This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the non-Markovian quantum control dynamics

Haijin Ding, Nina H. Amini, John E. Gough, Guofeng Zhang Haijin Ding was with the Laboratoire des Signaux et Systèmes (L2S), CNRS-CentraleSupélec-Université Paris-Sud, Université Paris-Saclay, 3, Rue Joliot Curie, 91190, Gif-sur-Yvette, France. He is now with the Department of Applied Mathematics, the Hong Kong Polytechnic University, Hung Hom, Kowloon, SAR, China (e-mail: [email protected]). Nina H. Amini is with the Laboratoire des Signaux et Systèmes (L2S), CNRS-CentraleSupélec-Université Paris-Sud, Université Paris-Saclay, 3, Rue Joliot Curie, 91190, Gif-sur-Yvette, France (e-mail: [email protected]). John E. Gough is with the Institute of Mathematics and Physics, Aberystwyth University, SY23 3BZ, Wales, United Kingdom (e-mail: [email protected]). Guofeng Zhang is with the Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, SAR, China, and The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China (e-mail: [email protected]).Corresponding author: Haijin Ding.
Abstract

In this paper, we study both open-loop control and closed-loop measurement feedback control of non-Markovian quantum dynamics resulting from the interaction between a quantum system and its environment. We use the widely studied cavity quantum electrodynamics (cavity-QED) system as an example, where an atom interacts with the environment composed of a collection of oscillators. In this scenario, the stochastic interactions between the atom and the environment can introduce non-Markovian characteristics into the evolution of quantum states, differing from the conventional Markovian dynamics observed in open quantum systems. As a result, the atom’s decay rate to the environment varies with time and can be described by nonlinear equations. The solutions to these nonlinear equations can be analyzed in terms of the stability of a nonlinear control system. Consequently, the evolution of quantum state amplitudes follows linear time-varying equations as a result of the non-Markovian quantum transient process. Additionally, by using measurement feedback through homodyne detection of the cavity output, we can modulate the steady atomic and photonic states in the non-Markovian process. When multiple coupled cavity-QED systems are involved, measurement-based feedback control can influence the dynamics of high-dimensional quantum states, as well as the resulting stable and unstable subspaces.

Index Terms:
quantum non-Markovian dynamics, open quantum system, quantum open-loop control, quantum measurement feedback control.

I Introduction

Quantum control has garnered much attention due to its potential applications in quantum optics [1, 2], quantum information processing [3, 4, 5, 6], quantum engineering [7] and others [8, 9, 10, 11, 12, 13]. Control methods for quantum systems can be categorized into the open-loop control and closed-loop control, similar to that in classical systems [1]. In open-loop control, designed or iteratively optimized control pulses are utilized to produce required gate operations in quantum computations [14, 15, 16, 17]. When a control field is applied upon an atom, the atom can be excited, leading to the generation of single or multiple photons for quantum networking [18]. On the other hand, closed-loop quantum control can be realized through coherent feedback or measurement feedback methods. For instance, when an atom or cavity quantum electrodynamics (cavity-QED) system is coupled with a waveguide, a coherent feedback channel can be established using photons transmitted in the waveguide [19]. Subsequently, the atomic dynamics and photonic states can be modulated by tuning the parameters of the coherent feedback loop [20, 21, 19, 22, 23]. This form of coherent feedback dynamics can be represented as a linear control system with delays determined by the length of the feedback loop [21, 19]. Then the quantum state dynamics can be interpreted in terms of the stability of a linear control system with delays [22, 23, 24].

In addition to quantum coherent feedback, quantum measurement feedback is another commonly employed method for feedback control in quantum systems [1]. This approach involves designing feedback control based on the measurement outcomes of the quantum system [25, 24]. The measurement of quantum states can be categorized into quantum non-demolition (QND) measurement and non-QND measurement, depending on whether the measurement operator commutes with the quantum system’s Hamiltonian [1, 24]. These measurement methods have an impact on the steady quantum states [26, 27, 28, 29]. In the realm of control theory, quantum measurements can be represented using stochastic equations due to measurement and detection noise [30, 31, 32], distinguishing if from feedback control without measurement [33, 30]. By employing these measurement techniques and feedback control, quantum measurement feedback can influence the evolution of quantum states and facilitate the generation of desired quantum states. Consequently, quantum measurement feedback control holds significant promise for various applications in open quantum systems where the quantum states are affected by the environment [1]. One notable application is the use of measurement-based quantum feedback control in the quantum error correction (QEC) to rectify error bits in quantum computations [34, 35, 36]. Additionally, it can help preserve the coherence of a quantum state when the quantum system interacts with its environment[37].

In the realm of open quantum system control, it is typically assumed that the environmental evolution timescale is considerably shorter than the atomic system, and further can be assumed as static [38]. This assumption allows for the modeling of the interaction between the quantum system and the environment using a master equation with a static decaying rate, which is a widely employed Markovian approximation method for studying quantum dynamics in open systems. However, in numerous scenarios, this Markovian approximation proves inadequate for comprehensively analyzing the dynamics of open quantum systems [38, 39]. For instance, in the experimental implementation utilizing nuclear magnetic resonance (NMR) [40], where the NMR qubit interacts with a non-Markovian environment characterized by a randomized configuration of modulated radio-frequency fields. In such setups, the interaction between the NMR and the environment can lead to information backflow from the environment to the qubit, thus the decoherence of the qubit can be nonmonotonic, which is different from the monotonic decoherence of a qubit in the Markovian environment [41]. Moreover, experimental evidence of information backflow induced by non-Markovianity has also been observed in optical systems [42]. Given that traditional quantum control strategies relying on Markovian approximation are not directly applicable in these instances, it is required to explore the open-loop and closed-loop quantum control dynamics for the non-Markovian open quantum systems. Additionally, it is worth noting that the traditional Morkovian scenario can be encompassed within the broader framework of non-Markovian settings as a simplified special case.

The interaction between the quantum system and its environment, characterized as non-Markovian, can be effectively represented by the stochastic Schrödinger equation [43]. This approach incorporates the influence of the environment on quantum states through a complex-valued stochastic process [44, 43]. Alternatively, the non-Markovian dynamics can be described using a master equation featuring time-varying Lindblad components [45, 46], which also represents the memory effect inherent in non-Markovian dynamics, distinguish it from the Markovian master equation [47]. Consequently, various non-Markovian quantum control techniques have been developed, expanding upon the foundation laid by Markovian quantum control methods [48, 49, 50].

In this paper, we utilize the commonly employed cavity-QED system depicted in Fig. 1 as an example to investigate the dynamics of non-Marovkovian quantum control in a novel manner. We approach the evolution of parameters in quantum non-Markovian control as a nonlinear control problem, resulting in the introduction of time-varying parameters in the linear evolution of quantum states due to non-Markovianity. Initially, we analyze the non-Markovian interactions between the atom and the environment from a control perspective, and for the first time analyze the transition from non-Markovian transient dynamics to steady Markovian dynamics using stability theory in nonlinear control. Subsequently, we describe the evolution of atomic and photonic states using linear time varying (LTV) control equations, where external drives or the measurement feedback can influence the equation dynamics. Lastly, we extend our analysis to encompass non-Markovian dynamics in systems where atoms in multiple coupled cavities interact with a non-Markovian environment. Then the quantum states can be categorized into the stable and unstable subspaces based on the application of measurement feedback controls.

The rest of the paper is organized as follows. Section II concentrates on the nonlinear parameter dynamics of the non-Markovian interaction between the cavity-QED system and the environment. In Section III, the open-loop quantum control with the above non-Markovian interactions is analyzed from the perspective of LTV control theory. In Section IV, the effects of quantum measurement feedback control on the quantum states are considered. In Section V, we generalize to the circumstance of multiple coupled cavities with non-Markovian interactions with the environment, and analyze its open loop and closed loop control dynamics. Section VI concludes this paper.

II Non-Markovian quantum control for open systems

Refer to caption

Figure 1: Quantum control based on the Markovian interactions between a multi-level atom and a cavity, as well as the non-Markovian interactions between the atom and the environment modeled as a collection of oscillators.

As illustrated in Fig. 1, a resonant cavity is constructed between two mirrors, one multi-level atom with the energy levels represented with the state vectors |0,|1,,|N1|0\rangle,|1\rangle,\cdots,|N-1\rangle is coupled with the cavity. The multi-level atom is simultaneously coupled with the environment modeled as a group of oscillators represented with the yellow circles. The cavity can be driven by the field represented with the red arrow, and can be detected or measured via its output channel, which is represented with the blue arrow. Using the measurement information, the feedback operator GG can be designed and applied upon the quantum system, thus the closed-loop control with measurement feedback can be realized.

For a simplified case without feedback, the above cavity-QED system can be modeled with the Hamiltonian

H=ωcaa+ωbωbω+n=0N1ωn|nn|+Ht,H=\omega_{c}a^{{\dagger}}a+\sum_{\omega}b_{\omega}^{{\dagger}}b_{\omega}+\sum_{n=0}^{N-1}\omega_{n}|n\rangle\langle n|+H_{t}, (1)

where ωc\omega_{c} is the resonant frequency of the cavity with the annihilation (creation) operator aa (aa^{{\dagger}}), the second component represents a group of oscillators in the environment modeled by the annihilation (creation) operator bωb_{\omega} (bωb_{\omega}^{{\dagger}}) with different frequencies ω\omega, the third component is the atom Hamiltonian with ωn\omega_{n} represents the energy of the nn-th level represented with the multiplication of the vector |n|n\rangle and n|\langle n|, HtH_{t} is composed with the interaction Hamiltonian between the atom and cavity, as well as the interaction Hamiltonian between the atom and environment. According to Ref. [51], the environment can be represented with the oscillator |zω=exp(zωbω)|0\left|z_{\omega}\right\rangle=\exp\left(z_{\omega}b_{\omega}^{{\dagger}}\right)\left|0\right\rangle.

The analysis on the dynamics among the atom, cavity and environment in this paper, as well as the meaning of the HtH_{t} in Eq. (1), is based on the following assumptions.

Assumption 1.

The interaction between the cavity and atom is Markovian, and the interaction between the atom and environment is initially non-Markovian.

Assumption 2.

The transition frequency between two neighborhood energy levels are identical, i.e., ωnωn1ωa\omega_{n}-\omega_{n-1}\equiv\omega_{a} for arbitrary nn.

For the NN-level atom coupled with the cavity, as in Fig. 1, the Hamiltonian HtH_{t} in Eq. (1) can be equivalently represented in the interaction picture as [19, 52]

H¯t=\displaystyle\bar{H}_{t}= n=1N1gn(eiδtσna+eiδtσn+a)+n=1N1ωχω(n)(σnbω+σn+bω),\displaystyle\sum_{n=1}^{N-1}g_{n}\left(e^{-i\delta t}\sigma^{-}_{n}a^{{\dagger}}+e^{i\delta t}\sigma^{+}_{n}a\right)+\sum_{n=1}^{N-1}\sum_{\omega}\chi_{\omega}^{(n)}\left(\sigma^{-}_{n}b_{\omega}^{{\dagger}}+\sigma^{+}_{n}b_{\omega}\right), (2)

where gng_{n} represents the coupling strengths between the cavity and different atom energy levels, δ=ωaωc\delta=\omega_{a}-\omega_{c} represents the detuning between the cavity resonant frequency and the transition frequency of two neighborhood atom energy levels, the lowering operator σn=|n1n|\sigma^{-}_{n}=|n-1\rangle\langle n|, and the rising operator σn+=|nn1|\sigma^{+}_{n}=|n\rangle\langle n-1|. The first part at RHS represents the interaction between the atom and cavity, σna\sigma^{-}_{n}a^{{\dagger}} represents that when the atom decays from the nn-th energy level to the (n1)(n-1)-th energy level, it can emit one photon into the cavity. The following Hermitian conjugate σn+a\sigma^{+}_{n}a represents that the atom can absorb one photon from the cavity and be excited to a higher energy level. The second part at RHS similarly represents the interaction between the multi-level atom and environment, and the coupling strength between the nn-th energy level and the environmental oscillator with the frequency ω\omega is χω(n)\chi_{\omega}^{(n)}. σnbω\sigma^{-}_{n}b_{\omega}^{{\dagger}} represents that an emitted filed generated by the atom’s decay from the nn-th to (n1)(n-1)-th energy level can be absorbed by the environment, similar for the following Hermitian conjugate.

The overall coupling between the multi-level atom and the environment can be represented with the operator [53]

L=n=1N1κn|0n|,\displaystyle L=\sum_{n=1}^{N-1}\kappa_{n}|0\rangle\langle n|, (3)

where κn\kappa_{n} represents the decaying of the atomic state |n|n\rangle to the environment. More details are introduced in Appendix A.

The dynamics of the above quantum system can be modeled with the Schrödinger equation ddt|ψ(t)=iH|ψ(t)\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle=-iH|\psi(t)\rangle , and the components for the interaction between the quantum system and the environment can be written as a stochastic format, as introduced in Refs. [44, 43, 54, 51]. Combined with Eq. (3), the Schrödinger equation can be equivalently written as  [44, 43, 54, 51]

ddt|ψ(t)=iH¯|ψ(t)+L|ψ(t)ztL0tα(t,s)δ|ψ(t)δzsds,\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle=-i\bar{H}|\psi(t)\rangle+L|\psi(t)\rangle z_{t}-L^{{\dagger}}\int_{0}^{t}\alpha(t,s)\frac{\delta|\psi(t)\rangle}{\delta z_{s}}\mathrm{d}s, (4)

where H¯\bar{H} represents the interaction component between the atom and cavity in Eq. (2), ztz_{t} is a complex stochastic process with E(ztzs)=α(t,s)E(z_{t}^{*}z_{s})=\alpha(t,s), E(ztzs)=0E(z_{t}z_{s})=0, and

α(t,s)=γ2eγ|ts|iΩ(ts),\alpha(t,s)=\frac{\gamma}{2}e^{-\gamma|t-s|-i\Omega(t-s)}, (5)

where γ1\gamma^{-1} represents the environmental memory time scale and Ω\Omega represents the environmental central frequency for the modeled oscillators [44].

Then the density matrix representation of quantum states is governed by the following master equation according to the derivation in Appendix B,

ρ˙(t)=\displaystyle\dot{\rho}(t)= i[H¯,ρ(t)]\displaystyle-i[\bar{H},\rho(t)] (6)
+(0tα(t,s)f(t,s)ds+0tα(t,s)f(t,s)ds)Lρ(t)L\displaystyle+\left(\int_{0}^{t}\alpha^{*}(t,s)f^{*}(t,s)\mathrm{d}s+\int_{0}^{t}\alpha(t,s)f(t,s)\mathrm{d}s\right)L\rho(t)L^{{\dagger}}
0tα(t,s)f(t,s)dsLLρ(t)0tα(t,s)f(t,s)dsρ(t)LL,\displaystyle-\int_{0}^{t}\alpha(t,s)f(t,s)\mathrm{d}sL^{{\dagger}}L\rho(t)-\int_{0}^{t}\alpha^{*}(t,s)f^{*}(t,s)\mathrm{d}s\rho(t)L^{{\dagger}}L,

where we denote

F(t)=0tα(t,s)f(t,s)ds,F(t)=\int_{0}^{t}\alpha(t,s)f(t,s)\mathrm{d}s, (7)

and the integration in Eq. (6) represents the memory effect of the non-Markovian process based on the interaction between the atom and the environment. We can distinguish the Markovian and non-Markvoian quantum dynamics in the open systems according to the following definition.

Definition 1.

The quantum dynamics described by the master equation (6) is non-Markovian when F(t)F(t) is a time-dependent integration, and Markovian when F(t)F(t) is a constant.

Remark 1.

When γ\gamma\rightarrow\infty, the interaction between the system and the environment is Markovian and α(t,s)=δ(ts)\alpha(t,s)=\delta(t-s) [44]. Then

F(t)=0tδ(ts)f(t,s)ds=12f(t,t)12χ,F(t)=\int_{0}^{t}\delta(t-s)f(t,s)\mathrm{d}s=\frac{1}{2}f(t,t)\triangleq\frac{1}{2}\chi, (8)

is a constant and the dynamics reduces to the case in open quantum systems with Markovian interactions between the atom and environment.

II-A Single multi-level atom coupled with the cavity

According to the non-Markovian master equation (6), the dynamics of the mean-value of an arbitrary operator O is governed by O˙=Tr[ρ˙O]\dot{\langle\textbf{O}\rangle}={\rm Tr}\left[\dot{\rho}\textbf{O}\right] [30]. To clarify the atomic dynamics, we study the dynamics of the operator σn+σn\langle\sigma^{+}_{n}\sigma^{-}_{n}\rangle representing the population or probability that the atom is excited at the nn-th energy level. Because of the coupling between the atom and the cavity, the dynamics of σn+σn\langle\sigma^{+}_{n}\sigma^{-}_{n}\rangle is affected by the exchange of energy between the atom and the cavity, which can be evaluated by the dynamics of the operator σn+a\langle\sigma^{+}_{n}a\rangle, representing that the atom can absorb one photon from the cavity to be excited to a higher energy level, or the reverse process evaluated by σna\langle\sigma^{-}_{n}a^{{\dagger}}\rangle. Besides, the number of photons in the cavity can be evaluated with the operator aa\langle a^{{\dagger}}a\rangle [55]. Then we can derive the equation of the mean values of the operators with n=1,2,,N1n=1,2,\dots,N-1 as [56, 57, 58, 59]

ddtσn+σn=igneiδtσn+a+igneiδtσna\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\langle\sigma^{+}_{n}\sigma^{-}_{n}\rangle=-ig_{n}e^{i\delta t}\langle\sigma^{+}_{n}a\rangle+ig_{n}e^{-i\delta t}\langle\sigma^{-}_{n}a^{{\dagger}}\rangle
+ign+1eiδtσn+1+aign+1eiδtσn+1a\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+ig_{n+1}e^{i\delta t}\langle\sigma^{+}_{n+1}a\rangle-ig_{n+1}e^{-i\delta t}\langle\sigma^{-}_{n+1}a^{{\dagger}}\rangle
(F(t)+F(t))|κn|2σn+σn,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-\left(F(t)+F^{*}(t)\right)|\kappa_{n}|^{2}\langle\sigma^{+}_{n}\sigma^{-}_{n}\rangle, (9a)
ddtσn+a=iδσn+aigneiδtσn+σn\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\langle\sigma^{+}_{n}a\rangle=-i\delta\langle\sigma^{+}_{n}a\rangle-ig_{n}e^{-i\delta t}\langle\sigma^{+}_{n}\sigma^{-}_{n}\rangle
+igneiδtaaF(t)|κn|2σn+a,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+ig_{n}e^{-i\delta t}\langle a^{{\dagger}}a\rangle-F^{*}(t)|\kappa_{n}|^{2}\langle\sigma^{+}_{n}a\rangle, (9b)
ddtσna=iδσna+igneiδtσn+σn\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\langle\sigma^{-}_{n}a^{{\dagger}}\rangle=i\delta\langle\sigma^{-}_{n}a^{{\dagger}}\rangle+ig_{n}e^{i\delta t}\langle\sigma^{+}_{n}\sigma^{-}_{n}\rangle
igneiδtaaF(t)|κn|2σna,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-ig_{n}e^{i\delta t}\langle a^{{\dagger}}a\rangle-F(t)|\kappa_{n}|^{2}\langle\sigma^{-}_{n}a^{{\dagger}}\rangle, (9c)
ddtaa=ingn(eiδtσn+aeiδtσna),\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\langle a^{{\dagger}}a\rangle=i\sum_{n}g_{n}\left(e^{i\delta t}\langle\sigma^{+}_{n}a\rangle-e^{-i\delta t}\langle\sigma^{-}_{n}a^{{\dagger}}\rangle\right), (9d)
ddtF(t)=n|κn|2F2(t)(γ+iΩiωa)F(t)+γχ2,\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}F(t)=\sum_{n}|\kappa_{n}|^{2}F^{2}(t)-(\gamma+i\Omega-i\omega_{a})F(t)+\frac{\gamma\chi}{2}, (9e)

where χ\chi is a constant as in Appendix A. The first two lines of RHS of Eq. (9a) represent that the atomic state excited at the nn-th energy level can be acquired from a lower energy level by absorbing one photon from the cavity, or from a higher energy level by emitting one photon into the cavity, and the third line of Eq. (9a) represents the non-Markovian interaction between the atom and environment, which can make the atom decay to its ground state. Eq. (9b) and Eq. (9c) represents the interface between the atom and the cavity via the emitting and absorbing processes of a photon. This process is influenced by the detuning between the atom and the cavity (i.e., the first component of the RHS of Eq. (9b) and Eq. (9c)), the coupling strengths gng_{n}, and the non-Markovian decaying to the environment represented by the last component of the RHS of Eq. (9b) and Eq. (9c), respectively. Eq. (9d) represents how the number of photons in the cavity is influenced by the coupling between the atom and cavity. The nonlinear Eq. (9e) represents the non-Markovian decaying amplitude of the atom to the environment, which is derived in detail in Appendix A.

Additionally, the atom populations are normalized as σ00+n=1N1σn+σn=1\langle\sigma_{00}\rangle+\sum_{n=1}^{N-1}\langle\sigma^{+}_{n}\sigma^{-}_{n}\rangle=1, where σ00\langle\sigma_{00}\rangle represents the population that the atom is at the ground state and its dynamics is governed as

ddtσ00=\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\langle\sigma_{00}\rangle= (F(t)+F(t))n=1N1|κn|2σn+σn\displaystyle\left(F(t)+F^{*}(t)\right)\sum_{n=1}^{N-1}|\kappa_{n}|^{2}\langle\sigma^{+}_{n}\sigma^{-}_{n}\rangle (10)
+ig1eiδtσ1+aig1eiδtσ1a.\displaystyle+ig_{1}e^{i\delta t}\langle\sigma^{+}_{1}a\rangle-ig_{1}e^{-i\delta t}\langle\sigma^{-}_{1}a^{{\dagger}}\rangle.

We define the state vector as

X(t)=[X1(t),X2(t),,XN1(t),aa]T,\displaystyle X(t)=\left[X_{1}(t),X_{2}(t),\cdots,X_{N-1}(t),\langle a^{{\dagger}}a\rangle\right]^{T}, (11)

with Xn(t)=[σn+σn,σn+a,σna]TX_{n}(t)=\left[\langle\sigma^{+}_{n}\sigma^{-}_{n}\rangle,\langle\sigma^{+}_{n}a\rangle,\langle\sigma^{-}_{n}a^{{\dagger}}\rangle\right]^{T}. Then Eq. (9) can be rewritten as

ddtX\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}X =[A1(t)B1(t)0D1(t)0A2(t)0D2(t)00AN1(t)DN1(t)C1(t)C2(t)CN1(t)0]X\displaystyle=\begin{bmatrix}A_{1}(t)&B_{1}(t)&\cdots&0&D_{1}(t)\\ 0&A_{2}(t)&\cdots&0&D_{2}(t)\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&A_{N-1}(t)&D_{N-1}(t)\\ C_{1}(t)&C_{2}(t)&\cdots&C_{N-1}(t)&0\end{bmatrix}X (12)
A(t)X,\displaystyle\triangleq A(t)X,

where

An(t)=[(F(t)+F(t))|κn|2igneiδtigneiδtigneiδtiδF(t)|κn|20igneiδt0iδF(t)|κn|2],\displaystyle A_{n}(t)=\begin{bmatrix}-\left(F(t)+F^{*}(t)\right)|\kappa_{n}|^{2}&-ig_{n}e^{i\delta t}&ig_{n}e^{-i\delta t}\\ -ig_{n}e^{-i\delta t}&-i\delta-F^{*}(t)|\kappa_{n}|^{2}&0\\ ig_{n}e^{i\delta t}&0&i\delta-F(t)|\kappa_{n}|^{2}\end{bmatrix}, (13)
Bn(t)=[0ign+1eiδtign+1eiδt000000],\displaystyle B_{n}(t)=\begin{bmatrix}0&ig_{n+1}e^{i\delta t}&-ig_{n+1}e^{-i\delta t}\\ 0&0&0\\ 0&0&0\end{bmatrix}, (14)
Cn(t)\displaystyle C_{n}(t) =[0igneiδtigneiδt],\displaystyle=\begin{bmatrix}0&ig_{n}e^{i\delta t}&-ig_{n}e^{-i\delta t}\end{bmatrix}, (15)
Dn(t)\displaystyle D_{n}(t) =[0igneiδtigneiδt],\displaystyle=\begin{bmatrix}0\\ ig_{n}e^{-i\delta t}\\ -ig_{n}e^{i\delta t}\end{bmatrix}, (16)

with n=1,2,,N1n=1,2,\cdots,N-1.

The analysis in Section II and Section III is based on the following assumption for initial settings.

Assumption 3.

Assume initially the atom is excited at the highest energy level and σn+a=σna=aa=0\langle\sigma^{+}_{n}a\rangle=\langle\sigma^{-}_{n}a^{{\dagger}}\rangle=\langle a^{{\dagger}}a\rangle=0.

Remark 2.

Eq. (12) is a time-varying linear equation and reduces to the time-invariant case only when δ=0\delta=0 and F(t)F(t) becomes a constant, thereby converging to the Markovian case.

In the following subsection, we clarify the dynamics of F(t)F(t) from the perspective of nonlinear dynamics, and then analyze how the time-varying F(t)F(t) can influence the quantum control performance.

II-B Non-Markovian parameter dynamics

In Eq. (9e), we denote

P=n|κn|2,\displaystyle P=\sum_{n}|\kappa_{n}|^{2}, (17a)
Q=(γ+iΩiωa),\displaystyle Q=-\left(\gamma+i\Omega-i\omega_{a}\right), (17b)
R=γχ2,\displaystyle R=\frac{\gamma\chi}{2}, (17c)

then Eq. (9e) can be simply rewritten as

ddtF(t)=PF2(t)+QF(t)+R,\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}F(t)=PF^{2}(t)+QF(t)+R, (18)

and F(t)F(t) can be solved according to following different parameter settings.

II-B1 Ω=ωa\Omega=\omega_{a} and RP(Q2P)2<0\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}<0

When Ω=ωa\Omega=\omega_{a} and RP(Q2P)2<0\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}<0, namely 4PR<Q24PR<Q^{2} and 2χn|κn|2<γ2\chi\sum_{n}|\kappa_{n}|^{2}<\gamma, which means that the coupling between the atom and the environment can be relatively small and bounded by γ\gamma, then

F(t)=2(Q2P)2RP1eC+Q24PRt(Q2P+(Q2P)2RP),\displaystyle F(t)=\frac{2\sqrt{\left(\frac{Q}{2P}\right)^{2}-\frac{R}{P}}}{1-e^{C+\sqrt{Q^{2}-4PR}t}}-\left(\frac{Q}{2P}+\sqrt{\left(\frac{Q}{2P}\right)^{2}-\frac{R}{P}}\right), (19)

where CC is a constant and can be determined as

eC=12(Q2P)2RP[Q2P+(Q2P)2RP]1,\displaystyle e^{C}=1-2\sqrt{\left(\frac{Q}{2P}\right)^{2}-\frac{R}{P}}\left[\frac{Q}{2P}+\sqrt{\left(\frac{Q}{2P}\right)^{2}-\frac{R}{P}}\right]^{-1}, (20)

based on the initial condition that F(0)=0F(0)=0.

II-B2 Ω=ωa\Omega=\omega_{a} and RP(Q2P)2>0\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}>0

When Ω=ωa\Omega=\omega_{a} and RP(Q2P)2>0\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}>0, namely 2χn|κn|2>γ2\chi\sum_{n}|\kappa_{n}|^{2}>\gamma, which means that the coupling between the atom and environment is relatively stronger. Then by Eq. (18),

F(t)=RP(Q2P)2tan[RP(Q2P)2(Pt+C)]Q2P,\displaystyle F(t)=\sqrt{\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}}\tan\left[\sqrt{\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}}\left(Pt+C\right)\right]-\frac{Q}{2P}, (21)

where CC can be similarly determined by F(0)=0F(0)=0 and the solution is not unique.

II-B3 Ω=ωa\Omega=\omega_{a} and RP(Q2P)2=0\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}=0

When Ω=ωa\Omega=\omega_{a} and RP(Q2P)2=0\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}=0, namely 2χn|κn|2=γ2\chi\sum_{n}|\kappa_{n}|^{2}=\gamma. Then by Eq. (18), C=2P/QC=-2P/Q and

F(t)=Q2P1Pt+C.\displaystyle F(t)=-\frac{Q}{2P}-\frac{1}{Pt+C}. (22)

We have the following proposition for the relationship between the parameter settings above and the non-Markovian dynamics.

Proposition 1.

When Ω=ωa\Omega=\omega_{a} and RP(Q2P)20\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}\leq 0, the master equation for open quantum system finally converges to the Markovian format when tt\rightarrow\infty.

Proof.

According to the calculations above, when Ω=ωa\Omega=\omega_{a} and RP(Q2P)20\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}\leq 0,

limtF(t)=(Q2P+(Q2P)2RP)F.\lim_{t\rightarrow\infty}F(t)=-\left(\frac{Q}{2P}+\sqrt{\left(\frac{Q}{2P}\right)^{2}-\frac{R}{P}}\right)\triangleq F_{\infty}. (23)

When RP(Q2P)2>0\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}>0, limtF(t)\lim_{t\rightarrow\infty}F(t) doesn’t exist because tan[RP(Q2P)2(Pt+C)]\tan\left[\sqrt{\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}}\left(Pt+C\right)\right] is infinite when

RP(Q2P)2(Pt+C)=nπ+π/2\sqrt{\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}}\left(Pt+C\right)=n\pi+\pi/2

with n=0,1,2,n=0,1,2,\cdots. ∎

For the general case that F(t)F(t) is complex when Ωωa\Omega\neq\omega_{a}, we denote F(t)=FR(t)+iFI(t)F(t)=F_{R}(t)+iF_{I}(t) with FR(t)F_{R}(t) and FI(t)F_{I}(t) representing the real and imaginary part of F(t)F(t) respectively, then we can derive the following real-valued nonlinear equation

ddtFR(t)=n|κn|2(FR2(t)FI2(t))γFR(t)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}F_{R}(t)=\sum_{n}|\kappa_{n}|^{2}\left(F_{R}^{2}(t)-F_{I}^{2}(t)\right)-\gamma F_{R}(t)
+(Ωωa)FI(t)+γχ2,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+\left(\Omega-\omega_{a}\right)F_{I}(t)+\frac{\gamma\chi}{2}, (24a)
ddtFI(t)=2n|κn|2FR(t)FI(t)(Ωωa)FR(t)γFI(t).\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}F_{I}(t)=2\sum_{n}|\kappa_{n}|^{2}F_{R}(t)F_{I}(t)-\left(\Omega-\omega_{a}\right)F_{R}(t)-\gamma F_{I}(t). (24b)

Denote XF(t)=[FR(t),FI(t)]TX_{F}(t)=\left[F_{R}(t),F_{I}(t)\right]^{T} and XF(0)=[0,0]TX_{F}(0)=\left[0,0\right]^{T}. Then Eq. (24) can be rewritten as

ddtXF(t)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}X_{F}(t) =[n|κn|2FR(t)γn|κn|2FI(t)n|κn|2FI(t)n|κn|2FR(t)γ][FR(t)FI(t)]\displaystyle=\begin{bmatrix}\sum_{n}|\kappa_{n}|^{2}F_{R}(t)-\gamma&-\sum_{n}|\kappa_{n}|^{2}F_{I}(t)\\ \sum_{n}|\kappa_{n}|^{2}F_{I}(t)&\sum_{n}|\kappa_{n}|^{2}F_{R}(t)-\gamma\end{bmatrix}\begin{bmatrix}F_{R}(t)\\ F_{I}(t)\end{bmatrix} (25)
+[0(Ωωa)(Ωωa)0][FR(t)FI(t)]+[γχ/20]\displaystyle~{}~{}~{}~{}+\begin{bmatrix}0&\left(\Omega-\omega_{a}\right)\\ -\left(\Omega-\omega_{a}\right)&0\end{bmatrix}\begin{bmatrix}F_{R}(t)\\ F_{I}(t)\end{bmatrix}+\begin{bmatrix}\gamma\chi/2\\ 0\end{bmatrix}
f(XF(t))+fΩXF(t),\displaystyle\triangleq\textbf{f}\left(X_{F}(t)\right)+\textbf{f}_{\Omega}X_{F}(t),

where f(XF(t))\textbf{f}\left(X_{F}(t)\right) represents the sum of the first and third terms after the first equal sign, fΩ=[0(Ωωa)(Ωωa)0]\textbf{f}_{\Omega}=\begin{bmatrix}0&\left(\Omega-\omega_{a}\right)\\ -\left(\Omega-\omega_{a}\right)&0\end{bmatrix}.

Based on the contraction analysis for arbitrary initial condition of XF(t)X_{F}(t) [60], consider the differential relation in Eq. (25), then

δX˙F(t)=[f(XF(t))XF+fΩ]δXF(t),\displaystyle\delta\dot{X}_{F}(t)=\left[\frac{\partial\textbf{f}\left(X_{F}(t)\right)}{\partial X_{F}}+\textbf{f}_{\Omega}\right]\delta X_{F}(t), (26)

and

ddt(δXF(t)TδXF(t))\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\left(\delta X_{F}(t)^{T}\delta X_{F}(t)\right) =2δXF(t)TδX˙F(t)\displaystyle=2\delta X_{F}(t)^{T}\delta\dot{X}_{F}(t) (27)
=2δXF(t)T[fXF(XF(t))+fΩ]δXF(t)\displaystyle=2\delta X_{F}(t)^{T}\left[\frac{\partial\textbf{f}}{\partial X_{F}}\left(X_{F}(t)\right)+\textbf{f}_{\Omega}\right]\delta X_{F}(t)
=2δXF(t)TfXFδXF(t)+2fΩδXF(t)TδXF(t).\displaystyle=2\delta X_{F}(t)^{T}\frac{\partial\textbf{f}}{\partial X_{F}}\delta X_{F}(t)+2\textbf{f}_{\Omega}\delta X_{F}(t)^{T}\delta X_{F}(t).

The stability of Eq. (25) is mainly determined by the Jacobian J=fXF+fΩ\textbf{J}=\frac{\partial\textbf{f}}{\partial X_{F}}+\textbf{f}_{\Omega}, according to Eq. (25),

J(XF(t))=[PFR(t)γPFI(t)+(Ωωa)PFI(t)(Ωωa)PFR(t)γ],\displaystyle\textbf{J}\left(X_{F}(t)\right)=\begin{bmatrix}PF_{R}(t)-\gamma&-PF_{I}(t)+\left(\Omega-\omega_{a}\right)\\ PF_{I}(t)-\left(\Omega-\omega_{a}\right)&PF_{R}(t)-\gamma\end{bmatrix}, (28)

which reduces to fXF\frac{\partial\textbf{f}}{\partial X_{F}} when Ω=ωa\Omega=\omega_{a}.

For the nonlinear system in Eq. (24), we regard u=Ωωau=\Omega-\omega_{a} as the control,

ddtXF(t)=f(XF(t))+[0uu0]XF(t),\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}X_{F}(t)=\textbf{f}\left(X_{F}(t)\right)+\begin{bmatrix}0&u\\ -u&0\end{bmatrix}X_{F}(t), (29)

and define the output of the system as

yF(t)\displaystyle y_{F}(t) =[1111][FR(t)FI(t)]CXF(t).\displaystyle=\begin{bmatrix}1&1\\ 1&-1\end{bmatrix}\begin{bmatrix}F_{R}(t)\\ F_{I}(t)\end{bmatrix}\triangleq CX_{F}(t). (30)

Because the norm of matrix CC is finite, the norm of the output vector yF(t)y_{F}(t) is determined by the state vector XF(t)X_{F}(t). We further analyze the control input and output properties according to the following definition.

Definition 2.

(BIBO) [61] The system in Eq. (29) is said to be bounded-input bounded-output (BIBO) if for every au0a_{u}\geq 0 and αX0\alpha_{X}\geq 0 there is a finite number βX=βX(au,αX)\beta_{X}=\beta_{X}\left(a_{u},\alpha_{X}\right) such that for every initial condition XF(t0)X_{F}\left(t_{0}\right) with XF(t0)αXX_{F}\left(t_{0}\right)\leq\alpha_{X} and every control sequence uu with uau\|u\|\leq a_{u},

XF(u,t;XF(t0),t0)βX,X_{F}\left(u,t^{\prime};X_{F}\left(t_{0}\right),t_{0}\right)\leq\beta_{X},

for t>t0t^{\prime}>t_{0}.

Additionally, a discrete generalization of Definition 2 is given in Ref. [62].

We rewrite Eq. (25) as

ddtXF(t)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}X_{F}(t) =𝐀(XF(t))XF(t)+𝐁XF(t)u+[γχ/20]\displaystyle=\mathbf{A}\left(X_{F}(t)\right)X_{F}(t)+\mathbf{B}X_{F}(t)u+\begin{bmatrix}\gamma\chi/2\\ 0\end{bmatrix} (31)
=(𝐀(XF(t))+𝐁u)XF(t)+[γχ/20],\displaystyle=\left(\mathbf{A}\left(X_{F}(t)\right)+\mathbf{B}u\right)X_{F}(t)+\begin{bmatrix}\gamma\chi/2\\ 0\end{bmatrix},

where f(XF(t))=𝐀(XF(t))XF(t)+[γχ/20]\textbf{f}\left(X_{F}(t)\right)=\mathbf{A}\left(X_{F}(t)\right)X_{F}(t)+\begin{bmatrix}\gamma\chi/2\\ 0\end{bmatrix}, 𝐁=[0110]\mathbf{B}=\begin{bmatrix}0&1\\ -1&0\end{bmatrix}. In the second line of Eq. (31), the parameter uu can be regarded as a constant perturbation or random unknown uncertainty when the environment cannot be precisely modeled.

According to Refs. [63, 60], the Lyapunov function can be defined as V(XF)=fT(XF)𝐌(XF)f(XF)V\left(X_{F}\right)=\textbf{f}^{T}\left(X_{F}\right)\mathbf{M}\left(X_{F}\right)\textbf{f}\left(X_{F}\right), where 𝐌(XF)\mathbf{M}\left(X_{F}\right) is a contraction matrix to be determined. When u=0u=0,

V˙(XF)=fT(XF(t))[fTXF𝐌(XF)+𝐌(XF)fXF+𝐌˙]f(XF(t)).\displaystyle\dot{V}(X_{F})=\textbf{f}^{T}\left(X_{F}(t)\right)\left[\frac{\partial\textbf{f}^{T}}{\partial X_{F}}\mathbf{M}\left(X_{F}\right)+\mathbf{M}\left(X_{F}\right)\frac{\partial\textbf{f}}{\partial X_{F}}+\dot{\mathbf{M}}\right]\textbf{f}\left(X_{F}(t)\right). (32)

For the simplest case with Ω=ωa\Omega=\omega_{a} and FI(t)0F_{I}(t)\equiv 0, Eq. (25) reduces to ddtFR(t)=PFR2(t)γFR(t)+γχ2.\frac{\mathrm{d}}{\mathrm{d}t}F_{R}(t)=PF_{R}^{2}(t)-\gamma F_{R}(t)+\frac{\gamma\chi}{2}. More explanations are given combined with the following example and propositions.

II-B4 Example

Take the parameter settings in Section II-B3) as an example. When Ω=ωa\Omega=\omega_{a} and RP(Q2P)2=0\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}=0, FI(t)0F_{I}(t)\equiv 0, Q=γQ=-\gamma, R=γ24PR=\frac{\gamma^{2}}{4P}, FR(t)=γ2PγγPt+2PF_{R}(t)=\frac{\gamma}{2P}-\frac{\gamma}{\gamma Pt+2P}, then PFR(t)γ<0PF_{R}(t)-\gamma<0 for arbitrary tt and J(XF(t))\textbf{J}\left(X_{F}(t)\right) is definitely negative. If we take 𝐌=𝐈\mathbf{M}=\mathbf{I} for simplification in Eq. (32), then V˙(XF)<0\dot{V}(X_{F})<0 and Eq. (24) is globally stable at this parameter setting.

Definition 3 (see [64]).

A set SS is said to be invariant if each solution starting in SS remains in SS for all tt.

Generalized from the stability property in Ref. [64], we can derive the following proposition.

Proposition 2.

For the set Ωα=XFR2:VαV\Omega_{\alpha}={X_{F}\in\textbf{R}^{2}:V\leq\alpha_{V}} is bounded for αV>0\alpha_{V}>0, when 2n|κn|2αV+γχ2γ<02\sum_{n}|\kappa_{n}|^{2}\alpha_{V}+\gamma\chi-2\gamma<0 and 𝐌=𝐈\mathbf{M}=\mathbf{I}, then a local invariant set contained in the region V˙=0\dot{V}=0 and the scale of the invariant set is determined by the parameters as αVγ(2χ)2n|κn|2\alpha_{V}\leq\frac{\gamma(2-\chi)}{2\sum_{n}|\kappa_{n}|^{2}} with 0<χ<20<\chi<2.

Proof.

Assume initially XFΩαX_{F}\in\Omega_{\alpha} and ΓF\Gamma_{F} represents an invariant set of XFX_{F} satisfying that V˙(XF)=0\dot{V}(X_{F})=0. When 2n|κn|2αV+γχ2γ<02\sum_{n}|\kappa_{n}|^{2}\alpha_{V}+\gamma\chi-2\gamma<0, then V˙<0\dot{V}<0 can be satisfied according to Eqs. (32), (24a) with Ω=ωa\Omega=\omega_{a}, and V(x)0V(x)\geq 0 by its definition. Then there exists a positive value vlv_{l} that limtV(XF)=vl0\lim_{t\rightarrow\infty}V(X_{F})=v_{l}\geq 0 and vl<αvv_{l}<\alpha_{v}. Thus V(XF)V(X_{F}) is always within the invariant set. ∎

Remark 3.

Proposition 2 means that larger γ\gamma or smaller n|κn|2\sum_{n}|\kappa_{n}|^{2} can induce a larger invariant set with stronger Markovian property. This is why the Markovian approximation can be applied in the circumstance that the coupling between the quantum system and the environment is weak.

Proposition 3 ([61]).

Suppose for each u0u\geq 0, there exists a positive Lyapunov function VuV_{u} for the system with the control uu and

V˙u(t,Xf)0.\dot{V}_{u}(t,X_{f})\leq 0.

When the control satisfies uau\|u\|\leq a_{u}, then the system is BIBO stable.

Proposition 4.

The system in Eq. (24) is BIBO stable when the initial condition F(0)\left\|F(0)\right\| is bounded and the system starts in the invariant set Ωα=XFR2:VαV,\Omega_{\alpha}={X_{F}\in\textbf{R}^{2}:V\leq\alpha_{V}}, satisfying 2n|κn|2αV+γχ2γ<02\sum_{n}|\kappa_{n}|^{2}\alpha_{V}+\gamma\chi-2\gamma<0.

Proof.

When the condition is satisfied, then V˙<0\dot{V}<0 according to Eq. (32), then the system in Eq. (24) is BIBO based on Proposition 3. ∎

Remark 4.

When the system is BIBO, the Jacobian in Eq. (28) is also bounded, then the Lyapunov function can also be bounded according to Ref. [65].

Lemma 1.

When V˙<0\dot{V}<0, then limtFR(t)\lim_{t\rightarrow\infty}F_{R}(t) and limtFI(t)\lim_{t\rightarrow\infty}F_{I}(t) exist when |Ωωa|ϵ\left|\Omega-\omega_{a}\right|\leq\epsilon.

Proof.

When V˙<0\dot{V}<0 and V(t)>0V(t)>0, then limtV(t)\lim_{t\rightarrow\infty}V(t) exists and limtV˙(t)=0\lim_{t\rightarrow\infty}\dot{V}(t)=0. Then limtFR(t)\lim_{t\rightarrow\infty}F_{R}(t) and limtFI(t)\lim_{t\rightarrow\infty}F_{I}(t) can be solved by the first line of Eq. (32). ∎

Then we can derive the following proposition based on the results above and the following assumption [66].

Assumption 4.

Assume that the Lyapunov function in Eq. (32) satisfies γ1|XF(t)|2V(XF(t))γ2|XF(t)|2\gamma_{1}\left|X_{F}(t)\right|^{2}\leq V\left(X_{F}(t)\right)\leq\gamma_{2}\left|X_{F}(t)\right|^{2}.

Proposition 5.

If the system with Ω=ωa\Omega=\omega_{a} is BIBO stable and |Ωωa|ϵ\left|\Omega-\omega_{a}\right|\leq\epsilon, then the system will finally converge to the Markovian case as tt\rightarrow\infty.

Proof.

The Lyapunov function in Eq. (32) is independent from (Ωωa)\left(\Omega-\omega_{a}\right). When the system is BIBO stable and |Ωωa|ϵ\left|\Omega-\omega_{a}\right|\leq\epsilon, then FR(t)F_{R}(t) and FI(t)F_{I}(t) are solvable with steady values according to Lemma 1 and Eq. (28). ∎

The real and imaginary parts of F(t)F(t) are compared in Fig. 2(a), where we take χ=0.5\chi=0.5 and γ=1\gamma=1. For the solid lines in (a), P=1P=1, Ω=ωa=50\Omega=\omega_{a}=50, while for the dashed lines, P=1P=1, Ω=50\Omega=50 and ωa=45\omega_{a}=45, which means that there is a detuning between the atom and the environment. Besides, the purple dot line is for the case that P=0.2P=0.2 and Ω=ωa=50\Omega=\omega_{a}=50, which illustrates that smaller PP can induce faster convergence to Markovian interactions with the environment. The bounded evolution of the real and imaginary parts in (a) are further compared in (b) with the red line for γ=1\gamma=1, the green line for γ=0.5\gamma=0.5, the black line for γ=3\gamma=3, and the other parameters are the same as the dashed lines in (a). The comparisons in (b) show that larger γ\gamma is better for the realization of Markovian interactions with the environment, which agrees with Remark 3.

Refer to caption

Figure 2: Compare different parameter settings for non-Markovian interactions.

II-C An example to clarify how F(t)F(t) influences the atomic dynamics

In this subsection, we take the two-level atom as an example. One initially excited two-level atom is coupled with a cavity, and the atom is also coupled with the environment. The dynamics of the system can be represented by Eq. (9) with N=2N=2, and the dynamics is compared as follows.

Refer to caption

Figure 3: The Markovian and non-Markovian dynamics of the quantum system with one two-level atom in the cavity.

As shown in Fig. 3, initially the atom is excited with σ1+σ1=1\left\langle\sigma^{+}_{1}\sigma^{-}_{1}\right\rangle=1 and the other amplitudes of quantum states in Eq. (9) are zero. We take the atom and cavity parameters as ωa=50\omega_{a}=50, g1=2g_{1}=2 and δ=0\delta=0. When the atom is coupled with a non-Markovian environment with the parameters Ω=45\Omega=45, κ1=4\kappa_{1}=4, χ=1\chi=1 and γ=1\gamma=1, then the population of the atom’s two different states and the number of photons in the cavity are shown as the solid lines in Fig. 3. Besides, a simplified case that the atom interacts with the Markovian environment is simulated as the dashed lines with F(t)0.0792F(t)\equiv 0.0792, which is the final steady amplitude of F(t)F(t) in the non-Moarkovian case. The larger oscillations of the solid lines are induced by the detuning between the two-level atom and the environment valued by Ωωa\Omega-\omega_{a} as in Eq. (9e), then as a result, F(t)F(t) can be complex values but always time-varying in the non-Markovian parameter settings.

II-D Nonlinear dynamics with uncertain control input

Practically, we usually cannot know the exact value of the environment parameter Ω\Omega, thus the component Ωωa\Omega-\omega_{a} in Eq. (24) can be regarded as an uncertain control input. Then Eq. (25) can be re-written as

ddtXF(t)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}X_{F}(t) =f(XF(t))+u,\displaystyle=\textbf{f}\left(X_{F}(t)\right)+\textbf{u}, (33)

where we denote u=ΔAXF(t)\textbf{u}=\Delta AX_{F}(t) with ΔA=[0ΩωaωaΩ0]\Delta A=\begin{bmatrix}0&\Omega-\omega_{a}\\ \omega_{a}-\Omega&0\end{bmatrix}, and there always exists ϵ>0\epsilon>0 satisfying ΔAϵ\|\Delta A\|\leq\epsilon. Then Eq. (33) can be regarded as a perturbed nonlinear system.

Assumption 5.

The nonlinear equation (24) with Ω=ωa\Omega=\omega_{a} is stable according to the parameter settings in Proposition 1.

According to Eqs. (18)-(22), when Ω=ωa\Omega=\omega_{a}, FI(t)0F_{I}(t)\equiv 0, and we denote limtFR(t)=F¯R\lim_{t\rightarrow\infty}F_{R}(t)=\bar{F}_{R}. Define a new state vector X~F(t)=[FR(t)F¯R,FI(t)]T[F~R(t),FI(t)]T\tilde{X}_{F}(t)=\left[F_{R}(t)-\bar{F}_{R},F_{I}(t)\right]^{T}\triangleq\left[\tilde{F}_{R}(t),F_{I}(t)\right]^{T} and limtX~F(t)=[0,0]TX~F\lim_{t\rightarrow\infty}\tilde{X}_{F}(t)=\left[0,0\right]^{T}\triangleq\tilde{X}_{F}^{*} when Assumption 5 is satisfied and Ω=ωa\Omega=\omega_{a}. Then

ddtF~R(t)=n|κn|2[(F~R(t)+F¯R)2FI2(t)]\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\tilde{F}_{R}(t)=\sum_{n}|\kappa_{n}|^{2}\left[\left(\tilde{F}_{R}(t)+\bar{F}_{R}\right)^{2}-F_{I}^{2}(t)\right]
γ(F~R(t)+F¯R)+(Ωωa)FI(t)+γχ2,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-\gamma\left(\tilde{F}_{R}(t)+\bar{F}_{R}\right)+\left(\Omega-\omega_{a}\right)F_{I}(t)+\frac{\gamma\chi}{2}, (34a)
ddtFI(t)=2n|κn|2(F~R(t)+F¯R)FI(t)\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}F_{I}(t)=2\sum_{n}|\kappa_{n}|^{2}\left(\tilde{F}_{R}(t)+\bar{F}_{R}\right)F_{I}(t)
(Ωωa)(F~R(t)+F¯R)γFI(t),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-\left(\Omega-\omega_{a}\right)\left(\tilde{F}_{R}(t)+\bar{F}_{R}\right)-\gamma F_{I}(t), (34b)

and can be simplified as

ddtX~F(t)=\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\tilde{X}_{F}(t)= f~(X~F(t))+[γχ2+n|κn|2F¯R2γF¯R(ωaΩ)F¯R]\displaystyle\tilde{\textbf{f}}\left(\tilde{X}_{F}(t)\right)+\begin{bmatrix}\frac{\gamma\chi}{2}+\sum_{n}|\kappa_{n}|^{2}\bar{F}_{R}^{2}-\gamma\bar{F}_{R}\\ \left(\omega_{a}-\Omega\right)\bar{F}_{R}\end{bmatrix} (35)
+[0ΩωaωaΩ0]X~F(t),\displaystyle+\begin{bmatrix}0&\Omega-\omega_{a}\\ \omega_{a}-\Omega&0\end{bmatrix}\tilde{X}_{F}(t),

where f~(X~F(t))\tilde{\textbf{f}}\left(\tilde{X}_{F}(t)\right) is for the nonlinear component at the RHS of Eq. (34). Obviously, f~(X~F(t))=0\tilde{\textbf{f}}\left(\tilde{X}_{F}(t)\right)=0 when X~F=0\tilde{X}_{F}=0. When Ω=ωa\Omega=\omega_{a} and XF(t)X_{F}(t) converges by Proposition 1, the RHS of Eq. (35) converges to zero.

Proposition 6 (see [67]).

For the nonlinear system

X˙(t)=f(X(t),t)+h(X(t),t),\dot{\textbf{X}}(t)=\textbf{f}(\textbf{X}(t),t)+\textbf{h}(\textbf{X}(t),t),

where f is continuously differentiable with f(0,t)=0\textbf{f}(0,t)=0 and h(X(t),t)\textbf{h}(\textbf{X}(t),t) is a persistent perturbation: if the system is uniformly and asymptotically stable about its equilibrium X=0\textbf{X}^{*}=0 when h(X(t),t)=0\textbf{h}(\textbf{X}(t),t)=0, and there are two positive constants δ~1\tilde{\delta}_{1} and δ~2\tilde{\delta}_{2} such that h(X(t),t)<δ~1\|\textbf{h}(\textbf{X}(t),t)\|<\tilde{\delta}_{1} for t[0,]t\in[0,\infty] and h(X(0),0)<δ~2\|\textbf{h}(\textbf{X}(0),0)\|<\tilde{\delta}_{2}, then the persistently perturbed system remains to be stable in the sense of Lyapunov.

Proposition 7.

When RP(Q2P)20\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}\leq 0, there exists ϵ>0\epsilon>0 such that the quantum system approaches a Markovian behavior when |ωaΩ|ϵ\left|\omega_{a}-\Omega\right|\leq\epsilon.

Proof.

When ωa=Ω\omega_{a}=\Omega, by Proposition 1, the quantum dynamics approaches Markovian behavior as t,t\rightarrow\infty, and the nonlinear dynamics ddtX~F(t)=f~(X~F(t))\frac{\mathrm{d}}{\mathrm{d}t}\tilde{X}_{F}(t)=\tilde{\textbf{f}}\left(\tilde{X}_{F}(t)\right) is uniformly and asymptotically stable around its equilibrium X~F=0\tilde{X}_{F}=0. When |ωaΩ|ϵ\left|\omega_{a}-\Omega\right|\leq\epsilon and γχ\gamma\chi is finite, Proposition 6 ensures that F~R(t)\tilde{F}_{R}(t) and FI(t)F_{I}(t) in Eq. (34) remain stable. Then the quantum dynamics will approach Markovian behavior as tt\rightarrow\infty. ∎

III Time-varying linear quantum control dynamics

In the following, we only consider the circumstance that RP(Q2P)20\frac{R}{P}-\left(\frac{Q}{2P}\right)^{2}\leq 0, thus the interaction between the atom and environment finally converges to a Markovian form. Return to Eq. (12), we divide the following analysis into two parts according to whether there are detunings between the atom and cavity, as clarified in Remark 2.

III-A δ=0\delta=0, gn0g_{n}\neq 0

At this parameter setting, CnC_{n} and DnD_{n} in Eqs. (15) and (16) are all time-invariant for arbitrary nn, while AnA_{n} is time-varying with F(t)F(t) converges to its steady values according to Eqs. (19) and (22). A(t)A(t) can be separated into the time-invariant component and time-varying components as

An(t)=\displaystyle A_{n}(t)= A¯n+A^n(t)\displaystyle\bar{A}_{n}+\hat{A}_{n}(t) (36)
=\displaystyle= [Ln(1)ignignignLn(2)0ign0Ln(3)]\displaystyle\begin{bmatrix}-L_{n}^{(1)}&-ig_{n}&ig_{n}\\ -ig_{n}&-L_{n}^{(2)}&0\\ ig_{n}&0&-L_{n}^{(3)}\end{bmatrix}
+[Ln(1)(F(t)+F(t))|κn|2000Ln(2)F(t)|κn|2000Ln(3)F(t)|κn|2],\displaystyle+\begin{bmatrix}L_{n}^{(1)}-\left(F(t)+F^{*}(t)\right)|\kappa_{n}|^{2}&0&0\\ 0&L_{n}^{(2)}-F^{*}(t)|\kappa_{n}|^{2}&0\\ 0&0&L_{n}^{(3)}-F(t)|\kappa_{n}|^{2}\end{bmatrix},

where Ln(1)=limt(F(t)+F(t))|κn|2L_{n}^{(1)}=\lim_{t\rightarrow\infty}\left(F(t)+F^{*}(t)\right)|\kappa_{n}|^{2}, Ln(2)=limtF(t)|κn|2L_{n}^{(2)}=\lim_{t\rightarrow\infty}F^{*}(t)|\kappa_{n}|^{2} and Ln(3)=limtF(t)|κn|2L_{n}^{(3)}=\lim_{t\rightarrow\infty}F(t)|\kappa_{n}|^{2}, then limtA^n(t)=03×3\lim_{t\rightarrow\infty}\hat{A}_{n}(t)=\textbf{0}_{3\times 3}.

For the special case where gn=0g_{n}=0, meaning the multi-level atom only interacts with the non-Markovian environment with Cn=DnT=01×3C_{n}=D_{n}^{T}=\textbf{0}_{1\times 3} (where TT denotes the matrix transpose), we then construct the vector representing the populations of a multi-level atom as

X~=[σ1+σ1,,σn+σn,,σN1+σN1]T,\tilde{X}=\left[\langle\sigma^{+}_{1}\sigma^{-}_{1}\rangle,\cdots,\langle\sigma^{+}_{n}\sigma^{-}_{n}\rangle,\cdots,\langle\sigma^{+}_{N-1}\sigma^{-}_{N-1}\rangle\right]^{T},

which is governed by the following real-value equation if initially X~(0)\tilde{X}(0) is real,

ddtX~\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\tilde{X} =[L1(1)+P1000L2(1)+P2000LN1(1)(t)+PN1]X~(t)\displaystyle=\begin{bmatrix}-L_{1}^{(1)}+P_{1}&0&\cdots&0\\ 0&-L_{2}^{(1)}+P_{2}&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&-L_{N-1}^{(1)}(t)+P_{N-1}\\ \end{bmatrix}\tilde{X}(t) (37)
(L+P(t))X~(t),\displaystyle\triangleq\left(\textbf{L}+\textbf{P}(t)\right)\tilde{X}(t),

where L=diag(L1(1),L2(1),,LN1(1))\textbf{L}=\mathrm{diag}\left(-L_{1}^{(1)},-L_{2}^{(1)},\cdots,-L_{N-1}^{(1)}\right), P(t)=diag(P1,P2,,PN1)\textbf{P}(t)=\mathrm{diag}\left(P_{1},P_{2},\cdots,P_{N-1}\right) with Pn=Ln(1)(F(t)+F(t))|κn|2P_{n}=L_{n}^{(1)}-\left(F(t)+F^{*}(t)\right)|\kappa_{n}|^{2}. The dynamics of Eq. (37) has been analyzed in Ref. [68]. We denote X~(t)=Φ(t,t0)X~(t0)\tilde{X}(t)=\Phi\left(t,t_{0}\right)\tilde{X}(t_{0}) for tt0t\geq t_{0}, and

Φ(t,t0)=eL(tt0)+t0teL(tτ)P(τ)Φ(τ,t0)dτ,\Phi\left(t,t_{0}\right)=e^{\textbf{L}\left(t-t_{0}\right)}+\int_{t_{0}}^{t}e^{\textbf{L}\left(t-\tau\right)}\textbf{P}(\tau)\Phi\left(\tau,t_{0}\right)\mathrm{d}\tau,

then we can derive the following results.

Lemma 2.

When the open system converges to a Markvoian regime, the time-varying components in Eq. (37) converges to zero, and the transition matrix is bounded.

Proof.

The convergence of quantum dynamics to a Markovian regime means the convergence of F(t)F(t) according to Definition 1. Consequently, the time-varying components in Eq. (37) converge to zero. In this case, limtP(t)=0(N1)×(N1)\lim_{t\rightarrow\infty}\textbf{P}(t)=\textbf{0}_{(N-1)\times(N-1)}. Thus Φ(t,t0)\Phi\left(t,t_{0}\right) is bounded because limtΦ(t,t0)t=0\lim_{t\rightarrow\infty}\frac{\partial\Phi\left(t,t_{0}\right)}{\partial t}=0. ∎

Obviously, when P(t)0(N1)×(N1)\textbf{P}(t)\equiv\textbf{0}_{(N-1)\times(N-1)}, Eq. (37) reduces to a linear time-invariant system and is exponentially stable because L is a diagonal matrix whose eigenvalues are all negative. Then X~\tilde{X} can be solved as

X~(t)=eLtX~(0)+0teL(tτ)P(τ)X~(τ)dτ,\displaystyle\tilde{X}(t)=e^{\textbf{L}t}\tilde{X}(0)+\int_{0}^{t}e^{\textbf{L}(t-\tau)}\textbf{P}(\tau)\tilde{X}(\tau)\mathrm{d}\tau, (38)

where the non-Markovian interaction between the atom and the environment can influence the integration kernel in Eq. (38), and further influence the convergence rate and steady value of X~\tilde{X}. The dynamics of the equation with the format of Eq. (38) has been introduced in Ref. [69]. Generalized from Theorem 2 in Ref. [69] (Chapter 2, Page 36), we have the following proposition.

Proposition 8.

Provided that P(t)c1\|\textbf{P}(t)\|\leq c_{1} for tt0t\geq t_{0}, where c1c_{1} is determined by max(Ln(1))\max(L_{n}^{(1)}), it follows that limtX~(t)=0\lim_{t\rightarrow\infty}\tilde{X}(t)=0 in Eq. (38).

Proof.

The proof is similar to that in Ref. [69] and is thus omitted due to page limitations. ∎

Proposition 8 means that when the interaction between the atom and environment converges to a Markovian regime, X~(t)\tilde{X}(t) will converge to zero. Besides, Proposition 8 is further generalized to linear time-varying system in Ref. [69], and this generalization will be used in the following analysis.

III-B δ0\delta\neq 0, gn0g_{n}\neq 0

In the following, we consider the most general case by separating X(t)X(t) by its real and imaginary parts. Considering that in Eq. (9), Eq. (9a) and Eq. (9d) are always real, Eq. (9b) and Eq. (9c) are conjugate complex values, then we rewrite the state vector in a simplified format as

𝕏(t)=[𝕏1(t),𝕏2(t),,𝕏N1(t),aR]T,\mathbb{X}(t)=\left[\mathbb{X}_{1}(t),\mathbb{X}_{2}(t),\cdots,\mathbb{X}_{N-1}(t),a^{R}\right]^{T},

with the dimension 3N23N-2, where 𝕏n(t)=[XnR[1],XnR[2],XnI[2]]\mathbb{X}_{n}(t)=\left[X_{n}^{R}[1],X_{n}^{R}[2],X_{n}^{I}[2]\right], XnRX_{n}^{R} and XnIX_{n}^{I}, aRa^{R} and aIa^{I} represent the real and imaginary parts of Xn(t)X_{n}(t) and aa\langle a^{{\dagger}}a\rangle in Eq. (11) respectively, XnR[1]X_{n}^{R}[1] represents the first element of the vector XnRX_{n}^{R}, and similar for other elements in the vector 𝕏(t)\mathbb{X}(t). XnI[1]=aI=0X_{n}^{I}[1]=a^{I}=0, XnR[3]=XnR[2]X_{n}^{R}[3]=X_{n}^{R}[2] and XnI[3]=XnI[2]X_{n}^{I}[3]=-X_{n}^{I}[2]. Then the evolution of 𝕏(t)\mathbb{X}(t) reads

ddt𝕏\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{X} =[𝔸1(t)00𝔻1(t)0𝔸2(t)0𝔻2(t)00𝔸N1(t)𝔻N1(t)1(t)2(t)N1(t)0]𝕏\displaystyle=\begin{bmatrix}\mathbb{A}_{1}(t)&0&\cdots&0&\mathbb{D}_{1}(t)\\ 0&\mathbb{A}_{2}(t)&\cdots&0&\mathbb{D}_{2}(t)\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&\mathbb{A}_{N-1}(t)&\mathbb{D}_{N-1}(t)\\ \mathbb{C}_{1}(t)&\mathbb{C}_{2}(t)&\cdots&\mathbb{C}_{N-1}(t)&0\end{bmatrix}\mathbb{X} (39)
𝔸(t)𝕏,\displaystyle\triangleq\mathbb{A}(t)\mathbb{X},

which is a real-value equation. We take the nn-th energy level as an example, ddt𝕏n(t)=𝔸n(t)𝕏n(t)+𝔻n(t)aR\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{X}_{n}(t)=\mathbb{A}_{n}(t)\mathbb{X}_{n}(t)+\mathbb{D}_{n}(t)a^{R}, and

𝔸n(t)=[2Rf(t)2gnsinδt2gncosδtgnsinδtRf(t)If(t)δgncosδtδIf(t)Rf(t)],\displaystyle\mathbb{A}_{n}(t)=\begin{bmatrix}-2R_{f}(t)&2g_{n}\sin\delta t&2g_{n}\cos\delta t\\ -g_{n}\sin\delta t&-R_{f}(t)&I_{f}(t)-\delta\\ -g_{n}\cos\delta t&\delta-I_{f}(t)&-R_{f}(t)\\ \end{bmatrix}, (40)
n(t)\displaystyle\mathbb{C}_{n}(t) =[02gnsinδt2gncosδt],\displaystyle=\begin{bmatrix}0&-2g_{n}\sin\delta t&-2g_{n}\cos\delta t\end{bmatrix}, (41)
𝔻n(t)\displaystyle\mathbb{D}_{n}(t) =[0gnsinδtgncosδt],\displaystyle=\begin{bmatrix}0\\ -g_{n}\sin\delta t\\ -g_{n}\cos\delta t\end{bmatrix}, (42)

where we take F(t)|κn|2Rf(t)+iIf(t)F(t)|\kappa_{n}|^{2}\triangleq R_{f}(t)+iI_{f}(t), F(t)|κn|2Rf(t)iIf(t)F^{*}(t)|\kappa_{n}|^{2}\triangleq R_{f}(t)-iI_{f}(t) for simplification.

In summary, when there are detunings between the atom and cavity, the dynamics of atomic states and the photon number in the cavity will always be linear and time-varying.

Upon this, when the interaction between the atom and the environment becomes asymptotically Markovian, we denote limtRf(t)=R¯f\lim_{t\rightarrow\infty}R_{f}(t)=\bar{R}_{f} and limtIf(t)=I¯f\lim_{t\rightarrow\infty}I_{f}(t)=\bar{I}_{f}. Then Eq. (40) becomes

𝔸n(t)=\displaystyle\mathbb{A}_{n}(t)= [2R¯f2gnsinδt2gncosδtgnsinδtR¯fI¯fδgncosδtδI¯fR¯f]\displaystyle\begin{bmatrix}-2\bar{R}_{f}&2g_{n}\sin\delta t&2g_{n}\cos\delta t\\ -g_{n}\sin\delta t&-\bar{R}_{f}&\bar{I}_{f}-\delta\\ -g_{n}\cos\delta t&\delta-\bar{I}_{f}&-\bar{R}_{f}\\ \end{bmatrix} (43)
+[2R¯f(t)2Rf(t)000R¯fRf(t)If(t)I¯f0I¯fIf(t)R¯fRf(t)]\displaystyle+\begin{bmatrix}2\bar{R}_{f}(t)-2R_{f}(t)&0&0\\ 0&\bar{R}_{f}-R_{f}(t)&I_{f}(t)-\bar{I}_{f}\\ 0&\bar{I}_{f}-I_{f}(t)&\bar{R}_{f}-R_{f}(t)\\ \end{bmatrix}
=\displaystyle= 𝔸¯n(t)+𝔸~n(t),\displaystyle\bar{\mathbb{A}}_{n}(t)+\tilde{\mathbb{A}}_{n}(t),

where 𝔸¯n\bar{\mathbb{A}}_{n} represents the first matrix in Eq. (43) and 𝔸~n\tilde{\mathbb{A}}_{n} represents the second matrix. Obviously, 𝔸¯n(t)\bar{\mathbb{A}}_{n}(t) is periodic with 𝔸¯n(t)=𝔸¯n(t+Tδ),\bar{\mathbb{A}}_{n}(t)=\bar{\mathbb{A}}_{n}(t+T_{\delta}), where Tδ=2πδT_{\delta}=\frac{2\pi}{\delta}, and the norm of 𝔸~n(t)\tilde{\mathbb{A}}_{n}(t) finally converges to zero.

To clarify the stability of the above linear time-varying system, we first introduce the following definition and propositions.

Definition 4 ([70]).

A linear time varying system is uniformly exponential stable (UES) if and only if there exist positive constants KK and α~\tilde{\alpha} such that

Φ(t,τ)Keα~(tτ),fort0τ<t<.\|\Phi\left(t,\tau\right)\|\leq Ke^{-\tilde{\alpha}\left(t-\tau\right)},for~{}t_{0}\leq\tau<t<\infty.
Definition 5 ([70]).

For a real-valued continuous matrix A(t)Rn×nA(t)\in\textbf{R}^{n\times n}, the logarithmic norm can be defined when t0t\geq 0 as

μ[A(t)]=limh0+In+hA(t)1h,\mu[A(t)]=\lim_{h\rightarrow 0^{+}}\frac{\|I_{n}+hA(t)\|-1}{h},

and

Π+(t)t0tμ[A(τ)]dτ.\displaystyle\Pi^{+}(t)\triangleq\int_{t_{0}}^{t}\mu[A(\tau)]\mathrm{d}\tau. (44)

As a combination of the conclusion in Ref. [70] on the relationship between Π+(t)\Pi^{+}(t) and the stability of a periodic linear time-varying system, and the generalization of Proposition 8 to the linear time-varying system in Ref. [69], we can derive the following stability proposition for the linear time-varying system in Eq. (39) with the time-varying matrix in Eq. (43).

Proposition 9.

For the linear time-varying system with the matrix represented as a combination of time-varying periodic and time-varying converging matrices, as given in Eq. (43), the solutions approach zero when
(a) Π¯+(t0+T)=t0t0+Tμ[𝔸(τ)]dτ<0\bar{\Pi}^{+}(t_{0}+T)=\int_{t_{0}}^{t_{0}+T}\mu\left[\mathbb{A}(\tau)\right]\mathrm{d}\tau<0,
(b) 0𝔸~n(t)dt<\int_{0}^{\infty}\|\tilde{\mathbb{A}}_{n}(t)\|\mathrm{d}t<\infty for arbitrary nn.

Proof.

The proof is based on two separated parts as discussed in Refs. [70, 69]. According to Ref. [70], when (a) is satisfied, the linear time-varying system 𝕏^˙=𝔸¯n(t)𝕏^\dot{\hat{\mathbb{X}}}=\bar{\mathbb{A}}_{n}(t)\hat{\mathbb{X}} is uniformly exponential stable, and limt𝕏^=0\lim_{t\rightarrow\infty}\hat{\mathbb{X}}=0. Based on this, when (b) is satisfied, the state vector in Eq. (39) approaches zero, as shown in Ref. [69] (Chapter 2, Theorem 4). ∎

III-C With external drives

When there is a drive field with the amplitude \mathcal{E} applied upon the cavity, the Hamiltonian HtH_{t} in Eq. (2) should be replaced by

Ht\displaystyle H_{t}^{\prime} =Hti(aa).\displaystyle=H_{t}-i\mathcal{E}\left(a-a^{{\dagger}}\right). (45)

Then the evolution of the mean values of operators reads

ddtσn+a=\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\langle\sigma^{+}_{n}a\rangle= iδσn+aigneiδtσn+σn+igneiδtaa\displaystyle-i\delta\langle\sigma^{+}_{n}a\rangle-ig_{n}e^{-i\delta t}\langle\sigma^{+}_{n}\sigma^{-}_{n}\rangle+ig_{n}e^{-i\delta t}\langle a^{{\dagger}}a\rangle (46)
F(t)|κn|2σn+a+σn+,\displaystyle-F^{*}(t)|\kappa_{n}|^{2}\langle\sigma^{+}_{n}a\rangle+\mathcal{E}\left\langle\sigma^{+}_{n}\right\rangle,
ddtaa=\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\langle a^{{\dagger}}a\rangle= ingn(eiδtσn+aeiδtσna)\displaystyle i\sum_{n}g_{n}\left(e^{i\delta t}\langle\sigma^{+}_{n}a\rangle-e^{-i\delta t}\langle\sigma^{-}_{n}a^{{\dagger}}\rangle\right) (47)
+a+a,\displaystyle+\mathcal{E}\langle a+a^{{\dagger}}\rangle,
ddtσn=igneiδtaF(t)|κn|2σn.\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\left\langle\sigma^{-}_{n}\right\rangle=-ig_{n}e^{i\delta t}\langle a\rangle-F(t)|\kappa_{n}|^{2}\left\langle\sigma^{-}_{n}\right\rangle. (48)

Obviously, the drive field directly influences the evolution of the operators containing the cavity operator. We further denote Ra=a+aR_{a}=\left\langle a+a^{{\dagger}}\right\rangle, and Ia=iaaI_{a}=i\left\langle a-a^{{\dagger}}\right\rangle with real values, then

ddtRa\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}R_{a} =ingneiδtσn+ingneiδtσn++2\displaystyle=-i\sum_{n}g_{n}e^{-i\delta t}\left\langle\sigma^{-}_{n}\right\rangle+i\sum_{n}g_{n}e^{i\delta t}\left\langle\sigma^{+}_{n}\right\rangle+2\mathcal{E} (49)
=2n=1N1gn(snIcosδtsnRsinδt)+2,\displaystyle=2\sum_{n=1}^{N-1}g_{n}\left(s_{n}^{I}\cos\delta t-s_{n}^{R}\sin\delta t\right)+2\mathcal{E},
ddtIa\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}I_{a} =ngneiδtσn+ngneiδtσn+\displaystyle=\sum_{n}g_{n}e^{-i\delta t}\left\langle\sigma^{-}_{n}\right\rangle+\sum_{n}g_{n}e^{i\delta t}\left\langle\sigma^{+}_{n}\right\rangle (50)
=2n=1N1gn(snRcosδt+snIsinδt).\displaystyle=2\sum_{n=1}^{N-1}g_{n}\left(s_{n}^{R}\cos\delta t+s_{n}^{I}\sin\delta t\right).

where snRs_{n}^{R} and snIs_{n}^{I} represent the real and imaginary parts of σn\left\langle\sigma^{-}_{n}\right\rangle, respectively.

Generalized from the state vector 𝕏(t)\mathbb{X}(t) in Eq. (39), we define another real-valued vector 𝕏~\tilde{\mathbb{X}} as

𝕏~(t)=[𝕏~1(t),𝕏~2(t),,𝕏~N1(t),aR,Ra,Ia]T,\tilde{\mathbb{X}}(t)=\left[\tilde{\mathbb{X}}_{1}(t),\tilde{\mathbb{X}}_{2}(t),\cdots,\tilde{\mathbb{X}}_{N-1}(t),a^{R},R_{a},I_{a}\right]^{T},

where 𝕏~n(t)\tilde{\mathbb{X}}_{n}(t) is generalized from 𝕏n(t)\mathbb{X}_{n}(t) in Eq. (39) as

𝕏~n(t)=[XnR(1),XnR(2),XnI(2),snR,snI],\tilde{\mathbb{X}}_{n}(t)=\left[X_{n}^{R}(1),X_{n}^{R}(2),X_{n}^{I}(2),s_{n}^{R},s_{n}^{I}\right],

and aRa^{R} has been defined in Eq. (39). Then the evolution of 𝕏~(t)\tilde{\mathbb{X}}(t) reads

ddt𝕏~\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\tilde{\mathbb{X}} =[𝔹1(t)00𝔻~1(t)0𝔹2(t)0𝔻~2(t)00𝔹N1(t)𝔻~N1(t)~1(t)~2(t)~N1(t)~]𝕏~+2[0010]\displaystyle=\begin{bmatrix}\mathbb{B}_{1}(t)&0&\cdots&0&\tilde{\mathbb{D}}_{1}(t)\\ 0&\mathbb{B}_{2}(t)&\cdots&0&\tilde{\mathbb{D}}_{2}(t)\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&\mathbb{B}_{N-1}(t)&\tilde{\mathbb{D}}_{N-1}(t)\\ \tilde{\mathbb{C}}_{1}(t)&\tilde{\mathbb{C}}_{2}(t)&\cdots&\tilde{\mathbb{C}}_{N-1}(t)&\tilde{\mathbb{P}}\end{bmatrix}\tilde{\mathbb{X}}+2\mathcal{E}\begin{bmatrix}0\\ 0\\ \vdots\\ 1\\ 0\end{bmatrix} (51)
𝔹(t)𝕏~+2[0010],\displaystyle\triangleq\mathbb{B}(t)\tilde{\mathbb{X}}+2\mathcal{E}\begin{bmatrix}0\\ 0\\ \vdots\\ 1\\ 0\end{bmatrix},

where

𝔹n(t)=[2Rf(t)2gnsinδt2gncosδt00gnsinδtRf(t)If(t)δ0gncosδtδIf(t)Rf(t)0000Rf(t)|κn|2If(t)|κn|2000If(t)|κn|2Rf(t)|κn|2],\displaystyle\mathbb{B}_{n}(t)=\begin{bmatrix}-2R_{f}(t)&2g_{n}\sin\delta t&2g_{n}\cos\delta t&0&0\\ -g_{n}\sin\delta t&-R_{f}(t)&I_{f}(t)-\delta&\mathcal{E}&0\\ -g_{n}\cos\delta t&\delta-I_{f}(t)&-R_{f}(t)&0&-\mathcal{E}\\ 0&0&0&-R_{f}(t)|\kappa_{n}|^{2}&I_{f}(t)|\kappa_{n}|^{2}\\ 0&0&0&-I_{f}(t)|\kappa_{n}|^{2}&-R_{f}(t)|\kappa_{n}|^{2}\end{bmatrix}, (52)
~n(t)\displaystyle\tilde{\mathbb{C}}_{n}(t) =[02gnsinδt2gncosδt000002gnsinδt2gncosδt0002gncosδt2gnsinδt],\displaystyle=\begin{bmatrix}0&-2g_{n}\sin\delta t&-2g_{n}\cos\delta t&0&0\\ 0&0&0&-2g_{n}\sin\delta t&2g_{n}\cos\delta t\\ 0&0&0&2g_{n}\cos\delta t&2g_{n}\sin\delta t\end{bmatrix}, (53)
𝔻~n(t)\displaystyle\tilde{\mathbb{D}}_{n}(t) =[000gnsinδt00gncosδt000gnsinδt2gncosδt20gncosδt2gnsinδt2],\displaystyle=\begin{bmatrix}0&0&0\\ -g_{n}\sin\delta t&0&0\\ -g_{n}\cos\delta t&0&0\\ 0&\frac{g_{n}\sin\delta t}{2}&-\frac{g_{n}\cos\delta t}{2}\\ 0&-\frac{g_{n}\cos\delta t}{2}&\frac{g_{n}\sin\delta t}{2}\end{bmatrix}, (54)

and

~\displaystyle\tilde{\mathbb{P}} =[00000000].\displaystyle=\begin{bmatrix}0&\mathcal{E}&0\\ 0&0&0\\ 0&0&0\end{bmatrix}. (55)

Above all, when there are no external drives, namely =0\mathcal{E}=0, the initially excited atom can decay to the ground state and the cavity will finally be empty, which can also be interpreted with the quantum system’s exponential stability similarly as in Ref. [23] by regarding the components outside of the cavity as an environment. However, when >0\mathcal{E}>0, the exponential stability explaining the atom and cavity’s decaying can be destructed, especially when \mathcal{E} is large compared with the non-Markovian exchanging rate between the atom and the environment.

We take the two-level atom as an example, to clarify how the dynamics can be influenced by the non-Markovian environment, coupling strength between the atom and cavity, and the external drive applied on the cavity, which are compared in Fig. 4. In all the four simulations, ωa=50\omega_{a}=50, δ=10\delta=10, and Ω=45\Omega=45, κ1=4\kappa_{1}=4, χ=1\chi=1, γ=1\gamma=1 for the non-Markvoian parameter settings, which is the same as that in solid lines of Fig. 3. In Fig. 4(a-b), =0.02\mathcal{E}=0.02, and in (c-d), =0.2\mathcal{E}=0.2. When the drive applied on the cavity is weak, as in (a-b), the atom can decay to the ground state and the cavity is finally almost empty, because of the non-Markovian Lindblad components. However, when \mathcal{E} is larger and the coupling between the atom and cavity is not so strong, then there can be multiple photons in the cavity, as in (c). When both \mathcal{E} and g1g_{1} are larger, the exchanging between the atom and cavity is faster, and the atom and cavity states are both oscillating apart from decaying to the environment, thus the population of the excited atom and photon numbers in the cavity are not exponentially stable, as shown in (d).

Refer to caption

Figure 4: The non-Markovian dynamics of quantum system with one two-level atom in the cavity with different drives.

IV Quantum measurement feedback control in the non-Markovian cavity-QED system

When the quantum system is measured via the cavity output as in Fig. 1, the feedback control can be designed according to the measurement result [71]

Ic(t)\displaystyle I_{c}(t) =2x+1ηξ(t),\displaystyle=\sqrt{2}\langle x\rangle+\frac{1}{\sqrt{\eta}}\xi(t), (56)

where x=(a+a)/2x=\left(a+a^{{\dagger}}\right)/\sqrt{2}, ξ(t)\xi(t) is the measurement-induced time-independent random term satisfies that ξ(t)=0\langle\xi(t)\rangle=0 and ξ(t)ξ(t)=δ(tt)\langle\xi(t)\xi(t^{\prime})\rangle=\delta(t-t^{\prime}), and η\eta is the measurement detection efficiency. Then the feedback Hamiltonian reads

Hfb(t)\displaystyle H_{\rm fb}(t) =GIc(t)=G(2x+1ηξ(t)),\displaystyle=GI_{c}(t)=G\left(\sqrt{2}\langle x\rangle+\frac{1}{\sqrt{\eta}}\xi(t)\right), (57)

where G=GG=G^{{\dagger}} is the feedback operator.

Assumption 6.

Assume that the detection efficiency of the measurement apparatus is ideal as η=1\eta=1.

The Markovian stochastic master equation with measurement feedback can be rewritten as [34, 72]

dρ\displaystyle\mathrm{d}\rho =i[H,ρ(t)]dt+κa[ρ(t)]dtigf[G,aρ(t)+ρ(t)a]dt\displaystyle=-i[H,\rho(t)]\mathrm{d}t+\kappa\mathcal{L}_{a}\left[\rho(t)\right]\mathrm{d}t-ig_{f}\left[G,a\rho(t)+\rho(t)a^{{\dagger}}\right]\mathrm{d}t (58)
12gf2[G,[G,ρ(t)]]dt+[a]ρ(t)dWigf[G,ρ(t)]dW,\displaystyle~{}~{}~{}~{}-\frac{1}{2}g_{f}^{2}\left[G,\left[G,\rho(t)\right]\right]\mathrm{d}t+\mathcal{H}[a]\rho(t)dW-ig_{f}\left[G,\rho(t)\right]\mathrm{d}W,

where a\mathcal{L}_{a} represents the decaying of the cavity with the rate κ\kappa, O[ρ]=OρO12ρOO12OOρ\mathcal{L}_{O}\left[\rho\right]=O\rho O^{{\dagger}}-\frac{1}{2}\rho O^{{\dagger}}O-\frac{1}{2}O^{{\dagger}}O\rho for an arbitrary operator OO, [O]ρ=Oρ(t)+ρ(t)OTr[(O+O)ρ(t)]ρ(t)\mathcal{H}[O]\rho=O\rho(t)+\rho(t)O^{{\dagger}}-\rm{Tr}\left[\right(O+O^{{\dagger}}\left)\rho(t)\right]\rho(t), gfg_{f} is the feedback strength, dW(t)=ξ(t)dt\mathrm{d}W(t)=\xi(t)\mathrm{d}t is a Wiener process representing the Homodyne detection noise in the quantum measurement, E[dW(t)2]=dtE\left[\mathrm{d}W(t)^{2}\right]=\mathrm{d}t, and ξ(t)\xi(t) can be approximated with the white noise [73].

Generalized from Eq. (58), the stochastic quantum measurement feedback control equation when there are non-Markovian interactions between the atom and environment reads

dρ=\displaystyle\mathrm{d}\rho= {i[H¯+HD,ρ(t)]+(F(t)+F(t))Lρ(t)LF(t)LLρ(t)\displaystyle\left\{-i[\bar{H}+H_{D},\rho(t)]+\left(F^{*}(t)+F(t)\right)L\rho(t)L^{{\dagger}}-F(t)L^{{\dagger}}L\rho(t)\right. (59)
F(t)ρ(t)LL+κa[ρ(t)]}dtigf[G,aρ(t)+ρ(t)a]dt\displaystyle\left.-F^{*}(t)\rho(t)L^{{\dagger}}L+\kappa\mathcal{L}_{a}\left[\rho(t)\right]\right\}\mathrm{d}t-ig_{f}\left[G,a\rho(t)+\rho(t)a^{{\dagger}}\right]\mathrm{d}t
12gf2[G,[G,ρ(t)]]dt+[a]ρ(t)dWigf[G,ρ(t)]dW,\displaystyle-\frac{1}{2}g_{f}^{2}\left[G,\left[G,\rho(t)\right]\right]\mathrm{d}t+\mathcal{H}[a]\rho(t)dW-ig_{f}\left[G,\rho(t)\right]\mathrm{d}W,

where HDH_{D} represents external drives applied upon the cavity, F(t)F(t) is for the non-Markovian interaction between the atom and the environment, and the other components have the same meaning as in Eq. (58).

In the following, we study two circumstances. One is that the feedback operator GG is an atomic operator, the other is that GG is a cavity operator.

IV-A Feedback control with atomic operators

The feedback operator for the NN-level system can be represented as

G=ijGij=ij(|ij|+|ji|),\displaystyle G=\sum_{i\neq j}G_{ij}=\sum_{i\neq j}\left(|i\rangle\langle j|+|j\rangle\langle i|\right), (60)

where 1i,jN11\leq i,j\leq N-1. In the following, we take the two-level atom case as an example.

IV-A1 Example

When N=2N=2, we choose G=(|01|+|10|)G=\left(|0\rangle\langle 1|+|1\rangle\langle 0|\right), and assume initially the atom is excited. The atomic state can be evaluated with the vector of the operators as S=[a,σ,σz]T[α¯,s¯,w¯]TS=\left[\langle a\rangle,\langle\sigma_{-}\rangle,\langle\sigma_{z}\rangle\right]^{T}\triangleq\left[\bar{\alpha},\bar{s},\bar{w}\right]^{T}, where σ=|01|\sigma_{-}=|0\rangle\langle 1| and σz=|11||00|\sigma_{z}=|1\rangle\langle 1|-|0\rangle\langle 0|. When the external drive is HD=i(aa)H_{D}=-i\mathcal{E}\left(a-a^{{\dagger}}\right), the dynamics of the cavity or atomic operator reads

ddtα¯=ig1eiδts¯κ2α¯+,\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\bar{\alpha}=-ig_{1}e^{-i\delta t}\bar{s}-\frac{\kappa}{2}\bar{\alpha}+\mathcal{E}, (61a)
ddts¯=ig1eiδtα¯w¯F(t)|κ1|2s¯+igf(α¯+α¯)w¯\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\bar{s}=ig_{1}e^{i\delta t}\bar{\alpha}\bar{w}-F(t)|\kappa_{1}|^{2}\bar{s}+ig_{f}\left(\bar{\alpha}+\bar{\alpha}^{*}\right)\bar{w}
gf2(s¯s¯)+igfw¯ξ(t),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}-g_{f}^{2}\left(\bar{s}-\bar{s}^{*}\right)+ig_{f}\bar{w}\xi(t), (61b)
ddtw¯=2ig1eiδts¯α¯+2ig1eiδts¯α¯\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\bar{w}=-2ig_{1}e^{i\delta t}\bar{s}^{*}\bar{\alpha}+2ig_{1}e^{-i\delta t}\bar{s}\bar{\alpha}^{*}
(F(t)+F(t))|κ1|2(w¯+1)2igf(s¯s¯)(α¯+α¯)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}-\left(F(t)+F^{*}(t)\right)|\kappa_{1}|^{2}\left(\bar{w}+1\right)-2ig_{f}\left(\bar{s}^{*}-\bar{s}\right)\left(\bar{\alpha}+\bar{\alpha}^{*}\right)
2gf2w¯2igf(s¯s¯)ξ(t),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}-2g_{f}^{2}\bar{w}-2ig_{f}\left(\bar{s}^{*}-\bar{s}\right)\xi(t), (61c)

with the initially normalization condition that w¯2+4|s¯|2=1\bar{w}^{2}+4\left|\bar{s}\right|^{2}=1 [74], and the stochastic component with higher order amplitude is omitted in Eq. (61a). We consider the simplified steady states satisfying that α¯˙=s¯˙=w¯˙=0\dot{\bar{\alpha}}=\dot{\bar{s}}=\dot{\bar{w}}=0 after averaging the measurement noise ξ(t)=0\xi(t)=0, and take δ=0\delta=0 for simplification.

Refer to caption

Figure 5: Measurement feedback control for one two-level atom in the cavity.

The performance for different non-Markovian parameter settings is compared in Fig. 5, where we take κ1=1\kappa_{1}=1, χ=0.5\chi=0.5, ωa=50\omega_{a}=50, Ω=45\Omega=45, =0.1\mathcal{E}=0.1, g1=0.2g_{1}=0.2, δ=0\delta=0, κ=0.2\kappa=0.2 and dt=0.01\mathrm{d}t=0.01. It can be seen that the measurement feedback control can enhance the probability that the atom is excited, both when the interface between atom and environment is Markovian and non-Markovian.

IV-B Feedback control with cavity operators

Additionally, the feedback operator can be designed according to the cavity operator as [75]

G\displaystyle G =βxx+βpp=βxiβp2a+βx+iβp2a,\displaystyle=\beta_{x}x+\beta_{p}p=\frac{\beta_{x}-i\beta_{p}}{\sqrt{2}}a+\frac{\beta_{x}+i\beta_{p}}{\sqrt{2}}a^{{\dagger}}, (62)

where the position operator xx is given by Eq. (56) and the momentum operator p=i(aa)/2p=i\left(a^{{\dagger}}-a\right)/\sqrt{2} with xppx=ixp-px=i. Besides, Eq. (62) is in the rotating frame with respect to the feedback driving frequency ωd\omega_{d} from the original format G~=βxiβp2aeiωdt+βx+iβp2aeiωdt\tilde{G}=\frac{\beta_{x}-i\beta_{p}}{\sqrt{2}}ae^{i\omega_{d}t}+\frac{\beta_{x}+i\beta_{p}}{\sqrt{2}}a^{{\dagger}}e^{-i\omega_{d}t} [76]. Denote Δ=ωcωd\Delta=\omega_{c}-\omega_{d}, then the dynamics of the mean-value of the operators xx and pp can be derived based on Eq. (59) without HDH_{D} as

x˙=Δpκ2xingneiδt2σn+ingneiδt2σn+\displaystyle\langle\dot{x}\rangle=\Delta\langle p\rangle-\frac{\kappa}{2}\langle x\rangle-i\sum_{n}\frac{g_{n}e^{-i\delta t}}{\sqrt{2}}\left\langle\sigma^{-}_{n}\right\rangle+i\sum_{n}\frac{g_{n}e^{i\delta t}}{\sqrt{2}}\left\langle\sigma^{+}_{n}\right\rangle
+2gfβpx+2(Vx12)ξ(t)+gfβpξ(t),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}+\sqrt{2}g_{f}\beta_{p}\langle x\rangle+\sqrt{2}\left(V_{x}-\frac{1}{2}\right)\xi(t)+g_{f}\beta_{p}\xi(t), (63a)
p˙=Δxκ2pngneiδt2σnngneiδt2σn+\displaystyle\langle\dot{p}\rangle=-\Delta\langle x\rangle-\frac{\kappa}{2}\langle p\rangle-\sum_{n}\frac{g_{n}e^{-i\delta t}}{\sqrt{2}}\left\langle\sigma^{-}_{n}\right\rangle-\sum_{n}\frac{g_{n}e^{i\delta t}}{\sqrt{2}}\left\langle\sigma^{+}_{n}\right\rangle
2gfβxx+2Vxpξ(t)gfβxξ(t),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}-\sqrt{2}g_{f}\beta_{x}\langle x\rangle+\sqrt{2}V_{xp}\xi(t)-g_{f}\beta_{x}\xi(t), (63b)
σ˙n=igneiδtaF(t)|κn|2σn,\displaystyle\langle\dot{\sigma}^{-}_{n}\rangle=-ig_{n}e^{i\delta t}\langle a\rangle-F(t)|\kappa_{n}|^{2}\langle\sigma^{-}_{n}\rangle, (63c)
a˙=iΔaingneiδtσnκ2aigf(βx+iβp)x\displaystyle\langle\dot{a}\rangle=-i\Delta\langle a\rangle-i\sum_{n}g_{n}e^{-i\delta t}\langle\sigma^{-}_{n}\rangle-\frac{\kappa}{2}\langle a\rangle-ig_{f}\left(\beta_{x}+i\beta_{p}\right)\langle x\rangle
+((a+a)aa+aa)ξ(t)igf2(βx+iβp)ξ(t),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}+\left(\left\langle\left(a+a^{{\dagger}}\right)a\right\rangle-\left\langle a+a^{{\dagger}}\right\rangle\left\langle a\right\rangle\right)\xi(t)-\frac{ig_{f}}{\sqrt{2}}\left(\beta_{x}+i\beta_{p}\right)\xi(t), (63d)

where VxV_{x} is the variance of the position operator as Vx=x2x2V_{x}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}, VxpV_{xp} is the covariance between position and momentum as Vxp=(xp+px)/2xpV_{xp}=\left(\langle xp\rangle+\langle px\rangle\right)/2-\langle x\rangle\langle p\rangle [75], and F(t)F(t) is governed by Eq. (9e).

Then based on the noise components in Eqs. (63a) and (63b), we can derive the following proposition on the relationship between feedback control and the effct of noise in quantum dynamics.

Proposition 10.

The feedback with the cavity operator can cancel the noise when gfβp=2(Vx1/2)g_{f}\beta_{p}=-\sqrt{2}\left(V_{x}-1/2\right) and gfβx=2Vxpg_{f}\beta_{x}=\sqrt{2}V_{xp}.

Proof.

The proposition can be easily derived by the noise components in Eqs. (63a) and (63b), thus further details are omitted. ∎

Besides, VxV_{x} and VxpV_{xp} are governed by the following nonlinear equation [77, 75, 78, 79]

V˙x=2ΔVxpκVx+22gfβpVx+gf2βp2(2Vx+gfβp)2,\displaystyle\dot{V}_{x}=2\Delta V_{xp}-\kappa V_{x}^{\prime}+2\sqrt{2}g_{f}\beta_{p}V_{x}^{\prime}+g_{f}^{2}\beta_{p}^{2}-\left(\sqrt{2}V_{x}^{\prime}+g_{f}\beta_{p}\right)^{2}, (64a)
V˙xp=ΔVpΔVxκVxp+2gfβpVxp2gfβxVx\displaystyle\dot{V}_{xp}=\Delta V_{p}-\Delta V_{x}-\kappa V_{xp}+\sqrt{2}g_{f}\beta_{p}V_{xp}-\sqrt{2}g_{f}\beta_{x}V_{x}
+22gfβxgf2βxβp(2Vxpgfβx)(2Vx+gfβp),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}+\frac{\sqrt{2}}{2}g_{f}\beta_{x}-g_{f}^{2}\beta_{x}\beta_{p}-\left(\sqrt{2}V_{xp}-g_{f}\beta_{x}\right)\left(\sqrt{2}V_{x}^{\prime}+g_{f}\beta_{p}\right), (64b)
V˙p=2ΔVxpκVP+κ222gfβxVxp+gf2βx2\displaystyle\dot{V}_{p}=-2\Delta V_{xp}-\kappa V_{P}+\frac{\kappa}{2}-2\sqrt{2}g_{f}\beta_{x}V_{xp}+g_{f}^{2}\beta_{x}^{2}
(2Vxpgfβx)2,\displaystyle~{}~{}~{}~{}~{}~{}~{}-\left(\sqrt{2}V_{xp}-g_{f}\beta_{x}\right)^{2},\ (64c)

where we denote Vx=Vx1/2V_{x}^{\prime}=V_{x}-1/2, the last component of Eqs. (64a), (64b), and (64c) comes from the stochastic components in (dx)2\left(\mathrm{d}\langle x\rangle\right)^{2}, dxdp,\mathrm{d}\langle x\rangle\mathrm{d}\langle p\rangle, and (dp)2\left(\mathrm{d}\langle p\rangle\right)^{2}, respectively.

Remark 5.

Proposition 10 as well as Eq. (64) reveals that the final steady states and the covariance can be modulated by choosing the measurement operator in Eq. (62) with tunable βx\beta_{x}, βp\beta_{p}, and the feedback control field.

For the open loop control without feedback, Eq. (64) can finally converge to the steady values Vx()=Vp()=12V_{x}(\infty)=V_{p}(\infty)=\frac{1}{2} and Vxp()=0V_{xp}(\infty)=0, similar as in Ref. [79].

For arbitrary βx\beta_{x}, βp\beta_{p} and gfg_{f}, Eq. (64) can be simplified as

V˙x=2ΔVxpκVx2Vx2,\displaystyle\dot{V}_{x}=2\Delta V_{xp}-\kappa V_{x}^{\prime}-2V_{x}^{\prime 2}, (65a)
V˙xp=ΔVpΔVxκVxp2VxVxp,\displaystyle\dot{V}_{xp}=\Delta V_{p}-\Delta V_{x}-\kappa V_{xp}-2V_{x}^{\prime}V_{xp}, (65b)
V˙p=2ΔVxpκVP2Vxp2,\displaystyle\dot{V}_{p}=-2\Delta V_{xp}-\kappa V_{P}^{\prime}-2V_{xp}^{2}, (65c)

where Vp=Vp1/2V_{p}^{\prime}=V_{p}-1/2 similar as the definition of VxV_{x}^{\prime}. It can be seen that the steady values for valience can be influenced by detuning Δ\Delta of the feedback field. Obviously, when Δ=0\Delta=0, Vxp()=0V_{xp}(\infty)=0, Vx()=Vp()=1/2V_{x}(\infty)=V_{p}(\infty)=1/2, which reduces to the circumstance in Ref. [79].

V Quantum control for the multiple Jaynes-Cummings model

When there are overall MM nearest neighbor coupled cavities with one two-level atom in each cavity, the free Hamiltonian for the atoms and cavities reads

HM\displaystyle H_{M} =m=1Mωc(m)amam+m=1Mωa(m)σ+(m)σ(m),\displaystyle=\sum_{m=1}^{M}\omega_{c}^{(m)}a^{{\dagger}}_{m}a_{m}+\sum_{m=1}^{M}\omega_{a}^{(m)}\sigma_{+}^{(m)}\sigma_{-}^{(m)}, (66)

where ama_{m} (ama^{{\dagger}}_{m}) is the annihilation (creation) operator for the mm-th cavity with the resonant frequency ωc(m)\omega_{c}^{(m)}, σ(m)\sigma_{-}^{(m)} (σ+(m)\sigma_{+}^{(m)}) represents the lowering (raising) operator for the two-level atom with frequency ωa(m)\omega_{a}^{(m)} in the mm-th cavity, and the detunings δm=ωa(m)ωc(m)\delta_{m}=\omega_{a}^{(m)}-\omega_{c}^{(m)}.

Assumption 7.

Assume the resonant frequencies and decay rates of the cavities are identical as ωc(1)==ωc(M)=ωc\omega_{c}^{(1)}=\cdots=\omega_{c}^{(M)}=\omega_{c}, κ1==κM=κ\kappa_{1}=\cdots=\kappa_{M}=\kappa, while the resonant frequency of atoms ωa(m)\omega_{a}^{(m)} in different cavities can be different. Initially the cavity is not empty such that am0\left\langle a_{m}\right\rangle\neq 0 and σ(m)0\left\langle\sigma_{-}^{(m)}\right\rangle\neq 0.

The interaction Hamiltonian among the atoms and cavities reads

HM\displaystyle H_{M} =m=1Mgm(eiδmtσ(m)am+eiδmtσ+(m)am)\displaystyle=\sum_{m=1}^{M}g_{m}\left(e^{-i\delta_{m}t}\sigma_{-}^{(m)}a^{{\dagger}}_{m}+e^{i\delta_{m}t}\sigma_{+}^{(m)}a_{m}\right) (67)
+mJc(amam+1+amam+1),\displaystyle~{}~{}~{}~{}+\sum_{m}J_{c}\left(a^{{\dagger}}_{m}a_{m+1}+a_{m}a^{{\dagger}}_{m+1}\right),

where gmg_{m} is the coupling strength between the atom and cavity in the mm-th cavity, JcJ_{c} is the coupling between two neighborhood cavities, the atom in each cavity is coupled with the environment via non-Markovian dynamics as

HAE\displaystyle H_{A-E} =m=1Mωχω(m)(σ+(m)bω+σ(m)bω),\displaystyle=\sum_{m=1}^{M}\sum_{\omega}\chi_{\omega}^{(m)}\left(\sigma_{+}^{(m)}b_{\omega}+\sigma_{-}^{(m)}b_{\omega}^{{\dagger}}\right), (68)

and the atomic system is driven by the non-Markovian master equation as

dρ=\displaystyle\mathrm{d}\rho= {i[HM,ρ(t)]+m[(Fm(t)+Fm(t))σ(m)ρ(t)σ+(m)\displaystyle\left\{-i\left[H_{M},\rho(t)\right]+\sum_{m}\left[\left(F_{m}^{*}(t)+F_{m}(t)\right)\sigma_{-}^{(m)}\rho(t)\sigma_{+}^{(m)}\right.\right. (69)
Fm(t)σ+(m)σ(m)ρ(t)Fm(t)ρ(t)σ+(m)σ(m)+κmam[ρ(t)]]}dt,\displaystyle\left.\left.-F_{m}(t)\sigma_{+}^{(m)}\sigma_{-}^{(m)}\rho(t)-F_{m}^{*}(t)\rho(t)\sigma_{+}^{(m)}\sigma_{-}^{(m)}+\kappa_{m}\mathcal{L}_{a_{m}}\left[\rho(t)\right]\right]\right\}\mathrm{d}t,

where σ(m)=I1Im1σIm+1IM\sigma_{-}^{(m)}=I_{1}\otimes\cdots\otimes I_{m-1}\otimes\sigma_{-}\otimes I_{m+1}\cdots\otimes I_{M} and

ddtFm(t)=|κ(m)|2Fm2(t)(γ+iΩiωa(m))Fm(t)+γχ2,\frac{\mathrm{d}}{\mathrm{d}t}F_{m}(t)=\left|\kappa^{(m)}\right|^{2}F_{m}^{2}(t)-\left(\gamma+i\Omega-i\omega_{a}^{(m)}\right)F_{m}(t)+\frac{\gamma\chi}{2},

where κ(m)\kappa^{(m)} represents the coupling between the atom in the mm-th cavity and environment.

V-A Dynamics without drives

When there are no drives applied either to the cavities or atoms, generalized from Eq. (9), the open-loop dynamics in the mm-th cavity reads [76, 80]

ddtamam=\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\langle a_{m}^{{\dagger}}a_{m}\rangle= igm(eiδtσ+(m)ameiδtσ(m)am)κamam\displaystyle ig_{m}\left(e^{i\delta t}\langle\sigma_{+}^{(m)}a_{m}\rangle-e^{-i\delta t}\langle\sigma_{-}^{(m)}a^{{\dagger}}_{m}\rangle\right)-\kappa\langle a_{m}^{{\dagger}}a_{m}\rangle (70)
iJcamam+1+iJcamam+1+iJcam1amiJcam1am,\displaystyle-iJ_{c}\langle a_{m}^{{\dagger}}a_{m+1}\rangle+iJ_{c}\langle a_{m}a_{m+1}^{{\dagger}}\rangle+iJ_{c}\langle a_{m-1}^{{\dagger}}a_{m}\rangle-iJ_{c}\langle a_{m-1}a_{m}^{{\dagger}}\rangle,
ddtamam+1=iJc(amamam+1am+1).\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\langle a_{m}a_{m+1}^{{\dagger}}\rangle=iJ_{c}\left(\langle a_{m}^{{\dagger}}a_{m}\rangle-\langle a_{m+1}^{{\dagger}}a_{m+1}\rangle\right). (71)

Besides, the dynamics of the operators in the mm-th cavity σ+(m)am\langle\sigma_{+}^{(m)}a_{m}\rangle and σ(m)am\langle\sigma_{-}^{(m)}a_{m}^{{\dagger}}\rangle are the same as that of σn+a\langle\sigma^{+}_{n}a\rangle and σna\langle\sigma^{-}_{n}a^{{\dagger}}\rangle in Eq. (9) respectively by taking n=N1=1n=N-1=1 and omitting the higher order components.

Denote 𝐱m=[σ(m),am]T\mathbf{x}_{m}=\left[\langle\sigma_{-}^{(m)}\rangle,\langle a_{m}\rangle\right]^{T}, and 𝐗~=[𝐱1T,𝐱2T,,𝐱MT]T\tilde{\mathbf{X}}=\left[\mathbf{x}_{1}^{T},\mathbf{x}_{2}^{T},\cdots,\mathbf{x}_{M}^{T}\right]^{T}, then

𝐱˙m=\displaystyle\dot{\mathbf{x}}_{m}= [Fm(t)|κ(m)|2igmeiδmtigmeiδmtκ]𝐱m\displaystyle\begin{bmatrix}-F_{m}(t)|\kappa^{(m)}|^{2}&-ig_{m}e^{i\delta_{m}t}\\ -ig_{m}e^{-i\delta_{m}t}&-\kappa\end{bmatrix}\mathbf{x}_{m} (72)
+[0iJc]am+1+[0iJc]am1.\displaystyle+\begin{bmatrix}0\\ -iJ_{c}\end{bmatrix}\langle a_{m+1}\rangle+\begin{bmatrix}0\\ -iJ_{c}\end{bmatrix}\langle a_{m-1}\rangle.

V-A1 Multi-cavity case

Based on Eq. (72), we define the real-valued vector 𝒳M\mathbf{\mathcal{X}}_{M} representing the real and imaginary components of 𝐗~\tilde{\mathbf{X}} as

𝒳M=[𝐬1R,𝐬1I,,𝐬MR,𝐬MI,𝐚1R,𝐚1I,,𝐚MR,𝐚MI]T,\mathbf{\mathcal{X}}_{M}=\left[\mathbf{s}^{R}_{1},\mathbf{s}^{I}_{1},\cdots,\mathbf{s}^{R}_{M},\mathbf{s}^{I}_{M},\mathbf{a}^{R}_{1},\mathbf{a}^{I}_{1},\cdots,\mathbf{a}^{R}_{M},\mathbf{a}^{I}_{M}\right]^{T},

where 𝐬mR\mathbf{s}^{R}_{m} and 𝐬mI\mathbf{s}^{I}_{m} are the real and imaginary parts of σ(m)\langle\sigma_{-}^{(m)}\rangle, 𝐚mR\mathbf{a}^{R}_{m} and 𝐚mI\mathbf{a}^{I}_{m} are the real and imaginary parts of am\langle a_{m}\rangle, respectively, and M2M\geq 2. Then

𝒳˙M\displaystyle\dot{\mathbf{\mathcal{X}}}_{M} =[𝐅(t)𝐆(t)𝐑(t)𝐒]𝒳M𝒜M𝒳M,\displaystyle=\begin{bmatrix}\mathbf{F}(t)&\mathbf{G}(t)\\ \mathbf{R}(t)&\mathbf{S}\end{bmatrix}\mathbf{\mathcal{X}}_{M}\triangleq\mathbf{\mathcal{A}}_{M}\mathbf{\mathcal{X}}_{M}, (73)

where

𝐅(t)=[𝒜1F(t)|κ(1)|200𝒜MF(t)|κ(M)|2],\displaystyle\mathbf{F}(t)=\begin{bmatrix}-\mathbf{\mathcal{A}}^{F}_{1}(t)|\kappa^{(1)}|^{2}&\cdots&0\\ \vdots&\ddots&\vdots\\ 0&\cdots&-\mathbf{\mathcal{A}}^{F}_{M}(t)|\kappa^{(M)}|^{2}\end{bmatrix}, (74)
𝐆(t)=[𝒜1G(t)00𝒜MG(t)],\displaystyle\mathbf{G}(t)=\begin{bmatrix}\mathbf{\mathcal{A}}^{G}_{1}(t)&\cdots&0\\ \vdots&\ddots&\vdots\\ 0&\cdots&\mathbf{\mathcal{A}}^{G}_{M}(t)\end{bmatrix}, (75)
𝐑(t)=[𝒜1g(t)00𝒜Mg(t)],\displaystyle\mathbf{R}(t)=\begin{bmatrix}\mathbf{\mathcal{A}}^{g}_{1}(t)&\cdots&0\\ \vdots&\ddots&\vdots\\ 0&\cdots&\mathbf{\mathcal{A}}^{g}_{M}(t)\end{bmatrix}, (76)
𝐒\displaystyle\mathbf{S} =[𝒜κ𝒜J00𝒜J𝒜κ𝒜J00𝒜J𝒜κ0000𝒜κ]\displaystyle=\begin{bmatrix}\mathbf{\mathcal{A}}_{\kappa}&\mathbf{\mathcal{A}}_{J}&0&\cdots&0\\ \mathbf{\mathcal{A}}_{J}&\mathbf{\mathcal{A}}_{\kappa}&\mathbf{\mathcal{A}}_{J}&\cdots&0\\ 0&\mathbf{\mathcal{A}}_{J}&\mathbf{\mathcal{A}}_{\kappa}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\cdots&\mathbf{\mathcal{A}}_{\kappa}\end{bmatrix} (77)
=IM𝒜κ+[0100101001000000]𝒜J,\displaystyle=I_{M}\otimes\mathbf{\mathcal{A}}_{\kappa}+\begin{bmatrix}0&1&0&\cdots&0\\ 1&0&1&\cdots&0\\ 0&1&0&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\cdots&0\end{bmatrix}\otimes\mathbf{\mathcal{A}}_{J},

where 𝒜jF(t)=[FjR(t)FjI(t)FjI(t)FjR(t)]\mathbf{\mathcal{A}}^{F}_{j}(t)=\begin{bmatrix}F^{R}_{j}(t)&-F^{I}_{j}(t)\\ F^{I}_{j}(t)&F^{R}_{j}(t)\end{bmatrix}, 𝒜jG(t)=[gjsin(δjt)gjcos(δjt)gjcos(δjt)gjsin(δjt)]\mathbf{\mathcal{A}}^{G}_{j}(t)=\begin{bmatrix}g_{j}\sin\left(\delta_{j}t\right)&g_{j}\cos\left(\delta_{j}t\right)\\ -g_{j}\cos\left(\delta_{j}t\right)&g_{j}\sin\left(\delta_{j}t\right)\end{bmatrix}, 𝒜jg(t)=[gjsin(δjt)gjcos(δjt)gjcos(δjt)gjsin(δjt)]\mathbf{\mathcal{A}}^{g}_{j}(t)=\begin{bmatrix}-g_{j}\sin\left(\delta_{j}t\right)&g_{j}\cos\left(\delta_{j}t\right)\\ -g_{j}\cos\left(\delta_{j}t\right)&-g_{j}\sin\left(\delta_{j}t\right)\end{bmatrix}, 𝒜κ=[κ00κ]\mathbf{\mathcal{A}}_{\kappa}=\begin{bmatrix}-\kappa&0\\ 0&-\kappa\end{bmatrix} and 𝒜J=[0JcJc0]\mathbf{\mathcal{A}}_{J}=\begin{bmatrix}0&J_{c}\\ -J_{c}&0\end{bmatrix}.

Remark 6.

When the interaction between the atom and the environment is Markovian or converges from non-Markovian to Markovian interactions, Fj(t)F_{j}(t) are constants and 𝒜M\mathbf{\mathcal{A}}_{M} in Eq. (73) is periodic as 𝒜M(t+TM)=𝒜M(t)\mathbf{\mathcal{A}}_{M}\left(t+T_{M}\right)=\mathbf{\mathcal{A}}_{M}\left(t\right) and TM=2πδ1T_{M}=\frac{2\pi}{\delta_{1}} when δ1==δM0\delta_{1}=\cdots=\delta_{M}\neq 0. Further when δ1==δM=0\delta_{1}=\cdots=\delta_{M}=0, 𝒜M(t)\mathbf{\mathcal{A}}_{M}\left(t\right) converges to be time invariant.

Remark 7.

The stability of the high-dimensional equation (73) can be similarly clarified by Proposition 9.

V-A2 An example with M=2M=2

When there are two coupled cavities, the dynamics based on Markovian interaction between the quantum system and the environment has been analyzed in Ref. [80]. For the non-Markovian circumstance with M=2M=2, 𝐗=[σ(1),σ(2),a1,a2]T\mathbf{X}=\left[\langle\sigma_{-}^{(1)}\rangle,\langle\sigma_{-}^{(2)}\rangle,\langle a_{1}\rangle,\langle a_{2}\rangle\right]^{T}, then

𝐗˙=\displaystyle\dot{\mathbf{X}}= [F1(t)|κ(1)|20ig1eiδ1t00F2(t)|κ(2)|20ig2eiδ2tig1eiδ1t0κiJc0ig2eiδ2tiJcκ]𝐗,\displaystyle\begin{bmatrix}-F_{1}(t)|\kappa^{(1)}|^{2}&0&-ig_{1}e^{i\delta_{1}t}&0\\ 0&-F_{2}(t)|\kappa^{(2)}|^{2}&0&-ig_{2}e^{i\delta_{2}t}\\ -ig_{1}e^{-i\delta_{1}t}&0&-\kappa&-iJ_{c}\\ 0&-ig_{2}e^{-i\delta_{2}t}&-iJ_{c}&-\kappa\end{bmatrix}\mathbf{X}, (78)

which can be interpreted as a time-varying linear system. Similar as in Section II, we separate the vector 𝐗\mathbf{X} by its real and imaginary parts as 𝒳=[𝐬1R,𝐬1I,𝐬2R,𝐬2I,𝐚1R,𝐚1I,𝐚2R,𝐚2I]T\mathbf{\mathcal{X}}=\left[\mathbf{s}^{R}_{1},\mathbf{s}^{I}_{1},\mathbf{s}^{R}_{2},\mathbf{s}^{I}_{2},\mathbf{a}^{R}_{1},\mathbf{a}^{I}_{1},\mathbf{a}^{R}_{2},\mathbf{a}^{I}_{2}\right]^{T}, and denote Fj(t)=FjR(t)+iFjI(t)F_{j}(t)=F^{R}_{j}(t)+iF^{I}_{j}(t), which is governed by Eq. (24) after replacing FR(t)F_{R}(t) and FI(t)F_{I}(t) with FjR(t)F^{R}_{j}(t) and FjIF^{I}_{j} respectively, then Eq. (78) can be equivalently represented with the following real-value equation as

𝒳˙\displaystyle\dot{\mathbf{\mathcal{X}}} =[𝒜1F(t)|κ(1)|20𝒜1G(t)00𝒜2F(t)|κ(2)|20𝒜2G(t)𝒜1g(t)0𝒜κ𝒜J0𝒜2g(t)𝒜J𝒜κ]𝒳\displaystyle=\begin{bmatrix}-\mathbf{\mathcal{A}}^{F}_{1}(t)|\kappa^{(1)}|^{2}&0&\mathbf{\mathcal{A}}^{G}_{1}(t)&0\\ 0&-\mathbf{\mathcal{A}}^{F}_{2}(t)|\kappa^{(2)}|^{2}&0&\mathbf{\mathcal{A}}^{G}_{2}(t)\\ \mathbf{\mathcal{A}}^{g}_{1}(t)&0&\mathbf{\mathcal{A}}_{\kappa}&\mathbf{\mathcal{A}}_{J}\\ 0&\mathbf{\mathcal{A}}^{g}_{2}(t)&\mathbf{\mathcal{A}}_{J}&\mathbf{\mathcal{A}}_{\kappa}\end{bmatrix}\mathbf{\mathcal{X}} (79)
𝒜𝒳,\displaystyle\triangleq\mathbf{\mathcal{A}}\mathbf{\mathcal{X}},

by taking M=2M=2 in Eq. (73).

Firstly, denote 𝒳𝐬=[𝐚1R,𝐚1I,𝐚2R,𝐚2I]T\mathbf{\mathcal{X}}_{\mathbf{s}}=\left[\mathbf{a}^{R}_{1},\mathbf{a}^{I}_{1},\mathbf{a}^{R}_{2},\mathbf{a}^{I}_{2}\right]^{T}, as a subspace of 𝒳\mathbf{\mathcal{X}}. Obviously, when gm=0g_{m}=0 for m=1,2m=1,2,

𝒳𝐬˙\displaystyle\dot{\mathbf{\mathcal{X}}_{\mathbf{s}}} =[𝒜κ𝒜J𝒜J𝒜κ]𝒳𝐬𝒜𝐬𝒳𝐬,\displaystyle=\begin{bmatrix}\mathbf{\mathcal{A}}_{\kappa}&\mathbf{\mathcal{A}}_{J}\\ \mathbf{\mathcal{A}}_{J}&\mathbf{\mathcal{A}}_{\kappa}\end{bmatrix}\mathbf{\mathcal{X}}_{\mathbf{s}}\triangleq\mathbf{\mathcal{A}}_{\mathbf{s}}\mathbf{\mathcal{X}}_{\mathbf{s}}, (80)

which is linear and time-invariant. 𝒳𝐬\mathbf{\mathcal{X}}_{\mathbf{s}} is exponentially stable because in Eq. (78) the real part of roots determined by (s+κ)2+Jc2=0(s+\kappa)^{2}+J_{c}^{2}=0 are negative, where ss is for Laplace transformation. Further by Proposition 8, limt𝒳𝐬(t)=0\lim_{t\rightarrow\infty}\mathbf{\mathcal{X}}_{\mathbf{s}}(t)=0. This can be further generalized to the circumstance that M>2M>2.

V-B Dynamics with drives

The drive field can be applied via the feedforward or feedback channel. Take the measurement feedback as an example, as a generalization of Section IV-B, the measurement information can be collected from an arbitrary cavity of the coupled cavity array, and the measurement information from the mm-th cavity reads

Ic(m)(t)\displaystyle I_{c}^{(m)}(t) =2xm+1ηξm(t),\displaystyle=\sqrt{2}\left\langle x_{m}\right\rangle+\frac{1}{\sqrt{\eta}}\xi_{m}(t), (81)

where xm=(am+am)/2x_{m}=\left(a_{m}+a^{{\dagger}}_{m}\right)/\sqrt{2}. Then we can derive the feedback dynamics according to the feedback operator similar as in Section IV.

For multiple coupled cavities, we take the feedback operator G=m[βx(m)x+βp(m)p]G=\sum_{m}\left[\beta_{x}^{(m)}x+\beta_{p}^{(m)}p\right] with the feedback strength gfg_{f}, the dynamics of the operators can be generalized by Eq. (63) after averaging the homodyne detection noise as

σ˙(m)=igmeiδtamFm(t)|κ1|2σ(m),\displaystyle\left\langle\dot{\sigma}_{-}^{(m)}\right\rangle=-ig_{m}e^{i\delta t}\left\langle a_{m}\right\rangle-F_{m}(t)|\kappa_{1}|^{2}\left\langle\sigma_{-}^{(m)}\right\rangle, (82a)
a˙m=iΔamigmeiδtσ(m)κam\displaystyle\left\langle\dot{a}_{m}\right\rangle=-i\Delta\left\langle a_{m}\right\rangle-ig_{m}e^{-i\delta t}\left\langle\sigma_{-}^{(m)}\right\rangle-\kappa\left\langle a_{m}\right\rangle
igf(βx(m)+iβp(m))xmiJc(am1+am+1),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}-ig_{f}\left(\beta_{x}^{(m)}+i\beta_{p}^{(m)}\right)\left\langle x_{m}\right\rangle-iJ_{c}\left(\left\langle a_{m-1}\right\rangle+\left\langle a_{m+1}\right\rangle\right), (82b)

where xm=(am+am)/2\left\langle x_{m}\right\rangle=\left(\left\langle a_{m}\right\rangle+\left\langle a_{m}\right\rangle^{*}\right)/\sqrt{2}. Obviously, the feedback drive dynamics will not directly influence the dynamics of σ(m)\left\langle\sigma_{-}^{(m)}\right\rangle according to Eq. (82a), but can influence the atomic dynamics via the atom-cavity couplings.

Remark 8.

When gm=0g_{m}=0, σ(m)\left\langle\sigma_{-}^{(m)}\right\rangle can stably converge to zero, while am\left\langle a_{m}\right\rangle can be unstable if the feedback parameter gfg_{f} is large enough compared with the values of Fj(t)F_{j}(t) and κ\kappa.

Denote Xu=[𝐚1R,𝐚1I,,𝐚MR,𝐚MI]X_{u}=\left[\mathbf{a}^{R}_{1},\mathbf{a}^{I}_{1},\cdots,\mathbf{a}^{R}_{M},\mathbf{a}^{I}_{M}\right], and Xs=[𝐬1R,𝐬1I,,𝐬MR,𝐬MI]X_{s}=\left[\mathbf{s}^{R}_{1},\mathbf{s}^{I}_{1},\cdots,\mathbf{s}^{R}_{M},\mathbf{s}^{I}_{M}\right], then Eq. (82) can be equivalently written as

[X˙uX˙s]\displaystyle\begin{bmatrix}\dot{X}_{u}\\ \dot{X}_{s}\end{bmatrix} =([𝒜u00𝒜s]+[P1(t)P2(t)P3(t)P4(t)])[XuXs],\displaystyle=\left(\begin{bmatrix}\mathbf{\mathcal{A}}^{u}&0\\ 0&\mathbf{\mathcal{A}}^{s}\end{bmatrix}+\begin{bmatrix}P_{1}(t)&P_{2}(t)\\ P_{3}(t)&P_{4}(t)\end{bmatrix}\right)\begin{bmatrix}X_{u}\\ X_{s}\end{bmatrix}, (83)

where

𝒜u=\displaystyle\mathbf{\mathcal{A}}^{u}= [2gfβp(1)κΔ002gfβx(1)Δκ00002gfβp(M)κΔ002gfβx(M)Δκ]\displaystyle\begin{bmatrix}\sqrt{2}g_{f}\beta_{p}^{(1)}-\kappa&\Delta&\cdots&0&0\\ \sqrt{2}g_{f}\beta_{x}^{(1)}-\Delta&-\kappa&\cdots&0&0\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&\sqrt{2}g_{f}\beta_{p}^{(M)}-\kappa&\Delta\\ 0&0&\cdots&\sqrt{2}g_{f}\beta_{x}^{(M)}-\Delta&-\kappa\end{bmatrix} (84)
+[02×2𝒜J02×202×202×2𝒜J02×2𝒜J02×202×202×202×202×202×2𝒜J02×202×202×2𝒜J02×2],\displaystyle+\begin{bmatrix}0_{2\times 2}&\mathbf{\mathcal{A}}_{J}&0_{2\times 2}&\cdots&0_{2\times 2}&0_{2\times 2}\\ \mathbf{\mathcal{A}}_{J}&0_{2\times 2}&\mathbf{\mathcal{A}}_{J}&\cdots&0_{2\times 2}&0_{2\times 2}\\ \vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0_{2\times 2}&0_{2\times 2}&0_{2\times 2}&\cdots&0_{2\times 2}&\mathbf{\mathcal{A}}_{J}\\ 0_{2\times 2}&0_{2\times 2}&0_{2\times 2}&\cdots&\mathbf{\mathcal{A}}_{J}&0_{2\times 2}\end{bmatrix},
𝒜s\displaystyle\mathbf{\mathcal{A}}^{s} =[R¯f(1)I¯f(1)00I¯f(1)R¯f(1)0000R¯f(M)I¯f(M)00I¯f(M)R¯f(M)],\displaystyle=-\begin{bmatrix}\bar{R}_{f}^{(1)}&-\bar{I}_{f}^{(1)}&\cdots&0&0\\ \bar{I}_{f}^{(1)}&\bar{R}_{f}^{(1)}&\cdots&0&0\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&\bar{R}_{f}^{(M)}&-\bar{I}_{f}^{(M)}\\ 0&0&\cdots&\bar{I}_{f}^{(M)}&\bar{R}_{f}^{(M)}\end{bmatrix}, (85)

𝒜J\mathbf{\mathcal{A}}_{J} is firstly given by Eq. (77), R¯f(m)=limtFmR(t)\bar{R}_{f}^{(m)}=\lim_{t\rightarrow\infty}F^{R}_{m}(t), I¯f(m)=limtFmI(t)\bar{I}_{f}^{(m)}=\lim_{t\rightarrow\infty}F^{I}_{m}(t), m=1,2,,Mm=1,2,\cdots,M, P1(t)=0P_{1}(t)=0, P2(t)=𝐑(t)P_{2}(t)=\mathbf{R}(t), P3(t)=𝐆(t)P_{3}(t)=\mathbf{G}(t), P4(t)=𝐅(t)𝒜sP_{4}(t)=\mathbf{F}(t)-\mathbf{\mathcal{A}}^{s}, 𝐑(t)\mathbf{R}(t), 𝐆(t)\mathbf{G}(t) and 𝐅(t)\mathbf{F}(t) are given by Eqs. (76), (75), and (74), respectively.

For a special case that gm=0g_{m}=0, then P2(t)=P3(t)=0P_{2}(t)=P_{3}(t)=0, the dynamics of XuX_{u} and XsX_{s} are decoupled in Eq. (83). Obviously, XsX_{s} will converge to zero if only the interaction between the atom and the environment becomes Markovian. However, XuX_{u} can be unstable because of the feedback.

When gm0g_{m}\neq 0, XuX_{u} and XsX_{s} are always coupled, the stability of Eq. (83) can be determined by the following proposition.

Proposition 11.

When the interaction between the atom and the environment becomes asymptotically Markovian, XuX_{u} approaches zero when tt\rightarrow\infty provided that

t0t0+Tμ{[𝒜uP2(t)P3(t)𝒜s]}dτ<0.\int_{t_{0}}^{t_{0}+T}\mu\begin{Bmatrix}\begin{bmatrix}\mathbf{\mathcal{A}}^{u}&P_{2}(t)\\ P_{3}(t)&\mathbf{\mathcal{A}}^{s}\end{bmatrix}\end{Bmatrix}\mathrm{d}\tau<0. (86)
Proof.

When the interaction between the atom and the environment becomes asymptotically Markovian, limtP4(t)=0\lim_{t\rightarrow\infty}P_{4}(t)=0 in Eq. (83), and the matrix [𝒜uP2(t)P3(t)𝒜s]\begin{bmatrix}\mathbf{\mathcal{A}}^{u}&P_{2}(t)\\ P_{3}(t)&\mathbf{\mathcal{A}}^{s}\end{bmatrix} is periodic. Then the proposition holds according to the proof of Proposition 9. ∎

Remark 9.

As in Ref. [70], a choice of the norm in Proposition 11 can be

12λmax([𝒜u+𝒜uTP2(t)+P3T(t)P3(t)+P2T(t)𝒜s+𝒜sT])\displaystyle\frac{1}{2}\lambda_{\max}\left(\begin{bmatrix}\mathbf{\mathcal{A}}^{u}+{\mathbf{\mathcal{A}}^{u}}^{T}&P_{2}(t)+P_{3}^{T}(t)\\ P_{3}(t)+P_{2}^{T}(t)&\mathbf{\mathcal{A}}^{s}+{\mathbf{\mathcal{A}}^{s}}^{T}\end{bmatrix}\right) (87)
=\displaystyle= 12λmax([𝐚¯10000𝐚¯M0000𝐛¯10000𝐛¯M]),\displaystyle\frac{1}{2}\lambda_{\max}\left(\begin{bmatrix}\bar{\mathbf{a}}_{1}&\cdots&0&0&\cdots&0\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ 0&\cdots&\bar{\mathbf{a}}_{M}&0&\cdots&0\\ 0&\cdots&0&\bar{\mathbf{b}}_{1}&\cdots&0\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ 0&\cdots&0&0&\cdots&\bar{\mathbf{b}}_{M}\end{bmatrix}\right),

where 𝐚¯m=[22gfβp(m)2κ2gfβx(m)2gfβx(m)2κ]\bar{\mathbf{a}}_{m}=\begin{bmatrix}2\sqrt{2}g_{f}\beta_{p}^{(m)}-2\kappa&\sqrt{2}g_{f}\beta_{x}^{(m)}\\ \sqrt{2}g_{f}\beta_{x}^{(m)}&-2\kappa\end{bmatrix}, 𝐛¯m=[2R¯f(m)002R¯f(m)]\bar{\mathbf{b}}_{m}=\begin{bmatrix}-2\bar{R}_{f}^{(m)}&0\\ 0&-2\bar{R}_{f}^{(m)}\end{bmatrix}. When gfg_{f} and gxg_{x} are small, the inequality in (86) can be easier to be satisfied, then both XuX_{u} and XsX_{s} can converge to zero. An extreme case is that βx(m)=0\beta_{x}^{(m)}=0 and κ>2gfβp(m)\kappa>\sqrt{2}g_{f}\beta_{p}^{(m)}, then the matrix in Eq. (LABEL:con:MPMtr) is a diagonal matrix with all the elements on the diagonal being negative.

As compared in Fig. 6, there are two coupled cavities, Jc=0.1J_{c}=0.1, δ=2\delta=2, κ=1\kappa=1, g1=0.2g_{1}=0.2, g2=0.4g_{2}=0.4, Δ=5\Delta=5, the two atoms in the two cavities are coupled identically with the non-Markovian environment with ωa=50\omega_{a}=50, Ω=45\Omega=45, χ=0.5\chi=0.5, κ1=1\kappa_{1}=1 and γ=2\gamma=2. In the measurement feedback design, βx(1)=βx(2)=0\beta_{x}^{(1)}=\beta_{x}^{(2)}=0, βp(1)=βp(2)=0.2\beta_{p}^{(1)}=\beta_{p}^{(2)}=0.2. The solid lines represent the simulation results with gf=1g_{f}=1 and 2gfβp(1)κ=0.7172<0\sqrt{2}g_{f}\beta_{p}^{(1)}-\kappa=-0.7172<0. The dotted lines represent the simulations with gf=7g_{f}=7 and 2gfβp(1)κ=0.9799>0\sqrt{2}g_{f}\beta_{p}^{(1)}-\kappa=0.9799>0. The simulations agree with Remark 9, showing that the stable and unstable subspaces can be modulated by tuning the feedback parameters.

Refer to caption

Figure 6: Measurement feedback control based on two coupled cavities.

VI Conclusion

In this paper, we study the quantum control dynamics within a cavity-QED system, focusing on the non-Markovian interactions between the atom and the environment. The evolution of parameters representing the atom’s non-Markovian decay into the environment is described by nonlinear equations. The transition to Markovian interactions between the quantum system and the environment is explained by the stability of these nonlinear equations. Consequently, the dynamics of the multi-level system with non-Markovian interactions with the environment are represented by a set of linear time-varying equations. Manipulation of atomic states and photons in the cavity is then achieved using open-loop and closed-loop control methods that utilize quantum measurement feedback. This approach can be extended to scenarios involving multiple coupled cavities described by high-dimensional linear time-varying equations, where feedback control can further influence the dynamics between stable and unstable subspaces.

Appendix A Derivation of the non-Markovian parameter dynamics

Take the atom and cavity as a whole represented with the state |ψ(t)|\psi(t)\rangle, then the combined system interacts with the bath via the multi-level atom. The interaction between the atom and environment can be represented with the Hamiltonian

HI=n=1N1ωχω(n)(|n+1n|bω+|nn+1|bω),H_{I}=\sum_{n=1}^{N-1}\sum_{\omega}\chi_{\omega}^{(n)}\left(|n+1\rangle\langle n|b_{\omega}+|n\rangle\langle n+1|b_{\omega}^{{\dagger}}\right),

with the detailed meaning introduced after Eq. (2) in the main text. Because the coupling strengths between the atom and environment, and the number of environmental oscillator modes cannot be precisely clarified, the evolution of quantum states is influenced by its stochastic interaction with the environment as [44, 43, 54, 51]

δ|ψ(t)δzs=f(t,s)L|ψ(t),\frac{\delta|\psi(t)\rangle}{\delta z_{s}}=f(t,s)L|\psi(t)\rangle, (88)

where the operator LL is defined in the main text as Eq. (3), zsz_{s} is a complex value Wiener process at the time ss, f(t,s)f(t,s) is a two-time function, to be determined, related to the two time points tt and ss [44].

Combined with Eq. (3), the differential of Eq. (88) upon the time tt reads

ddtδ|ψ(t)δzs=f(t,s)tL|ψ(t)+f(t,s)L|ψ˙(t),\frac{\mathrm{d}}{\mathrm{d}t}\frac{\delta|\psi(t)\rangle}{\delta z_{s}}=\frac{\partial f(t,s)}{\partial t}L|\psi(t)\rangle+f(t,s)L|\dot{\psi}(t)\rangle, (89)

where

f(t,s)tL|ψ(t)\displaystyle\frac{\partial f(t,s)}{\partial t}L|\psi(t)\rangle =δδzs|ψ˙(t)f(t,s)L|ψ˙(t)\displaystyle=\frac{\delta}{\delta z_{s}}|\dot{\psi}(t)\rangle-f(t,s)L|\dot{\psi}(t)\rangle (90)
=iHδ|ψ(t)δzs+Lδ|ψ(t)δzsztδδzsL0tα(t,s)δ|ψ(t)δzsds\displaystyle=-iH\frac{\delta|\psi(t)\rangle}{\delta z_{s}}+L\frac{\delta|\psi(t)\rangle}{\delta z_{s}}z_{t}-\frac{\delta}{\delta z_{s}}L^{{\dagger}}\int_{0}^{t}\alpha(t,s)\frac{\delta|\psi(t)\rangle}{\delta z_{s}}\mathrm{d}s
f(t,s)L(iH|ψ(t)+L|ψ(t)ztL0tα(t,s)δ|ψ(t)δzsds)\displaystyle~{}~{}~{}~{}-f(t,s)L\left(-iH|\psi(t)\rangle+L|\psi(t)\rangle z_{t}-L^{{\dagger}}\int_{0}^{t}\alpha(t,s)\frac{\delta|\psi(t)\rangle}{\delta z_{s}}\mathrm{d}s\right)
=i[L,H]f(t,s)|ψ(t)+F(t)(LLLL)f(t,s)L|ψ(t),\displaystyle=i[L,H]f(t,s)|\psi(t)\rangle+F(t)\left(LL^{{\dagger}}-L^{{\dagger}}L\right)f(t,s)L|\psi(t)\rangle,

with the time-dependent function F(t)F(t) defined by Eq. (7) and α(t,s)\alpha(t,s) given by Eq. (5) in the main text.

Then by Eq. (90),

f(t,s)tL|ψ(t)=iωaf(t,s)L|ψ(t)+F(t)n|κn|2f(t,s)L|ψ(t),\displaystyle\frac{\partial f(t,s)}{\partial t}L|\psi(t)\rangle=i\omega_{a}f(t,s)L|\psi(t)\rangle+F(t)\sum_{n}|\kappa_{n}|^{2}f(t,s)L|\psi(t)\rangle, (91)

combined with Eq. (7), we have

F˙(t)\displaystyle\dot{F}(t) =α(t,t)f(t,t)+0tα(t,s)tf(t,s)ds+0tα(t,s)f(t,s)tds\displaystyle=\alpha(t,t)f(t,t)+\int_{0}^{t}\frac{\partial\alpha(t,s)}{\partial t}f(t,s)\mathrm{d}s+\int_{0}^{t}\alpha(t,s)\frac{\partial f(t,s)}{\partial t}\mathrm{d}s (92)
=γχ2(γ+iΩ)F(t)\displaystyle=\frac{\gamma\chi}{2}-(\gamma+i\Omega)F(t)
+0tα(t,s)[iωaf(t,s)+F(t)n|κn|2f(t,s)]ds\displaystyle~{}~{}~{}~{}+\int_{0}^{t}\alpha(t,s)\left[i\omega_{a}f(t,s)+F(t)\sum_{n}|\kappa_{n}|^{2}f(t,s)\right]\mathrm{d}s
=n|κn|2F2(t)(γ+iΩiωa)F(t)+γχ2,\displaystyle=\sum_{n}|\kappa_{n}|^{2}F^{2}(t)-(\gamma+i\Omega-i\omega_{a})F(t)+\frac{\gamma\chi}{2},

where f(t,t)=χf(t,t)=\chi is a constant, F(0)=0F(0)=0, and the analytic solution of generalized F(t)F(t) is given in Ref. [44].

Appendix B Derivation of the non-Markovian master equation

The non-Markovian master equation has been introduced in Refs. [44, 46]. In this Appendix, we briefly introduce the derivation of the non-Markovian control equation (6) from the main text, which is the control equation we focus on in this paper.

The evolution of f(t,s)f(t,s) has been clarified in Appendix A. Combining Eq. (4) with Eq. (88) after the normalization, we have the following equation for the state vector,

ddt|ψ(t)=\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle= iH|ψ(t)+(LL)|ψ(t)zt\displaystyle-iH|\psi(t)\rangle+\left(L-\langle L\rangle\right)|\psi(t)\rangle z_{t} (93)
(LL)0tα(t,s)f(t,s)L|ψ(t)ds.\displaystyle-\left(L^{{\dagger}}-\langle L^{{\dagger}}\rangle\right)\int_{0}^{t}\alpha(t,s)f(t,s)L|\psi(t)\rangle\mathrm{d}s.

Considering that ρ(t)=Ez(|ψ(t)ψ(t)|)\rho(t)=E_{z}(|\psi(t)\rangle\langle\psi(t)|), and denote Pt(zt)=|ψ(t)ψ(t)|P_{t}\left(z_{t}^{*}\right)=|\psi(t)\rangle\langle\psi(t)|, then Ez(Ptzt)=0tEz[ztzs]f(t,s)ρ(t)LdsE_{z}\left(P_{t}z_{t}\right)=\int_{0}^{t}E_{z}\left[z_{t}z_{s}^{*}\right]f^{*}(t,s)\rho(t)L^{{\dagger}}\mathrm{d}s and Ez(Ptzt)=0tEz[ztzs]f(t,s)Lρ(t)dsE_{z}\left(P_{t}z_{t}^{*}\right)=\int_{0}^{t}E_{z}\left[z_{t}^{*}z_{s}\right]f(t,s)L\rho(t)\mathrm{d}s [51]. Then the equation for the density matrix reads

ρ˙(t)=\displaystyle\dot{\rho}(t)= i[H,ρ(t)]\displaystyle-i[H,\rho(t)] (94)
+Ez{L|ψ(t)ψ(t)|ztL0tα(t,s)f(t,s)L|ψ(t)ψ(t)|ds}\displaystyle+E_{z}\left\{L|\psi(t)\rangle\langle\psi(t)|z_{t}-L^{{\dagger}}\int_{0}^{t}\alpha(t,s)f(t,s)L|\psi(t)\rangle\langle\psi(t)|\mathrm{d}s\right\}
+Ez{|ψ(t)[ψ(t)|Lztψ(t)|LL0tα(t,s)f(t,s)Lds]}\displaystyle+E_{z}\left\{|\psi(t)\rangle\left[\langle\psi(t)|L^{{\dagger}}z_{t}^{*}-\langle\psi(t)|L^{{\dagger}}L\int_{0}^{t}\alpha^{*}(t,s)f^{*}(t,s)L\mathrm{d}s\right]\right\}
=\displaystyle= i[H,ρ(t)]\displaystyle-i[H,\rho(t)]
+{0tdsEz[ztzs]f(t,s)+0tdsEz[ztzs]f(t,s)}Lρ(t)L\displaystyle+\left\{\int_{0}^{t}\mathrm{d}sE_{z}\left[z_{t}z_{s}^{*}\right]f^{*}(t,s)+\int_{0}^{t}\mathrm{d}sE_{z}\left[z_{t}^{*}z_{s}\right]f(t,s)\right\}L\rho(t)L^{{\dagger}}
0tα(t,s)f(t,s)dsLLρ(t)ρ(t)LL0tα(t,s)f(t,s)ds,\displaystyle-\int_{0}^{t}\alpha(t,s)f(t,s)\mathrm{d}sL^{{\dagger}}L\rho(t)-\rho(t)L^{{\dagger}}L\int_{0}^{t}\alpha^{*}(t,s)f^{*}(t,s)\mathrm{d}s,

and can be further written as Eq. (6) in the main text, which agrees with the format in Ref. [46].

Acknowledgements

This work is supported by the ANR project “Estimation et controle des systèmes quantiques ouverts” Q-COAST Project ANR- 19-CE48-0003 and the ANR project IGNITION ANR-21-CE47-0015.

References

  • [1] J. Zhang, Y.-x. Liu, R.-B. Wu, K. Jacobs, and F. Nori, “Quantum feedback: theory, experiments, and applications,” Phys. Rep., vol. 679, pp. 1–60, 2017.
  • [2] J. Zhang, R.-B. Wu, Y.-x. Liu, C.-W. Li, and T.-J. Tarn, “Quantum coherent nonlinear feedback with applications to quantum optics on chip,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 1997–2008, 2012.
  • [3] M. A. Pravia, N. Boulant, J. Emerson, A. Farid, E. M. Fortunato, T. F. Havel, R. Martinez, and D. G. Cory, “Robust control of quantum information,” J. Chem. Phys., vol. 119, no. 19, pp. 9993–10 001, 2003.
  • [4] C. Monroe, “Quantum information processing with atoms and photons,” Nature, vol. 416, no. 6877, pp. 238–246, 2002.
  • [5] D. Dong and I. R. Petersen, “Quantum control theory and applications: a survey,” IET Control Theory and Appl., vol. 4, no. 12, pp. 2651–2671, 2010.
  • [6] ——, “Quantum estimation, control and learning: Opportunities and challenges,” Annu. Rev. Control, vol. 54, pp. 243–251, 2022.
  • [7] A. M. Zagoskin, Quantum engineering: theory and design of quantum coherent structures.   Cambridge University Press, 2011.
  • [8] G. Zhang and Z. Dong, “Linear quantum systems: a tutorial,” Annu. Rev. Control, vol. 54, pp. 274–294, 2022.
  • [9] P. Rouchon, “A tutorial introduction to quantum stochastic master equations based on the qubit/photon system,” Annu. Rev. Control, vol. 54, pp. 252–261, 2022.
  • [10] J. E. Gough, “Quantum covariance and filtering,” Annu. Rev. Control, vol. 54, pp. 262–273, 2022.
  • [11] H. I. Nurdin and M. Guţǎ, “Parameter estimation and system identification for continuously-observed quantum systems,” Annu. Rev. Control, vol. 54, pp. 295–304, 2022.
  • [12] J.-S. Li, W. Zhang, and Y.-H. Kuan, “Moment quantization of inhomogeneous spin ensembles,” Annu. Rev. Control, vol. 54, pp. 305–313, 2022.
  • [13] X. Ge, R.-B. Wu, and H. Rabitz, “The optimization landscape of hybrid quantum–classical algorithms: From quantum control to NISQ applications,” Annu. Rev. Control, vol. 54, pp. 314–323, 2022.
  • [14] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, “Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms,” J. Magn. Res., vol. 172, no. 2, pp. 296–305, 2005.
  • [15] R.-B. Wu, H. Ding, D. Dong, and X. Wang, “Learning robust and high-precision quantum controls,” Phys. Rev. A, vol. 99, no. 4, p. 042327, 2019.
  • [16] H.-J. Ding and R.-B. Wu, “Robust quantum control against clock noises in multiqubit systems,” Phys. Rev. A, vol. 100, no. 2, p. 022302, 2019.
  • [17] H.-J. Ding, B. Chu, B. Qi, and R.-B. Wu, “Collaborative learning of high-precision quantum control and tomography,” Phys. Rev. Applied, vol. 16, no. 1, p. 014056, 2021.
  • [18] W.-L. Li, G. Zhang, and R.-B. Wu, “On the control of flying qubits,” Automatica, vol. 143, p. 110338, 2022.
  • [19] N. Német, A. Carmele, S. Parkins, and A. Knorr, “Comparison between continuous- and discrete-mode coherent feedback for the Jaynes-Cummings model,” Phys. Rev. A, vol. 100, p. 023805, Aug 2019.
  • [20] Z. Dong, G. Zhang, and N. H. Amini, “Quantum filtering for a two-level atom driven by two counter-propagating photons,” Quantum Information Processing, vol. 18, no. 5, p. 136, 2019.
  • [21] H. Ding and G. Zhang, “Quantum coherent feedback control with photons,” IEEE Trans. Autom. Control, vol. 69, no. 2, pp. 856–871, 2024.
  • [22] H. Ding, G. Zhang, M.-T. Cheng, and G. Cai, “Quantum feedback control of a two-atom network closed by a semi-infinite waveguide,” arXiv preprint arXiv:2306.06373, 2023.
  • [23] H. Ding and G. Zhang, “Quantum coherent feedback control of an N-level atom with multiple excitations,” arXiv preprint arXiv:2306.07787, 2023.
  • [24] H. Ding, N. H. Amini, G. Zhang, and J. E. Gough, “Quantum coherent and measurement feedback control based on atoms coupled with a semi-infinite waveguide,” arXiv preprint arXiv:2307.16876, 2023.
  • [25] H. Uys, H. Bassa, P. Du Toit, S. Ghosh, and T. Konrad, “Quantum control through measurement feedback,” Phys. Rev. A, vol. 97, no. 6, p. 060102, 2018.
  • [26] B. Qi, H. Pan, and L. Guo, “Further results on stabilizing control of quantum systems,” IEEE Trans. Autom. Control, vol. 58, no. 5, pp. 1349–1354, 2012.
  • [27] V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science, vol. 209, no. 4456, pp. 547–557, 1980.
  • [28] J.-F. Roch, G. Roger, P. Grangier, J.-M. Courty, and S. Reynaud, “Quantum non-demolition measurements in optics: a review and some recent experimental results,” Appl. Phys. B, vol. 55, pp. 291–297, 1992.
  • [29] G. Cardona, A. Sarlette, and P. Rouchon, “Exponential stabilization of quantum systems under continuous non-demolition measurements,” Automatica, vol. 112, p. 108719, 2020.
  • [30] H. M. Wiseman and G. J. Milburn, Quantum measurement and control.   Cambridge university press, 2009.
  • [31] Q. Gao, G. Zhang, and I. R. Petersen, “An exponential quantum projection filter for open quantum systems,” Automatica, vol. 99, pp. 59–68, 2019.
  • [32] ——, “An improved quantum projection filter,” Automatica, vol. 112, p. 108716, 2020.
  • [33] R. Van Handel, J. K. Stockton, and H. Mabuchi, “Feedback control of quantum state reduction,” IEEE Trans. Autom. Control, vol. 50, no. 6, pp. 768–780, 2005.
  • [34] C. Ahn, A. C. Doherty, and A. J. Landahl, “Continuous quantum error correction via quantum feedback control,” Phys. Rev. A, vol. 65, no. 4, p. 042301, 2002.
  • [35] J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M. Markham, D. J. Twitchen, R. Hanson, and T. H. Taminiau, “Repeated quantum error correction on a continuously encoded qubit by real-time feedback,” Nat. Commun., vol. 7, no. 1, p. 11526, 2016.
  • [36] S. Borah, B. Sarma, M. Kewming, F. Quijandría, G. J. Milburn, and J. Twamley, “Measurement-based estimator scheme for continuous quantum error correction,” Phys. Rev. Res., vol. 4, no. 3, p. 033207, 2022.
  • [37] J. Zhang, R.-B. Wu, C.-W. Li, and T.-J. Tarn, “Protecting coherence and entanglement by quantum feedback controls,” IEEE Trans. Autom. Control, vol. 55, no. 3, pp. 619–633, 2010.
  • [38] L. Ferialdi, “Exact non-Markovian master equation for the spin-boson and Jaynes-Cummings models,” Phys. Rev. A, vol. 95, no. 2, p. 020101, 2017.
  • [39] I. De Vega and D. Alonso, “Dynamics of non-Markovian open quantum systems,” Rev. Mod. Phys., vol. 89, no. 1, p. 015001, 2017.
  • [40] D. Khurana, B. K. Agarwalla, and T. Mahesh, “Experimental emulation of quantum non-Markovian dynamics and coherence protection in the presence of information backflow,” Phys. Rev. A, vol. 99, no. 2, p. 022107, 2019.
  • [41] H.-P. Breuer and F. Petruccione, The theory of open quantum systems.   OUP Oxford, 2002.
  • [42] K.-D. Wu, Z. Hou, G.-Y. Xiang, C.-F. Li, G.-C. Guo, D. Dong, and F. Nori, “Detecting non-Markovianity via quantified coherence: theory and experiments,” npj Quantum Inf., vol. 6, no. 1, p. 55, 2020.
  • [43] L. Diósi and W. T. Strunz, “The non-Markovian stochastic Schrödinger equation for open systems,” Phys. Lett. A, vol. 235, no. 6, pp. 569–573, 1997.
  • [44] L. Diósi, N. Gisin, and W. T. Strunz, “Non-Markovian quantum state diffusion,” Phys. Rev. A, vol. 58, no. 3, p. 1699, 1998.
  • [45] W. T. Strunz, L. Diósi, and N. Gisin, “Open system dynamics with non-Markovian quantum trajectories,” Phys. Rev. Lett., vol. 82, pp. 1801–1805, Mar 1999.
  • [46] H. Yang, H. Miao, and Y. Chen, “Nonadiabatic elimination of auxiliary modes in continuous quantum measurements,” Phys. Rev. A, vol. 85, no. 4, p. 040101, 2012.
  • [47] F. Liu, X. Zhou, and Z.-W. Zhou, “Memory effect and non-Markovian dynamics in an open quantum system,” Phys. Rev. A, vol. 99, no. 5, p. 052119, 2019.
  • [48] G. Delben, M. Beims, and M. da Luz, “Control of a qubit under Markovian and non-Markovian noise,” Phys. Rev. A, vol. 108, no. 1, p. 012620, 2023.
  • [49] F.-H. Ren, Z.-M. Wang, and L.-A. Wu, “Accelerated adiabatic quantum search algorithm via pulse control in a non-Markovian environment,” Phys. Rev. A, vol. 102, no. 6, p. 062603, 2020.
  • [50] Y.-Y. Xie, F.-H. Ren, R.-H. He, A. Ablimit, and Z.-M. Wang, “Stochastic learning control of adiabatic speedup in a non-Markovian open qutrit system,” Phys. Rev. A, vol. 106, no. 6, p. 062612, 2022.
  • [51] I. de Vega, D. Alonso, and P. Gaspard, “Two-level system immersed in a photonic band-gap material: A non-Markovian stochastic Schrödinger-equation approach,” Phys. Rev. A, vol. 71, no. 2, p. 023812, 2005.
  • [52] Z. Dong, G. Zhang, A.-G. Wu, and R.-B. Wu, “On the dynamics of the Tavis-Cummings model,” IEEE Trans. Autom. Control, vol. 68, no. 4, pp. 2048–2063, 2022.
  • [53] Y. Chen, J. You, and T. Yu, “Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach,” Phys. Rev. A, vol. 90, no. 5, p. 052104, 2014.
  • [54] T. Yu, L. Diósi, N. Gisin, and W. T. Strunz, “Non-Markovian quantum-state diffusion: Perturbation approach,” Phys. Rev. A, vol. 60, no. 1, p. 91, 1999.
  • [55] P. Meystre and M. O. Scully, Quantum optics.   Springer, 2021.
  • [56] A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B, vol. 81, no. 24, p. 245419, 2010.
  • [57] L. Wang, J. Hu, J. Du, and K. Di, “Broadband coherent perfect absorption by cavity coupled to three-level atoms in linear and nonlinear regimes,” New J. Phys., vol. 23, no. 12, p. 123040, 2021.
  • [58] L.-s. He and X.-l. Feng, “Two-photon emission spectrum of a two-level atom in an ideal cavity,” Phys. Rev. A, vol. 49, no. 5, p. 4009, 1994.
  • [59] J. Ruiz-Rivas, E. del Valle, C. Gies, P. Gartner, and M. J. Hartmann, “Spontaneous collective coherence in driven dissipative cavity arrays,” Phys. Rev. A, vol. 90, no. 3, p. 033808, 2014.
  • [60] E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine, “Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming,” Automatica, vol. 44, no. 8, pp. 2163–2170, 2008.
  • [61] P. Varaiya and R. Liu, “Bounded-input bounded-output stability of nonlinear time-varying differential systems,” SIAM J. Contr., vol. 4, no. 4, pp. 698–704, 1966.
  • [62] J. Lin and P. Varaiya, “Bounded-input bounded-output stability of nonlinear time-varying discrete control systems,” IEEE Trans. Autom. Control, vol. 12, no. 4, pp. 423–427, 1967.
  • [63] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.
  • [64] J. LaSalle, “Some extensions of liapunov’s second method,” IRE Trans. Circuit Theory, vol. 7, no. 4, pp. 520–527, 1960.
  • [65] B. S. Rüffer, N. Van De Wouw, and M. Mueller, “Convergent systems vs. incremental stability,” Systems & Control Letters, vol. 62, no. 3, pp. 277–285, 2013.
  • [66] J. Kaloust and Z. Qu, “Robust control design for nonlinear uncertain systems with an unknown time-varying control direction,” IEEE Trans. Autom. Control, vol. 42, no. 3, pp. 393–399, 1997.
  • [67] G. Chen, “Stability of nonlinear systems,” Encyclopedia of RF and Microwave Engineering, pp. 4881–4896, 2004.
  • [68] Z. Hu, Z. Chen, and H.-T. Zhang, “Necessary and sufficient conditions for asymptotic decoupling of stable modes in LTV systems,” IEEE Trans. Autom. Control, vol. 66, no. 10, pp. 4546–4559, 2020.
  • [69] R. Bellman, Stability theory of differential equations.   Courier Corporation, 2008.
  • [70] R. Vrabel, “A note on uniform exponential stability of linear periodic time-varying systems,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1647–1651, 2019.
  • [71] H. M. Wiseman, “Quantum theory of continuous feedback,” Phys. Rev. A, vol. 49, no. 3, p. 2133, 1994.
  • [72] F. Ticozzi and L. Viola, “Quantum Markovian subsystems: invariance, attractivity, and control,” IEEE Trans. Autom. Control, vol. 53, no. 9, pp. 2048–2063, 2008.
  • [73] C. W. Gardiner et al., Handbook of stochastic methods.   springer Berlin, 1985, vol. 3.
  • [74] J. Reiner, H. Wiseman, and H. Mabuchi, “Quantum jumps between dressed states: A proposed cavity-QED test using feedback,” Phys. Rev. A, vol. 67, no. 4, p. 042106, 2003.
  • [75] A. C. Doherty and K. Jacobs, “Feedback control of quantum systems using continuous state estimation,” Phys. Rev. A, vol. 60, no. 4, p. 2700, 1999.
  • [76] Z. Wang, X.-W. Xu, and Y. Li, “Partially dark optical molecule via phase control,” Phys. Rev. A, vol. 95, no. 1, p. 013815, 2017.
  • [77] K. Jacobs and D. A. Steck, “A straightforward introduction to continuous quantum measurement,” Contemp. Phys., vol. 47, no. 5, pp. 279–303, 2006.
  • [78] M. G. Genoni, L. Lami, and A. Serafini, “Conditional and unconditional Gaussian quantum dynamics,” Contemp. Phys., vol. 57, no. 3, pp. 331–349, 2016.
  • [79] J. Zhang, Y.-x. Liu, R.-B. Wu, C.-W. Li, and T.-J. Tarn, “Transition from weak to strong measurements by nonlinear quantum feedback control,” Phys. Rev. A, vol. 82, no. 2, p. 022101, 2010.
  • [80] Y. Zhang and S.-C. Lü, “Emission spectrum in dissipative cavities coupled with quantum dots,” J. Phys. B, At. Mol. Opt. Phys., vol. 52, no. 12, p. 125502, 2019.