This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Potential Function of the Colored Jones Polynomial and the AJ conjecture

Shun Sawabe Department of Pure and Applied Mathematics, School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan ssawabe[at]aoni.waseda.jp
Abstract.

The AA-polynomial is conjectured to be obtained from the potential function of the colored Jones polynomial by elimination. The AJ conjecture also implies the relationship between the AA-polynomial and the colored Jones polynomial. In this paper, we connect these conjectures from the perspective of the parametrized potential function.

Key words and phrases:
potential function, the volume conjecture, the AJ conjecture.
2020 Mathematics Subject Classification:
57K14, 57K31, 57K32

1. Introduction

Quantum invariants closely relate to the 33-dimensional geometry. One of the crucial conjectures is the volume conjecture.

Conjecture 1.1 (Volume Conjecture [9]).

For any knot KK, the colored Jones polynomial JN(K;q)J_{N}(K;q) satisfies

2πlimNlog|JN(K;q=e2π1N)|N=v3K,2\pi\lim_{N\to\infty}\frac{\log|J_{N}(K;q=e^{\frac{2\pi\sqrt{-1}}{N}})|}{N}=v_{3}||K||,

where v3v_{3} is the volume of the ideal regular tetrahedron in the three-dimensional hyperbolic space and ||||||\cdot|| is the simplicial volume for the complement of KK.

Yokota [14] considered the potential function of the Kashaev invariant and established a relationship between a saddle point equation and a triangulation of a knot complement. We also considered the potential function of the colored Jones polynomial with parameters corresponding to the colors and found a geometric meaning of derivatives with those parameters in [11]. In the knot case, the upshot is as follows: Let KK be a hyperbolic knot, and let Φ(α,w1,,wν)\Phi(\alpha,w_{1},\ldots,w_{\nu}) be a potential function of the colored Jones polynomial for KK evaluated at the root of unity. Here, α\alpha corresponds to the half of the color. Then,

( 1.1) {exp(wiΦwi)=1,(i=1,,ν)exp(αΦα)=l2\begin{dcases}\exp\left(w_{i}\frac{\partial\Phi}{\partial w_{i}}\right)=1,&(i=1,\ldots,\nu)\\ \exp\left(\alpha\frac{\partial\Phi}{\partial\alpha}\right)=l^{2}\end{dcases}

is the condition that the knot complement admits a hyperbolic structure. Here, l2l^{2} is the dilation component of the preferred longitude. In this connection, the AA-polynomial is conjectured to be obtained from such a parametrized potential function by elimination [6, 15].

On the other hand, the AJ conjecture, which states that the AA-polynomial is obtained by the recurrence of the colored Jones polynomial, is known as a relationship between the colored Jones polynomial and the AA-polynomial.

Conjecture 3.1 (the AJ conjecture [3]).

For any knot KK, AK(l,α)A_{K}(l,\alpha) is equal to εAq(K)(l,α2)\varepsilon A_{q}(K)(l,\alpha^{2}) up to multiplication by an element in (α)\mathbb{Q}(\alpha), where ε\varepsilon is an evaluation map at q=1q=1.

Garoufalidis [3] proposed this conjecture, and Takata [12], for example, observed it with twist knots. Detcherry and Garoufalidis [2] also considered the AJ conjecture from the perspective of a triangulation of the knot complement.

In this paper, we connect these conjectures on the relationship between the colored Jones polynomial and the AA-polynomial via the potential function. The AqA_{q}-polynomial is obtained from the summand of the colored Jones polynomial by creative telescoping (See [3, 4] or Section 3). We will compare this process with the above conjectural method to obtain the AA-polynomial. For an odd number nn, let F=F(m,k1,,kν)F=F(m,k_{1},\ldots,k_{\nu}) be a summand of the colored Jones polynomial JK(n)=Jn(K;q)J_{K}(n)=J_{n}(K;q) for a knot KK, where mm is an integer satisfying n=2m+1n=2m+1. Since nn is restricted to odd numbers, the following discussion is on the SO(3)SO(3)-invariants. Let E,E~jE,\ \tilde{E}_{j}, and EmE_{m} be shift operators, and let ε\varepsilon be an evaluation map at q=1q=1. Then, we verify the following proposition:

Proposition 4.1.

The system of equations (1.1) coincides with

{εE~jFF|qki=wiqm=α=1,(j=1,,ν)εEmFF|qki=wiqm=α=E2,\begin{dcases}\varepsilon\left.\frac{\tilde{E}_{j}F}{F}\right|_{\begin{subarray}{c}q^{k_{i}}=w_{i}\\ q^{m}=\alpha\end{subarray}}=1,&(j=1,\ldots,\nu)\\ \varepsilon\left.\frac{E_{m}F}{F}\right|_{\begin{subarray}{c}q^{k_{i}}=w_{i}\\ q^{m}=\alpha\end{subarray}}=E^{2},\end{dcases}

under the correspondences l=El=E.

The background of Proposition 4.1 is that the ratio of summands is approximated by a potential function for sufficiently large integers NN. For example,

EmFF|q=ξNexp(ξNmΦα(ξNm,ξNk1,,ξNkν)).\left.\frac{E_{m}F}{F}\right|_{q=\xi_{N}}\sim\exp\left(\xi_{N}^{m}\frac{\partial\Phi}{\partial\alpha}(\xi_{N}^{m},\xi_{N}^{k_{1}},\ldots,\xi_{N}^{k_{\nu}})\right).

See Remark 4.2 for details. From these facts, we would like to propose the conjecture that the factor PK0(q,E,Q)P_{K}^{0}(q,E,Q) of the AqA_{q} polynomial for a knot KK corresponding to the inhomogeneous recursive relation yields the factor AK(l,α)A^{\prime}_{K}(l,\alpha) of the AA-polynomial for the knot KK corresponding to nonabelian representaitions.

Conjecture 4.3.

εPK0(l,α2)\varepsilon P_{K}^{0}(l,\alpha^{2}) equals AK(l,α)A^{\prime}_{K}(l,\alpha) up to multiplication by an element in (α)\mathbb{Q}(\alpha), where

AK(l,α)=AK(l,α)l1.A^{\prime}_{K}(l,\alpha)=\frac{A_{K}(l,\alpha)}{l-1}.

Here, the polynomial AK(l,α)A^{\prime}_{K}(l,\alpha) is called the nonabelian AA-polynomial [8].

This paper is organized as follows: In Section 2, we review the potential function, the AA-polynomial, and their conjectural relationship. In Section 3, we briefly look over the AqA_{q}-polynomial and creative telescoping. In Section 4, we compare those themes and verify the above proposition.

Acknowledgments. The author is grateful to Jun Murakami and Seokbeom Yoon for their helpful comments.

2. Potential Functions and AA-polynomials

2.1. AA-polynomial

In this subsection, we review the difinition of the AA-polynomial following [1]. Let KK be a knot, and let MKM_{K} be its complement. The set of all SL(2;)SL(2;\mathbb{C})-representations R(MK)R(M_{K}) is an affine algebraic variety. Then, we restrict our attention to

RU={ρR(MK)ρ(μ) and ρ(λ) are upper triangular.},R_{U}=\{\rho\in R(M_{K})\mid\rho(\mu)\text{ and }\rho(\lambda)\text{ are upper triangular}.\},

where μ\mu is the meridian, and λ\lambda is the preferred longitude of KK. We can define the eigenvalue map ξ:RU2\xi:R_{U}\to\mathbb{C}^{2} by ξ(ρ)=(l,α)\xi(\rho)=(l,\alpha), where

ρ(λ)=(l0l1),ρ(μ)=(α0α1).\rho(\lambda)=\left(\begin{array}[]{cc}l&\ast\\ 0&l^{-1}\end{array}\right),\quad\rho(\mu)=\left(\begin{array}[]{cc}\alpha&\ast\\ 0&\alpha^{-1}\end{array}\right).

For an algebraic component CC of RUR_{U}, the Zariski closure ξ(C)¯\overline{\xi(C)} of ξ(C)\xi(C) is an algebraic subset of 2\mathbb{C}^{2}. If ξ(C)¯\overline{\xi(C)} is a curve, there exists a defining polynomial. The AA-polynomial of a knot KK is the product of all such defining polynomials.

2.2. Potential functions

On the other hand, we provided the geometric meaning of derivatives of a potential function of the colored Jones polynomial. Let us recall some facts on the potential function briefly. See [11, 16] for details.

Definition 2.1.

Suppose that the asymptotic behavior of a certain quantity QNQ_{N} for a sufficiently large NN is

QNΩPNeN2π1Φ(z1,,zν)𝑑z1𝑑zν,Q_{N}\sim\int\cdots\int_{\Omega}P_{N}e^{\frac{N}{2\pi\sqrt{-1}}\Phi(z_{1},\ldots,z_{\nu})}dz_{1}\cdots dz_{\nu},

where PNP_{N} grows at most polynomially and Ω\Omega is a region in ν\mathbb{C}^{\nu}. We call this function Φ(z1,,zν)\Phi(z_{1},\ldots,z_{\nu}) a potential function of QNQ_{N}.

The potential function of the colored Jones polynomial evaluated at the root of unity is obtained by approximating RR-matrices with continuous functions. Let nn and nn^{\prime} be odd numbers. The summands of the RR-matrix nnnn\mathbb{C}^{n}\otimes\mathbb{C}^{n^{\prime}}\to\mathbb{C}^{n^{\prime}}\otimes\mathbb{C}^{n} of the colored Jones polynomial that is assigned to a crossing cc are as follows [11]:

( 2.1) Rc+(m,m,kj1,kj2,kj3,kj4)=q(kj2kj1)(kj3kj2)m+m2(kj2+kj4kj1kj3)×(q)m+kj4kj3(q)m+kj4kj1(q)kj2+kj4kj1kj3(q)m+kj2kj1(q)m+kj3kj2,\displaystyle\begin{split}R_{c}^{+}&(m,m^{\prime},k_{j_{1}},k_{j_{2}},k_{j_{3}},k_{j_{4}})\\ &=q^{-(k_{j_{2}}-k_{j_{1}})(k_{j_{3}}-k_{j_{2}})-\frac{m+m^{\prime}}{2}(k_{j_{2}}+k_{j_{4}}-k_{j_{1}}-k_{j_{3}})}\\ &\times\frac{(q)_{m+k_{j_{4}}-k_{j_{3}}}(q)_{m^{\prime}+k_{j_{4}}-k_{j_{1}}}}{(q)_{k_{j_{2}}+k_{j_{4}}-k_{j_{1}}-k_{j_{3}}}(q)_{m+k_{j_{2}}-k_{j_{1}}}(q)_{m^{\prime}+k_{j_{3}}-k_{j_{2}}}},\\ \end{split}
( 2.2) Rc(m,m,kj1,kj2,kj3,kj4)=(1)kj1+kj3kj2kj4q(kj3kj4)(kj4kj1)m+m2(kj1+kj3kj2kj4)×(q)m+kj1kj4(q)m+kj3kj4(q)kj1+kj3kj2kj4(q)m+kj2kj3(q)m+kj2kj1.\displaystyle\begin{split}R_{c}^{-}&(m,m^{\prime},k_{j_{1}},k_{j_{2}},k_{j_{3}},k_{j_{4}})\\ &=(-1)^{k_{j_{1}}+k_{j_{3}}-k_{j_{2}}-k_{j_{4}}}q^{(k_{j_{3}}-k_{j_{4}})(k_{j_{4}}-k_{j_{1}})-\frac{m+m^{\prime}}{2}(k_{j_{1}}+k_{j_{3}}-k_{j_{2}}-k_{j_{4}})}\\ &\times\frac{(q)_{m+k_{j_{1}}-k_{j_{4}}}(q)_{m^{\prime}+k_{j_{3}}-k_{j_{4}}}}{(q)_{k_{j_{1}}+k_{j_{3}}-k_{j_{2}}-k_{j_{4}}}(q)_{m+k_{j_{2}}-k_{j_{3}}}(q)_{m^{\prime}+k_{j_{2}}-k_{j_{1}}}}.\end{split}

Here, mm and mm^{\prime} are integers satisfying n=2m+1n=2m+1 and n=2m+1n^{\prime}=2m^{\prime}+1, qq is an indeterminate, and (q)k=(1q)(1qk)(q)_{k}=(1-q)\cdots(1-q^{k}). We also note that we assign Rc+R_{c}^{+} to a positive crossing, and RcR_{c}^{-} to a negative crossing. On the other hand, corresponding potential functions Φc±\Phi_{c}^{\pm} are as follows:

Φc+\displaystyle\Phi_{c}^{+} (α,β,wj1,wj2,wj3,wj4)\displaystyle(\alpha,\beta,w_{j_{1}},w_{j_{2}},w_{j_{3}},w_{j_{4}})
=logα+logβ2logwj1wj3wj2wj4logwj2wj1logwj3wj2π26\displaystyle=\frac{\log\alpha+\log\beta}{2}\log\frac{w_{j_{1}}w_{j_{3}}}{w_{j_{2}}w_{j_{4}}}-\log\frac{w_{j_{2}}}{w_{j_{1}}}\log\frac{w_{j_{3}}}{w_{j_{2}}}-\frac{\pi^{2}}{6}
Li2(αwj4wj3)Li2(βwj4wj1)+Li2(wj2wj4wj1wj3)+Li2(αwj1wj2)+Li2(βwj3wj2),\displaystyle-\operatorname{Li_{2}}\left(\alpha\frac{w_{j_{4}}}{w_{j_{3}}}\right)-\operatorname{Li_{2}}\left(\beta\frac{w_{j_{4}}}{w_{j_{1}}}\right)+\operatorname{Li_{2}}\left(\frac{w_{j_{2}}w_{j_{4}}}{w_{j_{1}}w_{j_{3}}}\right)+\operatorname{Li_{2}}\left(\alpha\frac{w_{j_{1}}}{w_{j_{2}}}\right)+\operatorname{Li_{2}}\left(\beta\frac{w_{j_{3}}}{w_{j_{2}}}\right),
Φc\displaystyle\Phi_{c}^{-} (a,b,wj1,wj2,wj3,wj4)\displaystyle(a,b,w_{j_{1}},w_{j_{2}},w_{j_{3}},w_{j_{4}})
=logα+logβ2logwj1wj3wj2wj4+logwj3wj4logwj4wj1+π26\displaystyle=-\frac{\log\alpha+\log\beta}{2}\log\frac{w_{j_{1}}w_{j_{3}}}{w_{j_{2}}w_{j_{4}}}+\log\frac{w_{j_{3}}}{w_{j_{4}}}\log\frac{w_{j_{4}}}{w_{j_{1}}}+\frac{\pi^{2}}{6}
Li2(αwj1wj4)Li2(βwj3wj4)Li2(wj2wj4wj1wj3)+Li2(αwj2wj3)+Li2(βwj2wj1).\displaystyle-\operatorname{Li_{2}}\left(\alpha\frac{w_{j_{1}}}{w_{j_{4}}}\right)-\operatorname{Li_{2}}\left(\beta\frac{w_{j_{3}}}{w_{j_{4}}}\right)-\operatorname{Li_{2}}\left(\frac{w_{j_{2}}w_{j_{4}}}{w_{j_{1}}w_{j_{3}}}\right)+\operatorname{Li_{2}}\left(\alpha\frac{w_{j_{2}}}{w_{j_{3}}}\right)+\operatorname{Li_{2}}\left(\beta\frac{w_{j_{2}}}{w_{j_{1}}}\right).

Here, Li2\operatorname{Li_{2}} is the dilogarithm function, α\alpha corresponds to ξNm\xi_{N}^{m}, β\beta corresponds to ξNm\xi_{N}^{m^{\prime}}, and wjiw_{j_{i}}, with i=1,2,3,4i=1,2,3,4, corresponds to ξNkji\xi_{N}^{k_{j_{i}}}, where NN is an integer, and ξN\xi_{N} is the NN-th root of unity exp(2π1/N)\exp(2\pi\sqrt{-1}/N). These indices kjik_{j_{i}} or parameters wjiw_{j_{i}} are labeled to regions of a link diagram. A potential function Φ(𝜶,w1,,wν)\Phi(\boldsymbol{\alpha},w_{1},\ldots,w_{\nu}) of the colored Jones polynomial for a kk-component hyperbolic link =1k\mathcal{L}=\mathcal{L}_{1}\cup\cdots\cup\mathcal{L}_{k} evaluated at ξN\xi_{N} is the summation of Φcsgn(c)\Phi_{c}^{\operatorname{sgn}(c)}. Here, 𝜶=(α1,,αk)\boldsymbol{\alpha}=(\alpha_{1},\ldots,\alpha_{k}) is a kk-tuple of the parameters corresponding to the colors, and sgn(c)\operatorname{sgn}(c) is a signature of the crossing cc, and cc runs over all crossings. This potential function essentially coincides with the generalized potential function in [16]111In [16], Yoon defined the generalized potential function and established the relationship between the gluing equation. The author appreciates Yoon’s valuable comment at the 18th East Asian Conference on Geometric Topology.. We will review some facts on the potential function. From the saddle point of the potential function Φ(𝜶,w1,,wν)\Phi(\boldsymbol{\alpha},w_{1},\ldots,w_{\nu}), we can obtain a hyperbolic structure of the complement MM_{\mathcal{L}} of the link \mathcal{L} that is not necessarily complete. This is because

exp(wiΦwi)=1,i=1,,ν\exp\left(w_{i}\frac{\partial\Phi}{\partial w_{i}}\right)=1,\quad i=1,\ldots,\nu

coincides with the gluing equation of an ideal triangulation of MM_{\mathcal{L}}. Here, we choose the saddle point (σ1(𝜶),,σν(𝜶))(\sigma_{1}(\boldsymbol{\alpha}),\ldots,\sigma_{\nu}(\boldsymbol{\alpha})) so that the imagaginary part ImΦ\operatorname{Im}\Phi of the potential function Φ\Phi satisfies

ImΦ(𝜶,σ1(𝜶),,σν(𝜶))|𝜶=(1,,1)=Vol(),\operatorname{Im}\Phi(\boldsymbol{\alpha},\sigma_{1}(\boldsymbol{\alpha}),\ldots,\sigma_{\nu}(\boldsymbol{\alpha}))|_{\boldsymbol{\alpha}=(-1,\ldots,-1)}=\operatorname{Vol}(\mathcal{L}),

where Vol()\operatorname{Vol}(\mathcal{L}) is the hyperbolic volume of the link \mathcal{L}. Then, the following equality holds:

exp(αjΦαj(𝜶,σ1(𝜶),,σν(𝜶)))=lj(𝜶)\exp\left(\alpha_{j}\frac{\partial\Phi}{\partial\alpha_{j}}(\boldsymbol{\alpha},\sigma_{1}(\boldsymbol{\alpha}),\ldots,\sigma_{\nu}(\boldsymbol{\alpha}))\right)=l_{j}(\boldsymbol{\alpha})

where lj(𝜶)l_{j}(\boldsymbol{\alpha}) is the dilation component of the action of the preferred longitude of the link component j\mathcal{L}_{j}. In other words, if

{exp(wiΦwi)=1,(i=1,,ν)exp(αjΦαj)=lj(𝜶),(j=1,,k)\begin{dcases}\exp\left(w_{i}\frac{\partial\Phi}{\partial w_{i}}\right)=1,&(i=1,\ldots,\nu)\\ \exp\left(\alpha_{j}\frac{\partial\Phi}{\partial\alpha_{j}}\right)=l_{j}(\boldsymbol{\alpha}),&(j=1,\ldots,k)\end{dcases}

has a solution, then MM_{\mathcal{L}} has a corresponding hyperbolic structure. Since each equation is equivalent to a polynomial equation, we can determine the condition of whether the system of the equations has a solution by elimination. In fact, the AA-polynomial is conjectured to be obtained by the potential function of the colored Jones polynomial [6, 15].

3. AqA_{q}-polynomial and AJ conjecture

In this section, we recall some facts on the AqA_{q}-polynomial following [3, 4].

3.1. AqA_{q}-polynomial

For a knot KK, its colored Jones polynomial JK(n)=Jn(K;q)J_{K}(n)=J_{n}(K;q) has a nontrivial linear recurrence relation [4]

( 3.1) j=0dcj(q,qn)JK(n+j)=0,\sum^{d}_{j=0}c_{j}(q,q^{n})J_{K}(n+j)=0,

where cjc_{j} is an polynomial with integer coefficients. For a discrete function f:(q)f:\mathbb{N}\to\mathbb{Q}(q), we define operators QQ and EE by

(Qf)(n)=qnf(n),(Ef)(n)=f(n+1).(Qf)(n)=q^{n}f(n),\quad(Ef)(n)=f(n+1).

Then, we can restate the recurrence relation (3.1) as

(j=0dcj(q,Q)Ej)JK(n)=0.\left(\sum^{d}_{j=0}c_{j}(q,Q)E^{j}\right)J_{K}(n)=0.

This polynomial cj(q,Q)Ej\sum c_{j}(q,Q)E^{j} is an element in the non-commutative algebra

𝒜=[q±1]Q,E/(EQ=qQE).\mathcal{A}=\mathbb{Z}[q^{\pm 1}]\langle Q,E\rangle/(EQ=qQE).

To define the AqA_{q}-polynomial, we have to localize the algebra 𝒜\mathcal{A}. Let σ\sigma be the automorphism of the field (q,Q)\mathbb{Q}(q,Q) given by

σ(f)(q,Q)=f(q,qQ).\sigma(f)(q,Q)=f(q,qQ).

The Ore algebra 𝒜loc=(q,Q)[E,σ]\mathcal{A}_{\mathrm{loc}}=\mathbb{Q}(q,Q)[E,\sigma] is defined by

𝒜loc={k=0akEkak(q,Q),ak=0 for sufficiently large k},\mathcal{A}_{\mathrm{loc}}=\left\{\sum^{\infty}_{k=0}a_{k}E^{k}\mid a_{k}\in\mathbb{Q}(q,Q),\ a_{k}=0\text{ for sufficiently large }k\right\},

where the multiplication of monomials is given by aEibEj=aσi(b)Ei+jaE^{i}\cdot bE^{j}=a\sigma^{i}(b)E^{i+j}. The AqA_{q}-polynomial Aq(K)(E,Q)A_{q}(K)(E,Q) is a generator of the recursion ideal of JK(n)J_{K}(n)

I={P𝒜locPJK(n)=0},I=\{P\in\mathcal{A}_{\mathrm{loc}}\mid PJ_{K}(n)=0\},

with the following properties:

  • Aq(K)A_{q}(K) has the smallest EE-degree and lies in 𝒜\mathcal{A}.

  • Aq(K)A_{q}(K) is of the form Aq(K)=kakEkA_{q}(K)=\sum_{k}a_{k}E^{k}, where ak[q,Q]a_{k}\in\mathbb{Z}[q,Q] are coprime.

Garoufalidis proposed the following conjecture on the AqA_{q}-polynomial:

Conjecture 3.1 (the AJ conjecture [3]).

For any knot KK, AK(l,α)A_{K}(l,\alpha) is equal to εAq(K)(l,α2)\varepsilon A_{q}(K)(l,\alpha^{2}) up to multiplication by an element in (α)\mathbb{Q}(\alpha), where ε\varepsilon is an evaluation map at q=1q=1.

3.2. Computation of AqA_{q}-polynomial

Definition 3.2.

For a discrete function

F:ν+1(n,k1,,kν)F(n,k1,,kν)[q±],F:\mathbb{Z}^{\nu+1}\ni(n,k_{1},\ldots,k_{\nu})\to F(n,k_{1},\ldots,k_{\nu})\in\mathbb{Z}[q^{\pm}],

we define operators QQ, EE, Q~i\tilde{Q}_{i} and E~i\tilde{E}_{i} by

(QF)(n,k1,,kν)\displaystyle(QF)(n,k_{1},\ldots,k_{\nu}) =qnF(n,k1,,kν),\displaystyle=q^{n}F(n,k_{1},\ldots,k_{\nu}),
(EF)(n,k1,,kν)\displaystyle(EF)(n,k_{1},\ldots,k_{\nu}) =F(n+1,k1,,kν),\displaystyle=F(n+1,k_{1},\ldots,k_{\nu}),
(Q~iF)(n,k1,,kν)\displaystyle(\tilde{Q}_{i}F)(n,k_{1},\ldots,k_{\nu}) =qkiF(n,k1,,kν),\displaystyle=q^{k_{i}}F(n,k_{1},\ldots,k_{\nu}),
(E~iF)(n,k1,,kν)\displaystyle(\tilde{E}_{i}F)(n,k_{1},\ldots,k_{\nu}) =F(n,k1,,ki+1,,kν).\displaystyle=F(n,k_{1},\ldots,k_{i}+1,\ldots,k_{\nu}).

These operators generate the algebra

[q,Q,Q~1,,Q~ν]E,E~1,,E~ν\mathbb{Q}[q,Q,\tilde{Q}_{1},\ldots,\tilde{Q}_{\nu}]\langle E,\tilde{E}_{1},\ldots,\tilde{E}_{\nu}\rangle

with relations

QiQj=QjQi,EiEj=EjEi,EiQi=qQiEi,\displaystyle Q_{i}Q_{j}=Q_{j}Q_{i},\ E_{i}E_{j}=E_{j}E_{i},\ E_{i}Q_{i}=qQ_{i}E_{i},
EiQj=QjEi for ij{0,,ν},\displaystyle E_{i}Q_{j}=Q_{j}E_{i}\text{ for }i\neq j\in\{0,\ldots,\nu\},

where Q0=Q,E0=E,Qi=Q~iQ_{0}=Q,\ E_{0}=E,\ Q_{i}=\tilde{Q}_{i}, and Ei=E~iE_{i}=\tilde{E}_{i} for i{1,,ν}i\in\{1,\ldots,\nu\}. Hereafter, we put 𝒌=(k1,,kν)\boldsymbol{k}=(k_{1},\ldots,k_{\nu}).

Definition 3.3.

A discrete function F(n,𝐤)F(n,\boldsymbol{k}) is called qq-hypergeometric if EiF/F(q,qn,qn1,,qnν)E_{i}F/F\in\mathbb{Q}(q,q^{n},q^{n_{1}},\ldots,q^{n_{\nu}}) holds for all i{0,,ν}i\in\{0,\ldots,\nu\}.

We especially deal with a proper qq-hypergeometric function.

Definition 3.4.

A qq-hypergeometric discrete function F(n,𝐤)F(n,\boldsymbol{k}) is called proper if it is of the form

F(n,𝒌)=s(As;q)asn+𝒃s𝒌+cst(Bt;q)utn+𝒗t𝒌+wtqA(n,𝒌)ξ𝒌,F(n,\boldsymbol{k})=\frac{\prod_{s}(A_{s};q)_{a_{s}n+\boldsymbol{b}_{s}\cdot\boldsymbol{k}+c_{s}}}{\prod_{t}(B_{t};q)_{u_{t}n+\boldsymbol{v}_{t}\cdot\boldsymbol{k}+w_{t}}}q^{A(n,\boldsymbol{k})}\xi^{\boldsymbol{k}},

where As,Bt(q)A_{s},B_{t}\in\mathbb{Q}(q), as,uta_{s},u_{t} are integers, 𝐛s,𝐯t\boldsymbol{b}_{s},\boldsymbol{v}_{t} are vectors of ν\nu integers, cs,wtc_{s},w_{t} are variables, A(n,𝐤)A(n,\boldsymbol{k}) is a quadratic form, ξ\xi is an rr vector of elements in (q)\mathbb{Q}(q), and

(A;q)n=i=0n1(1Aqi).(A;q)_{n}=\prod^{n-1}_{i=0}(1-Aq^{i}).

Proper qq-hypergeometric functions satisfy the following theorem:

Theorem 3.5 ([13]).

Every proper qq-hypergeometric function F(n,𝐤)F(n,\boldsymbol{k}) has a 𝐤\boldsymbol{k}-free recurrence

(i,𝒋)Sσi,𝒋(qn)F(n+i,𝒌+𝒋)=0,\sum_{(i,\boldsymbol{j})\in S}\sigma_{i,\boldsymbol{j}}(q^{n})F(n+i,\boldsymbol{k}+\boldsymbol{j})=0,

where 𝐣=(j1,,jν)\boldsymbol{j}=(j_{1},\ldots,j_{\nu}) is a ν\nu-tuple of integers, and SS is a finite set.

We put

( 3.2) P=P(E,Q,E~1,,E~ν)=(i,𝒋)Sσi,𝒋(Q)EiE~𝒋,P=P(E,Q,\tilde{E}_{1},\ldots,\tilde{E}_{\nu})=\sum_{(i,\boldsymbol{j})\in S}\sigma_{i,\boldsymbol{j}}(Q)E^{i}\tilde{E}^{\boldsymbol{j}},

where E~𝒋=E~1j1E~νjν\tilde{E}^{\boldsymbol{j}}=\tilde{E}_{1}^{j_{1}}\cdots\tilde{E}_{\nu}^{j_{\nu}}. The expansion of PP around E~i=1\tilde{E}_{i}=1, with i=1,,νi=1,\ldots,\nu, is

P0(E,Q)+i=1ν(E~i1)Ri(E,Q,E~1,,E~ν),P_{0}(E,Q)+\sum^{\nu}_{i=1}(\tilde{E}_{i}-1)R_{i}(E,Q,\tilde{E}_{1},\ldots,\tilde{E}_{\nu}),

where P0(E,Q)=P(E,Q,1,,1)P_{0}(E,Q)=P(E,Q,1,\ldots,1), and RiR_{i} is a polynomial in [q,Q]E,E~𝒌\mathbb{Q}[q,Q]\langle E,\tilde{E}_{\boldsymbol{k}}\rangle. Here, E~𝒌=(E~1,,E~ν)\tilde{E}_{\boldsymbol{k}}=(\tilde{E}_{1},\ldots,\tilde{E}_{\nu}). Putting Gi=RiFG_{i}=R_{i}F, we have

P0(E,Q)F(n,𝒌)+i=1ν(Gi(n,k1,,ki+1,,kν)Gi(n,k1,,kν))=0.P_{0}(E,Q)F(n,\boldsymbol{k})+\sum^{\nu}_{i=1}(G_{i}(n,k_{1},\ldots,k_{i}+1,\ldots,k_{\nu})-G_{i}(n,k_{1},\ldots,k_{\nu}))=0.

Summing up this equality, we verify that G(n):=𝒌F(n,𝒌)G(n):=\sum_{\boldsymbol{k}}F(n,\boldsymbol{k}) satisfies

P0(E,Q)G(n)\displaystyle P_{0}(E,Q)G(n) =k2,,kν(G1(n,K1,k2,,kν)G1(n,k10,k2,,kν))\displaystyle=\sum_{k_{2},\ldots,k_{\nu}}(G_{1}(n,K_{1},k_{2},\ldots,k_{\nu})-G_{1}(n,k^{0}_{1},k_{2},\ldots,k_{\nu}))
+\displaystyle+\cdots +𝒌 except ki(Gi(n,k1,,Ki,,kν)Gi(n,k1,,ki0,,kν))\displaystyle+\sum_{\boldsymbol{k}\text{ except }k_{i}}(G_{i}(n,k_{1},\ldots,K_{i},\ldots,k_{\nu})-G_{i}(n,k_{1},\ldots,k^{0}_{i},\ldots,k_{\nu}))
+\displaystyle+\cdots +k1,,kν1(Gν(n,k1,,kν1,Kν)Gν(n,k1,,kν1,kν0)),\displaystyle+\sum_{k_{1},\ldots,k_{\nu-1}}(G_{\nu}(n,k_{1},\ldots,k_{\nu-1},K_{\nu})-G_{\nu}(n,k_{1},\ldots,k_{\nu-1},k^{0}_{\nu})),

where KiK_{i} and ki0k^{0}_{i} are fixed parameters. Since FF is a proper qq-hypergeometric function, GiG_{i} is a sum of proper qq-hypergeometric functions. That means P0(E,Q)G(n)P_{0}(E,Q)G(n) is a sum of multisums of proper qq-hypergeometric functions with one variable less. Repeating this process, we obtain a polynomial P1(E,Q)P_{1}(E,Q) such that

P1(E,Q)P0(E,Q)G(n)=0.P_{1}(E,Q)P_{0}(E,Q)G(n)=0.

3.3. AqA_{q}-polynomial and eliminations

The annihilating polynomial (3.2) of the summand F(n,𝒌)F(n,\boldsymbol{k}) is an element in Ann(F)[q,Q]E,E~𝒌\mathrm{Ann}(F)\cap\mathbb{Q}[q,Q]\langle E,\tilde{E}_{\boldsymbol{k}}\rangle. Moreover, defining the polynomials R,S,RiR,S,R_{i}, and Si[q,Q1,,Qν]S_{i}\in\mathbb{Z}[q,Q_{1},\ldots,Q_{\nu}] by

EFF=RS|Q=qn,Q~j=qkj,E~iFF=RiSi|Q=qn,Q~j=qkj,\frac{EF}{F}=\left.\frac{R}{S}\right|_{\begin{subarray}{c}Q=q^{n},\\ \tilde{Q}_{j}=q^{k_{j}}\end{subarray}},\quad\frac{\tilde{E}_{i}F}{F}=\left.\frac{R_{i}}{S_{i}}\right|_{\begin{subarray}{c}Q=q^{n},\\ \tilde{Q}_{j}=q^{k_{j}}\end{subarray}},

it is known that the annihilating ideal of FF is generated by

{SER}{SiEiRi|i=1,,ν}[q,Q,Q~𝒌]E,E~𝒌.\{SE-R\}\cup\{S_{i}E_{i}-R_{i}|i=1,\ldots,\nu\}\subset\mathbb{Q}[q,Q,\tilde{Q}_{\boldsymbol{k}}]\langle E,\tilde{E}_{\boldsymbol{k}}\rangle.

Therefore, we would be able to obtain an annihilating poynomial P(E,Q,E~1,,E~ν)P(E,Q,\tilde{E}_{1},\ldots,\tilde{E}_{\nu}) of F(n,𝒌)F(n,\boldsymbol{k}) by eliminating Q~1,,Q~ν\tilde{Q}_{1},\ldots,\tilde{Q}_{\nu} from

{SiE~iRi=0(i=1,,ν),SER=0.\begin{dcases}S_{i}\tilde{E}_{i}-R_{i}=0\quad(i=1,\ldots,\nu),\\ SE-R=0.\end{dcases}

From the observation above, we would also be able to obtain εP0(E,Q)\varepsilon P_{0}(E,Q) by eliminating Q~1,,Q~ν\tilde{Q}_{1},\ldots,\tilde{Q}_{\nu} from

{ε(SiE~iRi)|E~i=1=0(i=1,,ν),ε(SER)=0.\begin{dcases}\varepsilon(S_{i}\tilde{E}_{i}-R_{i})|_{\tilde{E}_{i}=1}=0\quad(i=1,\ldots,\nu),\\ \varepsilon(SE-R)=0.\end{dcases}

4. Comparison with the saddle point equation

In this section, we compare the saddle point equation of the potential function of the colored Jones polynomial for a knot. First of all, we recall the RR-matrices Rc±(m,kj1,kj2,kj3,kj4)R^{\pm}_{c}(m,k_{j_{1}},k_{j_{2}},k_{j_{3}},k_{j_{4}}) of the SO(3)SO(3)-colored Jones polynomial JK(n)J_{K}(n) associated with a crossing cc:

Rc+\displaystyle R_{c}^{+} (m,kj1,kj2,kj3,kj4)\displaystyle(m,k_{j_{1}},k_{j_{2}},k_{j_{3}},k_{j_{4}})
=qm2+m×q(kj2kj1)(kj3kj2)m(kj2+kj4kj1kj3)\displaystyle=q^{m^{2}+m}\times q^{-(k_{j_{2}}-k_{j_{1}})(k_{j_{3}}-k_{j_{2}})-m(k_{j_{2}}+k_{j_{4}}-k_{j_{1}}-k_{j_{3}})}
×(q)m+kj4kj3(q)m+kj4kj1(q)kj2+kj4kj1kj3(q)m+kj1kj2(q)m+kj3kj2,\displaystyle\times\frac{(q)_{m+k_{j_{4}}-k_{j_{3}}}(q)_{m+k_{j_{4}}-k_{j_{1}}}}{(q)_{k_{j_{2}}+k_{j_{4}}-k_{j_{1}}-k_{j_{3}}}(q)_{m+k_{j_{1}}-k_{j_{2}}}(q)_{m+k_{j_{3}}-k_{j_{2}}}},
Rc\displaystyle R_{c}^{-} (m,kj1,kj2,kj3,kj4)\displaystyle(m,k_{j_{1}},k_{j_{2}},k_{j_{3}},k_{j_{4}})
=(1)kj1+kj3kj2kj4q(m2+m)×q(kj3kj4)(kj4kj1)m(kj1+kj3kj2kj4)\displaystyle=(-1)^{k_{j_{1}}+k_{j_{3}}-k_{j_{2}}-k_{j_{4}}}q^{-(m^{2}+m)}\times q^{(k_{j_{3}}-k_{j_{4}})(k_{j_{4}}-k_{j_{1}})-m(k_{j_{1}}+k_{j_{3}}-k_{j_{2}}-k_{j_{4}})}
×(q)m+kj1kj4(q)m+kj3kj4(q)kj1+kj3kj2kj4(q)m+kj2kj3(q)m+kj2kj1.\displaystyle\times\frac{(q)_{m+k_{j_{1}}-k_{j_{4}}}(q)_{m+k_{j_{3}}-k_{j_{4}}}}{(q)_{k_{j_{1}}+k_{j_{3}}-k_{j_{2}}-k_{j_{4}}}(q)_{m+k_{j_{2}}-k_{j_{3}}}(q)_{m+k_{j_{2}}-k_{j_{1}}}}.

Here, mm is an integer satisfying n=2m+1n=2m+1, q±(m2+m)q^{\pm(m^{2}+m)} are modifications with Reidemeister move I, and the indices kjik_{j_{i}}, with i=1,2,3,4i=1,2,3,4, are labeled to each region around the crossing cc as shown in Figure 4.1 [7, 11].

Refer to caption
Figure 4.1. The indices labeled to the regions around the crossing cc

Corresponding potential functions are

Φc+\displaystyle\Phi_{c}^{+} (α,wj1,wj2,wj3,wj4)\displaystyle(\alpha,w_{j_{1}},w_{j_{2}},w_{j_{3}},w_{j_{4}})
=(logα)2+logαlogwj1wj3wj2wj4logwj2wj1logwj3wj2π26\displaystyle=(\log\alpha)^{2}+\log\alpha\log\frac{w_{j_{1}}w_{j_{3}}}{w_{j_{2}}w_{j_{4}}}-\log\frac{w_{j_{2}}}{w_{j_{1}}}\log\frac{w_{j_{3}}}{w_{j_{2}}}-\frac{\pi^{2}}{6}
Li2(αwj4wj3)Li2(αwj4wj1)+Li2(wj2wj4wj1wj3)+Li2(αwj1wj2)+Li2(αwj3wj2),\displaystyle-\operatorname{Li_{2}}\left(\alpha\frac{w_{j_{4}}}{w_{j_{3}}}\right)-\operatorname{Li_{2}}\left(\alpha\frac{w_{j_{4}}}{w_{j_{1}}}\right)+\operatorname{Li_{2}}\left(\frac{w_{j_{2}}w_{j_{4}}}{w_{j_{1}}w_{j_{3}}}\right)+\operatorname{Li_{2}}\left(\alpha\frac{w_{j_{1}}}{w_{j_{2}}}\right)+\operatorname{Li_{2}}\left(\alpha\frac{w_{j_{3}}}{w_{j_{2}}}\right),
Φc\displaystyle\Phi_{c}^{-} (α,wj1,wj2,wj3,wj4)\displaystyle(\alpha,w_{j_{1}},w_{j_{2}},w_{j_{3}},w_{j_{4}})
=(logα)2logαlogwj1wj3wj2wj4+logwj3wj4logwj4wj1+π26\displaystyle=-(\log\alpha)^{2}-\log\alpha\log\frac{w_{j_{1}}w_{j_{3}}}{w_{j_{2}}w_{j_{4}}}+\log\frac{w_{j_{3}}}{w_{j_{4}}}\log\frac{w_{j_{4}}}{w_{j_{1}}}+\frac{\pi^{2}}{6}
Li2(αwj1wj4)Li2(αwj3wj4)Li2(wj2wj4wj1wj3)+Li2(αwj2wj3)+Li2(αwj2wj1).\displaystyle-\operatorname{Li_{2}}\left(\alpha\frac{w_{j_{1}}}{w_{j_{4}}}\right)-\operatorname{Li_{2}}\left(\alpha\frac{w_{j_{3}}}{w_{j_{4}}}\right)-\operatorname{Li_{2}}\left(\frac{w_{j_{2}}w_{j_{4}}}{w_{j_{1}}w_{j_{3}}}\right)+\operatorname{Li_{2}}\left(\alpha\frac{w_{j_{2}}}{w_{j_{3}}}\right)+\operatorname{Li_{2}}\left(\alpha\frac{w_{j_{2}}}{w_{j_{1}}}\right).

Derivatives of Φc+\Phi_{c}^{+} are

( 4.1) wj1Φc+wj1=log(1αwj1wj2)1(1α1wj1wj4)1(1wj1wj3wj2wj4),wj2Φc+wj2=logα(1α1wj2wj1)(1α1wj2wj3)(1wj2wj4wj1wj3)1,wj3Φc+wj3=log(1α1wj3wj4)1(1αwj3wj2)1(1wj1wj3wj2wj4),wj4Φc+wj4=logα1(1αwj4wj3)(1αwj4wj1)(1wj2wj4wj1wj3)1,\displaystyle\begin{split}w_{j_{1}}\frac{\partial\Phi^{+}_{c}}{\partial w_{j_{1}}}&=\log\left(1-\alpha\frac{w_{j_{1}}}{w_{j_{2}}}\right)^{-1}\left(1-\alpha^{-1}\frac{w_{j_{1}}}{w_{j_{4}}}\right)^{-1}\left(1-\frac{w_{j_{1}}w_{j_{3}}}{w_{j_{2}}w_{j_{4}}}\right),\\ w_{j_{2}}\frac{\partial\Phi^{+}_{c}}{\partial w_{j_{2}}}&=\log\alpha\left(1-\alpha^{-1}\frac{w_{j_{2}}}{w_{j_{1}}}\right)\left(1-\alpha^{-1}\frac{w_{j_{2}}}{w_{j_{3}}}\right)\left(1-\frac{w_{j_{2}}w_{j_{4}}}{w_{j_{1}}w_{j_{3}}}\right)^{-1},\\ w_{j_{3}}\frac{\partial\Phi^{+}_{c}}{\partial w_{j_{3}}}&=\log\left(1-\alpha^{-1}\frac{w_{j_{3}}}{w_{j_{4}}}\right)^{-1}\left(1-\alpha\frac{w_{j_{3}}}{w_{j_{2}}}\right)^{-1}\left(1-\frac{w_{j_{1}}w_{j_{3}}}{w_{j_{2}}w_{j_{4}}}\right),\\ w_{j_{4}}\frac{\partial\Phi^{+}_{c}}{\partial w_{j_{4}}}&=\log\alpha^{-1}\left(1-\alpha\frac{w_{j_{4}}}{w_{j_{3}}}\right)\left(1-\alpha\frac{w_{j_{4}}}{w_{j_{1}}}\right)\left(1-\frac{w_{j_{2}}w_{j_{4}}}{w_{j_{1}}w_{j_{3}}}\right)^{-1},\end{split}

and

( 4.2) αΦc+α=logα2(1α1wj3wj4)(1αwj4wj1)(1α1wj2wj1)1(1αwj3wj2)1.\alpha\frac{\partial\Phi^{+}_{c}}{\partial\alpha}=\log\alpha^{2}\left(1-\alpha^{-1}\frac{w_{j_{3}}}{w_{j_{4}}}\right)\left(1-\alpha\frac{w_{j_{4}}}{w_{j_{1}}}\right)\left(1-\alpha^{-1}\frac{w_{j_{2}}}{w_{j_{1}}}\right)^{-1}\left(1-\alpha\frac{w_{j_{3}}}{w_{j_{2}}}\right)^{-1}.

On the other hand, we have

( 4.3) E~j1Rc+Rc+\displaystyle\frac{\tilde{E}_{j_{1}}R_{c}^{+}}{R_{c}^{+}} =(1qm+1qkj1qkj2)1(1qmqkj1qkj4)1(1qkj1+kj3qkj2+kj4),\displaystyle=\left(1-q^{m+1}\frac{q^{k_{j_{1}}}}{q^{k_{j_{2}}}}\right)^{-1}\left(1-q^{-m}\frac{q^{k_{j_{1}}}}{q^{k_{j_{4}}}}\right)^{-1}\left(1-\frac{q^{k_{j_{1}}+k_{j_{3}}}}{q^{k_{j_{2}}+k_{j_{4}}}}\right),
( 4.4) E~j2Rc+Rc+\displaystyle\frac{\tilde{E}_{j_{2}}R_{c}^{+}}{R_{c}^{+}} =qm+1(1qmqkj2qkj1)(1qmqkj2qkj3)(1qkj2+kj4qkj1+kj3)1,\displaystyle=q^{m+1}\left(1-q^{-m}\frac{q^{k_{j_{2}}}}{q^{k_{j_{1}}}}\right)\left(1-q^{-m}\frac{q^{k_{j_{2}}}}{q^{k_{j_{3}}}}\right)\left(1-\frac{q^{k_{j_{2}}+k_{j_{4}}}}{q^{k_{j_{1}}+k_{j_{3}}}}\right)^{-1},
( 4.5) E~j3Rc+Rc+\displaystyle\frac{\tilde{E}_{j_{3}}R_{c}^{+}}{R_{c}^{+}} =(1qmqkj3qkj4)1(1qm+1qkj3qkj2)1(1qkj1+kj3qkj2+kj4),\displaystyle=\left(1-q^{-m}\frac{q^{k_{j_{3}}}}{q^{k_{j_{4}}}}\right)^{-1}\left(1-q^{m+1}\frac{q^{k_{j_{3}}}}{q^{k_{j_{2}}}}\right)^{-1}\left(1-\frac{q^{k_{j_{1}}+k_{j_{3}}}}{q^{k_{j_{2}}+k_{j_{4}}}}\right),
( 4.6) E~j4Rc+Rc+\displaystyle\frac{\tilde{E}_{j_{4}}R_{c}^{+}}{R_{c}^{+}} =qm(1qm+1qkj4qkj3)(1qm+1qkj4qkj1)(1qqkj2+kj4qkj1+kj3)1.\displaystyle=q^{-m}\left(1-q^{m+1}\frac{q^{k_{j_{4}}}}{q^{k_{j_{3}}}}\right)\left(1-q^{m+1}\frac{q^{k_{j_{4}}}}{q^{k_{j_{1}}}}\right)\left(1-q\frac{q^{k_{j_{2}}+k_{j_{4}}}}{q^{k_{j_{1}}+k_{j_{3}}}}\right)^{-1}.

Furthermore, defining an operator EmE_{m} by (EmRc+)(m,𝒌)=Rc+(m+1,𝒌)(E_{m}R_{c}^{+})(m,\boldsymbol{k})=R_{c}^{+}(m+1,\boldsymbol{k}), we have

( 4.7) EmRc+Rc+=q2(m+1)(1qkj3kj4m1)(1qm+1+kj4kj1)(1qkj2kj1m1)(1qm+1+kj3kj2).\frac{E_{m}R_{c}^{+}}{R_{c}^{+}}=\frac{q^{2(m+1)}\left(1-q^{k_{j_{3}}-k_{j_{4}}-m-1}\right)\left(1-q^{m+1+k_{j_{4}}-k_{j_{1}}}\right)}{\left(1-q^{k_{j_{2}}-k_{j_{1}}-m-1}\right)\left(1-q^{m+1+k_{j_{3}}-k_{j_{2}}}\right)}.\\

Putting qkji=Q~ji,qm=Qmq^{k_{j_{i}}}=\tilde{Q}_{j_{i}},\ q^{m}=Q_{m} we have

( 4.8) εE~j1Rc+Rc+|qkji=Q~jiqm=Qm=(1QmQ~j1Q~j2)1(1Qm1Q~j1Q~j4)1(1Q~j1Q~j3Q~j2Q~j4),εE~j2Rc+Rc+|qkji=Q~jiqm=Qm=Qm(1Qm1Q~j2Q~j1)(1Qm1Q~j2Q~j3)(1Q~j2Q~j4Q~j1Q~j3)1,εE~j3Rc+Rc+|qkji=Q~jiqm=Qm=(1Qm1Q~j3Q~j4)1(1QmQ~j3Q~j2)1(1Q~j1Q~j3Q~j2Q~j4),εE~j4Rc+Rc+|qkji=Q~jiqm=Qm=Qm1(1QmQ~j4Q~j3)(1QmQ~j4Q~j1)(1Q~j2Q~j4Q~j1Q~j3)1,\displaystyle\begin{split}\left.\varepsilon\frac{\tilde{E}_{j_{1}}R_{c}^{+}}{R_{c}^{+}}\right|_{\begin{subarray}{c}q^{k_{j_{i}}}=\tilde{Q}_{j_{i}}\\ q^{m}=Q_{m}\end{subarray}}&=\left(1-Q_{m}\frac{\tilde{Q}_{j_{1}}}{\tilde{Q}_{j_{2}}}\right)^{-1}\left(1-Q_{m}^{-1}\frac{\tilde{Q}_{j_{1}}}{\tilde{Q}_{j_{4}}}\right)^{-1}\left(1-\frac{\tilde{Q}_{j_{1}}\tilde{Q}_{j_{3}}}{\tilde{Q}_{j_{2}}\tilde{Q}_{j_{4}}}\right),\\ \left.\varepsilon\frac{\tilde{E}_{j_{2}}R_{c}^{+}}{R_{c}^{+}}\right|_{\begin{subarray}{c}q^{k_{j_{i}}}=\tilde{Q}_{j_{i}}\\ q^{m}=Q_{m}\end{subarray}}&=Q_{m}\left(1-Q_{m}^{-1}\frac{\tilde{Q}_{j_{2}}}{\tilde{Q}_{j_{1}}}\right)\left(1-Q_{m}^{-1}\frac{\tilde{Q}_{j_{2}}}{\tilde{Q}_{j_{3}}}\right)\left(1-\frac{\tilde{Q}_{j_{2}}\tilde{Q}_{j_{4}}}{\tilde{Q}_{j_{1}}\tilde{Q}_{j_{3}}}\right)^{-1},\\ \left.\varepsilon\frac{\tilde{E}_{j_{3}}R_{c}^{+}}{R_{c}^{+}}\right|_{\begin{subarray}{c}q^{k_{j_{i}}}=\tilde{Q}_{j_{i}}\\ q^{m}=Q_{m}\end{subarray}}&=\left(1-Q_{m}^{-1}\frac{\tilde{Q}_{j_{3}}}{\tilde{Q}_{j_{4}}}\right)^{-1}\left(1-Q_{m}\frac{\tilde{Q}_{j_{3}}}{\tilde{Q}_{j_{2}}}\right)^{-1}\left(1-\frac{\tilde{Q}_{j_{1}}\tilde{Q}_{j_{3}}}{\tilde{Q}_{j_{2}}\tilde{Q}_{j_{4}}}\right),\\ \left.\varepsilon\frac{\tilde{E}_{j_{4}}R_{c}^{+}}{R_{c}^{+}}\right|_{\begin{subarray}{c}q^{k_{j_{i}}}=\tilde{Q}_{j_{i}}\\ q^{m}=Q_{m}\end{subarray}}&=Q_{m}^{-1}\left(1-Q_{m}\frac{\tilde{Q}_{j_{4}}}{\tilde{Q}_{j_{3}}}\right)\left(1-Q_{m}\frac{\tilde{Q}_{j_{4}}}{\tilde{Q}_{j_{1}}}\right)\left(1-\frac{\tilde{Q}_{j_{2}}\tilde{Q}_{j_{4}}}{\tilde{Q}_{j_{1}}\tilde{Q}_{j_{3}}}\right)^{-1},\\ \end{split}

and

( 4.9) εEmRc+Rc+|qkji=Q~jiqm=Qm=Qm2(1Qm1Q~j3Q~j4)(1QmQ~j4Q~j1)×(1Qm1Q~j2Q~j1)1(1QmQ~j3Q~j2)1.\displaystyle\begin{split}\left.\varepsilon\frac{E_{m}R_{c}^{+}}{R_{c}^{+}}\right|_{\begin{subarray}{c}q^{k_{j_{i}}}=\tilde{Q}_{j_{i}}\\ q^{m}=Q_{m}\end{subarray}}=&Q_{m}^{2}\left(1-Q_{m}^{-1}\frac{\tilde{Q}_{j_{3}}}{\tilde{Q}_{j_{4}}}\right)\left(1-Q_{m}\frac{\tilde{Q}_{j_{4}}}{\tilde{Q}_{j_{1}}}\right)\\ &\times\left(1-Q_{m}^{-1}\frac{\tilde{Q}_{j_{2}}}{\tilde{Q}_{j_{1}}}\right)^{-1}\left(1-Q_{m}\frac{\tilde{Q}_{j_{3}}}{\tilde{Q}_{j_{2}}}\right)^{-1}.\end{split}

(4.1) and (4.2) coincide with (4.8) and (4.9) under the correspondences wi=Q~iw_{i}=\tilde{Q}_{i} and α=Qm\alpha=Q_{m}. A similar argument holds for a negative crossing. We define the discrete function F=F(n,k1,,kν)=F(n,𝒌)F=F(n,k_{1},\ldots,k_{\nu})=F(n,\boldsymbol{k}) by

F=c:crossingsRcsgn(c),F=\prod_{c:\text{crossings}}R_{c}^{\operatorname{sgn}(c)},

and polynomials RjR_{j} and SjS_{j} with j=1,,νj=1,\ldots,\nu, by

εE~jFF|qki=Q~iqm=Qm=RjSj.\left.\varepsilon\frac{\tilde{E}_{j}F}{F}\right|_{\begin{subarray}{c}q^{k_{i}}=\tilde{Q}_{i}\\ q^{m}=Q_{m}\end{subarray}}=\frac{R_{j}}{S_{j}}.

The equation SjE~jRj=0S_{j}\tilde{E}_{j}-R_{j}=0 under the substitution E~j=1\tilde{E}_{j}=1, which means SjRj=0S_{j}-R_{j}=0, is equivalent to

εE~jFF|qki=Q~iqm=Qm=1,\left.\varepsilon\frac{\tilde{E}_{j}F}{F}\right|_{\begin{subarray}{c}q^{k_{i}}=\tilde{Q}_{i}\\ q^{m}=Q_{m}\end{subarray}}=1,

and this corresponds to

exp(wjΦwj)=1,\exp\left(w_{j}\frac{\partial\Phi}{\partial w_{j}}\right)=1,

under wi=Q~iw_{i}=\tilde{Q}_{i} and α=Qm\alpha=Q_{m}. Let EE be an operator such that (EF)(n,𝒌)=F(n+1,𝒌)(EF)(n,\boldsymbol{k})=F(n+1,\boldsymbol{k}). By the definition, Em=E2E_{m}=E^{2} holds. We also define polynomials RR and SS by

εEFF|qki=Q~iqm=Qm=RS.\left.\varepsilon\frac{EF}{F}\right|_{\begin{subarray}{c}q^{k_{i}}=\tilde{Q}_{i}\\ q^{m}=Q_{m}\end{subarray}}=\frac{R}{S}.

Then,

εEmFF|qki=Q~iqm=Qm=εE2FF|qki=Q~iqm=Qm=εE2FEFEFF|qki=Q~iqm=Qm=R2S2\left.\varepsilon\frac{E_{m}F}{F}\right|_{\begin{subarray}{c}q^{k_{i}}=\tilde{Q}_{i}\\ q^{m}=Q_{m}\end{subarray}}=\left.\varepsilon\frac{E^{2}F}{F}\right|_{\begin{subarray}{c}q^{k_{i}}=\tilde{Q}_{i}\\ q^{m}=Q_{m}\end{subarray}}=\left.\varepsilon\frac{E^{2}F}{EF}\frac{EF}{F}\right|_{\begin{subarray}{c}q^{k_{i}}=\tilde{Q}_{i}\\ q^{m}=Q_{m}\end{subarray}}=\frac{R^{2}}{S^{2}}

holds. The equation S2EmR2=0S^{2}E_{m}-R^{2}=0 is equivalent to

εEmFF|qki=Q~iqm=Qm=E2\left.\varepsilon\frac{E_{m}F}{F}\right|_{\begin{subarray}{c}q^{k_{i}}=\tilde{Q}_{i}\\ q^{m}=Q_{m}\end{subarray}}=E^{2}

and this corresponds to

exp(αΦα)=l2.\exp\left(\alpha\frac{\partial\Phi}{\partial\alpha}\right)=l^{2}.

Note that the system of equations

{SiE~iRi=0(i=1,,ν),S2E2R2=0.\begin{dcases}S_{i}\tilde{E}_{i}-R_{i}=0\quad(i=1,\ldots,\nu),\\ S^{2}E^{2}-R^{2}=0.\end{dcases}

yields an annihilating polynomial F(E,Qm,E~1,,E~ν)F(E,Q_{m},\tilde{E}_{1},\ldots,\tilde{E}_{\nu}) of the summand, but we can obtain an annihilating polynomial F(E,Q,E~1,,E~ν)F(E,Q,\tilde{E}_{1},\ldots,\tilde{E}_{\nu}) by Q=qQm2Q=qQ_{m}^{2}. Note also that QmQ_{m} corresponds to the eigenvalue α\alpha of the meridian. This explains the substitution of m2m^{2} for the AqA_{q}-polynomial in the statement of the AJ conjecture. When all indices 𝒌\boldsymbol{k} vanish after finite times of creative telescoping, we obtain an inhomogeneous recurrence relation

( 4.10) PK0(E,Q)JK(n)+f(q,qn)=0,P_{K}^{0}(E,Q)J_{K}(n)+f(q,q^{n})=0,

where PK0(E,Q)𝒜locP_{K}^{0}(E,Q)\in\mathcal{A}_{\mathrm{loc}}, and f(q,qn)(q,qn)f(q,q^{n})\in\mathbb{Q}(q,q^{n}). Since f(q,qn)f(q,q^{n}) can be canceled by left multiplication of (E1)f(q,Q)1(E-1)\cdot f(q,Q)^{-1}, we obtain homogeneous recurrence relation

(E1)1f(q,Q)PK0(E,Q)JK(n)=0.(E-1)\cdot\frac{1}{f(q,Q)}\cdot P_{K}^{0}(E,Q)J_{K}(n)=0.

This would support the AJ conjecture. The crucial point of the above argument is as follows:

Proposition 4.1.

The system of equations

{exp(wjΦwj)=1,(j=1,,ν)exp(αΦα)=l2\begin{dcases}\exp\left(w_{j}\frac{\partial\Phi}{\partial w_{j}}\right)=1,&(j=1,\ldots,\nu)\\ \exp\left(\alpha\frac{\partial\Phi}{\partial\alpha}\right)=l^{2}\end{dcases}

coincides with

{εE~jFF|qki=wiqm=α=1,(j=1,,ν)εEmFF|qki=wiqm=α=E2,\begin{dcases}\varepsilon\left.\frac{\tilde{E}_{j}F}{F}\right|_{\begin{subarray}{c}q^{k_{i}}=w_{i}\\ q^{m}=\alpha\end{subarray}}=1,&(j=1,\ldots,\nu)\\ \varepsilon\left.\frac{E_{m}F}{F}\right|_{\begin{subarray}{c}q^{k_{i}}=w_{i}\\ q^{m}=\alpha\end{subarray}}=E^{2},\end{dcases}

under the correspondence l=El=E.

Remark 4.2.

We can view Proposition 4.1 as follows: The potential function is obtained from the summand of the colored Jones polynomial by approximating it with continuous functions. Therefore, for a sufficiently large integer NN,

F(m,𝒌)|q=ξNPNexp(N2π1Φ(ξNm,ξNk1,,ξNkν)).F(m,\boldsymbol{k})|_{q=\xi_{N}}\sim P_{N}\exp\left(\frac{N}{2\pi\sqrt{-1}}\Phi(\xi_{N}^{m},\xi_{N}^{k_{1}},\ldots,\xi_{N}^{k_{\nu}})\right).

Then,

EmFF|q=ξN\displaystyle\left.\frac{E_{m}F}{F}\right|_{q=\xi_{N}} exp(N2π1Φ(ξNξNm,ξNk1,,ξNkν))exp(N2π1Φ(ξNm,ξNk1,,ξNkν))\displaystyle\sim\frac{\exp\left(\frac{N}{2\pi\sqrt{-1}}\Phi(\xi_{N}\cdot\xi_{N}^{m},\xi_{N}^{k_{1}},\ldots,\xi_{N}^{k_{\nu}})\right)}{\exp\left(\frac{N}{2\pi\sqrt{-1}}\Phi(\xi_{N}^{m},\xi_{N}^{k_{1}},\ldots,\xi_{N}^{k_{\nu}})\right)}
exp(ξNmΦα(ξNm,ξNk1,,ξNkν)).\displaystyle\sim\exp\left(\xi_{N}^{m}\frac{\partial\Phi}{\partial\alpha}(\xi_{N}^{m},\xi_{N}^{k_{1}},\ldots,\xi_{N}^{k_{\nu}})\right).

By Proposition 4.1, we would be able to obtain the factor of the AA-polynomial AK(l,α)A_{K}(l,\alpha) for KK corresponding to nonabelian representations from PK0(E,Q)P_{K}^{0}(E,Q).

Conjecture 4.3.

εPK0(l,α2)\varepsilon P_{K}^{0}(l,\alpha^{2}) equals AK(l,α)A^{\prime}_{K}(l,\alpha) up to multiplication by an element in (α)\mathbb{Q}(\alpha), where

AK(l,α)=AK(l,α)l1.A^{\prime}_{K}(l,\alpha)=\frac{A_{K}(l,\alpha)}{l-1}.
Remark 4.4.

The polynomial AK(l,α)A^{\prime}_{K}(l,\alpha) is called the nonabelian AA-polynomial [8].

Then, the factor that annihilates f(q,qn)f(q,q^{n}) in (4.10) would correspond to the factor l1l-1 of AK(l,α)A_{K}(l,\alpha) corresponding to abelian representations. These conjectural correspondences are illustrated in Figure 4.2.

Refer to caption
Figure 4.2. Correspondences between qq-differences of the summand and derivatives of the potential function.

Appendix A Example calculation for the figure-eight knot

Let us observe the process above with the figure-eight knot. The colored Jones polynomial for the figure-eight knot is [5]

Jn(41,q)=i=0n1F(n,i),J_{n}(4_{1},q)=\sum^{n-1}_{i=0}F(n,i),

where

F(n,i)=1{n}{n+i}!{ni1}!.F(n,i)=\frac{1}{\{n\}}\frac{\{n+i\}!}{\{n-i-1\}!}.

Note that this formula is not the form itself obtained from the RR-matrix. The argument above, however, is still valid.

A.1. Potential function and the AA-polynomial

The potential function Φ(α,x)\Phi(\alpha,x) of Ji(41,ξN)J_{i}(4_{1},\xi_{N}) is (see [11])

Φ(α,x)=2logαlogxLi2(α2x)+Li2(α2x1).\Phi(\alpha,x)=-2\log\alpha\log x-\operatorname{Li_{2}}(\alpha^{2}x)+\operatorname{Li_{2}}(\alpha^{2}x^{-1}).

The derivatives of Φ\Phi with xx and α\alpha are

xΦx\displaystyle x\frac{\partial\Phi}{\partial x} =logα2(1α2x)(1α2x1),\displaystyle=\log\alpha^{-2}(1-\alpha^{2}x)(1-\alpha^{2}x^{-1}),
αΦα\displaystyle\alpha\frac{\partial\Phi}{\partial\alpha} =2log(1α2x)(xα2)1.\displaystyle=2\log(1-\alpha^{2}x)(x-\alpha^{2})^{-1}.

Noting that if ρ(λ)\rho(\lambda) is of the form

ρ(λ)=(l0l1)\rho(\lambda)=\left(\begin{array}[]{cc}l&\ast\\ 0&l^{-1}\end{array}\right)

the action of λ\lambda is zl2z+z\mapsto l^{2}z+\ast, especially its dilation component is equal to l2l^{2}, we put

(1α2x)2(xα2)2=l2(1-\alpha^{2}x)^{2}(x-\alpha^{2})^{-2}=l^{2}

From

{α2(1α2x)(1α2x1)=1,(1α2x)(xα2)1=l,\begin{dcases}\alpha^{-2}(1-\alpha^{2}x)(1-\alpha^{2}x^{-1})=1,\\ (1-\alpha^{2}x)(x-\alpha^{2})^{-1}=l,\end{dcases}

we obtain the factor of the A-polynomial of the figure-eight knot

( A.1) α4l2l+α2l+2α4l+α6lα8l+α4\alpha^{4}l^{2}-l+\alpha^{2}l+2\alpha^{4}l+\alpha^{6}l-\alpha^{8}l+\alpha^{4}

by elimination of xx.

A.2. Annihilating polynomials of Jn(41,q)J_{n}(4_{1},q)

The annihilating polynomial of J(n)=Jn(41;q)J(n)=J_{n}(4_{1};q) is [3]

q4Q(1+q3Q)(q+q3Q)(qq6Q2)E3\displaystyle\frac{q^{4}Q(-1+q^{3}Q)}{(q+q^{3}Q)(q-q^{6}Q^{2})}E^{3}
+(q+q3Q)(q4+q5Q2q6Qq7Q2+q8Q2q9Q22q10Q3+q11Q3+q12Q4)q4Q(q2+q3Q)(q+q6Q2)E2\displaystyle+\frac{(-q+q^{3}Q)(q^{4}+q^{5}Q-2q^{6}Q-q^{7}Q^{2}+q^{8}Q^{2}-q^{9}Q^{2}-2q^{10}Q^{3}+q^{11}Q^{3}+q^{12}Q^{4})}{q^{4}Q(q^{2}+q^{3}Q)(-q+q^{6}Q^{2})}E^{2}
(q2q3Q)(q82q9Q+q10Qq9Q2+q10Q2q11Q2+q10Q32q11Q3+q12Q4)q5Q(q+q3Q)(q5q6Q2)E\displaystyle-\frac{(q^{2}-q^{3}Q)(q^{8}-2q^{9}Q+q^{10}Q-q^{9}Q^{2}+q^{10}Q^{2}-q^{11}Q^{2}+q^{10}Q^{3}-2q^{11}Q^{3}+q^{12}Q^{4})}{q^{5}Q(q+q^{3}Q)(q^{5}-q^{6}Q^{2})}E
+q5Q(q3+q3Q)(q2+q3Q)(q5+q6Q2).\displaystyle+\frac{q^{5}Q(-q^{3}+q^{3}Q)}{(q^{2}+q^{3}Q)(-q^{5}+q^{6}Q^{2})}.

We can factorize this polynomial as (E1)α(q,E,Q)(Q1)(E-1)\alpha(q,E,Q)(Q-1), where α(q,E,Q)\alpha(q,E,Q) is

11+qQ{qQ1q3Q2E2+(11q3Q2+11qQ2+qQ11qQ)E+qQ1qQ2}.\frac{1}{1+qQ}\left\{\frac{qQ}{1-q^{3}Q^{2}}E^{2}+\left(\frac{1}{1-q^{3}Q^{2}}+\frac{1}{1-qQ^{2}}+qQ-1-\frac{1}{qQ}\right)E+\frac{qQ}{1-qQ^{2}}\right\}.

EF/FEF/F and E~1F/F\tilde{E}_{1}F/F are

( A.2) EFF=F(n+1,i)F(n,i)=(1qn)(1qn+1+i)(1qn+1)(qiqn)E~1FF=F(n,i+1)F(n,i)=qn(1qn+i+1)(1qni1).\displaystyle\begin{split}\frac{EF}{F}&=\frac{F(n+1,i)}{F(n,i)}=\frac{(1-q^{n})(1-q^{n+1+i})}{(1-q^{n+1})(q^{i}-q^{n})}\\ \frac{\tilde{E}_{1}F}{F}&=\frac{F(n,i+1)}{F(n,i)}=q^{-n}(1-q^{n+i+1})(1-q^{n-i-1}).\end{split}

Substituting Q=qnQ=q^{n} and Q~1=qi\tilde{Q}_{1}=q^{i} into (A.2), we have

( A.3) (E+qQ)Q~1(Q1)=(1+QE)(Q1),\displaystyle(E+qQ)\tilde{Q}_{1}(Q-1)=(1+QE)(Q-1),
( A.4) q2Q~12Q+qQ~1(Q2+QE~11)+Q=0.\displaystyle q^{2}\tilde{Q}_{1}^{2}Q+q\tilde{Q}_{1}(-Q^{2}+Q\tilde{E}_{1}-1)+Q=0.

From (A.3), we have

( A.5) (1+QE)Q~11(Q1)=(E+qQ)(Q1)(1+QE)\tilde{Q}_{1}^{-1}(Q-1)=(E+qQ)(Q-1)

Multiplying (A.4) by q1Q~11Q1(Q1)q^{-1}\tilde{Q}_{1}^{-1}Q^{-1}(Q-1) from the left, we obtain

( A.6) qQ~1(Q1)+Q1(Q2+QE~11)(Q1)+q1Q~11(Q1)=0.q\tilde{Q}_{1}(Q-1)+Q^{-1}(-Q^{2}+Q\tilde{E}_{1}-1)(Q-1)+q^{-1}\tilde{Q}_{1}^{-1}(Q-1)=0.

Then, we multiply (A.6) by

X(q,E,Q)=qQ1q3Q2E2+(11q3Q2+11qQ21)E+qQ1qQ2X(q,E,Q)=\frac{qQ}{1-q^{3}Q^{2}}E^{2}+\left(\frac{1}{1-q^{3}Q^{2}}+\frac{1}{1-qQ^{2}}-1\right)E+\frac{qQ}{1-qQ^{2}}

from the left. This polynomial is factorized in two ways.

X(q,E,Q)\displaystyle X(q,E,Q) =(qQ1q3Q2E+11qQ2)(E+qQ)\displaystyle=\left(\frac{qQ}{1-q^{3}Q^{2}}E+\frac{1}{1-qQ^{2}}\right)(E+qQ)
=(11q3Q2E+qQ1qQ2)(1+QE).\displaystyle=\left(\frac{1}{1-q^{3}Q^{2}}E+\frac{qQ}{1-qQ^{2}}\right)(1+QE).

Then, using (A.3) and (A.5), we obtain the annihilating polynomial P(E,Q,E~1)P(E,Q,\tilde{E}_{1}) of F(n,i)F(n,i)

P(E,Q,E~1)={qQ1q3Q2E~1E2\displaystyle P(E,Q,\tilde{E}_{1})=\left\{\frac{qQ}{1-q^{3}Q^{2}}\tilde{E}_{1}E^{2}\right.
+(11q3Q2E~1+11qQ2E~1+qQE~11qQ)E+qQ1qQ2E~1}(Q1).\displaystyle+\left.\left(\frac{1}{1-q^{3}Q^{2}}\tilde{E}_{1}+\frac{1}{1-qQ^{2}}\tilde{E}_{1}+qQ-\tilde{E}_{1}-\frac{1}{qQ}\right)E+\frac{qQ}{1-qQ^{2}}\tilde{E}_{1}\right\}(Q-1).

The expansion of P(E,Q,E~1)P(E,Q,\tilde{E}_{1}) at E~1=1\tilde{E}_{1}=1 is

P(E,Q,E~1)=P0(E,Q)+(E~11)R(E,Q),P(E,Q,\tilde{E}_{1})=P_{0}(E,Q)+(\tilde{E}_{1}-1)R(E,Q),

where

( A.7) P0(E,Q)=P(E,Q,1)=(1+qQ)α(q,E,Q)(Q1),P_{0}(E,Q)=P(E,Q,1)=(1+qQ)\alpha(q,E,Q)(Q-1),

and

R(E,Q)={qQ1q3Q2E2+(11q3Q2+11qQ21)E+qQ1qQ2}(Q1).R(E,Q)=\left\{\frac{qQ}{1-q^{3}Q^{2}}E^{2}+\left(\frac{1}{1-q^{3}Q^{2}}+\frac{1}{1-qQ^{2}}-1\right)E+\frac{qQ}{1-qQ^{2}}\right\}(Q-1).

Therefore, P0(E,Q)FP_{0}(E,Q)F is of the form

P0(E,Q)F=c2(q,qn)F(n+2,i)+c1(q,qn)F(n+1,i)+c0(q,qn)F(n,i),P_{0}(E,Q)F=c_{2}(q,q^{n})F(n+2,i)+c_{1}(q,q^{n})F(n+1,i)+c_{0}(q,q^{n})F(n,i),

where ck(q,qn)(q,qn)c_{k}(q,q^{n})\in\mathbb{Q}(q,q^{n}), with k=0,1,2k=0,1,2. Summing up this equality with ii running from 0 to n+1(=n+21)n+1(=n+2-1), we have

P0(E,Q)J(n)=c2(q,qn)J(n+2)+c1(q,qn)J(n+1)+c0(q,qn)J(n).P_{0}(E,Q)J(n)=c_{2}(q,q^{n})J(n+2)+c_{1}(q,q^{n})J(n+1)+c_{0}(q,q^{n})J(n).

Note that F(n,i)=0F(n,i)=0 when ini\geq n. Putting G(n,i)=R(E,Q)FG(n,i)=R(E,Q)F, on the other hand, we have

i=0n+1(E~11)G(n,i)=G(n,n+2)G(n,0)=qn+1+1.\sum^{n+1}_{i=0}(\tilde{E}_{1}-1)G(n,i)=G(n,n+2)-G(n,0)=q^{n+1}+1.

Therefore, we have the second order inhomogeneous recurrence relation [3]

P0(E,Q)J(n)+qn+1+1=0P_{0}(E,Q)J(n)+q^{n+1}+1=0

Since qn+1+1q^{n+1}+1 is annihilated by

P1(E,Q)=(E1)11+qQ,P_{1}(E,Q)=(E-1)\cdot\frac{1}{1+qQ},

we have the third order homogeneous recurrence relation P1(E,Q)P0(E,Q)J(n)=0P_{1}(E,Q)P_{0}(E,Q)J(n)=0.

A.3. Comparison of the derivatives and the qq-differences

Substituting q=1q=1 into (A.3) and (A.4), we have

( A.8) (E+Q)Q~1(Q1)=(1+QE)(Q1),\displaystyle(E+Q)\tilde{Q}_{1}(Q-1)=(1+QE)(Q-1),
( A.9) Q~12Q+Q~1(Q2+Q1)+Q=0.\displaystyle\tilde{Q}_{1}^{2}Q+\tilde{Q}_{1}(-Q^{2}+Q-1)+Q=0.

Here, the factor (Q1)(Q-1) in (A.8) is canceled and we have

( A.10) (E+Q)Q~1=1+QE.(E+Q)\tilde{Q}_{1}=1+QE.

Eliminating Q1Q_{1} from (A.9) and (A.10), we obtain

( A.11) Q2E2E+QE2Q2E+Q3EQ4E+Q2,Q^{2}E^{2}-E+QE-2Q^{2}E+Q^{3}E-Q^{4}E+Q^{2},

which is equal to the polynomial (A.1) under the substitutions Q=α2Q=\alpha^{2} and E=lE=l. The polynomial (A.11) is also equal to the one (A.7) with qq evaluated at 11

εP0(E,Q)=1Q(1Q2)(Q2E2E+QE2Q2E+Q3EQ4E+Q2),\varepsilon P_{0}(E,Q)=\frac{1}{Q(1-Q^{2})}(Q^{2}E^{2}-E+QE-2Q^{2}E+Q^{3}E-Q^{4}E+Q^{2}),

up to multiplication by an element in (Q)\mathbb{Q}(Q).

References

  • [1] D. Cooper, D.D. Long, Remarks on the AA-polynomial of a knot. J. Knot Theory Ramifications 5, (1996), 609-628.
  • [2] R. Detcherry, S. Garoufalidis, A diagrammatic approach to the AJ conjecture. Math. Ann. 378, (2020), 447-484.
  • [3] S. Garoufalidis, On the characteristic and deformation varieties of a knot. Geom. Topol. Monogr. 7, (2004), 291-309.
  • [4] S. Garoufalidis, T.T.Q. Lê, The colored Jones function is qq-holonomic. Geom. Topol. 9, (2005), 1253-1293.
  • [5] K. Habiro, On the colored Jones polynomials of some simple links. Sūrikaisekikenkyūsho Kōkyūroku 1172 (2000), 34-43.
  • [6] K. Hikami, Asymptotics of the colored Jones polynomial and the A-polynomial. Nucl. Phys. B 773 (2007), 184-202.
  • [7] R. Kirby, P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2,)sl(2,\mathbb{C}). Invent. Math. 105 (1991), 473-545
  • [8] T.T.Q. Lê, X. Zhang, Character varieties, AA-polynomials and the AJ conjecture. Algebr. Geom. Topol. 17, (2017), 157-188.
  • [9] H. Murakami, J. Murakami, The colored Jones polynomials and the simplicial volume of a knot. Acta Math. 186, (2001), 85-104.
  • [10] J. Murakami, Colored Alexander invariants and cone-manifolds. Osaka J. Math. 45 (2008), 541-564.
  • [11] S. Sawabe, On the potential function of the colored Jones polynomial with arbitrary colors. Pacific J. Math. 322, (2023), 171-194.
  • [12] T. Takata, The colored Jones polynomial and the A-polynomial for twist knots. arXiv:math/0401068
  • [13] H.S. Wilf, D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and “qq”) multisum/integral identites, Invent. Math. 108, (1992), 575-633.
  • [14] Y. Yokota, On the volume conjecture for hyperbolic knots. arXiv:math/0009165 (2000).
  • [15] Y. Yokota, From the Jones polynomial to the AA-Polynomial of hyperbolic knots. Interdiscip. Inform. Sci. 9, (2003), 11-21.
  • [16] S. Yoon, On the potential functions for a link diagram. J. Knot Theory Ramifications 30(07) (2021) 2150056 (24 pages)