This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the monotonicity of the generalized Markov numbers

Min Huang Min Huang
School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai, China.
[email protected]
Abstract.

Using the Markov distance and Ptolemy inequality introduced by Lee-Li-Rabideau-Schiffler [10], we completely determine the monotonicity of the generalized Markov numbers along the lines of a given slope.

Key words and phrases:
Markov number, monotonic

1. Introduction

A Markov number is any number in the triple (x,y,z)(x,y,z) of positive integer solutions to the Diophantine equation

x2+y2+z2=3xyz,x^{2}+y^{2}+z^{2}=3xyz,

known as the Markov equation.

Every Markov number appears as the maximum of some Markov triple, The Markov Uniqueness Conjecture by Frobenius from 1913 asserts that each Markov number appears as the maximum of a unique Markov triple [5, 1, 10, 6, 16].

As an approach to studying the Uniqueness Conjecture, Aigner [1] proposed three conjectures, called fixed numerator, fixed denominator, and fixed sum conjectures, which say that the Markov numbers increase along the lines yy-axis, xx-axis, and y=xy=x, respectively.

Propp [15] and Beineke-Brüstle-Hille [2] found that the Markov numbers are the specialized cluster variables of the once-punctured torus cluster algebras. The family of cluster algebras from surfaces, introduced by Fomin-Shapiro-Thurston [4] is a class of important and special cluster algebras. The cluster variables can be computed in terms of the perfect matching of certain snake graphs [11, 12, 8], see also for the quantum case in [3, 7, 9]. In [13], for a given cluster algebra 𝒜\mathcal{A} from a marked surface (S,M)(S,M), Musiker-Schiffler-Williams associate any generalized curve γ\gamma on (S,M)(S,M) with an element xγx_{\gamma}.

To study the ordering of the Markov numbers and the Uniqueness Conjecture, Lee-Li-Rabideau-Schiffler [10] introduced the Markov distance on the plane. By comparing the Markov tree and the Farey tree, one sees that the Markov numbers can be indexed by the rational numbers between zero and one, equivalently, the set {(q,p)>02p<q,g.c.d.(p,q)=1}\{(q,p)\in\mathbb{Z}_{>0}^{2}\mid p<q,g.c.d.(p,q)=1\}, see [1]. Using the Markov distance, Lee-Li-Rabideau-Schiffler extended the Markov numbers to the numbers indexed by all (q,p)>02(q,p)\in\mathbb{Z}_{>0}^{2} with p<qp<q, we call them generalized Markov numbers in this paper. They show that the Markov numbers increase and decrease along the line with some special slopes. They also show that there are some lines such that the Markov numbers are not monotonic along these lines.

Using hyperbolic geometry, Gaster provides the boundary slopes for which the Markov numbers decrease and increase, respectively. In this paper, we consider the monotonicity of generalized Markov numbers and give a parallel result to that of Gaster.

Our main result is the following, which was conjectured by Lee-Li-Rabideau-Schiffler [10] 111Thanks to the authors of [10] for sharing their revised manuscript in private communication. See also [6]..

Theorem 1.1.

(Theorem 4.11, Proposition 3.13 (2))

  1. (1)(1)

    For kk\in\mathbb{Q} with kln3(2+2)4ln2(2+2)31.1432k\geq-\frac{ln\frac{3(2+\sqrt{2})}{4}}{ln\frac{2(2+\sqrt{2})}{3}}\approx-1.1432, the generalized Markov numbers increase with xx along any line l:y=kx+bl:y=kx+b;

  2. (2)(2)

    For kk\in\mathbb{Q} with k2ln(1+52)ln(3(1+5)25)1.2417k\leq-\frac{2ln(\frac{1+\sqrt{5}}{2})}{ln(\frac{3(1+\sqrt{5})}{2\sqrt{5}})}\approx-1.2417, the generalized Markov numbers decrease with xx along any line y=kx+by=kx+b;

  3. (3)(3)

    For any kk\in\mathbb{Q} with 2ln(1+52)ln(3(1+5)25)<k<ln3(2+2)4ln2(2+2)3-\frac{2ln(\frac{1+\sqrt{5}}{2})}{ln(\frac{3(1+\sqrt{5})}{2\sqrt{5}})}<k<-\frac{ln\frac{3(2+\sqrt{2})}{4}}{ln\frac{2(2+\sqrt{2})}{3}}, then for almost all bb\in\mathbb{Q}, the generalized Markov numbers are not monotonic along the line y=kx+by=kx+b.

  4. (4)(4)

    For the lines along which the generalized Markov numbers are not monotonic, when the xx-coordinate increases the generalized Markov numbers first decrease and then increase.

  5. (5)(5)

    the generalized Markov numbers are not monotonic along the line ll if and only if rl(ul,vl)<1r_{l}(u_{l},v_{l})<1 and rl(zl,wl)>1r_{l}(z_{l},w_{l})>1.

Remark 1.2.

Theorem 1.1(1) solves [10, Conjecture 6.11], Theorem 1.1(2) solves [10, Conjecture 6.8] and Theorem 1.1(3) (4) solve [10, Conjecture 6.12].

Note that the Markov distance does not have triangle inequality, we find the following interesting inequality, as modified triangle inequality.

Proposition 1.3.

(Proposition 3.14) Let (x,y),(x,y),(x′′,y′′)02(x,y),(x^{\prime},y^{\prime}),(x^{\prime\prime},y^{\prime\prime})\in\mathbb{Z}_{\geq 0}^{2} be three points with xy,xyx\geq y,x^{\prime}\geq y^{\prime} and x′′y′′x^{\prime\prime}\geq y^{\prime\prime}. If (x,y)=(x,y)+(x′′,y′′)2(x^{\prime},y^{\prime})=\frac{(x,y)+(x^{\prime\prime},y^{\prime\prime})}{2} then

mx,y+mx′′,y′′2mx,y.m_{x,y}+m_{x^{\prime\prime},y^{\prime\prime}}\geq 2m_{x^{\prime},y^{\prime}}.

The structure of this paper is the following. Section 2 is preliminary, we review the Markov distance, generalized Markov numbers defined by Lee-Li-Rabideau-Schiffler, and some properties herein. We introduce the ratios between two generalized Markov numbers and study the monotonicity in Section 3. We study the monotonicity of the generalized Markov numbers and give the proof of the main result in Section 4.

Convention: (i)  The points that appeared in the paper are always assumed to lie in the area {(x,y)>02x>y}\{(x,y)\in\mathbb{Z}^{2}_{>0}\mid x>y\} unless otherwise stated. (ii)  When we consider the monotonicity of the generalized Markov numbers along a line ll, we always assume that l{(x,y)>02x>y}l\cap\{(x,y)\in\mathbb{Z}^{2}_{>0}\mid x>y\}\neq\emptyset.

2. Preliminary

In this section, we review the Markov distance, generalized Markov numbers defined in [10], and some properties.

Let γ\gamma be a curve connecting two points but not passing through a third one. Musiker-Schiffler-Williams [13] associated γ\gamma with an element xγx_{\gamma} in the once-punctured torus cluster algebra. Denote |γ|=xγ|x1,x2,x3=1|\gamma|=x_{\gamma}|_{x_{1},x_{2},x_{3}}=1 the positive integer obtained from xγx_{\gamma} by specializing the initial cluster algebras x1,x2x_{1},x_{2} and x3x_{3} to 11.

Definition 2.1.

[10] For any points A,B2A,B\in\mathbb{Z}^{2}, the Markov distance |AB||AB| between AA and BB is defined as |γABL||\gamma_{AB}^{L}|, where γABL\gamma_{AB}^{L} is the left deformation of ABAB.

By the skein relation [14] of cluster algebras from surfaces, the Markov distance has the following important property.

Theorem 2.2.

[10, Corollary 3.6] (Ptolemy inequality) Given four points A,B,C,DA,B,C,D in the plane such that the straight line segments AB,BC,CD,DAAB,BC,CD,DA form a convex quadrilateral with diagonals ACAC and BDBD, we have

|AC||BD||AB||CD|+|AD||BC|.|AC||BD|\geq|AB||CD|+|AD||BC|.

For any A=(x,y)2A=(x,y)\in\mathbb{Z}^{2}, denote mx,y=|OA|m_{x,y}=|OA|.

Definition 2.3.

For any (x,y)>02(x,y)\in\mathbb{Z}_{>0}^{2} such that x>yx>y, we call mx,ym_{x,y} a generalized Markov numbers.

Note that if xx and yy are coprime then mx,y=mxym_{x,y}=m_{\frac{x}{y}} is the usual Markov number.

We now list a few results on the generalized Markov numbers that we will need later.

Recall that the Fibonacci numbers are {nn0}\{\mathcal{F}_{n}\mid n\geq 0\} which satisfies 0=0,1=2=1,n=n1+n2\mathcal{F}_{0}=0,\mathcal{F}_{1}=\mathcal{F}_{2}=1,\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2} for n2n\geq 2. It is well-known that the Markov numbers indexed by (q,1),q>1(q,1),q>1 are the odd Fibonacci numbers 2q+1,q>1\mathcal{F}_{2q+1},q>1.

(1) mq,1=2q+1=(ϕ2q+1+ϕ2q1)/5ϕ2q+1/5,m_{q,1}=\mathcal{F}_{2q+1}=(\phi^{2q+1}+\phi^{-2q-1})/\sqrt{5}\sim\phi^{2q+1}/\sqrt{5},

where ϕ=5+12\phi=\frac{\sqrt{5}+1}{2}.

Recall that the Pell numbers are {Pnn0}\{P_{n}\mid n\geq 0\} which satisfies P0=0,P1=1,P2=1,Pn=2Pn1+Pn2P_{0}=0,P_{1}=1,P_{2}=1,P_{n}=2P_{n-1}+P_{n-2} for n2n\geq 2. It is well-known that the Markov numbers indexed by (q,q1),q>1(q,q-1),q>1 are the odd Pell numbers P2q1,q>1P_{2q-1},q>1.

(2) mq,q1=P2q1=(1+2)2q1(12)2q122(1+2)2q122.m_{q,q-1}=P_{2q-1}=\frac{(1+\sqrt{2})^{2q-1}-(1-\sqrt{2})^{2q-1}}{2\sqrt{2}}\sim\frac{(1+\sqrt{2})^{2q-1}}{2\sqrt{2}}.

The following useful lemma is given in [10].

Lemma 2.4.

[10, Lemma 6.2] Let p,qp,q be coprime positive integers and let fn=mnq,npf_{n}=m_{nq,np}. Thus f0=0f_{0}=0 and f1=mq,pf_{1}=m_{q,p} is the Markov number. Then, for n2n\geq 2,

fn=3f1fn1fn2.f_{n}=3f_{1}f_{n-1}-f_{n-2}.

As a consequence, we have fn=f19f124(αnαn)f_{n}=\frac{f_{1}}{\sqrt{9f_{1}^{2}-4}}(\alpha^{n}-\alpha^{-n}), where α=(3f1+9f124)/2\alpha=(3f_{1}+\sqrt{9f_{1}^{2}-4})/2.

In particular, we have

Proposition 2.5.

[10] For any q,n>1q,n>1, we have

  1. (1)(1)
    mqn,n=mq,19mq,124(αnαn)3n1mq,1n(q),m_{qn,n}=\frac{m_{q,1}}{\sqrt{9m_{q,1}^{2}-4}}(\alpha^{n}-\alpha^{-n})\sim 3^{n-1}m_{q,1}^{n}\hskip 14.22636pt(q\to\infty),
  2. (2)(2)
    mqn,(q1)n=mq,q19mq,q124(αnαn)3n1mq,q1n(q),m_{qn,(q-1)n}=\frac{m_{q,q-1}}{\sqrt{9m_{q,q-1}^{2}-4}}(\alpha^{n}-\alpha^{-n})\sim 3^{n-1}m_{q,q-1}^{n}\hskip 14.22636pt(q\to\infty),

where α=3mq,1+9mq,1242\alpha=\frac{3m_{q,1}+\sqrt{9m_{q,1}^{2}-4}}{2}.

As a corollary of Lemma 2.4, we have the following observation.

Lemma 2.6.

For any q0q\in\mathbb{Z}_{\geq 0}, we have

  1. (1)(1)

    mp,0=2qm_{p,0}=\mathcal{F}_{2q},

  2. (2)(2)

    mp,p=P2qm_{p,p}=P_{2q}.

Proof.

We shall only prove (1) as (2) can be proved similarly. For any q2q\geq 2, as 2q2=2q3+2q4\mathcal{F}_{2q-2}=\mathcal{F}_{2q-3}+\mathcal{F}_{2q-4}, we have that 2q2+2q3=22q22q4\mathcal{F}_{2q-2}+\mathcal{F}_{2q-3}=2\mathcal{F}_{2q-2}-\mathcal{F}_{2q-4}, this implies

2q1=22q22q4,\mathcal{F}_{2q-1}=2\mathcal{F}_{2q-2}-\mathcal{F}_{2q-4},

Thus we have

2q=32q22q4.\mathcal{F}_{2q}=3\mathcal{F}_{2q-2}-\mathcal{F}_{2q-4}.

Moreover as m0,0=0=0m_{0,0}=0=\mathcal{F}_{0} and m1,0=1=2m_{1,0}=1=\mathcal{F}_{2}, by Lemma 2.4 the result follows.

3. Ratio between two generalized Markov numbers

3.1. Horizontal and vertical ratios

Definition 3.1.

For any (q,p)missingZ02(q,p)\in\mathbb{\mathbb{missing}}Z_{\geq 0}^{2} with pqp\leq q, the horizontal ratio at (q,p)(q,p) is the ratio mq+1,pmq,p\frac{m_{q+1,p}}{m_{q,p}}, denote by h(q,p)h(q,p). If p<qp<q, the vertical ratio at (q,p)(q,p) is the ratio mq,p+1mq,p\frac{m_{q,p+1}}{m_{q,p}}, denote by v(q,p).v(q,p).

Thus mq+1,p>mq,pm_{q+1,p}>m_{q,p} if and only if h(q,p)>1h(q,p)>1, mq,p+1>mq,pm_{q,p+1}>m_{q,p} if and only if v(q,p)>1v(q,p)>1.

We first investigate the monotonicity of h(q,p)h(q,p) and v(q,p)v(q,p).

Lemma 3.2.

For any (q,p)>02(q,p)\in\mathbb{Z}_{>0}^{2} with pqp\leq q, we have

  1. (i)
    h(q+1,p)>h(q,p),h(q+1,p)>h(q,p),
  2. (ii)

    if p+1qp+1\leq q then

    h(q,p)>h(q,p+1).h(q,p)>h(q,p+1).
Proof.

(1) Let O=(0,0),A1=(q,p),A2=(q+1,p),A3=(q+2,p)O=(0,0),A_{1}=(q,p),A_{2}=(q+1,p),A_{3}=(q+2,p). Let O=(1,0)O^{\prime}=(1,0). By the Ptolemy inequality, we have |OA3||OA2|>|OA2||OA3||OA_{3}||O^{\prime}A_{2}|>|OA_{2}||O^{\prime}A_{3}|, that is

|OA3||OA1|>|OA2|2.|OA_{3}||OA_{1}|>|OA_{2}|^{2}.

It follows that |OA3||OA2|>|OA2||OA1|,\frac{|OA_{3}|}{|OA_{2}|}>\frac{|OA_{2}|}{|OA_{1}|}, that is

h(q+1,p)>h(q,p).h(q+1,p)>h(q,p).

(2) Let O=(0,0),A1=(q,p),A2=(q+1,p),A1=(q,p+1),A2=(q+1,p+1)O=(0,0),A_{1}=(q,p),A_{2}=(q+1,p),A_{1}^{\prime}=(q,p+1),A_{2}^{\prime}=(q+1,p+1). Let O=(0,1)O^{\prime}=(0,1). By the Ptolemy inequality, we have |OA1||OA2|>|OA1||OA2||OA_{1}^{\prime}||O^{\prime}A^{\prime}_{2}|>|O^{\prime}A_{1}^{\prime}||OA_{2}^{\prime}|, that is

|OA1||OA2|>|OA1||OA2|.|OA^{\prime}_{1}||OA_{2}|>|OA_{1}||OA_{2}^{\prime}|.

It follows that |OA2||OA1|>|OA2||OA1|,\frac{|OA_{2}|}{|OA_{1}|}>\frac{|OA^{\prime}_{2}|}{|OA^{\prime}_{1}|}, that is

h(q,p)>h(q,p+1)h(q,p)>h(q,p+1)
[Uncaptioned image]

Figure for Lemma 3.2

Remark 3.3.

Lemma 3.2 implies the function h(x,y)h(x,y) is increasing along the xx-axis and decreasing along the line yy-axis.

Corollary 3.4.

For any (q,p)>02(q,p)\in\mathbb{Z}_{>0}^{2} with pqp\leq q, we have

(1+2)4q+2+1(1+2)((1+2)4q1)h(q,p)ϕ4q+6+1ϕ2(ϕ4q+2+1),\frac{(1+\sqrt{2})^{4q+2}+1}{(1+\sqrt{2})((1+\sqrt{2})^{4q}-1)}\leq h(q,p)\leq\frac{\phi^{4q+6}+1}{\phi^{2}(\phi^{4q+2}+1)},

where ϕ=5+12\phi=\frac{\sqrt{5}+1}{2}. In particular, we have

(1+2)m(q,p)<m(q,p+1)<3+52mq,p+1.(1+\sqrt{2})m_{(q,p)}<m_{(q,p+1)}<\frac{3+\sqrt{5}}{2}m_{q,p+1}.
Proof.

By Lemma 3.2, we have h(q,q)h(q,p)h(q,1)h(q,q)\leq h(q,p)\leq h(q,1). By Lemma 2.6, we have

h(q,q)=mq+1,qmq,q=P2q+1P2q=(1+2)4q+2+1(1+2)((1+2)4q1).h(q,q)=\frac{m_{q+1,q}}{m_{q,q}}=\frac{P_{2q+1}}{P_{2q}}=\frac{(1+\sqrt{2})^{4q+2}+1}{(1+\sqrt{2})((1+\sqrt{2})^{4q}-1)}.
h(q,1)=mq+1,1mq,1=2q+32q+1=ϕ4q+6+1ϕ2(ϕ4q+2+1).h(q,1)=\frac{m_{q+1,1}}{m_{q,1}}=\frac{\mathcal{F}_{2q+3}}{\mathcal{F}_{2q+1}}=\frac{\phi^{4q+6}+1}{\phi^{2}(\phi^{4q+2}+1)}.

As (1+2)4q+2+1(1+2)((1+2)4q1)>1+2\frac{(1+\sqrt{2})^{4q+2}+1}{(1+\sqrt{2})((1+\sqrt{2})^{4q}-1)}>1+\sqrt{2} and ϕ4q+6+1ϕ2(ϕ4q+2+1)<ϕ2=3+52\frac{\phi^{4q+6}+1}{\phi^{2}(\phi^{4q+2}+1)}<\phi^{2}=\frac{3+\sqrt{5}}{2}, we have

(1+2)m(q,p)<m(q,p+1)<3+52mq,p+1.(1+\sqrt{2})m_{(q,p)}<m_{(q,p+1)}<\frac{3+\sqrt{5}}{2}m_{q,p+1}.

Lemma 3.5.

For any (q,p)02(q,p)\in\mathbb{Z}_{\geq 0}^{2} with p<qp<q, we have

  1. (1)(1)

    if p+1<qp+1<q then

    v(q,p+1)>v(q,p),v(q,p+1)>v(q,p),
  2. (2)(2)
    v(q,p)<v(q+1,p).v(q,p)<v(q+1,p).
Proof.

(1) Let O=(0,0),A1=(q,p),A2=(q,p+1),A3=(q,p+2)O=(0,0),A_{1}=(q,p),A_{2}=(q,p+1),A_{3}=(q,p+2). Let O=(0,1)O^{\prime}=(0,1). By the Ptolemy inequality, we have |OA3||OA2|>|OA2||OA3||OA_{3}||O^{\prime}A_{2}|>|OA_{2}||O^{\prime}A_{3}|, that is

|OA3||OA1|>|OA2|2.|OA_{3}||OA_{1}|>|OA_{2}|^{2}.

It follows that |OA3||OA2|>|OA2||OA1|,\frac{|OA_{3}|}{|OA_{2}|}>\frac{|OA_{2}|}{|OA_{1}|}, that is

v(q,p+1)>v(q,p).v(q,p+1)>v(q,p).

(2) Let O=(0,0),A1=(q,p),A2=(q+1,p),A1=(q,p+1),A2=(q+1,p+1)O=(0,0),A_{1}=(q,p),A_{2}=(q+1,p),A_{1}^{\prime}=(q,p+1),A_{2}^{\prime}=(q+1,p+1). Let O=(0,1)O^{\prime}=(0,1). By the Ptolemy inequality, we have |OA2||OA2|>|OA2||OA2||OA_{2}||O^{\prime}A^{\prime}_{2}|>|O^{\prime}A_{2}||OA_{2}^{\prime}|, that is

|OA2||OA1|>|OA1||OA2|.|OA_{2}||OA^{\prime}_{1}|>|OA_{1}||OA_{2}^{\prime}|.

It follows that |OA2||OA1|>|OA2||OA1|,\frac{|OA_{2}|}{|OA_{1}|}>\frac{|OA^{\prime}_{2}|}{|OA^{\prime}_{1}|}, that is

v(q,p)>v(q+1,p)v(q,p)>v(q+1,p)
[Uncaptioned image]

Figure for Lemma 3.5

Remark 3.6.

Lemma 3.5 implies the function v(x,y)v(x,y) is increasing along the xx-axis and decreasing along the yy-axis.

Corollary 3.7.

For any (q,p)02(q,p)\in\mathbb{Z}_{\geq 0}^{2} with p<qp<q, we have

(1+2)4p+41(1+2)((1+2)4p+2+1)v(q,p)ϕ4q+2+1ϕ(ϕ4q+1),\frac{(1+\sqrt{2})^{4p+4}-1}{(1+\sqrt{2})((1+\sqrt{2})^{4p+2}+1)}\leq v(q,p)\leq\frac{\phi^{4q+2}+1}{\phi(\phi^{4q}+1)},

where ϕ=5+12\phi=\frac{\sqrt{5}+1}{2}. In particular,

mq,p<mq,p+1<ϕmq,p.m_{q,p}<m_{q,p+1}<\phi m_{q,p}.
Proof.

By Lemma 3.5, we have v(p+1,p),v(q,q1)v(q,p)v(q,0)v(p+1,p),v(q,q-1)\leq v(q,p)\leq v(q,0). By Lemma 2.6, we have

v(p+1,p)=mp+1,p+1mp+1,p=P2p+2P2p+1=(1+2)4p+41(1+2)((1+2)4p+2+1).v(p+1,p)=\frac{m_{p+1,p+1}}{m_{p+1,p}}=\frac{P_{2p+2}}{P_{2p+1}}=\frac{(1+\sqrt{2})^{4p+4}-1}{(1+\sqrt{2})((1+\sqrt{2})^{4p+2}+1)}.
v(q,0)=mq,1mq,0=2q+12q=ϕ4q+2+1ϕ(ϕ4q+1).v(q,0)=\frac{m_{q,1}}{m_{q,0}}=\frac{\mathcal{F}_{2q+1}}{\mathcal{F}_{2q}}=\frac{\phi^{4q+2}+1}{\phi(\phi^{4q}+1)}.

The result follows.

3.2. Ratio along any line

Inspirited by the horizontal and vertical ratio, we now define the ratio along any line l:y=kx+bl:y=kx+b where k,bk,b\in\mathbb{Q}.

For any tt\in\mathbb{R} denote by l[t]:y=k(xt)+bl[t]:y=k(x-t)+b the line obtained from ll by shift along xx-axis by tt, by lt:(yt)=k(xt)+bl\langle t\rangle:(y-t)=k(x-t)+b the line obtained from ll by shift along y=xy=x by 2t\sqrt{2}t. We always assume that t0t\in\mathbb{Z}_{\geq 0} unless otherwise stated. Note that lt=l[tt/k]l\langle t\rangle=l[t-t/k] when k0k\neq 0.

List the integral points in {(q,p)>02p<q}l\{(q,p)\in\mathbb{Z}_{>0}^{2}\mid p<q\}\cap l as (x1,y1),(x2,y2),(x_{1},y_{1}),(x_{2},y_{2}),\cdots in order such that x1<x2<x_{1}<x_{2}<\cdots.

Notation 3.8.

Denote by (ul,vl),(ul,vl)(u_{l},v_{l}),(u^{\prime}_{l},v^{\prime}_{l}) the first two integral points in {(q,p)>02p<q}l\{(q,p)\in\mathbb{Z}_{>0}^{2}\mid p<q\}\cap l. If k<0k<0, denote by (zl,wl),(zl,wl)(z_{l},w_{l}),(z^{\prime}_{l},w^{\prime}_{l}) the last two integral points in {(q,p)>02p<q}l\{(q,p)\in\mathbb{Z}_{>0}^{2}\mid p<q\}\cap l.

The following follows immediately by the construction of l[t]l[t] and ltl\langle t\rangle.

Lemma 3.9.

Assume that the line ll has negative slope. Then for any t>0t\in\mathbb{Z}_{>0}, we have

  1. (1)(1)

    (ult,vlt)=(ul+t,vl+t)(u_{l\langle t\rangle},v_{l\langle t\rangle})=(u_{l}+t,v_{l}+t) and (ult,vlt)=(ul+t,vl+t);(u^{\prime}_{l\langle t\rangle},v^{\prime}_{l\langle t\rangle})=(u^{\prime}_{l}+t,v^{\prime}_{l}+t);

  2. (2)(2)

    (zlt,wlt)=(zl+t,wl)(z_{l\langle t\rangle},w_{l\langle t\rangle})=(z_{l}+t,w_{l}) and (zlt,wlt)=(zl+t,wl).(z^{\prime}_{l\langle t\rangle},w^{\prime}_{l\langle t\rangle})=(z^{\prime}_{l}+t,w^{\prime}_{l}).

Definition 3.10.

Let k,bk,b\in\mathbb{Q} and l:y=kx+bl:y=kx+b be a line in 2\mathbb{R}^{2}. Let (xi,yi),(xi+1,yi+1)(x_{i},y_{i}),(x_{i+1},y_{i+1}) be consecutive points on ll. The ratio rl(xi,yi)r_{l}(x_{i},y_{i}) along ll at (xi,yi)(x_{i},y_{i}) is defined to be

rl(xi,yi):=m(xi+1,yi+1)m(xi,yi).r_{l}(x_{i},y_{i}):=\frac{m_{(x_{i+1},y_{i+1})}}{m_{(x_{i},y_{i})}}.
Remark 3.11.

By the definition,

  1. (1)(1)

    the generalized Markov numbers increase with xx along the line ll if and only if rl(xi,yi)1r_{l}(x_{i},y_{i})\geq 1 for any ii.

  2. (2)(2)

    the generalized Markov numbers decrease with xx along the line ll if and only if rl(xi,yi)1r_{l}(x_{i},y_{i})\leq 1 for any ii.

Proposition 3.12.

With the foregoing notation. Let k,bk,b\in\mathbb{Q} and l:y=kx+bl:y=kx+b. Let (xi,yi),(xi+1,yi+1),(xi+2,yi+2)(x_{i},y_{i}),(x_{i+1},y_{i+1}),(x_{i+2},y_{i+2}) be three consecutive points on ll.

  1. (1)(1)

    If b0b\neq 0 then

    rl(xi+1,yi+1)>r1(xi,yi),r_{l}(x_{i+1},y_{i+1})>r_{1}(x_{i},y_{i}),

    that is, the ratios along ll are increase with xx.

  2. (2)(2)

    If b=0b=0 then

    rl(xi+1,yi+1)<r1(xi,yi),r_{l}(x_{i+1},y_{i+1})<r_{1}(x_{i},y_{i}),

    that is, the ratios along ll are decrease with xx.

Proof.

Let O=(0,0),A1=(xi,yi),A2=(xi+1,yi+1)O=(0,0),A_{1}=(x_{i},y_{i}),A_{2}=(x_{i+1},y_{i+1}) and A3=(xi+2,yi+2)A_{3}=(x_{i+2},y_{i+2}). Let O=(xi+1xi,yi+1yi)O^{\prime}=(x_{i+1}-x_{i},y_{i+1}-y_{i}).

(1) If b0b\neq 0, then OO is not on ll, and thus OA3OA_{3} crosses OA2O^{\prime}A_{2}. Then by the Ptolemy inequality, we have |OA3||OA2|>|OA2||OA3||OA_{3}||O^{\prime}A_{2}|>|OA_{2}||O^{\prime}A_{3}|, that is,

|OA3||OA1|>|OA2||OA2|.|OA_{3}||OA_{1}|>|OA_{2}||OA_{2}|.

Thus,

rl(xi+1,yi+1)=|OA3||OA2|<|OA2||OA1|=rl(xi,yi).r_{l}(x_{i+1},y_{i+1})=\frac{|OA_{3}|}{|OA_{2}|}<\frac{|OA_{2}|}{|OA_{1}|}=r_{l}(x_{i},y_{i}).

(2) If b=0b=0 we have k>0k>0. Then OlO\in l and γOA2L\gamma^{L}_{OA_{2}} crosses γOA3L\gamma^{L}_{O^{\prime}A_{3}}, where γOA2L\gamma^{L}_{OA_{2}} and γOA3L\gamma^{L}_{O^{\prime}A_{3}} are the left deformations of OA2OA_{2} and OA3O^{\prime}A_{3}, respectively, given in [10]. By the Ptolemy inequality, we have |OA2||OA3|>|OA3||OA2||OA_{2}||O^{\prime}A_{3}|>|OA_{3}||O^{\prime}A_{2}|, that is

|OA2||OA2|>|OA3||OA1|.|OA_{2}||OA_{2}|>|OA_{3}||OA_{1}|.

Thus,

rl(xi,yi)=|OA2||OA1|>|OA3||OA2|=rl(xi+1,yi+1).r_{l}(x_{i},y_{i})=\frac{|OA_{2}|}{|OA_{1}|}>\frac{|OA_{3}|}{|OA_{2}|}=r_{l}(x_{i+1},y_{i+1}).
[Uncaptioned image]

Figure for Proposition 3.12

Proposition 3.13.

With the foregoing notation. Let k,bk,b\in\mathbb{Q} and l:y=kx+bl:y=kx+b.

  1. (1)(1)

    If k0k\geq 0 then the generalized Markov numbers increase with xx along ll;

  2. (2)(2)

    If k<0k<0 then the generalized Markov numbers first decrease with xx to some point (xi(l),yi(l))(x_{i(l)},y_{i(l)}) then increase with xx along ll; moreover,

    1. (2.1)(2.1)

      the generalized Markov numbers increase with xx along ll if and only if

      mul,vlmul,vl,m_{u_{l},v_{l}}\leq m_{u^{\prime}_{l},v^{\prime}_{l}},

      in terms of Notation 3.8, that is rl(ul,vl)1r_{l}(u_{l},v_{l})\geq 1;

    2. (2.2)(2.2)

      the generalized Markov numbers decrease with xx along ll if and only if

      mzl,wlmzl,wl,m_{z_{l},w_{l}}\geq m_{z^{\prime}_{l},w^{\prime}_{l}},

      in terms of Notation 3.8, that is rl(zl,wl)1r_{l}(z_{l},w_{l})\leq 1.

    3. (2.3)(2.3)

      the generalized Markov numbers are not monotonic along the line ll if and only if rl(ul,vl)<1r_{l}(u_{l},v_{l})<1 and rl(zl,wl)>1r_{l}(z_{l},w_{l})>1

Proof.

It follows immediately by Proposition 3.12 and Remark 3.11.

As a corollary of Proposition 3.12, the following can be viewed as modified triangle inequality for the Markov distance.

Proposition 3.14.

Let (x,y),(x,y),(x′′,y′′)02(x,y),(x^{\prime},y^{\prime}),(x^{\prime\prime},y^{\prime\prime})\in\mathbb{Z}_{\geq 0}^{2} be three points with xy,xyx\geq y,x^{\prime}\geq y^{\prime} and x′′y′′x^{\prime\prime}\geq y^{\prime\prime}. If (x,y)=(x,y)+(x′′,y′′)2(x^{\prime},y^{\prime})=\frac{(x,y)+(x^{\prime\prime},y^{\prime\prime})}{2} then

mx,y+mx′′,y′′2mx,y.m_{x,y}+m_{x^{\prime\prime},y^{\prime\prime}}\geq 2m_{x^{\prime},y^{\prime}}.
Proof.

If x=x=x′′x=x^{\prime}=x^{\prime\prime} we may assume that y<y<y′′y<y^{\prime}<y^{\prime\prime}, by Lemma 3.5 we have v(x,y)<v(x,y)v(x,y)<v(x^{\prime},y^{\prime}). Thus

mx,y+mx′′,y′′=(1v(x,y)+v(x,y))mx,y>(1v(x,y)+v(x,y))mx,y2mx,y.\begin{array}[]{rcl}m_{x,y}+m_{x^{\prime\prime},y^{\prime\prime}}&=&(\frac{1}{v(x,y)}+v(x^{\prime},y^{\prime}))m_{x^{\prime},y^{\prime}}\vspace{1.5mm}\\ &>&(\frac{1}{v(x,y)}+v(x,y))m_{x^{\prime},y^{\prime}}\vspace{1.5mm}\\ &\geq&2m_{x^{\prime},y^{\prime}}.\end{array}

If xxx\neq x^{\prime} we may assume that (x,y),(x,y),(x′′,y′′)(x,y),(x^{\prime},y^{\prime}),(x^{\prime\prime},y^{\prime\prime}) are on the line l:y=kx+bl:y=kx+b. We may further assume that x<x<x′′x<x^{\prime}<x^{\prime\prime}.

If b0b\neq 0, by Proposition 3.12 repeatedly, we have mx′′,y′′mx,y>mx,ymx,y\frac{m_{x^{\prime\prime},y^{\prime\prime}}}{m_{x^{\prime},y^{\prime}}}>\frac{m_{x^{\prime},y^{\prime}}}{m_{x,y}}. Thus

mx,y+mx′′,y′′=(mx,ymx,y+mx′′,y′′mx,y)mx,y>(mx,ymx,y+mx,ymx,y)mx,y2mx,y.\begin{array}[]{rcl}m_{x,y}+m_{x^{\prime\prime},y^{\prime\prime}}&=&(\frac{m_{x,y}}{m_{x^{\prime},y^{\prime}}}+\frac{m_{x^{\prime\prime},y^{\prime\prime}}}{m_{x^{\prime},y^{\prime}}})m_{x^{\prime},y^{\prime}}\vspace{1.5mm}\\ &>&(\frac{m_{x,y}}{m_{x^{\prime},y^{\prime}}}+\frac{m_{x^{\prime},y^{\prime}}}{m_{x,y}})m_{x^{\prime},y^{\prime}}\vspace{1.5mm}\\ &\geq&2m_{x^{\prime},y^{\prime}}.\end{array}

If b=0b=0 then k0k\geq 0. By Corollaries 3.4 and 3.7, we have rl(x,y)>1r_{l}(x,y)>1 for all (x,y)l02(x,y)\in l\cap\mathbb{Z}_{\geq 0}^{2}. Assume that q,pq,p are corpime and (q,p)l(q,p)\in l. By Lemma 2.4, we have limxrl(x,y)+1limxrl(x,y)=3mq,p>3lim_{x\to\infty}r_{l}(x,y)+\frac{1}{lim_{x\to\infty}r_{l}(x,y)}=3m_{q,p}>3. It follows that limxrl(x,y)>2lim_{x\to\infty}r_{l}(x,y)>2. By Proposition 3.12, rl(x,y)r_{l}(x,y) is decreasing along xx, it follows that rl(xi,yi)>limxrl(x,y)>2r_{l}(x_{i},y_{i})>lim_{x\to\infty}r_{l}(x,y)>2 for any integral point (xi,yi)(x_{i},y_{i}) on ll. It follows that mx′′,y′′mx,y>2\frac{m_{x^{\prime\prime},y^{\prime\prime}}}{m_{x^{\prime},y^{\prime}}}>2. Thus

mx,y+mx′′,y′′>2mx,y.m_{x,y}+m_{x^{\prime\prime},y^{\prime\prime}}>2m_{x^{\prime},y^{\prime}}.

The following result generalizes Lemmas 3.2 and 3.5 to the lines with a negative slope.

Proposition 3.15.

Let l,ll,l^{\prime} be two lines with same negative slope. Let (xi,yi)(x_{i},y_{i}) and (xi,yi)(x^{\prime}_{i},y^{\prime}_{i}) be integral points on ll and ll^{\prime}, respectively.

  1. (1)(1)

    If xi<xix_{i}<x^{\prime}_{i} and yi=yiy_{i}=y^{\prime}_{i} then

    rl(xi,yi)<rl(xi,yi).r_{l}(x_{i},y_{i})<r_{l^{\prime}}(x^{\prime}_{i},y^{\prime}_{i}).
  2. (2)(2)

    If xi=xix_{i}=x^{\prime}_{i} and yi<yiy_{i}<y^{\prime}_{i} then

    rl(xi,yi)>rl(xi,yi).r_{l}(x_{i},y_{i})>r_{l^{\prime}}(x^{\prime}_{i},y^{\prime}_{i}).
  3. (3)(3)

    If yixi=yixiy_{i}-x_{i}=y^{\prime}_{i}-x^{\prime}_{i} and xi<xix_{i}<x^{\prime}_{i}, then

    rl(xi,yi)>rl(xi,yi).r_{l}(x_{i},y_{i})>r_{l^{\prime}}(x^{\prime}_{i},y^{\prime}_{i}).
Proof.

Let O=(0,0),A1=(xi,yi),A2=(xi+1,yi+1),A1=(xi,yi),A2=(xi+1,yi+1)O=(0,0),A_{1}=(x_{i},y_{i}),A_{2}=(x_{i+1},y_{i+1}),A_{1}^{\prime}=(x^{\prime}_{i},y^{\prime}_{i}),A_{2}^{\prime}=(x^{\prime}_{i+1},y^{\prime}_{i+1}). Let O=(x2x1,y2y1)O^{\prime}=(x_{2}-x_{1},y_{2}-y_{1}).

(1) As xi<xix_{i}<x^{\prime}_{i} and yi=yiy_{i}=y^{\prime}_{i}, OA2OA_{2}^{\prime} crosses OA2O^{\prime}A_{2}. By the Ptolemy inequality, we have |OA2||OA2|>|OA2||OA2||OA^{\prime}_{2}||O^{\prime}A_{2}|>|OA_{2}||O^{\prime}A_{2}^{\prime}|, that is

|OA2||OA1|>|OA2||OA1|.|OA^{\prime}_{2}||OA_{1}|>|OA_{2}||OA^{\prime}_{1}|.

It follows that |OA2||OA1|>|OA2||OA1|,\frac{|OA^{\prime}_{2}|}{|OA^{\prime}_{1}|}>\frac{|OA_{2}|}{|OA_{1}|}, that is

rl(xi,yi)<rl(xi,yi).r_{l}(x_{i},y_{i})<r_{l^{\prime}}(x^{\prime}_{i},y^{\prime}_{i}).

(2) As xi=xix_{i}=x^{\prime}_{i} and yi<yiy_{i}<y^{\prime}_{i}, OA2OA_{2} crosses OA2O^{\prime}A^{\prime}_{2}. By the Ptolemy inequality, we have |OA2||OA2|>|OA2||OA2||OA_{2}||O^{\prime}A^{\prime}_{2}|>|OA^{\prime}_{2}||O^{\prime}A_{2}|, that is

|OA2||OA1|>|OA2||OA1|.|OA_{2}||OA^{\prime}_{1}|>|OA^{\prime}_{2}||OA_{1}|.

It follows that |OA2||OA1|>|OA2||OA1|,\frac{|OA_{2}|}{|OA_{1}|}>\frac{|OA^{\prime}_{2}|}{|OA^{\prime}_{1}|}, that is

rl(xi,yi)>rl(xi,yi).r_{l}(x_{i},y_{i})>r_{l^{\prime}}(x^{\prime}_{i},y^{\prime}_{i}).

(3) As xi<xix_{i}<x^{\prime}_{i} and OO=A1A2=A1A2OO^{\prime}=A_{1}A_{2}=A^{\prime}_{1}A^{\prime}_{2}, we have OA2OA_{2} crosses OA2O^{\prime}A^{\prime}_{2}. By the Ptolemy inequality, we have |OA2||OA2|>|OA2||OA2||OA_{2}||O^{\prime}A^{\prime}_{2}|>|OA^{\prime}_{2}||O^{\prime}A_{2}|, that is

|OA2||OA1|>|OA2||OA1|.|OA_{2}||OA^{\prime}_{1}|>|OA^{\prime}_{2}||OA_{1}|.

It follows that |OA2||OA1|>|OA2||OA1|,\frac{|OA_{2}|}{|OA_{1}|}>\frac{|OA^{\prime}_{2}|}{|OA^{\prime}_{1}|}, that is

rl(xi,yi)>rl(xi,yi).r_{l}(x_{i},y_{i})>r_{l^{\prime}}(x^{\prime}_{i},y^{\prime}_{i}).
[Uncaptioned image]

Figure for Proposition 3.15

Proposition 3.15 implies the ratios along the lines with a given negative slope are increase with xx, decrease with yy.

The following follows immediately from Proposition 3.15.

Corollary 3.16.

With the foregoing notation. Let ll be a line with a negative slope. Then the sequence rl[t](zl[t],wl[t])r_{l[t]}(z_{l[t]},w_{l[t]}), t>0t\in\mathbb{Z}_{>0} is a strictly decreasing sequence, where (zl[t],wl[t])(z_{l[t]},w_{l[t]}) is given in Notation 3.8.

4. Monotonicity of the generalized Markov numbers

4.1. On the last ratio

Recall that we denote by (zl,wl),(zl,wl)(z_{l},w_{l}),(z^{\prime}_{l},w^{\prime}_{l}) the last two integral points on ll for any line ll with a negative slope. In this subsection, we study the ratio rl(zl,wl)r_{l}(z_{l},w_{l}).

For a given k=a1a2<0k=-\frac{a_{1}}{a_{2}}\in\mathbb{Q}_{<0} with a1,a2>0a_{1},a_{2}\in\mathbb{Z}_{>0} and g.c.d.(a1,a2)=1g.c.d.(a_{1},a_{2})=1, denote by ln:y=k(xn)+1,nl_{n}:y=k(x-n)+1,n\in\mathbb{Z} the sequence of lines through (n,1)(n,1) with slope kk. The last two integral points on lnl_{n} are (na2,1+a1)(n-a_{2},1+a_{1}) and (n,1)(n,1). For any line l:y=kx+bl:y=kx+b with slope kk, assume that llnl\neq l_{n} for any nn\in\mathbb{Z}, then there exists N+N^{+}\in\mathbb{Z} such that ll lies between lN+1l_{N^{+}-1} and lN+l_{N^{+}}. Thus zl<N+1z_{l}<N^{+}-1. Note that to ensure there are at least two integral points in l{(x,y)>02x>y}l\cap\{(x,y)\in\mathbb{Z}_{>0}^{2}\mid x>y\}, we may assume that N+4N^{+}\geq 4.

Lemma 4.1.

With the foregoing notation. We have

rl(zl,wl)<rlN+(zlN+,wlN+).r_{l}(z_{l},w_{l})<r_{l_{N^{+}}}(z_{l_{N^{+}}},w_{l_{N^{+}}}).
Proof.

Let O=(0,0),A1=(zl,wl),A2=(zl,wl),A1=(N+a2,1+a1),A2=(N+,1)O=(0,0),A_{1}=(z_{l},w_{l}),A_{2}=(z^{\prime}_{l},w^{\prime}_{l}),A_{1}^{\prime}=(N^{+}-a_{2},1+a_{1}),A_{2}^{\prime}=(N^{+},1). As the slopes of ll and lnl_{n} are kk, A1,A2,A2A_{1},A_{2},A^{\prime}_{2} and A1A^{\prime}_{1} form a parallelogram. Let O=(a2,a1)O^{\prime}=(a_{2},-a_{1}).

As zl,a2<N+z_{l},a_{2}<N^{+} and wl>1w_{l}>1, we see that OA2OA_{2}^{\prime} crosses OA2O^{\prime}A_{2}. By the Ptolemy inequality, we have |OA2||OA2|>|OA2||OA2||OA^{\prime}_{2}||O^{\prime}A_{2}|>|OA_{2}||O^{\prime}A_{2}^{\prime}|, that is

|OA2||OA1|>|OA2||OA1|.|OA^{\prime}_{2}||OA_{1}|>|OA_{2}||OA^{\prime}_{1}|.

It follows that |OA2||OA1|>|OA2||OA1|,\frac{|OA^{\prime}_{2}|}{|OA^{\prime}_{1}|}>\frac{|OA_{2}|}{|OA_{1}|}, that is

rl(zl,wl)<rlN+(zlN+,wlN+).r_{l}(z_{l},w_{l})<r_{l_{N^{+}}}(z_{l_{N^{+}}},w_{l_{N^{+}}}).
[Uncaptioned image]

Figure for Lemma 4.1

Lemma 4.2.

Let ll be a line with negative slope k=a1a2k=-\frac{a_{1}}{a_{2}} with a1,a2>0a_{1},a_{2}\in\mathbb{Z}_{>0} and g.c.d.(a1,a2)=1g.c.d.(a_{1},a_{2})=1. For a larger enough t>0t\in\mathbb{Z}_{>0}, there exists NN_{-}\in\mathbb{N} such that

rl[t](zl[t],wl[t])>rlN(zlN,wlN),r_{l[t]}(z_{l[t]},w_{l[t]})>r_{l_{N^{-}}}(z_{l_{N^{-}}},w_{l_{N^{-}}}),

moreover, NN^{-} can be chosen such that limt+N=+lim_{t\to+\infty}N^{-}=+\infty.

Proof.

Let O=(0,0),O=(a2,a1),A1=(zl,wl),A2=(zl,wl)O=(0,0),O^{\prime}=(a_{2},-a_{1}),A_{1}=(z_{l},w_{l}),A_{2}=(z^{\prime}_{l},w^{\prime}_{l}). For any t>0t\in\mathbb{Z}_{>0}, denote A1[t]=(ul+t,vl)A_{1}[t]=(u_{l}+t,v_{l}) and A2[t]=(ul+t,vl)A_{2}[t]=(u^{\prime}_{l}+t,v^{\prime}_{l}). According to Lemma 3.9, A1[t]A_{1}[t] and A2[t]A_{2}[t] are the last two integral points on l[t]l[t]. We see that A2[t]A_{2}[t] lies on the line y=wly=w^{\prime}_{l}. On the other hand, the last integral points on ln,n>0l_{n},n\in\mathbb{Z}_{>0} lies on the line y=1y=1.

Note that if tt approximates to ++\infty, the xx-coordinate of the crossing point of the segment OA2[t]O^{\prime}A_{2}[t] and the line y=1y=1 approximate to ++\infty. Therefore, for larger enough tt, we can find NN_{-}\in\mathbb{N} such that OA2[t]OA_{2}[t] crosses OA2O^{\prime}A^{\prime}_{2}, where A2A^{\prime}_{2} is the last integral points on lNl_{N_{-}}.

By the Ptolemy inequality, we have |OA2[t]||OA2|>|OA2||OA2[t]||OA_{2}[t]||O^{\prime}A^{\prime}_{2}|>|OA^{\prime}_{2}||O^{\prime}A_{2}[t]|, that is

|OA2[t]||OA1|>|OA2||OA1[t]|.|OA_{2}[t]||OA^{\prime}_{1}|>|OA^{\prime}_{2}||OA_{1}[t]|.

It follows that |OA2[t]||OA1[t]|>|OA2||OA1|,\frac{|OA_{2}[t]|}{|OA_{1}[t]|}>\frac{|OA^{\prime}_{2}|}{|OA^{\prime}_{1}|}, that is

rl[t](zl[t],wl[t])>rlN(zlN,wlN).r_{l[t]}(z_{l[t]},w_{l[t]})>r_{l_{N^{-}}}(z_{l_{N^{-}}},w_{l_{N^{-}}}).

Moreover, when tt approximates to ++\infty, the xx-coordinate of the crossing point of the segment OA2[t]O^{\prime}A_{2}[t] and the line y=1y=1 approximates to ++\infty, so we can choose NN_{-}\in\mathbb{N} such that NN_{-} approximates to ++\infty.

[Uncaptioned image]

Figure for Lemma 4.2

From the proof of Lemma 4.2, we have the following observation.

Lemma 4.3.

Assume that k=a1a2k=-\frac{a_{1}}{a_{2}} with a1,a2>0a_{1},a_{2}\in\mathbb{Z}_{>0} and g.c.d.(a1,a2)=1g.c.d.(a_{1},a_{2})=1. Let γ:y=kx\gamma:y=kx be the line passing through OO with slope kk. Suppose that n>1+a1+a2n>1+a_{1}+a_{2}

  1. (1)(1)

    Let ll be a line with slope kk. Then there exists δ(n,l)\delta(n,l)\in\mathbb{R} such that

    rl[t](zl[t],wl[t])>rln(zln,wln)r_{l[t]}(z_{l[t]},w_{l[t]})>r_{l_{n}}(z_{l_{n}},w_{l_{n}})

    for all t>0t\in\mathbb{Z}_{>0} such that l[t]l[t] lies on the right side of γ[δ(n,l)]\gamma[\delta(n,l)].

  2. (2)(2)

    Let ll^{\prime} be another line with slope kk. If wl<wlw^{\prime}_{l}<w^{\prime}_{l^{\prime}} then γ[δ(n,l)]<γ[δ(n,l)]\gamma[\delta(n,l)]<\gamma[\delta(n,l^{\prime})].

  3. (3)(3)

    There exists δ(n)\delta(n)\in\mathbb{R} such that for any line ll with slope kk,

    rl[t](zl[t],wl[t])>rln(zln,wln)r_{l[t]}(z_{l[t]},w_{l[t]})>r_{l_{n}}(z_{l_{n}},w_{l_{n}})

    for all t>0t\in\mathbb{Z}_{>0} such that l[t]l[t] lies on the right side of γ[δ(n)]\gamma[\delta(n)].

Proof.

(1) Let O=(0,0),O=(a2,a1),A1=(na1,a2+1),A2=(n,1)O=(0,0),O^{\prime}=(a_{2},-a_{1}),A^{\prime}_{1}=(n-a_{1},a_{2}+1),A^{\prime}_{2}=(n,1). Assume that the line connecting OO and A2A^{\prime}_{2} crosses y=wly=w^{\prime}_{l} at some point AA. Then the line through AA with slope kk equals to l[δ(n,l)]l[\delta(n,l)] for some δ(n,l)\delta(n,l)\in\mathbb{R}. Thus, for any t>0t\in\mathbb{Z}_{>0} such that l[t]l[t] lies on the right side of γ[δ(n,l)]\gamma[\delta(n,l)], we have OA2[t]OA_{2}[t] crosses OA2O^{\prime}A^{\prime}_{2}, where A2[t]A_{2}[t] is the last integral points on l[t]l[t]. From the proof of Lemma 4.3, we have

rl[t](zl[t],wl[t])>rln(zln,wln).r_{l[t]}(z_{l[t]},w_{l[t]})>r_{l_{n}}(z_{l_{n}},w_{l_{n}}).

(2) It follows immediately from the construction of δ(n,l)\delta(n,l).

(3) From the construction of δ(n,l)\delta(n,l), we see that δ(n,l)\delta(n,l) only depends on wlw^{\prime}_{l}. Note that for any ll we have wla2w^{\prime}_{l}\leq a_{2} as (zl,wl)(z^{\prime}_{l},w^{\prime}_{l}) is the last integral point. Thus we may let δ(n)=δ(n,l)\delta(n)=\delta(n,l), where ll is the line with slope kk such that wlw^{\prime}_{l} is maximal.

[Uncaptioned image]

Figure for Lemma 4.3

As a corollary of Lemmas 4.1 and 4.2, we have the following.

Corollary 4.4.

Let k<0k\in\mathbb{Q}_{<0} and l:y=kx+bl:y=kx+b be a line with slope kk. Let ln:y=k(xn)+1l_{n}:y=k(x-n)+1 be the lines through (n,1)(n,1) with slope kk. Then

limtrl[t](zl[t],wl[t])=limnrln(zln,wln).lim_{t\to\infty}r_{l[t]}(z_{l[t]},w_{l[t]})=lim_{n\to\infty}r_{l_{n}}(z_{l_{n}},w_{l_{n}}).
Proposition 4.5.

With the foregoing notation. Assume that k=a1a2<0k=-\frac{a_{1}}{a_{2}}\in\mathbb{Q}_{<0} with a1,a2>0a_{1},a_{2}\in\mathbb{Z}_{>0}. Let ll be a line with slope kk. Then

  1. (1)(1)
    limnrln(zln,wln)=(253(1+5))a1(1+52)2a2.lim_{n\to\infty}r_{l_{n}}(z_{l_{n}},w_{l_{n}})=(\frac{2\sqrt{5}}{3(1+\sqrt{5})})^{a_{1}}(\frac{1+\sqrt{5}}{2})^{2a_{2}}.
  2. (2)(2)
    limtrl[t](zl[t],wl[t])=(253(1+5))a1(1+52)2a2.lim_{t\to\infty}r_{l[t]}(z_{l[t]},w_{l[t]})=(\frac{2\sqrt{5}}{3(1+\sqrt{5})})^{a_{1}}(\frac{1+\sqrt{5}}{2})^{2a_{2}}.
Proof.

We shall only prove (1) as (2) follows by Corollary 4.4.

For each nn, we have (zln,wln)=(na2,1+a1)(z_{l_{n}},w_{l_{n}})=(n-a_{2},1+a_{1}) and (zln,wln)=(n,1)(z^{\prime}_{l_{n}},w^{\prime}_{l_{n}})=(n,1). By Proposition 3.15 (1), the sequence rln(zln,wln),n>0r_{l_{n}}(z_{l_{n}},w_{l_{n}}),n\in\mathbb{Z}_{>0} is strictly increasing. It suffices to consider the subsequence indexed by q(1+a1)+a2,q>0q(1+a_{1})+a_{2},q\in\mathbb{Z}_{>0}. By Proposition 2.5, we have

limqrlq(1+a1)+a2(zlq(1+a1)+a2,wlq(1+a1)+a2)=mq(1+a1)+a2,1mq(1+a1),1+a1=((1+5)/2)2q(1+a1)+2a2+153a1mq,11+a1=((1+5)/2)2q(1+a1)+2a2+153a1(((1+5)/2)2q+15)1+a1=(53)a1(1+52)a1+2a2=(253(1+5))a1(1+52)2a2.\begin{array}[]{rcl}&&lim_{q\to\infty}r_{l_{q(1+a_{1})+a_{2}}}(z_{l_{q(1+a_{1})+a_{2}}},w_{l_{q(1+a_{1})+a_{2}}})\vspace{1.5mm}\\ &=&\frac{m_{q(1+a_{1})+a_{2},1}}{m_{q(1+a_{1}),1+a_{1}}}\vspace{1.5mm}\\ &=&\frac{\frac{((1+\sqrt{5})/2)^{2q(1+a_{1})+2a_{2}+1}}{\sqrt{5}}}{3^{a_{1}}m_{q,1}^{1+a_{1}}}\vspace{1.5mm}\\ &=&\frac{\frac{((1+\sqrt{5})/2)^{2q(1+a_{1})+2a_{2}+1}}{\sqrt{5}}}{3^{a_{1}}(\frac{((1+\sqrt{5})/2)^{2q+1}}{\sqrt{5}})^{1+a_{1}}}\vspace{1.5mm}\\ &=&(\frac{\sqrt{5}}{3})^{a_{1}}(\frac{1+\sqrt{5}}{2})^{-a_{1}+2a_{2}}\vspace{1.5mm}\\ &=&(\frac{2\sqrt{5}}{3(1+\sqrt{5})})^{a_{1}}(\frac{1+\sqrt{5}}{2})^{2a_{2}}.\end{array}

4.2. On the first ratio

Recall that we denote by (ul,vl),(ul,vl)(u_{l},v_{l}),(u^{\prime}_{l},v^{\prime}_{l}) the first two integral points on ll for any line ll with a negative slope. In this subsection, we study the ratio rl(ul,vl)r_{l}(u_{l},v_{l}).

For a given k=a1a2<0k=-\frac{a_{1}}{a_{2}}\in\mathbb{Q}_{<0} with a1,a2>0a_{1},a_{2}\in\mathbb{Z}_{>0} and g.c.d.(a1,a2)=1g.c.d.(a_{1},a_{2})=1, denote by Ln:y=k(xn)+n1,nL_{n}:y=k(x-n)+n-1,n\in\mathbb{Z} the sequence of lines through (n,n1)(n,n-1) with slope kk. The first two integral points on LnL_{n} are (n,n1)(n,n-1) and (n+a2,n1a1)(n+a_{2},n-1-a_{1}). For any line l:y=kx+bl:y=kx+b with slope kk, assume that lLnl\neq L_{n} for any nn\in\mathbb{Z}, there exists N~+\widetilde{N}_{+}\in\mathbb{Z} such that ll lies between lN~+1l_{\widetilde{N}_{+}-1} and lN~+l_{\widetilde{N}_{+}}.

Lemma 4.6.

With the foregoing notation. We have

rl(ul,vl)>rLN~+(uLN~+,vLN~+).r_{l}(u_{l},v_{l})>r_{L_{\widetilde{N}_{+}}}(u_{L_{\widetilde{N}_{+}}},v_{L_{\widetilde{N}_{+}}}).
Proof.

Let O=(0,0),A1=(ul,vl),A2=(ul,vl),A1=(uLN~+,vLN~+),A2=(uLN~+,vLN~+)O=(0,0),A_{1}=(u_{l},v_{l}),A_{2}=(u^{\prime}_{l},v^{\prime}_{l}),A_{1}^{\prime}=(u_{L_{\widetilde{N}_{+}}},v_{L_{\widetilde{N}_{+}}}),A_{2}^{\prime}=(u^{\prime}_{L_{\widetilde{N}_{+}}},v^{\prime}_{L_{\widetilde{N}_{+}}}). As the slopes of ll and lnl_{n} are kk, A1,A2,A2A_{1},A_{2},A^{\prime}_{2} and A1A^{\prime}_{1} form a parallelogram. Let O=(a2,a1)O^{\prime}=(a_{2},-a_{1}).

As ll lies between lN~+1l_{\widetilde{N}_{+}-1} and lN~+l_{\widetilde{N}_{+}}, we see that OA2O^{\prime}A^{\prime}_{2} crosses OA2OA_{2}. By the Ptolemy inequality, we have |OA2||OA2|>|OA2||OA2||OA_{2}||O^{\prime}A_{2}|>|OA^{\prime}_{2}||O^{\prime}A_{2}|, that is

|OA2||OA1|>|OA2||OA1|.|OA_{2}||OA^{\prime}_{1}|>|OA^{\prime}_{2}||OA_{1}|.

It follows that |OA2||OA1|>|OA2||OA1|,\frac{|OA_{2}|}{|OA_{1}|}>\frac{|OA^{\prime}_{2}|}{|OA^{\prime}_{1}|}, that is

rl(ul,vl)>rLN~+(uLN~+,vLN~+).r_{l}(u_{l},v_{l})>r_{L_{\widetilde{N}_{+}}}(u_{L_{\widetilde{N}_{+}}},v_{L_{\widetilde{N}_{+}}}).
[Uncaptioned image]

Figure for Lemma 4.6

Lemma 4.7.

Let ll be a line with negative slope k=a1a2k=-\frac{a_{1}}{a_{2}} with a1,a2>0a_{1},a_{2}\in\mathbb{Z}_{>0} and g.c.d.(a1,a2)=1g.c.d.(a_{1},a_{2})=1. For a larger enough t>0t\in\mathbb{Z}_{>0}, there exists N~\widetilde{N}_{-}\in\mathbb{N} such that

rlt(ult,vlt)<rLN~(uLN~,vLN~).r_{l\langle t\rangle}(u_{l\langle t\rangle},v_{l\langle t\rangle})<r_{L_{\widetilde{N}_{-}}}(u_{L_{\widetilde{N}_{-}}},v_{L_{\widetilde{N}_{-}}}).

moreover, N~\widetilde{N}_{-} can be chosen such that limtN~=+lim_{t\to\infty}\widetilde{N}_{-}=+\infty.

Proof.

Let O=(0,0),O=(a2,a1),A1=(ul,vl),A2=(ul,vl)O=(0,0),O^{\prime}=(a_{2},-a_{1}),A_{1}=(u_{l},v_{l}),A_{2}=(u^{\prime}_{l},v^{\prime}_{l}). For any t>0t\in\mathbb{Z}_{>0}, denote A1t=(ul+t,vl+t)A_{1}\langle t\rangle=(u_{l}+t,v_{l}+t) and A2t=(ul+t,vl+t)A_{2}\langle t\rangle=(u^{\prime}_{l}+t,v^{\prime}_{l}+t). According to Lemma 3.9, A1tA_{1}\langle t\rangle and A2tA_{2}\langle t\rangle are the first two integral points on ltl\langle t\rangle. We see that A2tA_{2}\langle t\rangle lies on the line y=xul+vly=x-u^{\prime}_{l}+v^{\prime}_{l}. On the other hand, the second integral points on Ln,n>0L_{n},n\in\mathbb{Z}_{>0} lies on the line y=xa1a21y=x-a_{1}-a_{2}-1.

Note that if tt approximates to ++\infty, the xx-coordinate of the crossing point of the segment OA2tO^{\prime}A_{2}\langle t\rangle and the line y=xa1a21y=x-a_{1}-a_{2}-1 approximate to ++\infty. Therefore, for larger enough tt, we can find N~\widetilde{N}_{-}\in\mathbb{N} such that OA2OA^{\prime}_{2} crosses OA2tO^{\prime}A_{2}\langle t\rangle, where A2A^{\prime}_{2} is the second integral points on LN~L_{\widetilde{N}_{-}}.

By the Ptolemy inequality, we have |OA2t||OA2|>|OA2t||OA2||O^{\prime}A_{2}\langle t\rangle||OA^{\prime}_{2}|>|OA_{2}\langle t\rangle||O^{\prime}A^{\prime}_{2}|, that is

|OA1t||OA2|>|OA2t||OA1|.|OA_{1}\langle t\rangle||OA^{\prime}_{2}|>|OA_{2}\langle t\rangle||OA^{\prime}_{1}|.

It follows that |OA2||OA1|>|OA2t||OA1t|,\frac{|OA^{\prime}_{2}|}{|OA^{\prime}_{1}|}>\frac{|OA_{2}\langle t\rangle|}{|OA_{1}\langle t\rangle|}, that is

rlt(ult,vlt)<rLN~(uLN~,vLN~).r_{l\langle t\rangle}(u_{l\langle t\rangle},v_{l\langle t\rangle})<r_{L_{\widetilde{N}_{-}}}(u_{L_{\widetilde{N}_{-}}},v_{L_{\widetilde{N}_{-}}}).

Moreover, when tt approximates to ++\infty, the xx-coordinate of the crossing point of the segment OA2tO^{\prime}A_{2}\langle t\rangle and the line y=xa1a21y=x-a_{1}-a_{2}-1 approximates to ++\infty, so we can choose N~\widetilde{N}_{-}\in\mathbb{N} such that N~\widetilde{N}_{-} approximates to ++\infty.

[Uncaptioned image]

Figure for Lemma 4.7

Lemma 4.8.

Assume that k=a1a2k=-\frac{a_{1}}{a_{2}} with a1,a2>0a_{1},a_{2}\in\mathbb{Z}_{>0} and g.c.d.(a1,a2)=1g.c.d.(a_{1},a_{2})=1. Let γ:y=kx\gamma:y=kx be the line passing through OO with slope kk. Suppose that n>1+a1n>1+a_{1}.

  1. (1)(1)

    Let ll be a line with slope kk. Then there exists σ(n,l)\sigma(n,l)\in\mathbb{R} such that

    rlt(ult,vlt)<rLn(uLn,vLn)r_{l\langle t\rangle}(u_{l\langle t\rangle},v_{l\langle t\rangle})<r_{L_{n}}(u_{L_{n}},v_{L_{n}})

    for all t>0t\in\mathbb{Z}_{>0} such that ltl\langle t\rangle lies on the right side of γσ(n,l)\gamma\langle\sigma(n,l)\rangle.

  2. (2)(2)

    Let ll^{\prime} be another line with slope kk. If ulvl<ulvlu^{\prime}_{l}-v^{\prime}_{l}<u^{\prime}_{l^{\prime}}-v^{\prime}_{l^{\prime}} then σ(n,l)<σ(n,l)\sigma(n,l)<\sigma(n,l^{\prime}).

  3. (3)(3)

    There exists σ(n)\sigma(n)\in\mathbb{R} such that for any line ll with slope kk,

    rlt(ult,vlt)<rLn(uLn,vLn)r_{l\langle t\rangle}(u_{l\langle t\rangle},v_{l\langle t\rangle})<r_{L_{n}}(u_{L_{n}},v_{L_{n}})

    for all t>0t\in\mathbb{Z}_{>0} such that ltl\langle t\rangle lies on the right side of γσ(n)\gamma\langle\sigma(n)\rangle.

Proof.

(1) Let O=(0,0),O=(a2,a1),A1=(n,n1),A2=(n+a2,n1a1)O=(0,0),O^{\prime}=(a_{2},-a_{1}),A^{\prime}_{1}=(n,n-1),A^{\prime}_{2}=(n+a_{2},n-1-a_{1}). Assume that the line connecting OO and A2A^{\prime}_{2} crosses y=xul+vly=x-u^{\prime}_{l}+v^{\prime}_{l} at some point AA. Then the line through AA with slope kk equals to lσ(n,l)l\langle\sigma(n,l)\rangle for some σ(n,l)\sigma(n,l)\in\mathbb{R}. Thus, for any t>0t\in\mathbb{Z}_{>0} such that ltl\langle t\rangle lies on the right side of γσ(n,l)\gamma\langle\sigma(n,l)\rangle, we have OA2OA_{2}^{\prime} crosses OA2tO^{\prime}A_{2}\langle t\rangle, where A2tA_{2}\langle t\rangle is the second integral points on ltl\langle t\rangle. From the proof of Lemma 4.3, we have

rlt(ult,vlt)<rLn(uLn,vLn)r_{l\langle t\rangle}(u_{l\langle t\rangle},v_{l\langle t\rangle})<r_{L_{n}}(u_{L_{n}},v_{L_{n}})

(2) It follows immediately from the construction of σ(n,l)\sigma(n,l).

(3) From the construction of σ(n,l)\sigma(n,l), we see that σ(n,l)\sigma(n,l) only depends on ulvlu^{\prime}_{l}-v^{\prime}_{l}. Note that for any ll we have ulvl2a1+1u^{\prime}_{l}-v^{\prime}_{l}\leq 2a_{1}+1 as (ul,vl)(u^{\prime}_{l},v^{\prime}_{l}) is the second integral point. Thus we may let σ(n)=σ(n,l)\sigma(n)=\sigma(n,l), where ll is the line with slope kk such that ulvlu^{\prime}_{l}-v^{\prime}_{l} is maximal.

[Uncaptioned image]

Figure for Lemma 4.8

As a corollary of Lemmas 4.6 and 4.7, we have the following.

Corollary 4.9.

With the foregoing notation. Let ll be a line with a negative slope. Then

limtrlt(ult,vlt)=limnrLn(uLn,vLn).lim_{t\to\infty}r_{l\langle t\rangle}(u_{l\langle t\rangle},v_{l\langle t\rangle})=lim_{n\to\infty}r_{L_{n}}(u_{L_{n}},v_{L_{n}}).
Proposition 4.10.

With the foregoing notation. Assume that k=a1a2<0k=-\frac{a_{1}}{a_{2}}\in\mathbb{Q}_{<0} with a1,a2>0a_{1},a_{2}\in\mathbb{Z}_{>0} and g.c.d.(a1,a2)=1g.c.d.(a_{1},a_{2})=1. Let ll be a line with slope kk. Then

  1. (1)(1)
    limnrLn(uLn,vLn)=(322)a1+a2(1+2)a1+a2.lim_{n\to\infty}r_{L_{n}}(u_{L_{n}},v_{L_{n}})=(\frac{3}{2\sqrt{2}})^{a_{1}+a_{2}}(1+\sqrt{2})^{-a_{1}+a_{2}}.
  2. (2)(2)
    limtrlt(ult,vlt)=(322)a1+a2(1+2)a1+a2.lim_{t\to\infty}r_{l\langle t\rangle}(u_{l\langle t\rangle},v_{l\langle t\rangle})=(\frac{3}{2\sqrt{2}})^{a_{1}+a_{2}}(1+\sqrt{2})^{-a_{1}+a_{2}}.
Proof.

We shall only prove (1) as (2) follows by Corollary 4.9.

For each nn, we have (uLn,vLn)=(n,n1)(u_{L_{n}},v_{L_{n}})=(n,n-1) and (uLn,vLn)=(n+a2,n1a1)(u^{\prime}_{L_{n}},v^{\prime}_{L_{n}})=(n+a_{2},n-1-a_{1}). By Proposition 3.15 (3), the sequence rLn(uLn,vLn),n>0r_{L_{n}}(u_{L_{n}},v_{L_{n}}),n\in\mathbb{Z}_{>0} is strictly decreasing. It suffices to consider the subsequence indexed by q(1+a1+a2)+1+a1,q>0q(1+a_{1}+a_{2})+1+a_{1},q\in\mathbb{Z}_{>0}. By Proposition 2.5, we have

limqrLq(1+a1+a2)+1+a1(uLq(1+a1+a2)+1+a1,vLq(1+a1+a2)+1+a1)=m(q+1)(1+a1+a2),q(1+a1+a2)mq(1+a1+a2)+1+a1,q(1+a1+a2)+1+a11=3a1+a2(mq+1,q)1+a1+a2((1+2)2q(1+a1+a2)+2a1+122=3a1+a2((1+2)2q+122)1+a1+a2((1+2)2q(1+a1+a2)+2a1+122=(322)a1+a2(1+2)a1+a2.\begin{array}[]{rcl}&&lim_{q\to\infty}r_{L_{q(1+a_{1}+a_{2})+1+a_{1}}}(u_{L_{q(1+a_{1}+a_{2})+1+a_{1}}},v_{L_{q(1+a_{1}+a_{2})+1+a_{1}}})\vspace{1.5mm}\\ &=&\frac{m_{(q+1)(1+a_{1}+a_{2}),q(1+a_{1}+a_{2})}}{m_{q(1+a_{1}+a_{2})+1+a_{1},q(1+a_{1}+a_{2})+1+a_{1}-1}}\vspace{1.5mm}\\ &=&\frac{3^{a_{1}+a_{2}}(m_{q+1,q})^{1+a_{1}+a_{2}}}{\frac{((1+\sqrt{2})^{2q(1+a_{1}+a_{2})+2a_{1}+1}}{2\sqrt{2}}}\vspace{1.5mm}\\ &=&\frac{3^{a_{1}+a_{2}}(\frac{(1+\sqrt{2})^{2q+1}}{2\sqrt{2}})^{1+a_{1}+a_{2}}}{\frac{((1+\sqrt{2})^{2q(1+a_{1}+a_{2})+2a_{1}+1}}{2\sqrt{2}}}\vspace{1.5mm}\\ &=&(\frac{3}{2\sqrt{2}})^{a_{1}+a_{2}}(1+\sqrt{2})^{-a_{1}+a_{2}}.\end{array}

4.3. On the monotonicity

Theorem 4.11.
  1. (1)(1)

    For kk\in\mathbb{Q} with kln3(2+2)4ln2(2+2)31.1432k\geq-\frac{ln\frac{3(2+\sqrt{2})}{4}}{ln\frac{2(2+\sqrt{2})}{3}}\approx-1.1432, the generalized Markov numbers increase with xx along any line l:y=kx+bl:y=kx+b;

  2. (2)(2)

    For kk\in\mathbb{Q} with k2ln(1+52)ln(3(1+5)25)1.2417k\leq-\frac{2ln(\frac{1+\sqrt{5}}{2})}{ln(\frac{3(1+\sqrt{5})}{2\sqrt{5}})}\approx-1.2417, the generalized Markov numbers decrease with xx along any line y=kx+by=kx+b;

  3. (3)(3)

    For any kk\in\mathbb{Q} with 2ln(1+52)ln(3(1+5)25)<k<ln3(2+2)4ln2(2+2)3-\frac{2ln(\frac{1+\sqrt{5}}{2})}{ln(\frac{3(1+\sqrt{5})}{2\sqrt{5}})}<k<-\frac{ln\frac{3(2+\sqrt{2})}{4}}{ln\frac{2(2+\sqrt{2})}{3}}, then for almost all bb\in\mathbb{Q}, the generalized Markov numbers are not monotonic along the line y=kx+by=kx+b.

Proof.

If a1a2a_{1}\leq a_{2} then we have (322)a1+a2(1+2)a1+a2>1(\frac{3}{2\sqrt{2}})^{a_{1}+a_{2}}(1+\sqrt{2})^{-a_{1}+a_{2}}>1. If a1<a2a_{1}<a_{2}, then (322)a1+a2(1+2)a1+a21(\frac{3}{2\sqrt{2}})^{a_{1}+a_{2}}(1+\sqrt{2})^{-a_{1}+a_{2}}\geq 1 if and only if (322)a1+a2(1+2)a1a2(a1+a2)ln(322)(a1a2)ln(1+2)(ln(322)+ln(1+2))a2(ln(1+2)ln(322))a1a1a2ln(1+2)+ln(32/4)ln(1+2)ln(32/4)(\frac{3}{2\sqrt{2}})^{a_{1}+a_{2}}\geq(1+\sqrt{2})^{a_{1}-a_{2}}\Longleftrightarrow(a_{1}+a_{2})ln(\frac{3}{2\sqrt{2}})\geq(a_{1}-a_{2})ln(1+\sqrt{2})\Longleftrightarrow(ln(\frac{3}{2\sqrt{2}})+ln(1+\sqrt{2}))a_{2}\geq(ln(1+\sqrt{2})-ln(\frac{3}{2\sqrt{2}}))a_{1}\Longleftrightarrow\frac{a_{1}}{a_{2}}\leq\frac{ln(1+\sqrt{2})+ln(3\sqrt{2}/4)}{ln(1+\sqrt{2})-ln(3\sqrt{2}/4)}. As ln(1+2)+ln(32/4)ln(1+2)ln(32/4)1\frac{ln(1+\sqrt{2})+ln(3\sqrt{2}/4)}{ln(1+\sqrt{2})-ln(3\sqrt{2}/4)}\geq 1, we have (322)a1+a2(1+2)a1+a21(\frac{3}{2\sqrt{2}})^{a_{1}+a_{2}}(1+\sqrt{2})^{-a_{1}+a_{2}}\geq 1 if and only if a1a2ln(1+2)+ln(32/4)ln(1+2)ln(32/4)\frac{a_{1}}{a_{2}}\leq\frac{ln(1+\sqrt{2})+ln(3\sqrt{2}/4)}{ln(1+\sqrt{2})-ln(3\sqrt{2}/4)} if and only if a1a2ln(1+2)+ln(32/4)ln(1+2)ln(32/4)=ln3(2+2)4ln2(2+2)3-\frac{a_{1}}{a_{2}}\geq-\frac{ln(1+\sqrt{2})+ln(3\sqrt{2}/4)}{ln(1+\sqrt{2})-ln(3\sqrt{2}/4)}=-\frac{ln\frac{3(2+\sqrt{2})}{4}}{ln\frac{2(2+\sqrt{2})}{3}}.

On the other hand, (253(1+5))a1(1+52)2a21(1+52)2a2(3(1+5)25)a12a2ln(1+52)a1ln(3(1+5)25)a1a22ln(1+52)ln(3(1+5)25)a1a22ln(1+52)ln(3(1+5)25)(\frac{2\sqrt{5}}{3(1+\sqrt{5})})^{a_{1}}(\frac{1+\sqrt{5}}{2})^{2a_{2}}\leq 1\Longleftrightarrow(\frac{1+\sqrt{5}}{2})^{2a_{2}}\leq(\frac{3(1+\sqrt{5})}{2\sqrt{5}})^{a_{1}}\Longleftrightarrow 2a_{2}ln(\frac{1+\sqrt{5}}{2})\leq a_{1}ln(\frac{3(1+\sqrt{5})}{2\sqrt{5}})\Longleftrightarrow\frac{a_{1}}{a_{2}}\geq\frac{2ln(\frac{1+\sqrt{5}}{2})}{ln(\frac{3(1+\sqrt{5})}{2\sqrt{5}})}\Longleftrightarrow-\frac{a_{1}}{a_{2}}\leq-\frac{2ln(\frac{1+\sqrt{5}}{2})}{ln(\frac{3(1+\sqrt{5})}{2\sqrt{5}})}.

(1) For any ll, by Proposition 3.15 (3), the sequence rlt(ult,vlt),t>0r_{l\langle t\rangle}(u_{l\langle t\rangle},v_{l\langle t\rangle}),t\in\mathbb{Z}_{>0} is decreasing. If klg(1+2)+lg(32/4)lg(1+2)lg(32/4)k\geq-\frac{lg(1+\sqrt{2})+lg(3\sqrt{2}/4)}{lg(1+\sqrt{2})-lg(3\sqrt{2}/4)}, we have (322)a1+a2(1+2)a1+a2>1(\frac{3}{2\sqrt{2}})^{a_{1}+a_{2}}(1+\sqrt{2})^{-a_{1}+a_{2}}>1. Thus by proposition 4.10, we see that rl(ul,vl)>1r_{l}(u_{l},v_{l})>1. Then the result follows by Proposition 3.13.

(2) The proof is similar to the proof of (1).

(3) If 2ln(1+52)ln(3(1+5)25)<k<ln3(2+2)4ln2(2+2)3-\frac{2ln(\frac{1+\sqrt{5}}{2})}{ln(\frac{3(1+\sqrt{5})}{2\sqrt{5}})}<k<-\frac{ln\frac{3(2+\sqrt{2})}{4}}{ln\frac{2(2+\sqrt{2})}{3}}, assume that k=a1a2k=-\frac{a_{1}}{a_{2}} with a1,a2>0a_{1},a_{2}\in\mathbb{Z}_{>0} and g.c.d.(a1,a2)=1g.c.d.(a_{1},a_{2})=1, then we have (322)a1+a2(1+2)a1+a2<1(\frac{3}{2\sqrt{2}})^{a_{1}+a_{2}}(1+\sqrt{2})^{-a_{1}+a_{2}}<1 and (253(1+5))a1(1+52)2a2>1(\frac{2\sqrt{5}}{3(1+\sqrt{5})})^{a_{1}}(\frac{1+\sqrt{5}}{2})^{2a_{2}}>1.

As (322)a1+a2(1+2)a1+a2<1(\frac{3}{2\sqrt{2}})^{a_{1}+a_{2}}(1+\sqrt{2})^{-a_{1}+a_{2}}<1, by Proposition 4.10 (1), there exists nn such that rLn(uLn,vLn)<1r_{L_{n}}(u_{L_{n}},v_{L_{n}})<1. By Lemma 4.8, there exists σ(n)\sigma(n) such that for any line ll with slope kk, we have rlt(ult,vlt)<rLn(uLn,vLn)<1r_{l\langle t\rangle}(u_{l\langle t\rangle},v_{l\langle t\rangle})<r_{L_{n}}(u_{L_{n}},v_{L_{n}})<1 for all t>0t\in\mathbb{Z}_{>0} such that ltl\langle t\rangle lies on the right side of γσ(n)γ[σ(n)σ(n)k]\gamma\langle\sigma(n)\rangle\gamma[\sigma(n)-\frac{\sigma(n)}{k}].

As (253(1+5))a1(1+52)2a2>1(\frac{2\sqrt{5}}{3(1+\sqrt{5})})^{a_{1}}(\frac{1+\sqrt{5}}{2})^{2a_{2}}>1, by Proposition 4.5 (1), there exists nn^{\prime} such that rln(zln,wln)>1r_{l_{n^{\prime}}}(z_{l_{n^{\prime}}},w_{l_{n^{\prime}}})>1. By Lemma 4.3, there exists δ(n)\delta(n^{\prime})\in\mathbb{R} such that for any line ll with slope kk, we have rl[t](zl[t],wl[t])>rln(zln,wln)>1r_{l[t]}(z_{l[t]},w_{l[t]})>r_{l_{n}}(z_{l_{n}},w_{l_{n}})>1 for all t>0t\in\mathbb{Z}_{>0} such that l[t]l[t] lies on the right side of γ[δ(n)]\gamma[\delta(n^{\prime})].

Let η=max{σ(n)σ(n)k,δ(n)}\eta=max\{\sigma(n)-\frac{\sigma(n)}{k},\delta(n^{\prime})\}. Then for any line ll with slope kk which lies on the right side of γ[η]\gamma[\eta], we have rl(ul,vl)<1r_{l}(u_{l},v_{l})<1 and rl(zl,wl)>1r_{l}(z_{l},w_{l})>1. By Proposition 3.13, the generalized Markov numbers neither increase nor decrease with xx along ll.

In view of [6, Theorem 1.1] on the monotonicity of the usual Markov numbers and Theorem 4.11, compare with the uniqueness conjecture of Markov numbers, we propose the following uniqueness conjecture for the generalized Markov numbers.

Conjecture 4.12.

For any (q,p),(q,p)>02(q,p),(q^{\prime},p^{\prime})\in\mathbb{Z}_{>0}^{2} with qp,qpq\geq p,q^{\prime}\geq p^{\prime}, if (q,p)(q,p)(q,p)\neq(q^{\prime},p^{\prime}) then we have

mq,pmq,p.m_{q,p}\neq m_{q^{\prime},p^{\prime}}.

Acknowledgements:The author is indebted to Li Li for his interest and valuable conversations. This project is supported by the National Natural Science Foundation of China (No.12101617) (No.12071422), Guangdong Basic and Applied Basic Research Foundation 2021A1515012035, and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University.

References

  • [1] M.Aigner, Markov’s theorem and 100 years of the uniqueness conjecture, Springer, Cham, 2013. A mathematical journey from irrational numbers to perfect matchings.
  • [2] A. Beineke, T. Brüstle and L. Hille, Cluster-cylic quivers with three vertices and the Markov equation. With an appendix by Otto Kerner. Algebr. Represent. Theory 14 (2011), no. 1, 97-112.
  • [3] I. Canakci, P. Lampe, An expansion formula for type A and Kronecker quantum cluster algebras, J. Combin. Theory Ser. A 171 (2020), 105132, 30 pp.
  • [4] S. Fomin, M. Shapiro, D. Thurston, Cluster algebras and triangulated surfaces. Part I: Cluster complexes, Acta Math. 201 (2008) 83-146.
  • [5] G. Frobenius, Über die Markoffschen Zahlen, S. B. Preuss. Akad. Wiss. Berlin (1913) 458-487; available in Gesammelte Abhandlungen Band III, Springer (1968) 598-627.
  • [6] J. Gaster, Boundary slopes for the Markov ordering on relatively prime pairs, Advances in Mathematics 403 (2022) 108377.
  • [7] M. Huang, Positivity for quantum cluster algebras from unpunctured orbifolds, arXiv:1810.04359.
  • [8] M. Huang, New expansion formulas for cluster algebras from surfaces, Journal of Algebra 588 (2021) 538-573.
  • [9] M. Huang, An expansion formula for quantum cluster algebras from unpunctured triangulated surfaces, Selecta Math. (N.S.) 28 (2022), no. 2, Paper No. 21, 58 pp.
  • [10] K. Lee, L. Li, M. Rabideau, R. Schiffler, On the ordering of the Markov numbers, preprint, arXiv:2010.13010.
  • [11] G. Musiker, R. Schiffler, Cluster expansion formulas and perfect matchings, J. Algebraic Combin. 32 (2) (2010) 187-209.
  • [12] G. Musiker, R. Schiffler, and L. Williams, Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011) 2241-2308.
  • [13] G. Musiker, R. Schiffler, L. Williams, Bases for cluster algebras form surfaces, Compos. Math. 149(2) (2013) 217-263
  • [14] G. Musiker and L. Williams, Matrix formulae and skein relations for cluster algebras from surfaces. Int. Math. Res. Not. IMRN (2013), no. 13, 2891-2944.
  • [15] J. Propp, The combinatorics of frieze patterns and Markoff numbers, preprint, arXiv:math.CO/0511633.
  • [16] M. Rabideau, R. Schiffler, Continued fractions and orderings on the Markov numbers, Adv. Math. 370 (2020) 107231.