This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Matching Problem in Random Hypergraphs

Peter Frankl111Rényi Institute, Budapest, Hungary. Email: [email protected].  Jiaxi Nie222School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA. Email: [email protected].  Jian Wang333Department of Mathematics, Taiyuan University of Technology, Taiyuan, 030024, China. Research supported by National Natural Science Foundation of China No. 12471316. Email: [email protected].
Abstract

We study a variant of the Erdős Matching Problem in random hypergraphs. Let 𝒦p(n,k)\mathcal{K}_{p}(n,k) denote the Erdős-Rényi random kk-uniform hypergraph on nn vertices where each possible edge is included with probability pp. We show that when nk2sn\gg k^{2}s and pp is not too small, with high probability, the maximum number of edges in a sub-hypergraph of 𝒦p(n,k)\mathcal{K}_{p}(n,k) with matching number ss is obtained by the trivial sub-hypergraphs, i.e. the sub-hypergraph consisting of all edges containing at least one vertex in a fixed set of ss vertices.

1 Introduction

In this paper, we consider the so-called Turán problem concerning matchings in random hypergraphs. Let 𝒦(n,k)\mathcal{K}(n,k) denote the complete kk-graph on nn vertices–often denoted as ([n]k)\binom{[n]}{k}. For a fixed pp, 0<p<10<p<1 let 𝒦p=𝒦p(n,k)\mathcal{K}_{p}=\mathcal{K}_{p}(n,k) denote the random kk-graph that we obtain by choosing each edge of ([n]k)\binom{[n]}{k} independently and with probability pp. By the law of large numbers with (very) high probability |𝒦p|/(nk)|\mathcal{K}_{p}|/\binom{n}{k} is very close to pp.

Similarly, for every x[n]x\in[n], the full star 𝒦p[x]={K𝒦p:xK}\mathcal{K}_{p}[x]=\{K\in\mathcal{K}_{p}\colon x\in K\} has size very close to p(n1k1)p\binom{n-1}{k-1}. E.g., by Chernoff’s inequality

Pr(||𝒦p[x]|p(n1k1)1|>ε)<2eε23p(n1k1).\displaystyle Pr\left(\left|\frac{|\mathcal{K}_{p}[x]|}{p\binom{n-1}{k-1}}-1\right|>\varepsilon\right)<2e^{-\frac{\varepsilon^{2}}{3}p\binom{n-1}{k-1}}. (1)

The central problem that we consider is the following. Let ss be a fixed positive integer. Try and determine the size and structure of largest subhypergraphs of 𝒦p\mathcal{K}_{p} which do not contain s+1s+1 pairwise disjoint edges.

To put this problem into context let us first recall the corresponding problem for the complete kk-graph, ([n]k)\binom{[n]}{k}, that is, the case p=1p=1.

Erdős Matching Conjecture [6]. Suppose that n,k,sn,k,s are positive integers, nk(s+1)n\geq k(s+1) and ([n]k)\mathcal{E}\subset\binom{[n]}{k} contains no s+1s+1 pairwise disjoint edges. Then

||max{(k(s+1)1k),(nk)(nsk)}.\displaystyle|\mathcal{E}|\leq\max\left\{\binom{k(s+1)-1}{k},\binom{n}{k}-\binom{n-s}{k}\right\}. (2)

Note that the simple constructions giving rise to the formulae on the right hand side are

([k(s+1)1]k) and T={E([n]k):ET},\binom{[k(s+1)-1]}{k}\mbox{ and }\mathcal{E}_{T}=\left\{E\in\binom{[n]}{k}\colon E\cap T\neq\emptyset\right\},

where TT is some fixed ss-subset of [n][n]. There has been a lot of research going on concerning this conjecture. Let us recall some of the results.

The current best bounds establish (2) for n>(2s+1)ksn>(2s+1)k-s  [8] and for s>s0s>s_{0}, n>53skn>\frac{5}{3}sk  [10].

The s=1s=1 case has received the most attention. A family ([n]k)\mathcal{F}\subset\binom{[n]}{k} is called intersecting if \mathcal{F} contains no two pairwise disjoint members (edges). Say that \mathcal{F} is a star if there is a vertex that lies in all edges.

Theorem 1.1 (Erdős-Ko-Rado Theorem, [7]).

Suppose that ([n]k)\mathcal{F}\subset\binom{[n]}{k} is intersecting and n2kn\geq 2k. Then

||(n1k1).|\mathcal{F}|\leq\binom{n-1}{k-1}.

Further, when n2k+1n\geq 2k+1, the equality holds only for a star.

Concerning the probabilistic versions of EKR, Balogh, Bohman and Mubayi[2] have proved several strong results. Here we mention some of them. Let f(n)f(n), g(n)g(n) be functions of nn. The notation f(n)g(n)f(n)\ll g(n) means f(n)/g(n)0f(n)/g(n)\rightarrow 0 as nn\rightarrow\infty.

Theorem 1.2 ([2]).

When kn1/4k\ll n^{1/4} and p[0,1]p\in[0,1], w.h.p. the maximum sized intersecting subhypergraph in 𝒦p(n,k)\mathcal{K}_{p}(n,k) is a star. Furthermore, the same conclusion also holds when n1/4kn1/3n^{1/4}\ll k\ll n^{1/3}, and pn1/4/(n1k1)p\gg n^{-1/4}/\binom{n-1}{k-1} or pk1/(n1k1)p\ll k^{-1}/\binom{n-1}{k-1}.

For more on the probabilistic EKR, see also [12, 13, 11, 3].

Let us recall the notation ν()\nu(\mathcal{F}) for the matching number, that is, ν()\nu(\mathcal{F}) is the maximum number of pairwise disjoint edges in \mathcal{F}. In particular, \mathcal{F} is intersecting if and only if ν()1\nu(\mathcal{F})\leq 1.

One natural question is to investigate for which range of the values n,k,s,pn,k,s,p does

||max{|𝒦p(S^)|:|S|=s}\displaystyle|\mathcal{F}|\leq\max\{|\mathcal{K}_{p}(\hat{S})|\colon|S|=s\} (3)

hold with high probability, where ν()=s\nu(\mathcal{F})=s and (S^):={H:HS}\mathcal{H}(\hat{S}):=\{H\in\mathcal{H}\colon H\cap S\neq\emptyset\}. The fact that |(S^)||\mathcal{H}(\hat{S})| is asymptotically p((nk)(nsk))p\left(\binom{n}{k}-\binom{n-s}{k}\right) when pp is not too small follows from the law of large numbers.

Let τ()\tau(\mathcal{H}) be the covering number of \mathcal{H}, which is the minimum size of a set WW of vertices such that EWE\cap W\not=\emptyset for each EE\in\mathcal{H}. Clearly, ν()τ()\nu(\mathcal{H})\leq\tau(\mathcal{H}) always. We say that \mathcal{H} is trivial if ν()=τ()\nu(\mathcal{H})=\tau(\mathcal{H}). Otherwise \mathcal{H} is called non-trivial. We prove the following result.

Theorem 1.3.

For any integers s=s(n)s=s(n), k=k(n)k=k(n) and real number p=p(n)p=p(n) with

  • (i)

    64kslogn(n1k1)p1\frac{64ks\log n}{\binom{n-1}{k-1}}\leq p\leq 1, and

  • (ii)

    n200k3sn\geq 200k^{3}s,

with high probability (w.h.p.), every non-trivial 𝒦p(n,k)\mathcal{F}\subseteq\mathcal{K}_{p}(n,k) with ν()s\nu(\mathcal{F})\leq s satisfies

||<|𝒦p(S^)|,|\mathcal{F}|<|\mathcal{K}_{p}(\hat{S})|,

for arbitrary S([n]s)S\in\binom{[n]}{s} .

We also prove that the lower bound for nn can be improved to O(k2s)O(k^{2}s) at the expense of a worse lower bound for pp.

Theorem 1.4.

Let tt be an integer with 2tk2\leq t\ll k. For any integers s=s(n)s=s(n), k=k(n)k=k(n) and real number p=p(n)p=p(n) with

  • (i)

    8(t+1)kt+1stlogn(n1k1)p1\frac{8(t+1)k^{t+1}s^{t}\log n}{\binom{n-1}{k-1}}\leq p\leq 1, and

  • (ii)

    56k2+1/tsn56k2+1/(t1)s56k^{2+1/t}s\leq n\leq 56k^{2+1/(t-1)}s,

with high probability, every non-trivial 𝒦p(n,k)\mathcal{F}\subseteq\mathcal{K}_{p}(n,k) with ν()s\nu(\mathcal{F})\leq s satisfies

||<|𝒦p(S^)|,|\mathcal{F}|<|\mathcal{K}_{p}(\hat{S})|,

for arbitrary S([n]s)S\in\binom{[n]}{s}.

Let 0<ϵ<10<\epsilon<1 and t=kϵt=k^{\epsilon} in Theorem 1.4. Let f(x):=logxxϵf(x):=\frac{\log x}{x^{\epsilon}}. Then

f(x)=1x1+ϵϵlogxx1+ϵ=1ϵlogxx1+ϵ.f^{\prime}(x)=\frac{1}{x^{1+\epsilon}}-\epsilon\frac{\log x}{x^{1+\epsilon}}=\frac{1-\epsilon\log x}{x^{1+\epsilon}}.

Clearly x1+ϵ>0x^{1+\epsilon}>0 for x2x\geq 2 and 1ϵlogx01-\epsilon\log x\geq 0 for xe1/ϵx\leq e^{1/\epsilon}, 1ϵlogx01-\epsilon\log x\leq 0 for xe1/ϵx\geq e^{1/\epsilon}. It follows that

f(x)f(e1/ϵ)=1eϵ.f(x)\leq f\left(e^{1/\epsilon}\right)=\frac{1}{e\epsilon}.

Thus k1/t=k1/kϵ=ef(k)<e1/(eϵ)k^{1/t}=k^{1/k^{\epsilon}}=e^{f(k)}<e^{{1}/{(e\epsilon)}} and we have the following corollary.

Corollary 1.5.

For 0<ϵ<10<\epsilon<1, n56e1/(eϵ)k2sn\geq 56e^{1/(e\epsilon)}k^{2}s and p10(ks)kϵk1+ϵ(n1k1)p\geq\frac{10(ks)^{k^{\epsilon}}k^{1+\epsilon}}{\binom{n-1}{k-1}}, every non-trivial 𝒦p(n,k)\mathcal{F}\subseteq\mathcal{K}_{p}(n,k) with ν()=s\nu(\mathcal{F})=s satisfies ||<|𝒦p(S^)||\mathcal{F}|<|\mathcal{K}_{p}(\hat{S})| for arbitrary S([n]s)S\in\binom{[n]}{s}.

Our next result shows that Theorem 1.4 does not hold for the range p>8(t+1)kt+1stlogn(n1k1)p>\frac{8(t+1)k^{t+1}s^{t}\log n}{\binom{n-1}{k-1}} when k2s2(t+3)nlognk^{2}s\geq 2(t+3)n\log n.

Proposition 1.6.

If

slogn(nsk)pek2s2n(nk),\frac{s\log n}{\binom{n-s}{k}}\ll p\ll\frac{e^{\frac{k^{2}s}{2n}}}{\binom{n}{k}},

then with high probability, 𝒦p(n,k)\mathcal{K}_{p}(n,k) has matching number at most ss and is non-trivial.

Note that for k2s2(t+3)nlognk^{2}s\geq 2(t+3)n\log n and n>ksn>ks we have

knek2s2nkne(t+3)logn=knt+2>k(ks)t+2=(kt+1st)k2s2(kt+1st)8(t+1)logn.\frac{k}{n}e^{\frac{k^{2}s}{2n}}\geq\frac{k}{n}e^{(t+3)\log n}=kn^{t+2}>k(ks)^{t+2}=(k^{t+1}s^{t})k^{2}s^{2}\gg(k^{t+1}s^{t})8(t+1)\log n.

It follows that

ek2s2n(nk)=ek2s2n(n1k1)kn8(t+1)kt+1stlogn(n1k1).\frac{e^{\frac{k^{2}s}{2n}}}{\binom{n}{k}}=\frac{e^{\frac{k^{2}s}{2n}}}{\binom{n-1}{k-1}}\frac{k}{n}\gg\frac{8(t+1)k^{t+1}s^{t}\log n}{\binom{n-1}{k-1}}.

Thus Proposition 1.6 implies that Theorem 1.4 does not hold for the range nlognk2sn\log n\ll k^{2}s and 8(t+1)kt+1stlogn(n1k1)pek2s2n(nk)\frac{8(t+1)k^{t+1}s^{t}\log n}{\binom{n-1}{k-1}}\ll p\ll\frac{e^{\frac{k^{2}s}{2n}}}{\binom{n}{k}} with some constant integer t<kt<k.

For k=2k=2, we obtain the following result. We write a=(1±ε)ba=(1\pm\varepsilon)b for (1ε)ba(1+ε)b(1-\varepsilon)b\leq a\leq(1+\varepsilon)b.

Theorem 1.7.

Let 0<ε<10<\varepsilon<1 and n2s+2n\geq 2s+2. Let XX be the maximum number of edges in a subgraph FF of G(n,p)G(n,p) with ν(F)s\nu(F)\leq s. If p250lognε2np\geq\frac{250\log n}{\varepsilon^{2}n}, then with probability at least 12ns1-2n^{-s},

X=(1±ε)pmax{(2s+12),(s2)+s(ns)}.X=(1\pm\varepsilon)p\max\left\{\binom{2s+1}{2},\binom{s}{2}+s(n-s)\right\}.

Let ([n]k)\mathcal{F}\subset\binom{[n]}{k}. For R,Q[n]R,Q\subset[n] with RQ=R\cap Q=\emptyset, define

(Q)={FQ:QF},(R¯,Q^)={F:FR=,FQ}.\mathcal{F}(Q)=\{F\setminus Q\colon Q\subset F\in\mathcal{F}\},\ \mathcal{F}(\bar{R},\hat{Q})=\{F\in\mathcal{F}\colon F\cap R=\emptyset,F\cap Q\neq\emptyset\}.

For R=R=\emptyset we write (R¯,Q^)\mathcal{F}(\bar{R},\hat{Q}) as (Q^)\mathcal{F}(\hat{Q}). For Q=Q=\emptyset we write (R¯,Q^)\mathcal{F}(\bar{R},\hat{Q}) as (R¯)\mathcal{F}(\bar{R}).

2 A weaker result and the outline of the main proof

Let ([n]k)\binom{[n]}{\leq k} denote the collection of all subsets of [n][n] of size at most kk. For 𝒢([n]k)\mathcal{G}\subset\binom{[n]}{\leq k}, let

𝒢={F([n]k): there exists G𝒢 such that GF}.\langle\mathcal{G}\rangle=\left\{F\in\binom{[n]}{k}\colon\mbox{ there exists }G\in\mathcal{G}\mbox{ such that }G\subset F\right\}.

We need the following version of the Chernoff’s bound.

Theorem 2.1 ([14]).

Let XBi(n,p)X\in Bi(n,p), μ=np\mu=np. If 0<ε3/20<\varepsilon\leq 3/2 then

Pr(|Xμ|εμ)2eε23μ.\displaystyle Pr(|X-\mu|\geq\varepsilon\mu)\leq 2e^{-\frac{\varepsilon^{2}}{3}\mu}. (4)

If x7μx\geq 7\mu then

Pr(Xx)ex.\displaystyle Pr(X\geq x)\leq e^{-x}. (5)

We say that a kk-graph \mathcal{H} is resilient if for any vertex uV()u\in V(\mathcal{H}), ν(u)=ν()\nu(\mathcal{H}-u)=\nu(\mathcal{H}); see [9] for the maximum size of a resilient hypergraph with given matching number.

Consider 𝒦p\mathcal{F}\subset\mathcal{K}_{p} with ν()s\nu(\mathcal{F})\leq s and of maximal size. The ultimate goal is to prove

||max{|𝒦p(S^)|:|S|=s}.\displaystyle|\mathcal{F}|\leq\max\left\{|\mathcal{K}_{p}(\hat{S})|\colon|S|=s\right\}. (6)

For the complete graph, i.e., for p=1p=1,

|𝒦1(S^)|=(nk)(nsk), for all s-sets S.|\mathcal{K}_{1}(\hat{S})|=\binom{n}{k}-\binom{n-s}{k},\mbox{ for all $s$-sets }S.

For p<1p<1 the expected size of 𝒦1(S^)\mathcal{K}_{1}(\hat{S}) is p((nk)(nsk))p\left(\binom{n}{k}-\binom{n-s}{k}\right) but it is impossible to know its exact value.

How to prove (6) without this piece of information? Since (6) is evident for =𝒦p(S0^)\mathcal{F}=\mathcal{K}_{p}(\hat{S_{0}}) with S0S_{0} an ss-element set, to start with we may assume that \mathcal{F} is not of this form. That is, τ()>ν()\tau(\mathcal{F})>\nu(\mathcal{F}), meaning that \mathcal{F} is non-trivial.

With this assumption we want to prove a stability result, i.e., a bound considerably smaller than p((nk)(nsk))p\left(\binom{n}{k}-\binom{n-s}{k}\right). For p=1p=1 this was done by Bollobás, Daykin and Erdős [4] who generalized the Hilton-Milner Theorem (ν=1\nu=1 case) to this situation. Unfortunately, their argument does not seem to work for the p<1p<1 case.

Here is what we can do. Choose a set RR of maximal size satisfying

ν((R¯))=s|R|.\displaystyle\nu(\mathcal{F}(\bar{R}))=s-|R|. (7)

Set q=s|R|q=s-|R|. By our assumption 1qs1\leq q\leq s. Moreover, for all elements x[n]Rx\in[n]\setminus R, by the maximal choice of RR, ν((R{x}¯))=q\nu(\mathcal{F}(\overline{R\cup\{x\}}))=q. That is, (R¯)\mathcal{F}(\bar{R}) is resilient. Now it suffices to show that |(R¯)||\mathcal{F}(\bar{R})| is smaller than 12pq(n1k1)\frac{1}{2}pq\binom{n-1}{k-1}, which is a lower bound for max{|𝒦p(S^)|:|S|=q}\max\left\{|\mathcal{K}_{p}(\hat{S})|\colon|S|=q\right\}.

Lemma 2.2.

Suppose that \mathcal{F} is a resilient kk-graph, ν()=q\nu(\mathcal{F})=q. Then there is a collection \mathcal{B} of 2-element sets satisfying \mathcal{F}\subset\langle\mathcal{B}\rangle and ||(kq)2|\mathcal{B}|\leq(kq)^{2}.

Proof.

Let G1,,GqG_{1},\ldots,G_{q}\in\mathcal{F} form a maximal matching and set Y=G1GqY=G_{1}\cup\ldots\cup G_{q}. Then FYF\cap Y\neq\emptyset for all FF\in\mathcal{F}. For each yYy\in Y, ν((y¯))=q\nu(\mathcal{F}(\bar{y}))=q by resilience. Define Zy=H1(y)Hq(y)Z_{y}=H_{1}^{(y)}\cup\ldots\cup H_{q}^{(y)} where H1(y),,Hq(y)H_{1}^{(y)},\ldots,H_{q}^{(y)} form a maximal matching in (y¯)\mathcal{F}(\bar{y}). Now ={(y,zy):yY,zyZy}\mathcal{B}=\{(y,z_{y})\colon y\in Y,z_{y}\in Z_{y}\} satisfies the requirements. ∎

For the case nk3qn\gg k^{3}q and pk2qlogn(n1k1)p\gg\frac{k^{2}q\log n}{\binom{n-1}{k-1}} Lemma 2.2 implies

|(R¯)|12pq(n1k1) with high probability.\displaystyle|\mathcal{F}(\bar{R})|\leq\frac{1}{2}pq\binom{n-1}{k-1}\mbox{ with high probability.} (8)

Indeed, since ||(kq)2|\mathcal{B}|\leq(kq)^{2} we only need to show

|({x1,x2})||𝒦p({x1,x2})|p2k2q(n1k1)\displaystyle|\mathcal{F}(\{x_{1},x_{2}\})|\leq|\mathcal{K}_{p}(\{x_{1},x_{2}\})|\leq\frac{p}{2k^{2}q}\binom{n-1}{k-1} (9)

for any 2-subset {x1,x2}[n]R\{x_{1},x_{2}\}\subset[n]\setminus R. Note that, since nk3qn\gg k^{3}q, the expected size of |𝒦p({x1,x2})||\mathcal{K}_{p}(\{x_{1},x_{2}\})| is

p(n2k2)pkn(n1k1)pk2q(n1k1).p\binom{n-2}{k-2}\leq\frac{pk}{n}\binom{n-1}{k-1}\ll\frac{p}{k^{2}q}\binom{n-1}{k-1}.

Thus (9) is true by combining the Chernoff bound, the union bound and pk2qlogn(n1k1)p\gg\frac{k^{2}q\log n}{\binom{n-1}{k-1}}. (there are “only” (nr2)\binom{n-r}{2} choices for {x1,x2}\{x_{1},x_{2}\}).

How to improve on the bound for pp? Note that we do not need (9) for each individual pair but only an upper bound for |||\mathcal{F}\cap\langle\mathcal{B}\rangle|. Let us use the special structure of \mathcal{B}. By our proof of Lemma 2.2, \mathcal{B} is the (not necessarily disjoint) union of qkqk “fans” {{y,zy}:zyZ}=:𝒟y,Z\{\{y,z_{y}\}\colon z_{y}\in Z\}=:\mathcal{D}_{y,Z}. In fact, by a more careful analysis we can reduce the number of fans to qq (at the expense of adding some cliques, which is even easier to control, see Section 3). Thus, instead of (9) it is sufficient to require

|𝒟y,Z|12p(n1k1) for each fan 𝒟y,Z.\displaystyle|\mathcal{F}\cap\langle\mathcal{D}_{y,Z}\rangle|\leq\frac{1}{2}p\binom{n-1}{k-1}\mbox{ for each fan }\mathcal{D}_{y,Z}. (10)

Here we’ll have n×(n1qk)n\times\binom{n-1}{qk} requirements–much more than (n2)\binom{n}{2} but the probability that (10) is violated for any fixed fan is going down exponentially and we should get bounds better than requiring (9). We will elaborate on this idea in Section 3, which eventually gives Theorem 1.3.

3 Proof of Theorem 1.3

Lemma 3.1.

Let 𝒦p=𝒦p(n,k)\mathcal{K}_{p}=\mathcal{K}_{p}(n,k). For k,s2k,s\geq 2, n200k3sn\geq 200k^{3}s, p64kslogn(n1k1)p\geq\frac{64ks\log n}{\binom{n-1}{k-1}}, properties (i), (ii) and (iii) hold for every 1qs1\leq q\leq s with high probability.

  • (i)

    For R,Q[n]R,Q\subset[n] with RQ=R\cap Q=\emptyset, |R|=sq|R|=s-q and |Q|=q|Q|=q,

    |𝒦p(R¯,Q^)|>12pq(n1k1).\displaystyle|\mathcal{K}_{p}(\bar{R},\hat{Q})|>\frac{1}{2}pq\binom{n-1}{k-1}. (11)
  • (ii)

    For every Q[n]Q\subset[n] with |Q|<3kq3ks|Q|<3kq\leq 3ks,

    |𝒦p(Q2)|<14pq(n1k1).\displaystyle\left|\mathcal{K}_{p}\cap\left\langle\binom{Q}{2}\right\rangle\right|<\frac{1}{4}pq\binom{n-1}{k-1}. (12)
  • (iii)

    For every x[n]x\in[n], Q[n]{x}Q\subset[n]\setminus\{x\} with |Q|=kqks|Q|=kq\leq ks,

    |𝒦p𝒟x,Q|<14p(n1k1).\displaystyle|\mathcal{K}_{p}\cap\langle\mathcal{D}_{x,Q}\rangle|<\frac{1}{4}p\binom{n-1}{k-1}. (13)
Proof.
  • (i)

    Let 𝒦=([n]k)\mathcal{K}=\binom{[n]}{k}. It is easy to see that

    |𝒦(R¯,Q^)|=(n|R|k)(n|R||Q|k)q(nsk1).|\mathcal{K}(\bar{R},\hat{Q})|=\binom{n-|R|}{k}-\binom{n-|R|-|Q|}{k}\geq q\binom{n-s}{k-1}.

    Note that

    (nsk1)(n1k1)(nksnk)k11s(k1)nk34.\frac{\binom{n-s}{k-1}}{\binom{n-1}{k-1}}\geq\left(\frac{n-k-s}{n-k}\right)^{k-1}\geq 1-\frac{s(k-1)}{n-k}\geq\frac{3}{4}.

    Thus we have

    |𝒦(R¯,Q^)|34q(n1k1).|\mathcal{K}(\bar{R},\hat{Q})|\geq\frac{3}{4}q\binom{n-1}{k-1}.

    Applying (4) with ϵ=1/4\epsilon=1/4, we infer that

    Pr(|𝒦p(R¯,Q^)|12pq(n1k1))2e164pq(n1k1)2e164p(n1k1).Pr\left(|\mathcal{K}_{p}(\bar{R},\hat{Q})|\leq\frac{1}{2}pq\binom{n-1}{k-1}\right)\leq 2e^{-\frac{1}{64}pq\binom{n-1}{k-1}}\leq 2e^{-\frac{1}{64}p\binom{n-1}{k-1}}.

    Since for all 1qs1\leq q\leq s the number of such pairs (R,Q)(R,Q) is at most ns2sn^{s}2^{s}, by the union bound and p64kslogn(n1k1)p\geq\frac{64ks\log n}{\binom{n-1}{k-1}}, the probability that (i) does not hold for some 1qs1\leq q\leq s is at most

    ns2s2e164p(n1k1)ns2s+1nks2s+1ns0asn.n^{s}2^{s}2e^{-\frac{1}{64}p\binom{n-1}{k-1}}\leq n^{s}2^{s+1}n^{-ks}\leq 2^{s+1}n^{-s}\rightarrow 0~{}\text{as}~{}n\rightarrow\infty.
  • (ii)

    It suffices to show that with high probability (12) holds for every 1qs1\leq q\leq s and Q[n]Q\subset[n] with |Q|=3kq|Q|=3kq. By n200k3s200k3qn\geq 200k^{3}s\geq 200k^{3}q,

    |(Q2)|(|Q|2)(n2k2)9k2q22kn(n1k1)q28(n1k1).\left|\left\langle\binom{Q}{2}\right\rangle\right|\leq\binom{|Q|}{2}\binom{n-2}{k-2}\leq\frac{9k^{2}q^{2}}{2}\frac{k}{n}\binom{n-1}{k-1}\leq\frac{q}{28}\binom{n-1}{k-1}.

    By (5),

    Pr(|𝒦p(Q2)|14pq(n1k1))e14pq(n1k1).Pr\left(\left|\mathcal{K}_{p}\cap\left\langle\binom{Q}{2}\right\rangle\right|\geq\frac{1}{4}pq\binom{n-1}{k-1}\right)\leq e^{-\frac{1}{4}pq\binom{n-1}{k-1}}.

    Since for fix qq the number of such QQ is at most (n3kq)\binom{n}{3kq} and p64kslogn(n1k1)p\geq\frac{64ks\log n}{\binom{n-1}{k-1}}, by the union bound, the probability that (12) doesn’t hold for some 1qs1\leq q\leq s is at most

    q=1s(n3kq)e14pq(n1k1)q=1sn3kq16ksqq=1sn16kqsn16k0asn.\sum_{q=1}^{s}\binom{n}{3kq}e^{-\frac{1}{4}pq\binom{n-1}{k-1}}\leq\sum_{q=1}^{s}n^{3kq-16ksq}\leq\sum_{q=1}^{s}n^{-16kq}\leq sn^{-16k}\rightarrow 0~{}\text{as}~{}n\rightarrow\infty.
  • (iii)

    Finally for every x[n]x\in[n], Q[n]{x}Q\subset[n]\setminus\{x\} with |Q|=kqks|Q|=kq\leq ks, by n200k3sn\geq 200k^{3}s,

    |𝒟x,Q|kq(n2k2)kqkn(n1k1)128(n1k1).|\langle\mathcal{D}_{x,Q}\rangle|\leq kq\binom{n-2}{k-2}\leq kq\frac{k}{n}\binom{n-1}{k-1}\leq\frac{1}{28}\binom{n-1}{k-1}.

    By (5),

    Pr(|𝒦p𝒟x,Q|14p(n1k1))e14p(n1k1).Pr\left(|\mathcal{K}_{p}\cap\langle\mathcal{D}_{x,Q}\rangle|\geq\frac{1}{4}p\binom{n-1}{k-1}\right)\leq e^{-\frac{1}{4}p\binom{n-1}{k-1}}.

    Since for fix 1qs1\leq q\leq s the number of such pair (x,Q)(x,Q) is at most n(nkq)n\binom{n}{kq} and p64kslogn(n1k1)p\geq\frac{64ks\log n}{\binom{n-1}{k-1}}, by the union bound, the probability that (13) doesn’t hold for some 1qs1\leq q\leq s is at most

    q=1sn(nkq)e14p(n1k1)q=1sn1+kq16kssn10ks0asn.\sum_{q=1}^{s}n\binom{n}{kq}e^{-\frac{1}{4}p\binom{n-1}{k-1}}\leq\sum_{q=1}^{s}n^{1+kq-16ks}\leq sn^{-10ks}\rightarrow 0~{}\text{as}~{}n\rightarrow\infty.

Proof of Theorem 1.3.

By Lemma 3.1, with high probability, 𝒦p\mathcal{K}_{p} satisfies (i), (ii) and (iii) of Lemma 3.1 for every 1qs1\leq q\leq s. Let us fix a hypergraph \mathcal{F} that satisfies (i), (ii) and (iii) for every 1qs1\leq q\leq s and let \mathcal{H}\subset\mathcal{F} be a sub-hypergraph with ν()=s\nu(\mathcal{H})=s and |||\mathcal{H}| maximal. We have to show that \mathcal{H} is trivial. Arguing indirectly assume that \mathcal{H} is not trivial. Hence there exists RR, |R|=r|R|=r, 0r<s0\leq r<s such that (R¯)\mathcal{H}(\bar{R}) is resilient with ν((R¯))=sr\nu(\mathcal{H}(\bar{R}))=s-r.

Let q=srq=s-r. Note that for an arbitrary Q([n]Rq)Q\in\binom{[n]\setminus R}{q} the family (R¯,Q^)\mathcal{F}(\bar{R},\hat{Q}) can be used to replace (R¯)\mathcal{H}(\bar{R}) and the resulting family has matching number ss. To get a contradiction we need to show

|(R¯,Q^)|>|(R¯)|.\displaystyle|\mathcal{F}(\bar{R},\hat{Q})|>|\mathcal{H}(\bar{R})|. (14)

By (11),

|(R¯,Q^)|>q2p(n1k1).|\mathcal{F}(\bar{R},\hat{Q})|>\frac{q}{2}p\binom{n-1}{k-1}.

Let H1,H2,,HqH_{1},H_{2},\ldots,H_{q} be a maximal matching in (R¯)\mathcal{H}(\bar{R}) and let X=H1H2HqX=H_{1}\cup H_{2}\cup\ldots\cup H_{q}. Define

0={H(R¯):|HX|2}\mathcal{H}_{0}=\{H\in\mathcal{H}(\bar{R})\colon|H\cap X|\geq 2\}

and

i={H(R¯):|HX|=1,HX=HHi},i=1,2,,q.\mathcal{H}_{i}=\{H\in\mathcal{H}(\bar{R})\colon|H\cap X|=1,H\cap X=H\cap H_{i}\},\ i=1,2,\ldots,q.

By (12),

|0|<14pq(n1k1).\displaystyle|\mathcal{H}_{0}|<\frac{1}{4}pq\binom{n-1}{k-1}. (15)

We claim that i\mathcal{H}_{i} is intersecting for i=1,2,,qi=1,2,\ldots,q. Indeed, otherwise if there exist Hi,Hi′′iH_{i}^{\prime},H_{i}^{\prime\prime}\in\mathcal{H}_{i} such that HiHi′′=H_{i}^{\prime}\cap H_{i}^{\prime\prime}=\emptyset then H1,,Hi1,Hi,Hi′′,Hi+1,,HqH_{1},\ldots,H_{i-1},H_{i}^{\prime},H_{i}^{\prime\prime},H_{i+1},\ldots,H_{q} form a matching of size q+1q+1 in (R¯)\mathcal{H}(\bar{R}), a contradiction. Thus i\mathcal{H}_{i} is intersecting. Without loss of generality, assume that 1,,\mathcal{H}_{1},\ldots,\mathcal{H}_{\ell} are stars and +1,,q\mathcal{H}_{\ell+1},\ldots,\mathcal{H}_{q} are non-trivial intersecting. Let xix_{i} be the center of the star i\mathcal{H}_{i}, i=1,2,,i=1,2,\ldots,\ell. For each i[]i\in[\ell], since (R¯)\mathcal{H}(\bar{R}) is resilient, there exists a matching L1i,L2i,,LqiL_{1}^{i},L_{2}^{i},\ldots,L_{q}^{i} in (R{xi}¯)\mathcal{H}(\overline{R\cup\{x_{i}\}}). Let

Qi=L1iL2iLqi.Q_{i}=L_{1}^{i}\cup L_{2}^{i}\cup\ldots\cup L_{q}^{i}.

Clearly xiHx_{i}\in H and HQiH\cap Q_{i}\neq\emptyset for any HiH\in\mathcal{H}_{i} with i[]i\in[\ell]. Thus by (13) we have

1i|i|1i|𝒟xi,Qi|<14p(n1k1).\displaystyle\sum_{1\leq i\leq\ell}|\mathcal{H}_{i}|\leq\sum_{1\leq i\leq\ell}|\mathcal{F}\cap\langle\mathcal{D}_{x_{i},Q_{i}}\rangle|<\frac{1}{4}p\ell\binom{n-1}{k-1}. (16)

Since i\mathcal{H}_{i} is non-trivial intersecting for +1iq\ell+1\leq i\leq q, there exist Hi,Hi′′iH_{i}^{\prime},H_{i}^{\prime\prime}\in\mathcal{H}_{i} such that HiHi={xi}H_{i}^{\prime}\cap H_{i}=\{x_{i}\} and xiHi′′x_{i}\notin H_{i}^{\prime\prime}. It follows that |H(HiHiHi′′)|2|H\cap(H_{i}\cup H_{i}^{\prime}\cup H_{i}^{\prime\prime})|\geq 2 for any HiH\in\mathcal{H}_{i}. Let Q=+1ir(HiHiHi′′)Q=\cup_{\ell+1\leq i\leq r}(H_{i}\cup H_{i}^{\prime}\cup H_{i}^{\prime\prime}). Clearly |Q|<3k(q)|Q|<3k(q-\ell). Then by (12) we infer that

+1iq|i|<|(Q2)|14p(q)(n1k1).\displaystyle\sum_{\ell+1\leq i\leq q}|\mathcal{H}_{i}|<\left|\mathcal{F}\cap\left\langle\binom{Q}{2}\right\rangle\right|\leq\frac{1}{4}p(q-\ell)\binom{n-1}{k-1}. (17)

Adding (15), (16) and (17), we obtain that

|(R¯)|=0iq|i|<12pq(n1k1)<|(R¯,Q^)|,|\mathcal{H}(\bar{R})|=\sum_{0\leq i\leq q}|\mathcal{H}_{i}|<\frac{1}{2}pq\binom{n-1}{k-1}<|\mathcal{F}(\bar{R},\hat{Q})|,

the desired contradiction. ∎

4 Proof of Theorem 1.4 and Proposition 1.6

In this section, we prove Theorem 1.4 and Proposition 1.6. Note that Theorem 1.4 improves the lower bound for nn in Theorem 1.3 at the expense of a worse lower bound for pp.

We say that a kk-graph \mathcal{H} is tt-resilient if ν(T)=ν()\nu(\mathcal{H}-T)=\nu(\mathcal{H}) for any TV()T\subset V(\mathcal{H}) with |T|t|T|\leq t. Clearly tk1t\leq k-1. Indeed, deleting kk vertices in an edge decreases the matching number by at least one.

Let us prove the following simple fact.

Fact 4.1.

For every ([n]k)\mathcal{H}\subset\binom{[n]}{k} and tk1t\leq k-1, there exist ν()\ell\leq\nu(\mathcal{H}) and T1,T2,,TT_{1},T_{2},\ldots,T_{\ell} such that

  • (i)

    |Ti|t|T_{i}|\leq t for all i=1,2,,i=1,2,\ldots,\ell.

  • (ii)

    For i=1,2,,i=1,2,\ldots,\ell, Ui1\mathcal{H}-U_{i-1} is a (|Ti|1)(|T_{i}|-1)-resilient kk-graph with matching number ν()i+1\nu(\mathcal{H})-i+1, where Ui1=T1T2Ti1U_{i-1}=T_{1}\cup T_{2}\cup\ldots\cup T_{i-1}.

  • (iii)

    U\mathcal{H}-U is a tt-resilient kk-graph with matching number ν()\nu(\mathcal{H})-\ell, where U=T1T2TU=T_{1}\cup T_{2}\cup\ldots\cup T_{\ell}.

Proof.

Let 0=\mathcal{H}_{0}=\mathcal{H}. We obtain T1,T2,,TT_{1},T_{2},\ldots,T_{\ell} by a greedy algorithm. For i=0,1,i=0,1,\ldots, repeat the following procedure. If i\mathcal{H}_{i} is tt-resilient then let =i\ell=i and stop. Otherwise find Ti+1T_{i+1} of the minimum size so that ν(iTi+1)=ν(i)1\nu(\mathcal{H}_{i}-T_{i+1})=\nu(\mathcal{H}_{i})-1 and let i+1=iTi+1\mathcal{H}_{i+1}=\mathcal{H}_{i}-T_{i+1}. Note that in each step the matching number of i\mathcal{H}_{i} decreases by 1. The procedure will terminate in at most ν()\nu(\mathcal{H}) steps.

Since i1\mathcal{H}_{i-1} is not tt-resilient for 1i1\leq i\leq\ell, we have |Ti|t|T_{i}|\leq t and (i) holds. Since =U\mathcal{H}_{\ell}=\mathcal{H}-U is empty or tt-resilient, (iii) follows.

We are left with (ii). As TiT_{i} is of the minimum size satisfying ν(i1Ti)=ν(i1)1\nu(\mathcal{H}_{i-1}-T_{i})=\nu(\mathcal{H}_{i-1})-1, we infer that ν(i1R)=ν(i1)\nu(\mathcal{H}_{i-1}-R)=\nu(\mathcal{H}_{i-1}) for all RV(i1)R\subset V(\mathcal{H}_{i-1}) with |R|<|Ti||R|<|T_{i}|. That is, i1=Ui1\mathcal{H}_{i-1}=\mathcal{H}-U_{i-1} is (|Ti|1)(|T_{i}|-1)-resilient with matching number ν()i+1\nu(\mathcal{H})-i+1. Thus (ii) holds. ∎

Lemma 4.2.

Let \mathcal{H} be a tt-resilient kk-graph with matching number ss. Then there exists (V()t+1)\mathcal{B}\subset\binom{V(\mathcal{H})}{t+1} with ||(ks)t+1|\mathcal{B}|\leq(ks)^{t+1} such that \mathcal{H}\subset\langle\mathcal{B}\rangle. Moreover, for any XV()X\subset V(\mathcal{H}) with |X|x<ks|X|\leq x<ks, there exists (V()t+1)\mathcal{B}^{\prime}\subset\binom{V(\mathcal{H})}{t+1} with ||x(ks)t|\mathcal{B}^{\prime}|\leq x(ks)^{t} such that (X^)\mathcal{H}(\hat{X})\subset\langle\mathcal{B}^{\prime}\rangle.

Proof.

Let us prove the lemma by a branching process of t+1t+1 stages. A sequence S=(x1,x2,,x)S=(x_{1},x_{2},\ldots,x_{\ell}) is an ordered sequence of distinct elements of V()V(\mathcal{H}) and we use S^\widehat{S} to denote the underlying unordered set {x1,x2,,x}\{x_{1},x_{2},\ldots,x_{\ell}\}.

At the first stage, let H11,,Hs1H_{1}^{1},\ldots,H_{s}^{1} be a maximal matching in \mathcal{H}. Make ksks sequences (x1)(x_{1}) with x1H11Hs1x_{1}\in H_{1}^{1}\cup\ldots\cup H_{s}^{1}. At the ppth stage for p=1,2,3,,tp=1,2,3,\ldots,t, for each sequence (x1,,xp)(x_{1},\ldots,x_{p}) of length pp, since \mathcal{H} is tt-resilient, then there exists a maximal matching H1p,,HspH_{1}^{p},\ldots,H_{s}^{p} in {x1,,xp}\mathcal{H}-\{x_{1},\ldots,x_{p}\}. We replace (x1,,xp)(x_{1},\ldots,x_{p}) by ksks sequences (x1,,xp,xp+1)(x_{1},\ldots,x_{p},x_{p+1}) with xp+1H1pHspx_{p+1}\in H_{1}^{p}\cup\ldots\cup H_{s}^{p}. Eventually by the branching process we shall obtain at most (ks)t+1(ks)^{t+1} sequences of length t+1t+1.

Claim 4.3.

For each HH\in\mathcal{H}, there is a sequence SS of length t+1t+1 with S^H\widehat{S}\subset H.

Proof.

Let S=(x1,,x)S=(x_{1},\ldots,x_{\ell}) be a sequence of maximal length that occurred at some stage of the branching process satisfying S^H\widehat{S}\subset H. Suppose indirectly that <t+1\ell<t+1. Since H(H11Hs1)H\cap(H_{1}^{1}\cup\ldots\cup H_{s}^{1})\neq\emptyset at the first stage, there is a sequence (x1)(x_{1}) with x1H11Hs1x_{1}\in H_{1}^{1}\cup\ldots\cup H_{s}^{1} such that {x1}H\{x_{1}\}\subset H. Thus 1\ell\geq 1. Since <t+1\ell<t+1, at the \ellth stage there is a maximal matching H1,,HsH_{1}^{\ell},\ldots,H_{s}^{\ell} in S^\mathcal{H}-\widehat{S} and SS was replaced by ksks sequences (x1,,x,y)(x_{1},\ldots,x_{\ell},y) with yH1Hsy\in H_{1}^{\ell}\cup\ldots\cup H_{s}^{\ell}. Since H(H1Hs)H\cap(H_{1}^{\ell}\cup\ldots\cup H_{s}^{\ell})\neq\emptyset, there is some y0H(H1Hs)y_{0}\in H\cap(H_{1}^{\ell}\cup\ldots\cup H_{s}^{\ell}). Then (x1,,x,y0)(x_{1},\ldots,x_{\ell},y_{0}) is a longer sequence satisfying {x1,,x,y0}H\{x_{1},\ldots,x_{\ell},y_{0}\}\subset H, contradicting the maximality of \ell. ∎

Let \mathcal{B} be the collection of S^\widehat{S} over all sequences SS of length t+1t+1. By Claim 4.3, we infer that \mathcal{H}\subset\langle\mathcal{B}\rangle.

Similarly, if we make a branching process starting at xx sequences (x1)(x_{1}) with x1Xx_{1}\in X, then we shall obtain a (V()t+1)\mathcal{B}^{\prime}\subset\binom{V(\mathcal{H})}{t+1} with ||x(ks)t|\mathcal{B}^{\prime}|\leq x(ks)^{t} such that (X^)\mathcal{H}(\hat{X})\subset\langle\mathcal{B}^{\prime}\rangle. ∎

Lemma 4.4.

Let 𝒦p=𝒦p(n,k)\mathcal{K}_{p}=\mathcal{K}_{p}(n,k) and let tt be an integer with 1tk1\leq t\ll k. If n56k2+1/tsn\geq 56k^{2+1/t}s and p8(t+1)kt+1stlogn(n1k1)p\geq\frac{8(t+1)k^{t+1}s^{t}\log n}{\binom{n-1}{k-1}}, then with high probability (i), (ii) and (iii) hold.

  • (i)

    For R,Q[n]R,Q\subset[n] with RQ=R\cap Q=\emptyset, |R|=sq|R|=s-q and |Q|=q|Q|=q,

    |𝒦p(R¯,Q^)|>12pq(n1k1).\displaystyle|\mathcal{K}_{p}(\bar{R},\hat{Q})|>\frac{1}{2}pq\binom{n-1}{k-1}. (18)
  • (ii)

    For every R[n]R\subset[n] with 2|R|t2\leq|R|\leq t,

    |𝒦p(R)|14|R|(ks)|R|1p(n1k1).|\mathcal{K}_{p}(R)|\leq\frac{1}{4|R|(ks)^{|R|-1}}p\binom{n-1}{k-1}.
  • (iii)

    For every T[n]T\subset[n] with |T|=t+1|T|=t+1,

    |𝒦p(T)|14kt+1stp(n1k1).|\mathcal{K}_{p}(T)|\leq\frac{1}{4k^{t+1}s^{t}}p\binom{n-1}{k-1}.
Proof.

Clearly, (i) follows from Lemma 3.1 (i). Thus we only need to show (ii) and (iii).

  • (ii)

    Let |R|=rt|R|=r\leq t. Note that n56k2sn\geq 56k^{2}s implies

    |𝒦(R)|=(nrkr)kr1nr1(n1k1)128r(ks)r1(n1k1).|\mathcal{K}(R)|=\binom{n-r}{k-r}\leq\frac{k^{r-1}}{n^{r-1}}\binom{n-1}{k-1}\leq\frac{1}{28r(ks)^{r-1}}\binom{n-1}{k-1}.

    By (5), we infer that

    Pr(|𝒦p(R))|>14r(ks)r1p(n1k1))<e14r(ks)r1p(n1k1)<e14t(ks)t1p(n1k1).Pr\left(|\mathcal{K}_{p}(R))|>\frac{1}{4r(ks)^{r-1}}p\binom{n-1}{k-1}\right)<e^{-\frac{1}{4r(ks)^{r-1}}p\binom{n-1}{k-1}}<e^{-\frac{1}{4t(ks)^{t-1}}p\binom{n-1}{k-1}}.

    Since the number of choices for RR is at most 2it(ni)nt\sum_{2\leq i\leq t}\binom{n}{i}\leq n^{t}, by p8t2(ks)t1logn(n1k1)p\geq\frac{8t^{2}(ks)^{t-1}\log n}{\binom{n-1}{k-1}} and the union bound, the probability that condition (ii) is violated is at most

    nte14t(ks)t1p(n1k1)etlogn14t(ks)t1p(n1k1)nt0 as n.n^{t}e^{-\frac{1}{4t(ks)^{t-1}}p\binom{n-1}{k-1}}\leq e^{t\log n-\frac{1}{4t(ks)^{t-1}}p\binom{n-1}{k-1}}\leq n^{-t}\rightarrow 0\text{~{}as~{}}n\rightarrow\infty.

    Thus (ii) holds.

  • (iii)

    Similarly, n56k2+1/tsn\geq 56k^{2+1/t}s implies

    |𝒦(T)|=(nt1kt1)ktnt(n1k1)128kt+1st(n1k1).|\mathcal{K}(T)|=\binom{n-t-1}{k-t-1}\leq\frac{k^{t}}{n^{t}}\binom{n-1}{k-1}\leq\frac{1}{28k^{t+1}s^{t}}\binom{n-1}{k-1}.

    By (5), we infer that

    Pr(|𝒦p(T))|>14kt+1stp(n1k1))<e14kt+1stp(n1k1).Pr\left(|\mathcal{K}_{p}(T))|>\frac{1}{4k^{t+1}s^{t}}p\binom{n-1}{k-1}\right)<e^{-\frac{1}{4k^{t+1}s^{t}}p\binom{n-1}{k-1}}.

    Since the number of choices for TT is at most (nt+1)nt+1\binom{n}{t+1}\leq n^{t+1}, by p8(t+1)kt+1stlogn(n1k1)p\geq\frac{8(t+1)k^{t+1}s^{t}\log n}{\binom{n-1}{k-1}} and the union bound, the probability that condition (iii) is violated is at most

    nt+1e14kt+1stp(n1k1)e(t+1)logn14kt+1stp(n1k1)nt10 as n.n^{t+1}e^{-\frac{1}{4k^{t+1}s^{t}}p\binom{n-1}{k-1}}\leq e^{(t+1)\log n-\frac{1}{4k^{t+1}s^{t}}p\binom{n-1}{k-1}}\leq n^{-t-1}\rightarrow 0\text{~{}as~{}}n\rightarrow\infty.

    Thus (iii) holds.

Proof of Theorem 1.4.

By Lemma 4.4, with high probability, 𝒦p\mathcal{K}_{p} satisfies (i), (ii) and (iii) of Lemma 4.4. Let us fix a hypergraph \mathcal{F} that satisfies (i), (ii), (iii) and let \mathcal{H}\subset\mathcal{F} be a sub-hypergraph with ν()=s\nu(\mathcal{H})=s and |||\mathcal{H}| maximal. We have to show that \mathcal{H} is trivial.

Suppose indirectly that \mathcal{H} is non-trivial. By Fact 4.1, there exist ν()\ell\leq\nu(\mathcal{H}) and T1,T2,,TT_{1},T_{2},\ldots,T_{\ell} such that (i), (ii), (iii) of Fact 4.1 hold. Let ai=|Ti|a_{i}=|T_{i}|, i=1,2,,i=1,2,\ldots,\ell. Recall that 0=\mathcal{H}_{0}=\mathcal{H} and i=(T1Ti)\mathcal{H}_{i}=\mathcal{H}-(T_{1}\cup\ldots\cup T_{i}), i=1,2,,i=1,2,\ldots,\ell. Let 1=0(T1^)\mathcal{H}_{1}^{\prime}=\mathcal{H}_{0}(\hat{T_{1}}), 2=1(T2^)\mathcal{H}_{2}^{\prime}=\mathcal{H}_{1}(\hat{T_{2}}), \ldots, =1(T^)\mathcal{H}_{\ell}^{\prime}=\mathcal{H}_{\ell-1}(\hat{T_{\ell}}) and 0=\mathcal{H}_{0}^{\prime}=\mathcal{H}_{\ell}. Since 0\mathcal{H}_{0}^{\prime} is tt-resilient, by Lemma 4.2 there exists 0\mathcal{B}_{0} of size at most (k(s))t+1(k(s-\ell))^{t+1} such that 00\mathcal{H}_{0}^{\prime}\subset\langle\mathcal{B}_{0}\rangle. Similarly, for i1i\geq 1, since i=i1(Ti^)\mathcal{H}_{i}^{\prime}=\mathcal{H}_{i-1}(\hat{T_{i}}) and i1\mathcal{H}_{i-1} is (ai1)(a_{i}-1)-resilient, by Lemma 4.2 there exists i\mathcal{B}_{i} of size at most ai(k(si+1))ai1a_{i}(k(s-i+1))^{a_{i}-1} such that ii\mathcal{H}_{i}^{\prime}\subset\langle\mathcal{B}_{i}\rangle. Thus =01\mathcal{H}=\mathcal{H}_{0}^{\prime}\cup\mathcal{H}_{1}^{\prime}\cup\ldots\cup\mathcal{H}_{\ell}^{\prime} is contained in 0ii\cup_{0\leq i\leq\ell}\langle\mathcal{B}_{i}\rangle.

By relabeling the indices if necessary, we may assume that a=a1==ar+1=1a_{\ell}=a_{\ell-1}=\ldots=a_{\ell-r+1}=1 and a1a2ar2a_{1}\geq a_{2}\geq\ldots\geq a_{\ell-r}\geq 2. Let i={{xi}}\mathcal{B}_{i}=\{\{x_{i}\}\} for i=r+1,,i=\ell-r+1,\ldots,\ell and let R={xi:i=r+1,,}R=\{x_{i}\colon i=\ell-r+1,\ldots,\ell\}. Let q=srq=s-r. Note that for an arbitrary Q([n]Rq)Q\in\binom{[n]\setminus R}{q} the family (R¯,Q^)\mathcal{F}(\bar{R},\hat{Q}) can be used to replace (R¯)\mathcal{H}(\bar{R}) and the resulting family has matching number ss. To get a contradiction we need to show

|(R¯,Q^)|>|(R¯)|.\displaystyle|\mathcal{F}(\bar{R},\hat{Q})|>|\mathcal{H}(\bar{R})|. (19)

By Lemma 4.4 (i) we have |(R¯,Q^)|>12pq(n1k1)|\mathcal{F}(\bar{R},\hat{Q})|>\frac{1}{2}pq\binom{n-1}{k-1}. By Lemma 4.4 (ii) and |i|ai(k(si+1))ai1|\mathcal{B}_{i}|\leq a_{i}(k(s-i+1))^{a_{i}-1}, we have

1ir|i|1ir|i|1ir|i|14ai(ks)ai1p(n1k1)r4p(n1k1).\sum_{1\leq i\leq\ell-r}|\mathcal{H}_{i}^{\prime}|\leq\sum_{1\leq i\leq\ell-r}|\mathcal{F}\cap\langle\mathcal{B}_{i}\rangle|\leq\sum_{1\leq i\leq\ell-r}|\mathcal{B}_{i}|\frac{1}{4a_{i}(ks)^{a_{i}-1}}p\binom{n-1}{k-1}\leq\frac{\ell-r}{4}p\binom{n-1}{k-1}.

By Lemma 4.4 (ii) and |0|(k(s))t+1|\mathcal{B}_{0}|\leq(k(s-\ell))^{t+1},

|0||0||0|14kt+1stp(n1k1)s4p(n1k1).|\mathcal{H}_{0}^{\prime}|\leq|\mathcal{F}\cap\langle\mathcal{B}_{0}\rangle|\leq|\mathcal{B}_{0}|\frac{1}{4k^{t+1}s^{t}}p\binom{n-1}{k-1}\leq\frac{s-\ell}{4}p\binom{n-1}{k-1}.

Thus,

|(R¯)|0ir|i|<s+r4p(n1k1)=q4p(n1k1)<|(R¯,Q^)|,|\mathcal{H}(\bar{R})|\leq\sum_{0\leq i\leq\ell-r}|\mathcal{H}_{i}^{\prime}|<\frac{s-\ell+\ell-r}{4}p\binom{n-1}{k-1}=\frac{q}{4}p\binom{n-1}{k-1}<|\mathcal{F}(\bar{R},\hat{Q})|,

as desired. Thus the theorem holds. ∎

Proof of Proposition 1.6.

Let NN denote the number of (s+1)(s+1)-matchings in ([n]k)\binom{[n]}{k}. Then

N=(n(s+1)k)((s+1)k)!k!s+1.N=\binom{n}{(s+1)k}\frac{((s+1)k)!}{k!^{s+1}}.

Since the probability that a fixed (s+1)(s+1)-matching is in 𝒦p\mathcal{K}_{p} is ps+1p^{s+1}, by the union bound we have

Pr(𝒦p contains an (s+1)-matching)Nps+1(n(s+1)k)((s+1)k)!k!s+1ps+1.Pr(\mathcal{K}_{p}\mbox{ contains an $(s+1)$-matching})\leq Np^{s+1}\leq\binom{n}{(s+1)k}\frac{((s+1)k)!}{k!^{s+1}}p^{s+1}.

We use (n)k(n)_{k} to denote n(n1)(nk+1)n(n-1)\ldots(n-k+1). Note that

(n(s+1)k)((s+1)k)!(k!)s+1=n(n1)(n(s+1)k+1)(k!)s+1(n)k(nk)k(nsk)k(k!)s+1\binom{n}{(s+1)k}\frac{((s+1)k)!}{(k!)^{s+1}}=\frac{n(n-1)\ldots(n-(s+1)k+1)}{(k!)^{s+1}}\leq\frac{(n)_{k}(n-k)_{k}\ldots(n-sk)_{k}}{(k!)^{s+1}}

and

(nik)k(1ikn)k(n)keik2/n(n)k.(n-ik)_{k}\leq\left(1-\frac{ik}{n}\right)^{k}(n)_{k}\leq e^{-ik^{2}/n}(n)_{k}.

Using pek2s2n/(nk)p\ll e^{\frac{k^{2}s}{2n}}/\binom{n}{k}, we obtain that

(n)k(nk)k(nsk)k(k!)s+1ps+1e(1+2++s)k2/n(nk)s+1ps+1es(s+1)k2/(2n)(nk)s+1ps+11.\frac{(n)_{k}(n-k)_{k}\ldots(n-sk)_{k}}{(k!)^{s+1}}p^{s+1}\leq e^{-(1+2+\ldots+s)k^{2}/n}\binom{n}{k}^{s+1}p^{s+1}\leq e^{-s(s+1)k^{2}/(2n)}\binom{n}{k}^{s+1}p^{s+1}\ll 1.

On the other hand, by the union bound and pslogn(nsk)p\gg\frac{s\log n}{\binom{n-s}{k}} we have

Pr(𝒦p is trivial)(ns)(1p)(nsk)<(ns)exp(p(nsk))1.Pr(\mathcal{K}_{p}\mbox{ is trivial})\leq\binom{n}{s}(1-p)^{\binom{n-s}{k}}<\binom{n}{s}\exp\left(-p\binom{n-s}{k}\right)\ll 1.

Thus with high probability, 𝒦p\mathcal{K}_{p} has matching number at most ss and is non-trivial. ∎

5 Proof of Theorem 1.7

In this section, we prove Theorem 1.7, which is a result specifically for graphs.

Let (B,A1,A2,,Am)(B,A_{1},A_{2},\ldots,A_{m}) be a partition of [n][n]. We say that (B,A1,A2,,Am)(B,A_{1},A_{2},\ldots,A_{m}) is an ss-partition if the following hold:

  • (i)

    Let |Ai|=ai|A_{i}|=a_{i}, i=1,2,,mi=1,2,\ldots,m. Each aia_{i} is odd and a1a2am1a_{1}\geq a_{2}\geq\ldots\geq a_{m}\geq 1;

  • (ii)

    b+1imai12=sb+\sum\limits_{1\leq i\leq m}\frac{a_{i}-1}{2}=s;

  • (iii)

    b+1imai=nb+\sum\limits_{1\leq i\leq m}a_{i}=n.

For an ss-partition (B,A1,A2,,Am)(B,A_{1},A_{2},\ldots,A_{m}) of [n][n], define a graph G(B,A1,A2,,Am)G(B,A_{1},A_{2},\ldots,A_{m}) on the vertex set [n][n] so that G[B]G[B] and G[Ai]G[A_{i}], i=1,2,,mi=1,2,\ldots,m, are all cliques, and G[B,A1Am]G[B,A_{1}\cup\ldots\cup A_{m}] is complete bipartite.

Theorem 5.1 (Tutte-Berge theorem or the Edmonds-Gallai Theorem, see [15]).

Let GG be a graph on the vertex set [n][n] with ν(G)s\nu(G)\leq s and n2s+2n\geq 2s+2. Then there is an ss-partition (B,A1,A2,,Am)(B,A_{1},A_{2},\ldots,A_{m}) of [n][n] such that GG is a subgraph of G(B,A1,A2,,Am)G(B,A_{1},A_{2},\ldots,A_{m}).

By applying Theorem 5.1, Erdős and Gallai determined the maximum number of edges in a graph with matching number at most ss, which is the k=2k=2 case of the Erdős Matching Conjecture.

Theorem 5.2 ([5]).

Let GG be a graph on nn vertices. If ν(G)s\nu(G)\leq s and n2s+2n\geq 2s+2, then

e(G)max{(2s+12),(s2)+s(ns)}.e(G)\leq\max\left\{\binom{2s+1}{2},\binom{s}{2}+s(n-s)\right\}.

Let us mention that very recently by combining the Tutte-Berge theorem and other techniques, Alon and the first author [1] determined the maximum number of edges in a Kr+1K_{r+1}-free graph with matching number at most ss.

Note that

(2r1+12)+(2r2+12)(2(r1+r2)+12).\binom{2r_{1}+1}{2}+\binom{2r_{2}+1}{2}\leq\binom{2(r_{1}+r_{2})+1}{2}.

Let ai=2ri+1a_{i}=2r_{i}+1, i=1,2,,mi=1,2,\ldots,m and let r1r_{\ell}\geq 1 and r+1==rm=0r_{\ell+1}=\ldots=r_{m}=0. By (ii) we have r1+r2++r+b=sr_{1}+r_{2}+\ldots+r_{\ell}+b=s. Then

e(G(B,A1,A2,,Am))\displaystyle e(G(B,A_{1},A_{2},\ldots,A_{m})) =(b2)+1i(ai2)+b1imai\displaystyle=\binom{b}{2}+\sum_{1\leq i\leq\ell}\binom{a_{i}}{2}+b\sum_{1\leq i\leq m}a_{i}
(b2)+(2(r1+r2++r)+12)+b(nb)\displaystyle\leq\binom{b}{2}+\binom{2(r_{1}+r_{2}+\ldots+r_{\ell})+1}{2}+b(n-b)
(b2)+(2(sb)+12)+b(nb)\displaystyle\leq\binom{b}{2}+\binom{2(s-b)+1}{2}+b(n-b)
max{(2s+12),(s2)+s(ns)}.\displaystyle\leq\max\left\{\binom{2s+1}{2},\binom{s}{2}+s(n-s)\right\}. (20)
Proof of Theorem1.7.

Let

f(n,s):=max{(2s+12),(s2)+s(ns)}.f(n,s):=\max\left\{\binom{2s+1}{2},\binom{s}{2}+s(n-s)\right\}.

Let 𝒢\mathcal{G} be the family of all graphs with ν(G)s\nu(G)\leq s on the vertex set [n][n]. Then

Pr(X(1+ε)pf(n,s))\displaystyle Pr\left(X\geq(1+\varepsilon)pf(n,s)\right)
=\displaystyle= Pr(G𝒢,e(GG(n,p))(1+ε)pf(n,s))\displaystyle Pr\left(\exists G\in\mathcal{G},e(G\cap G(n,p))\geq(1+\varepsilon)pf(n,s)\right)
=\displaystyle= Pr( an s-parition (B,A1,A2,,Am),e(G(B,A1,A2,,Am)G(n,p))(1+ε)pf(n,s)).\displaystyle Pr\left(\exists\mbox{ an $s$-parition }(B,A_{1},A_{2},\ldots,A_{m}),e(G(B,A_{1},A_{2},\ldots,A_{m})\cap G(n,p))\geq(1+\varepsilon)pf(n,s)\right).

Assume that |A+1|==|Am|=1|A_{\ell+1}|=\cdots=|A_{m}|=1 for some [m]\ell\in[m], the ss-partition (B,A1,A2,,Am)(B,A_{1},A_{2},\ldots,A_{m}) is determined by (B,A1,A2,,A)(B,A_{1},A_{2},\ldots,A_{\ell}). By (ii) we have

b+1iai12=s.b+\sum\limits_{1\leq i\leq\ell}\frac{a_{i}-1}{2}=s.

It follows that s1\ell\leq s-1 and b+a1+a2++a<3sb+a_{1}+a_{2}+\ldots+a_{\ell}<3s. Thus the total number of ss-partitions is at most s3sn3ss^{3s}n^{3s}.

Let (B,A1,A2,,Am)(B,A_{1},A_{2},\ldots,A_{m}) be an ss-partition of [n][n] and let G=G(B,A1,A2,,Am)G=G(B,A_{1},A_{2},\ldots,A_{m}). If e(G)17f(n,s)e(G)\geq\frac{1}{7}f(n,s), then by (4),

Pr(e(GG(n,p))(1+ε)pf(n,s)>(1+ε)pe(G))eε2pe(G)3eε2pf(n,s)21.Pr\left(e(G\cap G(n,p))\geq(1+\varepsilon)pf(n,s)>(1+\varepsilon)pe(G)\right)\leq e^{-\frac{\varepsilon^{2}pe(G)}{3}}\leq e^{-\frac{\varepsilon^{2}pf(n,s)}{21}}.

If e(G)<17f(n,s)e(G)<\frac{1}{7}f(n,s), then (1+ε)pf(n,s)7pe(G)(1+\varepsilon)pf(n,s)\geq 7pe(G). By (5) we have

Pr(e(GG(n,p))(1+ε)pf(n,s))e(1+ε)pf(n,s)eε2pf(n,s)21.Pr\left(e(G\cap G(n,p))\geq(1+\varepsilon)pf(n,s)\right)\leq e^{-(1+\varepsilon)pf(n,s)}\leq e^{-\frac{\varepsilon^{2}pf(n,s)}{21}}.

Thus, by the union bound we conclude that

Pr(G𝒢,e(GG(n,p))(1+ε)pf(n,s))s3sn3seε2pf(n,s)21=e11f(n,s)lognn+3slog(sn).Pr\left(\exists G\in\mathcal{G},e(G\cap G(n,p))\geq(1+\varepsilon)pf(n,s)\right)\leq s^{3s}n^{3s}e^{-\frac{\varepsilon^{2}pf(n,s)}{21}}=e^{-\frac{11f(n,s)\log n}{n}+3s\log(sn)}.

If n5s+32n\geq\frac{5s+3}{2}, then s<2n5s<\frac{2n}{5} and f(n,s)=(s2)+s(ns)>4sn5f(n,s)=\binom{s}{2}+s(n-s)>\frac{4sn}{5}. If 2s+2n<5s+322s+2\leq n<\frac{5s+3}{2}, then f(n,s)=(2s+12)>4sn5f(n,s)=\binom{2s+1}{2}>\frac{4sn}{5} as well. It follows that

11f(n,s)lognn3slog(sn)>7slogn6slogn=slogn.\frac{11f(n,s)\log n}{n}-3s\log(sn)>7s\log n-6s\log n=s\log n.

Thus with probability 1ns1-n^{-s},

X(1+ε)pmax{(2s+12),(s2)+s(ns)}.X\leq(1+\varepsilon)p\max\left\{\binom{2s+1}{2},\binom{s}{2}+s(n-s)\right\}.

For the lower bound, let us consider the graph G1=([2s+1]2)G_{1}=\binom{[2s+1]}{2} and G2=([s]2)([s]×[s+1,n])=([n]2)([s+1,n]2)G_{2}=\binom{[s]}{2}\cup([s]\times[s+1,n])=\binom{[n]}{2}\setminus\binom{[s+1,n]}{2}. Then by (4) we have

Pr(e(G1G(n,p))(1ε)pe(G1))eε2pe(G1)3.Pr\left(e(G_{1}\cap G(n,p))\leq(1-\varepsilon)pe(G_{1})\right)\leq e^{-\frac{\varepsilon^{2}pe(G_{1})}{3}}.

and

Pr(e(G2G(n,p))(1ε)pe(G2))eε2pe(G2)3.Pr\left(e(G_{2}\cap G(n,p))\leq(1-\varepsilon)pe(G_{2})\right)\leq e^{-\frac{\varepsilon^{2}pe(G_{2})}{3}}.

Since max{e(G1),e(G2)}4sn5\max\{e(G_{1}),e(G_{2})\}\geq\frac{4sn}{5}, we infer that for i=1i=1 or 22,

ε2pe(Gi)3250logn3n×4sn564slogn.\frac{\varepsilon^{2}pe(G_{i})}{3}\geq\frac{250\log n}{3n}\times\frac{4sn}{5}\geq 64s\log n.

It follows that with probability 1n64s1-n^{-64s}, we have

X(1ε)pmax{(2s+12),(s2)+s(ns)}.X\geq(1-\varepsilon)p\max\left\{\binom{2s+1}{2},\binom{s}{2}+s(n-s)\right\}.

Thus the theorem is proven. ∎

References

  • [1] N. Alon and P. Frankl. Turán graphs with bounded matching number. Journal of Combinatorial Theory, Series B, 165:223–229, 2024.
  • [2] J. Balogh, T. Bohman, and D. Mubayi. Erdős–Ko–Rado in random hypergraphs. Combinatorics, Probability and Computing, 18(5):629–646, 2009.
  • [3] J. Balogh, R. A. Krueger, and H. Luo. Sharp threshold for the Erdős–Ko–Rado theorem. Random Structures & Algorithms, 62(1):3–28, 2023.
  • [4] B. Bollobás, D. E. Daykin, and P. Erdős. Sets of independent edges of a hypergraph. The Quarterly Journal of Mathematics, 27(1):25–32, 03 1976.
  • [5] P. Erdős and T. Gallai. On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hung, 10, 1959.
  • [6] P. Erdős. A problem on independent rr-tuples. Ann. Univ. Sci. Budapest. Eötvös Sect. Math, 8(93-95):2, 1965.
  • [7] P. Erdős, K. Chao, and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser.(2), 12:313–320, 1961.
  • [8] P. Frankl. Improved bounds for Erdős matching conjecture. Journal of Combinatorial Theory, Series A, 120(5):1068–1072, 2013.
  • [9] P. Frankl. Resilient hypergraphs with fixed matching number. Combinatorica, 38:1079–1094, 2018.
  • [10] P. Frankl and A. Kupavskii. The Erdős matching conjecture and concentration inequalities. Journal of Combinatorial Theory, Series B, 157:366–400, 2022.
  • [11] M. M. Gauy, H. Han, and I. C. Oliveira. Erdős–Ko–Rado for random hypergraphs: asymptotics and stability. Combinatorics, Probability and Computing, 26(3):406–422, 2017.
  • [12] A. Hamm and J. Kahn. On Erdős–Ko–Rado for random hypergraphs I. Combinatorics, Probability and Computing, 28(6):881–916, 2019.
  • [13] A. Hamm and J. Kahn. On Erdős–Ko–Rado for random hypergraphs II. Combinatorics, Probability and Computing, 28(1):61–80, 2019.
  • [14] S. Janson, T. Luczak, and A. Rucinski. Random graphs. John Wiley & Sons, 2011.
  • [15] L. Lovász and M. D. Plummer. Matching theory, volume 367. American Mathematical Soc., 2009.