This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the magic square C*-algebra of size 4

Takeshi KATSURA Department of Mathematics
Faculty of Science and Technology
Keio University
3-14-1 Hiyoshi, Kouhoku-ku, Yokohama
223-8522 JAPAN
[email protected]
Masahito OGAWA Library & Information center
Yokohama City University
22-2 Seto, Kanazawa-ku, Yokohama
236-0027 JAPAN
 and  Airi TAKEUCHI Karlsruhe Institute of Technology
Department of Mathematics
76128 Karlsruhe, Germany
[email protected]
Abstract.

In this paper, we investigate the structure of the magic square C*-algebra A(4)A(4) of size 4. We show that a certain twisted crossed product of A(4)A(4) is isomorphic to the homogeneous C*-algebra M4(C(P3))M_{4}(C(\mathbb{R}P^{3})). Using this result, we show that A(4)A(4) is isomorphic to the fixed point algebra of M4(C(P3))M_{4}(C(\mathbb{R}P^{3})) by a certain action. From this concrete realization of A(4)A(4), we compute the K-groups of A(4)A(4) and their generators.

Key words and phrases:
C*-algebra, magic square C*-algebra, twisted crossed product, K-theory
2020 Mathematics Subject Classification:
Primary 46L05; Secondary 46L55, 46L80

0. Introduction

Let n=1,2,n=1,2,\ldots. The magic square C*-algebra A(n)A(n) of size nn is the underlying C*-algebra of the quantum group As(n)A_{s}(n) defined by Wang in [W] as a free analogue of the symmetric group 𝔖n\mathfrak{S}_{n}. In [BC, Proposition 1.1], it is claimed that for n=1,2,3n=1,2,3, A(n)A(n) is isomorphic to n!\mathbb{C}^{n!}, and hence commutative and finite dimensional. We give the proof of this fact in Proposition 2.1. In [BM, Proposition 1.2] it is proved that for n4n\geq 4 A(n)A(n) is non-commutative and infinite dimensional. We see that for n5n\geq 5 A(n)A(n) is not exact (Proposition 2.5). Something interesting happens for A(4)A(4) (see [BM, BB, BC]). In [BM], Banica and Moroianu constructed a *-homomorphism from A(4)A(4) to M4(C(SU(2)))M_{4}(C(SU(2))) by using the Pauli matrices, and showed that it is faithful in some weak sense. In [BC], Banica and Collins showed that the *-homomorphism above is in fact faithful by using integration techniques. We reprove this fact in Corollary 7.9. Our method uses a twisted crossed product. The following is the first main result.

Theorem A (Theorem 3.6). The twisted crossed product A(4)αtw(K×K)A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K) is isomorphic to M4(C(P3))M_{4}(C(\mathbb{R}P^{3})).

The notation in this theorem is explained in Section 3. From this theorem, we see that the magic square C*-algebra A(4)A(4) of size 44 is isomorphic to a CC^{*}-subalgebra of the homogeneous CC^{*}-algebra M4(C(P3))M_{4}(C(\mathbb{R}P^{3})). The next theorem, which is the second main result, expresses this CC^{*}-subalgebra as a fixed point algebra of M4(C(P3))M_{4}(C(\mathbb{R}P^{3})).

Theorem B (Theorem 8.2). The fixed point algebra M4(C(P3))βM_{4}(C(\mathbb{R}P^{3}))^{\beta} of the action β\beta is isomorphic to A(4)A(4).

See Section 8 for the definition of the action β\beta. Since β\beta is concrete, we can analyze M4(C(P3))βM_{4}(C(\mathbb{R}P^{3}))^{\beta} very explicitly. In particular, we can compute the K-groups of M4(C(P3))βM_{4}(C(\mathbb{R}P^{3}))^{\beta} explicitly. As a corollary we get the following which is the third main result.

Theorem C (Theorem 15.16). We have K0(A(4))10K_{0}(A(4))\cong\mathbb{Z}^{10} and K1(A(4))K_{1}(A(4))\cong\mathbb{Z}. More specifically, K0(A(4))K_{0}(A(4)) is generated by {[pi,j]0}i,j=14\{[p_{i,j}]_{0}\}_{i,j=1}^{4}, and K1(A(4))K_{1}(A(4)) is generated by [u]1[u]_{1}.

The positive cone K0(A(4))+K_{0}(A(4))_{+} of K0(A(4))K_{0}(A(4)) is generated by {[pi,j]0}i,j=14\{[p_{i,j}]_{0}\}_{i,j=1}^{4} as a monoid.

Note that {pi,j}i,j=14\{p_{i,j}\}_{i,j=1}^{4} is the generating set of A(4)A(4) consisting of projections, and uu is the defining unitary (see Definition 15.15). We should remark that the computation K0(A(4))10K_{0}(A(4))\cong\mathbb{Z}^{10} and K1(A(4))K_{1}(A(4))\cong\mathbb{Z} and that K0(A(4))K_{0}(A(4)) is generated by {[pi,j]0}i,j=14\{[p_{i,j}]_{0}\}_{i,j=1}^{4} were already obtained by Voigt in [V] by using Baum-Connes conjecture for quantum groups. In fact, Voigt got the corresponding results for A(n)A(n) with n4n\geq 4. Theorem C gives totally different proofs for the results by Voigt in [V] by analyzing the structure of A(4)A(4) directly which seems not to be applied to A(n)A(n) for n>4n>4. That K1(A(4))K_{1}(A(4)) is generated by [u]1[u]_{1} was not obtained in [V], and is a new result. Combining this result with the computation that K1(A(n))K_{1}(A(n))\cong\mathbb{Z} for n4n\geq 4 in [V] and the easy fact that the surjection A(n)A(4)A(n)\to A(4) in Corollary 2.4 for n4n\geq 4 sends the defining unitary to the direct sum of the defining unitary and the units, we obtain that K1(A(n))K_{1}(A(n))\cong\mathbb{Z} is generated by the K1K_{1} class of the defining unitary for n4n\geq 4. We would like to thank Christian Voigt for the discussion about this observation.

This paper is organized as follows. In Section 1, we define magic square C*-algebras A(n)A(n) and their abelianizations Aab(n)A^{\text{ab}}(n). In Section 2, we investigate A(n)A(n) for n4n\neq 4. From Section 3, we study A(4)A(4). In Section 3, we introduce the twisted crossed product A(4)αtw(K×K)A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K), and state Theorem A. We give the proof of Theorem A from Section 4 to Section 7. In Section 8, we state and prove Theorem B. From Section 9 to Section 15, we prove Theorem C.

Acknowledgments. The first author thank Junko Muramatsu for helping the research in the beginning of the research. The authors are grateful to Makoto Yamashita for calling attention to [V], and to Christian Voigt for the discussion on the results in [V]. The first author was supported by JSPS KAKENHI Grant Number JP18K03345.

1. Definitions of and basic facts on magic square C*-algebras

Definition 1.1.

Let n=1,2,n=1,2,\ldots. The magic square C*-algebra of size nn is the universal unital C*-algebra A(n)A(n) generated by n×nn\times n projections {pi,j}i,j=1n\{p_{i,j}\}_{i,j=1}^{n} satisfying

i=1npi,j=1\displaystyle\sum_{i=1}^{n}p_{i,j}=1 (j=1,2,,n),\displaystyle\quad(j=1,2,\ldots,n), j=1npi,j=1\displaystyle\sum_{j=1}^{n}p_{i,j}=1 (i=1,2,,n).\displaystyle\quad(i=1,2,\ldots,n).
Remark 1.2.

The magic square C*-algebra A(n)A(n) is the underlying C*-algebra of the quantum group As(n)A_{s}(n) defined by Wang in [W] as a free analogue of the symmetric group 𝔖n\mathfrak{S}_{n}.

We fix a positive integer nn. Let 𝔖n\mathfrak{S}_{n} be the symmetric group of degree nn whose element is considered to be a bijection on the set {1,2,,n}\{1,2,\ldots,n\}.

Definition 1.3.

By the universality of A(n)A(n), there exists an action α:𝔖n×𝔖nA(n)\alpha\colon\mathfrak{S}_{n}\times\mathfrak{S}_{n}\curvearrowright A(n) defined by

α(σ,μ)(pi,j)=pσ(i),μ(j)\alpha_{(\sigma,\mu)}(p_{i,j})=p_{\sigma(i),\mu(j)}

for (σ,μ)𝔖n×𝔖n(\sigma,\mu)\in\mathfrak{S}_{n}\times\mathfrak{S}_{n} and i,j=1,2,,ni,j=1,2,\ldots,n.

Definition 1.4.

Let Aab(n)A^{\text{ab}}(n) be the universal unital C*-algebra generated by n×nn\times n projections {pi,j}i,j=1n\{p_{i,j}\}_{i,j=1}^{n} satisfying the relations in Definition 1.1 and

pi,jpk,l=pk,lpi,j(i,j,k,l=1,2,,n).p_{i,j}p_{k,l}=p_{k,l}p_{i,j}\qquad(i,j,k,l=1,2,\ldots,n).

The following lemma follows immediately from the definitions.

Lemma 1.5.

The C*-algebra Aab(n)A^{\text{ab}}(n) is the abelianization of A(n)A(n). More specifically, there exists a natural surjection A(n)Aab(n)A(n)\twoheadrightarrow A^{\text{ab}}(n) sending each projection pi,jp_{i,j} to pi,jp_{i,j}, and every *-homomorphism from A(n)A(n) to an abelian C*-algebra factors through this surjection.

Proposition 1.6.

The abelian C*-algebra Aab(n)A^{\text{ab}}(n) is isomorphic to the C*-algebra C(𝔖n)C(\mathfrak{S}_{n}) of continuous functions on the discrete set 𝔖n\mathfrak{S}_{n}.

Proof.

For each σ𝔖n\sigma\in\mathfrak{S}_{n}, we define a character χσ\chi_{\sigma} of Aab(n)A^{\text{ab}}(n) by

χσ(pi,j)={1(i=σ(j))0(iσ(j)).\chi_{\sigma}(p_{i,j})=\begin{cases}1&(i=\sigma(j))\\ 0&(i\neq\sigma(j)).\end{cases}

Note that such a character χσ\chi_{\sigma} uniquely exists by the universality of Aab(n)A^{\text{ab}}(n). It is easy to see that any character of Aab(n)A^{\text{ab}}(n) is in the form of χσ\chi_{\sigma} for some σ𝔖n\sigma\in\mathfrak{S}_{n}. This shows that Aab(n)A^{\text{ab}}(n) is isomorphic to C(𝔖n)C(\mathfrak{S}_{n}) by the Gelfand theorem. ∎

We can compute minimal projections of Aab(n)A^{\text{ab}}(n) as follows.

Proposition 1.7.

For σ𝔖n\sigma\in\mathfrak{S}_{n}, we set

pσpσ(1),1pσ(2),2pσ(n),nAab(n).p_{\sigma}\coloneqq p_{\sigma(1),1}p_{\sigma(2),2}\cdots p_{\sigma(n),n}\in A^{\text{ab}}(n).

Then {pσ}σ𝔖n\{p_{\sigma}\}_{\sigma\in\mathfrak{S}_{n}} is the set of minimal projections of Aab(n)A^{\text{ab}}(n).

Proof.

Since Aab(n)A^{\text{ab}}(n) is commutative, pσp_{\sigma} is a projection for every σ𝔖n\sigma\in\mathfrak{S}_{n}. For σ𝔖n\sigma\in\mathfrak{S}_{n}, let χσ\chi_{\sigma} be the character defined in the proof of Proposition 1.6. Then we have

χσ(pσ)={1(σ=σ)0(σσ)\chi_{\sigma^{\prime}}(p_{\sigma})=\begin{cases}1&(\sigma^{\prime}=\sigma)\\ 0&(\sigma^{\prime}\neq\sigma)\end{cases}

for σ,σ𝔖n\sigma,\sigma^{\prime}\in\mathfrak{S}_{n}. This shows that {pσ}σ𝔖n\{p_{\sigma}\}_{\sigma\in\mathfrak{S}_{n}} is the set of minimal projections of Aab(n)A^{\text{ab}}(n). ∎

For each σ𝔖n\sigma\in\mathfrak{S}_{n}, we can define a character χσ\chi_{\sigma} of A(n)A(n) by the same formula as in the proof of Proposition 1.6 (or to be the composition of the character χσ\chi_{\sigma} in the proof of Proposition 1.6 and the natural surjection A(n)Aab(n)A(n)\twoheadrightarrow A^{\text{ab}}(n)). With these characters we have the following as a corollary of of Proposition 1.6 (It is easy to show it directly).

Corollary 1.8.

The set of all characters of the magic square C*-algebra A(n)A(n) is {χσσ𝔖n}\{\chi_{\sigma}\mid\sigma\in\mathfrak{S}_{n}\} whose cardinality is n!n!.

2. General results on magic square C*-algebras

Proposition 2.1.

For n=1,2,3n=1,2,3, A(n)A(n) is commutative. Hence the surjection A(n)Aab(n)A(n)\twoheadrightarrow A^{\text{ab}}(n) is an isomorphism for n=1,2,3n=1,2,3.

Proof.

For n=1n=1 and n=2n=2, it is easy to see A(1)A(1)\cong\mathbb{C} and A(2)2A(2)\cong\mathbb{C}^{2}. To show that A(3)A(3) is commutative, it suffices to show p1,1p_{1,1} commutes with p2,2p_{2,2}. In fact if p1,1p_{1,1} commutes with p2,2p_{2,2}, we can see that p1,1p_{1,1} commutes with p2,3p_{2,3}, p3,2p_{3,2} and p3,3p_{3,3} using the action α\alpha defined in Definition 1.3. Then p1,1p_{1,1} commutes with every generators because p1,1p_{1,1} is orthogonal to and hence commutes with p1,2p_{1,2}, p1,3p_{1,3}, p2,1p_{2,1} and p3,1p_{3,1}. Using the action α\alpha again, we see that every generators commutes with every generators.

Now we are going to show that p1,1p_{1,1} commutes with p2,2p_{2,2}. We have

p1,1p2,2=(1p1,2p1,3)p2,2\displaystyle p_{1,1}p_{2,2}=(1-p_{1,2}-p_{1,3})p_{2,2} =p2,2p1,3p2,2\displaystyle=p_{2,2}-p_{1,3}p_{2,2}
=p2,2(1p2,3p3,3)p2,2=p3,3p2,2.\displaystyle=p_{2,2}-(1-p_{2,3}-p_{3,3})p_{2,2}=p_{3,3}p_{2,2}.

By symmetry, we have p2,2p3,3=p1,1p3,3p_{2,2}p_{3,3}=p_{1,1}p_{3,3} and p3,3p1,1=p2,2p1,1p_{3,3}p_{1,1}=p_{2,2}p_{1,1}. Hence we get

p1,1p2,2=p3,3p2,2=(p2,2p3,3)=(p1,1p3,3)=p3,3p1,1=p2,2p1,1.\displaystyle p_{1,1}p_{2,2}=p_{3,3}p_{2,2}=(p_{2,2}p_{3,3})^{*}=(p_{1,1}p_{3,3})^{*}=p_{3,3}p_{1,1}=p_{2,2}p_{1,1}.

This completes the proof. ∎

Proposition 2.2.

Let n1,n2,,nkn_{1},n_{2},\ldots,n_{k} be positive integers, and set n=j=1knjn=\sum_{j=1}^{k}n_{j}. There exists a surjection from A(n)A(n) to the unital free product j=1kA(nj)\mathop{\scalebox{1.3}{\raisebox{-0.86108pt}{$\ast$}}}_{j=1}^{k}A(n_{j}).

Proof.

The desired surjection is obtained by sending the generators {pi,j}i,j=1n1\{p_{i,j}\}_{i,j=1}^{n_{1}} of A(n)A(n) to the generators of A(n1)j=1kA(nj)A(n_{1})\subset\mathop{\scalebox{1.3}{\raisebox{-0.86108pt}{$\ast$}}}_{j=1}^{k}A(n_{j}), the generators {pi,j}i,j=n1+1n1+n2\{p_{i,j}\}_{i,j=n_{1}+1}^{n_{1}+n_{2}} of A(n)A(n) to the generators of A(n2)j=1kA(nj)A(n_{2})\subset\mathop{\scalebox{1.3}{\raisebox{-0.86108pt}{$\ast$}}}_{j=1}^{k}A(n_{j}) and so on, and by sending the other generators of A(n)A(n) to 0. ∎

Corollary 2.3.

Let nn be a positive integer. There exists a surjection from A(n+1)A(n+1) to A(n)A(n).

Proof.

This follows from Proposition 2.2 because A(n)A(1)A(n)A(n)A(n)*A(1)\cong A(n)*\mathbb{C}\cong A(n). ∎

Corollary 2.4.

Let n,mn,m be positive integers with nmn\geq m. There exists a surjection from A(n)A(n) to A(m)A(m).

Proof.

This follows from Corollary 2.3. ∎

Proposition 2.5.

For n5n\geq 5, A(n)A(n) is not exact.

Proof.

Note that an image of an exact C*-algebra is exact (see [BO, Corollary 9.4.3]). By Corollary 2.4, it suffices to show that A(5)A(5) is not exact. By Proposition 2.2, there exists a surjection from A(5)A(5) to A(2)A(3)26A(2)*A(3)\cong\mathbb{C}^{2}*\mathbb{C}^{6} which is not exact (see [BO, Proposition 3.7.11]). This completes the proof. ∎

The CC^{*}-algebra A(4)A(4) is not commutative, but is exact, in fact is subhomogeneous (Corollary 7.9). From the next section, we investigate the structure of A(4)A(4).

3. Twisted crossed product

We denote elements σ𝔖4\sigma\in\mathfrak{S}_{4} by (σ(1)σ(2)σ(3)σ(4))(\sigma(1)\sigma(2)\sigma(3)\sigma(4)). We define the Klein (four) group KK by

K{t1,t2,t3,t4}𝔖4K\coloneqq\{t_{1},t_{2},t_{3},t_{4}\}\subset\mathfrak{S}_{4}

where t1t_{1} is the identity (1234)(1234) of 𝔖4\mathfrak{S}_{4}, t2=(2143)t_{2}=(2143), t3=(3412)t_{3}=(3412) and t4=(4321)t_{4}=(4321). The group KK is isomorphic to (/2)×(/2)(\mathbb{Z}/2\mathbb{Z})\times(\mathbb{Z}/2\mathbb{Z}).

We choose the indices so that we have titj=tti(j)t_{i}t_{j}=t_{t_{i}(j)} for i,j=1,2,3,4i,j=1,2,3,4. Note that we have ti(j)=tj(i)t_{i}(j)=t_{j}(i) for i,j=1,2,3,4i,j=1,2,3,4.

Definition 3.1.

Define unitaries c1,c2,c3,c4c_{1},c_{2},c_{3},c_{4} in M2()M_{2}(\mathbb{C}) by

c1(1001),c2(1001),c3(0110),c4(0110).c_{1}\coloneqq\begin{pmatrix}1&0\\ 0&1\end{pmatrix},\quad c_{2}\coloneqq\begin{pmatrix}\sqrt{-1}&0\\ 0&-\sqrt{-1}\end{pmatrix},\quad c_{3}\coloneqq\begin{pmatrix}0&1\\ -1&0\end{pmatrix},\quad c_{4}\coloneqq\begin{pmatrix}0&\sqrt{-1}\\ \sqrt{-1}&0\end{pmatrix}.

The unitaries c1,c2,c3,c4c_{1},c_{2},c_{3},c_{4} are called the Pauli matrices.

Definition 3.2.

Put ω=(1342)𝔖4\omega=(1342)\in\mathfrak{S}_{4}. Define the map ε:{1,2,3,4}2{1,1}\varepsilon\colon\{1,2,3,4\}^{2}\to\{1,-1\} by

ε(i,j){1(i=1 or j=1 or ω(i)=j)1(otherwise),\varepsilon(i,j)\coloneqq\begin{cases}1&\text{($i=1$ or $j=1$ or $\omega(i)=j$)}\\ -1&\text{(otherwise)},\end{cases}

for each i,j=1,2,3,4i,j=1,2,3,4.

iji\diagdown j 11 22 33 44
11 1 1 1 1
22 1 1-1 1 1-1
33 1 1-1 1-1 1
44  1 1 1-1 1-1
Table 3.1. Values of ε(i,j)\varepsilon(i,j)

We have the following calculation which can be proved straightforwardly.

Lemma 3.3.

For i,j=1,2,3,4i,j=1,2,3,4, we have cicj=ε(i,j)cti(j)c_{i}c_{j}=\varepsilon(i,j)c_{t_{i}(j)}.

From this lemma and the computation titj=tti(j)t_{i}t_{j}=t_{t_{i}(j)}, we have the following lemma which means that K2(ti,tj)ε(i,j){1,1}K^{2}\ni(t_{i},t_{j})\mapsto\varepsilon(i,j)\in\{1,-1\} becomes a cocycle of KK.

Lemma 3.4.

For i,j,k=1,2,3,4i,j,k=1,2,3,4, we have ε(i,j)ε(ti(j),k)=ε(i,tj(k))ε(j,k)\varepsilon(i,j)\varepsilon(t_{i}(j),k)=\varepsilon(i,t_{j}(k))\varepsilon(j,k).

Proof.

Compute cicjckc_{i}c_{j}c_{k} in the two ways, namely (cicj)ck(c_{i}c_{j})c_{k} and ci(cjck)c_{i}(c_{j}c_{k}). ∎

Hence the following definition makes sense. Let us denote by the same symbol α\alpha the restriction of the action α:𝔖4×𝔖4A(4)\alpha\colon\mathfrak{S}_{4}\times\mathfrak{S}_{4}\curvearrowright A(4) to K×K𝔖4×𝔖4K\times K\subset\mathfrak{S}_{4}\times\mathfrak{S}_{4}.

Definition 3.5.

Let A(4)αtw(K×K)A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K) be the twisted crossed product of the action α\alpha and the cocycle

(K×K)2((ti,tj),(tk,tl))ε(i,k)ε(j,l){1,1}.(K\times K)^{2}\ni((t_{i},t_{j}),(t_{k},t_{l}))\mapsto\varepsilon(i,k)\varepsilon(j,l)\in\{1,-1\}.

By definition, A(4)αtw(K×K)A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K) is the universal CC^{*}-algebra generated by the unital subalgebra A(4)A(4) and unitaries {ui,j}i,j=14\{u_{i,j}\}_{i,j=1}^{4} such that

ui,jxui,j=α(ti,tj)(x)for all i,j and all xA(4)\displaystyle u_{i,j}xu_{i,j}^{*}=\alpha_{(t_{i},t_{j})}(x)\qquad\text{for all $i,j$ and all $x\in A(4)$}

and

ui,juk,l=ε(i,k)ε(j,l)uti(k),tj(l)for all i,j,k,l.\displaystyle u_{i,j}u_{k,l}=\varepsilon(i,k)\varepsilon(j,l)u_{t_{i}(k),t_{j}(l)}\quad\text{for all $i,j,k,l$.}

We denote by u\mathcal{R}_{\text{u}} the latter relation. The former relation is equivalent to the relation

ui,jpk,l=pti(k),tj(l)ui,jfor all i,j,k,l\displaystyle u_{i,j}p_{k,l}=p_{t_{i}(k),t_{j}(l)}u_{i,j}\qquad\text{for all $i,j,k,l$}

which is denoted by up\mathcal{R}_{\text{up}}.

Recall that A(4)A(4) is the universal unital CC^{*}-algebra generated by the set {pi,j}i,j=14\{p_{i,j}\}_{i,j=1}^{4} of projections satisfying the following relation denoted by p\mathcal{R}_{\text{p}}

i=14pi,j=1\displaystyle\sum_{i=1}^{4}p_{i,j}=1 (j=1,2,3,4),\displaystyle\quad(j=1,2,3,4), j=14pi,j=1\displaystyle\sum_{j=1}^{4}p_{i,j}=1 (i=1,2,3,4).\displaystyle\quad(i=1,2,3,4).

The following is the first main theorem.

Theorem 3.6.

The twisted crossed product A(4)αtw(K×K)A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K) is isomorphic to M4(C(P3))M_{4}(C(\mathbb{R}P^{3})).

We finish the proof of this theorem in the end of Section 7.

To prove this theorem, we start with finite presentation of the CC^{*}-algebra C(P3)C(\mathbb{R}P^{3}) in the next section.

4. Real projective space P3\mathbb{R}P^{3}

Definition 4.1.

We set an equivalence relation \sim on the manifold

S3{a=(a1,a2,a3,a4)4|i=14ai2=1}S^{3}\coloneqq\Big{\{}a=(a_{1},a_{2},a_{3},a_{4})\in\mathbb{R}^{4}\ \Big{|}\ \sum_{i=1}^{4}a_{i}^{2}=1\Big{\}}

so that aba\sim b if and only if a=ba=b or a=ba=-b. The quotient space S3/S^{3}/{\sim} is the real projective space P3\mathbb{R}P^{3} of dimension 3. The equivalence class of (a1,a2,a3,a4)S3(a_{1},a_{2},a_{3},a_{4})\in S^{3} is denoted as [a1,a2,a3,a4]P3[a_{1},a_{2},a_{3},a_{4}]\in\mathbb{R}P^{3}.

Definition 4.2.

For i,j=1,2,3,4i,j=1,2,3,4, we define a continuous function fi,jf_{i,j} on P3\mathbb{R}P^{3} by fi,j([a1,a2,a3,a4])=aiajf_{i,j}([a_{1},a_{2},a_{3},a_{4}])=a_{i}a_{j} for [a1,a2,a3,a4]P3[a_{1},a_{2},a_{3},a_{4}]\in\mathbb{R}P^{3}.

Note that fi,jf_{i,j} is a well-defined continuous function.

Lemma 4.3.

The functions {fi,j}i,j=14\{f_{i,j}\}_{i,j=1}^{4} satisfy the following relation

fi,j=fi,j=fj,ifor all i,j,\displaystyle f_{i,j}=f_{i,j}^{*}=f_{j,i}\quad\text{for all $i,j$,}
fi,jfk,l=fi,kfj,lfor all i,j,k,l,\displaystyle f_{i,j}f_{k,l}=f_{i,k}f_{j,l}\quad\text{for all $i,j,k,l$,}
i=14fi,i=1.\displaystyle\sum_{i=1}^{4}f_{i,i}=1.
Proof.

This follows from easy computation. ∎

Definition 4.4.

We denote by f\mathcal{R}_{\text{f}} the relation in Lemma 4.3.

Proposition 4.5.

The CC^{*}-algebra C(P3)C(\mathbb{R}P^{3}) is the universal unital CC^{*}-algebra generated by elements {fi,j}i,j=14\{f_{i,j}\}_{i,j=1}^{4} satisfying f\mathcal{R}_{\textrm{f}}.

Proof.

Let AA be the universal unital CC^{*}-algebra generated by elements {fi,j}i,j=14\{f_{i,j}\}_{i,j=1}^{4} satisfying f\mathcal{R}_{\text{f}}. For i,j,k,l=1,2,3,4i,j,k,l=1,2,3,4, we have

fi,jfk,l=fi,kfj,l=fk,ifl,j=fk,lfi,j.\displaystyle f_{i,j}f_{k,l}=f_{i,k}f_{j,l}=f_{k,i}f_{l,j}=f_{k,l}f_{i,j}.

Hence AA is commutative. Thus there exists a compact set XX such that AC(X)A\cong C(X).

By Lemma 4.3, we have a unital *-homomorphism AC(P3)A\to C(\mathbb{R}P^{3}). This induces a continuous map φ:P3X\varphi\colon\mathbb{R}P^{3}\to X. It suffices to show that this continuous map is homeomorphic.

We first show that φ\varphi is injective. Take [a1,a2,a3,a4][a_{1},a_{2},a_{3},a_{4}] and [b1,b2,b3,b4]P3[b_{1},b_{2},b_{3},b_{4}]\in\mathbb{R}P^{3} with φ([a1,a2,a3,a4])=φ([b1,b2,b3,b4])\varphi([a_{1},a_{2},a_{3},a_{4}])=\varphi([b_{1},b_{2},b_{3},b_{4}]). Then, for i,j=1,2,3,4i,j=1,2,3,4, we have aiaj=bibja_{i}a_{j}=b_{i}b_{j}. Since i=14ai2=1\sum_{i=1}^{4}a_{i}^{2}=1, there exists i0i_{0} such that ai00a_{i_{0}}\neq 0. Set σ=bi0/ai0\sigma=b_{i_{0}}/a_{i_{0}}\in\mathbb{R}. Since aiai0=bibi0a_{i}a_{i_{0}}=b_{i}b_{i_{0}}, we have ai=σbia_{i}=\sigma b_{i} for i=1,2,3,4i=1,2,3,4. Since i=14ai2=i=14bi2=1\sum_{i=1}^{4}a_{i}^{2}=\sum_{i=1}^{4}b_{i}^{2}=1, we get σ=±1\sigma=\pm 1. Hence [a1,a2,a3,a4]=[b1,b2,b3,b4][a_{1},a_{2},a_{3},a_{4}]=[b_{1},b_{2},b_{3},b_{4}]. This shows that φ\varphi is injective.

Next we show that φ\varphi is surjective. Take a unital character χ:A\chi\colon A\to\mathbb{C} of AA. To show that φ\varphi is surjective, it suffices to find [a1,a2,a3,a4]P3[a_{1},a_{2},a_{3},a_{4}]\in\mathbb{R}P^{3} such that χ(fi,j)=aiaj\chi(f_{i,j})=a_{i}a_{j} for all i,j=1,2,3,4i,j=1,2,3,4. Since i=14χ(fi,i)=χ(i=14fi,i)=1\sum_{i=1}^{4}\chi(f_{i,i})=\chi\big{(}\sum_{i=1}^{4}f_{i,i}\big{)}=1, there exists i0i_{0} such that χ(fi0,i0)0\chi(f_{i_{0},i_{0}})\neq 0. Since

fi0,i0=fi0,i0i=14fi,i=i=14fi0,i0fi,i=i=14fi0,ifi0,i=i=14fi0,ifi0,i.\displaystyle f_{i_{0},i_{0}}=f_{i_{0},i_{0}}\sum_{i=1}^{4}f_{i,i}=\sum_{i=1}^{4}f_{i_{0},i_{0}}f_{i,i}=\sum_{i=1}^{4}f_{i_{0},i}f_{i_{0},i}=\sum_{i=1}^{4}f_{i_{0},i}f_{i_{0},i}^{*}.

we have χ(fi0,i0)>0\chi(f_{i_{0},i_{0}})>0. Put aiχ(fi0,i)χ(fi0,i0)a_{i}\coloneqq\frac{\chi(f_{i_{0},i})}{\sqrt{\chi(f_{i_{0},i_{0}})}}. We have

i=14ai2\displaystyle\sum_{i=1}^{4}a_{i}^{2} =i=14χ(fi0,i)2χ(fi0,i0)=i=14χ(fi0,i0)χ(fi,i)χ(fi0,i0)=i=14χ(fi,i)=1.\displaystyle=\sum_{i=1}^{4}\frac{\chi(f_{i_{0},i})^{2}}{\chi(f_{i_{0},i_{0}})}=\sum_{i=1}^{4}\frac{\chi(f_{i_{0},i_{0}})\chi(f_{i,i})}{\chi(f_{i_{0},i_{0}})}=\sum_{i=1}^{4}\chi(f_{i,i})=1.

We also have

χ(fi,j)\displaystyle\chi(f_{i,j}) =χ(fi0,i)χ(fi0,j)χ(fi0,i0)=aiaj,\displaystyle=\frac{\chi(f_{i_{0},i})\chi(f_{i_{0},j})}{\chi(f_{i_{0},i_{0}})}=a_{i}a_{j},

for i,j=1,2,3,4i,j=1,2,3,4. This shows that φ\varphi is surjective.

Since P3\mathbb{R}P^{3} is compact and XX is Hausdorff, φ:P3X\varphi\colon\mathbb{R}P^{3}\to X is a homeomorphism. Thus we have shown that AA is isomorphic to C(P3)C(\mathbb{R}P^{3}). ∎

Let {ei,j}i,j=14\{e_{i,j}\}_{i,j=1}^{4} be the matrix unit of M4()M_{4}(\mathbb{C}). Then {ei,j}i,j=14\{e_{i,j}\}_{i,j=1}^{4} satisfies the following relation denoted by e\mathcal{R}_{\text{e}};

ei,j=ej,ifor all i,j,\displaystyle e_{i,j}=e_{j,i}^{*}\quad\text{for all $i,j$,}
ei,jek,l=δj,kei,lfor all i,j,k,l,\displaystyle e_{i,j}e_{k,l}=\delta_{j,k}e_{i,l}\quad\text{for all $i,j,k,l$,}
i=14ei,i=1,\displaystyle\sum_{i=1}^{4}e_{i,i}=1,

here δj,k\delta_{j,k} is the Kronecker delta. It is well-known, and easy to see, that M4()M_{4}(\mathbb{C}) is the universal unital C*-algebra generated by {ei,j}i,j=14\{e_{i,j}\}_{i,j=1}^{4} satisfying e\mathcal{R}_{\text{e}}.

The CC^{*}-algebra M4(C(P3))=C(P3,M4())=C(P3)M4()M_{4}(C(\mathbb{R}P^{3}))=C(\mathbb{R}P^{3},M_{4}(\mathbb{C}))=C(\mathbb{R}P^{3})\otimes M_{4}(\mathbb{C}) is the universal unital CC^{*}-algebra generated by {fi,j}i,j=14\{f_{i,j}\}_{i,j=1}^{4} and {ei,j}i,j=14\{e_{i,j}\}_{i,j=1}^{4} satisfying f\mathcal{R}_{\text{f}}, e\mathcal{R}_{\text{e}} and the following relation denoted by fe\mathcal{R}_{\text{fe}};

fi,jek,l=ek,lfi,jfor all i,j,k,l.\displaystyle f_{i,j}e_{k,l}=e_{k,l}f_{i,j}\quad\text{for all $i,j,k,l$.}

5. Unitaries

Definition 5.1.

For i,j=1,2,3,4i,j=1,2,3,4, we define a unitary Ui,jM4()M4(C(P3))U_{i,j}\in M_{4}(\mathbb{C})\subset M_{4}(C(\mathbb{R}P^{3})) by

Ui,jk=14ε(i,k)ε(k,j)eti(k),tj(k)U_{i,j}\coloneqq\sum_{k=1}^{4}\varepsilon(i,k)\varepsilon(k,j)e_{t_{i}(k),t_{j}(k)}

From a direct calculation, we have

U1,1=(1000010000100001),\displaystyle U_{1,1}=\begin{pmatrix}1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\end{pmatrix}, U1,2=(0100100000010010),\displaystyle U_{1,2}=\begin{pmatrix}0&1&0&0\\ -1&0&0&0\\ 0&0&0&-1\\ 0&0&1&0\end{pmatrix},
U1,3=(0010000110000100),\displaystyle U_{1,3}=\begin{pmatrix}0&0&1&0\\ 0&0&0&1\\ -1&0&0&0\\ 0&-1&0&0\end{pmatrix}, U1,4=(0001001001001000),\displaystyle U_{1,4}=\begin{pmatrix}0&0&0&1\\ 0&0&-1&0\\ 0&1&0&0\\ -1&0&0&0\end{pmatrix},
U2,1=(0100100000010010),\displaystyle U_{2,1}=\begin{pmatrix}0&-1&0&0\\ 1&0&0&0\\ 0&0&0&-1\\ 0&0&1&0\end{pmatrix}, U2,2=(1000010000100001),\displaystyle U_{2,2}=\begin{pmatrix}1&0&0&0\\ 0&1&0&0\\ 0&0&-1&0\\ 0&0&0&-1\end{pmatrix},
U2,3=(0001001001001000),\displaystyle U_{2,3}=\begin{pmatrix}0&0&0&-1\\ 0&0&1&0\\ 0&1&0&0\\ -1&0&0&0\end{pmatrix}, U2,4=(0010000110000100),\displaystyle U_{2,4}=\begin{pmatrix}0&0&1&0\\ 0&0&0&1\\ 1&0&0&0\\ 0&1&0&0\end{pmatrix},
U3,1=(0010000110000100),\displaystyle U_{3,1}=\begin{pmatrix}0&0&-1&0\\ 0&0&0&1\\ 1&0&0&0\\ 0&-1&0&0\end{pmatrix}, U3,2=(0001001001001000),\displaystyle U_{3,2}=\begin{pmatrix}0&0&0&1\\ 0&0&1&0\\ 0&1&0&0\\ 1&0&0&0\end{pmatrix},
U3,3=(1000010000100001),\displaystyle U_{3,3}=\begin{pmatrix}1&0&0&0\\ 0&-1&0&0\\ 0&0&1&0\\ 0&0&0&-1\end{pmatrix}, U3,4=(0100100000010010),\displaystyle U_{3,4}=\begin{pmatrix}0&-1&0&0\\ -1&0&0&0\\ 0&0&0&1\\ 0&0&1&0\end{pmatrix},
U4,1=(0001001001001000),\displaystyle U_{4,1}=\begin{pmatrix}0&0&0&-1\\ 0&0&-1&0\\ 0&1&0&0\\ 1&0&0&0\end{pmatrix}, U4,2=(0010000110000100),\displaystyle U_{4,2}=\begin{pmatrix}0&0&-1&0\\ 0&0&0&1\\ -1&0&0&0\\ 0&1&0&0\end{pmatrix},
U4,3=(0100100000010010),\displaystyle U_{4,3}=\begin{pmatrix}0&1&0&0\\ 1&0&0&0\\ 0&0&0&1\\ 0&0&1&0\end{pmatrix}, U4,4=(1000010000100001).\displaystyle U_{4,4}=\begin{pmatrix}1&0&0&0\\ 0&-1&0&0\\ 0&0&-1&0\\ 0&0&0&1\end{pmatrix}.

We have the following. We denote the transpose matrix of a matrix MM by MTM^{\mathrm{T}}.

Proposition 5.2.

For (a1,a2,a3,a4)4(a_{1},a_{2},a_{3},a_{4})\in\mathbb{C}^{4},

(b1,b2,b3,b4)TUi,j(a1,a2,a3,a4)T,(b_{1},b_{2},b_{3},b_{4})^{\mathrm{T}}\coloneqq U_{i,j}(a_{1},a_{2},a_{3},a_{4})^{\mathrm{T}},

satisfies k=14bkck=ci(k=14akck)cj\sum_{k=1}^{4}b_{k}c_{k}=c_{i}\left(\sum_{k=1}^{4}a_{k}c_{k}\right)c_{j}^{*}.

Proof.

For i,j,k=1,2,3,4i,j,k=1,2,3,4, we have

cictj(k)\displaystyle c_{i}c_{t_{j}(k)} =ε(i,tj(k))cti(tj(k))\displaystyle=\varepsilon(i,t_{j}(k))c_{t_{i}(t_{j}(k))} cti(k)cj\displaystyle c_{t_{i}(k)}c_{j} =ε(ti(k),j)ctj(ti(k)).\displaystyle=\varepsilon(t_{i}(k),j)c_{t_{j}(t_{i}(k))}.

Hence cictj(k)cj=ε(i,tj(k))ε(ti(k),j)1cti(k)c_{i}c_{t_{j}(k)}c_{j}^{*}=\varepsilon(i,t_{j}(k))\varepsilon(t_{i}(k),j)^{-1}c_{t_{i}(k)}. Since ε(i,tj(k))ε(k,j)=ε(i,k)ε(ti(k),j)\varepsilon(i,t_{j}(k))\varepsilon(k,j)=\varepsilon(i,k)\varepsilon(t_{i}(k),j), we have

ε(i,tj(k))ε(ti(k),j)1=ε(i,k)ε(k,j)1=ε(i,k)ε(k,j)\displaystyle\varepsilon(i,t_{j}(k))\varepsilon(t_{i}(k),j)^{-1}=\varepsilon(i,k)\varepsilon(k,j)^{-1}=\varepsilon(i,k)\varepsilon(k,j)

This shows that Ui,j=k=14ε(i,k)ε(k,j)eti(k),tj(k)U_{i,j}=\sum_{k=1}^{4}\varepsilon(i,k)\varepsilon(k,j)e_{t_{i}(k),t_{j}(k)} satisfies the desired property. ∎

Proposition 5.3.

For i,j,k,l=1,2,3,4i,j,k,l=1,2,3,4, we have

Ui,jUk,l=ε(i,k)ε(j,l)Uti(k),tj(l).U_{i,j}U_{k,l}=\varepsilon(i,k)\varepsilon(j,l)U_{t_{i}(k),t_{j}(l)}.
Proof.

We have

Ui,jUk,l\displaystyle U_{i,j}U_{k,l} =(m=14ε(i,m)ε(m,j)eti(m),tj(m))(n=14ε(k,n)ε(n,l)etk(n),tl(n))\displaystyle=\Big{(}\sum_{m=1}^{4}\varepsilon(i,m)\varepsilon(m,j)e_{t_{i}(m),t_{j}(m)}\Big{)}\Big{(}\sum_{n=1}^{4}\varepsilon(k,n)\varepsilon(n,l)e_{t_{k}(n),t_{l}(n)}\Big{)}
=(m=14ε(i,tk(m))ε(tk(m),j)eti(tk(m)),tj(tk(m)))\displaystyle=\Big{(}\sum_{m=1}^{4}\varepsilon(i,t_{k}(m))\varepsilon(t_{k}(m),j)e_{t_{i}(t_{k}(m)),t_{j}(t_{k}(m))}\Big{)}
(n=14ε(k,tj(n))ε(tj(n),l)etk(tj(n)),tl(tj(n)))\displaystyle\phantom{=\Big{(}\sum_{m=1}^{4}\varepsilon(i,t_{k}(m))\varepsilon(t_{k}(m),j)}\Big{(}\sum_{n=1}^{4}\varepsilon(k,t_{j}(n))\varepsilon(t_{j}(n),l)e_{t_{k}(t_{j}(n)),t_{l}(t_{j}(n))}\Big{)}
=m=14ε(i,tk(m))ε(tk(m),j)ε(k,tj(m))ε(tj(m),l)eti(tk(m)),tl(tj(m))\displaystyle=\sum_{m=1}^{4}\varepsilon(i,t_{k}(m))\varepsilon(t_{k}(m),j)\varepsilon(k,t_{j}(m))\varepsilon(t_{j}(m),l)e_{t_{i}(t_{k}(m)),t_{l}(t_{j}(m))}

Since we have

ε(i,tk(m))ε(k,m)\displaystyle\varepsilon(i,t_{k}(m))\varepsilon(k,m) =ε(i,k)ε(ti(k),m),\displaystyle=\varepsilon(i,k)\varepsilon(t_{i}(k),m), ε(k,tj(m))ε(m,j)\displaystyle\varepsilon(k,t_{j}(m))\varepsilon(m,j) =ε(k,m)ε(tk(m),j)\displaystyle=\varepsilon(k,m)\varepsilon(t_{k}(m),j)
ε(m,j)ε(tj(m),l)\displaystyle\varepsilon(m,j)\varepsilon(t_{j}(m),l) =ε(m,tj(l))ε(j,l),\displaystyle=\varepsilon(m,t_{j}(l))\varepsilon(j,l),

we get

ε(i,tk(m))ε(tk(m),j)ε(k,tj(m))ε(tj(m),l)=ε(i,k)ε(j,l)ε(ti(k),m)ε(m,tj(l)).\varepsilon(i,t_{k}(m))\varepsilon(t_{k}(m),j)\varepsilon(k,t_{j}(m))\varepsilon(t_{j}(m),l)=\varepsilon(i,k)\varepsilon(j,l)\varepsilon(t_{i}(k),m)\varepsilon(m,t_{j}(l)).

Hence we obtain

Ui,jUk,l\displaystyle U_{i,j}U_{k,l} =m=14ε(i,k)ε(j,l)ε(ti(k),m)ε(m,tj(l))eti(tk(m)),tj(tl(m))\displaystyle=\sum_{m=1}^{4}\varepsilon(i,k)\varepsilon(j,l)\varepsilon(t_{i}(k),m)\varepsilon(m,t_{j}(l))e_{t_{i}(t_{k}(m)),t_{j}(t_{l}(m))}
=ε(i,k)ε(j,l)Uti(k),tj(l).\displaystyle=\varepsilon(i,k)\varepsilon(j,l)U_{t_{i}(k),t_{j}(l)}.

One can prove this proposition using Proposition 5.2.

6. Projections

Definition 6.1.

We define P1,1i,j=14fi,jei,jM4(C(P3))P_{1,1}\coloneqq\sum_{i,j=1}^{4}f_{i,j}e_{i,j}\in M_{4}(C(\mathbb{R}P^{3})). For i,j=1,2,3,4i,j=1,2,3,4, we define Pi,jM4(C(P3))P_{i,j}\in M_{4}(C(\mathbb{R}P^{3})) by

Pi,j=Ui,jP1,1Ui,j.P_{i,j}=U_{i,j}P_{1,1}U_{i,j}^{*}.

Note that U1,1=1U_{1,1}=1.

Proposition 6.2.

For each i,j=1,2,3,4i,j=1,2,3,4, Pi,jP_{i,j} is a projection.

Proof.

It suffices to show that P1,1P_{1,1} is a projection. We have

P1,1=i,j=14fi,jei,j=i,j=14fj,iej,i=P1,1,\displaystyle P_{1,1}^{*}=\sum_{i,j=1}^{4}f_{i,j}^{*}e_{i,j}^{*}=\sum_{i,j=1}^{4}f_{j,i}e_{j,i}=P_{1,1},

and

P1,12\displaystyle P_{1,1}^{2} =i,j=14fi,jei,jk,l=14fk,lek,l=i,j,k,l=14fi,jei,jfk,lek,l\displaystyle=\sum_{i,j=1}^{4}f_{i,j}e_{i,j}\sum_{k,l=1}^{4}f_{k,l}e_{k,l}=\sum_{i,j,k,l=1}^{4}f_{i,j}e_{i,j}f_{k,l}e_{k,l}
=i,j,l=14fi,jfj,lei,l=i,j,l=14fi,lfj,jei,l=i,l=14fi,lei,l=P1,1.\displaystyle=\sum_{i,j,l=1}^{4}f_{i,j}f_{j,l}e_{i,l}=\sum_{i,j,l=1}^{4}f_{i,l}f_{j,j}e_{i,l}=\sum_{i,l=1}^{4}f_{i,l}e_{i,l}=P_{1,1}.

Hence P1,1P_{1,1} is a projection. ∎

Proposition 6.3.

The set {Pi,j}i,j=14\{P_{i,j}\}_{i,j=1}^{4} of projections and the set {Ui,j}i,j=14\{U_{i,j}\}_{i,j=1}^{4} of unitaries satisfy up\mathcal{R}_{\text{up}}.

Proof.

This follows from the computation

Ui,jPk,lUi,j\displaystyle U_{i,j}P_{k,l}U_{i,j}^{*} =Ui,jUk,lP1,1Uk,lUi,j\displaystyle=U_{i,j}U_{k,l}P_{1,1}U_{k,l}^{*}U_{i,j}^{*}
=(ε(i,k)ε(j,l))2Uti(k),tj(l)P1,1Uti(k),tj(l)=Pti(k),tj(l)\displaystyle=(\varepsilon(i,k)\varepsilon(j,l))^{2}U_{t_{i}(k),t_{j}(l)}P_{1,1}U_{t_{i}(k),t_{j}(l)}^{*}=P_{t_{i}(k),t_{j}(l)}

using Proposition 5.3. ∎

Proposition 6.4.

The set {Pi,j}i,j=14\{P_{i,j}\}_{i,j=1}^{4} of projections satisfies p\mathcal{R}_{\text{p}}.

Proof.

From Proposition 6.3, it suffices to show

P1,1+P1,2+P1,3+P1,4\displaystyle P_{1,1}+P_{1,2}+P_{1,3}+P_{1,4} =1,\displaystyle=1, P1,1+P2,1+P3,1+P4,1\displaystyle P_{1,1}+P_{2,1}+P_{3,1}+P_{4,1} =1.\displaystyle=1.

This follows from the following direct computations

P1,1=(f1,1f1,2f1,3f1,4f2,1f2,2f2,3f2,4f3,1f3,2f3,3f3,4f4,1f4,2f4,3f4,4),\displaystyle P_{1,1}=\begin{pmatrix}f_{1,1}&f_{1,2}&f_{1,3}&f_{1,4}\\ f_{2,1}&f_{2,2}&f_{2,3}&f_{2,4}\\ f_{3,1}&f_{3,2}&f_{3,3}&f_{3,4}\\ f_{4,1}&f_{4,2}&f_{4,3}&f_{4,4}\end{pmatrix},
P1,2=(f2,2f2,1f2,4f2,3f1,2f1,1f1,4f1,3f4,2f4,1f4,4f4,3f3,2f3,1f3,4f3,3),\displaystyle P_{1,2}=\begin{pmatrix}f_{2,2}&-f_{2,1}&-f_{2,4}&f_{2,3}\\ -f_{1,2}&f_{1,1}&f_{1,4}&-f_{1,3}\\ -f_{4,2}&f_{4,1}&f_{4,4}&-f_{4,3}\\ f_{3,2}&-f_{3,1}&-f_{3,4}&f_{3,3}\end{pmatrix}, P2,1=(f2,2f2,1f2,4f2,3f1,2f1,1f1,4f1,3f4,2f4,1f4,4f4,3f3,2f3,1f3,4f3,3),\displaystyle P_{2,1}=\begin{pmatrix}f_{2,2}&-f_{2,1}&f_{2,4}&-f_{2,3}\\ -f_{1,2}&f_{1,1}&-f_{1,4}&f_{1,3}\\ f_{4,2}&-f_{4,1}&f_{4,4}&-f_{4,3}\\ -f_{3,2}&f_{3,1}&-f_{3,4}&f_{3,3}\end{pmatrix},
P1,3=(f3,3f3,4f3,1f3,2f4,3f4,4f4,1f4,2f1,3f1,4f1,1f1,2f2,3f2,4f2,1f2,2),\displaystyle P_{1,3}=\begin{pmatrix}f_{3,3}&f_{3,4}&-f_{3,1}&-f_{3,2}\\ f_{4,3}&f_{4,4}&-f_{4,1}&-f_{4,2}\\ -f_{1,3}&-f_{1,4}&f_{1,1}&f_{1,2}\\ -f_{2,3}&-f_{2,4}&f_{2,1}&f_{2,2}\end{pmatrix}, P3,1=(f3,3f3,4f3,1f3,2f4,3f4,4f4,1f4,2f1,3f1,4f1,1f1,2f2,3f2,4f2,1f2,2),\displaystyle P_{3,1}=\begin{pmatrix}f_{3,3}&-f_{3,4}&-f_{3,1}&f_{3,2}\\ -f_{4,3}&f_{4,4}&f_{4,1}&-f_{4,2}\\ -f_{1,3}&f_{1,4}&f_{1,1}&-f_{1,2}\\ f_{2,3}&-f_{2,4}&-f_{2,1}&f_{2,2}\end{pmatrix},
P1,4=(f4,4f4,3f4,2f4,1f3,4f3,3f3,2f3,1f2,4f2,3f2,2f2,1f1,4f1,3f1,2f1,1),\displaystyle P_{1,4}=\begin{pmatrix}f_{4,4}&-f_{4,3}&f_{4,2}&-f_{4,1}\\ -f_{3,4}&f_{3,3}&-f_{3,2}&f_{3,1}\\ f_{2,4}&-f_{2,3}&f_{2,2}&-f_{2,1}\\ -f_{1,4}&f_{1,3}&-f_{1,2}&f_{1,1}\end{pmatrix}, P4,1=(f4,4f4,3f4,2f4,1f3,4f3,3f3,2f3,1f2,4f2,3f2,2f2,1f1,4f1,3f1,2f1,1).\displaystyle P_{4,1}=\begin{pmatrix}f_{4,4}&f_{4,3}&-f_{4,2}&-f_{4,1}\\ f_{3,4}&f_{3,3}&-f_{3,2}&-f_{3,1}\\ -f_{2,4}&-f_{2,3}&f_{2,2}&f_{2,1}\\ -f_{1,4}&-f_{1,3}&f_{1,2}&f_{1,1}\end{pmatrix}.

By Proposition 5.3, Proposition 6.2, Proposition 6.3 and Proposition 6.4, we have a *-homomorphism Φ:A(4)αtw(K×K)M4(C(P3))\varPhi\colon A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K)\to M_{4}(C(\mathbb{R}P^{3})) sending pi,jp_{i,j} to Pi,jP_{i,j} and ui,ju_{i,j} to Ui,jU_{i,j}. In the next section, we construct the inverse map of Φ\varPhi.

7. The inverse map

Definition 7.1.

For i,j=1,2,3,4i,j=1,2,3,4, we set

Ei,j14k=14ε(i,k)ε(k,j)uti(k),tj(k)A(4)αtw(K×K)E_{i,j}\coloneqq\frac{1}{4}\sum_{k=1}^{4}\varepsilon(i,k)\varepsilon(k,j)u_{t_{i}(k),t_{j}(k)}\in A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K)
Definition 7.2.

For i,j=1,2,3,4i,j=1,2,3,4, we set

Fi,jk=14Ek,ip1,1Ej,kA(4)αtw(K×K).F_{i,j}\coloneqq\sum_{k=1}^{4}E_{k,i}p_{1,1}E_{j,k}\in A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K).
Lemma 7.3.

For i,j=1,2,3,4i,j=1,2,3,4, we have ui,1E1,1u1,j=Ei,ju_{i,1}E_{1,1}u_{1,j}=E_{i,j}. For i=1,2,3,4i=1,2,3,4, we have ui,iE1,1=E1,1ui,i=E1,1u_{i,i}E_{1,1}=E_{1,1}u_{i,i}=E_{1,1}. We also have E1,12=E1,1E_{1,1}^{2}=E_{1,1}.

Proof.

We have E1,1=14k=14uk,kE_{1,1}=\frac{1}{4}\sum_{k=1}^{4}u_{k,k}. For i,j=1,2,3,4i,j=1,2,3,4, we have

ui,1E1,1u1,j\displaystyle u_{i,1}E_{1,1}u_{1,j} =14k=14ui,1uk,ku1,j=14k=14ε(i,k)ε(k,j)uti(k),tj(k)=Ei,j.\displaystyle=\frac{1}{4}\sum_{k=1}^{4}u_{i,1}u_{k,k}u_{1,j}=\frac{1}{4}\sum_{k=1}^{4}\varepsilon(i,k)\varepsilon(k,j)u_{t_{i}(k),t_{j}(k)}=E_{i,j}.

For i=1,2,3,4i=1,2,3,4, we have

ui,iE1,1\displaystyle u_{i,i}E_{1,1} =14k=14ui,iuk,k=14k=14ε(i,k)2uti(k),ti(k)=14k=14uk,k=E1,1.\displaystyle=\frac{1}{4}\sum_{k=1}^{4}u_{i,i}u_{k,k}=\frac{1}{4}\sum_{k=1}^{4}\varepsilon(i,k)^{2}u_{t_{i}(k),t_{i}(k)}=\frac{1}{4}\sum_{k=1}^{4}u_{k,k}=E_{1,1}.

Similarly, we get E1,1ui,i=E1,1E_{1,1}u_{i,i}=E_{1,1}. Finally, we have E1,12=14k=14uk,kE1,1=E1,1E_{1,1}^{2}=\frac{1}{4}\sum_{k=1}^{4}u_{k,k}E_{1,1}=E_{1,1}. ∎

Proposition 7.4.

The set {Ei,j}i,j=14\{E_{i,j}\}_{i,j=1}^{4} satisfies e\mathcal{R}_{\text{e}}.

Proof.

We have E1,1=14k=14uk,kE_{1,1}=\frac{1}{4}\sum_{k=1}^{4}u_{k,k}. We also have

E2,2\displaystyle E_{2,2} =14(u1,1+u2,2u3,3u4,4)\displaystyle=\frac{1}{4}(u_{1,1}+u_{2,2}-u_{3,3}-u_{4,4})
E3,3\displaystyle E_{3,3} =14(u1,1u2,2+u3,3u4,4)\displaystyle=\frac{1}{4}(u_{1,1}-u_{2,2}+u_{3,3}-u_{4,4})
E4,4\displaystyle E_{4,4} =14(u1,1u2,2u3,3+u4,4).\displaystyle=\frac{1}{4}(u_{1,1}-u_{2,2}-u_{3,3}+u_{4,4}).

Hence i=14Ei,i=u1,1=1\sum_{i=1}^{4}E_{i,i}=u_{1,1}=1.

It is easy to see E1,1=E1,1E_{1,1}^{*}=E_{1,1}. For i=1,2,3,4i=1,2,3,4, we have

E1,1ui,1=E1,1ui,iui,1=E1,1u1,iui,1ui,1=E1,1u1,iE_{1,1}u_{i,1}^{*}=E_{1,1}u_{i,i}u_{i,1}^{*}=E_{1,1}u_{1,i}u_{i,1}u_{i,1}^{*}=E_{1,1}u_{1,i}

and u1,iE1,1=ui,1E1,1u_{1,i}^{*}E_{1,1}=u_{i,1}E_{1,1} similarly. Hence by Lemma 7.3, we obtain

Ei,j\displaystyle E_{i,j}^{*} =(ui,1E1,1u1,j)=u1,jE1,1ui,1=uj,1E1,1u1,i=Ej,i\displaystyle=(u_{i,1}E_{1,1}u_{1,j})^{*}=u_{1,j}^{*}E_{1,1}u_{i,1}^{*}=u_{j,1}E_{1,1}u_{1,i}=E_{j,i}

for i,j=1,2,3,4i,j=1,2,3,4.

By Lemma 7.3, we obtain

Ei,jEj,k=ui,1E1,1u1,juj,1E1,1u1,k\displaystyle E_{i,j}E_{j,k}=u_{i,1}E_{1,1}u_{1,j}u_{j,1}E_{1,1}u_{1,k} =ui,1E1,1uj,jE1,1u1,k\displaystyle=u_{i,1}E_{1,1}u_{j,j}E_{1,1}u_{1,k}
=ui,1E1,12u1,k=ui,1E1,1u1,k=Ei,k\displaystyle=u_{i,1}E_{1,1}^{2}u_{1,k}=u_{i,1}E_{1,1}u_{1,k}=E_{i,k}

for i,j,k=1,2,3,4i,j,k=1,2,3,4. The proof ends if we show Ei,jEk,l=0E_{i,j}E_{k,l}=0 for i,j,k,l=1,2,3,4i,j,k,l=1,2,3,4 with jkj\neq k. It suffices to show E1,1u1,juk,1E1,1=0E_{1,1}u_{1,j}u_{k,1}E_{1,1}=0 for j,k=1,2,3,4j,k=1,2,3,4 with jkj\neq k. Since u1,juk,1=uk,j=ε(k,tk(j))uk,ku1,tk(j)u_{1,j}u_{k,1}=u_{k,j}=\varepsilon(k,t_{k}(j))u_{k,k}u_{1,t_{k}(j)}, it suffices to show E1,1u1,jE1,1=0E_{1,1}u_{1,j}E_{1,1}=0 for j=2,3,4j=2,3,4. For j=2j=2, we get

4E1,1u1,2E1,1\displaystyle 4E_{1,1}u_{1,2}E_{1,1} =k=14uk,ku1,2E1,1\displaystyle=\sum_{k=1}^{4}u_{k,k}u_{1,2}E_{1,1}
=u1,2E1,1+u1,2u2,2E1,1u1,2u3,3E1,1u1,2u4,4E1,1\displaystyle=u_{1,2}E_{1,1}+u_{1,2}u_{2,2}E_{1,1}-u_{1,2}u_{3,3}E_{1,1}-u_{1,2}u_{4,4}E_{1,1}
=0\displaystyle=0

By similar computations, we get E1,1u1,3E1,1=E1,1u1,4E1,1=0E_{1,1}u_{1,3}E_{1,1}=E_{1,1}u_{1,4}E_{1,1}=0. This completes the proof. ∎

Proposition 7.5.

The set {Fi,j}i,j=14\{F_{i,j}\}_{i,j=1}^{4} satisfy f\mathcal{R}_{\text{f}}.

Proof.

For i,j=1,2,3,4i,j=1,2,3,4, we have

Fi,j=(k=14Ek,ip1,1Ej,k)\displaystyle F_{i,j}^{*}=\Big{(}\sum_{k=1}^{4}E_{k,i}p_{1,1}E_{j,k}\Big{)}^{*} =k=14Ej,kp1,1Ek,i\displaystyle=\sum_{k=1}^{4}E_{j,k}^{*}p_{1,1}^{*}E_{k,i}^{*}
=k=14Ek,jp1,1Ei,k=Fj,i.\displaystyle=\sum_{k=1}^{4}E_{k,j}p_{1,1}E_{i,k}=F_{j,i}.

Next, we show Fi,j=Fj,iF_{i,j}=F_{j,i} for i,j=1,2,3,4i,j=1,2,3,4. We are going to prove F2,4=F4,2F_{2,4}=F_{4,2}. The other 5 cases can be proved similarly. To show that F2,4=F4,2F_{2,4}=F_{4,2}, it suffices to show E1,2p1,1E4,1=E1,4p1,1E2,1E_{1,2}p_{1,1}E_{4,1}=E_{1,4}p_{1,1}E_{2,1} because it implies Ek,2p1,1E4,k=Ek,4p1,1E2,kE_{k,2}p_{1,1}E_{4,k}=E_{k,4}p_{1,1}E_{2,k} for k=1,2,3,4k=1,2,3,4 by multiplying Ek,1E_{k,1} from left and E1,kE_{1,k} from right. By Lemma 7.3, we have

4E1,2p1,1E4,1\displaystyle 4E_{1,2}p_{1,1}E_{4,1} =(u1,2u2,1u3,4+u4,3)p1,1u4,1E1,1\displaystyle=(u_{1,2}-u_{2,1}-u_{3,4}+u_{4,3})p_{1,1}u_{4,1}E_{1,1}
=(p1,2u1,2p2,1u2,1p3,4u3,4+p4,3u4,3)u4,1E1,1\displaystyle=(p_{1,2}u_{1,2}-p_{2,1}u_{2,1}-p_{3,4}u_{3,4}+p_{4,3}u_{4,3})u_{4,1}E_{1,1}
=(p1,2u4,2+p2,1u3,1p3,4u2,4p4,3u1,3)E1,1\displaystyle=(p_{1,2}u_{4,2}+p_{2,1}u_{3,1}-p_{3,4}u_{2,4}-p_{4,3}u_{1,3})E_{1,1}
=(p1,2u1,3u4,4p2,1u1,3u3,3+p3,4u1,3u2,2p4,3u1,3)E1,1\displaystyle=(p_{1,2}u_{1,3}u_{4,4}-p_{2,1}u_{1,3}u_{3,3}+p_{3,4}u_{1,3}u_{2,2}-p_{4,3}u_{1,3})E_{1,1}
=(p1,2p2,1+p3,4p4,3)u1,3E1,1\displaystyle=(p_{1,2}-p_{2,1}+p_{3,4}-p_{4,3})u_{1,3}E_{1,1}
4E1,4p1,1E2,1\displaystyle 4E_{1,4}p_{1,1}E_{2,1} =(u1,4u2,3+u3,2u4,1)p1,1u2,1E1,1\displaystyle=(u_{1,4}-u_{2,3}+u_{3,2}-u_{4,1})p_{1,1}u_{2,1}E_{1,1}
=(p1,4u1,4p2,3u2,3+p3,2u3,2p4,1u4,1)u2,1E1,1\displaystyle=(p_{1,4}u_{1,4}-p_{2,3}u_{2,3}+p_{3,2}u_{3,2}-p_{4,1}u_{4,1})u_{2,1}E_{1,1}
=(p1,4u2,4+p2,3u1,3p3,2u4,2p4,1u3,1)E1,1\displaystyle=(p_{1,4}u_{2,4}+p_{2,3}u_{1,3}-p_{3,2}u_{4,2}-p_{4,1}u_{3,1})E_{1,1}
=(p1,4u1,3u2,2+p2,3u1,3p3,2u1,3u4,4+p4,1u1,3u3,3)E1,1\displaystyle=(-p_{1,4}u_{1,3}u_{2,2}+p_{2,3}u_{1,3}-p_{3,2}u_{1,3}u_{4,4}+p_{4,1}u_{1,3}u_{3,3})E_{1,1}
=(p1,4+p2,3p3,2+p4,1)u1,3E1,1.\displaystyle=(-p_{1,4}+p_{2,3}-p_{3,2}+p_{4,1})u_{1,3}E_{1,1}.

Since

p1,1\displaystyle p_{1,1} +p1,2+p1,3+p1,4+p3,1+p3,2+p3,3+p3,4\displaystyle+p_{1,2}+p_{1,3}+p_{1,4}+p_{3,1}+p_{3,2}+p_{3,3}+p_{3,4}
=2=p1,1+p2,1+p3,1+p4,1+p1,3+p2,3+p3,3+p4,3,\displaystyle=2=p_{1,1}+p_{2,1}+p_{3,1}+p_{4,1}+p_{1,3}+p_{2,3}+p_{3,3}+p_{4,3},

we have

p1,2p2,1+p3,4p4,3=p1,4+p2,3p3,2+p4,1.p_{1,2}-p_{2,1}+p_{3,4}-p_{4,3}=-p_{1,4}+p_{2,3}-p_{3,2}+p_{4,1}.

Therefore, we obtain E1,2p1,1E4,1=E1,4p1,1E2,1E_{1,2}p_{1,1}E_{4,1}=E_{1,4}p_{1,1}E_{2,1}. Thus we have proved F2,4=F4,2F_{2,4}=F_{4,2}.

Next we show Fi,jFk,l=Fi,kFj,lF_{i,j}F_{k,l}=F_{i,k}F_{j,l} for i,j,k,l=1,2,3,4i,j,k,l=1,2,3,4, To show this, it suffices to show p1,1Ej,kp1,1=p1,1Ek,jp1,1p_{1,1}E_{j,k}p_{1,1}=p_{1,1}E_{k,j}p_{1,1} for j,k=1,2,3,4j,k=1,2,3,4. We are going to prove p1,1E3,4p1,1=p1,1E4,3p1,1p_{1,1}E_{3,4}p_{1,1}=p_{1,1}E_{4,3}p_{1,1}. The other 5 cases can be proved similarly. This follows from the following computation

4p1,1E3,4p1,1\displaystyle 4p_{1,1}E_{3,4}p_{1,1} =p1,1(u3,4+u4,3u1,2u2,1)p1,1\displaystyle=p_{1,1}(u_{3,4}+u_{4,3}-u_{1,2}-u_{2,1})p_{1,1}
=p1,1(u3,4+u4,3)p1,1p1,1p1,2u1,2p1,1p2,1u2,1\displaystyle=p_{1,1}(u_{3,4}+u_{4,3})p_{1,1}-p_{1,1}p_{1,2}u_{1,2}-p_{1,1}p_{2,1}u_{2,1}
=p1,1(u3,4+u4,3)p1,1,\displaystyle=p_{1,1}(u_{3,4}+u_{4,3})p_{1,1},
4p1,1E4,3p1,1\displaystyle 4p_{1,1}E_{4,3}p_{1,1} =p1,1(u4,3+u3,4+u2,1+u1,2)p1,1\displaystyle=p_{1,1}(u_{4,3}+u_{3,4}+u_{2,1}+u_{1,2})p_{1,1}
=p1,1(u3,4+u4,3)p1,1+p1,1p2,1u2,1+p1,1p1,2u1,2\displaystyle=p_{1,1}(u_{3,4}+u_{4,3})p_{1,1}+p_{1,1}p_{2,1}u_{2,1}+p_{1,1}p_{1,2}u_{1,2}
=p1,1(u3,4+u4,3)p1,1.\displaystyle=p_{1,1}(u_{3,4}+u_{4,3})p_{1,1}.

Finally we show i=14Fi,i=1\sum_{i=1}^{4}F_{i,i}=1. For i=1,2,3,4i=1,2,3,4, we have

Fi,i\displaystyle F_{i,i} =k=14Ek,ip1,1Ei,k=k=14uk,1E1,1u1,ip1,1ui,1E1,1u1,k\displaystyle=\sum_{k=1}^{4}E_{k,i}p_{1,1}E_{i,k}=\sum_{k=1}^{4}u_{k,1}E_{1,1}u_{1,i}p_{1,1}u_{i,1}E_{1,1}u_{1,k}
=k=14uk,1E1,1p1,iu1,iui,1E1,1u1,k=k=14uk,1E1,1p1,iui,iE1,1u1,k\displaystyle=\sum_{k=1}^{4}u_{k,1}E_{1,1}p_{1,i}u_{1,i}u_{i,1}E_{1,1}u_{1,k}=\sum_{k=1}^{4}u_{k,1}E_{1,1}p_{1,i}u_{i,i}E_{1,1}u_{1,k}
=k=14uk,1E1,1p1,iE1,1u1,k.\displaystyle=\sum_{k=1}^{4}u_{k,1}E_{1,1}p_{1,i}E_{1,1}u_{1,k}.

Hence we obtain

i=14Fi,i\displaystyle\sum_{i=1}^{4}F_{i,i} =i=14k=14uk,1E1,1p1,iE1,1u1,k\displaystyle=\sum_{i=1}^{4}\sum_{k=1}^{4}u_{k,1}E_{1,1}p_{1,i}E_{1,1}u_{1,k}
=k=14uk,1E1,12u1,k=k=14uk,1E1,1u1,k=k=14Ek,k=1\displaystyle=\sum_{k=1}^{4}u_{k,1}E_{1,1}^{2}u_{1,k}=\sum_{k=1}^{4}u_{k,1}E_{1,1}u_{1,k}=\sum_{k=1}^{4}E_{k,k}=1

by Lemma 7.3 and Proposition 7.4. We are done. ∎

Proposition 7.6.

The sets {Ei,j}i,j=14\{E_{i,j}\}_{i,j=1}^{4} and {Fi,j}i,j=14\{F_{i,j}\}_{i,j=1}^{4} satisfy fe\mathcal{R}_{\text{fe}}.

Proof.

For i,j,k,l=1,2,3,4i,j,k,l=1,2,3,4, we have Ei,jFk,l=Fk,lEi,jE_{i,j}F_{k,l}=F_{k,l}E_{i,j} because

Ei,jFk,l\displaystyle E_{i,j}F_{k,l} =Ei,jm=14Em,kp1,1El,m=Ei,kp1,1El,j,\displaystyle=E_{i,j}\sum_{m=1}^{4}E_{m,k}p_{1,1}E_{l,m}=E_{i,k}p_{1,1}E_{l,j},
Fk,lEi,j\displaystyle F_{k,l}E_{i,j} =m=14Em,kp1,1El,mEi,j=Ei,kp1,1El,j\displaystyle=\sum_{m=1}^{4}E_{m,k}p_{1,1}E_{l,m}E_{i,j}=E_{i,k}p_{1,1}E_{l,j}

by Proposition 7.4. ∎

By Proposition 7.4, Proposition 7.5 and Proposition 7.6, we have a *-homomorphism Ψ:M4(C(P3))A(4)αtw(K×K)\varPsi\colon M_{4}(C(\mathbb{R}P^{3}))\to A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K) sending fi,jf_{i,j} to Fi,jF_{i,j} and ei,je_{i,j} to Ei,jE_{i,j}.

We are going to see that this map Ψ\varPsi is the inverse of Φ\varPhi. We first show ΨΦ=idA(4)αtw(K×K)\varPsi\circ\varPhi=\operatorname{id}_{A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K)}.

Proposition 7.7.

For xA(4)αtw(K×K)x\in A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K), we have Ψ(Φ(x))=x\varPsi(\varPhi(x))=x.

Proof.

For i,j=1,2,3,4i,j=1,2,3,4, we have

Ψ(Φ(ui,j))\displaystyle\varPsi(\varPhi(u_{i,j})) =Ψ(Ui,j)=k=14ε(i,k)ε(k,j)Ψ(eti(k),tj(k))\displaystyle=\varPsi(U_{i,j})=\sum_{k=1}^{4}\varepsilon(i,k)\varepsilon(k,j)\varPsi(e_{t_{i}(k),t_{j}(k)})
=k=14ε(i,k)ε(k,j)Eti(k),tj(k)\displaystyle=\sum_{k=1}^{4}\varepsilon(i,k)\varepsilon(k,j)E_{t_{i}(k),t_{j}(k)}
=14k=14ε(i,k)ε(k,j)m=14ε(ti(k),m)ε(m,tj(k))uti(tk(m)),tj(tk(m))\displaystyle=\frac{1}{4}\sum_{k=1}^{4}\varepsilon(i,k)\varepsilon(k,j)\sum_{m=1}^{4}\varepsilon(t_{i}(k),m)\varepsilon(m,t_{j}(k))u_{t_{i}(t_{k}(m)),t_{j}(t_{k}(m))}
=14k=14l=14ε(i,k)ε(k,j)ε(ti(k),tk(l))ε(tk(l),tj(k))uti(l),tj(l).\displaystyle=\frac{1}{4}\sum_{k=1}^{4}\sum_{l=1}^{4}\varepsilon(i,k)\varepsilon(k,j)\varepsilon(t_{i}(k),t_{k}(l))\varepsilon(t_{k}(l),t_{j}(k))u_{t_{i}(l),t_{j}(l)}.

Since we have

14k=14\displaystyle\frac{1}{4}\sum_{k=1}^{4} ε(i,k)ε(k,j)ε(ti(k),tk(l))ε(tk(l),tj(k))\displaystyle\varepsilon(i,k)\varepsilon(k,j)\varepsilon(t_{i}(k),t_{k}(l))\varepsilon(t_{k}(l),t_{j}(k))
=14k=14ε(i,k)ε(ti(k),tk(l))ε(tk(l),tj(k))ε(k,j)\displaystyle=\frac{1}{4}\sum_{k=1}^{4}\varepsilon(i,k)\varepsilon(t_{i}(k),t_{k}(l))\varepsilon(t_{k}(l),t_{j}(k))\varepsilon(k,j)
=14k=14ε(i,l)ε(k,tk(l))ε(tk(l),k)ε(l,j)=δl,1,\displaystyle=\frac{1}{4}\sum_{k=1}^{4}\varepsilon(i,l)\varepsilon(k,t_{k}(l))\varepsilon(t_{k}(l),k)\varepsilon(l,j)=\delta_{l,1},

we obtain Ψ(Φ(ui,j))=ui,j\varPsi(\varPhi(u_{i,j}))=u_{i,j}. By the computation in the proof of Proposition 7.6, we have

Ψ(P1,1)=Ψ(i,j=14fi,jei,j)=i,j=14Fi,jEi,j=i,j=14Ei,ip1,1Ej,j=p1,1.\displaystyle\varPsi(P_{1,1})=\varPsi\Big{(}\sum_{i,j=1}^{4}f_{i,j}e_{i,j}\Big{)}=\sum_{i,j=1}^{4}F_{i,j}E_{i,j}=\sum_{i,j=1}^{4}E_{i,i}p_{1,1}E_{j,j}=p_{1,1}.

For i,j=1,2,3,4i,j=1,2,3,4, we have

Ψ(Φ(pi,j))\displaystyle\varPsi(\varPhi(p_{i,j})) =Ψ(Pi,j)=Ψ(Ui,j)Ψ(P1,1)Ψ(Ui,j)=ui,jp1,1ui,j=pi,j.\displaystyle=\varPsi(P_{i,j})=\varPsi(U_{i,j})\varPsi(P_{1,1})\varPsi(U_{i,j})^{*}=u_{i,j}p_{1,1}u_{i,j}^{*}=p_{i,j}.

These show that Ψ(Φ(x))=x\varPsi(\varPhi(x))=x for all xA(4)αtw(K×K)x\in A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K). ∎

Proposition 7.8.

For xM4(C(P3))x\in M_{4}(C(\mathbb{R}P^{3})), we have Φ(Ψ(x))=x\varPhi(\varPsi(x))=x.

Proof.

For i,j=1,2,3,4i,j=1,2,3,4, we have

Φ(Ψ(ei,j))\displaystyle\varPhi(\varPsi(e_{i,j})) =Φ(Ei,j)=14k=14ε(i,k)ε(k,j)Φ(uti(k),tj(k))\displaystyle=\varPhi(E_{i,j})=\frac{1}{4}\sum_{k=1}^{4}\varepsilon(i,k)\varepsilon(k,j)\varPhi(u_{t_{i}(k),t_{j}(k)})
=14k=14ε(i,k)ε(k,j)Uti(k),tj(k)\displaystyle=\frac{1}{4}\sum_{k=1}^{4}\varepsilon(i,k)\varepsilon(k,j)U_{t_{i}(k),t_{j}(k)}
=14k=14ε(i,k)ε(k,j)m=14ε(ti(k),m)ε(m,tj(k))eti(tk(m)),tj(tk(m))\displaystyle=\frac{1}{4}\sum_{k=1}^{4}\varepsilon(i,k)\varepsilon(k,j)\sum_{m=1}^{4}\varepsilon(t_{i}(k),m)\varepsilon(m,t_{j}(k))e_{t_{i}(t_{k}(m)),t_{j}(t_{k}(m))}
=14k=14l=14ε(i,k)ε(k,j)ε(ti(k),tk(l))ε(tk(l),tj(k))eti(l),tj(l)\displaystyle=\frac{1}{4}\sum_{k=1}^{4}\sum_{l=1}^{4}\varepsilon(i,k)\varepsilon(k,j)\varepsilon(t_{i}(k),t_{k}(l))\varepsilon(t_{k}(l),t_{j}(k))e_{t_{i}(l),t_{j}(l)}
=ei,j\displaystyle=e_{i,j}

as in the proof of Proposition 7.7. For i,j=1,2,3,4i,j=1,2,3,4, we have

Φ(Ψ(fi,j))\displaystyle\varPhi(\varPsi(f_{i,j})) =Φ(Fi,j)=k=14Φ(Ek,i)Φ(p1,1)Φ(Ej,k)\displaystyle=\varPhi(F_{i,j})=\sum_{k=1}^{4}\varPhi(E_{k,i})\varPhi(p_{1,1})\varPhi(E_{j,k})
=k=14ek,iP1,1ej,k\displaystyle=\sum_{k=1}^{4}e_{k,i}P_{1,1}e_{j,k}
=k=14ek,i(l,m=14fl,mel,m)ej,k\displaystyle=\sum_{k=1}^{4}e_{k,i}\Big{(}\sum_{l,m=1}^{4}f_{l,m}e_{l,m}\Big{)}e_{j,k}
=k=14fi,jek,k=fi,j.\displaystyle=\sum_{k=1}^{4}f_{i,j}e_{k,k}=f_{i,j}.

These show that Φ(Ψ(x))=x\varPhi(\varPsi(x))=x for all xM4(C(P3))x\in M_{4}(C(\mathbb{R}P^{3})). ∎

By these two propositions, we get Theorem 3.6. As its corollary, we have the following.

Corollary 7.9 (cf. [BC, Theorem 4.1]).

There is an injective *-homomorphism A(4)M4(C(P3))A(4)\to M_{4}(C(\mathbb{R}P^{3})).

Proof.

This follows from Theorem 3.6 because the *-homomorphism A(4)A(4)αtw(K×K)A(4)\to A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K) is injective. ∎

One can see that the injective *-homomorphism constructed in this corollary is nothing but the Pauli representation constructed in [BM] and considered in [BC]. Note that Banica and Collins remarked after [BC, Definition 2.1] that the target of the Pauli representation is replaced by M4(C(SO3))M_{4}(C(SO_{3})) instead of M4(C(SU2))M_{4}(C(SU_{2})). Here SO3SO_{3} is a homeomorphic to P3\mathbb{R}P^{3} whereas SU2SU_{2} is a homeomorphic to S3S^{3}.

8. Action

One can see that the dual group of K×KK\times K is isomorphic to K×KK\times K using the product of the cocycle ε\varepsilon (see below).

iji\diagdown j 11 22 33 44
11 1 1 1 1
22 1 1 1-1 1-1
33 1 1-1 1 1-1
44  1 1-1 1-1 1
Table 8.1. Values of ε(i,j)ε(j,i)\varepsilon(i,j)\varepsilon(j,i)

Let α^:K×KA(4)αtw(K×K)\widehat{\alpha}\colon K\times K\curvearrowright A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K) be the dual action of α\alpha. Namely α^\widehat{\alpha} is determined by the following equation for all i,j,k,li,j,k,l

α^i,j(pk,l)\displaystyle\widehat{\alpha}_{i,j}(p_{k,l}) =pk,l,\displaystyle=p_{k,l}, α^i,j(uk,l)\displaystyle\widehat{\alpha}_{i,j}(u_{k,l}) =ε(i,k)ε(k,i)ε(j,l)ε(l,j)uk,l,\displaystyle=\varepsilon(i,k)\varepsilon(k,i)\varepsilon(j,l)\varepsilon(l,j)u_{k,l},

where we write α^(ti,tj)\widehat{\alpha}_{(t_{i},t_{j})} as α^i,j\widehat{\alpha}_{i,j}.

For i,j=1,2,3,4i,j=1,2,3,4, define σi,j:P3P3\sigma_{i,j}\colon\mathbb{R}P^{3}\to\mathbb{R}P^{3} by σi,j([a1,a2,a3,a4])=[b1,b2,b3,b4]\sigma_{i,j}([a_{1},a_{2},a_{3},a_{4}])=[b_{1},b_{2},b_{3},b_{4}] for [a1,a2,a3,a4]P3[a_{1},a_{2},a_{3},a_{4}]\in\mathbb{R}P^{3} where (b1,b2,b3,b4)S3(b_{1},b_{2},b_{3},b_{4})\in S^{3} is determined by

(b1,b2,b3,b4)T=Ui,j(a1,a2,a3,a4)T,(b_{1},b_{2},b_{3},b_{4})^{\mathrm{T}}=U_{i,j}(a_{1},a_{2},a_{3},a_{4})^{\mathrm{T}},

in other words k=14bkck=ci(k=14akck)cj\sum_{k=1}^{4}b_{k}c_{k}=c_{i}\left(\sum_{k=1}^{4}a_{k}c_{k}\right)c_{j}^{*} by Proposition 5.2. Let β:K×KM4(C(P3))\beta\colon K\times K\curvearrowright M_{4}(C(\mathbb{R}P^{3})) be the action determined by βi,j(F)=AdUi,jFσi,j\beta_{i,j}(F)=\operatorname{Ad}U_{i,j}\circ F\circ\sigma_{i,j} for FM4(C(P3))=C(P3,M4())F\in M_{4}(C(\mathbb{R}P^{3}))=C(\mathbb{R}P^{3},M_{4}(\mathbb{C})) where we write β(ti,tj)\beta_{(t_{i},t_{j})} as βi,j\beta_{i,j}.

Proposition 8.1.

The *-homomorphism Φ:A(4)αtw(K×K)M4(C(P3))\varPhi\colon A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K)\to M_{4}(C(\mathbb{R}P^{3})) is equivariant with respect to α^\widehat{\alpha} and β\beta.

Proof.

For i,j=1,2,3,4i,j=1,2,3,4, we have P1,1σi,j=AdUi,jP1,1P_{1,1}\circ\sigma_{i,j}=\operatorname{Ad}U_{i,j}\circ P_{1,1}. In fact for [a1,a2,a3,a4]P3[a_{1},a_{2},a_{3},a_{4}]\in\mathbb{R}P^{3}, on one hand we have

(P1,1σi,j)([a1,a2,a3,a4])\displaystyle(P_{1,1}\circ\sigma_{i,j})([a_{1},a_{2},a_{3},a_{4}]) =(b1,b2,b3,b4)T(b1,b2,b3,b4),\displaystyle=(b_{1},b_{2},b_{3},b_{4})^{\mathrm{T}}(b_{1},b_{2},b_{3},b_{4}),

where

(b1,b2,b3,b4)T=Ui,j(a1,a2,a3,a4)T,(b_{1},b_{2},b_{3},b_{4})^{\mathrm{T}}=U_{i,j}(a_{1},a_{2},a_{3},a_{4})^{\mathrm{T}},

and on the other hand we have

(AdUi,jP1,1)([a1,a2,a3,a4])\displaystyle(\operatorname{Ad}U_{i,j}\circ P_{1,1})([a_{1},a_{2},a_{3},a_{4}]) =Ui,j(a1,a2,a3,a4)T(a1,a2,a3,a4)Ui,j\displaystyle=U_{i,j}(a_{1},a_{2},a_{3},a_{4})^{\mathrm{T}}(a_{1},a_{2},a_{3},a_{4})U_{i,j}^{*}

here note Ui,j=Ui,jTU_{i,j}^{*}=U_{i,j}^{\mathrm{T}} because the entries of Ui,jU_{i,j} are 1-1, 0 or 11. For i,j,k,l=1,2,3,4i,j,k,l=1,2,3,4, we have

βi,j(Pk,l)\displaystyle\beta_{i,j}(P_{k,l}) =AdUi,j(AdUk,lP1,1)σi,j\displaystyle=\operatorname{Ad}U_{i,j}\circ(\operatorname{Ad}U_{k,l}\circ P_{1,1})\circ\sigma_{i,j}
=AdUi,jAdUk,lAdUi,jP1,1\displaystyle=\operatorname{Ad}U_{i,j}\circ\operatorname{Ad}U_{k,l}\circ\operatorname{Ad}U_{i,j}\circ P_{1,1}
=Ad(Ui,jUk,lUi,j)P1,1\displaystyle=\operatorname{Ad}(U_{i,j}U_{k,l}U_{i,j})\circ P_{1,1}
=AdUk,lP1,1=Pk,l.\displaystyle=\operatorname{Ad}U_{k,l}\circ P_{1,1}=P_{k,l}.

For i,j,k,l=1,2,3,4i,j,k,l=1,2,3,4, we also have

βi,j(Uk,l)\displaystyle\beta_{i,j}(U_{k,l}) =AdUi,jUk,lσi,j\displaystyle=\operatorname{Ad}U_{i,j}\circ U_{k,l}\circ\sigma_{i,j}
=Ui,jUk,lUi,j\displaystyle=U_{i,j}U_{k,l}U_{i,j}^{*}
=ε(i,k)ε(j,l)Uti(k),tj(l)Ui,j\displaystyle=\varepsilon(i,k)\varepsilon(j,l)U_{t_{i}(k),t_{j}(l)}U_{i,j}^{*}
=ε(i,k)ε(j,l)ε(k,i)1ε(l,j)1Uk,lUi,jUi,j\displaystyle=\varepsilon(i,k)\varepsilon(j,l)\varepsilon(k,i)^{-1}\varepsilon(l,j)^{-1}U_{k,l}U_{i,j}U_{i,j}^{*}
=ε(i,k)ε(j,l)ε(k,i)ε(l,j)Uk,l\displaystyle=\varepsilon(i,k)\varepsilon(j,l)\varepsilon(k,i)\varepsilon(l,j)U_{k,l}

here note that Uk,lM4(C(P3))U_{k,l}\in M_{4}(C(\mathbb{R}P^{3})) is a constant function. These complete the proof. ∎

The following is the second main theorem.

Theorem 8.2.

The fixed point algebra M4(C(P3))βM_{4}(C(\mathbb{R}P^{3}))^{\beta} of the action β\beta is isomorphic to A(4)A(4).

Proof.

This follows from Theorem 3.6 and Proposition 8.1 because the fixed point algebra (A(4)αtw(K×K))α^\big{(}A(4)\rtimes_{\alpha}^{\text{tw}}(K\times K)\big{)}^{\widehat{\alpha}} of α^\widehat{\alpha} is A(4)A(4). ∎

9. Quotient Space P3/(K×K)\mathbb{R}P^{3}/(K\times K)

Definition 9.1.

We set AM4(C(P3))βA\coloneqq M_{4}(C(\mathbb{R}P^{3}))^{\beta}.

By Theorem 8.2, the CC^{*}-algebra A(4)A(4) is isomorphic to AA. From this section, we compute the structure of AA and its K-groups.

In this section, we study the quotient Space P3/(K×K)\mathbb{R}P^{3}/(K\times K) of P3\mathbb{R}P^{3} by the action σ\sigma of K×KK\times K. In [O], it is proved that this quotient space P3/(K×K)\mathbb{R}P^{3}/(K\times K) is homeomorphic to S3S^{3}.

Definition 9.2.

We denote by XX the quotient space P3/(K×K)\mathbb{R}P^{3}/(K\times K) of the action σ\sigma of K×KK\times K. We denote by π:P3X\pi\colon\mathbb{R}P^{3}\to X the quotient map.

We use the following lemma later.

Lemma 9.3.

For i,j=2,3,4i,j=2,3,4 and [a1,a2,a3,a4]P3[a_{1},a_{2},a_{3},a_{4}]\in\mathbb{R}P^{3} with σi,j([a1,a2,a3,a4])=[a1,a2,a3,a4]\sigma_{i,j}([a_{1},a_{2},a_{3},a_{4}])=[a_{1},a_{2},a_{3},a_{4}], we have Pk,l([a1,a2,a3,a4])=Pti(k),tj(l)([a1,a2,a3,a4])P_{k,l}([a_{1},a_{2},a_{3},a_{4}])=P_{t_{i}(k),t_{j}(l)}([a_{1},a_{2},a_{3},a_{4}]) for k,l=1,2,3,4k,l=1,2,3,4.

Proof.

This follows from

Pk,l([a1,a2,a3,a4])\displaystyle P_{k,l}([a_{1},a_{2},a_{3},a_{4}]) =βi,j(Pk,l)([a1,a2,a3,a4])\displaystyle=\beta_{i,j}(P_{k,l})([a_{1},a_{2},a_{3},a_{4}])
=AdUi,j(Pk,l(σi,j([a1,a2,a3,a4])))\displaystyle=\operatorname{Ad}U_{i,j}\big{(}P_{k,l}(\sigma_{i,j}([a_{1},a_{2},a_{3},a_{4}]))\big{)}
=AdUi,j(Pk,l([a1,a2,a3,a4])),\displaystyle=\operatorname{Ad}U_{i,j}\big{(}P_{k,l}([a_{1},a_{2},a_{3},a_{4}])\big{)},
Pti(k),tj(l)([a1,a2,a3,a4])\displaystyle P_{t_{i}(k),t_{j}(l)}([a_{1},a_{2},a_{3},a_{4}]) =(AdUi,j(Pk,l))([a1,a2,a3,a4])\displaystyle=\big{(}\operatorname{Ad}U_{i,j}(P_{k,l})\big{)}([a_{1},a_{2},a_{3},a_{4}])
=AdUi,j(Pk,l([a1,a2,a3,a4])).\displaystyle=\operatorname{Ad}U_{i,j}\big{(}P_{k,l}([a_{1},a_{2},a_{3},a_{4}])\big{)}.\qed
Definition 9.4.

For each i,j=2,3,4i,j=2,3,4, define

F~i,j{[a1,a2,a3,a4]P3σi,j([a1,a2,a3,a4])=[a1,a2,a3,a4]}P3\widetilde{F}_{i,j}\coloneqq\{[a_{1},a_{2},a_{3},a_{4}]\in\mathbb{R}P^{3}\mid\sigma_{i,j}([a_{1},a_{2},a_{3},a_{4}])=[a_{1},a_{2},a_{3},a_{4}]\}\subset\mathbb{R}P^{3}

to be the set of fixed points of σi,j\sigma_{i,j}, and define Fi,jXF_{i,j}\subset X to be the image π(F~i,j)\pi(\tilde{F}_{i,j}).

We have F~i,j=π1(Fi,j)\tilde{F}_{i,j}=\pi^{-1}(F_{i,j}). The following two propositions can be proved by direct computation using the computation of Ui,jU_{i,j} after Definition 5.1

Proposition 9.5.

For each i=2,3,4i=2,3,4, σ1,i\sigma_{1,i} and σi,1\sigma_{i,1} have no fixed points.

Proposition 9.6.

For each i,j=2,3,4i,j=2,3,4, F~i,j\widetilde{F}_{i,j} is homeomorphic to a disjoint union of two circles. More precisely, we have

F~2,2={[a,b,0,0],[0,0,a,b]P3a,b,a2+b2=1}\displaystyle\widetilde{F}_{2,2}=\{[a,b,0,0],[0,0,a,b]\in\mathbb{R}P^{3}\mid a,b\in\mathbb{R},\ a^{2}+b^{2}=1\}
F~2,3={[a,b,b,a],[a,b,b,a]P3a,b, 2(a2+b2)=1}\displaystyle\widetilde{F}_{2,3}=\{[a,b,-b,a],[a,b,b,-a]\in\mathbb{R}P^{3}\mid a,b\in\mathbb{R},\ 2(a^{2}+b^{2})=1\}
F~2,4={[a,b,a,b],[a,b,a,b]P3a,b, 2(a2+b2)=1}\displaystyle\widetilde{F}_{2,4}=\{[a,b,a,b],[a,b,-a,-b]\in\mathbb{R}P^{3}\mid a,b\in\mathbb{R},\ 2(a^{2}+b^{2})=1\}
F~3,2={[a,b,b,a],[a,b,b,a]P3a,b, 2(a2+b2)=1}\displaystyle\widetilde{F}_{3,2}=\{[a,b,b,a],[a,b,-b,-a]\in\mathbb{R}P^{3}\mid a,b\in\mathbb{R},\ 2(a^{2}+b^{2})=1\}
F~3,3={[a,0,b,0],[0,a,0,b]P3a,b,a2+b2=1}\displaystyle\widetilde{F}_{3,3}=\{[a,0,b,0],[0,a,0,b]\in\mathbb{R}P^{3}\mid a,b\in\mathbb{R},\ a^{2}+b^{2}=1\}
F~3,4={[a,a,b,b],[a,a,b,b]P3a,b, 2(a2+b2)=1}\displaystyle\widetilde{F}_{3,4}=\{[a,a,b,-b],[a,-a,b,b]\in\mathbb{R}P^{3}\mid a,b\in\mathbb{R},\ 2(a^{2}+b^{2})=1\}
F~4,2={[a,b,a,b],[a,b,a,b]P3a,b, 2(a2+b2)=1}\displaystyle\widetilde{F}_{4,2}=\{[a,b,a,-b],[a,b,-a,b]\in\mathbb{R}P^{3}\mid a,b\in\mathbb{R},\ 2(a^{2}+b^{2})=1\}
F~4,3={[a,a,b,b],[a,a,b,b]P3a,b, 2(a2+b2)=1}\displaystyle\widetilde{F}_{4,3}=\{[a,a,b,b],[a,-a,b,-b]\in\mathbb{R}P^{3}\mid a,b\in\mathbb{R},\ 2(a^{2}+b^{2})=1\}
F~4,4={[a,0,0,b],[0,a,b,0]P3a,b,a2+b2=1}\displaystyle\widetilde{F}_{4,4}=\{[a,0,0,b],[0,a,b,0]\in\mathbb{R}P^{3}\mid a,b\in\mathbb{R},\ a^{2}+b^{2}=1\}
Definition 9.7.

We set F~i,j=24F~i,j\widetilde{F}\coloneqq\bigcup_{i,j=2}^{4}\widetilde{F}_{i,j} and Fi,j=24Fi,jF\coloneqq\bigcup_{i,j=2}^{4}F_{i,j}. We also set O~P3F~\widetilde{O}\coloneqq\mathbb{R}P^{3}\setminus\widetilde{F} and OXFO\coloneqq X\setminus F.

We have F~=π1(F)\widetilde{F}=\pi^{-1}(F) and hence O~=π1(O)\widetilde{O}=\pi^{-1}(O). Note that O~\widetilde{O} is the set of points [a1,a2,a3,a4]P3[a_{1},a_{2},a_{3},a_{4}]\in\mathbb{R}P^{3} such that σi,j([a1,a2,a3,a4])[a1,a2,a3,a4]\sigma_{i,j}([a_{1},a_{2},a_{3},a_{4}])\neq[a_{1},a_{2},a_{3},a_{4}] for all i,j=1,2,3,4i,j=1,2,3,4 other than (i,j)=(1,1)(i,j)=(1,1). Note also that F~\widetilde{F} and FF are closed, and hence O~\widetilde{O} and OO are open.

Definition 9.8.

For each i2,i3,i4i_{2},i_{3},i_{4} with {i2,i3,i4}={2,3,4}\{i_{2},i_{3},i_{4}\}=\{2,3,4\}, define F~(i2i3i4)P3\widetilde{F}_{(i_{2}i_{3}i_{4})}\subset\mathbb{R}P^{3} by

F~(i2i3i4)F~i2,2F~i3,3F~i4,4,\widetilde{F}_{(i_{2}i_{3}i_{4})}\coloneqq\widetilde{F}_{i_{2},2}\cap\widetilde{F}_{i_{3},3}\cap\widetilde{F}_{i_{4},4},

and define F(i2i3i4)XF_{(i_{2}i_{3}i_{4})}\subset X to be the image π(F~(i2i3i4))\pi(\widetilde{F}_{(i_{2}i_{3}i_{4})}).

Proposition 9.9.

For each i2,i3,i4i_{2},i_{3},i_{4} with {i2,i3,i4}={2,3,4}\{i_{2},i_{3},i_{4}\}=\{2,3,4\}, we have

F~(i2i3i4)=F~i2,2F~i3,3=F~i2,2F~i4,4=F~i3,3F~i4,4.\widetilde{F}_{(i_{2}i_{3}i_{4})}=\widetilde{F}_{i_{2},2}\cap\widetilde{F}_{i_{3},3}=\widetilde{F}_{i_{2},2}\cap\widetilde{F}_{i_{4},4}=\widetilde{F}_{i_{3},3}\cap\widetilde{F}_{i_{4},4}.

We also have

F~(234)={[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]},\displaystyle\widetilde{F}_{(234)}=\big{\{}[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]\big{\}},
F~(342)={[12,12,12,12],[12,12,12,12],[12,12,12,12],[12,12,12,12]},\displaystyle\widetilde{F}_{(342)}=\left\{\Big{[}\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\Big{]},\Big{[}\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\Big{]},\Big{[}\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\Big{]},\Big{[}\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2}\Big{]}\right\},
F~(423)={[12,12,12,12],[12,12,12,12],[12,12,12,12],[12,12,12,12]},\displaystyle\widetilde{F}_{(423)}=\left\{\Big{[}-\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\Big{]},\Big{[}\frac{1}{2},-\frac{1}{2},\frac{1}{2},\frac{1}{2}\Big{]},\Big{[}\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\Big{]},\Big{[}\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{1}{2}\Big{]}\right\},
F~(243)={[12,12,0,0],[12,12,0,0],[0,0,12,12],[0,0,12,12]},\displaystyle\widetilde{F}_{(243)}=\left\{\Big{[}\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0,0\Big{]},\Big{[}\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0,0\Big{]},\Big{[}0,0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\Big{]},\Big{[}0,0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\Big{]}\right\},
F~(432)={[12,0,12,0],[12,0,12,0],[0,12,0,12],[0,12,0,12]},\displaystyle\widetilde{F}_{(432)}=\left\{\Big{[}\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}},0\Big{]},\Big{[}\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}},0\Big{]},\Big{[}0,\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\Big{]},\Big{[}0,\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\Big{]}\right\},
F~(324)={[12,0,0,12],[12,0,0,12],[0,12,12,0],[0,12,12,0]}.\displaystyle\widetilde{F}_{(324)}=\left\{\Big{[}\frac{1}{\sqrt{2}},0,0,\frac{1}{\sqrt{2}}\Big{]},\Big{[}\frac{1}{\sqrt{2}},0,0,-\frac{1}{\sqrt{2}}\Big{]},\Big{[}0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\Big{]},\Big{[}0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0\Big{]}\right\}.
Proof.

This follows from Proposition 9.6. ∎

Proposition 9.10.

For each i2,i3,i4i_{2},i_{3},i_{4} with {i2,i3,i4}={2,3,4}\{i_{2},i_{3},i_{4}\}=\{2,3,4\}, F(i2i3i4)F_{(i_{2}i_{3}i_{4})} consists of one point.

Proof.

This follows from Proposition 9.9. ∎

Definition 9.11.

For each i2,i3,i4i_{2},i_{3},i_{4} with {i2,i3,i4}={2,3,4}\{i_{2},i_{3},i_{4}\}=\{2,3,4\}, we set x(i2i3i4)Xx_{(i_{2}i_{3}i_{4})}\in X by F(i2i3i4)={x(i2i3i4)}F_{(i_{2}i_{3}i_{4})}=\{x_{(i_{2}i_{3}i_{4})}\}.

Proposition 9.12.

For each i,j=2,3,4i,j=2,3,4, Fi,jF_{i,j} is homeomorphic to a closed interval whose endpoints are x(i2i3i4)x_{(i_{2}i_{3}i_{4})} with ij=ii_{j}=i,

Proof.

This follows from Proposition 9.6. See also Figure 13.2 and the remark around it. ∎

Note that FXF\subset X is the complete bipartite graph between {x(234),x(342),x(423)}\{x_{(234)},x_{(342)},x_{(423)}\} and {x(243),x(432),x(324),}\{x_{(243)},x_{(432)},x_{(324)},\}. See Figure 13.2.

Definition 9.13.

For i,j=2,3,4i,j=2,3,4, we define

Fi,jFi,j{x(i2i3i4)ij=i},F_{i,j}^{\circ}\coloneqq F_{i,j}\setminus\{x_{(i_{2}i_{3}i_{4})}\mid i_{j}=i\},

and define

Fij=24Fi,j,F{x(234),x(243),x(324),x(342),x(423),x(432)}.F^{\circ}\coloneqq\bigcup_{i_{j}=2}^{4}F_{i,j}^{\circ},\qquad F^{\text{\textbullet}}\coloneqq\{x_{(234)},x_{(243)},x_{(324)},x_{(342)},x_{(423)},x_{(432)}\}.
Definition 9.14.

We set F~i,jπ1(Fi,j)\widetilde{F}_{i,j}^{\circ}\coloneqq\pi^{-1}(F_{i,j}^{\circ}) for i,j=2,3,4i,j=2,3,4, F~π1(F)\widetilde{F}^{\circ}\coloneqq\pi^{-1}(F^{\circ}) and F~π1(F)\widetilde{F}^{\text{\textbullet}}\coloneqq\pi^{-1}(F^{\text{\textbullet}}).

10. Exact sequences

For a locally compact subset YY of P3\mathbb{R}P^{3} which is invariant under the action σ\sigma, the action β:K×KM4(C(P3))\beta\colon K\times K\curvearrowright M_{4}(C(\mathbb{R}P^{3})) induces the action K×KM4(C0(Y))K\times K\curvearrowright M_{4}(C_{0}(Y)) which is also denoted by β\beta. We use the following lemma many times.

Lemma 10.1.

Let YY be a locally compact subset of P3\mathbb{R}P^{3} which is invariant under the action σ\sigma. Let ZZ be a closed subset of YY which is invariant under the action σ\sigma. Then we have a a short exact sequence

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M4(C0(YZ))β\textstyle{M_{4}(C_{0}(Y\setminus Z))^{\beta}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M4(C0(Y))β\textstyle{M_{4}(C_{0}(Y))^{\beta}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M4(C0(Z))β\textstyle{M_{4}(C_{0}(Z))^{\beta}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}
Proof.

It suffices to show that M4(C0(Y))βM4(C0(Z))βM_{4}(C_{0}(Y))^{\beta}\to M_{4}(C_{0}(Z))^{\beta} is surjective. The other assertions are easy to see.

Take fM4(C0(Z))βf\in M_{4}(C_{0}(Z))^{\beta}. Since M4(C0(Y))M4(C0(Z))M_{4}(C_{0}(Y))\to M_{4}(C_{0}(Z)) is surjective, there exists gM4(C0(Y))g\in M_{4}(C_{0}(Y)) with g|Z=fg|_{Z}=f. Set g0M4(C0(Y))g_{0}\in M_{4}(C_{0}(Y)) by

g0116i,j=14βi,j(g).g_{0}\coloneqq\frac{1}{16}\sum_{i,j=1}^{4}\beta_{i,j}(g).

Then g0M4(C0(Y))βg_{0}\in M_{4}(C_{0}(Y))^{\beta} and g0|Z=fg_{0}|_{Z}=f. This completes the proof. ∎

We also use the following lemma many times.

Lemma 10.2.

Let YY be a locally compact subset of P3\mathbb{R}P^{3} which is invariant under the action σ\sigma. Let ZZ be a closed subset of YY such that Y=i,j=14σi,j(Z)Y=\bigcup_{i,j=1}^{4}\sigma_{i,j}(Z) and that σi,j(Z)Z=\sigma_{i,j}(Z)\cap Z=\emptyset for i,j=1,2,3,4i,j=1,2,3,4 with (i,j)(1,1)(i,j)\neq(1,1). Then we have M4(C0(Y))βM4(C0(Z))M_{4}(C_{0}(Y))^{\beta}\cong M_{4}(C_{0}(Z)).

Proof.

The restriction map M4(C0(Y))βM4(C0(Z))M_{4}(C_{0}(Y))^{\beta}\to M_{4}(C_{0}(Z)) is an isomorphism because its inverse is given by

M4(C0(Z))fi,j=14βi,j(f)M4(C0(Y))β.M_{4}(C_{0}(Z))\ni f\mapsto\sum_{i,j=1}^{4}\beta_{i,j}(f)\in M_{4}(C_{0}(Y))^{\beta}.\qed

Under the situation of the lemma above, π:Zπ(Z)=π(Y)\pi\colon Z\to\pi(Z)=\pi(Y) is a homeomorphism. Hence we have M4(C0(Y))βM4(C0(Z))M4(C0(π(Z)))=M4(C0(π(Y)))M_{4}(C_{0}(Y))^{\beta}\cong M_{4}(C_{0}(Z))\cong M_{4}\big{(}C_{0}(\pi(Z))\big{)}=M_{4}\big{(}C_{0}(\pi(Y))\big{)}.

The following lemma generalize Lemma 10.2.

Lemma 10.3.

Let GG be a subgroup of K×KK\times K. Let YY be a locally compact subset of P3\mathbb{R}P^{3} which is invariant under the action σ\sigma. Suppose that each point of YY is fixed by σi,j\sigma_{i,j} for all (ti,tj)G(t_{i},t_{j})\in G. Let ZZ be a closed subset of YY such that Y=i,j=14σi,j(Z)Y=\bigcup_{i,j=1}^{4}\sigma_{i,j}(Z) and that σi,j(Z)Z=\sigma_{i,j}(Z)\cap Z=\emptyset for i,j=1,2,3,4i,j=1,2,3,4 with (ti,tj)G(t_{i},t_{j})\not\in G. Then we have M4(C0(Y))βC0(Z,D)M_{4}(C_{0}(Y))^{\beta}\cong C_{0}(Z,D) where

D{TM4()AdUi,j(T)=T for all (ti,tj)G}.D\coloneqq\{T\in M_{4}(\mathbb{C})\mid\text{$\operatorname{Ad}U_{i,j}(T)=T$ for all $(t_{i},t_{j})\in G$}\}.
Proof.

We have a restriction map M4(C0(Y))βC0(Z,D)M_{4}(C_{0}(Y))^{\beta}\to C_{0}(Z,D) which is an isomorphism because its inverse is given by

C0(Z,D)f(i,j)Iβi,j(f)M4(C0(Y))β,C_{0}(Z,D)\ni f\mapsto\sum_{(i,j)\in I}\beta_{i,j}(f)\in M_{4}(C_{0}(Y))^{\beta},

where an index set II was chosen so that {(ti,tj)K×K(i,j)I}\{(t_{i},t_{j})\in K\times K\mid(i,j)\in I\} becomes a complete representative of the quotient (K×K)/G(K\times K)/G. ∎

Under the situation of the lemma above, π:Zπ(Z)=π(Y)\pi\colon Z\to\pi(Z)=\pi(Y) is a homeomorphism. Hence we have M4(C0(Y))βC0(Z,D)C0(π(Z),D)=C0(π(Y),D)M_{4}(C_{0}(Y))^{\beta}\cong C_{0}(Z,D)\cong C_{0}(\pi(Z),D)=C_{0}(\pi(Y),D).

Definition 10.4.

We set IM4(C0(O~))βI\coloneqq M_{4}(C_{0}(\widetilde{O}))^{\beta} and BM4(C(F~))βB\coloneqq M_{4}(C(\widetilde{F}))^{\beta}.

By Lemma 10.1 we get the short exact sequence

0IAB0,0\longrightarrow I\longrightarrow A\longrightarrow B\longrightarrow 0,

From this sequence, we get a six-term exact sequence

K0(I)\textstyle{K_{0}(I)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K0(A)\textstyle{K_{0}(A)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K0(B)\textstyle{K_{0}(B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ0\scriptstyle{\delta_{0}}K1(B)\textstyle{K_{1}(B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ1\scriptstyle{\delta_{1}}K1(A)\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces K_{1}(A)}K1(I).\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces K_{1}(I).}

From next section, we compute Ki(B)K_{i}(B), Ki(I)K_{i}(I) and δi\delta_{i} for i=0,1i=0,1. Consult [RLL] for basics of K-theory.

11. The Structure of the Quotient BB

Definition 11.1.

For i,j=2,3,4i,j=2,3,4, let Di,jD_{i,j} be the fixed algebra of AdUi,j\operatorname{Ad}U_{i,j} on M4()M_{4}(\mathbb{C}).

From the direct computation, we have the following.

Proposition 11.2.

For each i,j=2,3,4i,j=2,3,4, Di,jD_{i,j} is isomorphic to M2()M2()M_{2}(\mathbb{C})\oplus M_{2}(\mathbb{C}). More precisely, we have

D2,2={(ab00cd0000ef00gh)},\displaystyle D_{2,2}=\left\{\begin{pmatrix}a&b&0&0\\ c&d&0&0\\ 0&0&e&f\\ 0&0&g&h\end{pmatrix}\right\}, D2,3={(abcdefghhgfedcba)},\displaystyle D_{2,3}=\left\{\begin{pmatrix}a&b&c&d\\ e&f&g&h\\ -h&g&f&-e\\ d&-c&-b&a\end{pmatrix}\right\},
D2,4={(abcdefghcdabghef)},\displaystyle D_{2,4}=\left\{\begin{pmatrix}a&b&c&d\\ e&f&g&h\\ c&d&a&b\\ g&h&e&f\end{pmatrix}\right\}, D3,2={(abcdefghhgfedcba)},\displaystyle D_{3,2}=\left\{\begin{pmatrix}a&b&c&d\\ e&f&g&h\\ h&g&f&e\\ d&c&b&a\end{pmatrix}\right\},
D3,3={(a0b00c0de0f00g0h)},\displaystyle D_{3,3}=\left\{\begin{pmatrix}a&0&b&0\\ 0&c&0&d\\ e&0&f&0\\ 0&g&0&h\end{pmatrix}\right\}, D3,4={(abcdbadcefghfehg)},\displaystyle D_{3,4}=\left\{\begin{pmatrix}a&b&c&d\\ b&a&-d&-c\\ e&f&g&h\\ -f&-e&h&g\end{pmatrix}\right\},
D4,2={(abcdefghcdabghef)},\displaystyle D_{4,2}=\left\{\begin{pmatrix}a&b&c&d\\ e&f&g&h\\ c&-d&a&-b\\ -g&h&-e&f\end{pmatrix}\right\}, D4,3={(abcdbadcefghfehg)},\displaystyle D_{4,3}=\left\{\begin{pmatrix}a&b&c&d\\ b&a&d&c\\ e&f&g&h\\ f&e&h&g\end{pmatrix}\right\},
D4,4={(a00b0cd00ef0g00h)},\displaystyle D_{4,4}=\left\{\begin{pmatrix}a&0&0&b\\ 0&c&d&0\\ 0&e&f&0\\ g&0&0&h\end{pmatrix}\right\},

where a,b,c,d,e,f,g,ha,b,c,d,e,f,g,h run through \mathbb{C}.

Definition 11.3.

For each i2,i3,i4i_{2},i_{3},i_{4} with {i2,i3,i4}={2,3,4}\{i_{2},i_{3},i_{4}\}=\{2,3,4\}, define D(i2i3i4)P3D_{(i_{2}i_{3}i_{4})}\subset\mathbb{R}P^{3} by

D(i2i3i4)Di2,2Di3,3Di4,4.D_{(i_{2}i_{3}i_{4})}\coloneqq D_{i_{2},2}\cap D_{i_{3},3}\cap D_{i_{4},4}.
Proposition 11.4.

For each i2,i3,i4i_{2},i_{3},i_{4} with {i2,i3,i4}={2,3,4}\{i_{2},i_{3},i_{4}\}=\{2,3,4\}, we have

D(i2i3i4)=Di2,2Di3,3=Di2,2Di4,4=Di3,3Di4,4,D_{(i_{2}i_{3}i_{4})}=D_{i_{2},2}\cap D_{i_{3},3}=D_{i_{2},2}\cap D_{i_{4},4}=D_{i_{3},3}\cap D_{i_{4},4},

and D(i2i3i4)D_{(i_{2}i_{3}i_{4})} is isomorphic to 4\mathbb{C}^{4}. More precisely, we have

D(234)={(a0000b0000c0000d)}\displaystyle D_{(234)}=\left\{\begin{pmatrix}a&0&0&0\\ 0&b&0&0\\ 0&0&c&0\\ 0&0&0&d\end{pmatrix}\right\} D(423)={(abcdbadccdabdcba)}\displaystyle D_{(423)}=\left\{\begin{pmatrix}a&b&c&d\\ b&a&-d&-c\\ c&-d&a&-b\\ d&-c&-b&a\end{pmatrix}\right\}
D(342)={(abcdbadccdabdcba)}\displaystyle D_{(342)}=\left\{\begin{pmatrix}a&b&c&d\\ b&a&d&c\\ c&d&a&b\\ d&c&b&a\end{pmatrix}\right\} D(243)={(ab00ba0000cd00dc)}\displaystyle D_{(243)}=\left\{\begin{pmatrix}a&b&0&0\\ b&a&0&0\\ 0&0&c&d\\ 0&0&d&c\end{pmatrix}\right\}
D(432)={(a0b00c0db0a00d0c)}\displaystyle D_{(432)}=\left\{\begin{pmatrix}a&0&b&0\\ 0&c&0&d\\ b&0&a&0\\ 0&d&0&c\end{pmatrix}\right\} D(324)={(a00d0bc00cb0d00a)}\displaystyle D_{(324)}=\left\{\begin{pmatrix}a&0&0&d\\ 0&b&c&0\\ 0&c&b&0\\ d&0&0&a\end{pmatrix}\right\}

where a,b,c,da,b,c,d run through \mathbb{C}.

Definition 11.5.

We set BM4(C0(F~))βB^{\circ}\coloneqq M_{4}(C_{0}(\widetilde{F}^{\circ}))^{\beta} and BM4(C(F~))βB^{\text{\textbullet}}\coloneqq M_{4}(C(\widetilde{F}^{\text{\textbullet}}))^{\beta}. We also set Bi,jM4(C0(F~i,j))βB^{\circ}_{i,j}\coloneqq M_{4}(C_{0}(\widetilde{F}^{\circ}_{i,j}))^{\beta} for i,j=2,3,4i,j=2,3,4 and B(i2i3i4)M4(C0(F~(i2i3i4)))βB_{(i_{2}i_{3}i_{4})}\coloneqq M_{4}(C_{0}(\widetilde{F}_{(i_{2}i_{3}i_{4})}))^{\beta} for i2,i3,i4i_{2},i_{3},i_{4} with {i2,i3,i4}={2,3,4}\{i_{2},i_{3},i_{4}\}=\{2,3,4\}.

From the discussion up to here, we have the following proposition.

Proposition 11.6.

We have

B\displaystyle B^{\circ} i,j=24Bi,j,\displaystyle\cong\bigoplus_{i,j=2}^{4}B^{\circ}_{i,j}, B\displaystyle B^{\text{\textbullet}} {i2,i3,i4}={2,3,4}B(i2i3i4).\displaystyle\cong\bigoplus_{\{i_{2},i_{3},i_{4}\}=\{2,3,4\}}B_{(i_{2}i_{3}i_{4})}.

We also have

Bi,j\displaystyle B^{\circ}_{i,j} C0(Fi,j,Di,j)C0((0,1),M2()M2()),\displaystyle\cong C_{0}(F^{\circ}_{i,j},D_{i,j})\cong C_{0}\big{(}(0,1),M_{2}(\mathbb{C})\oplus M_{2}(\mathbb{C})\big{)},

for i,j=2,3,4i,j=2,3,4 and

B(i2i3i4)\displaystyle B_{(i_{2}i_{3}i_{4})} C(F(i2i3i4),D(i2i3i4))4\displaystyle\cong C(F_{(i_{2}i_{3}i_{4})},D_{(i_{2}i_{3}i_{4})})\cong\mathbb{C}^{4}

for i2,i3,i4i_{2},i_{3},i_{4} with {i2,i3,i4}={2,3,4}\{i_{2},i_{3},i_{4}\}=\{2,3,4\}.

From this proposition, we get

B\displaystyle B^{\circ} C0((0,1),M2()M2())9C0((0,1),M2())18,\displaystyle\cong C_{0}\big{(}(0,1),M_{2}(\mathbb{C})\oplus M_{2}(\mathbb{C})\big{)}^{9}\cong C_{0}\big{(}(0,1),M_{2}(\mathbb{C}))^{18}, B\displaystyle B^{\text{\textbullet}} (4)624.\displaystyle\cong(\mathbb{C}^{4})^{6}\cong\mathbb{C}^{24}.

12. K-groups of the quotient BB

From the short exact sequence

0BBB0,0\longrightarrow B^{\circ}\longrightarrow B\longrightarrow B^{\text{\textbullet}}\longrightarrow 0,

we get a six-term exact sequence

0=K0(B)\textstyle{0=K_{0}(B^{\circ})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K0(B)\textstyle{K_{0}(B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K0(B)24\textstyle{K_{0}(B^{\text{\textbullet}})\cong\mathbb{Z}^{24}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ\scriptstyle{\delta}0=K1(B)\textstyle{0=K_{1}(B^{\text{\textbullet}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K1(B)\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces K_{1}(B)}K1(B)18.\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces K_{1}(B^{\circ})\cong\mathbb{Z}^{18}.}

Next we compute δ:K0(B)K1(B)\delta\colon K_{0}(B^{\text{\textbullet}})\to K_{1}(B^{\circ}).

Proposition 12.1.

Under the isomorphism Φ:A(4)A\varPhi\colon A(4)\to A, the CC^{*}-algebra Aab(4)A^{\text{ab}}(4) is canonically isomorphic to BB^{\text{\textbullet}} .

Proof.

Since B24B^{\text{\textbullet}}\cong\mathbb{C}^{24} is commutative, the surjection A(4)ABBA(4)\cong A\twoheadrightarrow B\twoheadrightarrow B^{\text{\textbullet}} factors through the surjection A(4)Aab(4)A(4)\twoheadrightarrow A^{\text{ab}}(4). The induced surjection Aab(4)BA^{\text{ab}}(4)\twoheadrightarrow B^{\text{\textbullet}} is an isomorphism because Aab(4)24A^{\text{ab}}(4)\cong\mathbb{C}^{24}. ∎

For i,j=1,2,3,4i,j=1,2,3,4, we denote the image of Pi,jAP_{i,j}\in A under a surjection by the same symbol Pi,jP_{i,j}. By Proposition 1.7 and Proposition 12.1, the 24 minimal projections of BB^{\text{\textbullet}} are

P(i1i2i3i4)Pi1,1Pi2,2Pi3,3Pi4,4BP_{(i_{1}i_{2}i_{3}i_{4})}\coloneqq P_{i_{1},1}P_{i_{2},2}P_{i_{3},3}P_{i_{4},4}\in B^{\text{\textbullet}}

for (i1i2i3i4)𝔖4(i_{1}i_{2}i_{3}i_{4})\in\mathfrak{S}_{4}.

Definition 12.2.

For σ𝔖4\sigma\in\mathfrak{S}_{4}, we define qσ[Pσ]0K0(B)q_{\sigma}\coloneqq[P_{\sigma}]_{0}\in K_{0}(B^{\text{\textbullet}}).

Note that {qσ}σ𝔖4\{q_{\sigma}\}_{\sigma\in\mathfrak{S}_{4}} is a basis of K0(B)24K_{0}(B^{\text{\textbullet}})\cong\mathbb{Z}^{24}.

Proposition 12.3.

For each i2,i3,i4i_{2},i_{3},i_{4} with {i2,i3,i4}={2,3,4}\{i_{2},i_{3},i_{4}\}=\{2,3,4\}, the 44 minimal projections of 4B(i2i3i4)B\mathbb{C}^{4}\cong B_{(i_{2}i_{3}i_{4})}\subset B^{\text{\textbullet}} are PσtkP_{\sigma t_{k}} for k=1,2,3,4k=1,2,3,4 where σ(1i2i3i4)\sigma\coloneqq(1i_{2}i_{3}i_{4}).

Proof.

Take i2,i3,i4i_{2},i_{3},i_{4} with {i2,i3,i4}={2,3,4}\{i_{2},i_{3},i_{4}\}=\{2,3,4\}. Since the 4 points in F~(i2i3i4)\widetilde{F}_{(i_{2}i_{3}i_{4})} are fixed by σi2,2\sigma_{i_{2},2}, σi3,3\sigma_{i_{3},3} and σi4,4\sigma_{i_{4},4}, we have Pk,l=Ptij(k),tj(l)P_{k,l}=P_{t_{i_{j}}(k),t_{j}(l)} in B(i2i3i4)B_{(i_{2}i_{3}i_{4})} for k,l=1,2,3,4k,l=1,2,3,4 and j=2,3,4j=2,3,4 by Lemma 9.3. More concretely we have

P1,1=Pi2,2=Pi3,3=Pi4,4,\displaystyle P_{1,1}=P_{i_{2},2}=P_{i_{3},3}=P_{i_{4},4},
Pi2,1=P1,2=Pi4,3=Pi3,4,\displaystyle P_{i_{2},1}=P_{1,2}=P_{i_{4},3}=P_{i_{3},4},
Pi3,1=Pi4,2=P1,3=Pi2,4,\displaystyle P_{i_{3},1}=P_{i_{4},2}=P_{1,3}=P_{i_{2},4},
Pi4,1=Pi3,2=Pi2,3=P1,4\displaystyle P_{i_{4},1}=P_{i_{3},2}=P_{i_{2},3}=P_{1,4}

in B(i2i3i4)B_{(i_{2}i_{3}i_{4})}. These four projections are mutually orthogonal, and their sum equals to 11. Thus the 4 minimal projections of B(i2i3i4)B_{(i_{2}i_{3}i_{4})} are P(1i2i3i4)P_{(1i_{2}i_{3}i_{4})}, P(i21i4i3)P_{(i_{2}1i_{4}i_{3})}, P(i3i41i2)P_{(i_{3}i_{4}1i_{2})} and P(i4i3i21)P_{(i_{4}i_{3}i_{2}1)}. ∎

Take i,j=2,3,4i,j=2,3,4, and fix them for a while. Let (1m2m3m4)𝔖4(1m_{2}m_{3}m_{4})\in\mathfrak{S}_{4} be the unique even permutation with mj=im_{j}=i, and (1n2n3n4)𝔖4(1n_{2}n_{3}n_{4})\in\mathfrak{S}_{4} be the unique odd permutation with nj=in_{j}=i. We set σ=(1m2m3m4)\sigma=(1m_{2}m_{3}m_{4}) and τ=(1n2n3n4)\tau=(1n_{2}n_{3}n_{4}). Then we have the following commutative diagram with exact rows;

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B^{\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B^{\text{\textbullet}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Bi,j\textstyle{B^{\circ}_{i,j}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Bi,j\textstyle{B_{i,j}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(m2m3m4)B(n2n3n4)\textstyle{B_{(m_{2}m_{3}m_{4})}\oplus B_{(n_{2}n_{3}n_{4})}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

By Lemma 9.3, we have Pk,l=Pti(k),tj(l)P_{k,l}=P_{t_{i}(k),t_{j}(l)} in Bi,jB_{i,j} for k,l=1,2,3,4k,l=1,2,3,4. Let ω=(1342)𝔖4\omega=(1342)\in\mathfrak{S}_{4}. Note that we have ti(ω(i))=ω2(i)t_{i}(\omega(i))=\omega^{2}(i) and ti(ω2(i))=ω(i)t_{i}(\omega^{2}(i))=\omega(i). One can see that Bi,jB_{i,j} is a direct sum of two CC^{*}-subalgebras Bi,jB_{i,j}^{\cap} and Bi,jB_{i,j}^{\cup} where Bi,jB_{i,j}^{\cap} is generated by

P1,1\displaystyle P_{1,1} =Pi,j,\displaystyle=P_{i,j}, P1,j\displaystyle P_{1,j} =Pi,1,\displaystyle=P_{i,1}, Pω(i),ω(j)\displaystyle P_{\omega(i),\omega(j)} =Pω2(i),ω2(j),\displaystyle=P_{\omega^{2}(i),\omega^{2}(j)}, Pω(i),ω2(j)\displaystyle P_{\omega(i),\omega^{2}(j)} =Pω2(i),ω(j)\displaystyle=P_{\omega^{2}(i),\omega(j)}

and Bi,jB_{i,j}^{\cup} is generated by

P1,ω(j)\displaystyle P_{1,\omega(j)} =Pi,ω2(j),\displaystyle=P_{i,\omega^{2}(j)}, P1,ω2(j)\displaystyle P_{1,\omega^{2}(j)} =Pi,ω(j),\displaystyle=P_{i,\omega(j)}, Pω(i),1\displaystyle P_{\omega(i),1} =Pω2(i),j,\displaystyle=P_{\omega^{2}(i),j}, Pω(i),j\displaystyle P_{\omega(i),j} =Pω2(i),1.\displaystyle=P_{\omega^{2}(i),1}.

Note that P1,1+P1,j=Pω(i),ω(j)+Pω(i),ω2(j)P_{1,1}+P_{1,j}=P_{\omega(i),\omega(j)}+P_{\omega(i),\omega^{2}(j)} is the unit of Bi,jB_{i,j}^{\cap}, and P1,ω(j)+P1,ω2(j)=Pω(i),1+Pω(i),jP_{1,\omega(j)}+P_{1,\omega^{2}(j)}=P_{\omega(i),1}+P_{\omega(i),j} is the unit of Bi,jB_{i,j}^{\cup}. It turns out that both Bi,jB_{i,j}^{\cap} and Bi,jB_{i,j}^{\cup} are isomorphic to the universal unital CC^{*}-algebra generated by two projections, which is isomorphic to

{fC([0,1],M2())|f(0)=(00),f(1)=(00)}.\Big{\{}f\in C([0,1],M_{2}(\mathbb{C}))\ \Big{|}\ f(0)=\begin{pmatrix}*&0\\ 0&*\end{pmatrix},f(1)=\begin{pmatrix}*&0\\ 0&*\end{pmatrix}\Big{\}}.

This fact can be proved directly, but we do not prove it here because we do not need it. The image of Bi,jB_{i,j}^{\cap} under the surjection Bi,jB(m2m3m4)B(n2n3n4)B_{i,j}\to B_{(m_{2}m_{3}m_{4})}\oplus B_{(n_{2}n_{3}n_{4})} is (pσ+pσtj)(pτ+pτtj)(\mathbb{C}p_{\sigma}+\mathbb{C}p_{\sigma t_{j}})\oplus(\mathbb{C}p_{\tau}+\mathbb{C}p_{\tau t_{j}}). Therefore, the image of Bi,jB_{i,j}^{\cup} under the surjection Bi,jB(m2m3m4)B(n2n3n4)B_{i,j}\to B_{(m_{2}m_{3}m_{4})}\oplus B_{(n_{2}n_{3}n_{4})} is (pσtω(j)+pσtω2(j))(pτtω(j)+pτtω2(j))(\mathbb{C}p_{\sigma t_{\omega(j)}}+\mathbb{C}p_{\sigma t_{\omega^{2}(j)}})\oplus(\mathbb{C}p_{\tau t_{\omega(j)}}+\mathbb{C}p_{\tau t_{\omega^{2}(j)}}). We set vi,j,vi,jK1(Bi,j)v_{i,j}^{\cap},v_{i,j}^{\cup}\in K_{1}(B^{\circ}_{i,j}) by vi,jδ(qσ)v_{i,j}^{\cap}\coloneqq\delta^{\prime}(q_{\sigma}) and vi,jδ(qσtω(j))v_{i,j}^{\cup}\coloneqq\delta^{\prime}(q_{\sigma t_{\omega(j)}}) where

δ:K0(B(m2m3m4)B(n2n3n4))K1(Bi,j)\delta^{\prime}\colon K_{0}(B_{(m_{2}m_{3}m_{4})}\oplus B_{(n_{2}n_{3}n_{4})})\to K_{1}(B^{\circ}_{i,j})

is the exponential map. Then we have the following.

Lemma 12.4.

The set {vi,j,vi,j}\{v_{i,j}^{\cap},v_{i,j}^{\cup}\} is a generator of K1(Bi,j)2K_{1}(B^{\circ}_{i,j})\cong\mathbb{Z}^{2}, and we have

δ(qσ)\displaystyle\delta^{\prime}(q_{\sigma}) =δ(qσtj)=vi,j,\displaystyle=\delta^{\prime}(q_{\sigma t_{j}})=v_{i,j}^{\cap}, δ(qσtω(j))\displaystyle\delta^{\prime}(q_{\sigma t_{\omega(j)}}) =δ(qσtω2(j))=vi,j,\displaystyle=\delta^{\prime}(q_{\sigma t_{\omega^{2}(j)}})=v_{i,j}^{\cup},
δ(qτ)\displaystyle\delta^{\prime}(q_{\tau}) =δ(qτtj)=vi,j,\displaystyle=\delta^{\prime}(q_{\tau t_{j}})=-v_{i,j}^{\cap}, δ(qτtω(j))\displaystyle\delta^{\prime}(q_{\tau t_{\omega(j)}}) =δ(qτtω2(j))=vi,j.\displaystyle=\delta^{\prime}(q_{\tau t_{\omega^{2}(j)}})=-v_{i,j}^{\cup}.
Proof.

Choose a closed interval ZP3Z\subset\mathbb{R}P^{3} such that π:ZFi,j\pi\colon Z\to F_{i,j} is a homeomorphism (see Figure 13.2 and the remark around it for an example of such a space). Let z0,z1Zz_{0},z_{1}\in Z be the point such that π(z0)=v(m2m3m4)\pi(z_{0})=v_{(m_{2}m_{3}m_{4})} π(z1)=v(n2n3n4)\pi(z_{1})=v_{(n_{2}n_{3}n_{4})}. Then we have Bi,jC0(Z{z0,z1},Di,j)B^{\circ}_{i,j}\cong C_{0}(Z\setminus\{z_{0},z_{1}\},D_{i,j}). Let Bi,jB_{i,j}^{\prime} be the inverse image of B(m2m3m4)B_{(m_{2}m_{3}m_{4})} under the surjection Bi,jB(m2m3m4)B(n2n3n4)B_{i,j}\to B_{(m_{2}m_{3}m_{4})}\oplus B_{(n_{2}n_{3}n_{4})}. Then we have the following commutative diagram with exact rows;

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Bi,j\textstyle{B^{\circ}_{i,j}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Bi,j\textstyle{B_{i,j}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B(m2m3m4)\textstyle{B_{(m_{2}m_{3}m_{4})}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Bi,j\textstyle{B^{\circ}_{i,j}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}C0(Z{z0},Di,j)\textstyle{C_{0}(Z\setminus\{z_{0}\},D_{i,j})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Di,j\textstyle{D_{i,j}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

Let us denote by φ\varphi the homomorphism from K0(B(m2m3m4))K_{0}(B_{(m_{2}m_{3}m_{4})}) to K0(Di,j)K_{0}(D_{i,j}) induced by the vertical map from B(m2m3m4)D(m2m3m4)B_{(m_{2}m_{3}m_{4})}\cong D_{(m_{2}m_{3}m_{4})} to Di,jD_{i,j}. Then K0(Di,j)2K_{0}(D_{i,j})\cong\mathbb{Z}^{2} is spanned by φ(qσ)=φ(qσtj)\varphi(q_{\sigma})=\varphi(q_{\sigma t_{j}}) and φ(qσtω(j))=φ(qσtω2(j))\varphi(q_{\sigma t_{\omega(j)}})=\varphi(q_{\sigma t_{\omega^{2}(j)}}). Since Kl(C0(Z{z0},Di,j))=0K_{l}(C_{0}(Z\setminus\{z_{0}\},D_{i,j}))=0 for l=0,1l=0,1, K0(Di,j)K1(Bi,j)K_{0}(D_{i,j})\to K_{1}(B^{\circ}_{i,j}) is an isomorphism. This shows that {vi,j,vi,j}\{v_{i,j}^{\cap},v_{i,j}^{\cup}\} is a generator of K1(Bi,j)2K_{1}(B^{\circ}_{i,j})\cong\mathbb{Z}^{2}. We also have δ(qσ)=δ(qσtj)\delta^{\prime}(q_{\sigma})=\delta^{\prime}(q_{\sigma t_{j}}) and δ(qσtω(j))=δ(qσtω2(j))\delta^{\prime}(q_{\sigma t_{\omega(j)}})=\delta^{\prime}(q_{\sigma t_{\omega^{2}(j)}}). Similarly, we have δ(qτ)=δ(qτtj)\delta^{\prime}(q_{\tau})=\delta^{\prime}(q_{\tau t_{j}}) and δ(qτtω(j))=δ(qτtω2(j))\delta^{\prime}(q_{\tau t_{\omega(j)}})=\delta^{\prime}(q_{\tau t_{\omega^{2}(j)}}).

Since the image of the projection P1,1Bi,jP_{1,1}\in B_{i,j} under the surjection Bi,jB(m2m3m4)B(n2n3n4)B_{i,j}\to B_{(m_{2}m_{3}m_{4})}\oplus B_{(n_{2}n_{3}n_{4})} is Pσ+PτP_{\sigma}+P_{\tau}, we have δ(qσ+qτ)=0\delta^{\prime}(q_{\sigma}+q_{\tau})=0. Hence δ(qτ)=vi,j\delta^{\prime}(q_{\tau})=-v_{i,j}^{\cap}. Similarly we have δ(qσtω(j)+qτtω(j))=0\delta^{\prime}(q_{\sigma t_{\omega(j)}}+q_{\tau t_{\omega(j)}})=0 because the image of P1,ω(j)Bi,jP_{1,\omega(j)}\in B_{i,j} under the surjection Bi,jB(m2m3m4)B(n2n3n4)B_{i,j}\to B_{(m_{2}m_{3}m_{4})}\oplus B_{(n_{2}n_{3}n_{4})} is Pσtω(j)+Pτtω(j)P_{\sigma t_{\omega(j)}}+P_{\tau t_{\omega(j)}}. We are done. ∎

From these computation, we get the following proposition.

Proposition 12.5.

The exponential map δ:K0(B)K1(B)\delta\colon K_{0}(B^{\text{\textbullet}})\to K_{1}(B^{\circ}) is as Table 12.1.

Table 12.1. Computation of the exponential map δ\delta
2,2 3,3 4,4 4,3 2,4 3,2 3,4 4,2 2,3
qvq\diagdown v \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup
(1234) 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
(2143) 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
(3412) 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
(4321) 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
(1342) 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
(2431) 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
(3124) 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
(4213) 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0
(1423) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
(2314) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
(3241) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
(4132) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
(1243) 1-1 0 0 0 0 0 1-1 0 0 0 0 0 1-1 0 0 0 0 0
(2134) 1-1 0 0 0 0 0 0 1-1 0 0 0 0 0 1-1 0 0 0 0
(3421) 0 1-1 0 0 0 0 0 1-1 0 0 0 0 1-1 0 0 0 0 0
(4312) 0 1-1 0 0 0 0 1-1 0 0 0 0 0 0 1-1 0 0 0 0
(1432) 0 0 1-1 0 0 0 0 0 1-1 0 0 0 0 0 1-1 0 0 0
(2341) 0 0 0 1-1 0 0 0 0 1-1 0 0 0 0 0 0 1-1 0 0
(3214) 0 0 1-1 0 0 0 0 0 0 1-1 0 0 0 0 0 1-1 0 0
(4123) 0 0 0 1-1 0 0 0 0 0 1-1 0 0 0 0 1-1 0 0 0
(1324) 0 0 0 0 1-1 0 0 0 0 0 1-1 0 0 0 0 0 1-1 0
(2413) 0 0 0 0 0 1-1 0 0 0 0 0 1-1 0 0 0 0 1-1 0
(3142) 0 0 0 0 0 1-1 0 0 0 0 1-1 0 0 0 0 0 0 1-1
(4231) 0 0 0 0 1-1 0 0 0 0 0 0 1-1 0 0 0 0 0 1-1

We will see that K1(B)cokerδK_{1}(B)\cong\operatorname{coker}\delta is isomorphic to 4/2\mathbb{Z}^{4}\oplus\mathbb{Z}/2\mathbb{Z} in Proposition 15.5. This implies K0(B)kerδK_{0}(B)\cong\ker\delta is isomorphic to 10\mathbb{Z}^{10} because kerδ\ker\delta is a free abelian group with dimension 2418+4=1024-18+4=10. Below, we examine the generator of K0(B)kerδK_{0}(B)\cong\ker\delta.

For i,j=1,2,3,4i,j=1,2,3,4, we have

Pi,j=Pi,jkil=1nPk,l=i=σ(j)Pσ\displaystyle P_{i,j}=P_{i,j}\sum_{k\neq i}\sum_{l=1}^{n}P_{k,l}=\sum_{i=\sigma(j)}P_{\sigma}

in BB. Hence [Pi,j]0=i=σ(j)qσ[P_{i,j}]_{0}=\sum_{i=\sigma(j)}q_{\sigma} in K0(B)K_{0}(B).

Proposition 12.6.

The group kerδ\ker\delta is generated by {[Pi,j]0i,j=1,2,3,4}\{[P_{i,j}]_{0}\mid i,j=1,2,3,4\}.

Proof.

It is straightforward to check that [Pi,j]0[P_{i,j}]_{0} is in kerδ\ker\delta for i,j=1,2,3,4i,j=1,2,3,4.

Take xkerδx\in\ker\delta, and we will show that xx is in the subgroup generated by {[Pi,j]0i,j=1,2,3,4}\{[P_{i,j}]_{0}\mid i,j=1,2,3,4\}. Write x=σ𝔖4nσqσx=\sum_{\sigma\in\mathfrak{S}_{4}}n_{\sigma}q_{\sigma} with nσn_{\sigma}\in\mathbb{Z}. Subtracting n(4213)[P2,2]0+n(4132)[P1,2]0n_{(4213)}[P_{2,2}]_{0}+n_{(4132)}[P_{1,2}]_{0} from xx, we may assume n(4213)=n(4132)=0n_{(4213)}=n_{(4132)}=0 without loss of generality. Subtracting n(4312)[P3,2]0+n(4123)[P2,3]0+n(4231)[P1,4]0n_{(4312)}[P_{3,2}]_{0}+n_{(4123)}[P_{2,3}]_{0}+n_{(4231)}[P_{1,4}]_{0} from xx, we may further assume n(4312)=n(4123)=n(4231)=0n_{(4312)}=n_{(4123)}=n_{(4231)}=0 without loss of generality. Subtracting n(2341)[P2,1]0+n(3142)[P3,1]0n_{(2341)}[P_{2,1}]_{0}+n_{(3142)}[P_{3,1}]_{0} from xx, we may further assume n(2341)=n(3142)=0n_{(2341)}=n_{(3142)}=0 without loss of generality. Subtracting n(2413)[P4,2]0+n(3214)[P4,4]0+n(1324)[P1,1]0n_{(2413)}[P_{4,2}]_{0}+n_{(3214)}[P_{4,4}]_{0}+n_{(1324)}[P_{1,1}]_{0} from xx, we may further assume n(2413)=n(3214)=n(1324)=0n_{(2413)}=n_{(3214)}=n_{(1324)}=0 without loss of generality. Now we will show x=0x=0 using xkerδx\in\ker\delta.

Since n(3241)+n(4132)=n(3142)+n(4231)n_{(3241)}+n_{(4132)}=n_{(3142)}+n_{(4231)}, we have n(3241)=0n_{(3241)}=0.

Since n(2314)+n(3241)=n(2341)+n(3214)n_{(2314)}+n_{(3241)}=n_{(2341)}+n_{(3214)}, we have n(2314)=0n_{(2314)}=0.

Since n(1423)+n(2314)=n(1324)+n(2413)n_{(1423)}+n_{(2314)}=n_{(1324)}+n_{(2413)}, we have n(1423)=0n_{(1423)}=0.

Since n(1423)+n(4132)=n(1432)+n(4123)n_{(1423)}+n_{(4132)}=n_{(1432)}+n_{(4123)}, we have n(1432)=0n_{(1432)}=0.

Since n(3124)+n(4213)=n(3214)+n(4123)n_{(3124)}+n_{(4213)}=n_{(3214)}+n_{(4123)}, we have n(3124)=0n_{(3124)}=0.

Since n(2431)+n(4213)=n(2413)+n(4231)n_{(2431)}+n_{(4213)}=n_{(2413)}+n_{(4231)}, we have n(2431)=0n_{(2431)}=0.

Since n(1342)+n(2431)=n(1432)+n(2341)n_{(1342)}+n_{(2431)}=n_{(1432)}+n_{(2341)}, we have n(1342)=0n_{(1342)}=0.

Since n(2314)+n(4132)=n(2134)+n(4312)n_{(2314)}+n_{(4132)}=n_{(2134)}+n_{(4312)}, we have n(2134)=0n_{(2134)}=0.

Since n(2431)+n(3124)=n(2134)+n(3421)n_{(2431)}+n_{(3124)}=n_{(2134)}+n_{(3421)}, we have n(3421)=0n_{(3421)}=0.

Since n(1423)+n(3241)=n(1243)+n(3421)n_{(1423)}+n_{(3241)}=n_{(1243)}+n_{(3421)}, we have n(1243)=0n_{(1243)}=0.

Since n(1234)+n(2143)=n(1243)+n(2134)=0n_{(1234)}+n_{(2143)}=n_{(1243)}+n_{(2134)}=0, n(1234)+n(3412)=n(1432)+n(3214)=0n_{(1234)}+n_{(3412)}=n_{(1432)}+n_{(3214)}=0 and n(2143)+n(3412)=n(2413)+n(3142)=0n_{(2143)}+n_{(3412)}=n_{(2413)}+n_{(3142)}=0, we have 2n(1234)=02n_{(1234)}=0. Hence n(1234)=0n_{(1234)}=0. This implies n(2143)=n(3412)=0n_{(2143)}=n_{(3412)}=0. Finally, since n(1234)+n(4321)=n(1324)+n(4231)n_{(1234)}+n_{(4321)}=n_{(1324)}+n_{(4231)}, we have n(4321)=0n_{(4321)}=0. We have shown that x=0x=0. This completes the proof. ∎

From Proposition 12.6 (or its proof), we see that K0(B)kerδK_{0}(B)\cong\ker\delta is isomorphic to n\mathbb{Z}^{n} with n10n\leq 10. Note that the group generated by {[Pi,j]0i,j=1,2,3,4}\{[P_{i,j}]_{0}\mid i,j=1,2,3,4\} is in fact generated by 1010 elements

[P1,1]0,[P1,2]0,[P1,3]0,[P1,4]0,[P2,1]0,[P2,2]0,[P2,3]0,[P3,1]0,[P3,2]0,[P3,3]0.[P_{1,1}]_{0},[P_{1,2}]_{0},[P_{1,3}]_{0},[P_{1,4}]_{0},[P_{2,1}]_{0},[P_{2,2}]_{0},[P_{2,3}]_{0},[P_{3,1}]_{0},[P_{3,2}]_{0},[P_{3,3}]_{0}.

We will show that K0(B)kerδK_{0}(B)\cong\ker\delta is isomorphic to 10\mathbb{Z}^{10} in Proposition 15.5.

Table 12.2. Computation of [Pi,j]0[P_{i,j}]_{0}
ii 1 2 3 4
qjq\diagdown j 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
(1234) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
(2143) 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
(3412) 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
(4321) 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
(1342) 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
(2431) 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0
(3124) 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
(4213) 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0
(1423) 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
(2314) 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
(3241) 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
(4132) 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
(1243) 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
(2134) 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
(3421) 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0
(4312) 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
(1432) 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
(2341) 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
(3214) 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
(4123) 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
(1324) 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
(2413) 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0
(3142) 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0
(4231) 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0

The positive cone K0(B)+K_{0}(B^{\text{\textbullet}})_{+} of K0(B)K_{0}(B^{\text{\textbullet}}) is the set of sums of qσq_{\sigma}’s. In other words, we have

K0(B)+={σ𝔖4nσqσ|nσ=0,1,2,}K_{0}(B^{\text{\textbullet}})_{+}=\Big{\{}\sum_{\sigma\in\mathfrak{S}_{4}}n_{\sigma}q_{\sigma}\ \Big{|}\ n_{\sigma}=0,1,2,\ldots\Big{\}}
Proposition 12.7.

The intersection K0(B)+kerδK_{0}(B^{\text{\textbullet}})_{+}\cap\ker\delta is the set of sums of [Pi,j]0[P_{i,j}]_{0}’s.

Proof.

It is clear that [Pi,j]0[P_{i,j}]_{0} is in K0(B)+kerδK_{0}(B^{\text{\textbullet}})_{+}\cap\ker\delta for i,j=1,2,3,4i,j=1,2,3,4. Thus the set of sums of [Pi,j]0[P_{i,j}]_{0}’s is contained in K0(B)+kerδK_{0}(B^{\text{\textbullet}})_{+}\cap\ker\delta.

Take xK0(B)+kerδx\in K_{0}(B^{\text{\textbullet}})_{+}\cap\ker\delta. By Proposition 12.6, we have ni,jn_{i,j}\in\mathbb{Z} for i,j=1,2,3,4i,j=1,2,3,4 such that x=i,j=14ni,j[Pi,j]0x=\sum_{i,j=1}^{4}n_{i,j}[P_{i,j}]_{0}. We set nni,j<0(ni,j)n\coloneqq\sum_{n_{i,j}<0}(-n_{i,j}). If n=0n=0, then xx is in the set of sums of [Pi,j]0[P_{i,j}]_{0}’s. If n>0n>0, then we will show that there exists ni,jn^{\prime}_{i,j}\in\mathbb{Z} for i,j=1,2,3,4i,j=1,2,3,4 such that x=i,j=14ni,j[Pi,j]0x=\sum_{i,j=1}^{4}n^{\prime}_{i,j}[P_{i,j}]_{0} and that nni,j<0(ni,j)n^{\prime}\coloneqq\sum_{n^{\prime}_{i,j}<0}(-n^{\prime}_{i,j}) satisfies 0n<n0\leq n^{\prime}<n. Repeating this argument at most nn times, we will find ni,j′′n^{\prime\prime}_{i,j}\in\mathbb{Z} for i,j=1,2,3,4i,j=1,2,3,4 such that x=i,j=14ni,j′′[Pi,j]0x=\sum_{i,j=1}^{4}n^{\prime\prime}_{i,j}[P_{i,j}]_{0} and that n′′ni,j′′<0(ni,j′′)n^{\prime\prime}\coloneqq\sum_{n^{\prime\prime}_{i,j}<0}(-n^{\prime\prime}_{i,j}) satisfies n′′=0n^{\prime\prime}=0. This shows that xx is in the set of sums of [Pi,j]0[P_{i,j}]_{0}’s.

Since n>0n>0 we have i0,j0{1,2,3,4}i_{0},j_{0}\in\{1,2,3,4\} such that ni0,j0<0n_{i_{0},j_{0}}<0. To simplify the notation, we assume i0=3i_{0}=3 and j0=1j_{0}=1. The other 1515 cases can be shown similarly. Since xK0(B)+x\in K_{0}(B^{\text{\textbullet}})_{+}, the coefficient of vσv_{\sigma} is non-negative for all σ𝔖4\sigma\in\mathfrak{S}_{4}. In particular, so is for σ𝔖4\sigma\in\mathfrak{S}_{4} with i0=σ(j0)i_{0}=\sigma(j_{0}). Since the coefficient of v(3,1,2,4)v_{(3,1,2,4)} is non-negative we have n3,1+n1,2+n2,3+n4,40n_{3,1}+n_{1,2}+n_{2,3}+n_{4,4}\geq 0. Since n3,1<0n_{3,1}<0, we have n1,2+n2,3+n4,4>0n_{1,2}+n_{2,3}+n_{4,4}>0. Hence either n1,2n_{1,2}, n2,3n_{2,3} or n4,4n_{4,4} is positive. Similarly, since the coefficients of

v(3,1,4,2),v(3,2,1,4),v(3,2,4,1),v(3,4,1,2),v(3,4,2,1)v_{(3,1,4,2)},v_{(3,2,1,4)},v_{(3,2,4,1)},v_{(3,4,1,2)},v_{(3,4,2,1)}

are non-negative, we obtain that either n1,2n_{1,2}, n4,3n_{4,3} or n2,4n_{2,4} is positive etc. Then by Lemma 12.8 below we have either

  1. (i)

    ni1,2n_{i_{1},2} ni1,3n_{i_{1},3} and ni1,4n_{i_{1},4} are positive for some i1{1,2,4}i_{1}\in\{1,2,4\},

  2. (ii)

    n1,j1n_{1,j_{1}} n2,j1n_{2,j_{1}} and n4,j1n_{4,j_{1}} are positive for some j1{2,3,4}j_{1}\in\{2,3,4\}, or

  3. (iii)

    ni1,j1n_{i_{1},j_{1}}, ni1,j2n_{i_{1},j_{2}}, ni2,j1n_{i_{2},j_{1}} and ni2,j2n_{i_{2},j_{2}} are positive for some distinct i1,i2{1,2,4}i_{1},i_{2}\in\{1,2,4\} and distinct j1,j2{2,3,4}j_{1},j_{2}\in\{2,3,4\}.

In the case (i), we set ni,jn^{\prime}_{i,j} by

ni,j={ni,j+1for i{1,2,3,4}{i1} and j=1,ni,j1for i=i1 and j=2,3,4ni,jotherwise.n^{\prime}_{i,j}=\begin{cases}n_{i,j}+1&\text{for $i\in\{1,2,3,4\}\setminus\{i_{1}\}$ and $j=1$,}\\ n_{i,j}-1&\text{for $i=i_{1}$ and $j=2,3,4$}\\ n_{i,j}&\text{otherwise.}\end{cases}

Then since n3,1=n3,1+1n^{\prime}_{3,1}=n_{3,1}+1, nni,j<0(ni,j)n^{\prime}\coloneqq\sum_{n^{\prime}_{i,j}<0}(-n^{\prime}_{i,j}) satisfies 0n<n0\leq n^{\prime}<n. We also have x=i,j=14ni,j[Pi,j]0x=\sum_{i,j=1}^{4}n^{\prime}_{i,j}[P_{i,j}]_{0} because i=14[Pi,1]0=j=14[Pi1,j]0\sum_{i=1}^{4}[P_{i,1}]_{0}=\sum_{j=1}^{4}[P_{i_{1},j}]_{0}. In the case (ii), we get the same conclusion for ni,jn^{\prime}_{i,j} defined by

ni,j={ni,j+1for i=3 and j{1,2,3,4}{j1},ni,j1for i=1,2,4 and j=j1ni,jotherwise.n^{\prime}_{i,j}=\begin{cases}n_{i,j}+1&\text{for $i=3$ and $j\in\{1,2,3,4\}\setminus\{j_{1}\}$,}\\ n_{i,j}-1&\text{for $i=1,2,4$ and $j=j_{1}$}\\ n_{i,j}&\text{otherwise.}\end{cases}

In the case (iii), we define ni,jn^{\prime}_{i,j} by

ni,j={ni,j+1for i{1,2,3,4}{i1,i2} and j{1,2,3,4}{j1,j2},ni,j1for i=i1,i2 and j=j1,j2ni,jotherwise.n^{\prime}_{i,j}=\begin{cases}n_{i,j}+1&\text{for $i\in\{1,2,3,4\}\setminus\{i_{1},i_{2}\}$ and $j\in\{1,2,3,4\}\setminus\{j_{1},j_{2}\}$,}\\ n_{i,j}-1&\text{for $i=i_{1},i_{2}$ and $j=j_{1},j_{2}$}\\ n_{i,j}&\text{otherwise.}\end{cases}

Since n3,1=n3,1+1n^{\prime}_{3,1}=n_{3,1}+1, nni,j<0(ni,j)n^{\prime}\coloneqq\sum_{n^{\prime}_{i,j}<0}(-n^{\prime}_{i,j}) satisfies 0n<n0\leq n^{\prime}<n. We also have x=i,j=14ni,j[Pi,j]0x=\sum_{i,j=1}^{4}n^{\prime}_{i,j}[P_{i,j}]_{0} because

i=14[Pi,j1]0+i=14[Pi,j2]0=j=14[Pi3,j]0+j=14[Pi4,j]0.\sum_{i=1}^{4}[P_{i,j_{1}}]_{0}+\sum_{i=1}^{4}[P_{i,j_{2}}]_{0}=\sum_{j=1}^{4}[P_{i_{3},j}]_{0}+\sum_{j=1}^{4}[P_{i_{4},j}]_{0}.

where {i3,i4}={1,2,3,4}{i1,i2}\{i_{3},i_{4}\}=\{1,2,3,4\}\setminus\{i_{1},i_{2}\}. This completes the proof. ∎

Lemma 12.8.

Let a,b,ca,b,c and d,e,fd,e,f are distinct three numbers, respectively. Suppose ni,jn_{i,j}\in\mathbb{Z} for i=a,b,ci=a,b,c and j=d,e,fj=d,e,f satisfy that either nω(d),dn_{\omega(d),d}, nω(e),en_{\omega(e),e} or nω(f),fn_{\omega(f),f} is positive for all bijection ω:{d,e,f}{a,b,c}\omega\colon\{d,e,f\}\to\{a,b,c\}. Then we have either

  1. (i)

    ni1,dn_{i_{1},d} ni1,en_{i_{1},e} and ni1,fn_{i_{1},f} are positive for some i1{a,b,c}i_{1}\in\{a,b,c\},

  2. (ii)

    na,j1n_{a,j_{1}} nb,j1n_{b,j_{1}} and nc,j1n_{c,j_{1}} are positive for some j1{d,e,f}j_{1}\in\{d,e,f\}, or

  3. (iii)

    ni1,j1n_{i_{1},j_{1}}, ni1,j2n_{i_{1},j_{2}}, ni2,j1n_{i_{2},j_{1}} and ni2,j2n_{i_{2},j_{2}} are positive for some distinct i1,i2{a,b,c}i_{1},i_{2}\in\{a,b,c\} and distinct j1,j2{d,e,f}j_{1},j_{2}\in\{d,e,f\}.

Proof.

To the contrary, assume that the conclusion does not hold. Then for j=d,e,fj=d,e,f, either na,jn_{a,j}, nb,jn_{b,j} or nc,jn_{c,j} is non-positive. Thus we obtain a map ω:{d,e,f}{a,b,c}\omega\colon\{d,e,f\}\to\{a,b,c\} such that nω(j),jn_{\omega(j),j} is non-positive for j=d,e,fj=d,e,f. If the cardinality of the image of ω\omega is three, then ω\omega is a bijection and it contradicts the assumption. If the cardinality of the image of ω\omega is two, let i1i_{1} be the element in {a,b,c}\{a,b,c\} which is not in the image of ω\omega. Then we have either ni1,dn_{i_{1},d} ni1,en_{i_{1},e} or ni1,fn_{i_{1},f} is non-positive. Let j1{d,e,f}j_{1}\in\{d,e,f\} be an element such that ni1,j1n_{i_{1},j_{1}} is non-positive. If the cardinality of ω1(ω(j1))\omega^{-1}(\omega(j_{1})) is two, we get a bijection ω:{d,e,f}{a,b,c}\omega^{\prime}\colon\{d,e,f\}\to\{a,b,c\} such that nω(d),dn_{\omega(d),d}, nω(e),en_{\omega(e),e} and nω(f),fn_{\omega(f),f} are non-positive. This is a contradiction. If the cardinality of ω1(ω(j1))\omega^{-1}(\omega(j_{1})) is one, we have either ni1,j2n_{i_{1},j_{2}}, ni1,j3n_{i_{1},j_{3}}, ni2,j2n_{i_{2},j_{2}} or ni2,j3n_{i_{2},j_{3}} is non-positive where i2=ω(j1)i_{2}=\omega(j_{1}) and {j2,j3}={d,e,f}{j1}\{j_{2},j_{3}\}=\{d,e,f\}\setminus\{j_{1}\}. In this case, we can find a bijection ω:{d,e,f}{a,b,c}\omega^{\prime}\colon\{d,e,f\}\to\{a,b,c\} such that nω(d),dn_{\omega(d),d}, nω(e),en_{\omega(e),e} and nω(f),fn_{\omega(f),f} are non-positive. This is a contradiction. Finally, if the cardinality of the image of ω\omega is one, let i1i_{1} be the unique element of the image of ω\omega, and i2i_{2} and i3i_{3} be the other two elements in {a,b,c}\{a,b,c\}. We have j2,j3{d,e,f}j_{2},j_{3}\in\{d,e,f\} such that ni2,j2n_{i_{2},j_{2}} and ni3,j3n_{i_{3},j_{3}} are non-positive. If j2j3j_{2}\neq j_{3}, then we can find a bijection ω:{d,e,f}{a,b,c}\omega^{\prime}\colon\{d,e,f\}\to\{a,b,c\} such that nω(d),dn_{\omega(d),d}, nω(e),en_{\omega(e),e} and nω(f),fn_{\omega(f),f} are non-positive. This is a contradiction. If j2=j3j_{2}=j_{3}, then we have either ni2,j1n_{i_{2},j_{1}}, ni2,j1n_{i_{2},j^{\prime}_{1}}, ni3,j1n_{i_{3},j^{\prime}_{1}} or ni3,j1n_{i_{3},j_{1}} is non-positive where {j1,j1}={d,e,f}{j2}\{j_{1},j^{\prime}_{1}\}=\{d,e,f\}\setminus\{j_{2}\}. In this case, we can find a bijection ω:{d,e,f}{a,b,c}\omega^{\prime}\colon\{d,e,f\}\to\{a,b,c\} such that nω(d),dn_{\omega(d),d}, nω(e),en_{\omega(e),e} and nω(f),fn_{\omega(f),f} are non-positive. This is a contradiction. We are done. ∎

13. The Structure of the Ideal II

Definition 13.1.

Define a subspace VV of P3\mathbb{R}P^{3} by

V{[a1,a2,a3,a4]P3a1,a2,a3>|a4|}.V\coloneqq\{[a_{1},a_{2},a_{3},a_{4}]\in\mathbb{R}P^{3}\mid a_{1},a_{2},a_{3}>|a_{4}|\}.

The next proposition gives us a motivation to compute the subspace VV and its closure V¯\overline{V} in P3\mathbb{R}P^{3}.

Proposition 13.2.

We have the following facts.

  1. (i)

    For each i,j=1,2,3,4i,j=1,2,3,4 with (i,j)(1,1)(i,j)\neq(1,1), we have σi,j(V)V=\sigma_{i,j}(V)\cap V=\emptyset

  2. (ii)

    The restriction of π\pi to VV is a homeomorphism onto π(V)X\pi(V)\subset X .

  3. (iii)

    V¯={[a1,a2,a3,a4]P3a1,a2,a3|a4|}\overline{V}=\{[a_{1},a_{2},a_{3},a_{4}]\in\mathbb{R}P^{3}\mid a_{1},a_{2},a_{3}\geq|a_{4}|\} and π(V¯)=X\pi(\overline{V})=X.

Proof.

(i) and (iii) can be checked directly, and (ii) follows from (i). ∎

In the next proposition, when we write [a1,a2,a3,a4]V¯[a_{1},a_{2},a_{3},a_{4}]\in\overline{V}, we mean (a1,a2,a3,a4)(a_{1},a_{2},a_{3},a_{4}) satisfies a1,a2,a3|a4|a_{1},a_{2},a_{3}\geq|a_{4}|.

Proposition 13.3.

The map

h:V¯[a1,a2,a3,a4](3a12+a42+4a4|a4|,3a22+a42+4a4|a4|,3a32+a42+4a4|a4|)3h\colon\overline{V}\ni[a_{1},a_{2},a_{3},a_{4}]\mapsto(3a_{1}^{2}+a_{4}^{2}+4a_{4}|a_{4}|,3a_{2}^{2}+a_{4}^{2}+4a_{4}|a_{4}|,3a_{3}^{2}+a_{4}^{2}+4a_{4}|a_{4}|)\in\mathbb{R}^{3}

is a homeomorphism onto the hexahedron whose 6 faces are isosceles right triangles and whose vertices are (0,0,0)(0,0,0), (3,0,0)(3,0,0), (0,3,0)(0,3,0), (0,0,3)(0,0,3) and (2,2,2)(2,2,2). This map sends VV onto the interior of the hexahedron.

Proof.

First note that we have |a4|1/2|a_{4}|\leq 1/2 for [a1,a2,a3,a4]V¯[a_{1},a_{2},a_{3},a_{4}]\in\overline{V}. When |a4|=1/2|a_{4}|=1/2, we have a1=a2=a3=1/2a_{1}=a_{2}=a_{3}=1/2. We have h([1/2,1/2,1/2,1/2])=(2,2,2)h([1/2,1/2,1/2,1/2])=(2,2,2) and h([1/2,1/2,1/2,1/2])=(0,0,0)h([1/2,1/2,1/2,-1/2])=(0,0,0). When |a4|=0|a_{4}|=0, we have a1,a2,a30a_{1},a_{2},a_{3}\geq 0 and a12+a22+a32=1a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1. Thus

{h([a1,a2,a3,0])[a1,a2,a3,0]V¯}={(x,y,z)3x,y,z0,x+y+z=3}\{h([a_{1},a_{2},a_{3},0])\mid[a_{1},a_{2},a_{3},0]\in\overline{V}\}=\{(x,y,z)\in\mathbb{R}^{3}\mid x,y,z\geq 0,\ x+y+z=3\}

which is the equilateral triangle whose vertices are (3,0,0)(3,0,0), (0,3,0)(0,3,0) and (0,0,3)(0,0,3). For each tt with 1/2<t<0-1/2<t<0, we have

{h([a1,a2,a3,t])\displaystyle\{h([a_{1},a_{2},a_{3},t]) [a1,a2,a3,t]V¯}\displaystyle\mid[a_{1},a_{2},a_{3},t]\in\overline{V}\}
={(x,y,z)3x,y,z0,x+y+z=3(14t2)}\displaystyle=\{(x,y,z)\in\mathbb{R}^{3}\mid x,y,z\geq 0,\ x+y+z=3(1-4t^{2})\}

which is the equilateral triangle whose vertices are (3(14t2),0,0)(3(1-4t^{2}),0,0), (0,3(14t2),0)(0,3(1-4t^{2}),0) and (0,0,3(14t2))(0,0,3(1-4t^{2})). Thus

{h([a1,a2,a3,a4])[a1,a2,a3,a4]V¯,a40}\{h([a_{1},a_{2},a_{3},a_{4}])\mid[a_{1},a_{2},a_{3},a_{4}]\in\overline{V},a_{4}\leq 0\}

is the tetrahedron whose vertices are (0,0,0)(0,0,0), (3,0,0)(3,0,0), (0,3,0)(0,3,0) and (0,0,3)(0,0,3). Note that for each [a1,a2,a3,a4]V¯[a_{1},a_{2},a_{3},a_{4}]\in\overline{V} with a40a_{4}\geq 0, the point h([a1,a2,a3,a4])h([a_{1},a_{2},a_{3},a_{4}]) is the reflection point of h([a1,a2,a3,a4])h([a_{1},a_{2},a_{3},-a_{4}]) with respect to the plane x+y+z=3x+y+z=3 because the vector (8a42,8a42,8a42)(8a_{4}^{2},8a_{4}^{2},8a_{4}^{2}) is orthogonal to the plane x+y+z=3x+y+z=3 and the point (3a12+a42,3a22+a42,3a32+a42)(3a_{1}^{2}+a_{4}^{2},3a_{2}^{2}+a_{4}^{2},3a_{3}^{2}+a_{4}^{2}) is on the plane x+y+z=3x+y+z=3. Thus

{h([a1,a2,a3,a4])[a1,a2,a3,a4]V¯,a40}\{h([a_{1},a_{2},a_{3},a_{4}])\mid[a_{1},a_{2},a_{3},a_{4}]\in\overline{V},a_{4}\geq 0\}

is the reflection of the tetrahedron above with respect to the plane x+y+z=3x+y+z=3, which in turn is the tetrahedron whose vertices are (3,0,0)(3,0,0), (0,3,0)(0,3,0), (0,0,3)(0,0,3) and (2,2,2)(2,2,2). From the discussion above, we see that hh is injective. Therefore we see that hh is a homeomorphism from V¯\overline{V} onto the hexahedron whose vertices are (0,0,0)(0,0,0), (3,0,0)(3,0,0), (0,3,0)(0,3,0), (0,0,3)(0,0,3) and (2,2,2)(2,2,2). We can also see that the map hh sends VV onto the interior of the hexahedron. ∎

Figure 13.1. V¯\overline{V}
[1/2,1/2,1/2,1/2][1/2,1/2,1/2,-1/2][1,0,0,0][1,0,0,0][0,1,0,0][0,1,0,0][0,0,1,0][0,0,1,0][1/2,1/2,1/2,1/2][1/2,1/2,1/2,1/2]
Definition 13.4.

Define O0π(V)OO_{0}\coloneqq\pi(V)\subset O.

By Proposition 13.3, O0VO_{0}\cong V is homeomorphic to 3\mathbb{R}^{3}.

Definition 13.5.

We set EF~V¯E\coloneqq\widetilde{F}\cap\overline{V} and Ei,jF~i,jV¯E_{i,j}\coloneqq\widetilde{F}_{i,j}\cap\overline{V} for i,j=2,3,4i,j=2,3,4.

We have E=i,j=24Ei,jE=\bigcup_{i,j=2}^{4}E_{i,j}. For i,j=2,3,4i,j=2,3,4 with iji\neq j, the map π:Ei,jFi,j\pi\colon E_{i,j}\to F_{i,j} is a homeomorphism. For i=2,3,4i=2,3,4 the map π:Ei,iFi,i\pi\colon E_{i,i}\to F_{i,i} is a 22-to-11 map except the middle point.

Figure 13.2. π:EF\pi\colon E\to F (t=1/2t=1/\sqrt{2})
x(423)x_{(423)}x(342)x_{(342)}x(243)x_{(243)}x(324)x_{(324)}x(432)x_{(432)}F3,4F_{3,4}F4,2F_{4,2}F2,3F_{2,3}F2,4F_{2,4}F4,3F_{4,3}F3,2F_{3,2}[1/2,1/2,1/2,1/2][1/2,1/2,1/2,-1/2][1/2,1/2,1/2,1/2][1/2,1/2,1/2,1/2][t,t,0,0][t,t,0,0][0,t,t,0][0,t,t,0][t,0,t,0][t,0,t,0][1,0,0,0][1,0,0,0][0,1,0,0][0,1,0,0][0,0,1,0][0,0,1,0]E3,4E_{3,4}E4,2E_{4,2}E2,3E_{2,3}E3,3E_{3,3}E4,4E_{4,4}E2,4E_{2,4}E4,3E_{4,3}E3,2E_{3,2}E2,2E_{2,2}\longrightarrowx(234)x_{(234)}F2,2F_{2,2}F4,4F_{4,4}F3,3F_{3,3}

We have

E2,2={[a,b,0,0]V¯a,b0,a2+b2=1},\displaystyle E_{2,2}=\{[a,b,0,0]\in\overline{V}\mid a,b\geq 0,\ a^{2}+b^{2}=1\},
E2,3={[a,b,b,a]V¯0ab, 2(a2+b2)=1},\displaystyle E_{2,3}=\{[a,b,b,-a]\in\overline{V}\mid 0\leq a\leq b,\ 2(a^{2}+b^{2})=1\},
E2,4={[a,b,a,b]V¯0ba, 2(a2+b2)=1},\displaystyle E_{2,4}=\{[a,b,a,b]\in\overline{V}\mid 0\leq b\leq a,\ 2(a^{2}+b^{2})=1\},
E3,2={[a,b,b,a]V¯0ab, 2(a2+b2)=1},\displaystyle E_{3,2}=\{[a,b,b,a]\in\overline{V}\mid 0\leq a\leq b,\ 2(a^{2}+b^{2})=1\},
E3,3={[a,0,b,0]V¯a,b0,a2+b2=1},\displaystyle E_{3,3}=\{[a,0,b,0]\in\overline{V}\mid a,b\geq 0,\ a^{2}+b^{2}=1\},
E3,4={[a,a,b,b]V¯0ba, 2(a2+b2)=1},\displaystyle E_{3,4}=\{[a,a,b,-b]\in\overline{V}\mid 0\leq b\leq a,\ 2(a^{2}+b^{2})=1\},
E4,2={[a,b,a,b]V¯0ba, 2(a2+b2)=1},\displaystyle E_{4,2}=\{[a,b,a,-b]\in\overline{V}\mid 0\leq b\leq a,\ 2(a^{2}+b^{2})=1\},
E4,3={[a,a,b,b]V¯0ba, 2(a2+b2)=1},\displaystyle E_{4,3}=\{[a,a,b,b]\in\overline{V}\mid 0\leq b\leq a,\ 2(a^{2}+b^{2})=1\},
E4,4={[0,a,b,0]V¯a,b0,a2+b2=1}.\displaystyle E_{4,4}=\{[0,a,b,0]\in\overline{V}\mid a,b\geq 0,\ a^{2}+b^{2}=1\}.
Definition 13.6.

We set Rx+,Ry+,Rz+,Rx,Ry,RzV¯R^{+}_{x},R^{+}_{y},R^{+}_{z},R^{-}_{x},R^{-}_{y},R^{-}_{z}\subset\overline{V} by

Rx±\displaystyle R^{\pm}_{x} {[13t2,t,t,±t]V¯0<t<1/2}\displaystyle\coloneqq\{[\sqrt{1-3t^{2}},t,t,\pm t]\in\overline{V}\mid 0<t<1/2\}
Ry±\displaystyle R^{\pm}_{y} {[t,13t2,t,±t]V¯0<t<1/2}\displaystyle\coloneqq\{[t,\sqrt{1-3t^{2}},t,\pm t]\in\overline{V}\mid 0<t<1/2\}
Rz±\displaystyle R^{\pm}_{z} {[t,t,13t2,±t]V¯0<t<1/2}\displaystyle\coloneqq\{[t,t,\sqrt{1-3t^{2}},\pm t]\in\overline{V}\mid 0<t<1/2\}

We see that Rx+Ry+Rz+RxRyRzR^{+}_{x}\cup R^{+}_{y}\cup R^{+}_{z}\cup R^{-}_{x}\cup R^{-}_{y}\cup R^{-}_{z} is the space obtained by subtracting EE from the “edges” of V¯\overline{V}.

Definition 13.7.

We set R+,ROR^{+},R^{-}\subset O by

R±\displaystyle R^{\pm} π(Rx±)=π(Ry±)=π(Rz±)\displaystyle\coloneqq\pi(R^{\pm}_{x})=\pi(R^{\pm}_{y})=\pi(R^{\pm}_{z})

Note that π\pi induces a homeomorphism from Rx±R^{\pm}_{x} (or Ry±R^{\pm}_{y}, Rz±R^{\pm}_{z}) to R±R^{\pm}. Hence both R+R^{+} and RR^{-} are homeomorphic to \mathbb{R}.

Definition 13.8.

We set

T^2,3\displaystyle\widehat{T}_{2,3} {[t,a,b,t]V¯0<t<1/2,a,b>t,a2+b2=12t2},\displaystyle\coloneqq\{[t,a,b,-t]\in\overline{V}\mid 0<t<1/2,\ a,b>t,\ a^{2}+b^{2}=1-2t^{2}\},
T^3,4\displaystyle\widehat{T}_{3,4} {[a,b,t,t]V¯0<t<1/2,a,b>t,a2+b2=12t2},\displaystyle\coloneqq\{[a,b,t,-t]\in\overline{V}\mid 0<t<1/2,\ a,b>t,\ a^{2}+b^{2}=1-2t^{2}\},
T^4,2\displaystyle\widehat{T}_{4,2} {[b,t,a,t]V¯0<t<1/2,a,b>t,a2+b2=12t2},\displaystyle\coloneqq\{[b,t,a,-t]\in\overline{V}\mid 0<t<1/2,\ a,b>t,\ a^{2}+b^{2}=1-2t^{2}\},
T^3,2\displaystyle\widehat{T}_{3,2} {[t,a,b,t]V¯0<t<1/2,a,b>t,a2+b2=12t2},\displaystyle\coloneqq\{[t,a,b,t]\in\overline{V}\mid 0<t<1/2,\ a,b>t,\ a^{2}+b^{2}=1-2t^{2}\},
T^4,3\displaystyle\widehat{T}_{4,3} {[a,b,t,t]V¯0<t<1/2,a,b>t,a2+b2=12t2},\displaystyle\coloneqq\{[a,b,t,t]\in\overline{V}\mid 0<t<1/2,\ a,b>t,\ a^{2}+b^{2}=1-2t^{2}\},
T^2,4\displaystyle\widehat{T}_{2,4} {[b,t,a,t]V¯0<t<1/2,a,b>t,a2+b2=12t2}.\displaystyle\coloneqq\{[b,t,a,t]\in\overline{V}\mid 0<t<1/2,\ a,b>t,\ a^{2}+b^{2}=1-2t^{2}\}.

These 6 spaces are the interiors of the 6 “faces” of V¯\overline{V}.

Definition 13.9.

We set

T^2,3r\displaystyle\widehat{T}_{2,3}^{r} {[t,a,b,t]T^2,3a>b},\displaystyle\coloneqq\{[t,a,b,-t]\in\widehat{T}_{2,3}\mid a>b\}, T^2,3l\displaystyle\widehat{T}_{2,3}^{l} {[t,a,b,t]T^2,3a<b}\displaystyle\coloneqq\{[t,a,b,-t]\in\widehat{T}_{2,3}\mid a<b\}
T^3,4r\displaystyle\widehat{T}_{3,4}^{r} {[a,b,t,t]T^3,4a>b},\displaystyle\coloneqq\{[a,b,t,-t]\in\widehat{T}_{3,4}\mid a>b\}, T^3,4l\displaystyle\widehat{T}_{3,4}^{l} {[a,b,t,t]T^3,4a<b}\displaystyle\coloneqq\{[a,b,t,-t]\in\widehat{T}_{3,4}\mid a<b\}
T^4,2r\displaystyle\widehat{T}_{4,2}^{r} {[b,t,a,t]T^4,2a>b},\displaystyle\coloneqq\{[b,t,a,-t]\in\widehat{T}_{4,2}\mid a>b\}, T^4,2l\displaystyle\widehat{T}_{4,2}^{l} {[b,t,a,t]T^4,2a<b}\displaystyle\coloneqq\{[b,t,a,-t]\in\widehat{T}_{4,2}\mid a<b\}
T^3,2r\displaystyle\widehat{T}_{3,2}^{r} {[t,a,b,t]T^3,2a>b},\displaystyle\coloneqq\{[t,a,b,t]\in\widehat{T}_{3,2}\mid a>b\}, T^3,2l\displaystyle\widehat{T}_{3,2}^{l} {[t,a,b,t]T^3,2a<b}\displaystyle\coloneqq\{[t,a,b,t]\in\widehat{T}_{3,2}\mid a<b\}
T^4,3r\displaystyle\widehat{T}_{4,3}^{r} {[a,b,t,t]T^4,3a>b},\displaystyle\coloneqq\{[a,b,t,t]\in\widehat{T}_{4,3}\mid a>b\}, T^4,3l\displaystyle\widehat{T}_{4,3}^{l} {[a,b,t,t]T^4,3a<b}\displaystyle\coloneqq\{[a,b,t,t]\in\widehat{T}_{4,3}\mid a<b\}
T^2,4r\displaystyle\widehat{T}_{2,4}^{r} {[b,t,a,t]T^2,4a>b},\displaystyle\coloneqq\{[b,t,a,t]\in\widehat{T}_{2,4}\mid a>b\}, T^2,4l\displaystyle\widehat{T}_{2,4}^{l} {[b,t,a,t]T^2,4a<b}.\displaystyle\coloneqq\{[b,t,a,t]\in\widehat{T}_{2,4}\mid a<b\}.

For i,j=2,3,4i,j=2,3,4 with iji\neq j, the set T^i,j(T^i,jrT^i,jl)\widehat{T}_{i,j}\setminus(\widehat{T}_{i,j}^{r}\cup\widehat{T}_{i,j}^{l}) is the interior of Ei,jE_{i,j}.

Definition 13.10.

For i,j=2,3,4i,j=2,3,4 with iji\neq j, we set

Ti,jπ(T^i,jr)=π(T^i,jl).\displaystyle T_{i,j}\coloneqq\pi(\widehat{T}_{i,j}^{r})=\pi(\widehat{T}_{i,j}^{l}).

Note that π\pi induces a homeomorphism from T^i,jr\widehat{T}_{i,j}^{r} (or T^i,jl\widehat{T}_{i,j}^{l}) to Ti,jT_{i,j}. Hence Ti,jT_{i,j} is homeomorphic to 2\mathbb{R}^{2}.

The space OO is a disjoint union (as a set) of

O0,T2,3,T3,4,T4,2,R,T3,2,T4,3,T2,4,R+.O_{0},\ T_{2,3},\ T_{3,4},\ T_{4,2},\ R^{-},\ T_{3,2},\ T_{4,3},\ T_{2,4},\ R^{+}.

We use these spaces to compute the K-groups of I=M4(C0(O~))βI=M_{4}(C_{0}(\widetilde{O}))^{\beta}.

14. K-groups of the ideal II

Definition 14.1.

We set I0M4(C0(π1(O0)))βI_{0}\coloneqq M_{4}\big{(}C_{0}(\pi^{-1}(O_{0}))\big{)}^{\beta} and IM4(C0(π1(OO0)))βI^{\star}\coloneqq M_{4}\big{(}C_{0}(\pi^{-1}(O\setminus O_{0}))\big{)}^{\beta}.

We have a short exact sequence

0I0II0.0\longrightarrow I_{0}\longrightarrow I\longrightarrow I^{\star}\longrightarrow 0.

We have I0M4(C0(V))M4(C0(O0))M4(C0(3))I_{0}\cong M_{4}(C_{0}(V))\cong M_{4}(C_{0}(O_{0}))\cong M_{4}(C_{0}(\mathbb{R}^{3})).

Definition 14.2.

We set TT2,3T3,4T4,2T3,2T4,3T2,4T\coloneqq T_{2,3}\cup T_{3,4}\cup T_{4,2}\cup T_{3,2}\cup T_{4,3}\cup T_{2,4} and RRR+R\coloneqq R^{-}\cup R^{+}. We set IM4(C0(π1(T)))βI^{\circ}\coloneqq M_{4}\big{(}C_{0}(\pi^{-1}(T))\big{)}^{\beta} and IM4(C0(π1(R)))βI^{\text{\textbullet}}\coloneqq M_{4}\big{(}C_{0}(\pi^{-1}(R))\big{)}^{\beta}.

We have IM4(C0(T))i,jM4(C0(Ti,j))I^{\circ}\cong M_{4}(C_{0}(T))\cong\bigoplus_{i,j}M_{4}(C_{0}(T_{i,j})) and

IM4(C0(R))M4(C0(R))M4(C0(R+)).I^{\text{\textbullet}}\cong M_{4}(C_{0}(R))\cong M_{4}(C_{0}(R^{-}))\oplus M_{4}(C_{0}(R^{+})).

We have a short exact sequence

0III0.0\longrightarrow I^{\circ}\longrightarrow I^{\star}\longrightarrow I^{\text{\textbullet}}\longrightarrow 0.

This induces a six-term exact sequence

6K0(I)\textstyle{\mathbb{Z}^{6}\cong K_{0}(I^{\circ})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K0(I)\textstyle{K_{0}(I^{\star})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K0(I)\textstyle{K_{0}(I^{\text{\textbullet}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}2K1(I)\textstyle{\mathbb{Z}^{2}\cong K_{1}(I^{\text{\textbullet}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K1(I)\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces K_{1}(I^{\star})}K1(I)\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces K_{1}(I^{\circ})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

We set rK1(M4(C0(R)))r^{-}\in K_{1}\big{(}M_{4}(C_{0}(R^{-}))\big{)} and r+K1(M4(C0(R+)))r^{+}\in K_{1}\big{(}M_{4}(C_{0}(R^{+}))\big{)} to be the images of v(1234)K0(B(234))K0(B)v_{(1234)}\in K_{0}(B_{(234)})\subset K_{0}(B^{\text{\textbullet}}) under the exponential maps coming from the exact sequences

0M4(C0(R±))M4(C0(π1(R±{x(234)})))βB(234)0.0\longrightarrow M_{4}(C_{0}(R^{\pm}))\longrightarrow M_{4}\big{(}C_{0}(\pi^{-1}(R^{\pm}\cup\{x_{(234)}\}))\big{)}^{\beta}\longrightarrow B_{(234)}\longrightarrow 0.

Then similarly as the proof of Lemma 12.4, we see that rr^{-} and r+r^{+} are the generators of K1(M4(C0(R)))K_{1}\big{(}M_{4}(C_{0}(R^{-}))\big{)}\cong\mathbb{Z} and K1(M4(C0(R+)))K_{1}\big{(}M_{4}(C_{0}(R^{+}))\big{)}\cong\mathbb{Z}, respectively.

Let ω=(1342)𝔖4\omega=(1342)\in\mathfrak{S}_{4}. For i=2,3,4i=2,3,4, we set wi,ω(i)K0(M4(C0(Ti,ω(i))))w_{i,\omega(i)}\in K_{0}\big{(}M_{4}(C_{0}(T_{i,\omega(i)}))\big{)} to be the image of the generator rr^{-} of K1(M4(C0(R)))K_{1}\big{(}M_{4}(C_{0}(R^{-}))\big{)} under the index map coming from the exact sequences

0M4(C0(Ti,ω(i)))M4(C0(π1(Ti,ω(i)R)))βM4(C0(R))0.0\longrightarrow M_{4}(C_{0}(T_{i,\omega(i)}))\longrightarrow M_{4}\big{(}C_{0}(\pi^{-1}(T_{i,\omega(i)}\cup R^{-}))\big{)}^{\beta}\longrightarrow M_{4}(C_{0}(R^{-}))\longrightarrow 0.

Since

M4(C0(π1(T2,3R)))βM4(C0(T^2,3rRy))M4(C0((0,1)×(0,1]))M_{4}\big{(}C_{0}(\pi^{-1}(T_{2,3}\cup R^{-}))\big{)}^{\beta}\cong M_{4}\big{(}C_{0}(\widehat{T}_{2,3}^{r}\cup R_{y}^{-})\big{)}\cong M_{4}\big{(}C_{0}((0,1)\times(0,1])\big{)}

whose K-groups are 0, w2,3w_{2,3} is a generator of K0(M4(C0(T2,3)))K_{0}\big{(}M_{4}(C_{0}(T_{2,3}))\big{)}\cong\mathbb{Z}. Similarly, w3,4w_{3,4} and w4,2w_{4,2} are generators of K0(M4(C0(T3,4)))K_{0}\big{(}M_{4}(C_{0}(T_{3,4}))\big{)}\cong\mathbb{Z} and K0(M4(C0(T4,2)))K_{0}\big{(}M_{4}(C_{0}(T_{4,2}))\big{)}\cong\mathbb{Z}, respectively.

Similarly for i=2,3,4i=2,3,4, we set the generator wω(i),iw_{\omega(i),i} of K0(M4(C0(Tω(i),i)))K_{0}\big{(}M_{4}(C_{0}(T_{\omega(i),i}))\big{)}\cong\mathbb{Z} to be the image of the generator r+r^{+} of K1(M4(C0(R+)))K_{1}\big{(}M_{4}(C_{0}(R^{+}))\big{)} under the index map coming from the exact sequences

0M4(C0(Tω(i),i))M4(C0(π1(Tω(i),iR+)))βM4(C0(R+))0.0\longrightarrow M_{4}(C_{0}(T_{\omega(i)},i))\longrightarrow M_{4}\big{(}C_{0}(\pi^{-1}(T_{\omega(i),i}\cup R^{+}))\big{)}^{\beta}\longrightarrow M_{4}(C_{0}(R^{+}))\longrightarrow 0.

Then the index map from

K1(I)K1(M4(C0(R)))K1(M4(C0(R+)))2K_{1}(I^{\text{\textbullet}})\cong K_{1}\big{(}M_{4}(C_{0}(R^{-}))\big{)}\oplus K_{1}\big{(}M_{4}(C_{0}(R^{+}))\big{)}\cong\mathbb{Z}^{2}

to

K0(I)K0(\displaystyle K_{0}(I^{\circ})\cong K_{0}\big{(} M4(C0(T2,3)))K0(M4(C0(T3,4)))K0(M4(C0(T4,2)))\displaystyle M_{4}(C_{0}(T_{2,3}))\big{)}\oplus K_{0}\big{(}M_{4}(C_{0}(T_{3,4}))\big{)}\oplus K_{0}\big{(}M_{4}(C_{0}(T_{4,2}))\big{)}
K0(M4(C0(T3,2)))K0(M4(C0(T4,3)))K0(M4(C0(T2,4)))6\displaystyle\oplus K_{0}\big{(}M_{4}(C_{0}(T_{3,2}))\big{)}\oplus K_{0}\big{(}M_{4}(C_{0}(T_{4,3}))\big{)}\oplus K_{0}\big{(}M_{4}(C_{0}(T_{2,4}))\big{)}\cong\mathbb{Z}^{6}

becomes 2(a,b)(a,a,a,b,b,b)6\mathbb{Z}^{2}\ni(a,b)\mapsto(a,a,a,b,b,b)\in\mathbb{Z}^{6}. Thus we have the following.

Proposition 14.3.

We have K0(I)4K_{0}(I^{\star})\cong\mathbb{Z}^{4} and K1(I)=0K_{1}(I^{\star})=0.

We denote by s1,s2,s3,s4K0(I)s_{1},s_{2},s_{3},s_{4}\in K_{0}(I^{\star}) the images of w2,3,w3,4,w3,2,w4,3K0(I)w_{2,3},w_{3,4},w_{3,2},w_{4,3}\in K_{0}(I^{\circ}). Then {s1,s2,s3,s4}\{s_{1},s_{2},s_{3},s_{4}\} becomes a basis of K0(I)4K_{0}(I^{\star})\cong\mathbb{Z}^{4}. Note that the images of w4,2,w2,4K0(I)w_{4,2},w_{2,4}\in K_{0}(I^{\circ}) are s1s2K0(I)-s_{1}-s_{2}\in K_{0}(I^{\star}) and s3s4K0(I)-s_{3}-s_{4}\in K_{0}(I^{\star}), respectively.

We have a six-term exact sequence

(14.1) 0=K0(I0)\textstyle{0=K_{0}(I_{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K0(I)\textstyle{K_{0}(I)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K0(I)4\textstyle{K_{0}(I^{\star})\cong\mathbb{Z}^{4}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0=K1(I)\textstyle{0=K_{1}(I^{\star})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K1(I)\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces K_{1}(I)}K1(I0).\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces K_{1}(I_{0})\cong\mathbb{Z}.}

To compute the index map K0(I)K1(I0)K_{0}(I^{\star})\to K_{1}(I_{0}), we need the following lemma.

Lemma 14.4.

The index map from K0(I)6K_{0}(I^{\circ})\cong\mathbb{Z}^{6} to K1(I0)K_{1}(I_{0})\cong\mathbb{Z} coming from the short exact sequence

0I0M4(C0(π1(O0T)))βI0.0\longrightarrow I_{0}\longrightarrow M_{4}\big{(}C_{0}(\pi^{-1}(O_{0}\cup T))\big{)}^{\beta}\longrightarrow I^{\circ}\longrightarrow 0.

is 0.

Proof.

We set T^i,j(T^i,jrT^i,jl)\widehat{T}\coloneqq\bigcup_{i,j}(\widehat{T}_{i,j}^{r}\cup\widehat{T}_{i,j}^{l}) where i,ji,j run 2,3,42,3,4 with iji\neq j. We have the following commutative diagram with exact rows;

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I0\textstyle{I_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}M4(C0(π1(O0T)))β\textstyle{M_{4}\big{(}C_{0}(\pi^{-1}(O_{0}\cup T))\big{)}^{\beta}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I\textstyle{I^{\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\phantom{.}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M4(C0(V))\textstyle{M_{4}(C_{0}(V))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M4(C0(VT^)))\textstyle{M_{4}(C_{0}(V\cup\widehat{T}))\big{)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M4(C0(T^))\textstyle{M_{4}(C_{0}(\widehat{T}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

Note that VT^=π1(O0T)V¯V\cup\widehat{T}=\pi^{-1}(O_{0}\cup T)\cap\overline{V}. From this diagram, we see that the index map K0(I)K1(I0)K_{0}(I^{\circ})\to K_{1}(I_{0}) factors through K0(M4(C0(T^)))K_{0}(M_{4}(C_{0}(\widehat{T}))).

Take i,j=2,3,4i,j=2,3,4 with iji\neq j. Let ai,jrK0(M4(C0(T^i,jr)))a_{i,j}^{r}\in K_{0}\big{(}M_{4}(C_{0}(\widehat{T}_{i,j}^{r}))\big{)} and ai,jlK0(M4(C0(T^i,jl)))a_{i,j}^{l}\in K_{0}\big{(}M_{4}(C_{0}(\widehat{T}_{i,j}^{l}))\big{)} be the images of the generator wi,jw_{i,j} of K0(M4(C0(Ti,j)))K_{0}\big{(}M_{4}(C_{0}(T_{i,j}))\big{)} under the homomorphism induced by π\pi. Under the map K0(I)K0(M4(C0(T^)))K_{0}(I^{\circ})\to K_{0}(M_{4}(C_{0}(\widehat{T}))), the generator wi,jw_{i,j} of K0(M4(C0(Ti,j)))K_{0}\big{(}M_{4}(C_{0}(T_{i,j}))\big{)} goes to ai,jr+ai,jla_{i,j}^{r}+a_{i,j}^{l}. Under the index map K0(M4(C0(T^)))K1(M4(C0(V)))K_{0}(M_{4}(C_{0}(\widehat{T})))\to K_{1}\big{(}M_{4}(C_{0}(V))\big{)} the element ai,jr+ai,jla_{i,j}^{r}+a_{i,j}^{l} goes to 0 because the side to VV from T^i,jr\widehat{T}_{i,j}^{r} and the one from T^i,jl\widehat{T}_{i,j}^{l} differ if T^i,jr\widehat{T}_{i,j}^{r} and T^i,jl\widehat{T}_{i,j}^{l} are identified through the map π\pi to Ti,jT_{i,j}. Thus we see that the map K0(I)K1(M4(C0(V)))K1(I0)K_{0}(I^{\circ})\to K_{1}\big{(}M_{4}(C_{0}(V))\big{)}\cong K_{1}(I_{0}) is 0. ∎

By this lemma, the composition of the map K0(I)K0(I)K_{0}(I^{\circ})\to K_{0}(I^{\star}) and the index map K0(I)K1(I0)K_{0}(I^{\star})\to K_{1}(I_{0}) is 0. Since the map 6K0(I)K0(I)4\mathbb{Z}^{6}\cong K_{0}(I^{\circ})\to K_{0}(I^{\star})\cong\mathbb{Z}^{4} is a surjection, we see that the index map K0(I)K1(I0)K_{0}(I^{\star})\to K_{1}(I_{0}) is 0. Thus we have the following.

Proposition 14.5.

We have K0(I)K0(I)4K_{0}(I)\cong K_{0}(I^{\star})\cong\mathbb{Z}^{4} and K1(I)K1(I0)K_{1}(I)\cong K_{1}(I_{0})\cong\mathbb{Z}.

15. K-groups of AA

Recall the six-term exact sequence

K0(I)\textstyle{K_{0}(I)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K0(A)\textstyle{K_{0}(A)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K0(B)\textstyle{K_{0}(B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ0\scriptstyle{\delta_{0}}K1(B)\textstyle{K_{1}(B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ1\scriptstyle{\delta_{1}}K1(A)\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces K_{1}(A)}K1(I).\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces K_{1}(I).}

In this section, we calculate the exponential map δ0:K0(B)K1(I)\delta_{0}\colon K_{0}(B)\to K_{1}(I) and the index map δ1:K1(B)K0(I)\delta_{1}\colon K_{1}(B)\to K_{0}(I).

Proposition 15.1.

The exponential map δ0:K0(B)K1(I)\delta_{0}\colon K_{0}(B)\to K_{1}(I) is 0.

Proof.

Since K0(B)K_{0}(B) is generated by 16 elements {[Pi,j]0}i,j=14\{[P_{i,j}]_{0}\}_{i,j=1}^{4}, the map K0(A)K0(B)K_{0}(A)\to K_{0}(B) is surjective. Hence the exponential map δ0:K0(B)K1(I)\delta_{0}\colon K_{0}(B)\to K_{1}(I) is 0. ∎

By the definitions of the generators of KK-groups we did so far, we have the following. (see Figure 13.2 for the relation between TT and FF.)

Proposition 15.2.

The index map δ′′:K1(B)18K0(I)6\delta^{\prime\prime}\colon K_{1}(B^{\circ})\cong\mathbb{Z}^{18}\to K_{0}(I^{\circ})\cong\mathbb{Z}^{6} coming from the short exact sequence

0IM4(C0(π1(TF)))βB0.0\longrightarrow I^{\circ}\longrightarrow M_{4}\big{(}C_{0}(\pi^{-1}(T\cup F^{\circ}))\big{)}^{\beta}\longrightarrow B^{\circ}\longrightarrow 0.

is as Table 15.1.

Table 15.1. Computation of the index map δ′′\delta^{\prime\prime}
2,2 3,3 4,4 2,3 3,4 4,2 3,2 4,3 2,4
wvw\diagdown v \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup
2,3 0 0 0 0 1-1 1-1 1 1 0 0 0 0 0 0 0 0 0 0
3,4 1-1 1-1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
4,2 0 0 1-1 1-1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3,2 0 0 0 0 1-1 1-1 0 0 0 0 0 0 1 1 0 0 0 0
4,3 1-1 1-1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
2,4 0 0 1-1 1-1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Definition 15.3.

The composition of the index map δ′′:K1(B)K0(I)\delta^{\prime\prime}\colon K_{1}(B^{\circ})\to K_{0}(I^{\circ}) and the map K0(I)K0(I)K_{0}(I^{\circ})\to K_{0}(I^{\star}) is denoted by η:K1(B)K0(I)\eta\colon K_{1}(B^{\circ})\to K_{0}(I^{\star})

We set η~:K1(B)K0(I)/2\widetilde{\eta}\colon K_{1}(B^{\circ})\to K_{0}(I^{\star})\oplus\mathbb{Z}/2\mathbb{Z} by η~(wi,j)=(η(wi,j),0)\widetilde{\eta}(w_{i,j}^{\cap})=(\eta(w_{i,j}^{\cap}),0) and η~(wi,j)=(η(wi,j),1)\widetilde{\eta}(w_{i,j}^{\cup})=(\eta(w_{i,j}^{\cup}),1) for i,j=2,3,4i,j=2,3,4.

We denote the generator of /2\mathbb{Z}/2\mathbb{Z} in K0(I)/2K_{0}(I^{\star})\oplus\mathbb{Z}/2\mathbb{Z} by s5s_{5}.

Table 15.2. Computation of η~\widetilde{\eta}
2,2 3,3 4,4 2,3 3,4 4,2 3,2 4,3 2,4
svs\diagdown v \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup \cap \cup
1 0 0 1 1 1-1 1-1 1 1 0 0 1-1 1-1 0 0 0 0 0 0
2 1-1 1-1 1 1 0 0 0 0 1 1 1-1 1-1 0 0 0 0 0 0
3 0 0 1 1 1-1 1-1 0 0 0 0 0 0 1 1 0 0 1-1 1-1
4 1-1 1-1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1-1 1-1
5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Proposition 15.4.

The map η~:K1(B)K0(I)/2\widetilde{\eta}\colon K_{1}(B^{\circ})\to K_{0}(I^{\star})\oplus\mathbb{Z}/2\mathbb{Z} is surjective, and its kernel coincides with the image of δ:K0(B)K1(B)\delta\colon K_{0}(B^{\text{\textbullet}})\to K_{1}(B^{\circ}).

Proof.

Since

η~(w2,3)=s1,η~(w3,4)=s2,η~(w3,2)=s3,η~(w4,3)=s4,\displaystyle\widetilde{\eta}(w_{2,3}^{\cap})=s_{1},\quad\widetilde{\eta}(w_{3,4}^{\cap})=s_{2},\quad\widetilde{\eta}(w_{3,2}^{\cap})=s_{3},\quad\widetilde{\eta}(w_{4,3}^{\cap})=s_{4},

s1,s2,s3,s4s_{1},s_{2},s_{3},s_{4} are in the image of η~\widetilde{\eta}. Since η~(w2,2+w3,3+w4,4)=s5\widetilde{\eta}(w_{2,2}^{\cup}+w_{3,3}^{\cup}+w_{4,4}^{\cup})=s_{5}, s5s_{5} is also in the image of η~\widetilde{\eta}. Thus η~\widetilde{\eta} is surjective.

It is straightforward to check η~δ=0\widetilde{\eta}\circ\delta=0 Hence the image of δ\delta is contained in the kernel of η~\widetilde{\eta}. Suppose

x=i,j=24ni,jwi,j+i,j=24ni,jwi,jx=\sum_{i,j=2}^{4}n_{i,j}^{\cap}w_{i,j}^{\cap}+\sum_{i,j=2}^{4}n_{i,j}^{\cup}w_{i,j}^{\cup}

is in the kernel of η~\widetilde{\eta} where ni,j,ni,jn_{i,j}^{\cap},n_{i,j}^{\cup}\in\mathbb{Z} for i,j=2,3,4i,j=2,3,4. We will show that xx is in the image of δ\delta. By adding

n2,3δ(q(3142))+n3,4δ(q(4312))+n4,2δ(q(2341))+n3,2δ(q(2413))+n4,3δ(q(3421))+n2,4δ(q(4123))n_{2,3}^{\cup}\delta(q_{(3142)})+n_{3,4}^{\cup}\delta(q_{(4312)})+n_{4,2}^{\cup}\delta(q_{(2341)})+n_{3,2}^{\cup}\delta(q_{(2413)})+n_{4,3}^{\cup}\delta(q_{(3421)})+n_{2,4}^{\cup}\delta(q_{(4123)})

we may assume

n2,3=n3,4=n4,2=n3,2=n4,3=n2,4=0n_{2,3}^{\cup}=n_{3,4}^{\cup}=n_{4,2}^{\cup}=n_{3,2}^{\cup}=n_{4,3}^{\cup}=n_{2,4}^{\cup}=0

without loss of generality. By subtracting n3,3δ(q(4321))+n4,4δ(q(3412))n_{3,3}^{\cup}\delta(q_{(4321)})+n_{4,4}^{\cup}\delta(q_{(3412)}), we may further assume n3,3=n4,4=0n_{3,3}^{\cup}=n_{4,4}^{\cup}=0 without loss of generality. Then n2,2n_{2,2}^{\cup} is even since the coefficient of c5c_{5} for η~(x)\widetilde{\eta}(x) is 0. Hence by adding

n2,22(δ(q(2143))δ(q(3412))δ(q(4321)))\frac{n_{2,2}^{\cup}}{2}\big{(}\delta(q_{(2143)})-\delta(q_{(3412)})-\delta(q_{(4321)})\big{)}

we may further assume n2,2=0n_{2,2}^{\cup}=0 without loss of generality. Thus we may assume x=i,j=24ni,jwi,jx=\sum_{i,j=2}^{4}n_{i,j}^{\cap}w_{i,j}^{\cap}. By adding n2,2δ(q(1243))+n3,3δ(q(1432))+n4,4δ(q(1324))n_{2,2}^{\cap}\delta(q_{(1243)})+n_{3,3}^{\cap}\delta(q_{(1432)})+n_{4,4}^{\cap}\delta(q_{(1324)}), we may further assume n2,2=n3,3=n4,4=0n_{2,2}^{\cap}=n_{3,3}^{\cap}=n_{4,4}^{\cap}=0 without loss of generality. By subtracting n4,2δ(q(1423))+n2,4δ(q(1342))n_{4,2}^{\cap}\delta(q_{(1423)})+n_{2,4}^{\cap}\delta(q_{(1342)}), we may further assume n4,2=n2,4=0n_{4,2}^{\cap}=n_{2,4}^{\cap}=0 without loss of generality. Thus we may assume

x=n2,3w2,3+n3,4w3,4+n3,2w3,2+n4,3w4,3.x=n_{2,3}^{\cap}w_{2,3}^{\cap}+n_{3,4}^{\cap}w_{3,4}^{\cap}+n_{3,2}^{\cap}w_{3,2}^{\cap}+n_{4,3}^{\cap}w_{4,3}^{\cap}.

Then we have n2,3=n3,4=n3,2=n4,3=0n_{2,3}^{\cap}=n_{3,4}^{\cap}=n_{3,2}^{\cap}=n_{4,3}^{\cap}=0 because

η~(x)=n2,3s1+n3,4s2+n3,2s3+n4,3s4.\widetilde{\eta}(x)=n_{2,3}^{\cap}s_{1}+n_{3,4}^{\cap}s_{2}+n_{3,2}^{\cap}s_{3}+n_{4,3}^{\cap}s_{4}.

Thus x=0x=0. We have shown that xx is in the image of δ\delta. Hence the image of δ\delta coincides with the kernel of η~\widetilde{\eta}. ∎

As a corollary of this proposition, we have the following as predicted.

Proposition 15.5.

We have K0(B)10K_{0}(B)\cong\mathbb{Z}^{10} and K1(B)4/2K_{1}(B)\cong\mathbb{Z}^{4}\oplus\mathbb{Z}/2\mathbb{Z}.

Proof.

By Proposition 15.4, we see that K1(B)cokerδK_{1}(B)\cong\operatorname{coker}\delta is isomorphic to 4/2\mathbb{Z}^{4}\oplus\mathbb{Z}/2\mathbb{Z}. This implies K0(B)kerδK_{0}(B)\cong\ker\delta is isomorphic to 10\mathbb{Z}^{10} because kerδ\ker\delta is a free abelian group with dimension 2418+4=1024-18+4=10. ∎

We also have the following.

Proposition 15.6.

The index map δ1:K1(B)K0(I)\delta_{1}\colon K_{1}(B)\to K_{0}(I) is as K1(B)4/2(n,m)n4K0(I)K_{1}(B)\cong\mathbb{Z}^{4}\oplus\mathbb{Z}/2\mathbb{Z}\ni(n,m)\mapsto n\in\mathbb{Z}^{4}\cong K_{0}(I).

Proof.

From the commutative diagram with exact rows

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I\textstyle{I\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\phantom{.}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I\textstyle{I^{\star}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M4(C0(π1((OO0)F)))β\textstyle{M_{4}\big{(}C_{0}(\pi^{-1}((O\setminus O_{0})\cup F))\big{)}^{\beta}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0,\textstyle{0,}

the index map δ1:K1(B)K0(I)\delta_{1}\colon K_{1}(B)\to K_{0}(I) coincides with the map K1(B)K0(I)K_{1}(B)\to K_{0}(I^{\star}) if we identify K0(I)K0(I)K_{0}(I)\cong K_{0}(I^{\star}) as we did in Proposition 14.5.

From the commutative diagram with exact rows

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I\textstyle{I^{\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M4(C0(π1(TF)))β\textstyle{M_{4}\big{(}C_{0}(\pi^{-1}(T\cup F^{\circ}))\big{)}^{\beta}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B^{\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\phantom{.}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}I\textstyle{I^{\star}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M4(C0(π1((OO0)F)))β\textstyle{M_{4}\big{(}C_{0}(\pi^{-1}((O\setminus O_{0})\cup F))\big{)}^{\beta}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0,\textstyle{0,}

we have the commutative diagram

From this diagram, we see that the map K1(B)K0(I)K_{1}(B)\to K_{0}(I^{\star}) is as K1(B)4/2(n,m)n4K0(I)K_{1}(B)\cong\mathbb{Z}^{4}\oplus\mathbb{Z}/2\mathbb{Z}\ni(n,m)\mapsto n\in\mathbb{Z}^{4}\cong K_{0}(I^{\star}). This completes the proof. ∎

Definition 15.7.

Define a unitary wC(S3,M2())w\in C(S^{3},M_{2}(\mathbb{C})) by

w(a1,a2,a3,a4)\displaystyle w(a_{1},a_{2},a_{3},a_{4}) =a1c1+a2c2+a3c3+a4c4\displaystyle=a_{1}c_{1}+a_{2}c_{2}+a_{3}c_{3}+a_{4}c_{4}
=(a1+a21a3+a41a3+a41a1a21)\displaystyle=\begin{pmatrix}a_{1}+a_{2}\sqrt{-1}&a_{3}+a_{4}\sqrt{-1}\\ -a_{3}+a_{4}\sqrt{-1}&a_{1}-a_{2}\sqrt{-1}\end{pmatrix}

for (a1,a2,a3,a4)S3(a_{1},a_{2},a_{3},a_{4})\in S^{3}.

Then [w]1[w]_{1} is the generator of K1(C(S3,M2()))K1(M4(C(S3)))K_{1}\big{(}C(S^{3},M_{2}(\mathbb{C}))\big{)}\cong K_{1}\big{(}M_{4}(C(S^{3}))\big{)}\cong\mathbb{Z}.

Let φ:AM4(C(S3))\varphi\colon A\to M_{4}(C(S^{3})) be the composition of the embedding AM4(C(P3))A\to M_{4}(C(\mathbb{R}P^{3})) and the map M4(C(P3))M4(C(S3))M_{4}(C(\mathbb{R}P^{3}))\to M_{4}(C(S^{3})) induced by []:S3P3[\cdot]\colon S^{3}\to\mathbb{R}P^{3}. Let π~:S3X\widetilde{\pi}\colon S^{3}\to X be the composition of []:S3P3[\cdot]\colon S^{3}\to\mathbb{R}P^{3} and π:P3X\pi\colon\mathbb{R}P^{3}\to X. We set VV^{\prime} of S3S^{3} by

V{(a1,a2,a3,a4)S3a1,a2,a3>|a4|}.V^{\prime}\coloneqq\{(a_{1},a_{2},a_{3},a_{4})\in S^{3}\mid a_{1},a_{2},a_{3}>|a_{4}|\}.

Then VV^{\prime} is homeomorphic to VV via [][\cdot], and hence to O0O_{0} via π~\widetilde{\pi}. Note that the map M4(C0(V))M4(C(S3))M_{4}(C_{0}(V^{\prime}))\hookrightarrow M_{4}(C(S^{3})) induces the isomorphism

K1(M4(C0(V)))K1(M4(C(S3))).K_{1}\big{(}M_{4}(C_{0}(V^{\prime}))\big{)}\to K_{1}\big{(}M_{4}(C(S^{3}))\big{)}.

Since I0M4(C0(O0))M4(C0(V))I_{0}\cong M_{4}(C_{0}(O_{0}))\cong M_{4}(C_{0}(V^{\prime})) canonically, we set a generator yy of K1(I0)K_{1}(I_{0}) which corresponds to the generator [w]1[w]_{1} of K1(M4(C(S3)))K_{1}\big{(}M_{4}(C(S^{3}))\big{)} via the isomorphism K1(M4(C0(V)))K1(M4(C(S3)))K_{1}\big{(}M_{4}(C_{0}(V^{\prime}))\big{)}\to K_{1}\big{(}M_{4}(C(S^{3}))\big{)}. We denote by the same symbol yy the generator of K1(I)K1(I0)K_{1}(I)\cong K_{1}(I_{0}) corresponding yK1(I0)y\in K_{1}(I_{0}).

Proposition 15.8.

The image of yK1(I)y\in K_{1}(I) under the map K1(I)K1(A)K1(M4(C(S3)))K_{1}(I)\to K_{1}(A)\to K_{1}\big{(}M_{4}(C(S^{3}))\big{)} is 32[w]132[w]_{1}.

Proof.

The map I0IAM4(C(S3))I_{0}\to I\to A\to M_{4}(C(S^{3})) is induced by π~:π~1(O0)O0\widetilde{\pi}\colon\widetilde{\pi}^{-1}(O_{0})\to O_{0} when we identify I0I_{0} with M4(C0(O0))M_{4}(C_{0}(O_{0})). We have

π~1(O0)=i,j=14σi,j,+(V)i,j=14σi,j,(V)\widetilde{\pi}^{-1}(O_{0})=\coprod_{i,j=1}^{4}\sigma^{\prime}_{i,j,+}(V^{\prime})\amalg\coprod_{i,j=1}^{4}\sigma^{\prime}_{i,j,-}(V^{\prime})

where σi,j,±:S3S3\sigma^{\prime}_{i,j,\pm}\colon S^{3}\to S^{3} is induced by the unitary ±Ui,j\pm U_{i,j} similarly as σi,j:P3P3\sigma_{i,j}\colon\mathbb{R}P^{3}\to\mathbb{R}P^{3} for i,j=1,2,3,4i,j=1,2,3,4. These 3232 homeomorphisms preserve the orientation of S3S^{3}. Therefore, the image of yK1(I0)y\in K_{1}(I_{0}), and hence the one of yK1(I)y\in K_{1}(I), in K1(M4(C(S3)))K_{1}\big{(}M_{4}(C(S^{3}))\big{)} is 32[w]132[w]_{1}. ∎

Definition 15.9.

Define the linear map ξ:M2()4\xi:M_{2}(\mathbb{C})\to\mathbb{C}^{4} by

ξ((a11a12a21a22))=12(a11,a12,a21,a22).\displaystyle\xi\left(\begin{pmatrix}a_{11}&a_{12}\\ a_{21}&a_{22}\end{pmatrix}\right)=\frac{1}{\sqrt{2}}(a_{11},a_{12},a_{21},a_{22}).
Definition 15.10.

Define unital *-homomorphisms ι,ι:M2()M4()\iota,\iota^{\prime}\colon M_{2}(\mathbb{C})\to M_{4}(\mathbb{C}) by

ι((a11a12a21a22))=(a11a1200a21a220000a11a2100a21a22),\displaystyle\iota\left(\begin{pmatrix}a_{11}&a_{12}\\ a_{21}&a_{22}\end{pmatrix}\right)=\begin{pmatrix}a_{11}&a_{12}&0&0\\ a_{21}&a_{22}&0&0\\ 0&0&a_{11}&a_{21}\\ 0&0&a_{21}&a_{22}\end{pmatrix},
ι((a11a12a21a22))=(a110a1200a110a12a210a2200a210a22).\displaystyle\iota^{\prime}\left(\begin{pmatrix}a_{11}&a_{12}\\ a_{21}&a_{22}\end{pmatrix}\right)=\begin{pmatrix}a_{11}&0&a_{12}&0\\ 0&a_{11}&0&a_{12}\\ a_{21}&0&a_{22}&0\\ 0&a_{21}&0&a_{22}\end{pmatrix}.
Lemma 15.11.

For each M,NM2()M,N\in M_{2}(\mathbb{C}), we have

ξ(M)ι(N)\displaystyle\xi(M)\iota(N) =ξ(MN),\displaystyle=\xi(MN), ι(M)ξ(N)T\displaystyle\iota^{\prime}(M)\xi(N)^{\mathrm{T}} =ξ(MN)T.\displaystyle=\xi(MN)^{\mathrm{T}}.
Proof.

It follows from a direct computation. ∎

Definition 15.12.

Define UM4(A)U\in M_{4}(A) by

U=(P11P12P13P14P21P22P23P24P31P32P33P34P41P42P43P44).U=\begin{pmatrix}P_{11}&P_{12}&P_{13}&P_{14}\\ P_{21}&P_{22}&P_{23}&P_{24}\\ P_{31}&P_{32}&P_{33}&P_{34}\\ P_{41}&P_{42}&P_{43}&P_{44}\end{pmatrix}.

It can be easily checked that UU is a unitary.

Proposition 15.13.

The image of [U]1K1(A)[U]_{1}\in K_{1}(A) under the map K1(A)K1(M4(C(S3)))K_{1}(A)\to K_{1}\big{(}M_{4}(C(S^{3}))\big{)} is 16[w]116[w]_{1}.

Proof.

Let φ4:M4(A)M4(M4(C(S3)))\varphi_{4}\colon M_{4}(A)\to M_{4}\big{(}M_{4}(C(S^{3}))\big{)} be the *-homomorphism induced by φ\varphi. Set 𝕌φ4(U)\mathbb{U}\coloneqq\varphi_{4}(U). For i,j=1,2,3,4i,j=1,2,3,4, the (i,j)(i,j)-entry 𝕌i,jC(S3,M4())\mathbb{U}_{i,j}\in C(S^{3},M_{4}(\mathbb{C})) of 𝕌\mathbb{U} is given by

𝕌i,j(a1,a2,a3,a4)=Ui,j(a1,a2,a3,a4)T(a1,a2,a3,a4)Ui,j\mathbb{U}_{i,j}(a_{1},a_{2},a_{3},a_{4})=U_{i,j}(a_{1},a_{2},a_{3},a_{4})^{\mathrm{T}}(a_{1},a_{2},a_{3},a_{4})U_{i,j}^{*}

for each (a1,a2,a3,a4)S3(a_{1},a_{2},a_{3},a_{4})\in S^{3}.

Let WM4()W\in M_{4}(\mathbb{C}) be

W=12(1100001100111100).W=\frac{1}{\sqrt{2}}\begin{pmatrix}1&-\sqrt{-1}&0&0\\ 0&0&1&-\sqrt{-1}\\ 0&0&-1&-\sqrt{-1}\\ 1&\sqrt{-1}&0&0\end{pmatrix}.

Then WW is a unitary.

Take (a1,a2,a3,a4)S3(a_{1},a_{2},a_{3},a_{4})\in S^{3} and i,j=1,2,3,4i,j=1,2,3,4. We set (b1,b2,b3,b4)=(a1,a2,a3,a4)Ui,j(b_{1},b_{2},b_{3},b_{4})=(a_{1},a_{2},a_{3},a_{4})U_{i,j}^{*}. By Proposition 5.2, we have k=14bkck=ci(k=14akck)cj\sum_{k=1}^{4}b_{k}c_{k}=c_{i}\Big{(}\sum_{k=1}^{4}a_{k}c_{k}\Big{)}c_{j}^{*}. We also have

ξ(k=14bkck)W\displaystyle\xi\Big{(}\sum_{k=1}^{4}b_{k}c_{k}\Big{)}W =12(b1+b21,b3+b41,b3+b41,b1b21)W\displaystyle=\frac{1}{\sqrt{2}}(b_{1}+b_{2}\sqrt{-1},b_{3}+b_{4}\sqrt{-1},-b_{3}+b_{4}\sqrt{-1},b_{1}-b_{2}\sqrt{-1})W
=(b1,b2,b3,b4)\displaystyle=(b_{1},b_{2},b_{3},b_{4})

Hence we get

(a1,a2,a3,a4)Ui,j\displaystyle(a_{1},a_{2},a_{3},a_{4})U_{i,j}^{*} =ξ(ci(k=14akck)cj)W\displaystyle=\xi\left(c_{i}\Big{(}\sum_{k=1}^{4}a_{k}c_{k}\Big{)}c_{j}^{*}\right)W
=ξ(ci)ι((k=14akck)cj)W\displaystyle=\xi(c_{i})\iota\left(\Big{(}\sum_{k=1}^{4}a_{k}c_{k}\Big{)}c_{j}^{*}\right)W
=ξ(ci)ι(w(a1,a2,a3,a4))ι(cj)W\displaystyle=\xi(c_{i})\iota(w(a_{1},a_{2},a_{3},a_{4}))\iota(c_{j}^{*})W

by Lemma 15.11. Similarly, we get

Ui,j(a1,a2,a3,a4)T\displaystyle U_{i,j}(a_{1},a_{2},a_{3},a_{4})^{\mathrm{T}} =WTξ(ci(k=14akck)cj)T\displaystyle=W^{\mathrm{T}}\xi\left(c_{i}\Big{(}\sum_{k=1}^{4}a_{k}c_{k}\Big{)}c_{j}^{*}\right)^{\mathrm{T}}
=WTι(ci(k=14akck))ξ(cj)T\displaystyle=W^{\mathrm{T}}\iota^{\prime}\left(c_{i}\Big{(}\sum_{k=1}^{4}a_{k}c_{k}\Big{)}\right)\xi(c_{j}^{*})^{\mathrm{T}}
=WTι(ci)ι(w(a1,a2,a3,a4))ξ(cj)T\displaystyle=W^{\mathrm{T}}\iota^{\prime}(c_{i})\iota^{\prime}(w(a_{1},a_{2},a_{3},a_{4}))\xi(c_{j}^{*})^{\mathrm{T}}

by Lemma 15.11. Define 𝕍,𝕎,𝕎M4(M4())\mathbb{V},\mathbb{W},\mathbb{W}^{\prime}\in M_{4}(M_{4}(\mathbb{C})) by

𝕍=(ξ(cj)Tξ(ci))i,j=14,\displaystyle\mathbb{V}=(\xi(c_{j}^{*})^{\mathrm{T}}\xi(c_{i}))_{i,j=1}^{4},
𝕎=(ι(c1)W0000ι(c2)W0000ι(c3)W0000ι(c4)W),\displaystyle\mathbb{W}=\begin{pmatrix}\iota(c_{1}^{*})W&0&0&0\\ 0&\iota(c_{2}^{*})W&0&0\\ 0&0&\iota(c_{3}^{*})W&0\\ 0&0&0&\iota(c_{4}^{*})W\end{pmatrix},
𝕎=(WTι(c1)0000WTι(c2)0000WTι(c3)0000WTι(c4)).\displaystyle\mathbb{W}^{\prime}=\begin{pmatrix}W^{\mathrm{T}}\iota^{\prime}(c_{1})&0&0&0\\ 0&W^{\mathrm{T}}\iota^{\prime}(c_{2})&0&0\\ 0&0&W^{\mathrm{T}}\iota^{\prime}(c_{3})&0\\ 0&0&0&W^{\mathrm{T}}\iota^{\prime}(c_{4})\end{pmatrix}.

One can check that these are unitaries. If we consider these as constant functions in M4(C(S3,M4()))M_{4}\big{(}C(S^{3},M_{4}(\mathbb{C}))\big{)}, we have

𝕌=𝕎ι4(w)𝕍ι4(w)𝕎,\mathbb{U}=\mathbb{W}^{\prime}\iota^{\prime}_{4}(w)\mathbb{V}\iota_{4}(w)\mathbb{W},

where ι4(w),ι4(w)M4(C(S3,M4())\iota_{4}(w),\iota^{\prime}_{4}(w)\in M_{4}(C(S^{3},M_{4}(\mathbb{C})) are defined as

ι4(w)=(ι(w())0000ι(w())0000ι(w())0000ι(w())),\displaystyle\iota_{4}(w)=\begin{pmatrix}\iota(w(\cdot))&0&0&0\\ 0&\iota(w(\cdot))&0&0\\ 0&0&\iota(w(\cdot))&0\\ 0&0&0&\iota(w(\cdot))\end{pmatrix},
ι4(w)=(ι(w())0000ι(w())0000ι(w())0000ι(w())).\displaystyle\iota^{\prime}_{4}(w)=\begin{pmatrix}\iota^{\prime}(w(\cdot))&0&0&0\\ 0&\iota^{\prime}(w(\cdot))&0&0\\ 0&0&\iota^{\prime}(w(\cdot))&0\\ 0&0&0&\iota^{\prime}(w(\cdot))\end{pmatrix}.

Since [ι4(w)]1=[ι4(w)]1=8[w]1[\iota_{4}(w)]_{1}=[\iota^{\prime}_{4}(w)]_{1}=8[w]_{1}, we obtain [𝕌]1=16[w]1[\mathbb{U}]_{1}=16[w]_{1}. ∎

Proposition 15.14.

We have K0(A)10K_{0}(A)\cong\mathbb{Z}^{10} and K1(A)K_{1}(A)\cong\mathbb{Z}. More specifically, K0(A)K_{0}(A) is generated by {[Pi,j]0}i,j=14\{[P_{i,j}]_{0}\}_{i,j=1}^{4}, and K1(A)K_{1}(A) is generated by [U]1[U]_{1}. Moreover, the positive cone K0(A)+K_{0}(A)_{+} of K0(A)K_{0}(A) is generated by {[Pi,j]0}i,j=14\{[P_{i,j}]_{0}\}_{i,j=1}^{4} as a monoid.

Proof.

We have already seen that K0(A)K0(B)K_{0}(A)\to K_{0}(B) is isomorphic, and we have a short exact sequence

0K1(I)K1(A)/20.0\longrightarrow K_{1}(I)\longrightarrow K_{1}(A)\longrightarrow\mathbb{Z}/2\mathbb{Z}\longrightarrow 0.

From this, we see that K1(A)K_{1}(A) is isomorphic to either /2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z} or \mathbb{Z}. If K1(A)K_{1}(A) is isomorphic to /2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}, one can choose an isomorphism so that yK1(I)y\in K_{1}(I) goes to (1,0)/2(1,0)\in\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}. Then the image of the map K1(A)K1(M4(C(S3)))K_{1}(A)\to K_{1}\big{(}M_{4}(C(S^{3}))\big{)}\cong\mathbb{Z} is 3232\mathbb{Z} by Proposition 15.8. This is a contradiction because the image of [U]1K1(A)[U]_{1}\in K_{1}(A) is 1616 by Proposition 15.13. Hence K1(A)K_{1}(A) is isomorphic to \mathbb{Z} so that yK1(I)y\in K_{1}(I) goes to 22. By Proposition 15.8 and Proposition 15.13, [U]1K1(A)[U]_{1}\in K_{1}(A) corresponds to 11\in\mathbb{Z}. Thus [U]1[U]_{1} is a generator of K1(A)K_{1}(A)\cong\mathbb{Z}.

It is clear that the monoid generated by {[Pi,j]0}i,j=14\{[P_{i,j}]_{0}\}_{i,j=1}^{4} is contained in the positive cone K0(A)+K_{0}(A)_{+}. The positive cone K0(A)+K_{0}(A)_{+} maps into the positive cone K0(B)+K_{0}(B^{\text{\textbullet}})_{+} under the surjection ABA\to B^{\text{\textbullet}}. Hence by Proposition 12.7, K0(A)+K_{0}(A)_{+} is contained in the monoid generated by {[Pi,j]0}i,j=14\{[P_{i,j}]_{0}\}_{i,j=1}^{4}. Thus K0(A)+K_{0}(A)_{+} is the monoid generated by {[Pi,j]0}i,j=14\{[P_{i,j}]_{0}\}_{i,j=1}^{4}. ∎

Definition 15.15.

Define uM4(A(4))u\in M_{4}(A(4)) by

u=(p11p12p13p14p21p22p23p24p31p32p33p34p41p42p43p44).u=\begin{pmatrix}p_{11}&p_{12}&p_{13}&p_{14}\\ p_{21}&p_{22}&p_{23}&p_{24}\\ p_{31}&p_{32}&p_{33}&p_{34}\\ p_{41}&p_{42}&p_{43}&p_{44}\end{pmatrix}.

It can be easily checked that uu is a unitary. This unitary uu is called the defining unitary of the magic square C*-algebra A(4)A(4).

By Proposition 15.14, we get the third main theorem.

Theorem 15.16.

We have K0(A(4))10K_{0}(A(4))\cong\mathbb{Z}^{10} and K1(A(4))K_{1}(A(4))\cong\mathbb{Z}. More specifically, K0(A(4))K_{0}(A(4)) is generated by {[pi,j]0}i,j=14\{[p_{i,j}]_{0}\}_{i,j=1}^{4}, and K1(A(4))K_{1}(A(4)) is generated by [u]1[u]_{1}.

The positive cone K0(A(4))+K_{0}(A(4))_{+} of K0(A(4))K_{0}(A(4)) is generated by {[pi,j]0}i,j=14\{[p_{i,j}]_{0}\}_{i,j=1}^{4} as a monoid.

As mentioned in the introduction, the computation K0(A(4))10K_{0}(A(4))\cong\mathbb{Z}^{10} and K1(A(4))K_{1}(A(4))\cong\mathbb{Z} and that K0(A(4))K_{0}(A(4)) is generated by {[pi,j]0}i,j=14\{[p_{i,j}]_{0}\}_{i,j=1}^{4} were already obtained by Voigt in [V]. We give totally different proofs of these facts. That K1(A(4))K_{1}(A(4)) is generated by [u]1[u]_{1} and the computation of the positive cone K0(A(4))+K_{0}(A(4))_{+} of K0(A(4))K_{0}(A(4)) are new.

References

  • [BB] Banica, T.; Bichon, J. Quantum groups acting on 4 points. J. Reine Angew. Math. 626 (2009), 75–114.
  • [BC] Banica, T.; Collins, B. Integration over the Pauli quantum group. J. Geom. Phys. 58 (2008), no. 8, 942–961.0
  • [BM] Banica, T.; Moroianu, S. On the structure of quantum permutation groups. Proc. Amer. Math. Soc. 135 (2007), no. 1, 21–29.
  • [BO] Brown, N. P.; Ozawa, N. CC^{*}-algebras and finite-dimensional approximations. Grad. Stud. Math., 88, Amer. Math. Soc., RI, 2008.
  • [O] Osugi, S. The homology theory of quotient spaces of the spheres by the action of the finite groups. Master thesis, Keio University (2018).
  • [RLL] Rørdam, M.; Larsen, F.; Laustsen, N. An introduction to KK-theory for CC^{*}-algebras. London Mathematical Society Student Texts, 49. Cambridge University Press, Cambridge, 2000.
  • [V] Voigt, C. On the structure of quantum automorphism groups. J. Reine Angew. Math. 732 (2017), 255–273.
  • [W] Wang, S. Quantum symmetry groups of finite spaces. Comm. Math. Phys. 195 (1998), no. 1, 195–211.