๐’ฐ\iota_{\mathcal{U}}, such that ฮน๐’ฐโ€‹(x):=0\iota_{\mathcal{U}}(x):=0 for xโˆˆ๐’ฐx\in\mathcal{U} and ฮน๐’ฐโ€‹(x):=+โˆž\iota_{\mathcal{U}}(x):=+\infty otherwise. For any proper function f:โ„nโ†’โ„ยฏ:=(โˆ’โˆž,+โˆž]f:\mathbb{R}^{n}\to\overline{\mathbb{R}}:=(-\infty,+\infty], define its Fenchel conjugate

fโˆ—โ€‹(y):=supxโˆˆโ„nโŸจy,xโŸฉโˆ’fโ€‹(x),โˆ€yโˆˆโ„n.f^{*}(y):={\sup}_{x\in\mathbb{R}^{n}}\;\langle{y},{x}\rangle-f(x),\quad\forall\,y\in\mathbb{R}^{n}. (3.1)

It is clear that ฯƒ๐’ฐ=ฮน๐’ฐโˆ—\sigma_{\mathcal{U}}=\iota_{\mathcal{U}}^{*}, and if ๐’ฐ\mathcal{U} is closed and convex, we also have ฮน๐’ฐ=ฯƒ๐’ฐโˆ—\iota_{\mathcal{U}}=\sigma_{\mathcal{U}}^{*}. Let ๐’ฐโˆ˜\mathcal{U}^{\circ} denote the polar set of ๐’ฐ\mathcal{U}, which is defined as

๐’ฐโˆ˜:={yโˆˆโ„n:โŸจy,xโŸฉโ‰ค1,โˆ€xโˆˆ๐’ฐ}={yโˆˆโ„n:ฯƒ๐’ฐโ€‹(y)โ‰ค1}.\mathcal{U}^{\circ}:=\{y\in\mathbb{R}^{n}:\langle{y},{x}\rangle\leq 1,\;\forall\,x\in\mathcal{U}\}=\{y\in\mathbb{R}^{n}:\sigma_{\mathcal{U}}(y)\leq 1\}. (3.2)

We define ๐’ฐโˆ˜โˆ˜:=(๐’ฐโˆ˜)โˆ˜\mathcal{U}^{\circ\circ}:=(\mathcal{U}^{\circ})^{\circ}, which we call the bipolar set of ๐’ฐ\mathcal{U}. An important fact about ๐’ฐโˆ˜โˆ˜\mathcal{U}^{\circ\circ} is that

๐’ฐโˆ˜โˆ˜=๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’ฐโˆช{0}).\displaystyle\mathcal{U}^{\circ\circ}=\mathsf{clconv}\,(\mathcal{U}\cup\{0\}). (3.3)

Next, we mention two implications ofย (P1) andย (P2). First, note thatย (P1) implies that โ€–xโ€–โ‰คโ€–ฮปโ€‹(x)โ€–2\|x\|\leq\|\lambda(x)\|_{2}, and hence x=0x=0 if and only if ฮปโ€‹(x)=0\lambda(x)=0. Second, (P1) andย (P2) straightforwardly imply the following lemma.

Lemma 3.1 ([6, Proposition 3.3]; see alsoย [5, Corollaryย 3.3])

For any cโˆˆโ„nc\in\mathbb{R}^{n} and any nonempty set ๐’ฐโІโ„n\mathcal{U}\subseteq\mathbb{R}^{n}, we have

supxโˆˆ๐”ผ{โŸจy,xโŸฉ+โŸจc,ฮปโ€‹(x)โŸฉ:ฮปโ€‹(x)โˆˆ๐’ฐ}=\displaystyle{\sup}_{x\in\mathbb{E}}\;\{\langle{y},{x}\rangle+\langle{c},{\lambda(x)}\rangle:\lambda(x)\in\mathcal{U}\}=\; supฮผโˆˆ๐’ฐโˆฉ๐’ฆโŸจฮปโ€‹(y)+c,ฮผโŸฉ\displaystyle{\sup}_{\mu\in\mathcal{U}\cap\mathcal{K}}\;\langle{\lambda(y)+c},{\mu}\rangle (3.4)

We first prove Theoremย 2.1. Our proof leverages the following lemma.

Lemma 3.2

Let ๐’ž\mathcal{C} be closed and convex, and define ๐’Ÿ:=๐’žโˆฉ๐’ฆโ‰ โˆ…\mathcal{D}:=\mathcal{C}\cap\mathcal{K}\neq\emptyset. If ๐’ฆ\mathcal{K} is polyhedral or ๐’žโˆฉ๐—‹๐—‚โ€‹๐’ฆโ‰ โˆ…\mathcal{C}\cap\mathsf{ri}\,\mathcal{K}\neq\emptyset, then for any x0โˆˆ๐”ผx_{0}\in\mathbb{E}, we have

(๐’ฎโˆ’x0)โˆ˜={yโˆˆ๐”ผ:โˆƒzโˆˆโ„nโ€‹s.t.โกฮปโ€‹(y)โˆ’zโˆˆ๐’ฆโˆ˜โ€‹andโ€‹ฯƒ๐’Ÿโ€‹(z)โ‰ค1+โŸจy,x0โŸฉ}.(\mathcal{S}-x_{0})^{\circ}=\{y\in\mathbb{E}:\exists\,z\in\mathbb{R}^{n}\;\operatorname{\;\;s.t.\;\;}\lambda(y)-z\in\mathcal{K}^{\circ}\;\;\mbox{and}\;\;\sigma_{\mathcal{D}}(z)\leq 1+\langle{y},{x_{0}}\rangle\}.
  • Proof

    Indeed, by definition,

    (๐’ฎโˆ’x0)โˆ˜:={yโˆˆ๐”ผ:ฯƒ๐’ฎโˆ’x0โ€‹(y)โ‰ค1}={yโˆˆ๐”ผ:ฯƒ๐’ฎโ€‹(y)โ‰ค1+โŸจy,x0โŸฉ}.(\mathcal{S}-x_{0})^{\circ}:=\{y\in\mathbb{E}:\sigma_{\mathcal{S}-x_{0}}(y)\leq 1\}=\{y\in\mathbb{E}:\sigma_{\mathcal{S}}(y)\leq 1+\langle{y},{x_{0}}\rangle\}. (3.5)

    Since we can write ๐’ฎ={xโˆˆ๐”ผ:ฮปโ€‹(x)โˆˆ๐’Ÿ}\mathcal{S}=\{x\in\mathbb{E}:\lambda(x)\in\mathcal{D}\}, fromย Lemmaย 3.1, we have

    ฯƒ๐’ฎโ€‹(y):=supxโˆˆ๐”ผ{โŸจy,xโŸฉ:ฮปโ€‹(x)โˆˆ๐’Ÿ}\displaystyle\sigma_{\mathcal{S}}(y):={\sup}_{x\in\mathbb{E}}\;\{\langle{y},{x}\rangle:\lambda(x)\in\mathcal{D}\} =supฮผโˆˆโ„n{โŸจฮปโ€‹(y),ฮผโŸฉ:ฮผโˆˆ๐’Ÿ}\displaystyle={\sup}_{\mu\in\mathbb{R}^{n}}\;\{\langle{\lambda(y)},{\mu}\rangle:\mu\in\mathcal{D}\}
    =โˆ’infฮผโˆˆโ„nโˆ’โŸจฮปโ€‹(y),ฮผโŸฉ+ฮน๐’ฆโ€‹(ฮผ)+ฮน๐’Ÿโ€‹(ฮผ).\displaystyle=-{\inf}_{\mu\in\mathbb{R}^{n}}\;-\langle{\lambda(y)},{\mu}\rangle+\iota_{\mathcal{K}}(\mu)+\iota_{\mathcal{D}}(\mu). (3.6)

    Since ฮน๐’Ÿโˆ—=ฯƒ๐’Ÿ\iota_{\mathcal{D}}^{*}=\sigma_{\mathcal{D}} and the Fenchel conjugate of the function xโ†ฆโˆ’โŸจฮปโ€‹(y),ฮผโŸฉ+ฮน๐’ฆโ€‹(ฮผ)x\mapsto-\langle{\lambda(y)},{\mu}\rangle+\iota_{\mathcal{K}}(\mu) is zโ†ฆฯƒ๐’ฆโ€‹(ฮปโ€‹(y)+z)=ฮน๐’ฆโˆ˜โ€‹(ฮปโ€‹(y)+z)z\mapsto\sigma_{\mathcal{K}}(\lambda(y)+z)=\iota_{\mathcal{K}^{\circ}}(\lambda(y)+z) for zโˆˆโ„n,z\in\mathbb{R}^{n}, we can write down the Fenchel dual problem ofย (3.6) as follows:

    infzโˆˆโ„nฯƒ๐’Ÿโ€‹(z)+ฮน๐’ฆโˆ˜โ€‹(ฮปโ€‹(y)โˆ’z)=infzโˆˆโ„n{ฯƒ๐’Ÿโ€‹(z):ฮปโ€‹(y)โˆ’zโˆˆ๐’ฆโˆ˜}.{\inf}_{z\in\mathbb{R}^{n}}\;\sigma_{\mathcal{D}}(z)+\iota_{\mathcal{K}^{\circ}}(\lambda(y)-z)={\inf}_{z\in\mathbb{R}^{n}}\;\{\sigma_{\mathcal{D}}(z):\lambda(y)-z\in\mathcal{K}^{\circ}\}. (3.7)

    Note that since ๐’Ÿโ‰ โˆ…\mathcal{D}\neq\emptyset is convex, we always have ๐—‹๐—‚โ€‹๐’Ÿโˆฉ๐’ฆโ‰ โˆ…\mathsf{ri}\,\mathcal{D}\cap\mathcal{K}\neq\emptyset (since โˆ…โ‰ ๐—‹๐—‚โ€‹๐’ŸโІ๐’ฆ\emptyset\neq\mathsf{ri}\,\mathcal{D}\subseteq\mathcal{K}). In addition, if ๐’žโˆฉ๐—‹๐—‚โ€‹๐’ฆโ‰ โˆ…\mathcal{C}\cap\mathsf{ri}\,\mathcal{K}\neq\emptyset, then ๐—‹๐—‚โ€‹๐’Ÿโˆฉ๐—‹๐—‚โ€‹๐’ฆโ‰ โˆ…\mathsf{ri}\,\mathcal{D}\cap\mathsf{ri}\,\mathcal{K}\neq\emptyset (otherwise, since ๐—‹๐—‚โ€‹๐’ŸโІ๐’ฆ\mathsf{ri}\,\mathcal{D}\subseteq\mathcal{K}, we have ๐—‹๐—‚โ€‹๐’ŸโІ๐—‹๐–ป๐–ฝโ€‹๐’ฆ\mathsf{ri}\,\mathcal{D}\subseteq\mathsf{rbd}\,\mathcal{K} and hence ๐’Ÿ=๐’žโˆฉ๐’ฆโІ๐—‹๐–ป๐–ฝโ€‹๐’ฆ\mathcal{D}=\mathcal{C}\cap\mathcal{K}\subseteq\mathsf{rbd}\,\mathcal{K}, contradicting ๐’žโˆฉ๐—‹๐—‚โ€‹๐’ฆโ‰ โˆ…\mathcal{C}\cap\mathsf{ri}\,\mathcal{K}\neq\emptyset). Now, using classical results on Fenchel duality (see e.g.,ย [11, Theorem 31.1]), if ๐’ฆ\mathcal{K} is polyhedral or ๐’žโˆฉ๐—‹๐—‚โ€‹๐’ฆโ‰ โˆ…\mathcal{C}\cap\mathsf{ri}\,\mathcal{K}\neq\emptyset, we know that strong duality holds betweenย (3.6) andย (3.7), and the infimum inย (3.7) is attained. Consequently, fromย (3.5), we know that yโˆˆ(๐’ฎโˆ’x0)โˆ˜y\in(\mathcal{S}-x_{0})^{\circ} if and only if

    minzโˆˆโ„nโก{ฯƒ๐’Ÿโ€‹(z):ฮปโ€‹(y)โˆ’zโˆˆ๐’ฆโˆ˜}=ฯƒ๐’ฎโ€‹(y)โ‰ค1+โŸจy,x0โŸฉ.{\min}_{z\in\mathbb{R}^{n}}\;\{\sigma_{\mathcal{D}}(z):\lambda(y)-z\in\mathcal{K}^{\circ}\}=\sigma_{\mathcal{S}}(y)\leq 1+\langle{y},{x_{0}}\rangle. โ–ก\square

    โ–ก\square

Proof of Theoremย 2.1. By definition, we have ๐’ฎโˆ˜โˆ˜={xโˆˆ๐”ผ:ฯƒ๐’ฎโˆ˜โ€‹(x)โ‰ค1}\mathcal{S}^{\circ\circ}=\{x\in\mathbb{E}:\sigma_{\mathcal{S}^{\circ}}(x)\leq 1\}, and by Lemmaย 3.2 andย Lemmaย 3.1, we have

ฯƒ๐’ฎโˆ˜โ€‹(x)\displaystyle\sigma_{\mathcal{S}^{\circ}}(x) =supyโˆˆ๐”ผ,zโˆˆโ„n{โŸจx,yโŸฉ:ฯƒ๐’Ÿโ€‹(z)โ‰ค1,ฮปโ€‹(y)โˆ’zโˆˆ๐’ฆโˆ˜}\displaystyle={\sup}_{y\in\mathbb{E},\,z\in\mathbb{R}^{n}}\;\{\langle{x},{y}\rangle:\;\sigma_{\mathcal{D}}(z)\leq 1,\;\lambda(y)-z\in\mathcal{K}^{\circ}\} (3.8)
=supฮฝ,zโˆˆโ„n{โŸจฮปโ€‹(x),ฮฝโŸฉ:ฯƒ๐’Ÿโ€‹(z)โ‰ค1,ฮฝโˆ’zโˆˆ๐’ฆโˆ˜,ฮฝโˆˆ๐’ฆ},\displaystyle={\sup}_{\nu,z\in\mathbb{R}^{n}}\;\{\langle{\lambda(x)},{\nu}\rangle:\;\sigma_{\mathcal{D}}(z)\leq 1,\;\nu-z\in\mathcal{K}^{\circ},\;\nu\in\mathcal{K}\}, (3.9)

where ๐’Ÿ:=๐’žโˆฉ๐’ฆ\mathcal{D}:=\mathcal{C}\cap\mathcal{K}. The Lagrange dual problem ofย (3.9) reads

infpโ‰ฅ0,ฮผโˆˆ๐’ฆsupฮฝโˆˆ๐’ฆโŸจฮปโ€‹(x)โˆ’ฮผ,ฮฝโŸฉโŸ(I)+supzโˆˆโ„nโŸจฮผ,zโŸฉโˆ’pโ€‹ฯƒ๐’Ÿโ€‹(z)โŸ(II)+p.\displaystyle{\inf}_{p\geq 0,\,\mu\in\mathcal{K}}\;\underbrace{{\sup}_{\nu\in\mathcal{K}}\;\langle{\lambda(x)-\mu},{\nu}\rangle}_{\rm(I)}+\underbrace{{\sup}_{z\in\mathbb{R}^{n}}\langle{\mu},{z}\rangle-p\sigma_{\mathcal{D}}(z)}_{\rm(II)}+p. (3.10)

Inย (3.10), note that (I)=0\rm(I)=0 if ฮปโ€‹(x)โˆ’ฮผโˆˆ๐’ฆโˆ˜\lambda(x)-\mu\in\mathcal{K}^{\circ} and (I)=+โˆž\rm(I)=+\infty otherwise. In addition, we have (II)=0\rm(II)=0 if ฮผโˆˆpโ€‹๐’Ÿ\mu\in p\mathcal{D} and (II)=+โˆž\rm(II)=+\infty otherwise. To see this, note that if p>0p>0, since ๐’Ÿ\mathcal{D} is closed and convex, we have (II) = pโ€‹ฯƒ๐’Ÿโˆ—โ€‹(ฮผ/p)=pโ€‹ฮน๐’Ÿโ€‹(ฮผ/p)p\sigma^{*}_{\mathcal{D}}(\mu/p)=p\iota_{\mathcal{D}}(\mu/p); otherwise, if p=0p=0, then (II)=ฮน{0}โ€‹(ฮผ)\rm(II)=\iota_{\{0\}}(\mu). Based on the discussions above, we can writeย (3.10) in the following form:

infpโˆˆโ„,ฮผโˆˆโ„n{p:ฮปโ€‹(x)โˆ’ฮผโˆˆ๐’ฆโˆ˜,ฮผโˆˆpโ€‹๐’Ÿ,pโ‰ฅ0,ฮผโˆˆ๐’ฆ}.{\inf}_{p\in\mathbb{R},\,\mu\in\mathbb{R}^{n}}\;\{p:\lambda(x)-\mu\in\mathcal{K}^{\circ},\;\mu\in p\mathcal{D},\;p\geq 0,\;\mu\in\mathcal{K}\}. (3.11)

We aim to show that strong duality holds betweenย (3.9) andย (3.11), and the problem inย (3.11) has an optimal solution. To that end, first notice that since ๐’Ÿโ€ฒ:=๐’žโˆฉ๐—‹๐—‚โ€‹๐’ฆโ‰ โˆ…\mathcal{D}^{\prime}:=\mathcal{C}\cap\mathsf{ri}\,\mathcal{K}\neq\emptyset, we have ๐’Ÿ=๐–ผ๐—…โ€‹๐’Ÿโ€ฒ\mathcal{D}=\mathsf{cl}\,\mathcal{D}^{\prime}. (To see this, let ๐’žโ€ฒ:=๐’žโˆฉ๐–บ๐–ฟ๐–ฟโ€‹๐’ฆ\mathcal{C}^{\prime}:=\mathcal{C}\cap\mathsf{aff}\,\mathcal{K} and note that ๐’žโˆฉ๐—‹๐—‚โ€‹๐’ฆ=๐’žโ€ฒโˆฉ๐—‹๐—‚โ€‹๐’ฆโ‰ โˆ…\mathcal{C}\cap\mathsf{ri}\,\mathcal{K}=\mathcal{C}^{\prime}\cap\mathsf{ri}\,\mathcal{K}\neq\emptyset, and hence ๐—‹๐—‚โ€‹๐’žโ€ฒโˆฉ๐—‹๐—‚โ€‹๐’ฆโ‰ โˆ…\mathsf{ri}\,\mathcal{C}^{\prime}\cap\mathsf{ri}\,\mathcal{K}\neq\emptyset. Byย [11, Theoremย 6.5], we have ๐—‹๐—‚โ€‹๐’Ÿ=๐—‹๐—‚โ€‹(๐’žโ€ฒโˆฉ๐’ฆ)=๐—‹๐—‚โ€‹๐’žโ€ฒโˆฉ๐—‹๐—‚โ€‹๐’ฆโІ๐’Ÿโ€ฒ\mathsf{ri}\,\mathcal{D}=\mathsf{ri}\,(\mathcal{C}^{\prime}\cap\mathcal{K})=\mathsf{ri}\,\mathcal{C}^{\prime}\cap\mathsf{ri}\,\mathcal{K}\subseteq\mathcal{D}^{\prime}, and hence ๐’ŸโІ๐–ผ๐—…โ€‹๐’Ÿโ€ฒ\mathcal{D}\subseteq\mathsf{cl}\,\mathcal{D}^{\prime}. Also, since ๐’Ÿ\mathcal{D} is closed, we clearly have ๐–ผ๐—…โ€‹๐’Ÿโ€ฒโІ๐’Ÿ\mathsf{cl}\,\mathcal{D}^{\prime}\subseteq\mathcal{D}.) Since ๐’Ÿโ€ฒ\mathcal{D}^{\prime} is bounded, ๐’Ÿ\mathcal{D} is convex and compact, and hence ๐–ฝ๐—ˆ๐—†โ€‹ฯƒ๐’Ÿ=โ„n\mathsf{dom}\,\sigma_{\mathcal{D}}=\mathbb{R}^{n}. Now, if ๐’ฆ\mathcal{K} is polyhedral, then the problem inย (3.9) clearly has a Slater point (ฮฝ,z)=(0,0)(\nu,z)=(0,0) (cf.ย [2, Propositionย 5.3.6]). Otherwise, since ๐’ฆโˆ˜\mathcal{K}^{\circ} may have empty interior, we invokeย [12, Theoremย 18(b)] and verify the generalized Slater condition: for any wโˆˆโ„nw\in\mathbb{R}^{n} and tโˆˆโ„t\in\mathbb{R}, there exist ฮต>0\varepsilon>0, ฮฝโˆˆ๐’ฆ\nu\in\mathcal{K} and zโˆˆโ„nz\in\mathbb{R}^{n} such that

ฯƒ๐’Ÿโ€‹(z)โˆ’ฮตโ€‹tโ‰ค1โ€‹andโ€‹ฮฝโˆ’zโˆ’ฮตโ€‹wโˆˆ๐’ฆโˆ˜.\displaystyle\sigma_{\mathcal{D}}(z)-\varepsilon t\leq 1\;\;\mbox{and}\;\;\nu-z-\varepsilon w\in\mathcal{K}^{\circ}. (3.12)

(cf.ย [12, Eqn.ย (8.13)]). It is easy to see that for any wโˆˆโ„nw\in\mathbb{R}^{n} and tโˆˆโ„t\in\mathbb{R}, if ฮฝ=0\nu=0, z=โˆ’ฮตโ€‹wz=-\varepsilon w and ฮต=1/maxโก{ฯƒ๐’Ÿโ€‹(โˆ’w)โˆ’t,1}>0\varepsilon=1/\max\{\sigma_{\mathcal{D}}(-w)-t,1\}>0 (since ๐–ฝ๐—ˆ๐—†โ€‹ฯƒ๐’Ÿ=โ„n\mathsf{dom}\,\sigma_{\mathcal{D}}=\mathbb{R}^{n}), the two conditions inย (3.12) are satisfied. To summarize, in both cases (i.e., ๐’ฆ\mathcal{K} is polyhedral or not), the Slater condition is satisfied. As a result, we have

ฯƒ๐’ฎโˆ˜โ€‹(x)=minpโˆˆโ„,ฮผโˆˆโ„nโก{p:ฮปโ€‹(x)โˆ’ฮผโˆˆ๐’ฆโˆ˜,ฮผโˆˆpโ€‹๐’Ÿโˆฉ๐’ฆ,pโ‰ฅ0}.\displaystyle\sigma_{\mathcal{S}^{\circ}}(x)={\min}_{p\in\mathbb{R},\,\mu\in\mathbb{R}^{n}}\;\{p:\lambda(x)-\mu\in\mathcal{K}^{\circ},\;\mu\in p\mathcal{D}\cap\mathcal{K},\;p\geq 0\}. (3.13)

Based onย (3.3) andย (3.13), we know that

๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’ฎโˆช{0})=๐’ฎโˆ˜โˆ˜={xโˆˆ๐”ผ:โˆƒpโˆˆ[0,1],ฮผโˆˆpโ€‹๐’Ÿโˆฉ๐’ฆโ€‹s.t.โกฮปโ€‹(x)โˆ’ฮผโˆˆ๐’ฆโˆ˜}.\mathsf{clconv}\,(\mathcal{S}\cup\{0\})=\mathcal{S}^{\circ\circ}=\{x\in\mathbb{E}:\exists\;p\in[0,1],\;\mu\in p\mathcal{D}\cap\mathcal{K}\operatorname{\;\;s.t.\;\;}\lambda(x)-\mu\in\mathcal{K}^{\circ}\}.

If 0โˆˆ๐’ž0\in\mathcal{C}, then 0โˆˆ๐’Ÿ0\in\mathcal{D} and 0โˆˆ๐’ฎ0\in\mathcal{S}. We then have pโ€‹๐’ŸโІ๐’ŸโІ๐’ฆp\mathcal{D}\subseteq\mathcal{D}\subseteq\mathcal{K} for all pโˆˆ[0,1]p\in[0,1] (since ๐’Ÿ\mathcal{D} is convex) and

๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=๐’ฎโˆ˜โˆ˜\displaystyle\mathsf{clconv}\,\mathcal{S}=\mathcal{S}^{\circ\circ} ={xโˆˆ๐”ผ:โˆƒฮผโˆˆ๐’Ÿโ€‹s.t.โกฮปโ€‹(x)โˆ’ฮผโˆˆ๐’ฆโˆ˜}.\displaystyle=\{x\in\mathbb{E}:\exists\;\mu\in\mathcal{D}\operatorname{\;\;s.t.\;\;}\lambda(x)-\mu\in\mathcal{K}^{\circ}\}. (3.14)

This proves the part (i) of Theoremย 2.1. Now, let ๐’žโˆฉ๐–ฑ๐–ฒโ€‹(๐’ฆ)โ‰ โˆ…\mathcal{C}\cap{\sf RS}(\mathcal{K})\neq\emptyset and ฮป:๐”ผโ†’๐’ฆ\lambda:\mathbb{E}\to\mathcal{K} satisfyย (P3). Take ฯ‰โˆˆ๐’žโˆฉ๐–ฑ๐–ฒโ€‹(๐’ฆ)\omega\in\mathcal{C}\cap{\sf RS}(\mathcal{K}), and let dโˆˆ๐”ผd\in\mathbb{E} be given inย (P3). Define

๐’ฎโ€ฒ:=๐’ฎโˆ’d={xโˆˆ๐”ผ:ฮปโ€‹(x+d)โˆˆ๐’Ÿ}={xโˆˆ๐”ผ:ฮปโ€‹(x)โˆˆ๐’Ÿโˆ’ฯ‰}\mathcal{S}^{\prime}:=\mathcal{S}-d=\{x\in\mathbb{E}:\;\lambda(x+d)\in\mathcal{D}\}=\{x\in\mathbb{E}:\;\lambda(x)\in\mathcal{D}-\omega\} (3.15)

Since ฯ‰โˆˆ๐–ฑ๐–ฒโ€‹(๐’ฆ)\omega\in{\sf RS}(\mathcal{K}), we have (๐’Ÿโˆ’ฯ‰)โˆฉ๐—‹๐—‚โ€‹๐’ฆ=(๐’Ÿโˆ’ฯ‰)โˆฉ(๐—‹๐—‚โ€‹๐’ฆโˆ’ฯ‰)=๐’Ÿโˆฉ๐—‹๐—‚โ€‹๐’ฆโˆ’ฯ‰=๐’žโˆฉ๐—‹๐—‚โ€‹๐’ฆโˆ’ฯ‰(\mathcal{D}-\omega)\cap\mathsf{ri}\,\mathcal{K}=(\mathcal{D}-\omega)\cap(\mathsf{ri}\,\mathcal{K}-\omega)=\mathcal{D}\cap\mathsf{ri}\,\mathcal{K}-\omega=\mathcal{C}\cap\mathsf{ri}\,\mathcal{K}-\omega, and hence (๐’Ÿโˆ’ฯ‰)โˆฉ๐—‹๐—‚โ€‹๐’ฆ(\mathcal{D}-\omega)\cap\mathsf{ri}\,\mathcal{K} is nonempty and bounded if and only if ๐’žโˆฉ๐—‹๐—‚โ€‹๐’ฆ\mathcal{C}\cap\mathsf{ri}\,\mathcal{K} is. Since 0โˆˆ๐’Ÿโˆ’ฯ‰0\in\mathcal{D}-\omega, by part (i) of Theoremย 2.1, we have

๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’ฎโ€ฒ)\displaystyle\mathsf{clconv}\,(\mathcal{S}^{\prime}) ={xโˆˆ๐”ผ:โˆƒฮผโˆˆ(๐’Ÿโˆ’ฯ‰)โˆฉ๐’ฆโ€‹s.t.โกฮปโ€‹(x)โˆ’ฮผโˆˆ๐’ฆโˆ˜}\displaystyle=\{x\in\mathbb{E}:\exists\;\mu\in(\mathcal{D}-\omega)\cap\mathcal{K}\operatorname{\;\;s.t.\;\;}\lambda(x)-\mu\in\mathcal{K}^{\circ}\} (3.16)
={xโˆˆ๐”ผ:โˆƒฮผโˆˆ๐’Ÿโˆฉ๐’ฆโ€‹s.t.โกฮปโ€‹(x)โˆ’(ฮผโˆ’ฯ‰)โˆˆ๐’ฆโˆ˜}\displaystyle=\{x\in\mathbb{E}:\exists\;\mu\in\mathcal{D}\cap\mathcal{K}\operatorname{\;\;s.t.\;\;}\lambda(x)-(\mu-\omega)\in\mathcal{K}^{\circ}\} (3.17)
={xโˆˆ๐”ผ:โˆƒฮผโˆˆ๐’žโˆฉ๐’ฆโ€‹s.t.โกฮปโ€‹(x+d)โˆ’ฮผโˆˆ๐’ฆโˆ˜},\displaystyle=\{x\in\mathbb{E}:\exists\;\mu\in\mathcal{C}\cap\mathcal{K}\operatorname{\;\;s.t.\;\;}\lambda(x+d)-\mu\in\mathcal{K}^{\circ}\}, (3.18)

Since ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’ฎ)=๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’ฎโ€ฒ)+d\mathsf{clconv}\,(\mathcal{S})=\mathsf{clconv}\,(\mathcal{S}^{\prime})+d, we complete the proof. โ–ก\square

Proof of Lemmaย 2.1. Since ๐’ฎ=ฮปโˆ’1โ€‹(๐’žโˆฉ๐’ฆ)\mathcal{S}=\lambda^{-1}(\mathcal{C}\cap\mathcal{K}), we have ๐’ฎโІ๐’ฎโ€ฒ\mathcal{S}\subseteq\mathcal{S}^{\prime}. Thus to show ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎโ€ฒ=๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S}^{\prime}=\mathsf{clconv}\,\mathcal{S}, it suffices to show that ๐’ฎโ€ฒโІ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathcal{S}^{\prime}\subseteq\mathsf{clconv}\,\mathcal{S}. Suppose there exists xโˆˆ๐’ฎโ€ฒx\in\mathcal{S}^{\prime} such that xโˆ‰๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎx\not\in\mathsf{clconv}\,\mathcal{S}, then there exists dโˆˆ๐”ผโˆ–{0}d\in\mathbb{E}\setminus\{0\} such that โŸจd,xโŸฉ>supwโˆˆ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎโŸจd,wโŸฉ=supwโˆˆ๐’ฎโŸจd,wโŸฉ=supฮผโˆˆ๐’žโˆฉ๐’ฆโŸจฮปโ€‹(d),ฮผโŸฉ\langle{d},{x}\rangle>\sup_{w\in\mathsf{clconv}\,\mathcal{S}}\,\langle{d},{w}\rangle=\sup_{w\in\mathcal{S}}\,\langle{d},{w}\rangle=\sup_{\mu\in\mathcal{C}\cap\mathcal{K}}\,\langle{\lambda(d)},{\mu}\rangle, where the last equality follows from Lemmaย 3.1. On the other hand, fromย (P1), we have โŸจd,xโŸฉโ‰คโŸจฮปโ€‹(d),ฮปโ€‹(x)โŸฉโ‰คsupฮผโˆˆ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’žโˆฉ๐’ฆ)โŸจฮปโ€‹(d),ฮผโŸฉ=supฮผโˆˆ๐’žโˆฉ๐’ฆโŸจฮปโ€‹(d),ฮผโŸฉ\langle{d},{x}\rangle\leq\langle{\lambda(d)},{\lambda(x)}\rangle\leq\sup_{\mu\in\mathsf{clconv}\,(\mathcal{C}\cap\mathcal{K})}\,\langle{\lambda(d)},{\mu}\rangle=\sup_{\mu\in\mathcal{C}\cap\mathcal{K}}\,\langle{\lambda(d)},{\mu}\rangle, where the second inequality is due to xโˆˆ๐’ฎโ€ฒx\in\mathcal{S}^{\prime}. This leads to a contradiction. โ–ก\square

The proofs of Propositionsย 2.1 andย 2.2 require the following lemma. Most of the results in this lemma can be found inย [4], however, we restate or reprove them with weaker assumptions on the spectral maps ฮป\lambda and ฮณ\gamma.

Lemma 3.3

Let ฮป\lambda, ฮณ\gamma, ๐’ž\mathcal{C} be given in Propositionย 2.1, and ๐’ฎ:=ฮปโˆ’1โ€‹(๐’ž)\mathcal{S}:=\lambda^{-1}(\mathcal{C}). Then we have the following:

  1. (a)

    If ฮป\lambda is p.h.ย and ๐’ž\mathcal{C} is convex, then ๐’ฎ\mathcal{S} is convex.

  2. (b)

    If ฮณ\gamma is isometric, then it is p.h.ย and continuous.

  3. (c)

    If ฮณ\gamma is isometric, then both ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\mathsf{clconv}\,\mathcal{C} and ๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\mathsf{conv}\,\mathcal{C} are ฮณ\gamma-invariant.

  4. (d)

    If ฮณ\gamma is continuous, then ๐–ผ๐—…โ€‹๐’ฎ=ฮปโˆ’1โ€‹(๐–ผ๐—…โ€‹๐’ž)\mathsf{cl}\,\mathcal{S}=\lambda^{-1}(\mathsf{cl}\,\mathcal{C}).

  5. (e)

    For all ฮผโˆˆ๐’ฆ\mu\in\mathcal{K} and x,yโˆˆโ„nx,y\in\mathbb{R}^{n}, we have โŸจฮผ,ฮณโ€‹(x+y)โŸฉโ‰คโŸจฮผ,ฮณโ€‹(x)+ฮณโ€‹(y)โŸฉ\langle{\mu},{\gamma(x+y)}\rangle\leq\langle{\mu},{\gamma(x)+\gamma(y)}\rangle and consequently, ฮณโ€‹(x+y)โˆ’(ฮณโ€‹(x)+ฮณโ€‹(y))โˆˆ๐’ฆโˆ˜\gamma(x+y)-(\gamma(x)+\gamma(y))\in\mathcal{K}^{\circ}.

  6. (f)

    If ฮณ\gamma is isometric, then for all ฮผ,ฮฝโˆˆ๐’ฆ\mu,\nu\in\mathcal{K}, we have ฮผโˆ’ฮฝโˆˆ๐’ฆโˆ˜โ‡”ฮผโˆˆ๐–ผ๐—ˆ๐—‡๐—โ€‹[v]\mu-\nu\in\mathcal{K}^{\circ}\Leftrightarrow\mu\in\mathsf{conv}\,[v].

  • Proof

    We only proveย (d) andย (f), since the proofs of the other parts directly follow from those inย [4]. To showย (d), it suffices to show that ฮปโˆ’1โ€‹(๐–ผ๐—…โ€‹๐’ž)โІ๐–ผ๐—…โ€‹๐’ฎ\lambda^{-1}(\mathsf{cl}\,\mathcal{C})\subseteq\mathsf{cl}\,\mathcal{S}. Take any xโˆˆฮปโˆ’1โ€‹(๐–ผ๐—…โ€‹๐’ž)x\in\lambda^{-1}(\mathsf{cl}\,\mathcal{C}) such that xโˆ‰๐–ผ๐—…โ€‹๐’ฎx\not\in\mathsf{cl}\,\mathcal{S}. Then there exists dโˆˆ๐”ผโˆ–{0}d\in\mathbb{E}\setminus\{0\} such that โŸจd,xโŸฉ>supwโˆˆ๐–ผ๐—…โ€‹๐’ฎโŸจd,wโŸฉ=supฮผโˆˆ๐’žโˆฉ๐’ฆโŸจฮปโ€‹(d),ฮผโŸฉ\langle{d},{x}\rangle>\sup_{w\in\mathsf{cl}\,\mathcal{S}}\,\langle{d},{w}\rangle=\sup_{\mu\in\mathcal{C}\cap\mathcal{K}}\,\langle{\lambda(d)},{\mu}\rangle. In addition, since ฮปโ€‹(x)โˆˆ(๐–ผ๐—…โ€‹๐’ž)โˆฉ๐’ฆ\lambda(x)\in(\mathsf{cl}\,\mathcal{C})\cap\mathcal{K}, we have โŸจd,xโŸฉโ‰คโŸจฮปโ€‹(d),ฮปโ€‹(x)โŸฉโ‰คsupฮผโˆˆ(๐–ผ๐—…โ€‹๐’ž)โˆฉ๐’ฆโŸจฮปโ€‹(d),ฮผโŸฉ.\langle{d},{x}\rangle\leq\langle{\lambda(d)},{\lambda(x)}\rangle\leq\sup_{\mu\in(\mathsf{cl}\,\mathcal{C})\cap\mathcal{K}}\,\langle{\lambda(d)},{\mu}\rangle. Note that for all ฮผโˆˆ(๐–ผ๐—…โ€‹๐’ž)โˆฉ๐’ฆ\mu\in(\mathsf{cl}\,\mathcal{C})\cap\mathcal{K}, there exists {ฮผk}โІ๐’ž\{\mu^{k}\}\subseteq\mathcal{C} such that ฮผkโ†’ฮผ\mu^{k}\to\mu and hence ฮณโ€‹(ฮผk)โ†’ฮณโ€‹(ฮผ)=ฮผ\gamma(\mu^{k})\to\gamma(\mu)=\mu. Also, since ๐’ž\mathcal{C} is ฮณ\gamma-invariant, ฮณโ€‹(ฮผk)โˆˆ[ฮผk]โˆฉ๐’ฆโІ๐’žโˆฉ๐’ฆ\gamma(\mu^{k})\in[\mu^{k}]\cap\mathcal{K}\subseteq\mathcal{C}\cap\mathcal{K}. Thus โŸจฮปโ€‹(d),ฮผโŸฉ=limkโ†’+โˆžโŸจฮปโ€‹(d),ฮณโ€‹(ฮผk)โŸฉโ‰คsupฮฝโˆˆ๐’žโˆฉ๐’ฆโŸจฮปโ€‹(d),ฮฝโŸฉ\langle{\lambda(d)},{\mu}\rangle=\lim_{k\to+\infty}\langle{\lambda(d)},{\gamma(\mu^{k})}\rangle\leq\sup_{\nu\in\mathcal{C}\cap\mathcal{K}}\,\langle{\lambda(d)},{\nu}\rangle, which implies that supฮผโˆˆ(๐–ผ๐—…โ€‹๐’ž)โˆฉ๐’ฆโŸจฮปโ€‹(d),ฮผโŸฉโ‰คsupฮฝโˆˆ๐’žโˆฉ๐’ฆโŸจฮปโ€‹(d),ฮฝโŸฉ\sup_{\mu\in(\mathsf{cl}\,\mathcal{C})\cap\mathcal{K}}\,\langle{\lambda(d)},{\mu}\rangle\leq\sup_{\nu\in\mathcal{C}\cap\mathcal{K}}\,\langle{\lambda(d)},{\nu}\rangle. Thus we have supฮผโˆˆ๐’žโˆฉ๐’ฆโŸจฮปโ€‹(d),ฮผโŸฉ<supฮฝโˆˆ๐’žโˆฉ๐’ฆโŸจฮปโ€‹(d),ฮฝโŸฉ\sup_{\mu\in\mathcal{C}\cap\mathcal{K}}\,\langle{\lambda(d)},{\mu}\rangle<\sup_{\nu\in\mathcal{C}\cap\mathcal{K}}\,\langle{\lambda(d)},{\nu}\rangle, which is a contradiction. Next, we showย (f). We only prove the reverse direction, since the proof of the other direction can be found inย [4]. Let ฮผโˆˆ๐–ผ๐—ˆ๐—‡๐—โ€‹[v]\mu\in\mathsf{conv}\,[v], then ฮผ=โˆ‘i=1ptiโ€‹ฮผi\mu=\sum_{i=1}^{p}t_{i}\mu_{i}, where for iโˆˆ[p]i\in[p], ฮผiโˆˆ[v]\mu_{i}\in[v], tiโ‰ฅ0t_{i}\geq 0 and โˆ‘i=1pti=1\sum_{i=1}^{p}t_{i}=1. Byย (b), we know ฮณ\gamma is p.h.ย and byย (e), we have for all ฮทโˆˆ๐’ฆ\eta\in\mathcal{K}, โŸจฮท,ฮณโ€‹(ฮผ)โŸฉโ‰คโˆ‘i=1ptiโ€‹โŸจฮท,ฮณโ€‹(ฮผi)โŸฉ=โŸจฮท,ฮณโ€‹(ฮฝ)โŸฉ\langle{\eta},{\gamma(\mu)}\rangle\leq\sum_{i=1}^{p}t_{i}\langle{\eta},{\gamma(\mu_{i})}\rangle=\langle{\eta},{\gamma(\nu)}\rangle. Since ฮผ,ฮฝโˆˆ๐’ฆ\mu,\nu\in\mathcal{K}, we have โŸจฮท,ฮผโˆ’ฮฝโŸฉโ‰ค0\langle{\eta},{\mu-\nu}\rangle\leq 0 for all ฮทโˆˆ๐’ฆ\eta\in\mathcal{K}, which amounts to ฮผโˆ’ฮฝโˆˆ๐’ฆโˆ˜\mu-\nu\in\mathcal{K}^{\circ}. โ–ก\square โ–ก\square

Proof of Propositionย 2.1. To show ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎยฏ=๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\bar{\mathcal{S}}=\mathsf{clconv}\,\mathcal{S}, it suffices to show that ๐’ฎยฏโІ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\bar{\mathcal{S}}\subseteq\mathsf{clconv}\,\mathcal{S}. Suppose there exists xโˆˆ๐’ฎยฏx\in\bar{\mathcal{S}} such that xโˆ‰๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎx\not\in\mathsf{clconv}\,\mathcal{S}, using the same reasoning as in the proof of Lemmaย 2.1, there exists dโˆˆ๐”ผโˆ–{0}d\in\mathbb{E}\setminus\{0\} such that โŸจd,xโŸฉ>supฮผโˆˆ๐’žโˆฉ๐’ฆโŸจฮปโ€‹(d),ฮผโŸฉ\langle{d},{x}\rangle>\sup_{\mu\in\mathcal{C}\cap\mathcal{K}}\,\langle{\lambda(d)},{\mu}\rangle. On the other hand, fromย (P1), we have

โŸจd,xโŸฉโ‰คโŸจฮปโ€‹(d),ฮปโ€‹(x)โŸฉ\displaystyle\langle{d},{x}\rangle\leq\langle{\lambda(d)},{\lambda(x)}\rangle โ‰คsupฮผโˆˆ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’žโŸจฮปโ€‹(d),ฮผโŸฉ=supฮผโˆˆ๐’žโŸจฮปโ€‹(d),ฮผโŸฉ\displaystyle\leq{\sup}_{\mu\in\mathsf{clconv}\,\mathcal{C}}\,\langle{\lambda(d)},{\mu}\rangle={\sup}_{\mu\in\mathcal{C}}\,\langle{\lambda(d)},{\mu}\rangle
โ‰คsupฮผโˆˆ๐’žโŸจฮณโ€‹(ฮปโ€‹(d)),ฮณโ€‹(ฮผ)โŸฉโ‰คsupฮฝโˆˆ๐’žโˆฉ๐’ฆโŸจฮปโ€‹(d),ฮฝโŸฉ,\displaystyle\qquad\leq{\sup}_{\mu\in\mathcal{C}}\,\langle{\gamma(\lambda(d))},{\gamma(\mu)}\rangle\leq{\sup}_{\nu\in\mathcal{C}\cap\mathcal{K}}\,\langle{\lambda(d)},{\nu}\rangle,

where the last step follows from ฮณโˆ˜ฮป=ฮป\gamma\circ\lambda=\lambda and ฮณโ€‹(ฮผ)โˆˆ[ฮผ]โˆฉ๐’ฆโІ๐’žโˆฉ๐’ฆ\gamma(\mu)\in[\mu]\cap\mathcal{K}\subseteq\mathcal{C}\cap\mathcal{K} (since ๐’ž\mathcal{C} is ฮณ\gamma-invariant). This leads to a contradiction. In addition, if ฮป\lambda is continuous and p.h., then ๐’ฎยฏ\bar{\mathcal{S}} is closed and convex (cf.ย Lemmaย 3.3(a)). Thus ๐’ฎยฏ=๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎยฏ\bar{\mathcal{S}}=\mathsf{clconv}\,\bar{\mathcal{S}}. โ–ก\square

Proof of Propositionย 2.2. To showย (i), we first show that ๐’ฎ~๐’ŸโІ๐’ฎยฏโ€ฒ\widetilde{\mathcal{S}}_{\mathcal{D}}\subseteq\bar{\mathcal{S}}^{\prime} for ๐’Ÿ=(๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)โˆฉ๐’ฆ\mathcal{D}=(\mathsf{conv}\,\mathcal{C})\cap\mathcal{K}. Take any xโˆˆ๐’ฎ~๐’Ÿx\in\widetilde{\mathcal{S}}_{\mathcal{D}}. Since ฮปโ€‹(x)โˆˆ๐’ฆ\lambda(x)\in\mathcal{K} and there exists ฮผโˆˆ๐’ŸโІ๐’ฆ\mu\in\mathcal{D}\subseteq\mathcal{K} such that ฮปโ€‹(x)โˆ’ฮผโˆˆ๐’ฆโˆ˜\lambda(x)-\mu\in\mathcal{K}^{\circ}, by Lemmaย 3.3(f), we have ฮปโ€‹(x)โˆˆ๐–ผ๐—ˆ๐—‡๐—โ€‹[ฮผ]\lambda(x)\in\mathsf{conv}\,[\mu]. In addition, since ๐’ž\mathcal{C} is ฮณ\gamma-invariant, by Lemmaย 3.3(c), ๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\mathsf{conv}\,\mathcal{C} is ฮณ\gamma-invariant. As a result, since ฮผโˆˆ๐’ŸโІ๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\mu\in\mathcal{D}\subseteq\mathsf{conv}\,\mathcal{C}, we have [ฮผ]โІ๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž[\mu]\subseteq\mathsf{conv}\,\mathcal{C} and hence ๐–ผ๐—ˆ๐—‡๐—โ€‹[ฮผ]โІ๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\mathsf{conv}\,[\mu]\subseteq\mathsf{conv}\,\mathcal{C}. This implies that ฮปโ€‹(x)โˆˆ๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\lambda(x)\in\mathsf{conv}\,\mathcal{C}, or equivalently, xโˆˆ๐’ฎยฏโ€ฒx\in\bar{\mathcal{S}}^{\prime}. Next, we show ๐’ฎยฏโ€ฒโІ๐’ฎ~๐’Ÿ\bar{\mathcal{S}}^{\prime}\subseteq\widetilde{\mathcal{S}}_{\mathcal{D}} for ๐’Ÿ=๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’žโˆฉ๐’ฆ)\mathcal{D}=\mathsf{conv}\,(\mathcal{C}\cap\mathcal{K}). Let xโˆˆ๐’ฎยฏโ€ฒx\in\bar{\mathcal{S}}^{\prime}, so that ฮปโ€‹(x)โˆˆ๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\lambda(x)\in\mathsf{conv}\,\mathcal{C}. Write ฮปโ€‹(x)=โˆ‘i=1ptiโ€‹ฮผi\lambda(x)=\sum_{i=1}^{p}t_{i}\mu_{i}, where for iโˆˆ[p]i\in[p], ฮผiโˆˆ๐’ž\mu_{i}\in\mathcal{C}, tiโ‰ฅ0t_{i}\geq 0 and โˆ‘i=1pti=1\sum_{i=1}^{p}t_{i}=1. Since ๐’ž\mathcal{C} is ฮณ\gamma-invariant, we have ฮณโ€‹(ฮผi)โˆˆ[ฮผi]โˆฉ๐’ฆโІ๐’žโˆฉ๐’ฆ\gamma(\mu_{i})\in[\mu_{i}]\cap\mathcal{K}\subseteq\mathcal{C}\cap\mathcal{K}. Also, since ฮณ\gamma is isometric, by Lemmaย 3.3(b) and (e), we have ฮปโ€‹(x)โˆ’uโˆˆ๐’ฆโˆ˜\lambda(x)-u\in\mathcal{K}^{\circ}, where u:=โˆ‘i=1ptiโ€‹ฮณโ€‹(ฮผi)โˆˆ๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’žโˆฉ๐’ฆ)=๐’Ÿu:=\sum_{i=1}^{p}t_{i}\gamma(\mu_{i})\in\mathsf{conv}\,(\mathcal{C}\cap\mathcal{K})=\mathcal{D}. This shows that xโˆˆ๐’ฎ~๐’Ÿx\in\widetilde{\mathcal{S}}_{\mathcal{D}}. To showย (ii), let ๐’ฎยฏ:=ฮปโˆ’1โ€‹(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)\bar{\mathcal{S}}:=\lambda^{-1}(\mathsf{clconv}\,\mathcal{C}), and we know that ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=๐’ฎยฏ\mathsf{clconv}\,\mathcal{S}=\bar{\mathcal{S}} from Propositionย 2.1. Hence it suffices to show that ๐–ผ๐—…โ€‹๐’ฎ~๐’Ÿ=๐’ฎยฏ\mathsf{cl}\,\widetilde{\mathcal{S}}_{\mathcal{D}}=\bar{\mathcal{S}}. We first show that ๐–ผ๐—…โ€‹๐’ฎ~๐’ŸโІ๐’ฎยฏ\mathsf{cl}\,\widetilde{\mathcal{S}}_{\mathcal{D}}\subseteq\bar{\mathcal{S}} for ๐’Ÿ=(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)โˆฉ๐’ฆ\mathcal{D}=(\mathsf{clconv}\,\mathcal{C})\cap\mathcal{K}. Using similar reasoning as in the proof ofย (i), we know that ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\mathsf{clconv}\,\mathcal{C} is ฮณ\gamma-invariant and for any xโˆˆ๐’ฎ~๐’Ÿx\in\widetilde{\mathcal{S}}_{\mathcal{D}}, there exists ฮผโˆˆ๐’Ÿ\mu\in\mathcal{D} such that ฮปโ€‹(x)โˆˆ๐–ผ๐—ˆ๐—‡๐—โ€‹[ฮผ]โІ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž\lambda(x)\in\mathsf{conv}\,[\mu]\subseteq\mathsf{clconv}\,\mathcal{C}, implying that ๐’ฎ~๐’ŸโІ๐’ฎยฏ\widetilde{\mathcal{S}}_{\mathcal{D}}\subseteq\bar{\mathcal{S}}. Since ฮป\lambda is continuous, ๐’ฎยฏ\bar{\mathcal{S}} is closed, and hence ๐–ผ๐—…โ€‹๐’ฎ~๐’ŸโІ๐’ฎยฏ\mathsf{cl}\,\widetilde{\mathcal{S}}_{\mathcal{D}}\subseteq\bar{\mathcal{S}}. Next, we show that ๐’ฎยฏโІ๐–ผ๐—…โ€‹๐’ฎ~๐’Ÿ\bar{\mathcal{S}}\subseteq\mathsf{cl}\,\widetilde{\mathcal{S}}_{\mathcal{D}} for ๐’Ÿ=๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’žโˆฉ๐’ฆ)\mathcal{D}=\mathsf{conv}\,(\mathcal{C}\cap\mathcal{K}), but this directly follows fromย (i) and Lemmaย 3.3(d). โ–ก\square

4 Concluding Remarks

In this work, we have provided projection-based characterizations of ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ\mathsf{clconv}\,\mathcal{S} when ๐’ž\mathcal{C} has no invariance property (cf.ย Theoremย 2.1 and Corollaryย 2.1) and when ๐’ž\mathcal{C} has certain invariance properties (cf.ย Propositionย 2.2 and Corollaryย 2.2). One may naturally wonder if there exist any connections between these two sets of results. We start the discussion with a conjecture: for any ฮผโˆˆโ„n\mu\in\mathbb{R}^{n}, ๐–ผ๐—ˆ๐—‡๐—โ€‹[ฮผ]โˆฉ๐–ฑ๐–ฒโ€‹(๐’ฆ)โ‰ โˆ…\mathsf{conv}\,[\mu]\cap{\sf RS}(\mathcal{K})\neq\emptyset. If this conjecture is true, then under certain assumptions, we can derive Propositionย 2.2(ii) by leveraging Theoremย 2.1, instead of Propositionย 2.1. Specifically, let ฮป\lambda and ฮณ\gamma be given in Propositionย 2.1. If ๐’ž\mathcal{C} is ฮณ\gamma-invariant, then we have (๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)โˆฉ๐–ฑ๐–ฒโ€‹(๐’ฆ)โ‰ โˆ…(\mathsf{clconv}\,\mathcal{C})\cap{\sf RS}(\mathcal{K})\neq\emptyset. By Theoremย 2.1, if (๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)โˆฉ๐—‹๐—‚โ€‹๐’ฆ(\mathsf{clconv}\,\mathcal{C})\cap\mathsf{ri}\,\mathcal{K} is nonempty and bounded or ๐’ฆ\mathcal{K} is polyhedral, then we have ๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ฎ=๐’ฎ~๐’Ÿยฏ=๐–ผ๐—…โ€‹๐’ฎ~๐’Ÿยฏ\mathsf{clconv}\,\mathcal{S}=\widetilde{\mathcal{S}}_{\bar{\mathcal{D}}}=\mathsf{cl}\,\widetilde{\mathcal{S}}_{\bar{\mathcal{D}}}, where ๐’Ÿยฏ:=(๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)โˆฉ๐’ฆ\bar{\mathcal{D}}:=(\mathsf{clconv}\,\mathcal{C})\cap\mathcal{K}. Now, by the proof of Propositionย 2.1(ii), we know that ๐–ผ๐—…โ€‹๐’ฎ~๐’Ÿยฏ=๐–ผ๐—…โ€‹๐’ฎ~๐’Ÿ\mathsf{cl}\,\widetilde{\mathcal{S}}_{\bar{\mathcal{D}}}=\mathsf{cl}\,\widetilde{\mathcal{S}}_{\mathcal{D}} for all ๐’Ÿ\mathcal{D} satisfying that ๐–ผ๐—ˆ๐—‡๐—โ€‹(๐’žโˆฉ๐’ฆ)โІ๐’ŸโІ๐’Ÿยฏ\mathsf{conv}\,(\mathcal{C}\cap\mathcal{K})\subseteq\mathcal{D}\subseteq\bar{\mathcal{D}}, and this establishes Propositionย 2.1(ii). However, note that the approach of deriving Propositionย 2.2(ii) using Theoremย 2.1 requires additional assumptions on (๐–ผ๐—…๐–ผ๐—ˆ๐—‡๐—โ€‹๐’ž)โˆฉ๐—‹๐—‚โ€‹๐’ฆ(\mathsf{clconv}\,\mathcal{C})\cap\mathsf{ri}\,\mathcal{K} or ๐’ฆ\mathcal{K} itself, and hence appears to be more restrictive than the original approach that leverages Propositionย 2.1.

Acknowledgment. The author thanks Casey Garner, M.ย S.ย Gowda, Bruno Lurenco, Weijun Xie and Shuzhong Zhang for inspiring and helpful discussions during the preparation of this work.

References

  • [1] Bauschke, H.H., Gรผler, O., Lewis, A.S., Sendov, H.S.: Hyperbolic polynomials and convex analysis. Canad. J. Math. 53(3), 470โ€“488 (2001)
  • [2] Bertsekas, D.P.: Convex Optimization Theory. Athena Scitific (2009)
  • [3] Garner, C., Lerman, G., Zhang, S.: Spectrally constrained optimization. arXiv:2307.04069 (2023)
  • [4] Gowda, M., Jeong, J.: Commutativity, majorization, and reduction in Fanโ€“Theobaldโ€“von Neumann systems. Results Math 78 (2023)
  • [5] Gowda, M.S.: Optimizing certain combinations of spectral and linear//distance functions over spectral sets. arXiv:1902.06640 (2019)
  • [6] Ito, M., Lourenรงo, B.F.: Eigenvalue programming beyond matrices. arXiv:2311.04637 (2023)
  • [7] Jeong, J., Gowda, M.: Transfer principles, fenchel conjugate and subdifferential formulas in Fan-Theobald-von Neumann systems. J. Optim. Thoery Appl. 202, 1242โ€“1267 (2024)
  • [8] Kim, J., Tawarmalani, M., Richard, J.P.P.: Convexification of permutation-invariant sets and an application to sparse principal component analysis. Math. Oper. Res. 47(4), 2547โ€“2584 (2022)
  • [9] Lewis, A.S.: Group invariance and convex matrix analysis. SIAM J. Matrix Anal. Appl. 17(4), 927โ€“949 (1996)
  • [10] Li, Y., Xie, W.: On the partial convexification for low-rank spectral optimization: Rank bounds and algorithms. arXiv:2305.07638 (2023)
  • [11] Rockafellar, R.T.: Convex analysis. Princeton University Press (1970)
  • [12] Rockafellar, R.T.: Conjugate duality and optimization. SIAM (1974)