This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Vienna Institute of Technology
11email: [email protected]
Vienna University of Technology

On the Motion of Billiards in Ellipses

Hellmuth Stachel
Abstract

For billiards in an ellipse with an ellipse as caustic, there exist canonical coordinates such that the billiard transformation from vertex to vertex is equivalent to a shift of coordinates. A kinematic analysis of billiard motions paves the way to an explicit canonical parametrization of the billiard and even of the associated Poncelet grid. This parametrization uses Jacobian elliptic functions to the numerical eccentricity of the caustic as modulus.

Keywords:
billiard billiard motion confocal conics, elliptic functions
MSC:
51N20 53A17 33E05, 22E30
journal: European Journal of Mathematics

1 Introduction

Already for two centuries, billiards in ellipses have attracted the attention of mathematicians, beginning with J.-V. Poncelet and A. Cayley. The assertion that one periodic billiard inscribed in an ellipse ee and tangent to a confocal ellipse cc implies a one-parameter family of such polygons, is known as the standard example of a Poncelet porism. It was Cayley who derived analytical conditions for such a pair (e,c)(e,c) of ellipses.

In 2005 S. Tabachnikov published a book on billiards from the viewpoint of integrable systems Tabach . The book DR_Buch and various papers by V. Dragović and M. Radnović addressed billiards in conics and quadrics within the framework of dynamical systems.

Computer animations carried out by D. Reznik, stimulated a new vivid interest on this well studied topic, where algebraic and analytic methods are meeting. Originally, Reznik’s experiments focused on billiard motions in ellipses, i.e., on the variation of billiards with a fixed circumscribed ellipse ee and a fixed caustic cc\,. He published a list of more than 80 numerically detected invariants in 80 and contributed, together with his coauthors R. Garcia, J. Koiller and M. Helman, several proofs. Other authors like A. Akopyan, M. Bialy, A. Chavez-Caliz, R. Schwartz, and S. Tabachnikov published several proofs and found more invariants (e.g., in Ako-Tab ; Bialy-Tab ; Chavez ).

For a long time, at least since Jacobi’s proof of the Poncelet theorem on periodic billiards (see further references in (DR_russ, , p. 320)), it has been wellknown that there is a tight connection between billiards and elliptic functions (note also (Duistermaat, , Sect. 11.2) and Bobenko ). On the other hand, S. Tabachnikov proved in his book Tabach the existence of canonical parameters on ellipses with the property that the billiard transformation between consecutive vertices PiPi+1P_{i}\mapsto P_{i+1} of a billiard acts like a shift on the parameters.

The goal of this paper is to prove that Jacobian elliptic functions with the numerical eccentricity of the caustic cc as modulus pave the way to canonical coordinates on the ellipse ee\,. This is a consequence of a kinematic analysis of the billiard motion. It yields an infinitesimal transformation in the plane which preserves a family of confocal ellipses while it permutes the confocal hyperbolas as well as the tangents of the caustic. Integration results in a group of transformations with a canonical parameter. In terms of elliptic functions, we also obtain a mapping that sends a square grid together with the diagonals to a Poncelet grid.111 Recently, parametrizations of confocal conics in termins of elliptic functions were also presented in Bobenko , but not from the viewpoint of billiards. The paper concludes with applying the results of the velocity analysis to a few invariants of periodic billiards. These invariants deal mainly with the distances which occur on each side between the contact point with the caustic and the endpoints.

2 Confocal conics and billiards

At the begin, we recall a few properties of confocal conics. A family of confocal central conics is given by

x2a2+k+y2b2+k=1,wherek{a2,b2}\frac{x^{2}}{a^{2}+k}+\frac{y^{2}}{b^{2}+k}=1,\ \mbox{where}\ k\in{\mathbb{R}}\setminus\{-a^{2},-b^{2}\} (2.1)

serves as a parameter in the family. All these conics share the focal points F1,2=(±d,0)F_{1,2}=(\pm d,0), where d2:=a2b2d^{2}:=a^{2}-b^{2}.

The confocal family sends through each point PP outside the common axes of symmetry two orthogonally intersecting conics, one ellipse and one hyperbola (Conics, , p. 38). The parameters (ke,kh)(k_{e},k_{h}) of these two conics define the elliptic coordinates of PP with

a2<kh<b2<ke.-a^{2}<k_{h}<-b^{2}<k_{e}\,.

If (x,y)(x,y) are the cartesian coordinates of PP, then (ke,kh)(k_{e},k_{h}) are the roots of the quadratic equation

k2+(a2+b2x2y2)k+(a2b2b2x2a2y2)=0,k^{2}+(a^{2}+b^{2}-x^{2}-y^{2})k+(a^{2}b^{2}-b^{2}x^{2}-a^{2}y^{2})=0, (2.2)

while conversely

x2=(a2+ke)(a2+kh)d2,y2=(b2+ke)(b2+kh)d2.x^{2}=\frac{(a^{2}+k_{e})(a^{2}+k_{h})}{d^{2}}\,,\quad y^{2}=-\frac{(b^{2}+k_{e})(b^{2}+k_{h})}{d^{2}}\,. (2.3)

Suppose that (a,b)(a,b) in (2.1) are the semiaxes (ac,bc)(a_{c},b_{c}) of the ellipse cc with k=0k=0. Then, for points PP on a confocal ellipse ee with semiaxes (ae,be)(a_{e},b_{e}) and k=ke>0k=k_{e}>0, i.e., exterior to cc, the standard parametrization yields

P=(x,y)=(aecost,besint), 0t<2π,withae2=ac2+ke,be2=bc2+ke.\begin{array}[]{c}P=(x,y)=(a_{e}\cos t,\,b_{e}\sin t),\ 0\leq t<2\pi,\\[2.84526pt] \mbox{with}\ a_{e}^{2}=a_{c}^{2}+k_{e},\ b_{e}^{2}=b_{c}^{2}+k_{e}\,.\end{array} (2.4)

For the elliptic coordinates (ke,kh)(k_{e},k_{h}) of PP follows from (2.2) that

ke+kh=ae2cos2t+be2sin2tac2bc2.k_{e}+k_{h}=a_{e}^{2}\cos^{2}t+b_{e}^{2}\sin^{2}t-a_{c}^{2}-b_{c}^{2}.

After introducing the respective tangent vectors of ee and cc, namely

𝐭e(t):=(aesint,becost),𝐭c(t):=(acsint,bccost),where𝐭e2=𝐭c2+ke,\begin{array}[]{rcl}{\mathbf{t}}_{e}(t)&:=&(-a_{e}\sin t,\,b_{e}\cos t),\\[2.27621pt] {\mathbf{t}}_{c}(t)&:=&(-a_{c}\sin t,\,b_{c}\cos t),\end{array}\ \mbox{where}\ \|{\mathbf{t}}_{e}\|^{2}=\|{\mathbf{t}}_{c}\|^{2}+k_{e}\,, (2.5)

we obtain

kh=kh(t)=(ac2sin2t+bc2cos2t)=𝐭c(t)2=𝐭e(t)2+kek_{h}=k_{h}(t)=-(a_{c}^{2}\sin^{2}t+b_{c}^{2}\cos^{2}t)=-\|{\mathbf{t}}_{c}(t)\|^{2}=-\|{\mathbf{t}}_{e}(t)\|^{2}+k_{e} (2.6)

and 𝐭e(t)2=kekh(t)\|{\mathbf{t}}_{e}(t)\|^{2}=k_{e}-k_{h}(t)\,. Note that points on the confocal ellipses ee and cc with the same parameter tt have the same coordinate khk_{h}. Consequently, they belong to the same confocal hyperbola (Figure 1). Conversely, points of ee or cc on this hyperbola have a parameter out of {t,t,π+t,πt}\{t,-t,\pi+t,\pi-t\}.

Let θi/2\theta_{i}/2 denote the angle between the tangents drawn from any point PieP_{i}\in e to cc and the tangent to ee at PiP_{i} (Figures 2 or 3). Then we obtain for Pi=(aecosti,besinti)P_{i}=(a_{e}\cos t_{i},\,b_{e}\sin t_{i}) with elliptic coordinates (ke,kh(ti))\left(k_{e},k_{h}(t_{i})\right)

sin2θi2=ke𝐭e(ti)2=kekekh(ti),tanθi2=±kekh(ti)andsinθi=±2kekh(ti)kekh(ti)=±2𝐭c(ti)ke(𝐭e(ti)2.\begin{array}[]{c}\sin^{2}{\displaystyle\frac{\theta_{i}}{2}}={\displaystyle\frac{k_{e}}{\|{\mathbf{t}}_{e}(t_{i})\|^{2}}}={\displaystyle\frac{k_{e}}{k_{e}-k_{h}(t_{i})}},\quad\tan{\displaystyle\frac{\theta_{i}}{2}}=\pm\sqrt{-{\displaystyle\frac{k_{e}}{k_{h}(t_{i})}}}\\[8.53581pt] \mbox{and}\mskip 9.0mu\sin\theta_{i}=\pm{\displaystyle\frac{2\sqrt{-k_{e}k_{h}(t_{i})}}{k_{e}-k_{h}(t_{i})}}=\pm{\displaystyle\frac{2\|{\mathbf{t}}_{c}(t_{i})\|\sqrt{k_{e}}(\|{\mathbf{t}}_{e}(t_{i})\|^{2}}{\,}}.\end{array} (2.7)

For a proof see Sta_I . We can assume a counter-clockwise order of the billiard. Hence, all exterior angles are positive.

\psfrag{P1}[lb]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{1}$}}\psfrag{P2}[lb]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{2}$}}\psfrag{P3}[rb]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{3}$}}\psfrag{P4}[rb]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{4}$}}\psfrag{P5}[rt]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{5}$}}\psfrag{P6}[rt]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{6}$}}\psfrag{P7}[ct]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{7}$}}\psfrag{P8}[lt]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{8}$}}\psfrag{P9}[lt]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{9}$}}\psfrag{Q1}[rt]{\contourlength{1.0pt}\contour{gelbb}{\small\color[rgb]{0,0.5,0.8}$Q_{1}$}}\psfrag{Q2}[rt]{\contourlength{1.0pt}\contour{gelbb}{\small\color[rgb]{0,0.5,0.8}$Q_{2}$}}\psfrag{Q3}[lt]{\contourlength{1.0pt}\contour{gelbb}{\small\color[rgb]{0,0.5,0.8}$Q_{3}$}}\psfrag{Q4}[lc]{\contourlength{1.0pt}\contour{gelbb}{\small\color[rgb]{0,0.5,0.8}$Q_{4}$}}\psfrag{Q5}[lb]{\contourlength{1.2pt}\contour{gelbb}{\small\color[rgb]{0,0.5,0.8}$Q_{5}$}}\psfrag{Q6}[lb]{\contourlength{1.0pt}\contour{gelbb}{\small\color[rgb]{0,0.5,0.8}$Q_{6}$}}\psfrag{Q7}[rb]{\contourlength{1.0pt}\contour{gelbb}{\small\color[rgb]{0,0.5,0.8}$Q_{7}$}}\psfrag{Q8}[rb]{\contourlength{1.0pt}\contour{gelbb}{\small\color[rgb]{0,0.5,0.8}$Q_{8}$}}\psfrag{Q9}[rc]{\contourlength{1.0pt}\contour{gelbb}{\small\color[rgb]{0,0.5,0.8}$Q_{9}$}}\psfrag{S1}[lb]{\contournumber{32}\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0.15,0.15,0.15}$S_{1}^{(1)}$}}\psfrag{S2}[lb]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0.15,0.15,0.15}$S_{2}^{(1)}$}}\psfrag{S3}[lb]{\contournumber{32}\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0.15,0.15,0.15}$S_{3}^{(1)}$}}\psfrag{S4}[rc]{\contournumber{32}\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0.15,0.15,0.15}$S_{4}^{(1)}$}}\psfrag{S5}[rt]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0.15,0.15,0.15}$S_{5}^{(1)}$}}\psfrag{S6}[rt]{\contournumber{32}\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0.15,0.15,0.15}$S_{6}^{(1)}$}}\psfrag{S7}[lt]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0.15,0.15,0.15}$S_{7}^{(1)}$}}\psfrag{S8}[lt]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0.15,0.15,0.15}$S_{8}^{(1)}$}}\psfrag{S9}[lc]{\contournumber{32}\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0.15,0.15,0.15}$S_{9}^{(1)}$}}\psfrag{S12}[lt]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{0,1,0.1}$S_{1}^{(2)}$}}\psfrag{S42}[lb]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{0,1,0.1}$S_{4}^{(2)}$}}\psfrag{S52}[ct]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{0,1,0.1}$S_{5}^{(2)}$}}\psfrag{S92}[ct]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{0,1,0.1}$S_{9}^{(2)}$}}\psfrag{S82}[lc]{\contourlength{1.0pt}\contour{white}{\small\color[rgb]{0,1,0.1}$S_{8}^{(2)}$}}\psfrag{c}[rt]{\color[rgb]{0,0.5,0.8}$\boldsymbol{c}$}\psfrag{e}[lb]{\color[rgb]{1,0,0}$\boldsymbol{e}$}\psfrag{e1}[lb]{\color[rgb]{0,1,0.1}$\boldsymbol{e}^{(1)}$}\psfrag{e2}[rt]{\color[rgb]{0,1,0.1}$\boldsymbol{e}^{(2)}$}\includegraphics[width=312.9803pt]{bil_8_91b}
Figure 1: Periodic billiard P1P2P9P_{1}P_{2}\dots P_{9} in ee with the turning number τ=1\tau\!=\!1 and the caustic cc as well as a part of the associated Poncelet grid. The extended sides form a billiard with τ=2\tau=2 in e(1)e^{(1)} and three triangles as billiards in e(2)e^{(2)}.

From (2.6) follows

kh=ac2tan2t+bc21+tan2t,hencetan2t(ac2+kh)=bc2khk_{h}=-\frac{a_{c}^{2}\tan^{2}t+b_{c}^{2}}{1+\tan^{2}t},\quad\mbox{hence}\quad\tan^{2}t(a_{c}^{2}+k_{h})=-b_{c}^{2}-k_{h}

and furthermore

sintcost=tant1+tan2t=(bc2+kh)(ac2+kh)ac2bc2=ahbhd2\sin t\cos t=\frac{\tan t}{1+\tan^{2}t}=\frac{\sqrt{-(b_{c}^{2}+k_{h})(a_{c}^{2}+k_{h})}}{a_{c}^{2}-b_{c}^{2}}=\frac{a_{h}\,b_{h}}{d^{2}} (2.8)

with aha_{h} and bhb_{h} as semiaxes of the hyperbola corresponding to the parameter tt, i.e., ah2=ac2+kha_{h}^{2}=a_{c}^{2}+k_{h} and bh2=(bc2+kh)b_{h}^{2}=-(b_{c}^{2}+k_{h}).

Let P1P2P3\dots P_{1}P_{2}P_{3}\dots be a billiard in the ellipse ee. Then the extended sides intersect at points

Si(j):={[Pik1,Pik][Pi+k,Pi+k+1]forj=2k,[Pik,Pik+1][Pi+k,Pi+k+1]forj=2k1,S_{i}^{(j)}:=\left\{\begin{array}[]{rl}[P_{i-k-1},P_{i-k}]\cap[P_{i+k},P_{i+k+1}]&\mskip 9.0mu\mbox{for}\ j=2k,\\[1.70717pt] [P_{i-k},P_{i-k+1}]\cap[P_{i+k},P_{i+k+1}]&\mskip 9.0mu\mbox{for}\ j=2k-1,\end{array}\right. (2.9)

where i=,1,2,3,i=\dots,1,2,3,\dots and j=1,2,j=1,2,\dots. These points are distributed on different confocal conics: For fixed jj, there are ellipses e(j)e^{(j)} passing through the points Si(j)S_{i}^{(j)}. On the other hand, the points Si(2)S_{i}^{(2)}, Si(4),S_{i}^{(4)},\dots are located on the confocal hyperbola through PiP_{i}, while Si(1)S_{i}^{(1)}, Si(3),S_{i}^{(3)},\dots belong to the confocal hyperbola through the contact point QiQ_{i} between the side PiPi+1P_{i}P_{i+1} and the caustic cc\,. This configuration is called the associated Poncelet grid (Figure 1). For periodic billiards the sets of points Si(j)S_{i}^{(j)} and associated conics are finite. The turning number τ\tau of a periodic billiard in ee with an ellipse as caustic counts how often one period of the billiard surrounds the center OO of ee (note Figure 1).

For each billiard P1P2P_{1}P_{2}\dots in ee with caustic cc there exists a conjugate billiard P1P2P_{1}^{\prime}P_{2}^{\prime}\dots in ee with the same caustic. The axial scaling cec\to e maps the contact point QicQ_{i}\in c of PiPi+1P_{i}P_{i+1} to PiP_{i}^{\prime} while the inverse scaling brings PiP_{i} to the contact point Qi1Q_{i-1}^{\prime} of Pi1PiP_{i-1}^{\prime}P_{i}^{\prime} with the caustic. The relation between these billiards is symmetric. For further details see (Sta_I, , Sect. 3.2).

3 Velocity analysis

Let the first vertex of a billiard P1P2P_{1}P_{2}\dots move smoothly along the circumscribed ellipse ee. Then this induces a continuous variation of all other vertices along ee and also of the intersection points Si(j)S_{i}^{(j)} along e(j)e^{(j)}. We call this a billiard motion, though it neither preserves angles or distances nor is an affine or projective motion.

According to Graves’s construction (Conics, , p. 47), we can conceive the periodic billiard P1P2PNP_{1}P_{2}\dots P_{N} as a flexible chain of fixed total length LeL_{e} and the caustic cc as a fixed non-circular chain wheel. The vertices P1,P2,P_{1},P_{2},\dots move along ee and relative to the chain such that they keep the chain strengthened, while the chain contacts cc only at the single points Q1,Q2,,QNQ_{1},Q_{2},\dots,Q_{N}.

Let us pick out a single vertex P2P_{2} (see Figure 2). In the language of kinematics, the line spanned by the straight segment Q1P2Q_{1}P_{2} rolls at Q1Q_{1} on cc (= fixed polode) while point P2P_{2} moves along the line (= moving polode) with the velocity vector 𝐯t1{\mathbf{v}}_{t_{1}} . The instantaneous rotation about Q1Q_{1} with the angular velocity ω1\omega_{1} assigns to P2P_{2} a velocity vector 𝐯n1{\mathbf{v}}_{n_{1}} orthogonal to Q1P2Q_{1}P_{2} in order to keep the vector of absolute velocity of P2P_{2}\,, namely 𝐯2=𝐯t1+𝐯n1{\mathbf{v}}_{2}={\mathbf{v}}_{t_{1}}+{\mathbf{v}}_{n_{1}}, tangent to the ellipse ee.

\psfrag{F1}[rt]{\small$F_{2}$}\psfrag{F2}[lt]{\small$F_{1}$}\psfrag{X}[lb]{\small\color[rgb]{1,0,0}$P_{2}$}\psfrag{X}[lb]{\small\color[rgb]{1,0,0}$P_{2}$}\psfrag{tP}[lc]{\small$t_{P}$}\psfrag{T1}[lb]{\small\color[rgb]{0,0.5,0.8}$Q_{1}$}\psfrag{T2}[rb]{\small\color[rgb]{0,0.5,0.8}$Q_{2}$}\psfrag{la}[cb]{\small\color[rgb]{0,0.5,0.8}$r_{2}$}\psfrag{l2}[lt]{\small\color[rgb]{0,0.5,0.8}$l_{2}$}\psfrag{e}[lb]{\color[rgb]{1,0,0}$\boldsymbol{e}$}\psfrag{e0}[rt]{\color[rgb]{0,0.5,0.8}$\boldsymbol{c}$}\psfrag{vr1}[rt]{\small${\mathbf{v}}_{t_{1}}$}\psfrag{vn1}[rb]{\small${\mathbf{v}}_{n_{1}}$}\psfrag{vr2}[rb]{\small${\mathbf{v}}_{t_{2}}$}\psfrag{vn2}[rt]{\small${\mathbf{v}}_{n_{2}}$}\psfrag{v}[rb]{\small${\mathbf{v}}_{2}$}\psfrag{om1}[ct]{\small$\omega_{1}$}\psfrag{om2}[lt]{\small$\omega_{2}$}\psfrag{theta}[cc]{\color[rgb]{0,0.5,0.8}$\frac{\theta_{2}}{2}$}\includegraphics[width=227.62204pt]{graves_refl.eps}
Figure 2: Graves’s string construction of an ellipse ee confocal to cc.

Similarly, we have a second decomposition 𝐯2=𝐯t2+𝐯n2{\mathbf{v}}_{2}={\mathbf{v}}_{t_{2}}+{\mathbf{v}}_{n_{2}}, since at the same time the line [Q2,P2][Q_{2},P_{2}] rotates about Q2Q_{2} with the angular velocity ω2\omega_{2}, while P2P_{2} moves relative to this line. Due to the constant length of the chain, the tangential components in these two decompositions must be of equal lengths 𝐯t2=𝐯t1\|{\mathbf{v}}_{t_{2}}\|=\|{\mathbf{v}}_{t_{1}}\|. Since the tangent tPt_{P} to ee at P2P_{2} bisects the exterior angle of Q1P2Q2Q_{1}P_{2}Q_{2}, the second decomposition is symmetric w.r.t. tPt_{P} to the first one. From 𝐯n2=𝐯n1\|{\mathbf{v}}_{n_{2}}\|=\|{\mathbf{v}}_{n_{1}}\| follows for the distances r2:=P2Q1¯r_{2}:=\overline{P_{2}Q_{1}} and l2:=P2Q2¯l_{2}:=\overline{P_{2}Q_{2}}

l2ω2=r2ω1,orω1ω2=l2r2,l_{2}\,\omega_{2}=r_{2}\,\omega_{1},\quad\mbox{or}\quad\frac{\omega_{1}}{\omega_{2}}=\frac{l_{2}}{r_{2}}, (3.1)

and similarly for all other vertices. If the billiard is NN-periodic, then the product of all ratios li/ril_{i}/r_{i} for i=1,,Ni=1,\dots,N yields

l1r1l2r2lNrN=ωNω1ω1ω2ωN1ωN=1,\frac{l_{1}}{r_{1}}\cdot\frac{l_{2}}{r_{2}}\cdots\frac{l_{N}}{r_{N}}=\frac{\omega_{N}}{\omega_{1}}\cdot\frac{\omega_{1}}{\omega_{2}}\cdots\frac{\omega_{N-1}}{\omega_{N}}=1,

which results in the equation

l1l2lN=r1r2rN.l_{1}l_{2}\dots l_{N}=r_{1}r_{2}\dots r_{N}. (3.2)

listed as k116 in (80, , Table 2).

Figure 3 shows a graphical velocity analysis for the billiard motion of a 5-sided periodic billiard in ee. We can begin this analysis by choosing an arbitrary length for the arrow representing the velocity vector 𝐯2{\mathbf{v}}_{2} of P2P_{2}. This defines the two components 𝐯t2{\mathbf{v}}_{t_{2}} and 𝐯n2{\mathbf{v}}_{n_{2}}, where the latter determines the angular velocity ω2\omega_{2} of the side P2P3P_{2}P_{3} and furtheron the absolute velocity 𝐯3{\mathbf{v}}_{3} of P3P_{3}. This can be continued. From now on, we denote the norms 𝐯t1=𝐯t2\|{\mathbf{v}}_{t_{1}}\|=\|{\mathbf{v}}_{t_{2}}\| and 𝐯n1=𝐯n2\|{\mathbf{v}}_{n_{1}}\|=\|{\mathbf{v}}_{n_{2}}\| of the respective components of the velocity vector 𝐯i{\mathbf{v}}_{i} of PiP_{i} with vt|iv_{t|i} and vn|iv_{n|i}.

\psfrag{P1}[lb]{\small\color[rgb]{1,0,0}$P_{1}$}\psfrag{P2}[lb]{\small\color[rgb]{1,0,0}$P_{2}$}\psfrag{P3}[rb]{\small\color[rgb]{1,0,0}$P_{3}$}\psfrag{P4}[rt]{\small\color[rgb]{1,0,0}$P_{4}$}\psfrag{P5}[ct]{\small\color[rgb]{1,0,0}$P_{5}$}\psfrag{T1}[rt]{\small\color[rgb]{0,0.5,0.8}$Q_{1}$}\psfrag{T2}[lt]{\small\color[rgb]{0,0.5,0.8}$Q_{2}$}\psfrag{T3}[lb]{\small\color[rgb]{0,0.5,0.8}$Q_{3}$}\psfrag{T4}[cb]{\small\color[rgb]{0,0.5,0.8}$Q_{4}$}\psfrag{T5}[rc]{\small\color[rgb]{0,0.5,0.8}$Q_{5}$}\psfrag{Q1}[lc]{\small\color[rgb]{1,0,0}$R_{1}$}\psfrag{Q2}[rc]{\small\color[rgb]{1,0,0}$R_{2}$}\psfrag{Q3}[rt]{\small\color[rgb]{1,0,0}$R_{3}$}\psfrag{Q4}[rt]{\small\color[rgb]{1,0,0}$R_{4}$}\psfrag{Q5}[lc]{\small\color[rgb]{1,0,0}$R_{5}$}\psfrag{c}[lb]{\color[rgb]{1,0,0}$\boldsymbol{e}$}\psfrag{c_}[lb]{\color[rgb]{0,0.5,0.8}$\boldsymbol{c}$}\psfrag{l1}[lb]{\small\color[rgb]{1,0,0}$l_{1}$}\psfrag{r1}[lb]{\small\color[rgb]{1,0,0}$r_{2}$}\psfrag{l2}[rb]{\small\color[rgb]{1,0,0}$l_{2}$}\psfrag{r2}[rb]{\small\color[rgb]{1,0,0}$r_{3}$}\psfrag{vr1}[rt]{\small\color[rgb]{1,0,0}${\mathbf{v}}_{t_{1}}$}\psfrag{vn1}[rb]{\small\color[rgb]{1,0,0}${\mathbf{v}}_{n_{1}}$}\psfrag{vr2}[rb]{\small\color[rgb]{1,0,0}${\mathbf{v}}_{t_{2}}$}\psfrag{vn2}[rt]{\small\color[rgb]{1,0,0}${\mathbf{v}}_{n_{2}}$}\psfrag{v}[rb]{\small\color[rgb]{1,0,0}${\mathbf{v}}$}\psfrag{the1o}[rb]{\small\color[rgb]{0,1,0.1}$\theta_{1}\mskip-2.0mu/2$}\psfrag{the1u}[lc]{\small\color[rgb]{0,1,0.1}$\theta_{1}\mskip-2.0mu/2$}\psfrag{the2r}[rc]{\contourlength{1.6pt}\contour{white}{\small\color[rgb]{0,1,0.1}$\theta_{2}\mskip-1.0mu/2$}}\psfrag{the2l}[cb]{\small\color[rgb]{0,1,0.1}$\theta_{2}\mskip-1.0mu/2$}\psfrag{om1}[ct]{\small\color[rgb]{0,0.5,0.8}$\omega_{1}$}\psfrag{om2}[lc]{\small\color[rgb]{0,0.5,0.8}$\omega_{2}$}\psfrag{om3}[lt]{\contourlength{1.5pt}\contour{gelba}{\small\color[rgb]{0,0.5,0.8}$\omega_{3}$}}\psfrag{om4}[rc]{\small\color[rgb]{0,0.5,0.8}$\omega_{4}$}\psfrag{om5}[rb]{\contourlength{1.5pt}\contour{gelba}{\small\color[rgb]{0,0.5,0.8}$\omega_{5}$}}\psfrag{v2}[lt]{\contourlength{1.6pt}\contour{white}{\small${\mathbf{v}}_{2}$}}\psfrag{vt2}[lb]{\small${\mathbf{v}}_{t_{2}}$}\psfrag{vn2}[rb]{\small$v_{n|2}$}\psfrag{v1}[lb]{\contourlength{1.6pt}\contour{white}{\small${\mathbf{v}}_{1}$}}\psfrag{v3}[rb]{\contourlength{1.6pt}\contour{white}{\small${\mathbf{v}}_{3}$}}\psfrag{v4}[rt]{\contourlength{1.6pt}\contour{white}{\small${\mathbf{v}}_{4}$}}\psfrag{v5}[lt]{\contourlength{1.6pt}\contour{white}{\small${\mathbf{v}}_{5}$}}\includegraphics[width=298.75394pt]{billiard_vel_refl.eps}
Figure 3: Velocities of the vertices P1,P2,,P5P_{1},P_{2},\dots,P_{5} of a periodic billiard in the ellipse ee with the caustic cc\,.

In terms of the exterior angles θ1,,θN\theta_{1},\dots,\theta_{N} of the billiard, we obtain from (3.1)

sinθ22=l2ω2v2=r2ω1v2andcosθ22=vt|2v2,wherev2:=𝐯2.\sin{\displaystyle\frac{\theta_{2}}{2}}={\displaystyle\frac{l_{2}\,\omega_{2}}{v_{2}}}={\displaystyle\frac{r_{2}\,\omega_{1}}{v_{2}}}\mskip 9.0mu\mbox{and}\mskip 9.0mu\cos{\displaystyle\frac{\theta_{2}}{2}}={\displaystyle\frac{v_{t|2}}{v_{2}}}\,,\mskip 9.0mu\mbox{where}\mskip 9.0muv_{2}:=\|{\mathbf{v}}_{2}\|. (3.3)

Let RiR_{i} denote the pole of the line [Pi,Pi+1][P_{i},P_{i+1}] with respect to (w.r.t. in brief) ee\,. Since the poles of a line \ell w.r.t. confocal conics lie on a line orthogonal to \ell, the side P1P2P_{1}P_{2} is orthogonal to [Q1,R1][Q_{1},R_{1}] (Figure 3), which means

R1Q1¯=l1tanθ12=r2tanθ22.\overline{R_{1}Q_{1}}=l_{1}\tan\frac{\theta_{1}}{2}=r_{2}\tan\frac{\theta_{2}}{2}\,. (3.4)

From (3.4) and (3.3) follows

l1tanθ12=l1l1ω1vt|1=r2tanθ12=r2r2ω1vt|2andvt|2vt|1=r22l12=tan2θ12tan2θ22.l_{1}\tan\frac{\theta_{1}}{2}=l_{1}\frac{l_{1}\omega_{1}}{v_{t|1}}=r_{2}\tan\frac{\theta_{1}}{2}=r_{2}\frac{r_{2}\omega_{1}}{v_{t|2}}\mskip 9.0mu\mbox{and}\mskip 9.0mu\frac{v_{t|2}}{v_{t|1}}=\frac{r_{2}^{2}}{l_{1}^{2}}=\frac{\tan^{2}\frac{\theta_{1}}{2}}{\tan^{2}\frac{\theta_{2}}{2}}\,.

This shows that, by virtue of (2.7), the products

vt|1tan2θ12=vt|2tan2θ22==vt|Ntan2θN2=vt|ike𝐭c|i2v_{t|1}\tan^{2}{\displaystyle\frac{\theta_{1}}{2}}=v_{t|2}\tan^{2}{\displaystyle\frac{\theta_{2}}{2}}=\dots=v_{t|N}\tan^{2}{\displaystyle\frac{\theta_{N}}{2}}=v_{t|i}{\displaystyle\frac{k_{e}}{\|{\mathbf{t}}_{c|i}\|^{2}}} (3.5)

for i=1,2,,Ni=1,2,\dots,N are equal along the billiard. We denote this quantity with CC. Instead of a free choice of v2v_{2}\,, it means no restriction of generality to set C=keC=k_{e}\,. Then we obtain for the point Pi=(aecosti,besinti)P_{i}=(a_{e}\cos t_{i},\,b_{e}\sin t_{i}) of the ellipse ee, by virtue of (2.7),

vt|i=𝐭c2=kh,vn|i=visinθ2=𝐭cke=kekhvi=𝐭c2cosθ2=𝐭c𝐭e=kh(khke)fort=tiandkh=kh(ti).\begin{array}[]{c}v_{t|i}=\|{\mathbf{t}}_{c}\|^{2}=-k_{h},\quad v_{n|i}=v_{i}\sin\mbox{\small$\displaystyle\frac{\theta}{2}$}=\|{\mathbf{t}}_{c}\|\,\sqrt{k_{e}}=\sqrt{-k_{e}k_{h}}\\[5.69054pt] v_{i}={\displaystyle\frac{\|{\mathbf{t}}_{c}\|^{2}}{\cos\frac{\theta}{2}}}=\|{\mathbf{t}}_{c}\|\,\|{\mathbf{t}}_{e}\|=\sqrt{k_{h}(k_{h}-k_{e})}\mskip 9.0mu\mbox{for}\mskip 9.0mut=t_{i}\mskip 9.0mu\mbox{and}\mskip 9.0muk_{h}=k_{h}(t_{i})\,.\end{array} (3.6)

4 Billiard motion and the underlying Lie group

Our specification of the quantity CC assigns to the vertex PieP_{i}\in e with parameter tit_{i} a non-vanishing velocity vector 𝐯i=𝐭c(ti)𝐭e(ti){\mathbf{v}}_{i}=\|{\mathbf{t}}_{c}(t_{i})\|\,{\mathbf{t}}_{e}(t_{i})\,. This assignment can immediately be extended to all points of ee\,. There exists a parameter uu on ee such that the differentiation by uu gives the said velocity vector. Let a dot indicate this differentiation. Then

𝐯(t)=𝐩˙(t)=d𝐩(t)du=𝐭c(t)𝐭e(t)=ac2sin2t+bc2cos2t𝐭e(t).{\mathbf{v}}(t)={\dot{\mathbf{p}}}(t)={\displaystyle\frac{\mathrm{d}\,{\mathbf{p}}(t)}{\mathrm{d}u}}=\|{\mathbf{t}}_{c}(t)\|\,{\mathbf{t}}_{e}(t)=\sqrt{a_{c}^{2}\sin^{2}t+b_{c}^{2}\cos^{2}t}\ {\mathbf{t}}_{e}(t). (4.1)

We can even extend this to all confocal ellipses of cc\,. The assignment of a velocity vector

𝐯(t)=𝐭c(t)𝐭e(t)=t˙𝐭e(t){\mathbf{v}}(t)=\|{\mathbf{t}}_{c}(t)\|\,{\mathbf{t}}_{e}(t)=\dot{t}\;{\mathbf{t}}_{e}(t)

to each point P=(aecost,besint)P=(a_{e}\cos t,\,b_{e}\sin t) with ae2be2=ac2bc2a_{e}^{2}-b_{e}^{2}=a_{c}^{2}-b_{c}^{2} defines an ‘instant motion’ of the plane, where

t˙=dtdu=𝐭c(t)=kh(t)=ac2sin2t+bc2cos2t.\dot{t}=\frac{\mathrm{d}t}{\mathrm{d}u}=\|{\mathbf{t}}_{c}(t)\|=\sqrt{-k_{h}(t)}=\sqrt{a_{c}^{2}\sin^{2}t+b_{c}^{2}\cos^{2}t}\,. (4.2)
\psfrag{c}[lt]{\color[rgb]{0,0.5,0.8}$\boldsymbol{c}$}\psfrag{e}[lt]{\color[rgb]{1,0,0}$\boldsymbol{e}$}\psfrag{Q}[lt]{\contourlength{1.5pt}\contour{white}{\small\color[rgb]{0,0.5,0.8}$Q$}}\psfrag{tQ}[rb]{\small$t_{Q}$}\psfrag{vn}[lt]{\small\color[rgb]{1,0,0}${\mathbf{v}}_{n}$}\psfrag{vt}[lt]{\small\color[rgb]{1,0,0}${\mathbf{v}}_{t}$}\includegraphics[width=256.0748pt]{izmest_m}
Figure 4: The infinitesimal motion assigns to each point of the Poncelet grid a velocity vector such that the points on each tangent tQt_{Q} to the caustic cc remain aligned.

We prove below, that this ‘instant motion’ is compatible with the billiard and the associated Poncelet grid. This means in particular, that the velocity (3.6) is also valid for all points Si(j)e(j)S_{i}^{(j)}\in e^{(j)}.

Figure 4 shows a portion of the Poncelet grid and the velocity vectors of a couple of points, each represented by a scaled arrow. As indicated, for all points on the tangent tQt_{Q} to cc at any point QcQ\in c, the normal components 𝐯n\|{\mathbf{v}}_{n}\| of the respective velocity vectors 𝐯{\mathbf{v}} are proportional to the distance to QQ. On the other hand, all points on any confocal hyperbola share the tangential component 𝐯t\|{\mathbf{v}}_{t}\|.

Theorem 1.

Let the billiard P1P2P_{1}P_{2}\dots with the ellipse cc as caustic be moving along the circumscribed ellipse ee\,. Then the motion is the action of a one-parameter Lie group Γ\Gamma. Each transformation γ(u)Γ\gamma(u)\in\Gamma preserves the confocal ellipses and permutes the confocal hyperbolas as well as the tangents to cc\,.

  1. 1.

    If (ac,bc)(a_{c},b_{c}) are the semiaxes of the caustic cc with the tangent vectors 𝐭c(t)=(acsint,bccost){\mathbf{t}}_{c}(t)=(-a_{c}\sin t,\,b_{c}\cos t), then for all confocal ellipses ee with semiaxes (ae,be)(a_{e},b_{e}) the Γ\Gamma generating instant motion is defined, up to a scalar, by the vector field

    (x,y)=(aecost,besint)𝐭c𝐭e=kh(t)(aeybe,bexae)(x,y)=(a_{e}\cos t,\,b_{e}\sin t)\,\ \mapsto\,\|{\mathbf{t}}_{c}\|\,{\mathbf{t}}_{e}=\sqrt{-k_{h}(t)}\,\left(-{\displaystyle\frac{a_{e}y}{b_{e}}},\,{\displaystyle\frac{b_{e}x}{a_{e}}}\right) (4.3)

    with ae2be2=ac2bc2=d2a_{e}^{2}-b_{e}^{2}=a_{c}^{2}-b_{c}^{2}=d^{2} and ae2ac20a_{e}^{2}-a_{c}^{2}\geq 0.

  2. 2.

    If we parametrize the quadrant x,y>0x,y>0 by elliptic coordinates as 𝐗(ke,kh){\mathbf{X}}(k_{e},k_{h}), then the vector field can be expressed as

    𝐗(ke,kh)2kh(ac2+kh)(bc2+kh)𝐗kh.{\mathbf{X}}(k_{e},\,k_{h})\ \mapsto\ -2\sqrt{k_{h}(a_{c}^{2}+k_{h})(b_{c}^{2}+k_{h})}\;\frac{\partial{\mathbf{X}}}{\partial\,k_{h}}\,. (4.4)

The vector field defines a canonical parameter uu for the one-parameter Lie group Γ\Gamma, i.e., for transformations γ(u)Γ\gamma(u)\in\Gamma holds γ(u2)γ(u1)=γ(u1+u2)\gamma(u_{2})\circ\gamma(u_{1})=\gamma(u_{1}+u_{2}). At the same time, uu provides canonical coordinates222 Of course, we still obtain canonical coordinates on the ellipses, when all velocity vectors are multiplied with any constant λ0\lambda\in\mathbb{R}\setminus{0}. on each confocal ellipse with the property

γ(2Δu):PiPi+1,Si(j)Si+1(j).\gamma(2\varDelta u)\!:\ P_{i}\mapsto P_{i+1},\ S_{i}^{(j)}\mapsto S_{i+1}^{(j)}.
Proof.

1. The first derivative t˙\dot{t} in (4.2) is independent of the choice of the ellipse ee. Therefore γ(u)\gamma(u) permutes the confocal hyperboloids. On the other hand, the representation 𝐯=𝐭c𝐭e{\mathbf{v}}=\|{\mathbf{t}}_{c}\|\,{\mathbf{t}}_{e} reveals that all confocal ellipses remain fixed. Furthermore, we verify that the position of any point PP on the tangent tQt_{Q} to cc at QQ (see Figure 4) is preserved under the infinitesimal motion:

Given P=(aecost,besint)eP=\left(a_{e}\cos t,\,b_{e}\sin t\right)\in e and Q=(accost,bcsint)Q=\left(a_{c}\cos t^{\prime},\,b_{c}\sin t^{\prime}\right), the point PP lies on tQt_{Q} if and only if

bcaecostcost+acbesintsint=acbc.b_{c}a_{e}\cos t^{\prime}\cos t+a_{c}b_{e}\sin t^{\prime}\sin t=a_{c}b_{c}\,. (4.5)

This is preserved under the infinitesimal motion if differentiation by uu based on (4.2) yields an identity, namely

𝐭c(t)(bcaesintcost+acbecostsint)=𝐭c(t)(bcaecostsint+acbesintcost).\begin{array}[]{l}\phantom{-}\|{\mathbf{t}}_{c}(t^{\prime})\|\left(-b_{c}a_{e}\sin t^{\prime}\cos t+a_{c}b_{e}\cos t^{\prime}\sin t\right)\phantom{.}\\[4.2679pt] =-\|{\mathbf{t}}_{c}(t)\|\left(-b_{c}a_{e}\cos t^{\prime}\sin t+a_{c}b_{e}\sin t^{\prime}\cos t\right).\end{array} (4.6)

In order to verify this, we square both sides and substitute from the squared equation (4.5) the mixed term 2acbcaebesintcostsintcost2a_{c}b_{c}a_{e}b_{e}\sin t^{\prime}\cos t^{\prime}\sin t\cos t\,. After some computations, this yields for both sides

d2(sin2tsin2t)(ac2be2sin2tsin2t+bc2ae2cos2tcos2tac2bc2).d^{2}\left(\sin^{2}t-\sin^{2}t^{\prime}\right)\left(a_{c}^{2}b_{e}^{2}\sin^{2}t^{\prime}\sin^{2}t+b_{c}^{2}a_{e}^{2}\cos^{2}t^{\prime}\cos^{2}t-a_{c}^{2}b_{c}^{2}\right).

The velocity analysis in (3.6) for the particular ellipse ee confirms, that also the signs of both sides in (4.6) are equal.

2. From (2.3) follows for (x,y)=𝐗(ke,kh)(x,y)={\mathbf{X}}(k_{e},\,k_{h})

2xxkh=ac2+ked2,2yykh=bc2+ked22x\,\frac{\partial x}{\partial k_{h}}=\frac{a_{c}^{2}+k_{e}}{d^{2}}\,,\quad 2y\,\frac{\partial y}{\partial k_{h}}=-\frac{b_{c}^{2}+k_{e}}{d^{2}}

and therefore

𝐗kh=𝐗kh=12d2(ac2+kex,bc2+key)=12d2sintcost𝐭e.{\mathbf{X}}_{k_{h}}=\frac{\partial{\mathbf{X}}}{\partial\,k_{h}}=\frac{1}{2d^{2}}\left(\frac{a_{c}^{2}+k_{e}}{x},\,-\frac{b_{c}^{2}+k_{e}}{y}\right)=\frac{-1}{2d^{2}\sin t\cos t}\,{\mathbf{t}}_{e}\,.

This implies by (2.6) and (2.8)

𝐭c𝐭e=λ𝐗khwithλ=2ahbhkh=2kh(ac2+kh)(bc2+kh),\|{\mathbf{t}}_{c}\|\,{\mathbf{t}}_{e}=\lambda{\mathbf{X}}_{k_{h}}\mskip 9.0mu\mbox{with}\mskip 9.0mu\lambda=-2a_{h}b_{h}\sqrt{-k_{h}}=-2\,\sqrt{k_{h}(a_{c}^{2}+k_{h})(b_{c}^{2}+k_{h})}\,,

which confirms the claim in (4.4). ∎

In order to express the action of the transformation γ(u)Γ\gamma(u)\in\Gamma on an initial point (aecost,besint)(a_{e}\cos t,\,b_{e}\sin t), we integrate the differential equation (4.2)

t˙=dtdu=ac2sin2t+(ac2d2)cos2t=ac1m2cos2t\dot{t}={\displaystyle\frac{\mathrm{d}t}{\mathrm{d}u}}=\sqrt{a_{c}^{2}\sin^{2}t+(a_{c}^{2}-d^{2})\cos^{2}t}=a_{c}\sqrt{1-m^{2}\cos^{2}t}

with m:=d/ac<1m:=d/a_{c}<1 as numerical eccentricity of the caustic cc. The substitution

φ:=tπ2\varphi:=t-\mbox{\small$\displaystyle\frac{\pi}{2}$}

results in

dφ1m2sin2φ=acdu.\frac{\mathrm{d}\varphi}{\sqrt{1-m^{2}\sin^{2}\varphi}}=a_{c}\,\mathrm{d}u\,.

The initial condition φ=0\varphi=0 for u=0u=0 yields the unique solution

acu(φ)=F(φ,m)=0φdφ1m2sin2φa_{c}\,u(\varphi)=F(\varphi,m)=\int_{0}^{\varphi}\frac{\mathrm{d}\varphi}{\sqrt{1-m^{2}\sin^{2}\varphi}} (4.7)

with F(φ,m)F(\varphi,m) as the elliptic integral of the first kind with the modulus mm. The equation (4.7) shows the canonical coordinate uu in terms of φ\varphi with the quarter period

K:=acu(π2)=0π/2dφ1m2sin2φK:=a_{c}\,u\left(\mbox{\small$\displaystyle\frac{\pi}{2}$}\right)=\int_{0}^{\pi/2}\frac{\mathrm{d}\varphi}{\sqrt{1-m^{2}\sin^{2}\varphi}}

For the sake of simplicity, we introduce

u~(φ):=acu(φ)\tilde{u}(\varphi):=a_{c}\,u(\varphi) (4.8)

as a new canonical coordinate.

The inverse function of u~=F(φ,m)\tilde{u}=F(\varphi,m), namely the Jacobian amplitude φ=am(u~)\varphi=\mathrm{am}\mskip 1.0mu(\tilde{u}) leads to the Jacobian elliptic functions, the elliptic sine

snu~=sin(am(u~))=sinφ=cost\mskip 2.0mu\mathrm{sn}\mskip 2.0mu\tilde{u}=\sin(\mathrm{am}(\tilde{u}))=\sin\varphi=-\cos t

with sn(u~)=snu~\mskip 2.0mu\mathrm{sn}(-\tilde{u})=-\mskip 2.0mu\mathrm{sn}\mskip 2.0mu\tilde{u}\,, the elliptic cosine

cnu~=cos(am(u~))=cosφ=sint\mskip 2.0mu\mathrm{cn}\mskip 2.0mu\tilde{u}=\cos(\mathrm{am}(\tilde{u}))=\cos\varphi=\sin t

with cn(u~)=cnu~\mskip 2.0mu\mathrm{cn}(-\tilde{u})=\mskip 2.0mu\mathrm{cn}\mskip 2.0mu\tilde{u}\,, and the delta amplitude

dnu~=1m2sn2u~\mskip 2.0mu\mathrm{dn}\mskip 2.0mu\tilde{u}=\sqrt{1-m^{2}\,\mathrm{sn}^{2}\tilde{u}}

with dn(u~)=dnu~\mskip 2.0mu\mathrm{dn}(-\tilde{u})=\mskip 2.0mu\mathrm{dn}\mskip 2.0mu\tilde{u}\, as the third elliptic base function Hoppe . Moreover, for kk\in\mathbb{Z} holds

sn(u~+2kK)=(1)ksnu~,cn(u~+2kK)=(1)kcnu~,dn(u~+2kK)=(1)kdnu~.\begin{array}[]{c}\mskip 2.0mu\mathrm{sn}(\tilde{u}+2kK)=(-1)^{k}\mskip 2.0mu\mathrm{sn}\mskip 2.0mu\tilde{u}\,,\quad\mskip 2.0mu\mathrm{cn}(\tilde{u}+2kK)=(-1)^{k}\mskip 2.0mu\mathrm{cn}\mskip 2.0mu\tilde{u}\,,\\[2.84526pt] \mskip 2.0mu\mathrm{dn}(\tilde{u}+2kK)=(-1)^{k}\mskip 2.0mu\mathrm{dn}\mskip 2.0mu\tilde{u}\,.\end{array}

This gives rise to the canonical parametrization of the ellipse ee with semiaxes (ae,be)(a_{e},b_{e}) as

(aesnu~,becnu~)for0u~<4K=4u~(π2).\left(-a_{e}\mskip 2.0mu\mathrm{sn}\mskip 2.0mu\tilde{u},\,b_{e}\mskip 2.0mu\mathrm{cn}\mskip 2.0mu\tilde{u}\right)\quad\mbox{for}\mskip 9.0mu0\leq\tilde{u}<4K=4\tilde{u}\left(\mbox{\footnotesize$\displaystyle\frac{\pi}{2}$}\right).

As an alternative, we can proceed with elliptic coordinates. From (4.4) and

d𝐗du=k˙e𝐗ke+k˙h𝐗kh=2kh(ac2+kh)(bc2+kh)𝐗kh\frac{\mathrm{d}{\mathbf{X}}}{\mathrm{d}u}=\dot{k}_{e}\,\frac{\partial{\mathbf{X}}}{\partial\,k_{e}}+\dot{k}_{h}\,\frac{\partial{\mathbf{X}}}{\partial\,k_{h}}=-2\,\sqrt{k_{h}(a_{c}^{2}+k_{h})(b_{c}^{2}+k_{h})}\;\frac{\partial{\mathbf{X}}}{\partial\,k_{h}}

follows for the orbits of the Lie group k˙e=0\dot{k}_{e}=0 and

k˙h=2kh(ac2+kh)(bc2+kh).\dot{k}_{h}=-2\,\sqrt{k_{h}(a_{c}^{2}+k_{h})(b_{c}^{2}+k_{h})}\,.

As expected, the orbits are confocal ellipses. In order to express the action of γ(u)Γ\gamma(u)\in\Gamma on an initial point 𝐗(ke|0,kh|0){\mathbf{X}}(k_{e|0},\,k_{h|0}), we have to integrate the differential equation

dkhkh(ac2+kh)(bc2+kh)=2du\frac{\mathrm{d}k_{h}}{\sqrt{k_{h}(a_{c}^{2}+k_{h})(b_{c}^{2}+k_{h})}}=-2\,\mathrm{d}u (4.9)

with any initial condition. Again, we face an elliptic integral, this time in the socalled Riemannian form.

Theorem 2.
  1. 1.

    Let cc be the ellipse cc with semiaxes (ac,bc)(a_{c},b_{c}) and linear eccentricity d=ac2bc2d=\sqrt{a_{c}^{2}-b_{c}^{2}}\,. Then for all confocal ellipses ee with semiaxes (ae,be)(a_{e},b_{e}), the inscribed billiards with the caustic cc can be canonically parametrized using the Jacobian elliptic functions to the modulus m=d/acm=d/a_{c} (= numerical eccentricity of cc) as

    (aesnu~,becnu~).\left(-a_{e}\mskip 2.0mu\mathrm{sn}\mskip 2.0mu\tilde{u},\ b_{e}\mskip 2.0mu\mathrm{cn}\mskip 2.0mu\tilde{u}\right).

    This means that, if bc=becn(Δu~)b_{c}=b_{e}\mskip 2.0mu\mathrm{cn}(\varDelta\tilde{u}), then the vertices of the billiards in ee have the canonical parameters u~=(u~0+2kΔu~)\tilde{u}=(\tilde{u}_{0}+2k\varDelta\tilde{u}) for kk\in\mathbb{Z} and any given initial u~0\tilde{u}_{0}\,.

  2. 2.

    Conversely, we obtain an ellipse ee for which the billiards with caustic cc are NN-periodic with turning number τ\tau, where gcd(N,τ)=1\mathrm{gcd}(N,\tau)=1, by the choice

    Δu~=2τKN\varDelta\tilde{u}=\frac{2\tau K}{N}

    with KK as the complete elliptic integral of the first kind to the modulus mm, provided that

    ae=acdn(Δu~)cn(Δu~)andbe=bccn(Δu~).a_{e}=\frac{a_{c}\mskip 2.0mu\mathrm{dn}(\varDelta\tilde{u})}{\mskip 2.0mu\mathrm{cn}(\varDelta\tilde{u})}\mskip 9.0mu\mbox{and}\quad b_{e}=\frac{b_{c}}{\mskip 2.0mu\mathrm{cn}(\varDelta\tilde{u})}\,. (4.10)
\psfrag{Q1}[lt]{\small\color[rgb]{0,0.5,0.8}$Q_{1}(\varDelta\tilde{u}\,)$}\psfrag{P1}[lb]{\small\color[rgb]{1,0,0}$P_{1}(0)$}\psfrag{P2}[rb]{\small\color[rgb]{1,0,0}$P_{2}(2\mskip 1.0mu\varDelta\tilde{u})$}\psfrag{y}[rt]{\small$y$}\psfrag{c}[lt]{\color[rgb]{0,0.5,0.8}$\boldsymbol{c}$}\psfrag{e}[rb]{\color[rgb]{1,0,0}$\boldsymbol{e}$}\includegraphics[width=142.26378pt]{billiard_be_bc}
Figure 5: Dependence between the minor semiaxes beb_{e}, bcb_{c} and the intervall Δu~\varDelta\tilde{u}.
Proof.

If the first vertex P1eP_{1}\in e of the billiard is chosen on the positive yy-axis, i.e., with canonical parameter u~=0\tilde{u}=0 (see Figure 5), then the first contact point Q1Q_{1} has the parameter Δu~\varDelta\tilde{u}, and the tangent to cc at Q1Q_{1} passes through P1=(0,be)P_{1}=(0,b_{e}). Hence, the points P1P_{1} and Q1Q_{1} are conjugate w.r.t. cc, which means by (4.5) that the product of the respective yy-coordinates beb_{e} and bccn(Δu~)b_{c}\mskip 2.0mu\mathrm{cn}(\varDelta\tilde{u}) equals bc2b_{c}^{2}\,.

In view of the major semiaxis aea_{e} follows from  dn2(Δu~)=1m2sn2(Δu~)\mathrm{dn}^{2}(\varDelta\tilde{u})=1-m^{2}\,\mathrm{sn}^{2}(\varDelta\tilde{u})  and  sn2(Δu~)+cn2(Δu~)=1\mathrm{sn}^{2}(\varDelta\tilde{u})+\mathrm{cn}^{2}(\varDelta\tilde{u})=1  that  dn(Δu~)=aecn(Δu~)/ac\mskip 2.0mu\mathrm{dn}(\varDelta\tilde{u})=a_{e}\mskip 2.0mu\mathrm{cn}(\varDelta\tilde{u})/a_{c}\,. ∎

Corollary 3.

If in the ellipse ee with semiaxes (ae,be)(a_{e},b_{e}) the billiard with caustic cc is NN-periodic with turning number τ=1\tau=1 and Δu~=2KN\varDelta\tilde{u}=\frac{2K}{N}\,, then the associated Poncelet grid contains the ellipses e(1),e(2),,e(k)e^{(1)},\,e^{(2)},\dots,\,e^{(k)}, k=[N32]k=\left[\frac{N-3}{2}\right], with respective semiaxes

ae|1=acdn(2Δu~)cn(2Δu~),be|1=bccn(2Δu~),ae|2=acdn(3Δu~)cn(3Δu~),be|2=bccn(3Δu~),,ae|k=acdn(kΔu~)cn(kΔu~),be|k=bccn(kΔu~).\begin{array}[]{c}a_{e|1}={\displaystyle\frac{a_{c}\mskip 2.0mu\mathrm{dn}(2\mskip 1.0mu\varDelta\tilde{u})}{\mskip 2.0mu\mathrm{cn}(2\mskip 1.0mu\varDelta\tilde{u})}},\ b_{e|1}={\displaystyle\frac{b_{c}}{\mskip 2.0mu\mathrm{cn}(2\mskip 1.0mu\varDelta\tilde{u})}},\mskip 9.0mua_{e|2}={\displaystyle\frac{a_{c}\mskip 2.0mu\mathrm{dn}(3\mskip 1.0mu\varDelta\tilde{u})}{\mskip 2.0mu\mathrm{cn}(3\mskip 1.0mu\varDelta\tilde{u})}},\ b_{e|2}={\displaystyle\frac{b_{c}}{\mskip 2.0mu\mathrm{cn}(3\mskip 1.0mu\varDelta\tilde{u})}},\\[8.53581pt] \dots\ ,\ a_{e|k}={\displaystyle\frac{a_{c}\mskip 2.0mu\mathrm{dn}(k\mskip 1.0mu\varDelta\tilde{u})}{\mskip 2.0mu\mathrm{cn}(k\mskip 1.0mu\varDelta\tilde{u})}},\mskip 9.0mub_{e|k}={\displaystyle\frac{b_{c}}{\mskip 2.0mu\mathrm{cn}(k\mskip 1.0mu\varDelta\tilde{u})}}\,.\end{array}
\psfrag{1}[rc]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,0.5,0.8}$Q_{0}$}}\psfrag{2}[lt]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,0.5,0.8}$Q_{2}$}}\psfrag{3}[lb]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,1,0.1}$S_{1}^{(1)}$}}\psfrag{4}[ct]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,0.5,0.8}$Q_{1}$}}\psfrag{5}[ct]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,1,0.1}$S_{0}^{(1)}$}}\psfrag{6}[rc]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,1,0.1}$S_{2}^{(1)}$}}\psfrag{7}[lc]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{1}$}}\psfrag{8}[lb]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{2}$}}\psfrag{9}[cb]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{2}^{\prime}$}}\psfrag{11}[lb]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{1}^{\prime}$}}\psfrag{14}[lt]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,0.5,0.8}$Q_{1}^{\prime}$}}\psfrag{18}[lt]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{0}^{\prime}$}}\psfrag{19}[rt]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,0.5,0.8}$Q_{0}^{\prime}$}}\psfrag{c}[ct]{\color[rgb]{0,0.5,0.8}$\boldsymbol{c}$}\psfrag{e}[lb]{\contourlength{1.2pt}\contour{white}{\color[rgb]{1,0,0}$\boldsymbol{e}$}}\psfrag{e^1}[rb]{\color[rgb]{0,1,0.1}$\boldsymbol{e}^{(1)}$}\psfrag{1/2}[ct]{\small\color[rgb]{0,0.5,0.8}$\boldsymbol{0}$}\psfrag{3/4}[ct]{\small\color[rgb]{0,0.5,0.8}$\frac{1}{2}$}\psfrag{1/1}[ct]{\small\color[rgb]{0,0.5,0.8}$\boldsymbol{1}$}\psfrag{5/4}[ct]{\small\color[rgb]{0,0.5,0.8}$\frac{3}{2}$}\psfrag{3/2}[ct]{\small\color[rgb]{0,0.5,0.8}$\boldsymbol{2}$}\psfrag{7/4}[ct]{\small\color[rgb]{0,0.5,0.8}$\frac{5}{2}$}\psfrag{2/1}[ct]{\small\color[rgb]{0,0.5,0.8}$\boldsymbol{3}$}\psfrag{9/4}[ct]{\small\color[rgb]{0,0.5,0.8}$\frac{7}{2}$}\psfrag{5/2}[rt]{\small\color[rgb]{0,0.5,0.8}$u\!=\!\boldsymbol{4}$}\psfrag{00/1}[rt]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$v\!=\!\boldsymbol{0}$}}\psfrag{01/2}[ct]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$\frac{1}{2}$}}\psfrag{03/4}[ct]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$\frac{3}{4}$}}\psfrag{01/1}[ct]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$\boldsymbol{1}$}}\psfrag{05/4}[ct]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$\frac{5}{4}$}}\psfrag{03/2}[ct]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$\frac{3}{2}$}}\psfrag{07/4}[ct]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$\frac{7}{4}$}}\psfrag{02/1}[ct]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$\boldsymbol{2}$}}\includegraphics[width=284.52756pt]{izmest_o}
Figure 6: Canonical coordinates uu (blue) for the confocal hyperbolas and vv (red) for the confocal ellipses exterior to the caustic cc such that u±v=const.u\pm v=\mathrm{const.} represent the tangents of the caustic.

Corollary 3 reveals that Δu~\varDelta\tilde{u} serves as a canonical coordinate for confocal ellipses in the exterior of cc. If Δu~\varDelta\tilde{u} corresponds by (4.10) to the ellipse ee with semiaxes (ae,be)(a_{e},b_{e}), then 2Δu~2\mskip 1.0mu\varDelta\tilde{u} is the shift for the billiards in ee with caustic cc\,. If these billiards have the turning number 1, then increasing the shift by Δu~\varDelta\tilde{u} means to increase the turning number of the billiard in a confocal ellipse by 1, while the caustic cc remains fixed (Figure 6). The billiard P1P2P_{1}P_{2}\dots and its conjugate P1P2P_{1}^{\prime}P_{2}^{\prime}\dots in ee (cf. (Sta_I, , Sect. 3.2)) intersect each other along the ellipse with the canonical coordinate Δu~/2\varDelta\tilde{u}/2\,. Note that the ellipses e(j)e^{(j)} and e(N2j)e^{(N-2-j)} coincide while the corresponding Δu~\varDelta\tilde{u}’s differ in their signs. For even NN, the points Si(N/21)S_{i}^{(N/2-1)} are at infinity, and the line at infinity as a limit of a confocal ellipse corresponds to Δu~=K\varDelta\tilde{u}=K.

The following formulas express the elliptic coordinates (ke,kh)(k_{e},k_{h}) of the point P=(aesnu~,becnu~)P=(-a_{e}\mskip 2.0mu\mathrm{sn}\mskip 2.0mu\tilde{u},\,b_{e}\mskip 2.0mu\mathrm{cn}\mskip 2.0mu\tilde{u}) of ee in terms of the canonical coordinate u~\tilde{u} on ee and the shift Δu~\varDelta\tilde{u} corresponding to ee\,.

ke=ke(Δu~)=ac2sn2Δu~cn2Δu~(1m2),kh=kh(u~)=ac2dn2u~.k_{e}=k_{e}(\varDelta\tilde{u})=\frac{a_{c}^{2}\,\mathrm{sn}^{2}\varDelta\tilde{u}}{\mathrm{cn}^{2}\varDelta\tilde{u}}(1-m^{2}),\quad k_{h}=k_{h}(\tilde{u})=-a_{c}^{2}\,\mathrm{dn}^{2}\tilde{u}\,. (4.11)

This follows from

ke=ae2ac2=ac2dn2Δu~cn2Δu~cn2Δu~=ac2(1m2)sn2Δu~cn2Δu~k_{e}=a_{e}^{2}-a_{c}^{2}=a_{c}^{2}\,\frac{\mathrm{dn}^{2}\varDelta\tilde{u}-\mathrm{cn}^{2}\varDelta\tilde{u}}{\mathrm{cn}^{2}\varDelta\tilde{u}}=a_{c}^{2}(1-m^{2})\frac{\mathrm{sn}^{2}\varDelta\tilde{u}}{\mathrm{cn}^{2}\varDelta\tilde{u}}

and

kh=ac2cn2u~bc2sn2u~=ac2+d2sn2u~=ac2+m2ac2sn2u~.k_{h}=-a_{c}^{2}\,\mathrm{cn}^{2}\mskip 2.0mu\tilde{u}-b_{c}^{2}\,\mathrm{sn}^{2}\mskip 2.0mu\tilde{u}=-a_{c}^{2}+d^{2}\,\mathrm{sn}^{2}\mskip 2.0mu\tilde{u}=-a_{c}^{2}+m^{2}a_{c}^{2}\,\mathrm{sn}^{2}\mskip 2.0mu\tilde{u}\,.

Note that kh=kh(u~)k_{h}=k_{h}(\tilde{u}) is a solution of (4.9).

In Izmestiev , an unordered pair of coordinates (r,s)(r,s) is proposed for each point PP in the exterior of cc, namely with rr and ss as canonical coordinates of the tangency points for the tangent lines from PP to cc (see also (MonGeom, , p. 358)). This means for P=(aesnu~,becnu~)P=(-a_{e}\mskip 2.0mu\mathrm{sn}\mskip 2.0mu\tilde{u},\,b_{e}\mskip 2.0mu\mathrm{cn}\mskip 2.0mu\tilde{u}) that

r=u~Δu~,s=u~+Δu~,r=\tilde{u}-\varDelta\tilde{u}\,,\quad s=\tilde{u}+\varDelta\tilde{u}\,,

where Δu~\varDelta\tilde{u} corresponds to ee according to (4.10).

If we keep the sum u~+Δu~\tilde{u}+\varDelta\tilde{u} or the difference u~Δu~\tilde{u}-\varDelta\tilde{u} constant, the corresponding point PP runs along a tangent of the caustic cc (compare with (Bobenko, , Prop. 8.3)). For the sake of simplicity, we replace in the summary below Δu~\varDelta\tilde{u} by v~\tilde{v}\,.

\psfrag{c}[ct]{\color[rgb]{0,0.5,0.8}$\boldsymbol{c}$}\psfrag{e}[lc]{\color[rgb]{1,0,0}$\boldsymbol{e}$}\psfrag{e^1}[lc]{\color[rgb]{1,0,0}$\boldsymbol{e}^{(1)}$}\psfrag{e^2}[lc]{\color[rgb]{0,1,0.1}$\boldsymbol{e}^{(2)}$}\psfrag{e^3}[lc]{\color[rgb]{0,1,0.1}$\boldsymbol{e}^{(3)}\!=\!\boldsymbol{e}^{(4)}$}\psfrag{inf}[lc]{\small$\infty$}\psfrag{4K}[ct]{\small$4K$}\psfrag{K}[rc]{\small$K$}\psfrag{u}[lt]{\small$\tilde{u}$}\psfrag{v}[rb]{\small$\tilde{v}$}\psfrag{Q9}[ct]{\small\color[rgb]{0,0.5,0.8}$Q_{9}$}\psfrag{Q1}[ct]{\small\color[rgb]{0,0.5,0.8}$Q_{1}$}\psfrag{Q2}[ct]{\small\color[rgb]{0,0.5,0.8}$Q_{2}$}\psfrag{P1}[lc]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{1}$}}\psfrag{P2}[lc]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{2}$}}\psfrag{P3}[lc]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{3}$}}\psfrag{S1^1}[lc]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0.15,0.15,0.15}$S_{1}^{(1)}$}}\psfrag{S2^1}[lc]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0.15,0.15,0.15}$S_{2}^{(1)}$}}\psfrag{S1^2}[lc]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,1,0.1}$S_{1}^{(2)}$}}\psfrag{S2^2}[lc]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,1,0.1}$S_{2}^{(2)}$}}\psfrag{S1^3}[lc]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,1,0.1}$S_{1}^{(3)}$}}\psfrag{S2^3}[lc]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,1,0.1}$S_{2}^{(3)}$}}\includegraphics[width=312.9803pt]{poncgrid_lin.eps}
Figure 7: The injective mapping 𝐘{\mathbf{Y}} sends the square grid of points Qi,PiQ_{i},P_{i} and Si(j)S_{i}^{(j)}, i=1,,9i=1,\dots,9\,, j=1,,3j=1,\dots,3\,, to the vertices and the diagonals to the confocal conics of the Poncelet grid depicted in Figure 1.
Theorem 4.

Referring to the notation in Theorem 2, the injective mapping

𝐘:U×V2,(u~,v~)(acsnu~dnv~cnv~,bccnu~cnv~)forU:={u~| 0u~<4K},V:={v~| 0u~<K}\begin{array}[]{rl}{\mathbf{Y}}\!:&U\times V\to{\mathbb{R}}^{2},\quad(\tilde{u},\,\tilde{v})\,\mapsto\,\left(-a_{c}{\displaystyle\frac{\mskip 2.0mu\mathrm{sn}\mskip 2.0mu\tilde{u}\,\mskip 2.0mu\mathrm{dn}\mskip 2.0mu\tilde{v}}{\mskip 2.0mu\mathrm{cn}\mskip 2.0mu\tilde{v}}},\ b_{c}{\displaystyle\frac{\mskip 2.0mu\mathrm{cn}\mskip 2.0mu\tilde{u}}{\mskip 2.0mu\mathrm{cn}\mskip 2.0mu\tilde{v}}}\right)\\[8.53581pt] &\mathrm{for}\mskip 9.0muU:=\{\tilde{u}\,|\,0\leq\tilde{u}<4K\},\ V:=\{\tilde{v}\,|\,0\leq\tilde{u}<K\}\end{array}

parametrizes the exterior of the caustic cc with semiaxes (ac,bc)(a_{c},b_{c}) in such a way, that the lines u~=const.\tilde{u}=\mathrm{const.} are branches of confocal hyperbolas; v~=const.\tilde{v}=\mathrm{const.} are confocal ellipses and u~±v~=const.\tilde{u}\pm\tilde{v}=\mathrm{const.} tangents of cc\,.

The domain of the mapping 𝐘{\mathbf{Y}} (Figure 7) can be extended to 2{\mathbb{R}}^{2} and satisfies

𝐘((u~+4K),v~)=𝐘(u~,(v~+2K))=𝐘(u~,v~)=𝐘(u~,v~){\mathbf{Y}}((\tilde{u}+4K),\,\tilde{v})={\mathbf{Y}}(\tilde{u},\,(\tilde{v}+2K))={\mathbf{Y}}(\tilde{u},\,-\tilde{v})={\mathbf{Y}}(\tilde{u},\,\tilde{v})

and therefore 𝐘(u~,(K+v~))=𝐘(u~,(Kv~)){\mathbf{Y}}(\tilde{u},\,(K+\tilde{v}))={\mathbf{Y}}(\tilde{u},\,(K-\tilde{v})) (Figure 7). The Liegroup Γ\Gamma mentioned in Theorem 1 is the 𝐘{\mathbf{Y}}-transform of the group of translations along the u~\tilde{u}-axis.

5 More about invariants of periodic billiards

In this section we study how the infinitesimal motion induced by the vector field in (4.3) affects distances and angles of periodic billiards. As before, the dot means differentiation by the canonical parameter uu, and we call the billiard motion canonical when it is parametrized by a canonical parameter like uu\,.

Lemma 5.

Let P1P2P_{1}P_{2}\dots be a billiard in the ellipse ee with Q1,Q2,Q_{1},Q_{2},\dots as contact points with its caustic, the ellipse cc. If tit_{i} is the parameter of PiP_{i} and tit_{i}^{\prime} that of QiQ_{i}, then

ri=Qi1Pi¯=𝐭c(ti1)𝐭c(ti)keacbc,li=PiQi¯=𝐭c(ti)𝐭c(ti)keacbc.r_{i}=\overline{Q_{i-1}P_{i}}={\displaystyle\frac{\|{\mathbf{t}}_{c}(t_{i-1}^{\prime})\|\,\|{\mathbf{t}}_{c}(t_{i})\|\sqrt{k_{e}}}{a_{c}b_{c}}},\quad l_{i}=\overline{P_{i}Q_{i}}={\displaystyle\frac{\|{\mathbf{t}}_{c}(t_{i})\|\,\|{\mathbf{t}}_{c}(t_{i}^{\prime})\|\sqrt{k_{e}}}{a_{c}b_{c}}}.

The canonical motion of the billiard induces for the side PiPi+1P_{i}P_{i+1} the instant angular velocity

ωi=acbc𝐭c(ti)=acbckh(ti).\omega_{i}=\frac{a_{c}b_{c}}{\|{\mathbf{t}}_{c}(t_{i}^{\prime})\|}=\,\frac{a_{c}b_{c}}{\sqrt{-k_{h}(t_{i}^{\prime})}}\,.
\psfrag{P}[cb]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{2}$}}\psfrag{P'}[lb]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{0,0.5,0.8}$Q_{1}^{\prime}$}}\psfrag{T1}[lb]{\small\color[rgb]{0,0.5,0.8}$Q_{1}$}\psfrag{T2}[rb]{\contourlength{1.4pt}\contour{white}{\small\color[rgb]{0,0.5,0.8}$Q_{2}$}}\psfrag{P1'}[lb]{\contourlength{1.2pt}\contour{white}{\small\color[rgb]{1,0,0}$P_{1}^{\prime}$}}\psfrag{P2'}[rb]{\small\color[rgb]{1,0,0}$P_{2}^{\prime}$}\psfrag{T1*}[rc]{\small\color[rgb]{0,0.5,0.8}$Q_{1}^{*}$}\psfrag{T2*}[lt]{\contourlength{1.4pt}\contour{white}{\small\color[rgb]{0,0.5,0.8}$Q_{2}^{*}$}}\psfrag{la}[cb]{\small\color[rgb]{0,0.5,0.8}$r_{2}$}\psfrag{e}[rt]{\color[rgb]{1,0,0}$\boldsymbol{e}$}\psfrag{e0}[rt]{\color[rgb]{0,0.5,0.8}$\boldsymbol{c}$}\psfrag{vn1}[rt]{\small${\mathbf{v}}_{n_{1}}$}\psfrag{vt1}[rb]{\small${\mathbf{v}}_{t_{1}}$}\psfrag{vn2}[rb]{\small${\mathbf{v}}_{n_{2}}$}\psfrag{vt2}[rt]{\small${\mathbf{v}}_{t_{2}}$}\psfrag{v}[rb]{\small${\mathbf{v}}_{2}$}\psfrag{v'}[rc]{\contourlength{1.4pt}\contour{white}{\small${\mathbf{v}}_{1}^{\prime}$}}\psfrag{om1}[ct]{\small\color[rgb]{1,0,0}$\omega_{1}$}\psfrag{om2}[lt]{\small\color[rgb]{1,0,0}$\omega_{2}$}\psfrag{r2}[lb]{\small\color[rgb]{1,0,0}$r_{2}$}\psfrag{l2}[lt]{\small\color[rgb]{1,0,0}$l_{2}$}\psfrag{rho1}[lt]{\contournumber{32}\contourlength{1.4pt}\contour{white}{\small\color[rgb]{0,0.5,0.8}$\rho_{c}(t_{1}^{\prime})$}}\includegraphics[width=227.62204pt]{graves_c.eps}
Figure 8: Velocities 𝐯2{\mathbf{v}}_{2} of the vertex P2P_{2}, 𝐯1{\mathbf{v}}_{1}^{\prime} of the affine image Q1Q_{1}^{\prime} with 𝐯1=𝐯n1=𝐯n2\|{\mathbf{v}}_{1}^{\prime}\|=\|{\mathbf{v}}_{n_{1}}\|=\|{\mathbf{v}}_{n_{2}}\|, of the contact points QiQ_{i} (with QiQ_{i}^{*} as respective centers of curvature), and of vertices PiP_{i}^{\prime} of the conjugate billiard, i=1,2i=1,2\,.
Proof.

Referring to Figure 8, if the tangent [Q1,P2][Q_{1},P_{2}] rolls on cc, then the vertex P2P_{2} receives the velocity vector 𝐯n2{\mathbf{v}}_{n_{2}} satisfying (3.6), while the point of contact Q1Q_{1} moves with the velocity vc(t1)v_{c}(t_{1}^{\prime}) along cc\,. We can express this velocity in terms of the radius of curvature ρc(t1)\rho_{c}(t_{1}^{\prime}) of cc as

vc(t1)=ω1ρc(t1),v_{c}(t_{1}^{\prime})=\omega_{1}\,\rho_{c}(t_{1}^{\prime}),

where ρc(t)=𝐭e(t)3/acbc\rho_{c}(t)=\|{\mathbf{t}}_{e}(t)\|^{3}/a_{c}b_{c} by (Conics, , p. 79). On the other hand, from 𝐯c=t˙𝐭c{\mathbf{v}}_{c}=\dot{t}\,{\mathbf{t}}_{c} and (4.2) follows vc(t1)=𝐭c(t1)2v_{c}(t_{1}^{\prime})=\|{\mathbf{t}}_{c}(t_{1}^{\prime})\|^{2}. This yields

ω1=vc(t1)ρc(t1)=𝐭c(t1)2acbc𝐭c(t1)3=acbc𝐭c(t1)=acbckh(t1)\omega_{1}=\frac{v_{c}(t_{1}^{\prime})}{\rho_{c}(t_{1}^{\prime})}=\frac{\|{\mathbf{t}}_{c}(t_{1}^{\prime})\|^{2}\,a_{c}b_{c}}{\|{\mathbf{t}}_{c}(t_{1}^{\prime})\|^{3}}=\frac{a_{c}b_{c}}{\|{\mathbf{t}}_{c}(t_{1}^{\prime})\|}=\frac{a_{c}b_{c}}{\sqrt{-k_{h}(t_{1}^{\prime})}}

by (2.6). Thus, we obtain for the velocity vn|2v_{n|2} of P2P_{2} by (3.6)

r2ω1=vn|2=𝐭c(t2)ke,hencer2=𝐭c(t2)keacbc𝐭c(t1).r_{2}\,\omega_{1}=v_{n|2}=\|{\mathbf{t}}_{c}(t_{2})\|\sqrt{k_{e}},\mskip 9.0mu\mbox{hence}\mskip 9.0mur_{2}=\frac{\|{\mathbf{t}}_{c}(t_{2})\|\sqrt{k_{e}}}{a_{c}b_{c}}\,\|{\mathbf{t}}_{c}(t_{1}^{\prime})\|.

Similarly follows from l2ω2=vn|2l_{2}\,\omega_{2}=v_{n|2} the stated expression for the distance l2l_{2}\,. Note that t1,t1,t2,t2,t3,t_{1},t_{1}^{\prime},t_{2},t_{2}^{\prime},t_{3},\dots is the sequence of consecutive parameters of the points P1,Q1,P2,Q2,P3,P_{1},Q_{1},P_{2},Q_{2},P_{3},\dots The formulas for rir_{i} and lil_{i} reveal again that the same distances appear at the conjugate billiard. ∎

The angular velocity of the tangent to ee at P2P_{2} equals the arithmetic mean (ω1+ω2)/2(\omega_{1}+\omega_{2})/2 (Figure 8). On the other hand, it is defined by the radius of curvature ρe\rho_{e} of ee at P2P_{2} and the velocity v2v_{2} by (3.6), since

v2=ρe(t2)ω1+ω22.v_{2}=\rho_{e}(t_{2})\frac{\omega_{1}+\omega_{2}}{2}\,.

This means by Lemma 5

𝐭c(t2)𝐭e(t2)=𝐭e(t2)3aebeacbc2(1𝐭c(t1)+1𝐭c(t2))\|{\mathbf{t}}_{c}(t_{2})\|\,\|{\mathbf{t}}_{e}(t_{2})\|={\displaystyle\frac{\|{\mathbf{t}}_{e}(t_{2})\|^{3}}{a_{e}b_{e}}}\,{\displaystyle\frac{a_{c}b_{c}}{2}}\left({\displaystyle\frac{1}{\|{\mathbf{t}}_{c}(t_{1}^{\prime})\|}}+{\displaystyle\frac{1}{\|{\mathbf{t}}_{c}(t_{2}^{\prime})\|}}\right)

and results by (2.7) in

1𝐭c(t1)+1𝐭c(t2)=2aebeacbc𝐭c(t2)𝐭e(t2)2=aebeacbckesinθ2.\frac{1}{\|{\mathbf{t}}_{c}(t_{1}^{\prime})\|}+\frac{1}{\|{\mathbf{t}}_{c}(t_{2}^{\prime})\|}=\frac{2a_{e}b_{e}}{a_{c}b_{c}}\,\frac{\|{\mathbf{t}}_{c}(t_{2})\|}{\|{\mathbf{t}}_{e}(t_{2})\|^{2}}=\frac{a_{e}b_{e}}{a_{c}b_{c}\sqrt{k_{e}}}\,\sin\theta_{2}\,. (5.1)
Theorem 6.

The exterior angles θi\theta_{i} of an NN-periodic billiard in an ellipse and with an ellipse as caustic satisfy for N0(mod2)N\equiv 0\pmod{2}

i=1N(1)isinθi=0and forN0(mod4)i=1N/2(1)isinθi=0.\sum_{i=1}^{N}(-1)^{i}\sin\theta_{i}=0\mskip 9.0mu\mbox{and for}\mskip 9.0muN\equiv 0\mskip-15.0mu\pmod{4}\mskip 9.0mu\sum_{i=1}^{N/2}(-1)^{i}\sin\theta_{i}=0\,.
Proof.

By virtue of (Sta_I, , Corollary 4.2), periodic billiards with even N=2nN=2n are centrally symmetric, which implies θi=θi+n\theta_{i}=\theta_{i+n}\,. For N2(mod4)N\equiv 2\pmod{4} the sum from 11 to NN must vanish since (1)i=(1)(i+n)(-1)^{i}=-(-1)^{(i+n)}.
In the remaining case N0(mod4)N\equiv 0\pmod{4} follows from (5.1)

sinθi=acbckeaebe(1𝐭c(ti1)+1𝐭c(ti))\sin\theta_{i}=\frac{a_{c}b_{c}\sqrt{k_{e}}}{a_{e}b_{e}}\left(\frac{1}{\|{\mathbf{t}}_{c}(t_{i-1}^{\prime})\|}+\frac{1}{\|{\mathbf{t}}_{c}(t_{i}^{\prime})\|}\right)

and further

i=1N/2sinθi=acbckeaebe(1𝐭c(tN)+1𝐭c(t1)1𝐭c(t1)1𝐭c(t2)+1𝐭c(tn)).\begin{array}[]{l}\displaystyle\sum_{i=1}^{N/2}\,\sin\theta_{i}={\displaystyle\frac{a_{c}b_{c}\sqrt{k_{e}}}{a_{e}b_{e}}}\,\cdot\\ \phantom{m}\left({\displaystyle\frac{1}{\|{\mathbf{t}}_{c}(t_{N}^{\prime})\|}}+{\displaystyle\frac{1}{\|{\mathbf{t}}_{c}(t_{1}^{\prime})\|}}-{\displaystyle\frac{1}{\|{\mathbf{t}}_{c}(t_{1}^{\prime})\|}}-{\displaystyle\frac{1}{\|{\mathbf{t}}_{c}(t_{2}^{\prime})\|}}+-\dots-{\displaystyle\frac{1}{\|{\mathbf{t}}_{c}(t_{n}^{\prime})\|}}\right).\end{array}

This sum vanishes, since 𝐭c(tn)=𝐭c(tN){\mathbf{t}}_{c}(t_{n}^{\prime})=-{\mathbf{t}}_{c}(t_{N}^{\prime})\,, due to the odd turning number τ\tau because of gcd(N,τ)=1\mbox{gcd}(N,\tau)=1\,. ∎

At the same token, from

θ˙i=ωiωi1=acbc(1𝐭c(ti)1𝐭c(ti1))\dot{\theta}_{i}=\omega_{i}-\omega_{i-1}=a_{c}b_{c}\left(\frac{1}{\|{\mathbf{t}}_{c}(t_{i}^{\prime})\|}-\frac{1}{\|{\mathbf{t}}_{c}(t_{i-1}^{\prime})\|}\right) (5.2)

and (5.1) follows

dducosθi=θ˙isinθi=ac2bc2keaebe(1𝐭c(ti1)21𝐭c(ti)2).\frac{\mathrm{d}}{\mathrm{d}u}\cos\theta_{i}=-\dot{\theta}_{i}\sin\theta_{i}=\frac{a_{c}^{2}b_{c}^{2}\sqrt{k_{e}}}{a_{e}b_{e}}\left(\frac{1}{\|{\mathbf{t}}_{c}(t_{i-1}^{\prime})\|^{2}}-\frac{1}{\|{\mathbf{t}}_{c}(t_{i}^{\prime})\|^{2}}\right).

This shows that ddu(1Ncosθi)\frac{\mathrm{d}}{\mathrm{d}u}\left(\sum_{1}^{N}\cos\theta_{i}\right) vanishes and, therefore, 1Ncosθi\sum_{1}^{N}\cos\theta_{i} is invariant against billiard motions, which was first proved in Ako-Tab .

For the sake of completeness, we also focus on the variation of the side lengths under the canonical billiard motion. We obtain

dduPiPi+1¯=vt|i+1vt|i=𝐭c(ti+1)2𝐭c(ti)2=d2(sin2ti+1sin2ti).\begin{array}[]{rcl}{\displaystyle\frac{\mathrm{d}}{\mathrm{d}u}}\,\overline{P_{i}P_{i+1}}&=&v_{t|i+1}-v_{t|i}\\[4.2679pt] &=&\|{\mathbf{t}}_{c}(t_{i+1})\|^{2}-\|{\mathbf{t}}_{c}(t_{i})\|^{2}=d^{2}(\sin^{2}t_{i+1}-\sin^{2}t_{i}).\end{array} (5.3)

The vanishing sum over all ii confirms again the constant perimeter. We like to recall that already in Bialy-Tab some proofs for invariants were based on differentiation.

Finally we concentrate on the effects showing up when the vertex PiP_{i} traverses a quarter of the full period along the billiard.

Lemma 7.

As before, let t1,t1,t2,t2,,tNt_{1},t_{1}^{\prime},t_{2},t_{2}^{\prime},\dots,t_{N}^{\prime} be the sequence of parameters of an NN-periodic billiard in an ellipse ee with an ellipse cc as caustic. Then holds for N0(mod2)N\equiv 0\pmod{2}:

ifN=4n:𝐭c(ti)𝐭c(ti+n)=kh(ti)kh(ti+n)ifN=4n+2:𝐭c(ti)𝐭c(ti+n)=kh(ti)kh(ti+n)}=acbc,\left.\begin{array}[]{rl}\mbox{if}\mskip 9.0muN=4n:&\|{\mathbf{t}}_{c}(t_{i})\|\,\|{\mathbf{t}}_{c}(t_{i+n})\|=\sqrt{k_{h}(t_{i})\,k_{h}(t_{i+n})}\\[2.84526pt] \mbox{if}\mskip 9.0muN=4n\!+\!2:&\|{\mathbf{t}}_{c}(t_{i})\|\,\|{\mathbf{t}}_{c}(t_{i+n}^{\prime})\|=\sqrt{k_{h}(t_{i})\,k_{h}(t_{i+n}^{\prime})}\end{array}\right\}=a_{c}\,b_{c}\,,

and the same after the parameter shift titit_{i}\mapsto t_{i}^{\prime} and titi+1t_{i}^{\prime}\mapsto t_{i+1}\,.

Proof.

Based on the canonical parametrization by u~\tilde{u}, a quarter of the period 4K4K corresponds to a shift by KK. In the case N=4nN=4n this shift effects titi+nt_{i}\mapsto t_{i+n} and titi+nt_{i}^{\prime}\mapsto t_{i+n}^{\prime}. If N=4n+2N=4n+2, then titi+nt_{i}\mapsto t_{i+n}^{\prime} and titi+n+1t_{i}^{\prime}\mapsto t_{i+n+1}.
According to (4.11) holds kh=ac2dn2u~k_{h}=-a_{c}^{2}\,\mathrm{dn}^{2}\tilde{u} and by (2.6) 𝐭c(t)=kh(t)=acdnu~\|{\mathbf{t}}_{c}(t)\|=\sqrt{-k_{h}(t)}=a_{c}\mskip 2.0mu\mathrm{dn}\mskip 2.0mu\tilde{u}\,. The identity

dn(u~+K)=1m2dn(u~)\mskip 2.0mu\mathrm{dn}(\tilde{u}+K)=\frac{\sqrt{1-m^{2}}}{\mskip 2.0mu\mathrm{dn}(\tilde{u})}

implies

dn(u~)dn(u~+K)=bcac,hencekh(u~)kh(u~+K)=acbc.\mskip 2.0mu\mathrm{dn}(\tilde{u})\cdot\mskip 2.0mu\mathrm{dn}(\tilde{u}+K)=\frac{b_{c}}{a_{c}}\,,\mskip 9.0mu\mbox{hence}\mskip 9.0mu\sqrt{k_{h}(\tilde{u})\cdot k_{h}(\tilde{u}+K)}=a_{c}\,b_{c}\,.

This confirms the claim. ∎

Theorem 8.

If an NN-periodic billiard in an ellipse ee with an ellipse as caustic is given with N0(mod2)N\equiv 0\pmod{2}, then the distances ri=Qi1Pi¯r_{i}=\overline{Q_{i-1}P_{i}} and li=PiQi¯l_{i}=\overline{P_{i}Q_{i}} satisfy

forN=4n:riri+n=lili+nforN=4n+2:rili+n=liri+n+1}=ke.\left.\begin{array}[]{rl}\mbox{for}\mskip 9.0muN=4n:&r_{i}\cdot r_{i+n}=l_{i}\cdot l_{i+n}\\[2.84526pt] \mbox{for}\mskip 9.0muN=4n\!+\!2:&r_{i}\cdot l_{i+n}=l_{i}\cdot r_{i+n+1}\end{array}\right\}=k_{e}\,.
Proof.

From the expressions for rir_{i} and lil_{i} in Lemma 5 follows, by virtue of Lemma 7, for N=4nN=4n

riri+n=keac2bc2𝐭c(ti1)𝐭c(ti)𝐭c(ti+n1)𝐭c(ti+n)=ker_{i}\cdot r_{i+n}=\frac{k_{e}}{a_{c}^{2}b_{c}^{2}}\,\|{\mathbf{t}}_{c}(t_{i-1}^{\prime})\|\,\|{\mathbf{t}}_{c}(t_{i})\|\,\|{\mathbf{t}}_{c}(t_{i+n-1}^{\prime})\|\,\|{\mathbf{t}}_{c}(t_{i+n})\|=k_{e}

and the same result for lili+nl_{i}\cdot l_{i+n}\,. In the case N=4n+2N=4n+2 we obtain similarly

rili+n=liri+n+1=ke,r_{i}\cdot l_{i+n}=l_{i}\cdot r_{i+n+1}=k_{e}\,,

as stated. ∎

The following corollary is an immediate consequence of Theorem 8.

Corollary 9.

Let si=PiPi+1¯=li+ri+1s_{i}=\overline{P_{i}P_{i+1}}=l_{i}+r_{i+1} for i=1,,Ni=1,\dots,N be the side lengths of the NN-periodic billiard with even NN and si=PiPi+1¯=ri+1+li+1s_{i}^{\prime}=\overline{P_{i}^{\prime}P_{i+1}^{\prime}}=r_{i+1}+l_{i+1} that of the conjugate billiard. Then,

forN=4n:si+nsi=li+nri+1=ri+n+1li,forN=4n+2:si+nsi1=li+nli=ri+n+1ri.\begin{array}[]{rl}\mbox{for}\mskip 9.0muN=4n:&{\displaystyle\frac{s_{i+n}}{s_{i}}}={\displaystyle\frac{l_{i+n}}{r_{i+1}}}={\displaystyle\frac{r_{i+n+1}}{l_{i}}}\,,\\[7.11317pt] \mbox{for}\mskip 9.0muN=4n\!+\!2:&{\displaystyle\frac{s_{i+n}}{s_{i-1}^{\prime}}}={\displaystyle\frac{l_{i+n}}{l_{i}}}={\displaystyle\frac{r_{i+n+1}}{r_{i}}}\,.\end{array}

Finally we prove the invariance of k117 in (80, , Table 2).

Theorem 10.

Referring to the notation in Lemma 5, for even NN the products

r1r2rN=l1l2lN=keN/2r_{1}r_{2}\dots r_{N}=l_{1}l_{2}\dots l_{N}=k_{e}^{N/2}

are invariant against billiard motions. For N0(mod4)N\equiv 0\pmod{4} this is already true for the products

r1r2rN/2=l1l2lN/2=keN/4.r_{1}r_{2}\dots r_{N/2}=l_{1}l_{2}\dots l_{N/2}=k_{e}^{N/4}.
Proof.

For N0(mod4)N\equiv 0\pmod{4} the statements are a direct consequence of Theorem 8 and the central symmetry of the billiard which exchanges rir_{i} with ri+N/2r_{i+N/2} and lil_{i} with li+N/2l_{i+N/2}\,.
In the remaining case N=2n+2N=2n+2 we note that by (3.2) R(u):=r1r2rN=l1l2lNR(u):=r_{1}r_{2}\dots r_{N}=l_{1}l_{2}\dots l_{N}. Hence, by virtue of Theorem 8,

R2(u)=i=1N(rili+n)=keN,R^{2}(u)=\prod_{i=1}^{N}\ (r_{i}\,l_{i+n})=k_{e}^{N},

which yields the stated result. ∎

References

  • (1) A. Akopyan, R. Schwartz, S. Tabachnikov, Billiards in ellipses revisited, Eur. J. Math. 2020, doi:10.1007/s40879-020-00426-9
  • (2) M. Bialy, S. Tabachnikov, Dan Reznik’s identities and more. Eur. J. Math. 2020, doi:10.1007/s40879-020-00428-7
  • (3) A.I. Bobenko, W.K. Schief, Y.B. Suris, J. Techter, On a discretization of confocal quadrics. A geometric approach to general parametrizations, Int. Math. Res. Not. IMRN 2020, no. 24, 10180–10230
  • (4) A. Chavez-Caliz, More about areas and centers of Poncelet polygons, Arnold Math. J. 7, 91–106 (2021).
  • (5) V. Dragović, M. Radnović, Integrable billiards and quadrics. Russian Math. Surveys 65/2, 319–379 (2010)
  • (6) V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics. Birkhäuser/Springer Basel AG, Basel (2011)
  • (7) J.J. Duistermaat, Discrete Integrable Systems. QRT Maps and Elliptic Surfaces. Springer Monographs in Mathematics 304, Springer, New York (2010)
  • (8) G. Glaeser, H. Stachel, B. Odehnal, The Universe of Conics, From the ancient Greeks to 21st century developments, Springer Spectrum, Berlin, Heidelberg (2016)
  • (9) R. Hoppe, Elliptische Integrale und Funktionen nach Jacobi. http://www.dfcgen.de/wpapers/elliptic.pdf (2004–2015), accessed May 2021
  • (10) I. Izmestiev, S. Tabachnikov, Ivory’s Theorem revisited, J. Integrable Syst. 2/1, xyx006 (2017) R. Hoppe: Elliptische Integrale und Funktionen nach JACOBI M. Koecher, A. Krieg, Elliptische Funktionen und Modulformen, 2. Aufl., Springer-Verlag, Berlin, Heidelberg (2007)
  • (11) D. Reznik, R. Garcia, J. Koiller, Eighty New Invariants of N-Periodics in the Elliptic Billiard, arXiv:2004.12497v11[math.DS] (2020)
  • (12) H. Stachel, Recalling Ivory’s Theorem, FME Transactions 47, No 2, 355–359 (2019)
  • (13) H. Stachel, The Geometry of Billiards in Ellipses and their Poncelet Grids. arXiv:2105.03362[math.MG] (2021).
  • (14) S. Tabachnikov, Geometry and Billiards, American Mathematical Society, Providence/Rhode Island (2005)