This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) and its fractional calculus properties

Ravi Dwivedi and Reshma Sanjhira Ravi Dwivedi – Department of Science, Govt Naveen College Bhairamgarh, Bijapur (CG), 494450, India. [email protected] Reshma Sanjhira – Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002, India. Department of Mathematical Sciences, P. D. Patel Institute of Applied Sciences, Faculty of Applied Sciences, Charotar University of Science and Technology, Changa-388 421, India. [email protected]
Abstract

The main objective of the present paper is to introduce and study the function Rqp(A,B;z){}_{p}R_{q}(A,B;z) with matrix parameters and investigate the convergence of this matrix function. The contiguous matrix function relations, differential formulas and the integral representation for the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) are derived. Certain properties of the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) have also been studied from fractional calculus point of view. Finally, we emphasize on the special cases namely the generalized matrix MM-series, the Mittag-Leffler matrix function and its generalizations and some matrix polynomials.

keywords:
Hypergeometric function, Mittag-Leffer function, Matrix functional calculus.
\msc

15A15, 33E12, 33C65. \VOLUME31 \YEAR2023 \NUMBER1 \DOIhttps://doi.org/10.46298/cm.10205 {paper}

1 Introduction

Special matrix functions play an important role in mathematics and physics. In particular, special matrix functions appear in the study of statistics [cm], probability theory [js] and Lie theory [ds6], [atj], to name a few. The theory of special matrix functions has been initiated by Jódar and Cortés who studied matrix analogues of gamma, beta and Gauss hypergeometric functions [jjc98a], [jjc98b]. Dwivedi and Sahai generalized the study of one variable special matrix functions to nn-variables [ds1]-[ds5]. Some of the extended work of Appell matrix functions have been given in [al]. Certain polynomials in one or more variables have been introduced and studied from matrix point of view, see [acc], [ars], [ca], [djl], [sb], [sd06]. Recently, the generalized Mittag-Leffler matrix function have been introduced and studied in [snd]. It appears from the literature that the function Rqp(α,β;z){}_{p}R_{q}(\alpha,\beta;z) were systematically studied in [ds]. In this article, we introduce a new class of matrix function, namely Rqp(A,B;z){}_{p}R_{q}(A,B;z) and discuss its regions of convergence. We also give contiguous matrix function relations, integral representations and differential formulas satisfied by the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z). The matrix analogues of generalized MM-series Mqα,βp(γ1,,γp,δ1,,δq;z){}_{p}M_{q}^{\alpha,\beta}(\gamma_{1},\dots,\gamma_{p},\delta_{1},\dots,\delta_{q};z), Mittag-Leffler functions and its generalizations have been presented as special cases of the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z). The paper is organized as follows: In Section 2, we list the basic definitions and results from special matrix functions that are needed in the sequel. In Section 3, we introduce the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) and prove a theorem on its absolute convergence. In Section 4, we give contiguous matrix function relations and differential formulas satisfied by Rqp(A,B;z){}_{p}R_{q}(A,B;z). In Section 5, an integral representation of the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) motivated by the integral of beta matrix function has been given. In Section 6, the fractional order integral and differential transforms of the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) have been determined. Finally, in Section 7, we present the Gauss hypergeometric matrix function and its generalization, the matrix MM-series, the Mittag-Leffler matrix function and its generalizations and some matrix polynomials as special cases of Rqp(A,B;z){}_{p}R_{q}(A,B;z).

2 Preliminaries

Let the spectrum of a matrix AA in r×r\mathbb{C}^{r\times r}, denoted by σ(A)\sigma(A), be the set of all eigenvalues of AA. Recall that a matrix Ar×rA\in\mathbb{C}^{r\times r} is said to be positive stable when

β(A)=min{(z)zσ(A)}>0.\beta(A)=\min\{\,\Re(z)\mid z\in\sigma(A)\,\}>0.

For a positive stable matrix Ar×rA\in\mathbb{C}^{r\times r}, the gamma matrix function is defined by [jjc98a]

Γ(A)=0ettAI𝑑t\Gamma(A)=\int_{0}^{\infty}e^{-t}\,t^{A-I}\,dt

and the reciprocal gamma matrix function is defined as [jjc98a]

Γ1(A)=A(A+I)(A+(n1)I)Γ1(A+nI),n1.\Gamma^{-1}(A)=A(A+I)\dots(A+(n-1)I)\Gamma^{-1}(A+nI),\ n\geq 1. (1)

The Pochhammer symbol for Ar×rA\in\mathbb{C}^{r\times r} is given by [jjc98b]

(A)n={I,if n=0,A(A+I)(A+(n1)I),if n1.(A)_{n}=\begin{cases}I,&\text{if $n=0$,}\\ A(A+I)\dots(A+(n-1)I),&\text{if $n\geq 1$}.\end{cases} (2)

This gives

(A)n=Γ1(A)Γ(A+nI),n1.(A)_{n}=\Gamma^{-1}(A)\ \Gamma(A+nI),\qquad n\geq 1. (3)

If Ar×rA\in\mathbb{C}^{r\times r} is a positive stable matrix and n1n\geq 1 is an integer, then the gamma matrix function can also be defined in the form of a limit as [jjc98a]

Γ(A)=limn(n1)!(A)n1nA.\Gamma(A)=\lim_{n\to\infty}(n-1)!\,(A)_{n}^{-1}\,n^{A}. (4)

If AA and BB are positive stable matrices in r×r\mathbb{C}^{r\times r}, then the beta matrix function is defined as [jjc98a]

𝔅(A,B)=01tAI(1t)BI𝑑t.\mathfrak{B}(A,B)=\int_{0}^{1}t^{A-I}\,(1-t)^{B-I}dt. (5)

Furthermore, if AA, BB and A+BA+B are positive stable matrices in r×r\mathbb{C}^{r\times r} such that AB=BAAB=BA, then the beta matrix function is defined as [jjc98a]

𝔅(A,B)=Γ(A)Γ(B)Γ1(A+B).\mathfrak{B}(A,B)=\Gamma(A)\,\Gamma(B)\,\Gamma^{-1}(A+B). (6)

Using the Schur decomposition of AA, it follows that [gl], [vl]

etAetα(A)k=0r1(Ar1/2t)kk!,t0.\|e^{tA}\|\leq e^{t\alpha(A)}\sum_{k=0}^{r-1}\frac{(\|A\|r^{1/2}t)^{k}}{k!},\ \ t\geq 0. (7)

We shall use the notation Γ(A1,,ApB1,,Bq)\Gamma\left(\begin{array}[]{c}A_{1},\dots,A_{p}\\ B_{1},\dots,B_{q}\end{array}\right) for Γ(A1)Γ(Ap)Γ1(B1)Γ1(Bq)\Gamma(A_{1})\cdots\Gamma(A_{p})\,\Gamma^{-1}(B_{1})\cdots\Gamma^{-1}(B_{q}).

3 The matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z)

Jódar and Cortés [jjc98b] defined the Gauss hypergeometric function with matrix parameters denoted by F12(A,B;C;z){}_{2}F_{1}(A,B;C;z), where AA, BB, CC are matrices in r×r\mathbb{C}^{r\times r}, and determined its region of convergence and integral representation. A natural generalization of the Gauss hypergeometric matrix function is obtained in [ds1] by introducing an arbitrary number of matrices as parameters in the numerator and denominator and referring to this generalization as the generalized hypergeometric matrix function, Fqp(A1,,Ap;B1,,Bq;z){}_{p}F_{q}(A_{1},\dots,A_{p};B_{1},\dots,B_{q};z). We now give an extension of the generalized hypergeometric matrix function. Let AA, BB, CiC_{i} and DjD_{j}, 1ip1\leq i\leq p, 1jq1\leq j\leq q, be matrices in r×r\mathbb{C}^{r\times r} such that Dj+kID_{j}+kI are invertible for all integers k0k\geq 0. Then, we define the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) as

Rqp(A,B;z){}_{p}R_{q}(A,B;z) =Rqp(C1,,CpD1,,DqA,B;z)\displaystyle={}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{p}\\ D_{1},\dots,D_{q}\end{array}\mid A,B;z\right) (10)
=n0Γ1(nA+B)(C1)n(Cp)n(D1)n1(Dq)n1znn!.\displaystyle=\sum_{n\geq 0}\Gamma^{-1}(nA+B)\,(C_{1})_{n}\dots(C_{p})_{n}\,(D_{1})_{n}^{-1}\dots(D_{q})_{n}^{-1}\,\frac{z^{n}}{n!}. (11)

In the following theorem, we find the regions in which the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) either converges or diverges.

Theorem 3.1.

Let A,B,C1,,Cp,D1,,DqA,B,C_{1},\dots,C_{p},D_{1},\dots,D_{q} be positive stable matrices in r×r\mathbb{C}^{r\times r}. Then the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) defined in (11) converges or diverges in one of the following regions:

  1. 1.

    If pq+1p\leq q+1, the matrix function converges absolutely for all finite zz.

  2. 2.

    If p=q+2p=q+2, function converges for |z|<1|z|<1 and diverges for |z|>1|z|>1.

  3. 3.

    If p=q+2p=q+2 and |z|=1|z|=1, the function converges absolutely for

    β(D1)++β(Dq)>α(C1)++α(Cp).\beta(D_{1})+\cdots+\beta(D_{q})>\alpha(C_{1})+\cdots+\alpha(C_{p}).
  4. 4.

    If p>q+2p>q+2, the function diverges for all z0z\neq 0.

Proof 3.2.

Let Un(z)U_{n}(z) denote the general term of the series (11). Then, we have

Un(z)\displaystyle\|U_{n}(z)\| Γ1(nA+B)i=1p(Ci)nj=1q(Dj)n1|z|nn!\displaystyle\leq\|\Gamma^{-1}(nA+B)\|\,\prod_{i=1}^{p}\|(C_{i})_{n}\|\,\prod_{j=1}^{q}\|(D_{j})_{n}^{-1}\|\,\frac{|z|^{n}}{n!}
Γ1(nA+B)i=1p(Ci)nnCinCi(n1)!(n1)!\displaystyle\leq\|\Gamma^{-1}(nA+B)\|\,\prod_{i=1}^{p}\left\|\frac{(C_{i})_{n}n^{C_{i}}n^{-C_{i}}(n-1)!}{(n-1)!}\right\|\,
×j=1q(Dj)n1nDjnDj(n1)!(n1)!|z|nn!.\displaystyle\quad\times\prod_{j=1}^{q}\left\|\frac{(D_{j})_{n}^{-1}n^{D_{j}}n^{-D_{j}}(n-1)!}{(n-1)!}\right\|\,\frac{|z|^{n}}{n!}. (12)

The limit definition of gamma matrix function (4) and Schur decomposition (7) yield

Un(z)\displaystyle\|U_{n}(z)\| NS((n1)!)pq2ni=1pα(Ci)j=1qβ(Dj)1|z|n,\displaystyle\leq N\ S\ ((n-1)!)^{p-q-2}\ n^{\sum_{i=1}^{p}\alpha(C_{i})-\sum_{j=1}^{q}\beta(D_{j})-1}\,|z|^{n}, (13)

where N=Γ1(C1)Γ1(Cp)Γ(D1)Γ(Dq)N=\|\Gamma^{-1}(C_{1})\|\cdots\|\Gamma^{-1}(C_{p})\|\|\Gamma(D_{1})\|\cdots\|\Gamma(D_{q})\| and

S=(k=0r1(max{C1,,Cp,D1,,Dq}r12lnn)kk!)p+q.\displaystyle S=\left(\sum_{k=0}^{r-1}\frac{(\max\{\|C_{1}\|,\dots,\|C_{p}\|,\|D_{1}\|,\dots,\|D_{q}\|\}\,r^{\frac{1}{2}}\,\ln n)^{k}}{k!}\right)^{p+q}. (14)

Thus, it can be easily calculated from (13) and comparison theorem of numerical series that the matrix series (11) converges or diverges in one of the region listed in Theorem 3.1.

4 Contiguous matrix function relations

In this section, we shall obtain contiguous matrix function relations and differential formulas satisfied by the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z). The following abbreviated notations will be used throughout the subsequent sections:

R=Rqp(A,B;z)=Rqp(C1,,CpD1,,DqA,B;z),\displaystyle R={}_{p}R_{q}(A,B;z)={}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{p}\\ D_{1},\dots,D_{q}\end{array}\mid A,B;z\right), (17)
R(Ci+)=Rqp(C1,,Ci1,Ci+I,Ci+1,,CpD1,,DqA,B;z),\displaystyle R(C_{i}+)={}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{i-1},C_{i}+I,C_{i+1},\dots,C_{p}\\ D_{1},\dots,D_{q}\end{array}\mid A,B;z\right), (20)
R(Ci)=Rqp(C1,,Ci1,CiI,Ci+1,,CpD1,,DqA,B;z),\displaystyle R(C_{i}-)={}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{i-1},C_{i}-I,C_{i+1},\dots,C_{p}\\ D_{1},\dots,D_{q}\end{array}\mid A,B;z\right), (23)
R(Dj)=Rqp(C1,,CpD1,,Dj1,DjI,Dj+1,,DqA,B;z),\displaystyle R(D_{j}-)={}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{p}\\ D_{1},\dots,D_{j-1},D_{j}-I,D_{j+1},\dots,D_{q}\end{array}\mid A,B;z\right), (26)
Rqp(A,B+I;z)=Rqp(C1,,CpD1,,DqA,B+I;z),\displaystyle{}_{p}R_{q}(A,B+I;z)={}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{p}\\ D_{1},\dots,D_{q}\end{array}\mid A,B+I;z\right), (29)
Rqp(A,BI;z)=Rqp(C1,,CpD1,,DqA,BI;z).\displaystyle{}_{p}R_{q}(A,B-I;z)={}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{p}\\ D_{1},\dots,D_{q}\end{array}\mid A,B-I;z\right). (32)

Following Desai and Shukla [ds], we can find (p+q1)(p+q-1) contiguous matrix function relations of bilateral type that connect either RR, R(C1+)R(C_{1}+) and R(Ci+)R(C_{i}+), 1ip1\leq i\leq p or RR, R(C1+)R(C_{1}+) and R(Dj)R(D_{j}-), 1jq1\leq j\leq q. Let Ci,1ipC_{i},1\leq i\leq p be positive stable matrices in r×r\mathbb{C}^{r\times r} such that CiCk=CkCi,1kp,k<iC_{i}C_{k}=C_{k}C_{i},1\leq k\leq p,k<i, CiA=ACiC_{i}A=AC_{i} and CiB=BCiC_{i}B=BC_{i}. Then, we have

R(Ci+)=n0Ci1(Ci+nI)Γ1(nA+B)(C1)n(Cp)n(D1)n1(Dq)n1znn!.\displaystyle R(C_{i}+)=\sum_{n\geq 0}C_{i}^{-1}(C_{i}+nI)\Gamma^{-1}(nA+B)\,(C_{1})_{n}\cdots(C_{p})_{n}\,(D_{1})_{n}^{-1}\cdots(D_{q})_{n}^{-1}\,\frac{z^{n}}{n!}. (33)

If θ=zddz\theta=z\frac{d}{dz} is a differential operator, then we get

(θ+Ci)R=n1(Ci+nI)Γ1(nA+B)(C1)n(Cp)n(D1)n1(Dq)n1znn!.\displaystyle(\theta+C_{i})R=\sum_{n\geq 1}(C_{i}+nI)\Gamma^{-1}(nA+B)\,(C_{1})_{n}\cdots(C_{p})_{n}\,(D_{1})_{n}^{-1}\cdots(D_{q})_{n}^{-1}\,\frac{z^{n}}{n!}. (34)

Equations (33) and (34) together yield

(θ+Ci)R=CiR(Ci+),i=1,,p.(\theta+C_{i})R=C_{i}\,R(C_{i}+),\quad i=1,\dots,p. (35)

In particular, for i=1i=1, we write

(θ+C1)R=C1R(C1+).(\theta+C_{1})R=C_{1}\,R(C_{1}+). (36)

Similarly for matrices Djr×r,1jqD_{j}\in\mathbb{C}^{r\times r},1\leq j\leq q such that DjDk=DkDj,1kq,k>jD_{j}D_{k}=D_{k}D_{j},1\leq k\leq q,k>j, we obtain a set of qq equations, given by

θR+R(DjI)=R(Dj)(DjI).\theta\,R+R\,(D_{j}-I)=R(D_{j}-)(D_{j}-I). (37)

Now, eliminating θ\theta from (35) and (37) gives rise to (p+q1)(p+q-1) contiguous matrix function relations of bilateral type

CiRR(DjI)=CiR(Ci+)R(Dj)(DjI), 1ip,1jq.C_{i}\,R-R\,(D_{j}-I)=C_{i}\,R(C_{i}+)-R(D_{j}-)(D_{j}-I),\ 1\leq i\leq p,1\leq j\leq q. (38)

Equations (35) and (36) produce (p1)(p-1) contiguous matrix function relations

(C1Ci)R=C1R(C1+)CiR(Ci+),i=2,,p.(C_{1}-C_{i})R=C_{1}R(C_{1}+)-C_{i}\,R(C_{i}+),\quad i=2,\dots,p. (39)

Furthermore, Equations (36) and (37) leads to qq contiguous matrix function relations

C1RR(DjI)=C1R(C1+)R(Dj)(DjI), 1jq.C_{1}\,R-R\,(D_{j}-I)=C_{1}\,R(C_{1}+)-R(D_{j}-)(D_{j}-I),\ 1\leq j\leq q. (40)

The set of matrix function relations given in (39) and (40) are simple contiguous matrix function relations. Next, we give matrix differential formulas satisfied by the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z).

4.1 Matrix differential formulas

Theorem 4.1.

Let AA, BB, C1C_{1}, ,Cp\dots,C_{p}, D1D_{1}, ,Dqr×r\dots,D_{q}\in\mathbb{C}^{r\times r} such that each Dj+kI,1jqD_{j}+kI,1\leq j\leq q is invertible for all integers k0k\geq 0. Then the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) satisfies the matrix differential formulas

(ddz)rRqp(A,B;z)\displaystyle\left(\frac{d}{dz}\right)^{r}{}_{p}R_{q}(A,B;z) =(C1)r(Cp)rRqp(C1+rI,,Cp+rID1+rI,,Dq+rIA,rA+B;z)\displaystyle=(C_{1})_{r}\cdots(C_{p})_{r}\ {}_{p}R_{q}\left(\begin{array}[]{c}C_{1}+rI,\dots,C_{p}+rI\\ D_{1}+rI,\dots,D_{q}+rI\end{array}\mid A,rA+B;z\right) (43)
×(D1)r1(Dq)r1,ClCm=CmCl,ClA=ACl,ClB=BCl,\displaystyle\quad\times(D_{1})_{r}^{-1}\cdots(D_{q})_{r}^{-1},\,C_{l}C_{m}=C_{m}C_{l},\,C_{l}A=AC_{l},\,C_{l}B=BC_{l},
DiDj=DjDi,1l,mp, 1i,jq;\displaystyle\qquad D_{i}D_{j}=D_{j}D_{i},1\leq l,m\leq p,\,1\leq i,j\leq q; (44)
(ddz)r(Rqp(A,B;z)zDjI)\displaystyle\left(\frac{d}{dz}\right)^{r}({}_{p}R_{q}(A,B;z)z^{D_{j}-I}) =Rqp(C1,,CpD1,,Dj1,DjrI,Dj+1,,DqA,B;z)\displaystyle={}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{p}\\ D_{1},\dots,D_{j-1},D_{j}-rI,D_{j+1},\dots,D_{q}\end{array}\mid A,B;z\right) (47)
×(1)rzDj(r+1)I(IDj)r,DiDj=DjDi;\displaystyle\quad\times(-1)^{r}z^{D_{j}-(r+1)I}(I-D_{j})_{r},\ D_{i}D_{j}=D_{j}D_{i}; (48)
(z2ddz)r(zCi(r1)IRqp(A,B;z))\displaystyle\left(z^{2}\,\frac{d}{dz}\right)^{r}(z^{C_{i}-(r-1)I}{}_{p}R_{q}(A,B;z))
=(Ci)rzCi+rIRqp(C1,,Ci1,Ci+rI,Ci+1,,CpD1,,DqA,B;z),CiCj=CjCi\displaystyle=(C_{i})_{r}\,z^{C_{i}+rI}{}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{i-1},C_{i}+rI,C_{i+1},\dots,C_{p}\\ D_{1},\dots,D_{q}\end{array}\mid A,B;z\right),C_{i}C_{j}=C_{j}C_{i} (51)
CiA=ACi,CiB=BCi, 1i,jp.\displaystyle\qquad C_{i}A=AC_{i},\,C_{i}B=BC_{i},\,1\leq i,j\leq p. (52)
Proof 4.2.

Differentiating the Equation (11) with respect to zz, we get

ddzpRq(A,B;z)\displaystyle\frac{d}{dz}\ _{p}R_{q}(A,B;z) =n1Γ1(nA+B)(C1)n(Cp)n(D1)n1(Dq)n1zn1(n1)!\displaystyle=\sum_{n\geq 1}\Gamma^{-1}(nA+B)\,(C_{1})_{n}\dots(C_{p})_{n}\,(D_{1})_{n}^{-1}\dots(D_{q})_{n}^{-1}\,\frac{z^{n-1}}{(n-1)!}
=n0Γ1(nA+A+B)(C1)n+1(Cp)n+1(D1)n+11(Dq)n+11znn!\displaystyle=\sum_{n\geq 0}\Gamma^{-1}(nA+A+B)\,(C_{1})_{n+1}\dots(C_{p})_{n+1}\,(D_{1})_{n+1}^{-1}\dots(D_{q})_{n+1}^{-1}\,\frac{z^{n}}{n!}
=(C1)1(Cp)1Rqp(C1+I,,Cp+ID1+I,,Dq+IA,A+B;z)\displaystyle=(C_{1})_{1}\cdots(C_{p})_{1}\ {}_{p}R_{q}\left(\begin{array}[]{c}C_{1}+I,\dots,C_{p}+I\\ D_{1}+I,\dots,D_{q}+I\end{array}\mid A,A+B;z\right) (55)
×(D1)11(Dq)11.\displaystyle\quad\times(D_{1})_{1}^{-1}\cdots(D_{q})_{1}^{-1}. (56)

Proceeding similarly rr-times, we get the required relation (44). Using the commutativity of matrices considered in the hypothesis and the way (44) is proved, we are able to prove (48) and (52).

Theorem 4.3.

Let AA, BB, C1C_{1}, ,Cp\dots,C_{p}, D1D_{1}, ,Dqr×r\dots,D_{q}\in\mathbb{C}^{r\times r} such that each Dj+kI,1jqD_{j}+kI,1\leq j\leq q is invertible for all integers k0k\geq 0 and AA, BIB-I are positive stable. Then the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) defined in (11) satisfies the matrix differential formula

zAddzRqp(A,B;z)=Rqp(A,BI;z)(BI)Rqp(A,B;z),AB=BA.\displaystyle zA\frac{d}{dz}\,{}_{p}R_{q}(A,B;z)={}_{p}R_{q}(A,B-I;z)-(B-I)\,{}_{p}R_{q}(A,B;z),\quad AB=BA. (57)
Proof 4.4.

Using the definition of matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) and zddzzn=nznz\frac{d}{dz}z^{n}=nz^{n} in the left hand side of (57), we get

zAddzRqp(A,B;z)\displaystyle zA\frac{d}{dz}\,{}_{p}R_{q}(A,B;z) =n0nAΓ1(nA+B)(C1)n(Cp)n(D1)n1(Dq)n1znn!\displaystyle=\sum_{n\geq 0}nA\Gamma^{-1}(nA+B)\,(C_{1})_{n}\dots(C_{p})_{n}\,(D_{1})_{n}^{-1}\dots(D_{q})_{n}^{-1}\,\frac{z^{n}}{n!}
=n0Γ1(nA+BI)(C1)n(Cp)n(D1)n1(Dq)n1znn!\displaystyle=\sum_{n\geq 0}\Gamma^{-1}(nA+B-I)\,(C_{1})_{n}\dots(C_{p})_{n}\,(D_{1})_{n}^{-1}\dots(D_{q})_{n}^{-1}\,\frac{z^{n}}{n!}
(BI)n0Γ1(nA+B)(C1)n(Cp)n(D1)n1(Dq)n1\displaystyle\quad-(B-I)\sum_{n\geq 0}\Gamma^{-1}(nA+B)\,(C_{1})_{n}\dots(C_{p})_{n}\,(D_{1})_{n}^{-1}\dots(D_{q})_{n}^{-1}
×znn!,AB=BA\displaystyle\quad\times\frac{z^{n}}{n!},\quad AB=BA
=Rqp(A,BI;z)(BI)Rqp(A,B;z).\displaystyle={}_{p}R_{q}(A,B-I;z)-(B-I)\,{}_{p}R_{q}(A,B;z). (58)

This completes the proof of (57).

5 Integral representation

We now find an integral representation of the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) using the integral of the beta matrix function.

Theorem 5.1.

Let AA, BB, C1C_{1}, ,Cp\dots,C_{p}, D1,,DqD_{1},\dots,D_{q} be matrices in r×r\mathbb{C}^{r\times r} such that: CpC_{p}, DqD_{q}, DqCpD_{q}-C_{p} are positive stable and CpDj=DjCpC_{p}D_{j}=D_{j}C_{p} for all 1jq1\leq j\leq q. Then, for |z|<1|z|<1, the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) defined in (11) can be presented in integral form as

Rqp(A,B;z)\displaystyle{}_{p}R_{q}(A,B;z) =01Rq1p1(C1,,Cp1D1,,Dq1A,B;tz)tCpI(1t)DqCpI𝑑t\displaystyle=\int_{0}^{1}{}_{p-1}R_{q-1}\left(\begin{array}[]{c}C_{1},\dots,C_{p-1}\\ D_{1},\dots,D_{q-1}\end{array}\mid A,B;t\,z\right)t^{C_{p}-I}(1-t)^{D_{q}-C_{p}-I}dt (61)
×Γ(DqCp,DqCp).\displaystyle\quad\times\Gamma\left(\begin{array}[]{c}D_{q}\\ C_{p},D_{q}-C_{p}\end{array}\right). (64)
Proof 5.2.

Since Cp,Dq,DqCpC_{p},D_{q},D_{q}-C_{p} are positive stable and CpDq=DqCpC_{p}D_{q}=D_{q}C_{p}, we have [jjc98b]

(Cp)n(Dq)n1=(01tCp+(n1)I(1t)DqCpI𝑑t)Γ(DqCp,DqCp).\displaystyle(C_{p})_{n}(D_{q})_{n}^{-1}=\left(\int_{0}^{1}t^{C_{p}+(n-1)I}(1-t)^{D_{q}-C_{p}-I}dt\right)\Gamma\left(\begin{array}[]{c}D_{q}\\ C_{p},D_{q}-C_{p}\end{array}\right). (67)

Using (67) in (11), we get

Rqp(A,B;z)\displaystyle{}_{p}R_{q}(A,B;z) =n001Γ1(nA+B)(C1)n(Cp1)n(D1)n1(Dq1)n1\displaystyle=\sum_{n\geq 0}\int_{0}^{1}\Gamma^{-1}(nA+B)\,(C_{1})_{n}\cdots(C_{p-1})_{n}\,(D_{1})_{n}^{-1}\cdots(D_{q-1})_{n}^{-1}
×znn!tCp+(n1)I(1t)DqCpIdtΓ(DqCp,DqCp).\displaystyle\quad\times\frac{z^{n}}{n!}\,t^{C_{p}+(n-1)I}\,(1-t)^{D_{q}-C_{p}-I}dt\ \Gamma\left(\begin{array}[]{c}D_{q}\\ C_{p},D_{q}-C_{p}\end{array}\right). (70)

To interchange the integral and summation, consider the product of matrix functions

Sn(z,t)\displaystyle S_{n}(z,t) =Γ1(nA+B)(C1)n(Cp1)n(D1)n1(Dq1)n1znn!tCp+(n1)I\displaystyle=\Gamma^{-1}(nA+B)\,(C_{1})_{n}\cdots(C_{p-1})_{n}\,(D_{1})_{n}^{-1}\cdots(D_{q-1})_{n}^{-1}\,\frac{z^{n}}{n!}\,t^{C_{p}+(n-1)I}
×(1t)DqCpIΓ(DqCp,DqCp).\displaystyle\quad\times(1-t)^{D_{q}-C_{p}-I}\ \Gamma\left(\begin{array}[]{c}D_{q}\\ C_{p},D_{q}-C_{p}\end{array}\right). (73)

For 0<t<10<t<1 and n0n\geq 0, we get

Sn(z,t)\displaystyle\|S_{n}(z,t)\|
Γ(DqCp,DqCp)Γ1(nA+B)(C1)n(Cp1)n(D1)n1(Dq1)n1znn!\displaystyle\leq\left\|\Gamma\left(\begin{array}[]{c}D_{q}\\ C_{p},D_{q}-C_{p}\end{array}\right)\right\|\,\left\|\Gamma^{-1}(nA+B)\,(C_{1})_{n}\cdots(C_{p-1})_{n}\,(D_{1})_{n}^{-1}\cdots(D_{q-1})_{n}^{-1}\,\frac{z^{n}}{n!}\right\|\, (76)
×tCpI(1t)DqCpI.\displaystyle\quad\times\|t^{C_{p}-I}\|\|(1-t)^{D_{q}-C_{p}-I}\|. (77)

The Schur decomposition (7) yields

tCpI(1t)DqCpI\displaystyle\|t^{C_{p}-I}\|\ \|(1-t)^{D_{q}-C_{p}-I}\| tα(Cp)1(1t)α(DqCp)1(k=0r1(CpIr1/2lnt)kk!)\displaystyle\leq t^{\alpha(C_{p})-1}(1-t)^{{\alpha(D_{q}-C_{p})}-1}\left(\sum_{k=0}^{r-1}\frac{(\|C_{p}-I\|\ r^{1/2}\ \ln t)^{k}}{k!}\right)
×(k=0r1(DqCpIr1/2ln(1t))kk!).\displaystyle\quad\times\left(\sum_{k=0}^{r-1}\frac{(\|{D_{q}-C_{p}-I}\|\ r^{1/2}\ \ln{(1-t)})^{k}}{k!}\right). (78)

Since 0<t<10<t<1, we have

tCpI(1t)DqCpI𝒜tα(Cp)1(1t)α(DqCp)1,\displaystyle\|t^{C_{p}-I}\|\ \|(1-t)^{D_{q}-C_{p}-I}\|\leq\mathcal{A}\ t^{\alpha(C_{p})-1}(1-t)^{{\alpha(D_{q}-C_{p})}-1}, (79)

where

𝒜=(k=0r1(max{CpI,DqCpI}r1/2)kk!)2.\displaystyle\mathcal{A}=\left(\sum_{k=0}^{r-1}\frac{(\max\{\|C_{p}-I\|,\|D_{q}-C_{p}-I\|\}\ r^{1/2})^{k}}{k!}\right)^{2}. (80)

The matrix series Γ1(nA+B)(C1)n(Cp1)n(D1)n1(Dq1)n1znn!\Gamma^{-1}(nA+B)\,(C_{1})_{n}\cdots(C_{p-1})_{n}\,(D_{1})_{n}^{-1}\cdots(D_{q-1})_{n}^{-1}\,\frac{z^{n}}{n!} converges absolutely for pq+2p\leq q+2 and |z|<1|z|<1; suppose it converges to SS^{\prime}. Thus, we get

n0Sn(z,t)f(t)=NS𝒜tα(Cp)1(1t)α(DqCp)1.\displaystyle\sum_{n\geq 0}\|S_{n}(z,t)\|\leq f(t)=NS^{\prime}\mathcal{A}\,t^{\alpha(C_{p})-1}\,(1-t)^{\alpha(D_{q}-C_{p})-1}. (81)

Since α(Cp),α(DqCp)>0\alpha(C_{p}),\alpha(D_{q}-C_{p})>0, the function f(t)f(t) is integrable and by the dominated convergence theorem [gf], the summation and the integral can be interchanged in (70). Using CpDj=DjCp, 1jqC_{p}D_{j}=D_{j}C_{p},\ 1\leq j\leq q, we get (64).

6 Fractional calculus of the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z)

Let x>0x>0 and μ\mu\in\mathbb{C} such that (μ)>0\Re(\mu)>0. Then the Riemann-Liouville type fractional order integral and derivatives of order μ\mu are given by [kst], [skm]

(𝐈aμf)(x)=1Γ(μ)ax(xt)μ1f(t)𝑑t({\bf I}^{\mu}_{a}f)(x)=\frac{1}{\Gamma(\mu)}\int_{a}^{x}(x-t)^{\mu-1}f(t)dt (82)

and

𝐃aμf(x)=(𝐈anμ𝐃nf(x)),𝐃=ddx.{\bf D}_{a}^{\mu}f(x)=({\bf I}^{n-\mu}_{a}{\bf D}^{n}f(x)),\quad{\bf D}=\frac{d}{dx}. (83)

Bakhet and his co-workers, [ab], studied the fractional order integrals and derivatives of Wright hypergeometric and incomplete Wright hypergeometric matrix functions using the operators (82) and (83). To obtain such they used the following lemma:

Lemma 6.1.

Let AA be a positive stable matrix in r×r\mathbb{C}^{r\times r} and μ\mu\in\mathbb{C} such that (μ)>0\Re(\mu)>0. Then the fractional integral operator (82) yields

𝐈μ(xAI)=Γ(A)Γ1(A+μI)xA+(μ1)I.\displaystyle{\bf I}^{\mu}(x^{A-I})=\Gamma(A)\Gamma^{-1}(A+\mu I)x^{A+(\mu-1)I}. (84)

In the next two theorems, we find the fractional order integral and derivative of matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z).

Theorem 6.2.

Let AA, BB, C1C_{1}, ,Cp\dots,C_{p}, D1,,DqD_{1},\dots,D_{q} be matrices in r×r\mathbb{C}^{r\times r} and μ\mu\in\mathbb{C} such that DiDj=DjDi,1i,jqD_{i}D_{j}=D_{j}D_{i},1\leq i,j\leq q and (μ)>0\Re(\mu)>0. Then the fractional integral of the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) is given by

𝐈μ[Rqp(A,B;z)zDjI]\displaystyle{\bf I}^{\mu}[{}_{p}R_{q}(A,B;z)z^{D_{j}-I}]
=Rqp(C1,,CpD1,,Dj1,Dj+μI,Dj+1,,DqA,B;z)zDj+(μ1)I\displaystyle={}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{p}\\ D_{1},\dots,D_{j-1},D_{j}+\mu I,D_{j+1},\dots,D_{q}\end{array}\mid A,B;z\right)z^{D_{j}+(\mu-1)I} (87)
×Γ(Dj)Γ1(Dj+μI).\displaystyle\quad\times\Gamma(D_{j})\Gamma^{-1}(D_{j}+\mu I). (88)
Proof 6.3.

From Equation (82), we have

𝐈μ[Rqp(A,B;z)zDjI]\displaystyle{\bf I}^{\mu}[{}_{p}R_{q}(A,B;z)z^{D_{j}-I}]
=1Γ(μ)0z(zt)μ1Rqp(A,B;t)tDjI𝑑t\displaystyle=\frac{1}{\Gamma(\mu)}\int_{0}^{z}(z-t)^{\mu-1}{}_{p}R_{q}(A,B;t)t^{D_{j}-I}dt
=1Γ(μ)n0(C1)n(Cp)n(0z(zt)μ1tDj+(n1)I𝑑t)(D1)n1(Dq)n11n!\displaystyle=\frac{1}{\Gamma(\mu)}\sum_{n\geq 0}\,(C_{1})_{n}\dots(C_{p})_{n}\left(\int_{0}^{z}(z-t)^{\mu-1}t^{D_{j}+(n-1)I}dt\right)(D_{1})_{n}^{-1}\dots(D_{q})_{n}^{-1}\,\frac{1}{n!}
=n0(C1)n(Cp)n(𝐈μzDj+(n1)I)(D1)n1(Dq)n11n!.\displaystyle=\sum_{n\geq 0}\,(C_{1})_{n}\dots(C_{p})_{n}\left({\bf I}^{\mu}\,z^{D_{j}+(n-1)I}\right)(D_{1})_{n}^{-1}\dots(D_{q})_{n}^{-1}\,\frac{1}{n!}. (89)

Using the Lemma 6.1, we get

𝐈μ[Rqp(A,B;z)zDjI]\displaystyle{\bf I}^{\mu}[{}_{p}R_{q}(A,B;z)z^{D_{j}-I}] =1Γ(μ)n0(C1)n(Cp)nΓ(Dj+nI)Γ1(Dj+nI+μI)\displaystyle=\frac{1}{\Gamma(\mu)}\sum_{n\geq 0}\,(C_{1})_{n}\dots(C_{p})_{n}\Gamma(D_{j}+nI)\Gamma^{-1}(D_{j}+nI+\mu I)
×zDj+(n+μ1)I(D1)n1(Dq)n11n!\displaystyle\quad\times z^{D_{j}+(n+\mu-1)I}(D_{1})_{n}^{-1}\dots(D_{q})_{n}^{-1}\,\frac{1}{n!}
=Rqp(C1,,CpD1,,Dj1,Dj+μI,Dj+1,,DqA,B;z)\displaystyle={}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{p}\\ D_{1},\dots,D_{j-1},D_{j}+\mu I,D_{j+1},\dots,D_{q}\end{array}\mid A,B;z\right) (92)
×zDj+(μ1)IΓ(Dj)Γ1(Dj+μI).\displaystyle\quad\times z^{D_{j}+(\mu-1)I}\,\Gamma(D_{j})\Gamma^{-1}(D_{j}+\mu I). (93)

This completes the proof.

Theorem 6.4.

Let AA, BB, C1C_{1}, ,Cp\dots,C_{p}, D1,,DqD_{1},\dots,D_{q} be matrices in r×r\mathbb{C}^{r\times r} and μ\mu\in\mathbb{C} such that DiDj=DjDi,1i,jqD_{i}D_{j}=D_{j}D_{i},1\leq i,j\leq q and (μ)>0\Re(\mu)>0. Then the fractional integral of the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) is given by

𝐃μ[Rqp(A,B;z)zDjI]\displaystyle{\bf D}^{\mu}[{}_{p}R_{q}(A,B;z)z^{D_{j}-I}]
=Rqp(C1,,CpD1,,Dj1,DjμI,Dj+1,,DqA,B;z)zDj(μ1)I\displaystyle={}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{p}\\ D_{1},\dots,D_{j-1},D_{j}-\mu I,D_{j+1},\dots,D_{q}\end{array}\mid A,B;z\right)z^{D_{j}-(\mu-1)I} (96)
×Γ(Dj)Γ1(DjμI).\displaystyle\quad\times\Gamma(D_{j})\Gamma^{-1}(D_{j}-\mu I). (97)
Proof 6.5.

The fractional derivative operator (83) and Theorem 6.2 together yield

𝐃μ[Rqp(A,B;z)zDjI]\displaystyle{\bf D}^{\mu}[{}_{p}R_{q}(A,B;z)z^{D_{j}-I}]
=(ddz)rRqp(C1,,CpD1,,Dj1,Dj+(rμ)I,Dj+1,,DqA,B;z)zDj+(rμ1)I\displaystyle=\left(\frac{d}{dz}\right)^{r}{}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{p}\\ D_{1},\dots,D_{j-1},D_{j}+(r-\mu)I,D_{j+1},\dots,D_{q}\end{array}\mid A,B;z\right)z^{D_{j}+(r-\mu-1)I} (100)
×Γ(Dj)Γ1(Dj+(rμ)I).\displaystyle\quad\times\Gamma(D_{j})\Gamma^{-1}(D_{j}+(r-\mu)I). (101)

Now, proceeding exactly in the same manner as in Theorem 4.1, we get (97).

7 Special Cases

The matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) reduces to several special matrix functions. These matrix functions are considered as matrix generalizations of respective classical matrix functions such as the generalized hypergeometric matrix function, the Gauss hypergeometric matrix function, the confluent hypergeometric matrix function, the matrix M-series, the Wright matrix function and the Mittag-Leffler matrix function and its generalizations. We also discuss some matrix polynomials as particular cases. We start with the special case A=B=IA=B=I and Cp=IC_{p}=I. The matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) reduces to

Rqp(C1,,Cp1,ID1,,DqI,I;z)\displaystyle{}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{p-1},I\\ D_{1},\dots,D_{q}\end{array}\mid I,I;z\right) =n0(C1)n(Cp1)n(D1)n1(Dq)n1znn!\displaystyle=\sum_{n\geq 0}\,(C_{1})_{n}\dots(C_{p-1})_{n}\,(D_{1})_{n}^{-1}\dots(D_{q})_{n}^{-1}\,\frac{z^{n}}{n!} (104)
=Fqp1(C1,,Cp1,D1,,Dq;z),\displaystyle={}_{p-1}F_{q}(C_{1},\dots,C_{p-1},D_{1},\dots,D_{q};z), (105)

which is known as generalized hypergeometric matrix function with p1p-1 matrix parameters in the numerator and qq in the denominator [ds1]. For C1=A1,C2=B1,C3=I,D1=CC_{1}=A_{1},C_{2}=B_{1},C_{3}=I,D_{1}=C and A=B=IA=B=I, the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) reduces to the Gauss hypergeometric matrix function F12(A1,B1;C;z){}_{2}F_{1}(A_{1},B_{1};C;z). Similarly, for C1=A1,C2=I,D1=CC_{1}=A_{1},C_{2}=I,D_{1}=C and A=B=IA=B=I, Rqp(A,B;z){}_{p}R_{q}(A,B;z) reduces to the confluent hypergeometric matrix function F11(A1;C;z){}_{1}F_{1}(A_{1};C;z). For Cp=IC_{p}=I, the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) leads to the matrix analogue of the generalized MM-series [sj].

Rqp(C1,,Cp1,ID1,,DqA,B;z)\displaystyle{}_{p}R_{q}\left(\begin{array}[]{c}C_{1},\dots,C_{p-1},I\\ D_{1},\dots,D_{q}\end{array}\mid A,B;z\right) =n0Γ1(nA+B)(C1)n(Cp1)n\displaystyle=\sum_{n\geq 0}\Gamma^{-1}(nA+B)(C_{1})_{n}\dots(C_{p-1})_{n} (108)
×(D1)n1(Dq)n1zn\displaystyle\quad\times(D_{1})_{n}^{-1}\dots(D_{q})_{n}^{-1}\,z^{n}
=Mq(A,B)p1(C1,,Cp1,D1,,Dq;z).\displaystyle={}_{p-1}M^{(A,B)}_{q}(C_{1},\dots,C_{p-1},D_{1},\dots,D_{q};z). (109)

With p=1,q=0p=1,q=0, C1=IC_{1}=I and B=IB=I, the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) reduces to

R01(IA,I;z)\displaystyle{}_{1}R_{0}\left(\begin{array}[]{c}I\\ -\end{array}\mid A,I;z\right) =n0Γ1(nA+I)zn=EA(z),\displaystyle=\sum_{n\geq 0}\Gamma^{-1}(nA+I)z^{n}=E_{A}(z), (112)

for p=1,q=0p=1,q=0 and C1=IC_{1}=I, the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) gives

R01(IA,B;z)\displaystyle{}_{1}R_{0}\left(\begin{array}[]{c}I\\ -\end{array}\mid A,B;z\right) =n0Γ1(nA+B)zn=EA,B(z),\displaystyle=\sum_{n\geq 0}\Gamma^{-1}(nA+B)\,z^{n}=E_{A,B}(z), (115)

with one matrix parameter, C1=CC_{1}=C, Rqp(A,B;z){}_{p}R_{q}(A,B;z) becomes

R01(CA,B;z)\displaystyle{}_{1}R_{0}\left(\begin{array}[]{c}C\\ -\end{array}\mid A,B;z\right) =n0Γ1(nA+B)(C)nznn!=EA,BC(z)\displaystyle=\sum_{n\geq 0}\Gamma^{-1}(nA+B)\,(C)_{n}\,\frac{z^{n}}{n!}=E^{C}_{A,B}(z) (118)

and for two numerator matrix parameter, C1=C,C2=IC_{1}=C,\,C_{2}=I and one denominator matrix parameter D1=DD_{1}=D, Rqp(A,B;z){}_{p}R_{q}(A,B;z) reduces to

R12(C,IDA,B;z)\displaystyle{}_{2}R_{1}\left(\begin{array}[]{c}C,I\\ D\end{array}\mid A,B;z\right) =n0Γ1(nA+B)(C)n(D)n1zn=EA,BC,D(z).\displaystyle=\sum_{n\geq 0}\Gamma^{-1}(nA+B)\,(C)_{n}\,(D)_{n}^{-1}z^{n}=E^{C,D}_{A,B}(z). (121)

We define the matrix functions obtained in (112)-(121) as the matrix analogue of the classical Mittag-Leffler function [ml], Wiman’s function [aw], the generalized Mittag-Leffler function in three parameters [trp] and the generalized Mittag-Leffler function in four parameters [tos], respectively. For p=q=0p=q=0, with replacement of BB by B+IB+I and zz by z-z, the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) turns into the generalized Bessel-Maitland matrix function [snd]

R00(A,B+I;z)\displaystyle{}_{0}R_{0}\left(\begin{array}[]{c}-\\ -\end{array}\mid A,B+I;-z\right) =n0Γ1(nA+B+I)(z)nn!=JAB(z).\displaystyle=\sum_{n\geq 0}\frac{\Gamma^{-1}(nA+B+I)\,(-z)^{n}}{n!}=J_{A}^{B}(z). (124)

Matrix polynomials such as the Jacobi matrix polynomial, the generalized Konhauser matrix polynomial, the Laguerre matrix polynomial, the Legendre matrix polynomial, the Chebyshev matrix polynomial and the Gegenbauer matrix polynomial can be presented as particular cases of the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z). The matrix polynomial dependency chart is given below:

Figure 1: Special cases
Rqp(A,B;z){}_{p}R_{q}(A,B;z) The Konhauser matrix polynomial Laguerre matrix polynomial Jacobi matrix polynomial Chebyshev matrix polynomial Gegenbauer matrix polynomial Legendre matrix polynomial

More explicitly, the Jacobi matrix polynomial can be written in term of the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z), for p=2p=2, q=1q=1, C1=A+C+(k+1)IC_{1}=A+C+(k+1)I, C2=kIC_{2}=-kI, D1=C+ID_{1}=C+I, A=0A=0, B=C+IB=C+I and z=1+x2z=\frac{1+x}{2}, as

Pk(A,C)(x)\displaystyle P_{k}^{(A,C)}(x) =(1)kk!R12(A+C+(k+1)I,kIC+I0,C+I;1+x2)\displaystyle=\frac{(-1)^{k}}{k!}{}_{2}R_{1}\left(\begin{array}[]{c}A+C+(k+1)I,-kI\\ C+I\end{array}\mid 0,C+I;\frac{1+x}{2}\right) (127)
×Γ(C+(k+1)I).\displaystyle\quad\times\Gamma(C+(k+1)I). (128)

For p=2p=2, q=1q=1, C1=(k+1)IC_{1}=(k+1)I, C2=kIC_{2}=-kI, D1=DD_{1}=D, A=0A=0 and z=1x2z=\frac{1-x}{2}, the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) reduces to the Legendre matrix polynomial

Pk(x,D)\displaystyle P_{k}(x,D) =R12((k+1)I,kID0,B;1x2).\displaystyle={}_{2}R_{1}\left(\begin{array}[]{c}(k+1)I,-kI\\ D\end{array}\mid 0,B;\frac{1-x}{2}\right). (131)

Similarly, the Gegenbauer matrix polynomial in terms of the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z) can be expressed as

CkD(x)\displaystyle C^{D}_{k}(x) =(2D)kk!R12(2D+kI,kID+12I0,B;1x2).\displaystyle=\frac{(2D)_{k}}{k!}{}_{2}R_{1}\left(\begin{array}[]{c}2D+kI,-kI\\ D+\frac{1}{2}I\end{array}\mid 0,B;\frac{1-x}{2}\right). (134)

The Konhauser matrix polynomial in terms of the matrix

ZmC(x,k)\displaystyle Z^{C}_{m}(x,k) =Γ(C+(km+1)I)Γ(m+1)R01(mIkI,C+I;xk).\displaystyle=\frac{\Gamma(C+(km+1)I)}{\Gamma(m+1)}{}_{1}R_{0}\left(\begin{array}[]{c}-mI\\ -\end{array}\mid kI,C+I;x^{k}\right). (137)

The Laguerre matrix polynomial can be obtained by taking k=1k=1 in Equation (137). Note that the properties of these matrix functions and polynomials can be deduced from the corresponding properties of the matrix function Rqp(A,B;z){}_{p}R_{q}(A,B;z).

Acknowledgements

The authors thank the referees for valuable suggestions that led to a better presentation of the paper.

References

  • [1] \referPaperacc \RauthorAktaş, Rabia and Çekim, Bayram and Çevik, Ali \RtitleExtended Jacobi matrix polynomials \RjournalUtil. Math. \Rvolume92 \Ryear2013 \Rpages47-64
  • [2] \referPaperars \RtitleA note on multivariable Humbert matrix polynomials \RauthorAktaş, Rabia \RjournalGazi University journal of science \Rvolume27 \Rnumber2 \Rpages747-754 \Ryear2014
  • [3] \referPaperal \RauthorAltin, Abdullah and Çekim, Bayram and Şahin, Recep \RtitleOn the matrix versions of Appell hypergeometric functions \RjournalQuaest. Math. \Rvolume37 \Ryear2014 \Rnumber1 \Rpages31-38
  • [4] \referPaperab \RauthorBakhet, Ahmed and Jiao, Yong and He, Fuli \RtitleOn the Wright hypergeometric matrix functions and their fractional calculus \RjournalIntegral Transforms Spec. Funct. \Rvolume30 \Ryear2019 \Rnumber2 \Rpages138-156
  • [5] \referPaperca \RauthorÇekim, Bayram and Aktaş, Rabia \RtitleMultivariable matrix generalization of Gould-Hopper polynomials \RjournalMiskolc Math. Notes \Rvolume16 \Ryear2015 \Rnumber1 \Rpages79-89
  • [6] \referPapercm \RauthorConstantine, A. G. and Muirhead, R. J. \RtitlePartial differential equations for hypergeometric functions of two argument matrices \RjournalJ. Multivariate Anal. \Rvolume2 \Ryear1972 \Rpages332-338
  • [7] \referPaperdjl \RauthorDefez, E. and Jódar, L. and Law, A. \RtitleJacobi matrix differential equation, polynomial solutions, and their properties \RjournalComput. Math. Appl. \Rvolume48 \Ryear2004 \Rnumber5-6 \Rpages789-803
  • [8] \referPaperds \RauthorDesai, Rachana and Shukla, A. K. \RtitleSome results on function Rqp(α,β;z){}_{p}R_{q}(\alpha,\beta;z) \RjournalJ. Math. Anal. Appl. \Rvolume448 \Ryear2017 \Rnumber1 \Rpages187-197
  • [9] \referPaperds1 \RauthorDwivedi, Ravi and Sahai, Vivek \RtitleOn the hypergeometric matrix functions of two variables \RjournalLinear Multilinear Algebra \Rvolume66 \Ryear2018 \Rnumber9 \Rpages1819-1837
  • [10] \referPaperds5 \RauthorDwivedi, Ravi and Sahai, Vivek \RtitleA note on the Appell matrix functions \RjournalQuaest. Math. \Rvolume43 \Ryear2020 \Rnumber3 \Rpages321-334
  • [11] \referPaperds6 \RauthorDwivedi, Ravi and Sahai, Vivek \RtitleModels of Lie algebra sl(2,)sl(2,\mathbb{C}) and special matrix functions by means of a matrix integral transformation \RjournalJ. Math. Anal. Appl. \Rvolume473 \Ryear2019 \Rnumber2 \Rpages786-802
  • [12] \referBookgf \RauthorFolland, Gerald B. \RtitleFourier analysis and its applications \RseriesThe Wadsworth & Brooks/Cole Mathematics Series \RpublisherWadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA \Ryear1992 \Rpagesx+433
  • [13] \referBookgl \RauthorGolub, Gene H. and Van Loan, Charles F. \RtitleMatrix computations \RseriesJohns Hopkins Studies in the Mathematical Sciences \RpublisherJohns Hopkins University Press, Baltimore, MD \Ryear2013 \Rpagesxiv+756
  • [14] \referBookatj \RauthorJames, Alan T. \RtitleSpecial functions of matrix and single argument in statistics \RjournalTheory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) \RseriesMath. Res. Center, Univ. Wisconsin, Publ. No. 35 \Rpages497–520 \RpublisherAcademic Press, New York \Ryear1975
  • [15] \referPaperjjc98a \RauthorJódar, L. and Cortés, J. C. \RtitleSome properties of gamma and beta matrix functions \RjournalAppl. Math. Lett. \Rvolume11 \Ryear1998 \Rnumber1 \Rpages89-93
  • [16] \referProceedingsjjc98b \RauthorJódar, L. and Cortés, J. C. \RtitleOn the hypergeometric matrix function \RjournalProceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997). J. Comput. Appl. Math. \Rvolume99 \Ryear1998 \Rnumber1-2 \Rpages205-217
  • [17] \referBookkst \RauthorKilbas, Anatoly A. and Srivastava, Hari M. and Trujillo, Juan J. \RtitleTheory and applications of fractional differential equations \RseriesNorth-Holland Mathematics Studies \Rvolume204 \RpublisherElsevier Science B.V., Amsterdam \Ryear2006 \Rpagesxvi+523
  • [18] \referPaperml \RtitleSur la nouvelle fonction Eα(x)E_{\alpha}(x) \RauthorMittag-Leffler, G. M. \RjournalComptes Rendus de l’ Academie des Sciences Paris \Rvolume137 \Rpages554-558 \Ryear1903
  • [19] \referPapertrp \RauthorPrabhakar, Tilak Raj \RtitleA singular integral equation with a generalized Mittag Leffler function in the kernel \RjournalYokohama Math. J. \Rvolume19 \Ryear1971 \Rpages7-15
  • [20] \referPapertos \RtitleSome properties relating to the generalized Mittag-Leffler function \RauthorSalim, Tariq O \RjournalAdv. Appl. Math. Anal \Rvolume4 \Rnumber1 \Rpages21-30 \Ryear2009
  • [21] \referPapersnd \RauthorSanjhira, Reshma and Nathwani, B. V. and Dave, B. I. \RtitleGeneralized Mittag-Leffler matrix function and associated matrix polynomials \RjournalJ. Indian Math. Soc. (N.S.) \Rvolume86 \Ryear2019 \Rnumber1-2 \Rpages161-178
  • [22] \referPapersb \RauthorSanjhira, Reshma and Dave, B. I. \RtitleGeneralized Konhauser matrix polynomial and its properties \RjournalMath. Student \Rvolume87 \Ryear2018 \Rnumber3-4 \Rpages109-120
  • [23] \referPapersd06 \RauthorSastre, J. and Defez, E. \RtitleOn the asymptotics of Laguerre matrix polynomials for large xx and nn \RjournalAppl. Math. Lett. \Rvolume19 \Ryear2006 \Rnumber8 \Rpages721-727
  • [24] \referBookskm \RauthorSamko, Stefan G. and Kilbas, Anatoly A. and Marichev, Oleg I. \RtitleFractional integrals and derivatives \ReditorEdited and with a foreword by S. M. Nikol\cprimeskiĭ Translated from the 1987 Russian original, Revised by the authors \RpublisherGordon and Breach Science Publishers, Yverdon \Ryear1993 \Rpagesxxxvi+976
  • [25] \referBookjs \RauthorSeaborn, James B. \RtitleHypergeometric functions and their applications \RseriesTexts in Applied Mathematics \Rvolume8 \RpublisherSpringer-Verlag, New York \Ryear1991 \Rpagesxiv+250
  • [26] \referPapersj \RauthorSharma, Manoj and Jain, Renu \RtitleA note on a generalized M-series as a special function of fractional calculus \RjournalFract. Calc. Appl. Anal. \Rvolume12 \Ryear2009 \Rnumber4 \Rpages449–452
  • [27] \referPapervl \RauthorVan Loan, Charles \RtitleThe sensitivity of the matrix exponential \RjournalSIAM J. Numer. Anal. \Rvolume14 \Ryear1977 \Rnumber6 \Rpages971-981
  • [28] \referPaperaw \RauthorWiman, A. \RtitleÜber den Fundamentalsatz in der Teorie der Funktionen Ea(x)E^{a}(x) \RjournalActa Math. \Rvolume29 \Ryear1905 \Rnumber1 \Rpages191-201
  • [29]
\EditInfo

November 03, 2019February 01, 2020Karl Dilcher